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ABSTRACT

Over the last few years, many studies have found an empirical relationship between the abundance of a star and its age. Here we
estimate spectroscopic stellar ages for 178 825 red-giant stars observed by the APOGEE survey with a median statistical uncertainty
of 17%. To this end, we use the supervised machine learning technique XGBoost, trained on a high-quality dataset of 3060 red-
giant and red-clump stars with asteroseismic ages observed by both APOGEE and Kepler. After verifying the obtained age estimates
with independent catalogues, we investigate some of the classical chemical, positional, and kinematic relationships of the stars as a
function of their age. We find a very clear imprint of the outer-disc flare in the age maps and confirm the recently found split in the
local age-metallicity relation. We present new and precise measurements of the Galactic radial metallicity gradient in small age bins
between 0.5 and 12 Gyr, confirming a steeper metallicity gradient for ∼2−5 Gyr old populations and a subsequent flattening for older
populations mostly produced by radial migration. In addition, we analyse the dispersion about the abundance gradient as a function
of age. We find a clear power-law trend (with an exponent β ≈ 0.15) for this relation, indicating a relatively smooth radial migration
history in the Galactic disc over the past 7−9 Gyr. Departures from this power law may possibly be related to the Gaia Enceladus
merger and passages of the Sagittarius dSph galaxy. Finally, we confirm previous measurements showing a steepening in the age-
velocity dispersion relation at around ∼9 Gyr, but now extending it over a large extent of the Galactic disc (5 kpc < RGal < 13 kpc). To
establish whether this steepening is the imprint of a Galactic merger event, however, detailed forward modelling work of our data is
necessary. Our catalogue of precise stellar ages and the source code to create it are publicly available.

Key words. Galaxy: evolution – Galaxy: stellar content – methods: data analysis – methods: statistical – stars: abundances –
stars: late-type

1. Introduction

Isochrone fitting is frequently used to determine stellar ages
of (primarily FGK) field stars, especially in the context of
large spectroscopic stellar surveys (e.g. Santiago et al. 2016;
Mints & Hekker 2017; McMillan et al. 2018; Sanders & Das
2018; Lebreton & Reese 2020; Queiroz et al. 2023. While
this technique has a long tradition (e.g. Pont & Eyer 2004;
Jørgensen & Lindegren 2005) and works reasonably well for
stars close to the main-sequence turn-off and sub-giant branch
(but see Valle et al. 2013; Lebreton et al. 2014), isochrone-
fitting for red-giant stars is much more challenging and prone

? Full Table A.1 is available at the CDS via anonymous ftp
to cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/678/A158

to sizeable statistical and systematic errors (Soderblom 2010;
Noels & Bragaglia 2015).

Another well-tested (but also model-dependent) method to
estimate ages for field stars, including red giants, is offered by
asteroseismology (Chaplin & Miglio 2013). Red-giant stars are
particularly interesting for Galactic archaeology studies, since
they are numerous, bright, and cover a wide range of stellar
ages (Miglio et al. 2012). Until the upcoming PLATO mission
(Rauer et al. 2014, Miglio et al. 2017), however, red-giant ages
derived from joint asteroseismic and spectroscopic constraints
are only available for select samples (.10 000 stars) in cer-
tain fields, such as the Kepler (e.g. Pinsonneault et al. 2014,
2018; Wu et al. 2018; Miglio et al. 2021; Matsuno et al. 2021),
CoRoT (Valentini et al. 2016; Anders et al. 2017b), K2 (e.g.
Rendle et al. 2019; Valentini et al. 2019; Zinn et al. 2020, 2022;
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Schonhut-Stasik et al. 2023), or TESS Continuous View-
ing Zone (Sharma et al. 2018; Silva Aguirre et al. 2020;
Mackereth et al. 2021; Wu et al. 2023) fields. There-
fore, large-scale spectroscopic surveys such as APOGEE
(Majewski et al. 2017), GALAH (De Silva et al. 2015), LAM-
OST (Cui et al. 2012), or Gaia RVS (Gaia Collaboration 2023a;
Recio-Blanco et al. 2023), have been aiming at providing empir-
ical spectroscopy-based age estimates for Galactic archaeology
studies, typically using asteroseismology as benchmark data
(e.g. Martig et al. 2016a; Leung & Bovy 2019; Ciucă et al.
2023; He et al. 2022).

It has long been suggested that, in the absence of reli-
able stellar ages, precise chemical abundances could be used
to determine the approximate age of a star. The works of
Nissen (2015, 2016) and Tucci Maia et al. (2016) showed that,
at least for solar twins observed at high spectral resolution
and high signal-to-noise ratio, this is a viable assumption. The
tight relation between [Y/Mg] and stellar age found in these
works, later confirmed by Spina et al. (2018), demonstrated that
a combination of elemental abundances probing different nucle-
osynthetic channels (in the case of [Y/Mg] an s-process and
an α element) may provide a meaningful empirical measure
for stellar age. Follow-up works also explored other elemen-
tal abundance ratios (e.g. Jofré et al. 2020; Casamiquela et al.
2021) and showed that when leaving the regime of stellar
twins, this empirical “chemical clock” needs to include other
terms (such as Teff or [Fe/H]) to provide meaningful results
(e.g. Feltzing et al. 2017; Delgado Mena et al. 2019; Casali et al.
2020; Viscasillas Vázquez et al. 2022).

The APOGEE survey, which has taken high-resolution
(R ' 22 500) high signal-to-noise (&70) spectra of mainly
red giant stars in the near-infrared H-band (Wilson et al.
2019), covering several carbon and nitrogen molecular bands
(Allende Prieto et al. 2008), triggered the discovery that in red-
giant stars the [C/N] ratio correlates with stellar mass (and
therefore age; Masseron & Gilmore 2015). Subsequent theo-
retical work by Salaris et al. (2015) showed that [C/N] mea-
surements alone cannot provide precise and accurate ages for
individual stars, but may well provide population ages (see also
Lagarde et al. 2017 for a detailed investigation of the underly-
ing mixing effects that produce the [C/N] dependence on age).
The [C/N] ratio was since used with success to estimate red-
giant ages (with '30−40% precision) through a calibration of
the [C/N]-age relation with asteroseismic data from the Kepler
mission (Martig et al. 2016a; Ness et al. 2016; Wu et al. 2019;
Huang et al. 2020; Zhang et al. 2021) or with open clusters
(Casali et al. 2019; Spoo et al. 2022).

Using data from the GALAH survey’s third data release
(Buder et al. 2021), Hayden et al. (2022) have recently demon-
strated that it is possible to infer “spectroscopic” (or “chemi-
cal”) stellar ages for main-sequence turn-off stars with a preci-
sion of 1–2 Gyr, using not just one abundance ratio, but a com-
bination of many abundances (not even including carbon and
nitrogen), by using supervised machine-learning regression, in
particular the popular method extreme gradient-boosted trees
(XGBoost; Chen & Guestrin 2016). A similar exercise using the
same technique has been conducted by He et al. (2022), using
red-clump stars observed by the LAMOST survey (which has
the advantage of providing also C and N abundances) trained on
asteroseismically inferred ages from Kepler. Their resulting sta-
tistical uncertainties, similar to the earlier results for APOGEE
(Martig et al. 2016a; Ness et al. 2016), amount to 31%, which,
considering the low resolution of the LAMOST spectra (R ∼
1800), is remarkable. Similar precisions were obtained earlier

by Mackereth et al. (2019) using a Bayesian convolutional neu-
ral network and APOGEE DR14 data trained on the APOGEE-
Kepler data (Pinsonneault et al. 2018). Good spectroscopic age
estimates have also recently been obtained by Moya et al. (2022)
through hierarchical Bayesian modelling for the high-resolution
HARPS-GTO sample, by Bu et al. (2020) through Gaussian Pro-
cess regression on LAMOST data (again using the APOGEE-
Kepler data as a training set), or by Hasselquist et al. (2020)
using The Cannon (Ness et al. 2015) for high-luminosity red
giants in the Galactic bulge (using the local giant sample of
Feuillet et al. 2018 as a training set).

In this work, we build upon the success of the works of
Hayden et al. (2022) and He et al. (2022) and use XGBoost
to estimate ages for 178 825 red-giant stars contained in the
APOGEE DR17 catalogue (Abdurro’uf et al. 2022). As a train-
ing set, we use the carefully produced APOGEE-Kepler cata-
logue of Miglio et al. (2021).

The paper is structured as follows: In Sect. 2 we present
the APOGEE data used in this work (including the APOGEE-
Kepler training set). In Sect. 3 we explain the XGBoost algo-
rithm. The obtained ages are validated in Sect. 4. In Sect. 5, we
show that our ages reproduce known chemical, spatial, and kine-
matic trends with age, suggesting that our inferred ages are reli-
able even far from the Kepler field. Finally, the conclusions are
presented in Sect. 6. Our analysis is reproducible online1.

2. Data

The outcome of a machine-learning regressor can only be as reli-
able as its training set. Therefore, it is often preferable to use a
smaller, but statistically significant and highest-quality, dataset
for the training phase. For red-giant stars, the longest astero-
seismic time series have been obtained by the Kepler satellite
(Borucki et al. 2010) during its first phase of observations in
which it was continuously observing one large sky area in the
sky, towards the constellation of Cygnus.

Using APOGEE DR14 (Abolfathi et al. 2018) spectroscopic
follow-up observations of Kepler targets (Pinsonneault et al.
2018; Yu et al. 2018), Miglio et al. (2021) inferred masses and
ages for more than 5000 giants with available Kepler light curves
and APOGEE spectra using the Bayesian isochrone-fitting code
PARAM (da Silva et al. 2006; Rodrigues et al. 2017). This is
arguably an asteroseismic+spectroscopic dataset that is of such
a high quality that it can be used for training a machine-learning
regressor. The median nominal uncertainties of the asteroseis-
mic ages reported in the Miglio et al. (2021) catalogue are 23%
for RGB stars and 10% for RC stars. For this study we cross-
matched the results of Miglio et al. (2021) with the APOGEE
DR17 allStarLite table (Abdurro’uf et al. 2022), resulting
in a preliminary training dataset of 3315 stars. We clean the
APOGEE-Kepler sample to contain only stars with APOGEE
signal-to-noise ratio (SNREV) above 70 and nominal age uncer-
tainties smaller than both 30% and 3 Gyr. We also exclude
the few apparently young α-rich stars (Chiappini et al. 2015;
Martig et al. 2015; here defined as [α/Fe] > 0.14 + 0.0001 ·
(age − 4.1)5), since their ages (inferred from single-star evolu-
tionary models) are most probably flawed by binary interactions
(e.g. Fuhrmann & Chini 2017; Jofré et al. 2023).

