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A B S T R A C T

The habitats of marine life, characteristics of species, and the diverse mix of maritime industries around
these habitats are of interest to many researchers, authorities, and policymakers whose aim is to conserve
the earth’s biological diversity in an ecologically sustainable manner while being in line with indispensable
industrial developments. Automated detection, locating, and monitoring of marine life along with the industry
around the habitats of this ecosystem may be helpful to (i) reveal current impacts, (ii) model future possible
ecological trends, and (iii) determine required policies which would lead accordingly to a reduced ecological
footprint and increased sustainability. New automatic techniques are required to observe this large environment
efficiently. Within this context, this study aims to develop a novel platform to monitor marine ecosystems and
perform bio census in an automated manner, particularly for birds in regional aerial surveys since birds are
a good indicator of overall ecological health. In this manner, a new non-parametric approach, WILDetect,
has been built using an ensemble of supervised Machine Learning (ML) and Reinforcement Learning (RL)
techniques. It employs several hybrid techniques to segment, split and count maritime species – in particular,
birds – in order to perform automated censuses in a highly dynamic marine ecosystem. The efficacy of the
proposed approach is demonstrated by experiments performed on 26 surveys which include Northern gannets
(Morus bassanus) by utilising retrospective data analysis techniques. With this platform, by combining multiple
techniques, gannets can be detected and split automatically with very high sensitivity (Se) (≈ 0.97), specificity
(Sp) (≈ 0.99), and accuracy (Acc) (≈ 0.99) — these values are validated by precision (Pr) (≈ 0.98). Moreover,
the evaluation of the system by the APEM staff, which uses a completely new evaluation dataset gathered from
recent surveys, shows the viability of the proposed techniques. The experimental results suggest that similar
automated data processing techniques – tailored for specific species – can be helpful both in performing time-
intensive marine wildlife censuses efficiently and in establishing ecological platforms/models to understand
the underlying causes of trends in species populations along with the ecological change.
1. Introduction

The oceans cover two-thirds of the Earth’s surface and the mar-
itime economy has always been diverse and abundant. With the ap-
plications of emerging fields of science and technology in new and
existing industries, prominent companies and research organisations
have been recently developing and deploying evolving technologies
supported by location-independent advanced maritime mechatronics
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systems (AMMSs) (Kuru & Yetgin, 2019; Shi et al., 2017) to explore and
exploit the resources in this tough landscape. This massively evolving
industry, enabling enormous continuous human control in the mar-
itime, has the potential to impact the marine ecosystem dramatically; in
particular, the seabed, birds, turtles, and fish. Birds are an inseparable
part of the maritime ecosystem. Seabird population changes are good
indicators of long-term and large-scale change in marine ecosystems,
and important because their populations are strongly influenced by
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Fig. 1. Example of a gannet in a high-resolution image.3

threats (e.g., entanglement in fishing gear, overfishing of food sources,
climate change, pollution, disturbance, direct exploitation, develop-
ment, energy production) to marine and coastal ecosystems (Paleczny
et al., 2015). Considerable differences in population trajectories of off-
shore bird families have been documented, which suggests that overall
offshore bird populations are decreasing (BOEM, 2022). The monitored
portion of the global seabird population, representing approximately
19% of the global seabird population, has declined by nearly 70%
between 1950 and 2010 (Paleczny et al., 2015), a net loss approaching
3 billion birds (u.e., %29) since 1970 (Rosenberg et al., 2019). This loss
of bird abundance signals an urgent need to address threats to avert
future avifaunal collapse and associated loss of ecosystem integrity,
function, and services (Rosenberg et al., 2019).

One type of bird is the northern gannet (Morus bassanus), the largest
seabird in the North Atlantic, having a wingspan of up to 180 cm and
a length of up to 100 cm (RSBP, 2015). More specifically, gannets
are large white birds with distinctive features including yellowish
heads and black-tipped wings. They are distinctively shaped with a
long neck and long pointed beak, long pointed tail, and long pointed
wings (RSBP, 2015). An example is displayed in Fig. 1. The most
important nesting ground for northern gannets is the UK with about
half of the world’s population (55.6%) (JNCC, 2015). APEM Ltd4 has
a wide range of gannet data with geographical positions obtained
from all around the world and this species is the focus of this study
which aims to test the developed approaches to help perform further
autonomous bird censuses paving the way for automated classification
of multispecies and counting them. The censuses of gannets have been
undertaken since the 1980s (JNCC, 2015; Murray et al., 2015) and
all Scottish colonies were surveyed in 2013 and 2014 via manual
approaches (Murray, Harris et al., 2014; Murray et al., 2015; Murray,
Smith et al., 2014). In a typical marine survey programme, there might
be around half a million images taken over 12 months for a specific
area and it is a labour-intensive task to separate this survey into positive
images with targeted objects and negative images with no objects, and
then count the objects in the images deemed positive. Many surveys
acquired by APEM Ltd suggest that more than 95% of the images
contain no targeted objects. The detection of small objects, particularly
birds, in large-scale images with more than 50 million pixels is a non-
trivial task when using manual approaches. Long-term data that utilises
standardised and structured methodologies are ideal for quantifying
change in species populations; Unfortunately, such data does not exist

