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Abstract—Embedded systems’ hardware and software stacks
are becoming more complex requiring more development time,
time to market, and cost, which contributes to delayed delivery of
these silicon devices. A virtual prototype (VP) provides an embed-
ded systems architecture simulator for application development
and testing purposes. In this paper, we developed and present
the first virtual prototype of the Xtensa LX7 microprocessor that
evaluates the performance of its emulated hardware performance
counters (HPCs) with those collected from an actual Xtensa
LX7 hardware. Seven machine learning models were developed
and trained to find the relationships between the two different
datasets for the sample application of classifiying return-oriented
programming (ROP) attacks. Our experiments show that the
obtained micro-architectural characteristics on the VP are on
average about 70% similar and thus permit early simulation
capabilities for developers and testers.

Index Terms—virtual prototype, xtensa, hardware perfor-
mance counters, return oriented programming, machine learning

I. INTRODUCTION

In recent years, embedded devices have become an integral
part of the networked world and are used in a variety of
applications such as household appliances, automobiles, and
medical devices. Majorly, programs for these embedded sys-
tems are written in languages that leave memory management
to the programmer, such as C/C++ [1]. This potential for
memory vulnerabilities allows attackers to force a running
program into executing illegal instructions, a process named
control flow hijacking [2], [3].

The growing complexity and evasiveness of memory mal-
ware has led to the evolution of mitigation mechanisms, such
as Control Flow Integrity (CFI) and Address Space Layout
Randomization (ASLR), which were originally not targeted
at embedded devices [4], [5]. CFI compares the software’s
execution to a predefined model computed based on the control
flow graph. This involves a high-performance overhead which
makes it unsuitable for firmware-only embedded devices.

ASLR randomly arranges program segments in memory to
prevent an attacker from predicting the addresses of program
instructions. This approach is vulnerable to information leak-
age attacks that expose the memory layout and do not protect
against memory attacks using ROP [6].

It is quite difficult to perform rapid testing of security
features on embedded devices in the absence of a native envi-
ronment [7], [8]. Increasing system complexity combined with
shorter time-to-market has led to many challenges for system
development and evaluation. A recent study by International
Business Strategies shows that a three-month delay in time-
to-market generally reduces chip manufacturers’ revenue by
about 30%, with the disadvantage being even greater in rapidly
evolving markets such as mobile devices [9].

Virtual Prototypes (VPs) have been increasingly applied in
hardware and software development, integration, and valida-
tion before silicon devices are ready [10]. Virtual prototyping
techniques are widely explored and used by both industrial
engineers and academic researchers, enabling early firmware
development. VPs are software models developed according
to the hardware specification. Such models simulate functional
hardware behaviors and enable unmodified software execution
on on instruction set simulators (ISSs). With virtual prototyp-
ing, software developers can develop and validate firmware
without silicon hardware being available.

This paper evaluates the degree of the performance and
capability of the micro-architectural characteristics of our
developed VP for security testing, i.e., to detect code reuse
attacks, in the absence of a native environment. The main
contributions of this paper are:

• the development of a VP for simulating the Xtensa ISS
and hardware performance counters (HPCs). This tool
could be useful to embedded developers for virtually pro-
gramming the Xtensa platform without the real hardware.

• the development of an application programming interface
(API) for accessing Xtensa ISS elements such as cores,
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memories, and profiling summary counters.
• the first security evaluation of a VP and its native

embedded platform using HPCs. Existing works on VP
commonly focus on performance and power consump-
tion validation, so a design space exploration could be
performed [11]–[14].

• the development and evaluation of machine-learning al-
gorithms to detect code reuse attacks via HPCs. Our eval-
uation demonstrates a sufficiently high similarity between
the micro-architectural events of the VP and real hardware
to perform early development and testing tasks, even for
security purposes.

A. Motivation

Embedded systems are increasingly becoming complex in
terms of functionality and architectural resources available
to meet performance and cost requirements. It is therefore
the responsibility of the developer to make the right choices
in terms of software and hardware components. Verification
and validation are key to reducing time-to-market and im-
proving product quality. To reduce the trade-offs between
timing accuracy and simulation speed, processor prototyping
has become a better choice in the design flow. VP has found its
place in early firmware development and validation. However,
VP can be explored for characterizing other dependability
concepts such as reliability, safety, and security [15], [16].
For instance, hardware-level mitigation for embedded devices
security threats is growing [17], hence, such exploration can
provide feedback and general insight into the behaviors of the
real processor, which can support developers in speeding up
the development of security modules and features.