As we are interested in using the APOGEE abundance mea-
surements as features for the age estimator, we require that
the abundance flags2 for each of the used elements are equal

1 https://github.com/fjaellet/xgboost_chem_ages
2 https://www.sdss4.org/dr17/irspec/abundances/
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Fig. 1. Parameter space covered by our APOGEE sample. Top panel:
Kiel diagram (log g vs. Teff) for the APOGEE DR17 catalogue (grey
density). The black dots highlight the stars range for which our method
provides chemical stellar age estimates. Bottom panel: Galactic dis-
tribution of the 178 825 APOGEE stars with spectroscopic ages in
cylindrical coordinates (ZGal vs. RGal), based on the latest StarHorse
distances (Queiroz et al. 2023). In both panels, the training sample
(taken from the APOGEE-Kepler catalogue of Miglio et al. 2021) is
overplotted in colours.

to zero (meaning that their abundance estimates are unprob-
lematic). The chosen chemical features are: Teff , log g, [C/Fe],
[CI/Fe], [N/Fe], [O/Fe], [Na/Fe], [Mg/Fe], [Al/Fe], [Si/Fe],
[K/Fe], [Ca/Fe], [Ti/Fe], [V/Fe], [Mn/Fe], [Co/Fe], [Ni/Fe], and
[Ce/Fe]. The following abundances were discarded: [P/Fe],
[S/Fe], [Cr/Fe], [Fe/H], and [Cu/Fe] – either because there were
too few stars with unproblematic ASPCAP flags ([P/Fe] and
[Cu/Fe]), because their importance on the final result was negli-
gible ([S/Fe], [Cr/Fe]; see Sect. 3.2), or because we deliberately
aim at keeping the age estimate independent from the abundance
ratio in question ([Fe/H]). This leaves us with 3060 stars cover-
ing a metallicity range between −1 and +0.5. As can be appreci-
ated in Fig. 1 (top panel), the training data are also limited to a
small range in the spectroscopic Hertzsprung–Russell diagram:
4400 . Teff [K] . 5200 and 2.2 . log g[cgs] . 3.4, compared to
the full APOGEE DR17 data.

When applying our age estimator to the full APOGEE DR17
dataset, we restrict our predictions to the stellar-parameter space
covered by the training data (black dots in Fig. 1, top panel),

and to [Fe/H] > −1. We also require clean abundance flags for
all included elements, but allow for lower signal-to-noise ratios
(SNREV> 50). The bottom panel of Fig. 1 shows the distribu-
tion of the training and full sample in Galactocentric cylindrical
coordinates, demonstrating the huge gain in area covered with
red-giant age estimates – once our method is applied.

3. Method

Supervised machine-learning regression models can be trained
to fit arbitrarily complex relationships between the introduced
data. In our case of tabular data, we want to predict an output
column (the so-called “label”) based on a set of introduced input
parameter columns (so-called “features”). The features (in our
case stellar parameters and abundances) are the variables of the
data that the model uses to train itself to predict the label (stellar
age). Once the model is trained, it can be used to make predic-
tions (age estimates) based on data for which reliable labels do
not yet exist.

Borisov et al. (2022) recently benchmark-tested several
regression algorithms for tabular data. They found that the best-
performing algorithm, in terms of accuracy and speed, was the
well-known tree-based algorithm XGBoost. We therefore use
this algorithm as the basis for our chemical age estimator in this
paper.

3.1. XGBoost

The XGBoost algorithm (Chen & Guestrin 2016) is the culmi-
nation of previous development in tree-based machine learn-
ing. The basis of tree-based algorithms are decision trees, which
are graphical representations of possible solutions to a decision
based on certain conditions prompted by the values of the input
columns (for an introduction in the astronomical context see e.g.
Ivezić et al. 2020, Chapt. 9.7).

A next level of complexity was achieved by random-forest
algorithms (Breiman 2001), which randomly select features
(columns) to construct a set of decision trees. On top of random-
forest algorithms, one can add so-called gradient-boosting meth-
ods, which minimise the errors and increase the performance of
the random-forest models. These models use a gradient-descent
algorithm to minimise the errors of the sequential models. Finally,
in contrast to other gradient-boosted methods, XGBoost also per-
forms parallel processing and tree-pruning, handles missing val-
ues, and regularises the data to avoid over-fitting.

In consequence, the training time of XGBoost is often much
smaller compared to other methods with similar predictive
power (see Borisov et al. 2022). Since the algorithm is very well
explained in the original paper (Chen & Guestrin 2016) as well
as in several online resources, we abstain from a deeper explana-
tion here and only mention that XGBoost has a number of hyper-
parameters that can be tuned to optimise the performance for a
given dataset or problem.

For our use case, we use scikit-learn’s (Virtanen et al.
2020) GridSearch3 to find the optimal hyperparameters for our
machine-learning model. The optimal hyperparameters used in
our fiducial XGBoost4 regressor are: learning_rate = 0.005,
max_depth = 7, min_child_weight = 10, n_estimators =
1500, subsample= 0.6. The performance of the default model
is shown in Fig. 2 and discussed in detail in Sect. 3.3. In addition,

3 https://scikit-learn.org/stable/modules/grid_
search.html
4 https://xgboost.readthedocs.io/en/stable/
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Fig. 2. Performance of the XGBoost chemical age estimator for the
unseen test data. Top panel: spectroscopic age vs. asteroseismic age
(from Miglio et al. 2021), using our default model. The solid black line
and the shaded areas delineate the median trend and 1σ quantiles. The
dashed line delineates the identity line, while the grey dotted lines cor-
respond to ±25% deviation. Bottom panel: residuals (spectroscopic –
seismic age), showing that our model typically provides reliable ages
(with systematic residuals within ∼0.5 Gyr for stars with ages ≤11 Gyr).

we also provide alternative estimates with individual uncertain-
ties, by using quantile regression (available in the latest version
of XGBoost) to include the prediction of 1σ confidence intervals
in the inference (see Appendix A). In this paper we mainly use
the results of our fiducial XGBoost run (column spec_age_xgb
in Table A.1).

3.2. SHAP values

The concept of SHAP (SHapley Additive exPlanations) values
provides an elegant way to understand the output of a machine
learning model (Lundberg & Lee 2017). In the case of XGBoost,
they can be used to understand how each feature has an impact
on the predictions of the model. The sum of SHAP values is
equal to the difference between the expected output and the
baseline output. In other words, a positive value means that
the feature increases the output’s model, while a negative value
decreases it. For our case, the SHAP values have been used not
only to recognize the features that have the greatest impact on
the model, but also to discard those that do not contribute to the
prediction (the APOGEE DR17 elemental abundances discarded
in Sect. 2).

Figure 3 demonstrates that the most influential features in
the age prediction are the effective temperature, Teff , the chem-

Fig. 3. SHAP “bee-swarm” plot (https://shap.readthedocs.
io/en/latest/example_notebooks/api_examples/plots/
beeswarm.html). The rows correspond to the input features, ordered
by importance. In each row, one dot corresponds to a star in the test
dataset, coloured by its (normalised) feature value. The position of each
dot indicates how much and in which way each feature contributes to
its output label (age).

ical abundances [C/Fe], [Mg/Fe], [N/Fe], and the surface grav-
ity, log g. In addition, Fig. 3 shows the exact effect each of the
features has on the estimated age: for example, for the case of
effective temperature (redder dots in the first line), we observe
that an increase in its value implies a negative SHAP value,
i.e. a decrease in the inferred age. The usefulness of carbon
and nitrogen abundances for the prediction of red-giant ages
in the absence of asteroseismology is discussed in detail by
Martig et al. (2016a). These authors performed a polynomial
feature regression on the APOGEE DR12 labels {Teff , log g,
[M/H], [C/M], [N/M], [C+N/M]} to the APOKASC-1 ages
(Pinsonneault et al. 2014) and obtained reasonably precise age
estimates for 52 000 APOGEE stars (∼40%). Similar precision
was achieved by Ness et al. (2016), using the same training data
as Martig et al. (2016a), but a different technique (The Cannon, a
data-driven regression technique directly trained on the spectra;
Ness et al. 2015).

The fact that [C/Fe], Teff , [N/Fe], [Mg/Fe], and log g are
the most important features for age determination is very much
in line with the findings of Bu et al. (2020) who, using a
variety of machine-learning regression techniques, found that
these features contained most information for predicting ages
of LAMOST stars (in the absence of reliable mass estimates).
Also the work of Ciucă et al. (2023) used these five features
(+[Fe/H]) to determine ages for APOGEE stars. We also see
from Fig. 3 that most other individual abundance ratios (first
[O/Fe] and other α elements, then [Ce/Fe], and then iron-
peak elements) have a smaller impact on the estimated age.
Although all abundance measurements are used by XGBoost to
some extent to estimate an even more precise age, the precision
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improvement of the full model using all abundances over a
model that only uses the feature space {[C/Fe], Teff , [N/Fe],
[Mg/Fe], log g} is only ∼10%. This suggests that while each ele-
ment is unique, the key information is stored in only a few vec-
tors (in agreement with previous works, e.g. Price-Jones & Bovy
2018; Weinberg et al. 2019; Ratcliffe et al. 2020). Interestingly,
Ce is not among the most influential features despite being
an s-process element for which the correlation with age is
strong (e.g. Maiorca et al. 2011; Spina et al. 2018; Magrini et al.
2018; Delgado Mena et al. 2019; Casamiquela et al. 2021;
Sales-Silva et al. 2022; Casali et al. 2023). This might be due to
the still sizeable uncertainties of this element in the APOGEE
DR17 catalogue (see also Hayes et al. 2022).

3.3. Biases and uncertainties

The performance of our default model (trained on 80% of the
Miglio et al. 2021 data) is shown for the test dataset (the 20% of
the data not used in the training phase) in Fig. 2. We observe a
very clear linear trend with little wiggles (.0.5 Gyr for almost
the full age range), and a determination coefficient of R2 =
0.91. Our spectroscopic ages tend to slightly overestimate (by
<0.5 Gyr) ages for stars around 2 Gyr, while for stars between
5 and 7 Gyr our age scale tends to underestimate the seismic
age by similar amounts. Beyond seismic ages of ∼11 Gyr, our
method provides more seriously underestimated ages compared
to the seismic scale.

Considering that the age uncertainties associated with the
training data are of order 10% for RC and 25% for first-ascent
red-giant branch (RGB) stars5, the amount of scatter around the
one-to-one relation in Fig. 2 is indeed surprisingly small (almost
exactly the same values), indicating that the regressor is well
trained and that most of the variance stems from the training set
itself. In addition, and contrary to the training set, XGBoost is
not extrapolating the age scale beyond the age of the Universe
(13.7 Gyr), which again is surprising.

