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ABSTRACT
Some pulsating stars are good clocks. When they are found in binary stars, the frequencies of
their luminosity variations are modulated by the Doppler effect caused by orbital motion. For
each pulsation frequency this manifests itself as a multiplet separated by the orbital frequency
in the Fourier transform of the light curve of the star. We derive the theoretical relations
to exploit data from the Fourier transform to derive all the parameters of a binary system
traditionally extracted from spectroscopic radial velocities, including the mass function which
is easily derived from the amplitude ratio of the first orbital sidelobes to the central frequency
for each pulsation frequency. This is a new technique that yields radial velocities from the
Doppler shift of a pulsation frequency, thus eliminates the need to obtain spectra. For binary
stars with pulsating components, an orbital solution can be obtained from the light curve alone.
We give a complete derivation of this and demonstrate it both with artificial data, and with a
case of a hierarchical eclipsing binary with Kepler mission data, KIC 4150611 (HD 181469).
We show that it is possible to detect Jupiter-mass planets orbiting δ Sct and other pulsating
stars with our technique. We also show how to distinguish orbital frequency multiplets from
potentially similar non-radial m-mode multiplets and from oblique pulsation multiplets.

Key words: techniques: radial velocities – binaries: general – stars: individual: KIC 4150611;
HD 181469 – stars: oscillations – stars: variables: general.

1 IN T RO D U C T I O N

There are many periodic phenomena in astronomy that act as clocks:
the Earth’s rotation and orbit, the orbit of the Moon, the orbits of
binary stars and exoplanets, the spin of pulsars, stellar rotation and
stellar pulsation are examples. All of these astronomical clocks
show measurable frequency and/or phase modulation in the modern
era of attosecond precision atomic time, and stunning geophysi-
cal and astrophysical insight can be gleaned from their frequency
variability.

Variations in the Earth’s rotation arise from, for example, changes
in seasonal winds, longer-term changes in ocean currents (such as in
the El Nino quasi-biennial southern oscillation), monthly changes
in the tides and long-term tidal interaction between the Earth and
Moon. Earth rotation even suffers measurable glitches with large
earthquakes and internal changes in Earth’s rotational angular mo-
mentum. Earth’s rotation and orbit induce frequency variability in
all astronomical observations and must be precisely accounted for,
usually by transforming times of observations to Barycentric Julian
Date (BJD). The astronomical unit is known to an accuracy of less

�E-mail: shibahashi@astron.s.u-tokyo.ac.jp

than 5 m, on which scale the Earth’s orbit is not closed and is highly
non-Keplerian. Incorrectly transforming to BJD led to the first claim
of discovery of an exoplanet (Bailes, Lyne & Shemar 1991; it
was a rediscovery of Earth), and correct transformation led to the
true first exoplanets discovered orbiting the pulsar PSR 1257+12
(Wolszczan & Frail 1992). Hulse & Taylor (1975) famously discov-
ered the first binary pulsar. Timing variations in its pulses confirmed
energy losses caused by gravitational radiation and led to the award
of the Nobel prize to them in 1993.

Deviations of astronomical clocks from perfect time keepers have
traditionally been studied using ‘observed minus corrected’ (O−C)
diagrams (see, e.g. Sterken 2005, and other papers in those proceed-
ings). Pulsar timings are all studied this way. In an O−C diagram
some measure of periodicity (pulse timing in a pulsar, time of pe-
riastron passage in a binary star, the phase of one pulsation cycle
in a pulsating star) is compared to a hypothetical perfect clock with
an assumed period. Deviations from linearity in the O−C diagram
can then diagnose evolutionary changes in an orbit or stellar pulsa-
tion, apsidal motion in a binary star, stochastic or cyclic variations
in stellar pulsation, and, most importantly for our purposes here,
periodic Doppler variability in a binary star or exoplanet system.

That some pulsating stars are sufficiently good clocks to detect
exoplanets has been demonstrated. In the case of V391 Peg (Silvotti
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et al. 2007), a 3.2-MJupiter/sin i planet in a 3.2-yr orbit around an
extreme horizontal branch star was detected in sinusoidal frequency
variations inferred from the O−C diagrams for two independent
pulsation modes (where MJupiter is the Jovian mass and i denotes the
inclination angle of the orbital axis with respect to the line of sight).
These frequency variations arise simply as a result of the light time
effect.

A barrier to the study of binary star orbits and exoplanet orbits
using O−C diagrams has always been the difficulty of precisely
phasing cycles across the inevitable gaps in ground-based observa-
tions. Great care must be taken not to lose cycle counts across the
gaps. The light time effect can also be seen directly in the Fourier
transform of a light curve of a pulsating star, where the cycle count
ambiguity manifests itself in the aliases in the spectral window pat-
tern. In principle, this method yields all the information in an O−C
diagram, but the tradition has been to use O−C diagrams rather
than amplitude spectra, probably because of the apparently daunt-
ing confusion of multiple spectral window patterns for multiperiodic
pulsating stars with large gaps in their light curves.

Now, with spaced-based light curves of stars at µmag photo-
metric precision and with duty cycles exceeding 90 per cent, e.g.
those obtained with the Kepler mission (Koch et al. 2010), not
only is there no need to resort to O−C diagrams to study or-
bital motion from the light curve, it is preferable to do this di-
rectly with information about the frequencies derived from the
Fourier transform. For pulsating stars that are sufficiently good
clocks, it is possible to derive orbital radial velocities in a bi-
nary system from the light curve alone – obviating the need for
time-consuming spectroscopic observations. The fundamental mass
function, f (m1,m2, sin i) = m3

2 sin3 i/(m1 + m2)2, for a binary star
can be derived directly from the amplitudes and phases of frequency
multiplets found in the amplitude spectrum without need of radial
velocities, although those, too, can be determined from the photo-
metric data. Here, m1 and m2 denote the mass of the pulsating star
in the binary system and the mass of the companion, respectively,
and i is the inclination angle of the orbital axis with respect to the
line of sight.

The Kepler mission is observing about 150 000 stars nearly con-
tinuously for spans of months to years. Many of these stars are clas-
sical pulsating variables, some of which are in binary or multiple star
systems. The study of the pulsations in such stars is traditionally
done using Fourier transforms, and it is the patterns in the fre-
quencies that lead to astrophysical inference; see, for example, the
fundamental textbooks Unno et al. (1989) and Aerts, Christensen-
Dalsgaard & Kurtz (2010). One type of pattern that arises is the
frequency multiplet. This may be the result of non-radial modes of
degree � for which all, or some, of the (2� + 1) m-mode compo-
nents (where −� ≤ m ≤ +�) may be present. The splitting between
the frequencies of such multiplets is proportional to stellar angular
frequency, hence leads to a direct measure of the rotation veloc-
ity of the star averaged over the pulsation cavity (Ledoux 1951).
In the best case of the Sun, this leads to a 2D map (in depth and
latitude) of rotation velocity over the outer half of the solar radius.
Frequency multiplets also occur for a star that has pulsation modes
inclined to the rotation axis, leading to oblique pulsation, as in the
rapidly oscillating Ap (roAp) stars (e.g. Kurtz 1982; Shibahashi &
Takata 1993; Bigot & Kurtz 2011). This, too, leads to a frequency
multiplet, in this case split by exactly the rotation frequency of the
star.

Other types of frequency modulation (FM) may be present in
pulsating stars. The Sun is known to show frequency variability
correlated with the 11-yr solar cycle. A large fraction of RR Lyr

Figure 1. A schematic picture of phase modulation. The green, dashed
curve shows a pure sinusoid. The red, solid curve shows the same sinusoid
with frequency modulation.

stars exhibit quasi-periodic amplitude and phase modulation known
as the Blazhko effect. The physical cause of this remains a mys-
tery after more than a century of study. Benkő et al. (2009) and
Benkő, Szabó & Paparó (2011) have looked at the formalism of the
combination of FM and amplitude modulation in the context of the
Blazhko stars, showing the type of frequency multiplets expected
compared to those observed. Their FM is analogous to that of FM
radio waves, hence the formalism is well known in the theory of
radio engineering, but unfamiliar to most astronomers.