II. PRELIMINARIES

A. Hardware performance counters

Modern microprocessors have special registers that store
information about various micro-architectural events such as
clock cycles, cache access, cache overwrites, etc. These reg-
isters, called hardware performance counters, can be used to
profile program behavior and detect illegal program modifi-
cations [18], [19]. HPCs can fit into a range of processor
platforms, from high-performance processors to low-power
embedded processors, but the number of micro-architectural
events that can be computed simultaneously is restricted. This
is primarily due to the limited number of physical registers on
the processor chip, which are costly to implement. Also, the
number of available HPCs and hardware events depends on the
processor model. For example, the ARM V8 Cortex-A53 core
can compute 62 events with four HPC registers, while Xtensa
LX7 can count 125 events with eight HPC registers [18]. In
this paper, we use HPCs to collect execution traces of selected
micro-architectural events of both the malicious and benign
firmware programs running from the flash memory. This is
then used for evaluating our developed VP and real Xtensa.

Fig. 1. VP configuration based on Xtensa LX7 ISS

B. Challenges of building our Xtensa VP

The Xtensa processor architecture is a 32-bit core, whose
main feature is the ability to be configured and customized
according to the customers’ needs. Dedicated instructions can
be added to the Xtensa architecture using its software devel-
opment toolchain. Additionally, it provides support for HPCs,
which can be configured and accessed inside the target code
around the software that is required to be profiled. As stated
in Section II-A, eight HPCs can be accessed and configured
through select and mask registers that specify which events to
count. However, a specific API that contains accessor functions
to the HPCs is required.

Xtensa tools provide an Xtensa SystemC (XTSC) package
that supports transaction-level modeling (TLM) of Xtensa
cores for the development of system on a chip (SoC) VP.
An Xtensa core model is a wrapper around the Xtensa
ISS that can be used to test, debug, and profile software
applications before being factored on a chip or synthesized
in a field programmable gate array. The ISS also supports
performance analysis based on the accumulation of statistics
from the instruction set architecture (ISA) level to micro-
architectural properties. At the end of a simulation run, a
summary containing profile information such as committed
instructions, instruction fetches, taken branches, loads, stores,
cache misses, exceptions, etc. can be obtained. Unfortunately,
these values might differ from the profile information obtained
in real hardware, due to the lack of hardware details presented
in the ISS. For instance, it is assumed that every instruction
will take a single cycle to be executed.



addi a1, a1, -16 # prologue
s32i.n a0, a1, 0 # prologue
#gadget_1
#gadget_2
...
#gadget_n
l32i.n a0, a1, 0 # epilogue
addi a1, a1, 16 # epilogue
ret.n

Listing 1. Call0 ABI function structure

However, neither the API nor the HPCs are modeled inside
the ISS. To overcome this problem, additional modeling was
carried out using methods of the diverse component classes
of the XTSC library. Additionally, a new API was developed
to access internal information of the ISS elements (i.e. cores,
memories, and profiling summary counters) using a simcall
function that allows communication between the Xtensa target
program and a Lua script running in a SystemC thread of
the simulator. In this thread, XTSC library functions can be
executed to access the component’s real-time information in
order to return their values. One of these functions accesses
ISS profile summary counters such as Cycles, Instructions,
TakenBranches, CacheReads, CacheRefills, CacheWrites (for
Instruction and Data memories), and Data CacheCastouts.
Furthermore, other elements’ counters can be accessed, such
as the number of blocking/non-blocking READ and WRITE
commands performed over instantiated data memories of the
ISS. The developed VP in this paper is shown in Fig. 1 and
consists of the following components:
• an Xtensa LX7 SystemC/TLM2.0 model that wraps the

ISS running the applications,
• an interconnection module based on TLM2.0, that serves

as communication bus with other peripherals,
• an SPI model for booting the Xtensa LX7 from an

external memory, and
• an SPI model in master mode for communication with

other processors.

III. EVALUATION

A. Implemented Xtensa Application Binary Interface

Our Xtensa hardware configuration uses the CALL0 appli-
cation binary interface (ABI), in which function epilogues and
prologues are of the form illustrated in Listing 1. The Xtensa
ISA is a load-store architecture that, rather than featuring
a pop opcode, leverages load instructions (l32i) to move
values into registers. The .n suffix is Xtensa processors’
code density feature that instructs Xtensa compiler/assembler
to optionally use 16-bit narrow instructions. Fig. 2 shows
a simplified example of how code reuse attacks work on
the Xtensa architecture. l32i loads the attacker’s values and
gadget addresses from the stack at offsets 4, 8, and 16 from
the stack pointer register a1, into registers a2, a3, and a4,
respectively. This task is performed by three gadgets @g1,
@g2, and @g3, ending with ret instructions, which, as a
consequence of the attacker’s stack modifications, effectively
call one another in succession. On successful execution, 200