We also tested training separate XGBoost regressors for the
RC and RGB stars, respectively. However, a global increase in
performance could not be appreciated, most probably because
the default algorithm also learns the separation between RC and
RGB stars from the data (in particular, Teff , log g, [C/Fe], and
[N/Fe]). Our default XGBoostmodel is therefore capable of esti-
mating meaningful ages for both RC and RGB stars. We appre-
ciate that the performance for the RC stars is significantly better
(lower dispersion around the identity line), but the model still
works well on average for RGB stars. The statistical age uncer-
tainty of our method is lower than 25% and only weakly depen-
dent on the estimated stellar age (see Fig. 4, bottom panel).

4. Validation

Age estimates for field stars are, as explained in the Introduction,
highly dependent on the accuracy of stellar evolutionary models,
even in the case of the highest quality data. On top of the system-
atic age biases that are unavoidable and very hard to quantify
especially in the case of red-giant stars (related to e.g. assump-
tions about mass loss, mixing, rotation, etc.; Noels & Bragaglia
2015), there are also sizeable statistical uncertainties. Never-
theless, comparisons to other model-dependent age estimates

5 We note that these dispersions do not reflect the systematic uncer-
tainties which are considerably higher for red-clump stars (e.g.
Casagrande et al. 2016; Anders et al. 2017b) due to the poorly con-
strained amount of mass loss after the first dredge-up phase.

Fig. 4. Possible a-posteriori calibration of the age estimates (top panel)
and estimation of the internal statistical uncertainties (bottom panel)
using the same data as in Fig. 2. The top panel shows the median age
bias (test seismic age − spectroscopic age) as a function of the spectro-
scopic age. The bottom panel shows the relative age error (width of the
grey distribution in the top panel normalised by the spectroscopic age).
As a sanity check, the orange dotted line in the bottom panel shows
the median relative age dispersion among duplicate APOGEE observa-
tions. In both panels, we also show the simple polynomial fits used to
characterise the bias and 1σ age uncertainty in our catalogue.

are of prime importance to estimate the amount of systematic
and statistical uncertainties. In this section, we infer internal
uncertainties of our method and compare the resulting ages to
asteroseismic ages obtained from observing campaigns other
than Kepler, open cluster ages, and APOGEE DR17 age esti-
mates from other machine-learning methods. We provide addi-
tional verification of our ages against isochrone fitting and an
empirical [C/N] calibration in Appendix C.

4.1. Duplicate APOGEE observations

More than 11 000 stars in our selected region of the Kiel dia-
gram (Fig. 1) are contained more than once in APOGEE DR17
catalogue (for example, stars that have been observed in dif-
ferent fields or even by both the SDSS Telescope and the du
Pont Telescope). These duplicate observations can serve to esti-
mate realistic internal uncertainties for stellar parameters and
elemental abundances (e.g. Jönsson et al. 2020, Tables 10 and
11). In our case we can use these multiple observations also
to assess the uncertainties of our age estimates: the scatter
in the stellar parameters and abundances naturally leads to a
scatter in the inferred ages. The results of this experiment are
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Fig. 5. Galactic distribution of asteroseismic+spectroscopic red-giant
samples, superimposed on our sample of APOGEE DR17 red-giants
with spectroscopic ages determined in this work.

shown in the bottom panel of Fig. 4 (orange dashed curve).
Reassuringly, the dispersion among multiple observations (with
often significantly different signal-to-noise ratios and, therefore,
elemental-abundance precisions) is always lower than the uncer-
tainty estimated from the test dataset.

4.2. Asteroseismic ages in other fields (CoRoT, K2, TESS)

Asteroseismology coupled with spectroscopy can significantly
reduce the uncertainties of red-giant ages (e.g. Miglio et al.
2013; Pinsonneault et al. 2014). This is exactly the reason why
we have chosen the APOGEE-Kepler dataset of Miglio et al.
(2021) as a training set for our method. The concordance with
this age scale is inherent to the machine-learning method used
in this paper, and was demonstrated in Fig. 2 for the unseen test
data.

Here we compare our age estimates for the full APOGEE
DR17 data with other age estimates that used similar techniques
as Miglio et al. (2021), but on other asteroseismic and spectro-
scopic data. The main reason is that we need to assess whether
the stellar populations contained in the training set (i.e. the
Kepler field) are representative enough – so that our method can
also successfully be used to derive ages for stars in other parts
of the Galaxy. To verify this, we study the CoRoT-APOGEE
data presented in Anders et al. (2017b), the K2-GALAH data
(Zinn et al. 2022), and the first Galactic Archaeology data from
the Southern continuous viewing zone of the TESS satellite
(TESS CVZ; Mackereth et al. 2021). The Galactic distribution
of all these targets, along with our APOGEE DR17 stars with
spectroscopic age estimates, is shown in Fig. 5. The distances for

the Zinn et al. 2022 and for the Mackereth et al. (2021) stars in
this plot were taken from Queiroz et al. (2023) and Anders et al.
(2022), respectively.

Figure 6 (top left panel) presents the direct comparison
with the asteroseismic ages obtained by Anders et al. (2017b),
Zinn et al. (2022), and Mackereth et al. (2021). The plot shares
some similarities with the comparison plot for test sample shown
in Fig. 2: in the youngish regime, the XGBoost ages appear over-
estimated with respect to the seismic scale for all three external
datasets, albeit much more pronounced than in the Kepler sample.
In the intermediate regime (between 4 and 10 Gyr), the concor-
dance is better on average, and there is no consistent trend among
the three external seismic samples (in this regime, the age scale of
Zinn et al. 2022 is lower, while the one of Mackereth et al. 2021
is higher than ours). For the oldest ages (>10 Gyr), the XGBoost
ages appear underestimated with respect to the seismic scale, at
least for the case of the TESS-CVZ sample.

Finally, it is important to recall that also the asteroseis-
mic+spectroscopic catalogues used for comparison here are
prone to sizeable statistical and systematic uncertainties. Due to
the shorter time series of especially CoRoT and K2, these uncer-
tainties are typically much larger than the ones associated to the
Kepler training data. To illustrate this, the typical statistical age
uncertainties for each of the considered catalogues are shown as
error bars in Fig. 6.

4.3. Open clusters (Cantat-Gaudin et al. 2020)

Figure 6 (top right panel) shows the comparison of our spec-
troscopic age estimates with open-cluster (OC) ages obtained
by Cantat-Gaudin et al. (2020) by Gaia DR2 colour-magnitude
diagram fitting with an artificial neural network trained on a
mixture of simulations and real data (mostly stemming from
Bossini et al. 2019). As indicated by the error bars in the figure,
the OC age estimates also come with sizeable uncertainties.
Keeping this in mind, the concordance between our age esti-
mates and the OC ages is not too bad: on average, our ages
are greater than the OC ages by 0.48 Gyr, and the dispersion is
1.37 Gyr (∼40% larger than the uncertainties estimated from the
test dataset in Fig. 2).

In spite of the statistical concordance, however, we observe a
tendency to overestimate age for a group of clusters younger than
2.5 Gyr. Queiroz et al. (2023) observed a similar behaviour in
their comparison of sub-giant star age estimates with the OC age
scale of Cantat-Gaudin et al. (2020). This suggests that either the
OC age scale of Cantat-Gaudin et al. (2020) has to be revised
(perhaps by enlarging the OC training set with reliable ages, or
by better taking into account metallicity effects) or that both the
isochrone ages of Queiroz et al. (2023) and our XGBoost ages
suffer from similar (but independent) systematics. Part of these
systematics are caused by the coldest members of young clus-
ters (i.e. the largest giants), which is in part expected, since the
spectroscopic abundances of young stars (<500 Myr) can be sig-
nificantly biased (see e.g. Spina et al. 2022, Sect. 5.6).

4.4. Machine-learning age estimates for APOGEE DR17

The lower panels of Fig. 6 show comparisons of our age esti-
mates with three independent attempts at producing field-star
age estimates for APOGEE DR17 red-giant stars, also using
machine-learning techniques and APOGEE-Kepler data as their
training set. In all panels of Fig. 6 we show comparisons to our
uncalibrated age scale (the differences between calibrated and
uncalibrated ages are marginal).
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Fig. 6. Comparisons of our uncalibrated age estimates with ages from the literature. The lines and shaded bands in each panel delineate the
running median and 1σ quantiles, respectively. Top left panel: age estimates from recent asteroseismic catalogues (obtained from shorter time
series than the Kepler data), as indicated in the legend. Top right: open cluster ages as listed in the catalogue of Cantat-Gaudin et al. (2020). Grey
dots correspond to individual cluster members (with membership probabilities >0.95), while the red errorbars show the median statistics in each
cluster with more than two members (the ones older than 4 Gyr are annotated). Bottom row: machine-learning field star estimates for APOGEE
DR17 using the same training dataset as used in this paper (Miglio et al. 2021). Bottom left: DR17 astroNN ages (Leung & Bovy 2019). Bottom
middle: age estimates from Ciucă et al. (2023). Bottom right: age estimates obtained by Leung et al. (2023) using a random-forest regressor trained
on the APOGEE DR17 spectral latent space.

Leung & Bovy (2019) presented a neural-network
algorithm, astroNN, that is capable of determining stellar
atmospheric parameters, elemental abundances, and additional
desirables such as distance and age from APOGEE spectra.
The DR17 astroNN catalogue is available at the SDSS DR17
website6.

The age estimation of astroNN follows the procedure
of Mackereth et al. (2019) and uses a similar training set
as ours. Instead of the Miglio et al. (2021) ages, however,
the astroNN ages are based on the APOKASC-2 catalogue
(Pinsonneault et al. 2018), complemented with the 96 low-
metallicity stars of Montalbán et al. (2021). In view of the simi-
larity of the training sets (and the overall philosophy of obtaining

6 https://www.sdss4.org/dr17/data_access/
value-added-catalogs

age estimates from spectroscopy alone), it is not surprising that
the comparison shown in Fig. 6 (lower left panel) shows much
less scatter, albeit with a significant systematic trend (which is
most likely inherited from the different age scale in their train-
ing set): except for the youngest stars, our ages are typically
larger than the astroNN estimates by a factor of ≈1.2. This, how-
ever, is reassuring, since the age plateau present in the astroNN
catalogue at .9 Gyr is inconsistent with the age of the Galactic
disc (which is >12 Gyr; e.g. Fuhrmann et al. 2017; Rendle et al.
2019).