Here we examine FM for pulsating stars in binary star systems.
Imagine that one star in a binary system is sinusoidally pulsating
with a single frequency. Its luminosity varies with time as a conse-
quence of pulsation. For a single star with no radial velocity with
respect to the Solar system barycentre, the observed luminosity vari-
ation would also be purely sinusoidal and would be expressed in
terms of the exact same frequency as the one with which the star is
intrinsically pulsating. However, in the case of a binary system, the
orbital motion of the star leads a periodic variation in the distance
between us and the star; that is, the path length of the light, thus
the phase of the observed luminosity variation also varies with the
orbital period. This is the light time effect and is equivalent to a
periodic Doppler shift of the pulsation frequency. The situation is
the same as the case of a binary pulsar. Fig. 1 shows the difference
between the light curves in these two cases.

In the following section, we show the formal derivations of the
light time effect in a binary star on the Fourier transform of the light
curve of a pulsating star. This also leads to frequency multiplets in
the amplitude spectra of such stars where the frequency splitting
is equal to the orbital frequency, and where the amplitudes and
phases of the components of the frequency multiplet can be used to
derive all of the information traditionally found from radial velocity
curves: the time of periastron passage, orbital eccentricity, the mass
function, f (m1, m2, sin i), and even the radial velocity curve itself.
This is a significant advance in the study of binary star orbits;
effectively we have photometric radial velocities.

Asteroseismologists must also be aware of the expected fre-
quency patterns for pulsating stars in binary systems. These show
a new kind of multiplet in the amplitude spectra that needs to be
recognized and exploited. In the common case of binary stars with
short orbital periods where rotation is synchronous, the frequency
multiplets that we derive here, Ledoux rotational spitting multiplets
and oblique pulsation multiplets can potentially be confused, and
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must be distinguished. We show how this is possible using frequency
separation, amplitude ratios and multiplet phase relationships.

2 THE SIMPLEST CASE: A BINARY STA R
W I T H C I R C U L A R O R B I TA L M OT I O N

2.1 An analytical expression of the phase modulation

Let us first consider the simplest case, a pulsating star in a binary
with circular orbital motion. We assume that the radial velocity of
the centre-of-mass of the binary system with respect to the Solar
system barycentre – the γ -velocity – has been subtracted, and we
assume that observations are corrected to the Solar system barycen-
tre so that there is no component of the Earth’s orbital velocity. We
name the stars ‘1’ and ‘2’, and suppose that star 1 is pulsating. In
this case, the observed luminosity variation at time t has a form

cos

{
ω0

[
t − 1

c

∫ t

0
vrad,1(t ′)dt ′

]
+ φ

}
, (1)

where ω0 is the angular frequency of pulsation, c the speed of light,
vrad,1 denotes the line of sight velocity of the star 1 due to orbital
motion, and φ is the pulsation phase at t = 0. The second term in the
square bracket measures the arrival time delay of the signal from
the star to us. The instantaneously observed frequency is regarded
as the time derivative of the phase, which is given by

ωobs = ω0

[
1 − vrad,1(t)

c

]
. (2)

The second term in the right-hand side of the above equation is the
classical Doppler shift of the frequency.

In this section, we adopt the phase at which the radial velocity of
star 1 reaches its maximum, i.e. the maximum velocity of recession,
as t = 0. Then, the radial velocity vrad,1(t) is given by

vrad,1(t) = a1� sin i cos �t, (3)

where a1 denotes the orbital radius of star 1, that is, the distance from
the star to the centre of gravity of the binary system, � denotes the
orbital angular frequency, and i denotes the inclination angle of the
orbital axis with respect to the line of sight. Following convention,
the sign of vrad,1 is defined so that vrad,1 > 0 when the object is
receding from us. Hence,

cos

{
ω0

[
t − 1

c

∫ t

0
vrad,1(t ′)dt ′

]
+ φ

}

= cos

[
(ω0t + φ) + a1ω0 sin i

c
sin �t

]
. (4)

This expression means that the phase is modulated with the orbital
angular frequency � and with the amplitude a1ω0sin i/c. This result
is reasonable, since the maximum arrival time delay is a1sin i/c,
hence the maximum phase difference is a1ω0sin i/c.

2.2 An estimate of the amplitude of the phase modulation

From Kepler’s 3rd law, the separation between the components 1
and 2 of a binary is

a =
(

GM�
4π2

)1/3 (
m1

M�

)1/3

(1 + q)1/3P
2/3
orb , (5)

where

q ≡ m2

m1
(6)

denotes the mass ratio of the stars and

Porb ≡ 2π

�
(7)

denotes the orbital period. Hence, the distance between star 1 and
the centre of gravity, a1, is

a1 = q(1 + q)−1a

=
(

GM�
4π2

)1/3 (
m1

M�

)1/3

q(1 + q)−2/3P
2/3
orb .

(8)

Then, the amplitude of the Doppler frequency shift, a1�sin i/c, is
given by(

2πGM�
)1/3

c

(
m1

M�

)1/3

q(1 + q)−2/3Porb
−1/3 sin i

� 7.1 × 10−4

(
m1

M�

)1/3

q(1 + q)−2/3

(
Porb

1 d

)−1/3

sin i. (9)

This is typically of the order of 10−3.
The amplitude of the phase modulation, a1ω0sin i/c, is given by

α ≡
(
2πGM�

)1/3

c

(
m1

M�

)1/3

q(1 + q)−2/3 P
2/3
orb

Posc
sin i (10)

� 1.7 × 10−2

(
m1

M�

)1/3

q(1 + q)−2/3 (Porb/1 d)2/3

(Posc/1 h)
sin i, (11)

where

Posc ≡ 2π

ω0
(12)

denotes the pulsation period. It should be noted that the amplitude
of the phase modulation is not necessarily small; it can be quite
large depending on the combination of Porb and Posc. In the case of
Porb = 1 d and Posc = 1 h, the amplitude of the phase modulation is of
order of 10−2. Fig. 2 shows the dependence of the phase modulation
amplitude, α, on Porb and Posc in the case of m1 = 1 M�, q = 1 and
i = 90◦.

Larger values of the phase modulation, α, are more detectable.
It can be seen in Fig. 2 that for a given oscillation period, longer
orbital periods are more detectable, and for a given orbital period
shorter pulsation periods (higher pulsation frequencies) are more
detectable. The combination of the two – high pulsation frequency
and long orbital period – gives the most detectable cases. This will
be relevant in Section 4 below when we discuss the detectability of
exoplanets with our technique.

Figure 2. The dependence of the phase modulation amplitude α in the case
of m1 = 1 M�, q = 1, and i = 90◦.
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Figure 3. Bessel functions of the first kind with integer order.

2.3 Mathematical formulae

Our aim is to carry out the Fourier analysis of pulsating stars show-
ing phase modulation due to orbital motion in a binary. As deduced
from equation (4), the problem is then essentially how to treat the
terms cos (αsin �t) and sin (αsin �t). These terms can be expressed
with a series expansion in terms of Bessel functions of the first kind
with integer order:

cos(α sin �t) = J0(α) + 2
∞∑

n=1

J2n(α) cos 2n�t (13)

sin(α sin �t) = 2
∞∑

n=0

J2n+1(α) sin(2n + 1)�t, (14)

respectively.1 Here Jn(x) denotes the Bessel function of the first
kind2 of integer order n

Jn(x) =
∞∑

k=0

(−1)k
(x/2)n+2k

(n + k)! k!
. (15)

Fig. 3 illustrates the five lowest order such functions.
Noting that Bessel functions with negative integer orders are

defined as

J−n(x) = (−1)nJn(x), (16)

we reach an expression of the right-hand side of equation (4) with
a series expansion in terms of cosine functions

cos [(ω0t + φ) + α sin �t]

=
∞∑

n=−∞
Jn(α) cos [(ω0 + n�)t + φ] . (17)

It should be noted that this relation is the mathematical base for the
broadcast of FM radio. This relation also has been applied recently
to Blazhko RR Lyr stars by Benkő et al. (2009) and Benkő et al.
(2011). Vibrato in music is another example that is described by
this equation.