@g1

src 

dst 
l32i a2,a1,4 
l32i a3,a1,8
…
ret.n 

@g3

@g2

0xC8

l32i a4,a1,16
…
ret.n 

call0 <memcpy> ret @g3

ret @g2

ret @g1

memcpy(dst, src, 200) 

ProgramStack

Executed code

Fig. 2. Xtensa ROP
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Fig. 3. Running time

bytes of input are copied from the src to the dst address. This
process is generally possible after overwriting a vulnerable
function’s return address stored in register a0, which crashes
the device, or hijacks control flow and forces the execution of
a series of attack gadgets. One major difference between this
and the ARM or x86 architectures is that the return address
appears immediately after a buffer variable, thus there is no
need for another four bytes for the frame pointer. The payloads
used in our experiment include not only gadget addresses but
also values for parameters passed to firmware functions.

B. Evaluation programs

Vulnerable functions were inserted into our instrumented
embedded programs through which code reuse attacks using
ROP were initiated. Technically, our attacks exploit unsafe C
functions like memcpy in Xtensa firmware (just as in Xtensa
MediaTek audio DSP in 2021 [20]) to corrupt memory and
launch ROP.

We modified and recompiled embedded program examples
from the MiBench benchmark [21], [22]. MiBench contains
looped implementations of algorithms (for the ARM architec-
ture) with applications in areas such as networking, security,
telecommunications, etc. They were developed in C using the
xt-cc compiler. This compiler uses the GNU preprocessor,
assembler, and linker while providing superior and smaller



TABLE I
IMPLEMENTED XTENSA HPCS

Label HPC Description
F1 COMMITTED_INSN instructions committed
F2 BRANCH_PENALTY Branch penalty cycles
F5 CYCLES Count cycles
F12 D_STORE_U1 Data memory store instruction
F15 D_LOAD_U1 Data memory load instruction

TABLE II
MODELS PERFORMACE ON EVALUATION SET

Model Precision Recall
VP Native Xtensa VP Native Xtensa

RFC 0.93 0.88 0.90 0.96
SGDC 0.90 0.74 0.68 0.58

SVC(RBF) 0.90 0.90 0.69 0.97
LSVC 0.93 0.72 0.77 0.51

LR 0.95 0.70 0.74 0.53
OSVM 0.24 0.50 0.41 0.39

SVM(HFK) 0.97 0.90 0.97 0.93

compiled code. The running time of the six variations of
the breadth-first search BFS [22], in which ROP chains of
length 1. . . 6 (P1. . . P6) were exploited, is shown in Fig. 3.
The running time tends to increase with the ROP chain’s
length, while the VP incurred a very low runtime overhead
of 0.00046% for these six programs.

C. Model development

We could not emulate all eight HPCs used in [22] because,
e.g., the pipeline HW structure is not modeled in the ISS,
such that their respective counters could not be accessed.
Furthermore, these counters can not be accessed from XTSC
objects as it was for the xtsc_memory and and xtsc_core object
case. Hence, only five HPC events that are available in XTSC
serve as input into our machine-learning models. The emulated
HPC events on the VP are shown in Table I.

We trained seven ROP classifiers consisting of a Random
Forest (RFC), SGD Classifier (SGDC), Support Vector with
radial basis function kernel (SVC), Linear SVC (LSVC),
Logistic Regression (LR), One Class Support Vector Machine
(OSVM), and SVC (with a hardware-friendly kernel [23]) for
each platform. The training set has the shape (5835, 7), 80%
of the data was used for training and 20% for evaluation.
The benchmark dataset that was used for the validation of
our models has shape (2638, 7). The two additional features
that were dropped were #ROP and ROP label. Ten-fold cross-
validation was performed on all the models and the top
three were RF, SVC (HFK), and SVC (RBF) with average
accuracies of 0.96%, 0.97%, and 0.91% respectively. Although
accuracy metrics alone can be misleading for classifiers it gives
initial insight into the models’ capabilities.

D. Research questions

The model evaluation will be based on two research ques-
tions:
[RQ1]: Are HPCs on the VP comparable to real hardware?

This will be answered by verifying if there are similarities in
the patterns of our five implemented HPC events on both the
VP and native Xtensa.
[RQ2]: To what extent can we predict ROP with VP HPC
events? The goal of the paper is not just to obtain high
classification precision or recall but to have an insight into how
well we can correctly predict ROP execution as an instance
of a non-trivial testing task to be simulated by the VP. The
classification metrics such as precision – a measure of the
accuracy of positive predictions – and recall – a measure of
the percentage of positive classes that are correctly classified
– will be computed on both the evaluation set and benchmark
programs whose HPCs were collected from real Xtensa.