In a different attempt at determining age estimates for
APOGEE DR17 red giants (but also using the data of
Miglio et al. 2021 as a training set), Ciucă et al. (2023) used
a Bayesian neural-network architecture, BINGO (Ciucă et al.
2021), to infer precise stellar age estimates for 68 360 stars
with exquisite APOGEE signal-to-noise ratios (SNREV> 100).
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As input, Ciucă et al. (2023) use the stellar parameters Teff

and log g as well as the abundances [Fe/H], [Mg/Fe], [C/Fe]
and [N/Fe], each with their associated uncertainties. Follow-
ing the method of Das & Sanders (2019), the hidden parame-
ters (a.k.a. weights and biases) of a neural network with two
fully-connected layers were optimised during the training phase.
Then, by marginalising over the posterior distribution of the neu-
ral network parameters, a posterior age distribution for each indi-
vidual star was obtained.

The lower middle panel of Fig. 6 shows the comparison of our
spectroscopic age estimates with the ages obtained by Ciucă et al.
(2023). Except for the small jump at around ≈1.8 Gyr (which is
partly due to low statistics in that age regime), we find a remark-
able concordance between the two age scales, with little system-
atic differences (+0.24 Gyr) and scatter (1.34 Gyr). The formal
uncertainties of the BINGO ages are also similar to ours.

Very recently, Leung et al. (2023) presented a new cata-
logue of APOGEE DR17 age estimates that addresses some
of the issues present in the astroNN catalogue. In particular,
they present the implementation of a novel technique that they
dub “variational encoder-decoder”, which reduces the dimen-
sionality of the APOGEE spectra to a four-dimensional latent
space that does not contain strong elemental-abundance infor-
mation. In a second step, Leung et al. (2023) trained a random-
forest regressor to learn the relationship between the latent-space
parameters and stellar ages, using the APOGEE-Kepler data of
Miglio et al. (2021). They found that this method delivers more
precise and accurate results than their earlier astroNN attempt,
delivering age uncertainties of ∼22%. Perhaps the main advan-
tage of their method over other attempts (including ours) is that
their ages do not depend on [Mg/Fe] (see Sect. 4.5).

The lower right panel of Fig. 6 compares our spectroscopic
age estimates with the estimates of Leung et al. (2023). In the
young regime (<4 Gyr), we find very good agreement and lit-
tle dispersion between the two age scales. For the intermedi-
ate and old regime, both systematic differences and dispersion
increase, so that the overall concordance between the two meth-
ods is worse than in the case of Ciucă et al. (2023), and we
also see more dispersion than in the comparison to the astroNN
ages. This is to some degree expected, because the method of
Leung et al. (2023) explicitly excludes the use of part of the
information contained in the stellar spectrum (also indicated by
the larger uncertainties; see error bars in Fig. 6). Nevertheless,
the comparison is reassuring, in particular with regards to the
younger stars where we see very little systematic trends.

4.5. Caveats

Some caveats have to be taken into account when using our age
estimates. Most importantly, the age estimates critically depend
on the quality of the APOGEE DR17 atmospheric parameters
and abundances. Since our fiducial method does not provide
individual uncertainty estimates, the user may decide whether
to apply further quality cuts to the ones already imposed.

We are extrapolating the relationships found in the Kepler
data to the whole Galactic volume covered by the APOGEE
DR17 red-giant sample. This could potentially be dangerous as
well, and it is to some degree surprising that it works so well.
The reason for that is most certainly stellar migration: the stel-
lar population of the Kepler field has such a great variety in
ages and abundances because its stars came from vastly different
birth positions in the Galactic disc (see e.g. Minchev et al. 2013;
Lagarde et al. 2021; Miglio et al. 2021; Ratcliffe et al. 2023), so
that this caveat is milder than it could have been.

By construction, our age estimates are not independent
of chemical abundances (most importantly, [C/Fe], [N/Fe],
and [Mg/Fe]). This tendentially makes inferences of the age-
abundance relations slightly circular, at least for the elemental
abundance ratios that are most important for the XGBoostmodel.

Despite the large sample size and coverage of the Galactic
disc, our sample is affected by some important selection effects.
Most importantly, it is restricted to stars with [Fe/H] > −1, and
therefore to disc stars. A detailed comparison of our sample with
Milky Way models will require careful forward modelling to
take into account these selection effects.

While traditional chemical clocks such as [α/Fe] or [Y/Mg]
should be quite robust also for close binaries, post-common-
envelope phase binaries, and binary merger products, our age
estimates also rely on stellar parameters and chemical abun-
dances that are heavily affected by non-binary evolution. This is
the reason why, despite the fact that we eliminated the conspic-
uous “young α-rich” stars (a.k.a [α/Fe]-enhanced over-massive
stars) from the training set, we still find some of them in the full
APOGEE sample. In particular, we find 706 stars (0.4% of the
total sample) with [Mg/Fe]> 0.2 and spectroscopic ages .6 Gyr.
These stars are very likely products of binary evolution; their
ages should not be used. Another small part of our dataset (561
stars) that is most likely affected by effects of binary evolution
are rapidly rotating (v sin i > 10 km s−1) red giants – they were
recently analysed using APOGEE DR16 by Patton et al. (2023).
We include flags for both these categories in our results, along
with flags for stars that are slightly bluer (4137 stars) or redder
(280 stars) than the bulk of the training set (and that thus may
have less reliable ages). There are 5383 flagged stars in total.

5. Results

We applied our XGBoostmodel to 193 478 APOGEE DR17 stars
with SNREV> 50, [Fe/H]> − 1, and clean abundance flags (see
Sect. 2) located in the small Teff− log g box highlighted in Fig. 1,
thus avoiding extrapolation of our results into a regime of stel-
lar parameters not covered by the training set. After cleaning
for duplicate APOGEE_IDs (keeping the results with the high-
est SNREV), we provide spectroscopic age estimates for 178 825
unique APOGEE DR17 stars. To further ensure that these results
are meaningful, we show a number of validation plots that
reproduce well the expected chemical, positional, and kinematic
trends with age. When interpreting these plots, we recall that
our absolute age scale is likely subject to some systematics,
as illustrated in Sect. 4. For a detailed analysis of the chemi-
cal evolution of the Galactic disc with this sample, including a
proper treatment of stellar radial migration, we refer the reader
to Ratcliffe et al. (2023).

5.1. Age-metallicity relation

An important abundance ratio that was not used on purpose in
our default XGBoost model is [Fe/H]. We can therefore analyse
the age-metallicity relation of our sample without too much fear
of circularity (although one could plausibly argue that [Fe/H]
is also directly related with the other abundance ratios; see e.g.
Ness et al. 2019).

Figure 7 shows the age-metallicity relation (AMR) of our
whole APOGEE sample, colour-coded by median guiding-
centre radius (estimated as Rguide = RGal · vΦ/vcirc), assum-
ing a flat rotation curve (vcirc = 229.76 km s−1; Schönrich et al.
2010; Bovy et al. 2012) and using proper motion measurements
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Fig. 7. Age–[Fe/H] relation, colour-coded by median guiding radius
and smoothed with a Gaussian kernel. Overplotted are iso-density con-
tours corresponding to 20, 40, and 60 stars per bin. Only bins containing
at least three stars are shown.

Fig. 8. Age–[Fe/H] relation for the solar vicinity (7 kpc < RGal < 9 kpc,
|ZGal| < 1 kpc), as a 2D histogram and as smoothed iso-density con-
tours corresponding to 10 and 30 stars per bin. Overplotted are the 72
solar twins studied by Nissen et al. (2020), with the edge colour of the
symbols corresponding to the groups defined by their Fig. 3.

from Gaia DR3 (Gaia Collaboration 2023b). Density contours
are overplotted. The overall picture is consistent with both pre-
dictions from classical multi-zone GCE models (e.g. Chiappini
2009), GCE models with radial mixing (e.g. Minchev et al.
2014; Kubryk et al. 2015; Johnson et al. 2021), and cosmo-
logical zoom-in simulations of Milky-Way-like galaxies (e.g.
Renaud et al. 2021; Lu et al. 2022b): the colour-code clearly
indicates a gradual inside-out formation of the disc within the
last ∼7 Gyr, with a rapid enrichment in the inner disc (see also
Joyce et al. 2023), and a rather recent onset of star formation in
the outermost parts of the disc.

Restricting ourselves to the extended solar neighbourhood
(7 kpc < RGal < 9 kpc, |ZGal| < 1 kpc), we obtain the local
AMR shown in Fig. 8. It resembles the one reconstructed from
GALAH data by Sahlholdt et al. (2022, see also Queiroz et al.
2023, Fig. 18) and confirms the bimodality in the AMR hinted by
Nissen et al. (2020) and later corroborated by the works of Jofré
(2021) and Xiang & Rix (2022). Following the terminology of
the latter authors, the younger of the two branches in the AMR
corresponds to the late, dynamically quiescent phase of disc evo-

Fig. 9. Median age as a function of position in Galactocentric coordi-
nates. Only bins containing more than three stars are shown, no smooth-
ing is applied. The dotted lines trace approximately the region in which
the median age equals to 5 Gyr as a quadratic function of RGal, clearly
showing the effect of the young disc’s flare.

lution, while the older one comprises the in-situ halo (not present
in our sample due to the [Fe/H]>−1 criterion) and the old,
[α/Fe]-enhanced disc. This is in line with traditional scenarios of
dual disc formation (e.g. Chiappini et al. 1997; Fuhrmann et al.
2017). The fact that we clearly see the split in the AMR further
validates the high precision of our age estimates.

However, we remind ourselves that the AMRs shown in
Figs. 7 and 8 are a convolution of (i) the underlying evolu-
tion of the ISM in the Milky Way disc over time, (ii) stellar
radial migration, (iii) observational uncertainties (most impor-
tantly in terms of age), and (iv) the selection function of our sam-
ple. Therefore, deciphering the past chemical-enrichment history
is an endeavour that requires taking into account radial migra-
tion (e.g. Minchev et al. 2018; Frankel et al. 2018, 2019, 2020;
Beraldo e Silva et al. 2021; Lu et al. 2023; Ratcliffe et al. 2023).

5.2. Spatial age trends

Another interesting plot is the median age map in cylindrical
(RGal vs. ZGal) coordinates shown in Fig. 9. When interpreting
this plot, we recall that in this work we have been extrapolating
the Milky Way disc’s intrinsic age-abundance relations from the
Kepler field to the whole range of the Galaxy covered by our
sample (0 . RGal . 16 kpc). We also remember that selection
effects have not been taken into account in the creation of this
map (nor in any other of the shown plots).