1 These relations can be derived from the generating function of the Bessel
functions exp 1

2 x(t − t−1) by replacing x and t with α and ±exp (i�t),
respectively.
2 According to Watson (1922), the Bessel function of order zero was first
described by Bernoulli (1738).

Figure 4. The amplitude ratio of the nth side peaks to the central peak of
the multiplet frequency spectrum, as a function of the phase modulation
amplitude α. A±n and A0 denote the amplitude of the frequencies at ω0 ±
n� and ω0, respectively.

It is instructive to write down here, for later use, similar expan-
sions for cos (αcos �t) and sin (αcos �t) as well

cos(α cos �t) = J0(α) + 2
∞∑

n=1

(−1)nJ2n(α) cos 2n�t (18)

and

sin(α cos �t) = 2
∞∑

n=0

(−1)nJ2n+1(α) cos(2n + 1)�t. (19)

After the names of two great mathematicians Carl Jacobi and Carl
Theodor Anger who derived these series expansions, the expansions
(13), (14), (18) and (19) are now called Jacobi–Anger expansions.3

2.4 The expected frequency spectrum

2.4.1 General description

Equation (17) means that a frequency multiplet equally split by the
orbital frequency � appears in the frequency spectrum of a pulsating
star in a binary system with a circular orbit. The orbital period is
then determined from the spacing of the multiplet. The amplitude
ratio of the nth side peak to the central peak is given by

A+n + A−n

A0
= 2|Jn(α)|

|J0(α)| , (20)

where A+n, A−n and A0 represent the amplitudes of the peaks at
ω0 + n�, ω0 − n� and ω0, respectively. Fig. 4 shows the amplitude
ratio of the nth peak to the central peak as a function of the phase
modulation amplitude α.

The multiplet is an infinite fold, but the dominant peaks are highly
dependent on the value of α. For example, in the case of a 0.5-M�
sdB star pulsating with Posc = 150 s and orbiting with Porb = 0.1 d
with the same mass companion, α ∼ 0.04 and we expect J0(α) �
1, J1(α) ∼ α/2 ∼ 2 × 10−2, and Jn(α) ∼ 0 for n ≥ 2. In this
case we expect a triplet structure, for which the central component,
corresponding to n = 0 with a frequency ω0, is the highest, and
the side peaks, separated from the central peak by �, are of the
order of 2 × 10−2 the amplitude of the central peak. However, if the

3 According to Watson (1922), equations (18) and (19) were given by Jacobi
(1836), and equations (13) and (14) were obtained later by Anger (1855).
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same star is orbiting with Porb = 12.5 d, then α � 1. In this case,
J1(α)/J0(α) ∼ 1 and J2(α)/J0(α) ∼ 0.3 so that (A+1 + A−1)/A0

∼ 2 and (A+2 + A−2)/A0 ∼ 0.6; the contribution of J2(α) is not
negligible, and a quintuplet structure with an equal spacing of � is
expected. As seen in Fig. 4, for α � 0.9 the side peaks could have
higher amplitude than the central component.

Importantly, the phases of the components of the multiplet are
such that the sidelobes never modify the total amplitude. At orbital
phases π/2 and 3π/2, when the stars have zero radial velocity, the
sidelobes are in phase with each other, but in quadrature, ±π/2
rad out of phase with the central peak; at orbital phases 0 and π ,
when the star reaches maximum or minimum radial velocity, the
sidelobes are π rad out of phase with each other and cancel. Thus
only FM occurs with no amplitude modulation, as we expect from
our initial conditions. It is these phase relationships that distinguish
FM multiplets from amplitude modulation multiplets, where all
members of the multiplet are in phase at the time of amplitude
maximum.

2.4.2 Derivation of the binary parameters

From the frequency spectrum we can derive the value of α, which
is, as seen in equation (10),

α =
(

2πG

c

)1/3
P

2/3
orb

Posc

m2 sin i

(m1 + m2)2/3
. (21)

Since Posc is observationally known and Porb is also determined from
the spacing of the multiplet, the mass function, which is usually
derived from spectroscopic measurements of radial velocity in a
binary system, is eventually derived from photometric observations
through α:

f (m1, m2, sin i) ≡ m3
2 sin3 i

(m1 + m2)2

= α3 P 3
osc

P 2
orb

c3

2πG
. (22)

The distance between star 1 and the centre of gravity is also
deduced from α

a1 sin i = Posc

2π
αc, (23)

as is the radial velocity

vrad,1(t) = Posc

Porb
αc cos �t. (24)

2.4.3 The case of α � 1

Most binary stars have α � 1. In this case, J1(α) � α/2, and the
value of α is derived to be

α = A+1 + A−1

A0
. (25)

Then, the mass function, the distance between the star and the centre
of gravity and the radial velocity are derived to be

f (m1, m2, sin i) =
(

A+1 + A−1

A0

)3
P 3

osc

P 2
orb

c3

2πG
, (26)

a1 sin i = Posc

2π

A+1 + A−1

A0
c, (27)

and

vrad,1(t) = Posc

Porb

A+1 + A−1

A0
c cos �. (28)

2.5 An example with artificial data for the case of a circular
orbit

We illustrate the results derived in the previous subsection with
artificial data generated for the following parameters: m1 = 1.7 M�
and νosc ≡ 1/Posc = 20 d−1 – typical of a late-A δ Sct star; e =
0, of course; m2 = 1 M�; Porb = 10 d; and i = 90◦. In this case
our parameter α = 3.39 × 10−2 (see equation 10 and Fig. 2). Fig. 5
shows the radial velocity curve for this system where our convention
is the star 1 – the pulsating A star – is at maximum velocity of
recession at phase zero. These represent a typical eclipsing binary
δ Sct Am star. (The reason we say Am star in this case is that most
A-star binary systems with Porb = 10 d have synchronous rotation,
leading to the slow rotation that is a prerequisite for atomic diffusion
in metallic-lined A stars.)

We have generated an artificial light curve with no noise using
10 points per pulsation cycle and a time span of 10 orbital periods
(100 d) in a hare-and-hound test to see how well the input binary
parameters are reproduced from the light curve. The top panel of
Fig. 6 shows an amplitude spectrum of the generated light curve
around the chosen pulsation frequency, 20 d−1. The first sidelobes
at 19.9 and 20.1 d−1 are barely visible in this panel, but are clearly
seen after pre-whitening the central peak as shown in the bottom
panel of Fig. 6. They are separated from that central peak by 0.1 d−1

and to have relative amplitudes of 0.017. The orbital period, 10 d,
is well determined from the spacing. From the amplitude ratio, the
value of α is also reasonably well reproduced.

From the amplitude ratio in Table 1 and equation (22) we derive
f (m1, m2, sin i) = 0.137 M�, as expected for the input parameters
of i = 90◦, m1 = 1.7 M� and m2 = 1.0 M�. Hence we have shown
that the mass function can be derived entirely from the photomet-
ric light curve. The expected radial velocity of star 1 is derived
from equation (24), from which its amplitude is determined to be
51 km s−1. Hence the radial velocity curve, shown with the blue
curve in Fig. 5, has also been well reproduced only from the photo-
metric light curve.

Figure 5. An artificial radial velocity curve for a binary system with a 1.7-
M� δ Sct star in a 10-d circular orbit with a 1-M� companion; i = 90◦. The
blue curve is for the primary component and the red curve the secondary.

C© 2012 The Authors, MNRAS 422, 738–752
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Figure 6. Top panel: an amplitude spectrum of the artificial data around the
chosen pulsation frequency of 20 d−1. The amplitude has been chosen to be
in intensity units. The first sidelobes at ±νorb ( ≡±1/Porb) are barely visible.
Bottom panel: the amplitude spectrum after pre-whitening by the central
peak of the multiplet. The two first sidelobes are evident with amplitudes
of 0.017 of the amplitude of the central peak. The second sidelobes are
insignificant.

Table 1. Least squares fit of the fre-
quency triplet to the artificial data at
the orbital phase of eclipse for the or-
bital parameters given in Section 2.5.
The two sidelobes are in phase with
each other, but 90◦ out of phase with
the central peak, as expected. The fre-
quencies are split by the orbital fre-
quency, given Porb = 10 d. These are
artificial data with no noise added,
hence there are no errors.