E. Discussion

In this section, we discuss the results of our findings based
on the research questions.
RQ1: Are HPCs on the VP comparable to real hardware?
Fig. 6 depicts the histograms showing the one-to-one compari-
son of five HPCs emulated on our VP versus the same counters
on native Xtensa (Xt). These five HPC events are briefly
described Table I. For the same set of embedded programs
the simulated hardware events induce shapes similar to the real
hardware’s, potentially with a different value range. Notably,
F5 has fewer ranges in the VP. Nevertheless, these HPC events
look reasonably similar and promising an approximation.
RQ2: To what extent can we predict ROP with VP simulated
hardware events?
Seven machine learning models for classifying ROP exploita-
tions were trained based on the five simulated HPC events
in order to validate the feasibility of using the VP to obtain
early security testing feedback through HPCs. Table II shows
the performance of the model on the 20% evaluation set, and
again, RF, SVC (RBF), and SVC (HFK) outperform the other
four algorithms on both platforms. We further validated the
model on ten embedded benchmark programs. The accuracy,
precision, and recall of this additional evaluation are shown
in Fig. 5, 6 and 7. For programs where we have ROP classi-
fication scores for native Xtensa, the accuracy, precision, and
recall are about 80%, 90%, and 70%, respectively, sufficiently
close to the VP. The evaluation further shows a reason why
accuracy is not a reliable metric for classifiers. For example,
the program Prim was not correctly detected. We briefly
investigated this, the benchmarks each have different ROP
length exploitations. Interestingly, ROP chains of length = 2
were exploited in Prim, the same as in DFS. As it has been
shown that the complexity of a program and not just the ROP
chain length affects ROP classification, e.g., DFS is O(+ +�)
and Prim, O(� log+). This program was correctly detected by
a precision and recall score of over 80% with the eight HPC
model in previous work [22]. Given the limitations of HPCs in
the VP, it cannot be the aim of this paper to match the previous
results exactly. Rather we intended to find out if the VP is an
accurate simulation of native Xtensa with sufficient predictive
power. Nevertheless, our future work will further investigate
improvements on the overall performance of the VP.
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Fig. 4. Comparison of the shape of the HPCs on VP vs. Xt hardware

F. Threats to Validity

The following outlines potential threats to the validity of
our experimental results:
• The benchmark and training programs used may not

reflect representative behaviors of embedded programs
running from the flash memory. For example, we do not
consider internet connectivity and remote exploitations.
However, the programs in our evaluation have similarly
been used for validating embedded processors [21], [22].

• Only a few HPCs are available on our VP, therefore, the
simulation capabilities are limited. It may be possible in
the future to emulate further hardware events. However,
our VP achieved its goal of giving early insights and being
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Fig. 5. Accuracy (VP in blue, Native Xtensa in orange)

reasonably comparable to native Xtensa.

IV. RELATED WORK

The challenges of emulating embedded systems on chips are
discussed in [12]. It was stated that although VP can provide
early testing, market-entry, and other development insights,
simulated platforms hardly outperform the real hardware or
software. Our work does not focus on VP response time but
tests the ability to produce comparable micro-architectural
behavior in the VP and actual Xtensa hardware.

A VP of RISC-V instruction set extensions was presented
in [24]. The proposed VP is a lightweight alternative approach
to identifying application specific extensions. It aims at dis-
covering an appropriate sequence of instructions that could
be replaced by a custom RISC-V instruction. Our paper is
not focused on instruction extension but rather on emulating
Xtensa ISS and HPCs.

Similarly, [13] also worked on a RISC-V-based VP, which
was also only evaluated based on timing and system-level
features such as power, complex software, and hardware
interactions. Our paper differs in that we model and focus
on using low-level characteristics of the Xtensa VP to detect
code reuse attacks.

Virtual prototyping of embedded software and its physical
environment was done in [11]. Their simulation framework
was developed using SystemC open-source tools. Unlike our
paper, which focuses on HPC behavior, [11] primarily focuses
on simulation speed.

V. CONCLUSION

A VP of an embedded processor can be extremely useful
in testing and development when the native platform is not
available due to reasons such as high cost, delayed delivery,
etc. In this paper, we have developed and evaluated the Xtensa
instruction set simulator VP to investigate if the HPC events
reflect the behavior of a native environment, and whether they
sufficiently accurately simulate the realistic values exemplified
via detecting code reuse attacks. Micro-architectural events
were collected from both the VP and native Xtensa and seven
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machine-learning models were trained. Even though we did
not expect the two test platforms to produce identical results,
unsurprisingly the native environment outperforms the VP.
Nevertheless, we thoroughly evaluated the models and our
finding shows that about 80% of the accuracy, 90% of the
precision, and 70% of the recall of the samples detected in the
native environment are comparably close to the VP. Although
there is room for further improvement, we believe that our
developed toolset could help embedded developers in early
testing and development.
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