Even with these caveats, Fig. 9 clearly shows the vertical
age gradient we expect to see, and also the clear signature of
the flared outer disc (as illustrated by the dotted lines that fol-
low the 5 Gyr isochrone in this plot with a quadratic function
starting at RGal ∼ 6 kpc). In fact, not only the younger popu-
lations display flaring, but mono-age populations are expected
to show nested flares, as argued by Minchev et al. (2015). The
prediction of their model was a strong age gradient in the mor-
phological thick disk (|ZGal| > 0.5 kpc) that was indeed found in
earlier APOGEE data (Martig et al. 2016b, see also Imig et al.
2023). We can now confirm this result with much larger statis-
tics and extent in RGal. This is in contrast to associating age with
high-[α/Fe] mono-abundance populations (MAPs), which show
no flaring (Bovy et al. 2016, but see Lian et al. 2022) due to sig-
nificant negative age gradients in a given MAP (Minchev et al.
2017).
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Fig. 10. Radial [Fe/H] profile in bins of age. Top panel: with respect to
RGal. Bottom panel: with respect to the guiding-centre radius, Rguide. The
youngest bin contains 2807 stars, all other bins more than 9000 stars.

Mackereth et al. (2017) studied the age-metallicity struc-
ture of the Milky Way disc using 31 000 APOGEE DR12
stars with [C/N] age estimates inferred by Martig et al. (2016a).
The authors fitted parametric density profiles to the (volume-
corrected) APOGEE star counts and found radially broken
exponential radial profiles as well as flared exponential ver-
tical profiles. The same behaviour could be reproduced by
Beraldo e Silva et al. (2020) with a simulation including clumpy
star formation in the early epochs of the disc. This big pic-
ture is still consistent with the APOGEE DR17 data (but see
Sysoliatina & Just 2022).

5.3. Galactic radial [Fe/H] profile as a function of age

The Galactic radial abundance profile is an important observ-
able that helps to constrain the chemical evolution of the
Milky Way (e.g. Trimble 1975; Tinsley 1980). First discov-
ered in nebular tracers (Hawley 1978; Peimbert & Serrano 1980;
Afflerbach et al. 1997), the presence of a negative radial abun-
dance gradient in the Milky Way was confirmed in field stars
soon thereafter (Janes 1979; Luck & Bond 1980). Since the
1980s, studies of the Galactic radial abundance profile as a func-
tion of age thrived, as larger samples of tracers with distance,
age, and abundance were compiled. Most importantly, open
clusters (e.g. Panagia & Tosi 1981; Lyngå 1982; Friel 1995;
Friel et al. 2002; Magrini et al. 2009) and planetary nebulae (e.g.
Maciel et al. 2005; Stanghellini & Haywood 2010, 2018) were
used to infer the age dependence of the Milky Way’s abundance
profile, sometimes with contradictory results. With the advent

Fig. 11. Age dependence of the radial [Fe/H] abundance gradient in
terms of present-day Galactocentric distance (blue) and guiding-centre
radii (orange). Each point was obtained by 3-parameter (slope, inter-
cept, and dispersion) Bayesian fits to the [Fe/H]–R distribution, using
only data in the respective age bin, restricted to |ZGal| < 0.3 kpc and
5 kpc<RGal/guide < 11 kpc (39 920 and 40 629 stars, respectively). The
faint dashed lines and errorbars correspond to the gradients when using
the alternative set of ages obtained with XGBoost quantile regression
(see Appendix A). In black we overplot the radial [Fe/H] gradients in the
interstellar medium across look-back time obtained by Ratcliffe et al.
(2023), calculated for the same age bins. The difference between the
blue and the orange line (blue-shaded region) can be attributed to
radial heating (blurring), while the difference between the orange and
the black line (orange-shaded region) highlights the influence of radial
migration (churning). Beyond ∼10 Gyr, the gradients are consistent with
zero.

of large spectroscopic surveys, it also became possible to use
larger samples of field stars with isochrone ages to infer the
age dependence of the abundance gradient (e.g. Nordström et al.
2004; Casagrande et al. 2011; Xiang et al. 2015).

In parallel, also Galactic chemical-evolution modelling
became more important and helped to explain the metallicity-
gradient observations, typically by assuming an inside-out for-
mation of the Galactic disc (e.g. Ferrini et al. 1994; Koeppen
1994; Hou et al. 2000; Chiappini et al. 2001; Naab & Ostriker
2006). Nevertheless, the model comparison to different tracers
can lead to opposite conclusions, since each tracer population is
affected by different biases (in terms of age, distance, abundance,
and selection effects). A more comprehensive review on the his-
tory of determinations of the age dependence of the radial metal-
licity gradient can be found in Sects. 1 and 6 of Anders et al.
(2017a).

Anders et al. (2017a) studied the age dependence of the
radial metallicity profile close to the Galactic plane (|ZGal| <
0.3 kpc) using a sample of 418 red-giant stars observed by both
APOGEE (DR12; Alam et al. 2015) and the CoRoT satellite
(Baglin et al. 2006). Thanks to our machine-learning approach
we have now dramatically increased the sample size of field red
giants with statistically meaningful ages to >100 000, obtaining
a much less geometrically biased sample. We therefore reanal-
yse the age dependence of the Galactic radial metallicity profile
in Figs. 10 and 11.
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Fig. 12. Age dependence of the [Fe/H] dispersion around the radial
[Fe/H] abundance gradient shown in Fig. 11. Simple power-law fits
to the data (for ages <7 Gyr) are overplotted, with power-law coeffi-
cients 0.12 and 0.15 for the dispersions about the present-day abun-
dance gradient (cyan) and the abundance gradient with respect to the
guiding radius (red), respectively. The lower panel shows the residuals
with respect to these fits. As in Fig. 11, the faint dashed lines and error-
bars correspond to the gradients when using the alternative set of ages
obtained with XGBoost quantile regression. The vertical lines highlight
regions of departure from the power-law trend, possibly connected to
episodes of enhanced star formation (or enhanced radial migration). The
grey-shaded area marks the age interval in which we expect to see sig-
natures from the Gaia Sausage Enceladus (GSE) merger event.

Figure 10 shows the radial [Fe/H] profile of the APOGEE
red-giant sample in seven broad age bins. In the top panel we
display the [Fe/H] profiles (running median and 1σ quantiles) as
a function of current Galactocentric distance, while in the bottom
panel we show the same as a function of guiding-centre radius.
The differences between both panels, at least for the younger
populations, are very subtle.

The radial metallicity distribution measured for the youngest
populations (0−1 Gyr, 1−2 Gyr, 2−4 Gyr bins) are dominated
by a strong linear (∂[Fe/H]/∂R ' −0.06 dex kpc−1) gradient,
with a typically symmetric dispersion that gradually increases
with age. The gradient of the 1−5 Gyr populations is also
slightly steeper (by 0.015 dex kpc−1) than the gradient of the
youngest bin (<1 Gyr), in agreement with previous results from
field stars (e.g. Nordström et al. 2004; Casagrande et al. 2011;
Anders et al. 2017a; Wang et al. 2019) and recent open-cluster
studies (Spina et al. 2021; Netopil et al. 2022; Myers et al. 2022;
Gaia Collaboration 2023a), while in slight tension with other
studies that found a rather monotonic flattening of the metallicity
gradient with increasing age (Chen & Zhao 2020; Vickers et al.
2021).

For older ages, it is expected that the radial metallicity gradi-
ent (and also the age-velocity dispersion relation, see Sect. 5.4)

for open clusters behaves differently from field stars, due to a
survival bias of clusters that migrate outwards (Lyngå & Palouš
1987; Anders et al. 2017a; Spina et al. 2021). Nevertheless, the
importance of radial migration for the gradient evolution is
still debated in the open-cluster community (Spina et al. 2022;
Magrini et al. 2023). In the sample of field stars used in this
work, we find that the [Fe/H] gradient significantly flattens
(and even inverts when considering Rguide) for the oldest age
bins (Fig. 10). This weakening in the metallicity gradient,
along with increased scatter about the running median, is an
expected consequence of radial migration (Kubryk et al. 2013;
Minchev et al. 2013), and is in agreement with other works (e.g.
Casagrande et al. 2011; Xiang et al. 2015; Anders et al. 2017a).

Unfortunately, the age dependence of the radial abundance
gradient does not allow us to directly infer the evolution of the
abundance gradient in the interstellar medium. In fact, just as
in the case of the AMR discussed in Sect. 5.1, the abundance
profiles shown in Fig. 10 are a convolution of Galactic chem-
ical evolution, stellar mixing (heating and migration, or “blur-
ring” and “churning” in the terminology of Schönrich & Binney
2009), observational uncertainties, and selection effects.

Figure 11 shows the result of Bayesian linear fits (see
Appendix D for details) to the radial [Fe/H] profiles in smaller
age bins and restricted to a thinner slice of the Galactic disc
(|ZGal| < 0.3 kpc) and an R range between 5 kpc and 11 kpc. As
in Anders et al. (2017a), these fits account for both the observa-
tional uncertainties in [Fe/H] and an intrinsic abundance scat-
ter about the linear trend. The present-day abundance gradients
of mono-age populations in terms of Galactocentric distance
(∂[Fe/H]/∂RGal) are shown in blue, while the gradients in terms
of guiding-centre radius (∂[Fe/H]/∂Rguide) are shown in orange.
For illustration, we also show the [Fe/H] gradient with respect
to the birth radius inferred by Ratcliffe et al. (2023), using the
same age bins. These values can be thought of as a reconstruc-
tion of the Galactic radial abundance gradient in the interstellar
medium (ISM) at a certain look-back time7. As indicated by the
blue-shaded region in Fig. 11, the difference between the blue
and the orange curves is produced by radial heating (blurring) of
stellar orbits, flattening the observed radial abundance gradient
only slightly in each age bin. On the other hand, the much larger
difference between the black and the orange curve is produced by
radial migration (churning), as highlighted by the orange-shaded
area.

The picture drawn in Fig. 11 depends slightly on the exact
age scale used, as exemplified by the fits using the XGBoost
quantile regression ages (see Appendix A) shown as faint dashed
lines in that figure. It is also affected by the systematics dis-
cussed in Sect. 4, and in particular less trustworthy for older
ages (both in terms of the age estimates and the estimated birth
radii and abundance gradients; see e.g. Lu et al. 2022a). How-
ever, we see that radial migration is indeed a main driver in
shaping the observed Galactic abundance gradient for mono-age
populations, even for relatively small ages (<1 Gyr), and becom-
ing more and more important for older ages (e.g. for ages older
than 10 Gyr half of the solar neighbourhood’s thin-disc stars
should have migrated outward; Beraldo e Silva et al. 2021). This
picture is also in excellent agreement with the main result of

7 The reconstruction of the radial abundance gradients as a function
of look-back time is based on the method of Lu et al. (2023). These
authors found, using different suites of cosmological hydrodynamical
simulations of Milky-Way-like galaxies, a tight anticorrelation between
the ISM gradient at a certain look-back time and the 5%−95% inter-
percentile range of stellar metallicities found in the corresponding age
interval.
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Frankel et al. (2020) who concluded that the secular orbit evo-
lution in the Galactic disc is dominated by diffusion in angu-
lar momentum, with radial heating being less important by one
order of magnitude. A deeper analysis of the actual evolution
of the Galactic abundance gradients (not only for [Fe/H] but
also for other elements) using our age estimates is presented in
Ratcliffe et al. (2023), revealing substructure in the evolution of
the abundance gradients that possibly correspond to enhanced
star formation episodes triggered by passages of the Sgr dSph
satellite and the GSE (see the wiggles in the black curve in
Fig. 11).