Frequency Amplitude Phase
(d−1) (rad)

19.9 0.017 1.57
20.0 1.000 0.00
20.1 0.017 1.57

2.6 An actual example for the case of a circular orbit: the
hierarchical multiple system KIC 4150611 = HD 181469

Let us now look at an actual example. The Kepler mission is ob-
serving about 150 000 stars over its 115 deg2 field of view for time
spans of 1 month to years. In the data for Kepler ‘quarters’ (1/4 of its
372-d heliocentric orbit) Q1–Q9 we can see a hierarchical multiple

star system of complexity and interest, KIC 4150611. This system is
composed of an eccentric eclipsing binary pair of G stars in an 8.6-d
orbit that are a common proper motion pair with a δ Sct A star in a
circular orbit about a pair of K stars with an orbital period of 94.1 ±
0.1 d; the K-star binary itself has an orbital period of about 1.5 d.
These five stars show a remarkable set of eclipses, successfully mod-
elled by the Kepler eclipsing binary star working group (Prša et al.,
in preparation). Here we show that we can derive the mass function
for the A star–K-binary system from the light curve alone by using
the δ Sct pulsations as a clock. This is an important advance for a sys-
tem such as this. Measuring radial velocities from spectra requires
a great effort at the telescope to obtain the spectra. Relatively low
accuracy then results from spectral disentangling of the A star from
the other components of the system, and as a consequence of the
rotational velocity of the A star of v sin i ∼ 100 km s−1. Using our
technique the A star is the only pulsating star in the system, hence
the photometric radial velocities come naturally from just the A star
primary and we are unaffected by rotational broadening or spectral
disentangling.

The data we use are Q1–Q9 long cadence Kepler data with in-
tegration times of 29.4 min covering a time span of 774 d. The
Nyquist frequency for these data is about 24.5 d−1. We also have
short cadence Kepler data for this star (integration times of 58.9 s)
that show the δ Sct pulsations have frequencies less than the long
cadence Nyquist frequency. We have masked the eclipses in the light
curve and run a high-pass filter, leaving only the δ Sct pulsation fre-
quencies. Fig. 7 shows an amplitude spectrum for these data where
four peaks stand out. Broad-band photometric data from the Kepler
Input Catalogue photometry suggests Teff ≈ 6600 K and log g =
4 (in cgs units) for this star, but this temperature is likely to be
underestimated because of the light of the cooler companion stars.
We therefore estimate that the A star has a spectral type around the
cool border of the δ Sct instability strip, Teff ∼ 7400 K.

Table 2 shows the frequencies, amplitudes and phases for the four
peaks seen in Fig. 7. For a first estimate of mode identification, it is
useful to look at the Q value for each of the four frequencies. This
is defined to be

Q = Posc

√
ρ

ρ�
, (29)

Figure 7. An amplitude spectrum for the Q1–Q9 Kepler long cadence data
in the δ Sct frequency range of the A-star component of the multiple system
KIC 4150611. The four peaks are from independent, low overtone modes.
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Table 2. A non-linear least-squares fit of the four highest
amplitude frequencies seen in Fig. 7 to the Q1–Q9 Kepler
data for KIC 4150611. The range of frequencies suggests
low overtone modes. The zero-point in time for the phase is
BJD 2455311.758.

Frequency Amplitude Phase
(d−1) (mmag) (rad)

17.746 558 ± 0.000 008 0.640 ± 0.007 1.894 ± 0.011
18.480 519 ± 0.000 007 0.699 ± 0.007 −0.029 ± 0.010
20.243 260 ± 0.000 003 1.610 ± 0.007 2.360 ± 0.004
22.619 577 ± 0.000 004 1.294 ± 0.007 0.150 ± 0.005

where Posc is the pulsation period and ρ is the mean density; Q is
known as the ‘pulsation constant’. Equation (29) can be rewritten
as

log Q = −6.454 + log Posc + 1

2
log g + 1

10
Mbol + log Teff, (30)

where Posc is given in d, log g uses cgs units and Teff is in Kelvin.
Using Teff = 7400 K and log g = 4.0, and estimating the bolometric
magnitude to be about 2 gives Q values in the range 0.019–0.023.
Standard values for δ Sct models are Q = 0.033 for the fundamental
mode and Q = 0.025 for the first overtone, thus suggesting that the
four modes so far examined have radial overtones higher than that.
There are additional pulsation mode frequencies of low amplitude
that are not seen at the scale of this figure. Those will be examined
in detail in a future study.

What we wish to examine here are the sidelobes to these four
highest amplitude peaks. Each of these shows a frequency triplet
split by the orbital frequency. The highest amplitude peak at
20.243 260 d−1 also has another pulsation mode frequency nearby,
so we illustrate the triplets with the simpler example of the second-
highest peak at 22.619 577 d−1 as shown in Fig. 8.

There is clearly an equally spaced triplet for this frequency, and
this is the case for all four mode frequencies. Table 3 shows a
least-squares fit of the frequency triplets for the four modes. After
fitting the data by non-linear least squares with the four triplets and
showing that the frequency spacing is the same within the errors
in all cases, we forced each triplet to have exactly equal spacing
with a separation of the average orbital frequency determined from
all four triplets. To examine the phase relationship of the triplet
components, it is important to have exactly equal splitting because
of the many cycles back to the time zero-point. From the separation
of the triplet components, we derive the orbital period of the star to
be 94.09 ± 0.11 d.

It can be seen in Table 3 that the data are an excellent fit to
our theory. The zero-point in time has been selected to be a time
of transit in this eclipsing system as seen in the light curve. The
expectation is that the sidelobes should be in phase at this time and
exactly π/2 rad out of phase with the central peak. That is the case
for all four triplets. Since the amplitude ratios of the sidelobes to
the central peaks of each triplet are small compared to unity, they
are regarded as α with great accuracy. It is expected that the ratio of
α to the frequency is the same for all triplets, since this is directly
proportional to the mass function, as in equation (22). Table 3 shows
that this is the case. By using the values obtained for α, Porb and
Posc, we deduce the projected radius of the orbit, a1sin i, the radial
velocity, vrad,1 and the mass function. Table 4 gives these values
derived from each triplet. The consistency of the values for the four
independent pulsation frequencies is excellent.

Figure 8. Top panel: an amplitude spectrum for the Q1–Q9 KIC 4150611
data centred on the peak at 22.619 577 d−1. Bottom panel: an amplitude
spectrum after the central peak has been pre-whitened, showing the two
sidelobes split from the central peak by exactly the orbital frequency.

Because of the better signal-to-noise ratio for the two highest
amplitude frequencies, we derive from them a best estimate of
the mass function of f (m1, m2, sin i) = 0.120 ± 0.024 M�. If
instead of propagating errors we take the average and standard
deviation of the four values of the mass function from Table 4, this
gives a value of f (m1, m2, sin i) = 0.126 ± 0.008 M�. Assuming
a mass of M ∼ 1.7 M� for the A star then gives a total mass for
the two K stars of the 1.5-d binary companion (see Prša et al., in
preparation) less than 1 M�. We have determined the mass function
in KIC 4150611 entirely from the photometric light curve by using
the δ Sct pulsations as clocks and extracting the information from
the light time effect by means of the Fourier transform. This is
a significant improvement to what can be done for this star with
spectroscopic radial velocities.

Fig. 9 shows the radial velocity curves of KIC 4150611 derived
from the four sets of multiplets. Note that the differences are small.
This result will be tested by comparison with the radial velocities
obtained with spectroscopic observations by Prša et al. (in prepa-
ration). An advantage of the present analysis is that photometric
observations by Kepler have covered a long time span with few
interruptions. The duty cycle is far superior to what is currently
possible with spectroscopic observations.