Our Bayesian fits of the radial metallicity gradient between
5 and 11 kpc in age bins of 0.5 Gyr (shown in Fig. 11) also
deliver precise estimates of the [Fe/H] dispersion about the gra-
dient. Figure 12 shows these dispersion measurements as a func-
tion of age, again for both cases, with respect to RGal and Rguide.
As expected (and first demonstrated by Spina et al. 2021 for
open clusters), the dispersions about the radial abundance gra-
dient with respect to the guiding radius are consistently smaller
by a small amount (typically 0.01−0.02 dex).

In addition, thanks to the dramatically increased sample size
and therefore much smaller statistical uncertainties, we can now
quantify the behaviour of the [Fe/H] dispersion over time much
better than in Anders et al. (2017a). We find that the increase of
the abundance dispersion between 1 and 7 Gyr can be well fit
by a power law with an exponent around ∼0.15 (solid coloured
lines in Fig. 12). For even younger ages (<500 Myr), this rela-
tion is expected to flatten, since the intrinsic [Fe/H] dispersion
of younger tracers is finite and not much smaller than 0.05 dex
(Genovali et al. 2014; Wenger et al. 2019; Spina et al. 2021).
However, our red-giant sample does not cover this age range.
The increase in abundance scatter with age is obviously created
by radial migration (e.g. Haywood 2008; Schönrich & Binney
2009; Minchev et al. 2014; Kubryk et al. 2015). The smooth
functional form of this increase with age suggests that radial
migration (churning) can be described by a sub-diffussive pro-
cess with a constant efficiency over a large phase of the Galactic
disc’s lifetime (see also Anders et al. 2020).

Hints of departures from the power-law trends in Fig. 12
are seen in the age bins 2.5–3 Gyr, 5–5.5 Gyr, and possibly
8–8.5 Gyr. For example, an enhanced [Fe/H] dispersion with
respect to the overall trend can be appreciated around 2.5–3 Gyr
(when using our fiducial age scale). Interestingly, this age cor-
responds to an epoch for which an enhanced star formation
rate has been reported by several studies using Gaia (Bernard
2018; Mor et al. 2019; Isern 2019; Alzate et al. 2021) and spec-
troscopic survey data (Johnson et al. 2021; Sahlholdt et al. 2022;
Spitoni et al. 2023). Another small enhancement in σ[Fe/H], RGal

and σ[Fe/H], Rguide seems to occur in the 5–5.5 Gyr bin (in our age
scale), coinciding with an epoch of enhanced star formation pro-
posed in the literature (Ruiz-Lara et al. 2020; Alzate et al. 2021;
Sahlholdt et al. 2022), possibly related to the first passage of
the Sgr dSph galaxy (Ruiz-Lara et al. 2020). Recent simulations
indeed suggest that Sgr passages can temporally enhance migra-
tion (Carr et al. 2022). As also demonstrated in Fig. 12, however,
these small departures from the main power-law trend are not
always robust to a change in the used age scale.

The grey-shaded area in Fig. 12 marks the approximate
time frame in which the last significant merger event, the
Gaia Sausage Enceladus (GSE) merger (Helmi et al. 2018;
Belokurov et al. 2018), probably affected the Milky Way disc.
For example, Chaplin et al. (2020) found an upper limit of
>11.0 ± 1.5 Gyr by age-dating the in-situ halo star ν Ind.
Montalbán et al. (2021) tightened this constraint further using

detailed asteroseismic modelling of 96 old stars observed with
Kepler and found that the merger happened ∼10 Gyr ago.

In the oldest regime (&9−10 Gyr in our age scale), we see
a sharp decrease of σ[Fe/H] with age (i.e. an increase with cos-
mic time). This could potentially be related to the turbulent for-
mation of the early Milky Way disc, either through numerous
mergers (e.g. Brook et al. 2004, 2005) or by internal interac-
tions in turbulent and clumpy discs (e.g. Bournaud et al. 2009;
Forbes et al. 2012; Amarante 2020; Bird et al. 2021), or both
(Belokurov & Kravtsov 2022). However, the expectation from
recent Milky-Way-like simulations such as FIRE-2 (Wetzel et al.
2023), NIHAO-UCD (Buck et al. 2020), or Auriga (Grand et al.
2017) is rather that rapid variations in star formation, outflow
rate, and depletion time during early stages of evolution result in
large variations in the elemental abundances of old stars, espe-
cially for [Fe/H]<−1 (Belokurov & Kravtsov 2022, Fig. 19 –
although their analysis is not strictly focused on the disc and
concerns the total metallicity spread, not subtracting the gradi-
ent). Another option is that the GSE merger triggered a burst in
star formation in the Galactic disc (An et al. 2023; Ciucă et al.
2023), as a result of which we see an enhanced [Fe/H] dispersion
about the radial abundance gradient of the ∼8−9 Gyr red-giant
population that then drops gradually. We note, however, that the
enhanced [Fe/H] dispersion can also be produced by a tempo-
rally enhanced radial migration efficiency (again related to the
merger). We also recall that in the old age regime our disc sample
can potentially be biased by the metallicity range for which our
age estimation is valid ([Fe/H]> −1). Again, a full forward mod-
elling (and/or a training set including enough metal-poor stars) is
necessary to reliably extend this analysis into the oldest regime.

5.4. Age-velocity dispersion relation

While our age estimates critically depend on the quality of the
APOGEE stellar parameters and abundances (except for [Fe/H]),
they are completely independent from kinematics and position in
the Galaxy. As an example for a kinematic relationship with age
that is often used in Galactic archaeology, we show in Fig. 13
the dispersion in vertical velocity vZ as a function of age (here
restricted to |ZGal| < 1 kpc) – often called the age-velocity rela-
tion (AVR).

Since Gliese (1956) and von Hoerner (1960) found signifi-
cant differences in the motions of nearby stars as a function of
their spectral type, the AVR in the solar neighbourhood is an
important observable that constrains the vertical heating history
of the Milky Way’s disc. It has been studied by many authors
using a variety of tracers in the past 50 years (e.g. Wielen 1974;
Mayor 1974; Byl 1974; Meusinger et al. 1991; Nordström et al.
2004; Casagrande et al. 2011; Aumer et al. 2016; Ting & Rix
2019; Raddi et al. 2022).

Figure 13 shows the AVR of our APOGEE DR17 sam-
ple in 2 kpc wide bins of Galactocentric distance between
3 kpc and 13 kpc, with each bin containing more than 14 000
stars (except for the 3–5 kpc bin with 6000 stars and a rather
distinct AVR behaviour, probably due to the influence of the
Galactic bar; Saha et al. 2010; Grand et al. 2016). Since the age
range of our sample does not cover the youngest stars, we also
plot the AVR recently obtained by Tarricq et al. (2021) using
a sample of 418 Gaia-confirmed OCs with radial velocities in
the solar neighbourhood. The authors found that the AVR in the
young regime can be described by a power law with β ≈ 0.2.
Although the OC sample has thus much lower statistics and is
possibly affected by the cluster destruction bias in the 2–3 Gyr
bin (Anders et al. 2017a; Spina et al. 2022), we see that the trend
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Fig. 13. Age – velocity dispersion relationship (AVR), in bins of Galac-
tocentric distance, for stars close to the Galactic plane (|ZGal| < 1 kpc).
Also plotted are the results of Tarricq et al. (2021) for open clusters in
the solar vicinity. The red dashed line corresponds to a simple power-
law fit (β = 0.46) for ages <7 Gyr in the Galactocentric distance bin
7–9 kpc, while the blue dashed line corresponds to a linear fit for ages
between 7 and 11 Gyr in the same RGal bin. The shaded region high-
lights the age range in which we see a steepening in the AVR, poten-
tially related to the GSE merger event.

of growing velocity dispersion continues in our field star sam-
ple, regardless of Galactocentric distance. Indeed, we find that
the trend in our age range between 0.5 Gyr and 7 Gyr can be
well described with a power law for RGal > 5 kpc (in accordance
with e.g. Aumer et al. 2016; Ting & Rix 2019 or the simulation
of Agertz et al. 2021), but with a notably different power-law
index from the OC sample (β ≈ 0.46 for the 7–9 kpc bin; red
dashed line in Fig. 13).

In part, the higher velocity dispersion for older stars in the
inner disc seen in Fig. 13 is expected from the exponential disc
profile in galactic discs (for the case of a flat rotation curve and
hydrostatic equilibrium: σvz (R) ∝

√
Σ(R) · hz; e.g. Eq. (7) in

van der Kruit & Freeman 2011). We also see hints (in the small-
est age bin) of the expected trend that stars in the outer disc are
born with a higher velocity dispersion (due to the smaller vertical
force acting on the gas in the outer disc). However, the veloc-
ity dispersions in the intermediate age regime (∼2−6 Gyr) are
surprisingly congruent from 5 kpc out to 13 kpc (different from
what is seen in modern simulations; e.g. Fig. 14 in Agertz et al.
2021), which possibly indicates that vertical heating happened
with similar efficiency over a large part of the Galactic disc
within the past ∼6−8 Gyr. We caution, however, that age errors
will always tend to smooth out any abrupt changes in the AVR
(e.g. Martig et al. 2014).

For RGal > 7 kpc populations older than ∼8 Gyr, we see evi-
dence for a departure from the power-law behaviour observed
between 0.5 and 7 Gyr, in the sense that the AVR steepens (in the
5–7 kpc bin, a first steepening happens already around 5.5 Gyr in
our age scale). This change of trend is exemplified by the blue
dashed line in Fig. 13, which corresponds to a linear fit of the
AVR in the 7–9 kpc bin restricted to the age range between 7
and 11 Gyr. Similar broken trends in the AVR can be seen in all
RGal bins. Except for the innermost RGal bin, the exact onset of

the steepening appears to depend slightly on RGal. Similar trends
for the solar vicinity have already been observed previously
(e.g. Meusinger et al. 1991; Quillen & Garnett 2000; Yu & Liu
2018). Indeed, Quillen & Garnett (2000) already found, using
the data of Edvardsson et al. (1993) together with the revised
age estimates from Ng & Bertelli (1998) an abrupt increase by
a factor of two in the stellar velocity dispersions at an age of
9 ± 1 Gyr and proposed that the Milky Way suffered a minor
merger 9 Gyr ago, which created the thick disc. This means that
we have not discovered a new feature of the AVR, but con-
firmed a previously observed trend with much better statistics
and individual age precision. In addition, we can now study
the AVR over a much larger portion of the Galactic disc, find-
ing tendencies with RGal that can potentially be used for a
more detailed comparison to chemo-dynamical models of the
Milky Way.