So far we have assumed that the A-star–K-binary system of
KIC 4150611 has a circular orbit. How do we justify this assump-
tion? To find out, we now return to the theory for cases more complex
than a circular orbit.
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Table 3. A least-squares fit of the frequency triplets for the four high amplitude modes to the Q1–Q9 Kepler data for
KIC 4150611. The frequencies of the multiplets are separated by the orbital frequency. The zero-point for the phases has
been chosen to be a time of transit of the A star by its companions, t0 = BJD 2455 311.758. Column 4 shows that the phases
of the sidelobes are equal within the errors at this time and column 5 shows that they are π/2 = 1.57 rad out of phase with
the central peak. Column 6 shows the amplitude ratios of the sidelobes to the central peaks. Since they are small compared to
unity, they are equal to α to great accuracy. The ratios of α to the frequency are the same for all modes, as shown in column
7. The phase relations and amplitude ratios are as expected from our theory.

Frequency Amplitude Phase φ+1 − φ−1 〈φ+1 − φ−1〉 − φ0
A+1+A−1

A0
α/νosc

(d−1) (mmag) (rad) (rad) (rad) (×10−3 d)

17.735 937 0.049 ± 0.007 0.299 ± 0.139
17.746 558 0.640 ± 0.007 1.892 ± 0.011 −0.04 ± 0.24 −1.61 ± 0.12 0.133 ± 0.016 7.49 ± 0.90
17.757 179 0.036 ± 0.007 0.258 ± 0.191

18.469 898 0.050 ± 0.007 −1.654 ± 0.136
18.480 519 0.699 ± 0.007 −0.031 ± 0.010 0.04 ± 0.20 −1.60 ± 0.10 0.139 ± 0.014 7.52 ± 0.75
18.491 140 0.047 ± 0.007 −1.617 ± 0.147

20.232 639 0.117 ± 0.007 0.812 ± 0.058
20.243 260 1.610 ± 0.007 2.358 ± 0.004 −0.11 ± 0.08 −1.60 ± 0.40 0.148 ± 0.006 7.31 ± 0.30
20.253 881 0.122 ± 0.007 0.699 ± 0.056

22.608 956 0.106 ± 0.007 −1.441 ± 0.065
22.619 577 1.294 ± 0.007 0.147 ± 0.005 −0.04 ± 0.09 −1.61 ± 0.47 0.162 ± 0.008 7.16 ± 0.35
22.630 198 0.104 ± 0.007 −1.485 ± 0.066

Table 4. The values of a1sin i, the amplitude of the radial velocity and
the mass function derived from each triplet. The consistency of the values
derived for the four triplets is substantially better than the formal errors might
lead us to expect, suggesting that those formal errors may be overestimated.

Frequency a1sin i RV amplitude f (m1, m2, sin i)
(d−1) (au) (km s−1) (M�)

17.746 558 1.30 ± 0.16 23.9 ± 2.9 0.132 ± 0.116
18.480 519 1.30 ± 0.13 23.9 ± 2.4 0.133 ± 0.098
20.243 260 1.27 ± 0.05 23.3 ± 1.0 0.124 ± 0.035
22.619 577 1.24 ± 0.06 22.8 ± 1.1 0.116 ± 0.034

Figure 9. The radial velocity curves of KIC 4150611 derived entirely from
the photometric light curve by using the δ Sct pulsations as clocks and
extracting the information from the light time effect by means of the Fourier
transform. Note that different curves correspond to different multiplets, but
the differences are small.

3 TH E T H E O RY F O R TH E G E N E R A L C A S E O F
E C C E N T R I C O R B I T S

Now let us consider a more realistic case: elliptical orbital motion.
The radial velocity curve deviates from a pure sinusoidal curve with
a single period. Instead of a simple sinusoid, it is expressed with a
Fourier series of the harmonics of the orbital period.

3.1 Radial velocity along the line of sight

Let the xy-plane be tangent to the celestial sphere, and let the z-axis,
being perpendicular to the xy-plane and passing through the centre
of gravity of the binary, be along the line of sight toward us. The
orbital plane of the binary motion is assumed to be inclined to the xy-
plane by the angle i. The orbit is an ellipse. We write the semi-major
axis and the eccentricity of the orbit as a1 and e, respectively. Let 

be the angle between the ascending node, which is an intersection of
the orbit and the xy-plane, and the periapsis. Also let f be the angle
between the periapsis and the star at the moment, that is the ‘true
anomaly’, and let r be the distance between the centre of gravity
and the star (see Fig. 10).

Then, the z-coordinate of the position of the star is written as

z = r sin(f +  ) sin i. (31)

The radial velocity along the line of sight, vrad,1 = −dz/dt, is then

vrad,1 = −
[

dr

dt
sin(f +  ) + r

df

dt
cos(f +  )

]
sin i. (32)

It should be noted here again that the sign of vrad,1 is defined so
that vrad,1 > 0 when the star is receding from us. The distance r
between the focus ‘F’ and the star ‘S’ is expressed with help of a
combination of the semi-major axis a1, the eccentricity e and the
true anomaly f

r = a1(1 − e2)

1 + e cos f
. (33)
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Figure 10. Geometrical configuration. Top: the xy-plane is tangent to the
celestial sphere, and the z-axis is the line of sight towards us. The origin
‘F’ is the focus of the orbital ellipse; that is, the centre of gravity of the
binary system. The orbital plane is inclined to the xy-plane by the angle i.
The periapsis of the ellipsoidal orbit is ‘P’, and the ascending node is ‘N’.
The angle NFP is  . Bottom: schematic top view (i.e., along the normal to
the orbital plane) of the orbital plane. The star is located, at this moment, at
‘S’ on the orbital ellipse, for which the focus is ‘F’. The semi-major axis is
a1 and the eccentricity is e. Then OF is a1e. The distance between the focus,
F, and the star, S, is r. The angle PFS is ‘the true anomaly’, f . ‘The eccentric
anomaly’, u, is defined through the circumscribed circle that is concentric
with the orbital ellipse.

From the known laws of motion in an ellipse (see text books; e.g.
Brouwer & Clemence 1961), we have

r
df

dt
= a1�(1 + e cos f )√

1 − e2
(34)

and

dr

dt
= a1�e sin f√

1 − e2
. (35)

Therefore, the radial velocity of star 1 along the line of sight is
expressed as

vrad,1 = −�a1 sin i√
1 − e2

[cos(f +  ) + e cos  ] (36)

= −(2πGM�)1/3

(
m1

M�

)1/3

q(1 + q)−2/3P
−1/3
orb sin i

× 1√
1 − e2

(cos f cos  − sin f sin 

+ e cos  ) . (37)

In the case of e = 0, the periapsis is not uniquely defined, nor are
the angles  and f . Instead, the angle between the ascending node
and the star at the moment, (f +  ), is well defined. If we choose
 = π , f means the angle between the descending node and the
star at the moment.

3.2 Phase modulation

3.2.1 General formulae

To evaluate phase modulation, we have to integrate the radial ve-
locity with respect to time. The time dependence of radial velocity
is implicitly expressed by the true anomaly f , which can be written
in terms of ‘the eccentric anomaly’, u (see Fig. 10), defined through
the circumscribed circle that is concentric with the orbital ellipse,
as

cos f = cos u − e

1 − e cos u
. (38)

Kepler’s equation links the eccentric anomaly u with ‘the mean
anomaly’ l

l ≡ �(t − t0)

= u − e sin u,
(39)

where t0 denotes the time of periapsis passage. Various methods
of solving Kepler’s equation to obtain u for a given l have been
developed. One of them is Fourier expansion. In this method, for a
given l, u is written as4

u = l + 2
∞∑

n=1

1

n
Jn(ne) sin nl. (40)

This expansion converges for any value of e < 1. With the help of
this expansion, the trigonometric functions of the true anomaly f
are expressed in terms of the mean anomaly l 5

cos f = −e + 2(1 − e2)

e

∞∑
n=1

Jn(ne) cos nl (41)

sin f = 2
√

1 − e2

∞∑
n=1

J ′
n(ne) sin nl, (42)

4 This relation was first shown by Lagrange (1769). Of course, this was
before Bessel functions were introduced, and the notation was different
then.
5 With the expansions for Jn(x), both cos f and sin f , as well as some other
functions relevant with them, can be expressed in powers of e. Extensive
tabulations of series expansions are available in Cayley (1861).
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where J ′
n(x) denotes dJn(x)/dx. Hence,

vrad,1 = −(2πGM�)1/3

(
m1

M�

)1/3

q(1 + q)−2/3P
−1/3
orb sin i

×
[

2
√

1 − e2

e

∞∑
n=1

Jn(ne) cos nl cos 

−
∞∑

n=1

2J ′
n(ne) sin nl sin 

]
. (43)

Note that, although e appears in the denominator, e = 0 is not
singular because Jn(ne) reaches zero faster than e itself as e → 0.

Introducing

an(e) ≡ 2
√

1 − e2

e

1

n
Jn(ne) (44)

and

bn(e) ≡ 2

n
J ′

n(ne), (45)

and with the help of equation (39), we eventually obtain

ω0

c

∫ t

t0

vrad,1 dt ′

= α

{ ∞∑
n=1

ξn(e,  ) sin [n�(t − t0) + ϑn(e,  )]

+ τ (e,  )

}
, (46)

where

ξn(e,  ) =
√

a2
n cos2  + b2

n sin2 , (47)

ϑn(e,  ) = tan−1

(
bn

an

tan 

)
(48)

and

τ (e, ) = −
∞∑

n=1

bn sin , (49)

and α is defined by equation (10). Fig. 11 shows an(e) and bn(e) as
functions of e.

The difference in phase modulation between the circular orbit
and ellipsoidal ones is that the former is expressed by a single
angular frequency � while the latter is composed of harmonics of
�. This is of course naturally expected. In the series expansion in
equation (46), the terms of n = 1 dominate over the higher-order
terms, but, in the case of e � 0.5 and  ∼ π/2, the contribution of
the higher-order terms becomes non-negligible.

3.2.2 In the limiting case of e = 0

One might worry whether the series-expansion form given in the
above formally tends to the results obtained in the circular orbital
case in the limit of e → 0. In this section, we prove that it does. As
e → 0, equation (36) is reduced to

vrad,1 = −�a1 cos(f +  ) sin i. (50)

It should be remembered that in the case of e = 0, the angle  can
be arbitrarily chosen, while (f +  ) is uniquely defined as the angle

Figure 11. Top panel: an = 2e−1(1 − e2)1/2n−1Jn(ne) as a function of e.
Bottom panel: bn = 2n−1J ′

n(ne) as a function of e.

between the ascending node and the star at the moment. In the case
of e = 0, f = u = l = �(t − t0). Hence

vrad,1 = −�a1 cos[�(t − t0) +  ] sin i

= �a1 cos[�(t − t0) + ( + π )] sin i. (51)

If we choose  = 0, (t − t0) denotes the time when the star crosses
the descending node. As we defined in Section 2.1, t = 0 is the time
that the radial velocity reaches its maximum. Therefore, we set

lim
e→0

 = 0 (52)

and t0 = 0 to reduce the above expression to the form given in
Section 2.

The apparently complex expansion in equation (43) also reverts
to the above form. We only have to note that lim

e→0
J ′

1(e) = 1/2 and

lim
e→0

J1(e)/e = 1/2, while lim
e→0

J ′
n(ne) = 0 and lim

e→0
Jn(ne)/e = 0 for

n ≥ 2.
As for an(e) and bn(e), as seen in Fig. 11, a1(0) = 1 and b1(0) =

1, while an(0) = 0 and bn(0) = 0 for n ≥ 2. Hence,

lim
e→0

ξ1(e,  ) = 1, (53)

lim
e→0

ϑ1(e,  ) = 0, (54)

and

lim
e→0

τ (e,  ) = 0, (55)
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while

lim
e→0

ξn(e,  ) = 0 (56)

and

lim
e→0

ϑn(e,  ) = 0 (57)

for n ≥ 2. Therefore, as expected, with e → 0, equation (46) tends
to

ω0

c

∫ t

0
vrad,1 dt ′ = α sin �t, (58)

which is identical to the second term in square brackets on the
right-hand side of equation (4) for circular orbital motion.

3.3 The expected frequency spectrum

3.3.1 Mathematical formula

Although equation (46) is an infinite series expansion, in practice
high-order components are negligibly small and we may truncate
the expansion with certain finite terms. Indeed, Fig. 11 implies that
this is true. In carrying out the Fourier analysis of pulsating stars
showing phase modulation due to such orbital motion in a binary,
the problem then becomes how to treat the terms cos [(ω0t + φ +
ατ ) + α

∑
ξ nsin (n�t + ϑn)]. Note that ατ is constant for a given

binary system and is common to all the harmonic components. It is
not distinguishable from the intrinsic phase φ, hence, hereafter, we
adopt a new symbol ϕ ≡ φ + ατ to represent a constant phase.

With multiple and repetitive use of the Jacobi–Anger expansion
(LeBrun 1977), we get

cos

[
(ω0t + ϕ) + α

N∑
n=1

ξn sin(n�t + ϑn)

]

=
∞∑

k1=−∞
Jk1 (αξ1)

× cos

[
ω0t + ϕ +

N∑
n=2

ξn sin(n�t + ϑn) + k1(�t + ϑ1)

]

=
∞∑

k1=−∞
Jk1 (αξ1)

∞∑
k2=−∞

Jk2 (αξ2)

× cos

[
ω0t + ϕ + k1(�t + ϑ1) + k2(2�t + ϑ2)

+
N∑

n=3

ξn sin(n�t + ϑn)

]

= · · · · · ·

=
∞∑

k1=−∞
· · ·

∞∑
kN =−∞

[
N∏

n=1

Jkn (αξn)

]

× cos

[
ω0t + ϕ +

N∑
n=1

kn(n�t + ϑn)

]
, (59)

where N denotes a large number with which the infinite series are
truncated. This is the most general formula, except for the trunca-
tion, covering the case of a circular orbit, which has already been
discussed in the previous section.

3.3.2 General description

The above result means that (i) whatever the pulsation mode is,
the frequency spectrum shows a multiplet with each of the adjacent
components separated by the orbital frequency �, (ii) the amplitude
of these multiplet components is strongly dependent on α, which
is defined by equation (10) and sensitive to the eccentricity, e, and
the angle between the ascending node and the periapsis,  , (iii)
while the multiplet is symmetric in the case of a circular orbit,
with increasing deviation from a circular orbit it becomes more
asymmetric and (iv) while in the case of α � 1 the multiplet is
likely to be seen as a triplet for which the central component is
the highest, in the case of α � 1 the multiplet will be observed as
a quintuplet or higher-order multiplet and the side peaks will be
higher than the central peak.

3.3.3 The case of α � 1

In the case of α � 1, we may truncate the infinite series with
N = 2:

cos

[
(ω0t + ϕ) + α

2∑
n=1

ξn sin(n�t + ϑn)

]

=
∞∑

k1=−∞

∞∑
k2=−∞

Jk1 (αξ1)Jk1 (αξ2)

× cos [ω0t + (k1 + 2k2)�t + ϕ + k1ϑ1 + k2ϑ2]

� J0(αξ1)J0(αξ2) cos(ω0t + ϕ)

+J1(αξ1)J0(αξ2) cos[(ω0 + �)t + ϕ + ϑ1]

+J−1(αξ1)J0(αξ2) cos[(ω0 − �)t + ϕ − ϑ1]

+J0(αξ1)J1(αξ2) cos[(ω0 + 2�)t + ϕ + ϑ2]

+J0(αξ1)J−1(αξ2) cos[(ω0 − 2�)t + ϕ − ϑ2]

+O(α2). (60)

From this, the amplitude ratios are derived as follows:

A+1 + A−1

A0
= 2J1(αξ1)

J0(αξ1)

� αξ1 (61)

and
A+2 + A−2

A0
= 2J1(αξ2)

J0(αξ2)

� αξ2.

(62)

Also, the following phase relations are derived:

φ+1 − φ−1

2
= ϑ1 (63)

and
φ+2 − φ−2

2
= ϑ2. (64)

Note that ξ n and ϑn (n = 1, 2) are functions of e and  . This means
that the four constraints – equations (61)–(64) – are obtained for
three quantities, α, e and  .