On the simulation side, the AVR has been shown to be
affected by both internal and external kinematic processes. For
example, Grand et al. (2016) found, using cosmological zoom-
in simulations of Milky Way-sized galaxies, that in most cases
the Galactic bar is the dominant heating agent, while spiral
arms, radial migration, and adiabatic heating play a secondary
role. In some of the Grand et al. (2016) simulations, however,
the strongest source of vertical heating were external pertur-
bations from massive satellites. Using cosmological simula-
tions, Martig et al. (2014) showed that the AVR depends on the
merger history at low redshift, and that jumps in the solar vicin-
ity’s AVR often correspond to (minor) merger events. How-
ever, Martig et al. (2014) also showed that in the presence of
age errors these jumps are considerably blurred, so that only
the largest merger events are detectable (and, depending on the
age error, not as jumps but as changes in slope of the AVR).
Yurin & Springel (2015) also found that substructures are impor-
tant for heating the outer parts of stellar discs but do not sig-
nificantly affect their inner parts. Saha et al. (2010) related the
vertical heating exponent in the inner parts of galaxies to the
growth rate of the bar potential, while in the outer regions they
found that vertical heating was often dominated by transient spi-
ral waves and mild bending waves.

Regarding the break/steepening in the AVR that we see
in Fig. 13 around ∼8 Gyr, some work relying on simulations
suggests that this is an effect of a GSE-like merger event
(Quillen & Garnett 2000; Martig et al. 2014), while others asso-
ciate it with the gradual settling of the early, turbulent Galac-
tic disc (Bird et al. 2013; Navarro et al. 2018; Bird et al. 2021;
Yu et al. 2021). We suggest that this controversy could poten-
tially be settled with the data presented in this work (that cover
an extensive range of the Galactic disc), by comparing the
AVR in radial bins to simulations, taking into account selection
effects.

The kinematics of mono-age, mono-metallicity APOGEE
populations were studied in more detail by Mackereth et al.
(2019), albeit with less data (65 719 stars) and not showing a
prominent steepening in the AVR. Their results depend in part
on the accuracy of the inferred ages (obtained using a Bayesian
convolutional neural network and APOGEE DR14 spectra). We
note, however, that the AVR, as other relationships with age, is
not only blurred by statistical age errors, but also affected by
systematic age errors and radial migration. Its full meaning is
more clearly revealed when separating stars by their birth radii
(Minchev et al. 2018; Bird et al. 2021). We also note that a more
robust analytical description of the vertical heating history of the
Galactic disc can be obtained by analysing the stellar kinematics
in action space (Ting & Rix 2019).
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6. Conclusions

In this paper we successfully use the XGBoost algorithm to accu-
rately estimate spectroscopic ages for 178 825 APOGEE DR17
red-giant stars located close to the red clump (2.2 < log g < 3.4,
4400 K < Teff < 5200 K) with a median statistical uncertainty
of 17%. These estimates are formally independent of [Fe/H]. In
accordance with previous studies, we find that our red-giant age
estimates are mostly driven by Teff , log g, [C/Fe], and [N/Fe].
To verify the obtained ages (which are tied to the asteroseismic
age scale of Miglio et al. 2021), we compare our results with
the age scale of open clusters, asteroseismic+spectroscopic red-
giant samples observed with CoRoT, K2, and TESS, as well as
other machine-learning age estimates from the literature, find-
ing acceptable agreement, modulo some (expected) systematic
trends, with most of the test samples (none of which can be
regarded as absolute benchmarks). Our analysis is reproducible
via github8 and the age catalogue (see Appendix A) can be
accessed in that repository9 or via CDS.

We then investigate some chemo-kinematic relationships
with stellar age that are often used in Galactic archaeology. We
find that the ages are precise enough to confirm the split in
the local age-metallicity relation found by Nissen et al. (2020)
using high-resolution spectroscopy of solar analogues (Fig. 8).
Analysing the Milky Way disc’s age map (Fig. 9), we find a clear
imprint of the flaring in the outer disc, impressively confirming
that our age-estimation method (which is completely indepen-
dent of sky position and distance) works well for the full range
probed by the APOGEE DR17 giant population.

In Sect. 5.3 (Figs. 10–12), we analyse the Milky Way disc’s
radial metallicity profile. We present new and precise measure-
ments of the Galactic radial metallicity gradient close to the
Galactic plane (|ZGal| < 0.3 kpc, 5 kpc< RGal < 11 kpc) in 0.5 Gyr
bins between 0.5 and 12 Gyr, confirming a steeper metallicity gra-
dient for 2–5 Gyr old populations and a subsequent flattening for
older populations mostly produced by radial migration (churn-
ing). In addition, our fits to the radial [Fe/H] profile allow us to
analyse, with unprecedented precision, the dispersion about the
radial abundance gradient as a function of age (Fig. 12). We see
a clear power-law trend (with a power-law index β ≈ 0.15), indi-
cating a smooth radial migration history in the Galactic disc over
the past ∼7 Gyr. Departures from this power law are detected at
ages of '9 Gyr (possibly related to the Gaia Sausage Enceladus
merger) and '5 Gyr (with lower significance, possibly related to
a passage of the Sgr dSph galaxy; Carr et al. 2022).

Finally, as an example of a kinematic relationship with age,
we study the age-velocity dispersion relation (AVR) in 2 kpc wide
radial bins around the Galactic centre (Fig. 13). We find that the
AVR for ages up to ∼7 Gyr can be well described by a power law
with an exponent around 0.5, and confirm earlier measurements
reporting a pronounced steepening of the AVR at around ∼9 Gyr.
Indeed, we find that this behaviour extends over a large extent of
the Galactic disc (5 kpc < RGal < 13 kpc), while in the inner disc
(RGal < 5 kpc) the AVR shows a more complex behaviour that we
attribute to efficient heating by the Galactic bar.

Our results reproduce the expected chemical, positional, and
kinematic trends with age. This suggests that chemical clocks,
and more broadly speaking, weak chemical tagging, is a viable
method in Galactic Archaeology. The use of precision astero-
seismology coupled with efficient machine-learning algorithms
such as XGBoost may allow for greater efficiency and accuracy
in estimating ages for millions of stars in the era of large spec-
troscopic surveys. We recall that some of our conclusions (for

8 https://github.com/fjaellet/xgboost_chem_ages
9 https://github.com/fjaellet/xgboost_chem_ages/blob/
main/data/spec_ages_published.fits

example, the exact time dependence of the radial abundance gra-
dient) are sensitive to our absolute age scale and the systematics
it may be suffering from (see Sect. 4). The knowledge of precise
and accurate ages, kinematics, and detailed chemical abundances
of stars still holds the key to uncovering the formation and evo-
lution of our Galaxy.
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L109
Ferrini, F., Molla, M., Pardi, M. C., & Diaz, A. I. 1994, ApJ, 427, 745
Feuillet, D. K., Bovy, J., Holtzman, J., et al. 2018, MNRAS, 477, 2326
Forbes, J., Krumholz, M., & Burkert, A. 2012, ApJ, 754, 48
Frankel, N., Rix, H.-W., Ting, Y.-S., Ness, M., & Hogg, D. W. 2018, ApJ, 865,

96

Frankel, N., Sanders, J., Rix, H.-W., Ting, Y.-S., & Ness, M. 2019, ApJ, 884, 99
Frankel, N., Sanders, J., Ting, Y.-S., & Rix, H.-W. 2020, ApJ, 896, 15
Friel, E. D. 1995, ARA&A, 33, 381
Friel, E. D., Janes, K. A., Tavarez, M., et al. 2002, AJ, 124, 2693
Frinchaboy, P. M., Thompson, B., Jackson, K. M., et al. 2013, ApJ, 777, L1
Fuhrmann, K., & Chini, R. 2017, MNRAS, 471, 1888
Fuhrmann, K., & Chini, R. 2018, ApJ, 858, 103
Fuhrmann, K., Chini, R., Kaderhandt, L., & Chen, Z. 2017, MNRAS, 464, 2610
Gaia Collaboration (Brown, A. G. A., et al.) 2021, A&A, 649, A1
Gaia Collaboration (Recio-Blanco, A., et al.) 2023a, A&A, 674, A38
Gaia Collaboration (Vallenari, A., et al.) 2023b, A&A, 674, A1
Genovali, K., Lemasle, B., Bono, G., et al. 2014, A&A, 566, A37
Gliese, W. 1956, ZAp, 39, 1
Grand, R. J. J., Springel, V., Gómez, F. A., et al. 2016, MNRAS, 459, 199
Grand, R. J. J., Gómez, F. A., Marinacci, F., et al. 2017, MNRAS, 467, 179
Hasselquist, S., Zasowski, G., Feuillet, D. K., et al. 2020, ApJ, 901, 109
Hawley, S. A. 1978, ApJ, 224, 417
Hayden, M. R., Sharma, S., Bland-Hawthorn, J., et al. 2022, MNRAS, 517, 5325
Hayes, C. R., Masseron, T., Sobeck, J., et al. 2022, ApJS, 262, 34
Haywood, M. 2008, MNRAS, 388, 1175
He, X.-J., Luo, A. L., & Chen, Y.-Q. 2022, MNRAS, 512, 1710
Hekker, S., & Johnson, J. A. 2019, MNRAS, 487, 4343
Helmi, A., Babusiaux, C., Koppelman, H. H., et al. 2018, Nature, 563, 85
Hou, J. L., Prantzos, N., & Boissier, S. 2000, A&A, 362, 921
Huang, Y., Schönrich, R., Zhang, H., et al. 2020, ApJS, 249, 29
Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90
Imig, J., Price, C., Holtzman, J. A., et al. 2023, ApJ, 954, 124
Isern, J. 2019, ApJ, 878, L11
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Appendix A: Age catalogue

Table A.1 shows the datamodel for the catalogue that we release
with this work. Columns 2-4 correspond to the fiducial results
obtained with the default XGBoost (package version 1.7.6) run
described in Sect. 3. Columns 6-9 correspond to results obtained
with XGBoost quantile regression10, available in package ver-
sion 2.0.0-dev. The advantage of these latter results is that
they come with more meaningful individual uncertainties, the
disadvantage is that the median values suffer from a greater
regression-towards-the-mean effect, i.e. noticeably smaller ages
in in the old regime. It also results in a higher number of young
α-rich stars (1 222 vs. 706). For most other stars, the differences

between the two methods are small. In most of this paper, as
well as in Ratcliffe et al. (2023), we mainly use the columns
spec_age_xgb and spec_age_xgb_uncert.