It should also be noted that
A+1 − A−1

A0
= 0 (65)

and
A+2 − A−2

A0
= 0. (66)
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Hence, the multiplet is symmetric with respect to the highest central
peak.

3.4 Procedures to derive binary parameters from the
frequency spectrum

The three unknowns α, e and  can be determined from the fre-
quency spectrum. To illustrate more clearly this new technique, we
describe practical procedures for the case of α � 1.

3.4.1 Series expansion in terms of e

With use of the series-expansion form of the Bessel function, equa-
tion (15), to the order of O(e6), the coefficients a1(e) and b1(e) are
given by

a1(e) �
√

1 − e2

(
1 − 1

8
e2 + 1

192
e4 − 1

9216
e6

)
(67)

and

b1(e) � 1 − 3

8
e2 + 5

192
e4 − 7

9216
e6, (68)

respectively. Also,

a2(e) � e

2

√
1 − e2

(
1 − 1

3
e2 + 1

24
e4 − 1

360
r6

)
(69)

and

b2(e) � e

2

(
1 − 2

3
e2 + 1

8
e4 − 1

90
e6

)
. (70)

Substitution of these into equation (47) leads to explicit expressions
for ξ 1(e,  ) and ξ 2(e,  ) with a series expansion of e. Combining
these expressions with equations (61) and (62), we get(

A+1 + A−1

A0

)2

= α2

[
1 −

(
3

4
+ 1

2
cos2 

)
e2

+
(

37

192
+ 1

12
cos2 

)
e4

−
(

97

4608
+ 15

2304
cos2 

)
e6

]
(71)

and(
A+2 + A−2

A0

)2

= α2

4
e2

[
1 −

(
4

3
+ 1

3
cos2 

)
e2

+
(

25

36
+ 1

6
cos2 

)
e4

]
. (72)

Similarly, from equations (48), ϑn(e,  ) (n = 1, 2) is explicitly
written with a series expansion of e, and by combining them with
the phase differences of the sidelobes, we get

tan
φ+1 − φ−1

2

= 1√
1 − e2

(
1 − 1

4
e2 − 1

96
e4 − 1

1536
e6

)
tan  (73)

and

tan
φ+2 − φ−2

2

= 1√
1 − e2

(
1 − 1

3
e2 − 1

36
e4 − 1

270
e6

)
tan . (74)

Figure 12. The expected amplitude ratio of the second sidelobes to the first
sidelobes as a function of eccentricity e, in the case of  = 0 and α � 1.

3.4.2 Procedures to determine the binary parameters

The left-hand sides of equations (71)–(74) are observables, thus the
three unknowns, α, e and  , can be derived from these equations.
Since the number of unknowns is smaller than the number of equa-
tions, the solution is not uniquely determined. Solutions satisfying
all the constraints within the observational errors should be sought.

Note that, as seen in equations (71)–(74), only the constraint
(A+2 + A−2)/A0 among the four constraints is of the order of O(e1).
A reasonably good estimate of the eccentricity e can be deduced
from this. Given that,

ξ2

ξ1
= J2(2e)

2J1(e)
� e

2
, (75)

we can derive the eccentricity e:

e � 2(A+2 + A−2)

A+1 + A−1
. (76)

Fig. 12 demonstrates that this is a good approximation. By substi-
tuting the value of e estimated in this way into equation (73), we get
a first guess for  . Then by putting the estimated values of e and
 into equation (71), we get the value of α. Better solutions are ob-
tained by iteration. Once the value of α is derived, the mass function
is determined by equation (22), and the projection of the semi-major
axis of the orbit into the celestial plane, a1sin i, is deduced to be

a1 sin i = Posc

2π
αc. (77)

The radial velocity is approximately determined with the four
terms: an and bn for n = 1 and 2

vrad,1(t) = Posc

Porb
αc

× [(a1(e) cos �t + 2a2(e) cos 2�t) cos 

− (b1(e) sin �t + 2b2(e) sin 2�t) sin  ] , (78)

where a1(e), a2(e), b1(e) and b2(e) are given by equations (67)–(70).
As seen in Fig. 11, a3(e), b3(e) and higher-order terms are negli-

gibly small up to e � 0.2. So the radial velocity derived in this way
is acceptable in the case of e � 0.2. Higher-order terms become im-
portant with increasing e. Those terms are available from the third
and higher-order sidelobes.
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3.4.3 The case of e � 1

In the case of e � 1, as seen in equation (71), [A+1 + A−1)/A0 �
α × (1 + O(e2)]. Hence, to the order of O(e1), the eccentricity is
determined by equation (76), and α is determined by

α � A+1 + A−1

A0
. (79)

Similarly, within the same approximation, from equation (73),

 � φ+1 − φ−1

2
. (80)

As discussed in Section 3.2.2, in the limit of e → 0,  tends to
0. Then, in this limit, φ+1 and φ−1 become equal each other, as
expected from the analysis of circular orbits.

The mass function is given by

f (m1, m2, sin i) =
(

A+1 + A−1

A0

)3
P 3

osc

P 2
orb

c3

2πG
, (81)

and a1sin i is given by

a1 sin i � Posc

2π

A+1 + A−1

A0
c. (82)

The radial velocity is obtained by setting a1(e) = b1(e) = 1 and
a2(e) = b2(e) � e/2:

vrad,1(t) � Posc

Porb

A+1 + A−1

A0
c

×
[

(cos �t + e cos 2�t) cos

(
φ+1 − φ−1

2

)

− (sin �t + e sin 2�t) sin

(
φ+1 − φ−1

2

)]
. (83)

3.5 Some more examples with artificial data

3.5.1 An example for the case of α � 1

In order to see how the present method works, we generate artificial,
noise-free light-curve data. The input parameters are: m1 = m2 =
2 M�, e = 0.3,  = 0, i = 90◦, νosc( ≡ 1/Posc) = 20 d−1 and Porb =
1 d, giving α = 1.13 × 10−2. This case could apply to a binary star
with two δ Sct stars in an eccentric orbit. The infinite series of an

and bn were truncated at N = 150.
The top panel of Fig. 13 shows the amplitude spectrum of the

generated data sampled with 10 points per pulsation cycle over a
time span of 10 orbital periods after the central peak of amplitude 1.0
(in intensity) has been pre-whitened. There is no phase difference
between the sidelobes. From this  = 0 is deduced. The first
sidelobes have almost equal amplitudes of only 5.4 × 10−3 the
amplitude of the central peak. This is consistent with equations (62)
and (65). The second sidelobes also have almost equal amplitudes,
and their amplitude ratio to the first sidelobes is 0.15, as expected
from equation (76). Further sidelobes have such small amplitudes
that they are unlikely to be observed in this case.

From the amplitude ratio of the second sidelobes to the first
sidelobes, 0.15, the value of eccentricity e = 0.30 is reproduced
well. Combining this with the amplitude ratio of the first sidelobes
to the central peak, 0.0108, we determine α and the mass function;
1.08 × 10−2 and 0.43 M�, respectively. These values determined
from the amplitude spectrum are also in satisfactory agreement with
the true values; 1.13 × 10−2 and 0.5 M�, respectively.

The bottom panel of Fig. 13 demonstrates how well the radial
velocity curve is reproduced. The true radial velocity is shown

Figure 13. Top panel: An amplitude spectrum for artificial data with m1 =
m2 = 2 M�, e = 0.3,  = 0, i = 90◦, νosc = 20 d−1 and Porb = 1 d
after pre-whitening the central peak, which has an intensity amplitude of
1.0, by definition. Bottom panel: The true radial velocity curve (red) and
two photometrically determined ones (green and blue). The green curve is
obtained from the first and the second sidelobes and the central peak in the
amplitude spectrum, based on equation (83); the blue curve is a solution
based on equation (78). Note that they are obtained without iteration.

with red, and the one determined from the amplitude spectrum is
shown with green. The latter is the solution of O(e1) obtained from
equation (83). This is the crudest solution. The blue curve corre-
sponds to the radial velocity curve that can ultimately be determined
within this framework from equation (78) with a higher-order ap-
proximation. We see the radial velocity curve is reasonably well
reproduced.