Some of the caveats described in Sect. 4.5 are
encoded as warning flags in the human-readable column
spec_age_xgb_flag (spec_age_xgb_quantilereg_flag
for the quantile regression ages). For the 5 383 affected stars
(5 549 in the quantile regression case) it can take the values
BLUER_THAN_TRAINING_SET, REDDER_THAN_TRAINING_SET,
HIGH_VSINI, APPARENTLY_YOUNG_ALPHA_RICH, and combi-
nations thereof. The preparation steps necessary for the pro-
duction of the age catalogue can be reproduced and modified
following the procedure in the accompanying jupyter notebooks.

Table A.1. Data model of our APOGEE DR17 spectroscopic age catalogue.

# Column name Format Description

1 APOGEE_ID String (19A) APOGEE ID (DR17)
2 spec_age_xgb Float Spectroscopic age from fiducial XGBoost model
3 spec_age_xgb_calib Float Calibrated spectroscopic age (see Fig. 4, top panel)
4 spec_age_xgb_uncert Float Age uncertainty estimate (see Fig. 4, bottom panel)
5 spec_age_xgb_flag String (51A) Human-readable warning flag for potentially problematic stars
6 spec_age_xgb_quantilereg Float Spectroscopic age from XGBoost quantile regression
7 spec_age_xgb_quantilereg_calib Float Calibrated age from XGBoost quantile regression
8 spec_age_xgb_quantilereg_sigl Float Lower 1σ uncertainty from XGBoost quantile regression
9 spec_age_xgb_quantilereg_sigu Float Upper 1σ uncertainty from XGBoost quantile regression
10 spec_age_xgb_quantilereg_flag String (52A) Human-readable warning flag for potentially problematic stars

Notes. The full table is available at the CDS.

10 https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_quantile.html
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Appendix B: Additional age maps

For illustration purposes, we include two additional figures high-
lighting the Galactic coverage of the present APOGEE spectro-
scopic age data. Figure B.1 shows the median age per pixel in

cylindrical coordinates, similar to Fig. 9, but now using equally-
scaled axes, and with a Milky-Way-like edge-on galaxy (NGC
891) as a background image. Figure B.2 shows a top-down view
of the Galactic disc colour-coded by median age, with the face-
on Milky-Way analogue UGC 12158 in the background.

Fig. B.1. Median age as a function of position in Galactocentric coordinates, similar to Fig. 9, but using equal scales on both axes and showing a
greater extent of the Galactic disc. We also show an r-band image of the nearby edge-on galaxy NGC 891 in the background for illustration.

Fig. B.2. Median age as a function of position in Galactocentric Cartesian coordinates {XGal,YGal} (top-down view of the Galaxy), showing a slice
of Galactic disc close to the Galactic plane (|ZGal| < 0.3 kpc). An r-band image of the nearby face-on spiral galaxy UGC 12158 is shown in the
background for illustration.

A158, page 18 of 21



Anders, F., et al.: A&A 678, A158 (2023)

Appendix C: Additional validation

C.1. StarHorse ages for APOGEE DR17(Queiroz et al.
2023)

The top panel of Fig. C.1 shows a direct comparison with the
age estimates of Queiroz et al. (2023) for the APOGEE DR17
catalogue. The authors used the Bayesian isochrone-fitting code
StarHorse (Queiroz et al. 2018, 2020) to simultaneously obtain
stellar parameters for the APOGEE DR17 catalogue, cross-
matched with Gaia EDR3 astrometry (Gaia Collaboration 2021)
as well as several photometric catalogues. Qualitatively, the
comparison reveals a similar systematic trend as the compari-
son to the seismic and open-cluster ages shown in the top pan-
els of Fig. 6: good concordance for the youngest ages followed
by prominent positive (∼ +1 Gyr) residuals for ages between 2
and 4 Gyr, after which the trend regresses towards zero residuals
again. We note, however, that Queiroz et al. (2023) only pub-
lished the ages inferred for sub-giant and main-sequence turn-
off stars, since isochrone ages for red giants are still prone to
sizeable systematic uncertainties – which also explains the larger
scatter.

C.2. [C/N] ages (Spoo et al. 2022)

Since the APOGEE discovery of a systematic trend of [C/N]
with the position in the [Mg/Fe] vs. [Fe/H] diagram and, there-
fore, possibly stellar age (Masseron & Gilmore 2015), several
authors have tried to calibrate a relation between the observed
[C/N] ratio and the age of red giant stars (e.g. Martig et al.
2016a; Ness et al. 2016; Casali et al. 2019). To obtain a solid cal-
ibration for evolved stars, Spoo et al. (2022) used the APOGEE
DR17 data from the Open Cluster Chemical Abundances and
Mapping survey (OCCAM; Frinchaboy et al. 2013; Myers et al.
2022). Using 94 open clusters tagged as "highly reliable", they
obtained the following relationship:

log[Age(yr)]DR17 = 10.14 (±0.08) + 2.23(±0.19) · [C/N],

valid for ages between 0.4 Gyr and 6.6 Gyr.
The lower panel of Fig. C.1 shows the comparison of our

spectroscopic age estimates with the calibration obtained by
Spoo et al. (2022). Again, we find similar trends as in those vis-
ible in Fig. 6, albeit with much larger scatter, which is expected,
since the empirical relation of Spoo et al. (2022) only uses two
abundance measurements to infer an age estimate.

C.3. Age-abundance relations

From Fig. 3 we learned that the five most influential features
for our spectroscopic age estimator are [C/Fe], Teff , [N/Fe],
[Mg/Fe], and log g. Therefore, before we discuss some of the
abundance trends with age, a note of caution is due: ideally
one wishes to study stellar abundance ratios as a function of
an age estimate that is both accurate and independent from the
spectroscopically inferred abundances. In our case, however, the
inferred ages rely on the measured abundances, and therefore our
derived abundance ratio (e.g. [Mg/Fe], Fig. C.3) vs. age trends
should only be viewed as sanity checks, not as proofs of the
validity of the concept of chemical clocks.

Figure C.2 shows the [Mg/Fe] vs. [Fe/H] diagram
colour-coded by age, for the solar-vicinity sample of
Delgado Mena et al. (2017, 2019) and for our APOGEE
DR17 giant sample. The figure demonstrates that our data
reproduce the expected age trends in this diagram, and that

Fig. C.1. Additional comparisons of our uncalibrated age estimates
with other field-star age estimates for APOGEE DR17. Top: Unpub-
lished red-giant star age estimates from StarHorse (Queiroz et al.
2023). Bottom: Empirically calibrated DR17 [C/N] age estimates from
Spoo et al. (2022). The dotted vertical lines enclose the age regime in
which their [C/N] age calibration is valid.

these trends persist over the large portion of the Galactic disc
covered by our sample. It also confirms that the so-called
high-α metal-rich population (hαmr, Adibekyan et al. 2011)
is dominantly old (between 9 and 11 Gyr), indicating that
this population was most likely formed in the very inner disc
and/or bulge and migrated outwards (e.g. Anders et al. 2018;
Queiroz et al. 2021; Ratcliffe et al. 2023).

As a typical example of an elemental-abundance ratio that is
often referred to as a chemical clock, we show the age-[Mg/Fe]
relation for the full APOGEE sample in Fig. C.3. The iso-density
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Fig. C.2. [Mg/Fe] vs. [Fe/H] Tinsley diagram colour-coded by stellar
age. Top panel: scatter plot for the high-resolution solar-vicinity sample
of Delgado Mena et al. (2019), using the same symbols as in the origi-
nal publication. Bottom panel: Median age per pixel in the [Mg/Fe] vs.
[Fe/H] diagram for our 200 000 APOGEE DR17 giants. Overplotted are
iso-density contours corresponding to 40, 80, and 160 stars per bin.

contours in this plot show that, in accordance with expectations
from classical chemical evolution models (e.g. Chiappini 2009),
the relationship is almost flat, except for the oldest ages, where
we see a sharp transition from the high-[Mg/Fe] regime to the
low-[Mg/Fe] regime, related to the onset of type-Ia supernovae
(e.g. Mannucci et al. 2006; Mennekens et al. 2010). The colour
code in Fig. C.3 shows how the age-[Mg/Fe] varies with guiding
radius, from a shorter and steeper relation in the outer parts of
the disc (yellow colours) to a very flat relation (for ages < 8
Gyr) inside the solar circle.

Fig. C.3. Age-[Mg/Fe] relation, in the same style as Fig. 7. The small
population of young α-rich stars is highlighted.

Figure C.3 also highlights the presence of a small popu-
lation of so-called young α-rich stars. These stars, first dis-
covered in APOGEE data (Chiappini et al. 2015; Martig et al.
2015), have since been demonstrated to be products of binary
stellar evolution – they have been rejuvenated by mass trans-
fer from a stellar companion (e.g. Jofré et al. 2016; Yong et al.
2016; Fuhrmann & Chini 2017, 2018; Hekker & Johnson 2019;
Sun et al. 2020; Zhang et al. 2021; Jofré et al. 2023). There-
fore, their (isochrone-derived) ages are catastrophically under-
estimated. The presence of the few young α-rich stars in the full
APOGEE sample (not present in the training set) reminds us that
our age estimates are not completely based on the stellar photo-
spheric compositions alone, but also depend on effective tem-
perature and gravity, which may also mimic a younger stellar
age for a given chemical composition. We therefore flag these
stars as problematic in our catalogue (see Sect. A).

Appendix D: Fitting the radial [Fe/H] distributions

In Figs. 11 and 12 (Sect. 5.3) we presented the results of
Bayesian fits to the radial [Fe/H] abundance distributions in age
bins of 0.5 Gyr. The method (in particular, the implementa-
tion of the likelihood and posterior) is described in Anders et al.
(2017a). In this appendix we show the detailed results of these
fits for some age bins.
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Fig. D.1. Examples of the fits to the [Fe/H] vs. RGal distributions for three age bins (from top to bottom: 0.5-1 Gyr, 4.5-5 Gyr, 10.5-11 Gyr). Left
panels: distribution of the red-giant stars in each age bin. The thick black line shows the result of a naïve least-squares linear fit. The thin grey lines
show 30 realisations drawn from the linear gradient + intrinsic scatter posterior, while the shaded band corresponds the 1σ dispersion around the
gradient. Right panels: posterior distributions of the fit parameters (m = ∂[Fe/H]/∂R, b (intercept at R = 0), and σ (intrinsic [Fe/H] dispersion).
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