To summarize this experiment with artificial data: We conclude
that in the case of α � 1 the binary parameters are reproduced well
from the photometric light curve alone.

3.5.2 A more extreme case of α > 1

We now note that amplitude spectra are not so simple in all cases.
Taking an extreme example, Fig. 14 shows a case where α = 5.6 that
is equivalent to a 10-s pulsar in a 1-d binary with another neutron
star. The parameters are: m1 = m2 = 3 M�, e = 0.3,  = 0, νosc =
100 mHz, Porb = 1 d and i = 90◦. Note that the central peak of the
multiplet in this case has almost no amplitude, and that the pattern
is highly asymmetric.
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Figure 14. The amplitude spectrum for artificial data with m1 = m2 =
3 M�, e = 0.3,  = 0, i = 90◦, νosc = 100 mHz (Posc = 10 s) and Porb =
1 d; α = 5.6. The amplitude scale is in fractional intensity.

3.6 An actual example, KIC 4150611 revisited

In Section 2.6, we assumed that KIC 4150611 has a circular orbit.
How is this assumption justified? In the case of an eccentric orbit,
the amplitude ratio of the second sidelobes to the first sidelobes is
proportional to e, as long as α � 1. In the case of KIC 4150611,
the multiplet is seen as a triplet, not a quintuplet. Hence, the ec-
centricity is smaller than the detection limit, and the assumption
of a circular orbit adopted in Section 2.6 is consistent with the
observations.

From Table 3 we see that the root mean square error on am-
plitude is 0.007 mmag, hence at the 1σ level an upper limit to
the eccentricity can be made from the noise level for the quintu-
plet sidelobes. From equation (68) we then find e ≤ 0.12 for the
highest amplitude pulsation frequency. Hence at the 3σ level the
constraint on the eccentricity is weak. Supposing that the orbit of
KIC 4150611 is non-circular, we estimate the angle  from the
phase difference (φ+1 − φ−1)/2. This value is −0.02 ± 0.04 rad
for the triplet of νosc = 22.619 577 d−1. The estimated value of
α is the same as that determined with the assumption of a cir-
cular orbit, thus the mass function is the same as that derived in
Section 2.6.

4 E X O P L A N E T H U N T I N G

A new application of our method is in the search for exoplan-
ets. The prime goal of the CoRoT and Kepler missions is to find
exoplanets by the transit method. The other main technique for exo-
planet searches is the radial velocity technique using high-resolution
ground-based spectroscopy. Both of these techniques have concen-
trated on solar-like and lower main sequence stars where planetary
transits are deeper than for hotter main sequence stars, and where
radial velocities are greater than for more massive host stars. Now
with our new technique of photometric measurement of radial ve-
locity, there is a possibility to detect planets around hotter main
sequence pulsating stars, such as δ Sct and β Cep stars, and around
compact pulsating stars, such as subdwarf B pulsators and various
pulsating white dwarf stars. This has been demonstrated in the case
of the subdwarf B pulsator V391 Peg (Silvotti et al. 2007) using the
O−C method.

Let us look here at the possibility of exoplanet detection using
our method. It can be seen in equations (21) and (25) that the fre-

quency triplet in the amplitude spectrum of a pulsating star with a
planetary companion will have larger sidelobes for higher pulsation
frequency and for longer orbital period. We therefore examine a
limiting case for the Kepler mission of a 1.7-M� δ Sct star with
a pulsation frequency of 50 d−1 and with a planetary companion
of one Jupiter mass (10−3 M�), with an orbital period of 300 d
and an inclination of i = 90◦. In this case α = 1.1 × 10−3 is
small.

We find that the first orbital sidelobes have amplitudes of 558 ×
10−6 where the central peak has an amplitude of 1. With Kepler
data we can reach photometric precision of a few µmag, so can
detect signals of, say, 10 µmag and higher. This means that we
need to have pulsation amplitudes of 0.02 mag, or more, to detect a
Jupiter-mass planet with the orbital parameters given above. This is
possible; there are, for example, δ Sct stars with amplitudes greater
than 0.02 mag.

To take another case, can we detect a hot 10-MJupiter planet in
a 10-d orbit around a δ Sct star? In this case α = 1.2 × 10−3, so
the detection limit is about the same as above: the sidelobes have
amplitudes of 576 × 10−6 where the central peak has an amplitude
of 1. Signals such as these should be searched for in high amplitude
δ Sct (HADS) stars. Compact stars also offer potential exoplanet
discoveries with our technique.

Through photometric radial velocity measurement, the mass of
the exoplanet can then be estimated with an assumption about the
mass of the host star. If planetary transits are detected for the same
exoplanet system, the size of the planet can also be derived. Hence
the mean density of the exoplanet can be determined only through
the photometric observations.

5 D I SCUSSI ON

5.1 Photometric radial velocity measurement

As clearly seen in equation (1), the phase of the luminosity variation
of a pulsating star in a binary system has information about the radial
velocity due to the orbital motion. By taking the time derivative of
the phase of pulsation, we can obtain the radial velocity at each
phase of the orbital motion. We have shown in this paper that the
Fourier transform of the light curve of such a pulsating star leads to
frequency multiplets in the amplitude spectra where the frequency
splitting and the amplitudes and phases of the components of the
frequency multiplet can be used to derive all of the information
traditionally found from radial velocity curves.

This is a new way of measuring the radial velocity. Until now,
to measure radial velocity we have had to carry out spectroscopic
observations of the Doppler shift of spectral lines.6 In contrast, the
present result means that radial velocity can be obtained from pho-
tometric observations alone. In the case of conventional ground-
based observations, getting precise, uninterrupted measurements
of luminosity variations is highly challenging at mmag precision.
However, this situation has changed dramatically with space mis-
sions such as CoRoT and Kepler, which have µmag precision
with duty cycles exceeding 90 per cent. Telescope time for spec-
troscopic observations is competitive, and suffers from most of
the same ground-based limitations as photometry. Now for bi-
nary stars with pulsating components, a full orbital solution can

6 With the recent exception of the determination of radial velocity amplitude
using ‘Doppler boosting’, as in the example of the subdwarf B star – white
dwarf binary KPD 1946+4340 using Kepler data (Bloemen et al. 2011).
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be obtained from the light curves alone using the theory we have
presented.

5.2 Limitations

There are clear limitations to the application of the theory presented
here. First, the pulsating stars to be studied must have stable pul-
sation frequencies. Many pulsating stars do not. In the Sun, for
example, the pulsation frequencies vary with the solar cycle. That
would not be much limitation for current Kepler data, since the solar
cycle period is so long compared with the time span of the data.
But other pulsating stars also show frequency variability, and on
shorter time-scales. RR Lyrae stars show the Blazhko effect, which
has frequency, as well as amplitude variability. Other pulsating stars
show frequency changes much larger than expected from evolution
on time-scales that are relevant here. Thus, to apply this new tech-
nique, a first step is to find pulsating stars with stable frequencies
and binary companions. The best way to do this is to search for the
frequency patterns we have illustrated in this work.

Another limitation can arise from amplitude modulation in a pul-
sating star. While this will not cause frequency shifts, it will generate
a set of Fourier peaks in the amplitude spectrum that describe the
amplitude modulation. For non-periodic modulation on time-scales
comparable to the orbital period, the radial velocity sidelobe signal
may be lost in the noise.

Of course, it is imperative when frequency triplets or multiplets
are found to distinguish among rotational multiplets with m modes,
oblique pulsator multiplets that are pure amplitude modulation, and
the frequency multiplets caused by FM. As we have explained in
this paper, this can be done by careful examination of frequency
separations, amplitudes and phases. For the latter, a correct choice
of the time zero-point is imperative.

The important characteristics of FM multiplets is that the ampli-
tude ratio of the sidelobes to the central peak is the same for all
pulsation frequencies, and (for low eccentricity systems) the phases
of the sidelobes are in quadrature with that of the central peak at
the time of zero radial velocity, e.g. the time of eclipse for i = 90◦.
We anticipate more of these stars being found and astrophysically
exploited.
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