3 Courtesy of the photographer and artist Rahul Alvares.
4 APEM Ltd is a leading independent environmental consultancy special-

ising in freshwater and marine ecology. The company is the world’s leading
provider of digital aerial wildlife surveys for the offshore wind industry, having
carried out over 2000 surveys in the North Sea, Irish Sea, Baltic Sea, Pacific,
Atlantic, and Gulf of Mexico.
2

for most biogeographic regions (Clements & Robinson, 2022) due to the
difficulties and high cost of manual methods. Therefore, automation of
this work using an automated intelligent computer system which would
help the development of effective prospective environmental models
with realistic inputs is highly beneficial.

Despite recent advances in computer vision and learning techniques
as well as many attempts to monitor off-shore species in an automated
manner, comprehensive large off-shore wildlife censuses are still con-
ducted manually by experienced ecologists, ethologists, ornithologists
(e.g., JNCC, 2022; Thompson, 2021) due to unmet expectations in ac-
curacy rates for the counting and classification of species via automated
methods as elaborated in Sections 2, 3 and 4.1. With this motivation
in mind considering the challenges mentioned in Section 3, this study
proposes a new supervised Machine Learning (ML) approach supported
by Reinforcement Learning (RL) enabling user-model-data interaction
that can detect, split and count birds, in particular, offshore gannets,
in an automated decision-making way with high accuracy rates. To
clarify the novelty of this paper, particular contributions are outlined
as follows.

1. This is the first attempt that explicitly aims to implement mar-
itime bio censuses in marine surveys automatically using an
ensemble of supervised ML and RL techniques with a user-
model-data interaction in finding the best analysis parameters
for mitigating the highly dynamic characteristics of the maritime
ecosystem.

2. The two phases of using ensemble techniques within the de-
veloped methodology can work successfully in performing the
offshore bird censuses and most importantly, the methodology
can be generalised to the automated classification and counting
of broader maritime multispecies. The methodology can be ex-
pandable with more feature extraction techniques in addition to
the employed three techniques to achieve higher accuracy rates.

3. The proposed approach shows a new direction for the detection
of particular, small species with a diverse background and most
importantly for the classification of multispecies even if there is a
strong resemblance between them, as seen in bird species, where
current techniques (i.e., off-the-shelf approaches (e.g., OBIA),
Deep Neural Network (DNN) (e.g., CNN)) cannot converge to a
desired solution with high accuracy rates based on the features
of datasets.

The remainder of this paper is organised as follows. Section 2
surveys the related literature. Section 4 reveals how the methodology
is built up. The implementation of the established methodology in
splitting and counting the particular species in surveys is explained in
Section 5. The results are presented in Section 6. Discussions are pro-
vided in Section 7. Finally, Section 8 draws conclusions and provides
directions for potential future ideas.

2. Literature review

Wang et al. (2019) reviews studies regarding wild animal surveys
based on multiple platforms, including satellites, manned aircraft, and
unmanned aircraft systems (UASs), and focuses on the data used,
animal detection methods, and their accuracies. The resolution of (sub-
metre) satellite images is not sufficient to discern small (<0.6 m)
animals at the species level; Manned aerial surveys have long been
employed to capture the centimetre-scale images (with a spatial res-
olution of 2.5 cm Hollings et al., 2018) required for animal censuses
over large areas whereas UASs can cover only small areas (Wang
et al., 2019). Groom et al. (2013) analysed a very limited number of
images (18 frames) within two offshore areas in the Irish Sea using an
off-the-shelf object-based image analysis (OBIA) algorithm, aiming at
combining manual and automated image analysis, to describe marine
bird distributions and abundances. Similarly, Chabot et al. (2018) used
OBIA to detect and count Lesser Snow Geese in large numbers of images
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of breeding colonies across the Canadian Arctic, achieving better results
compared to human counting. It is noteworthy to mention that the
prevalent use of aerial thermal-infrared images for detecting large
mammals is of limited applicability to seabirds because of the low
pixel resolution of thermal cameras, the smaller size of birds (Chabot
& Francis, 2016), and most importantly their low body temperature.
Borowicz et al. (2019) established a semi-automated approach using
deep learning networks for whale detection from satellite imagery with
sub-metre resolution. Kellenberger et al. (2021) developed an approach
to automatically detect and count seabirds in UAS imagery using deep
convolutional neural networks (CNNs) resulting in low accuracy rates
for some types of species regarding the insufficient number of training
species for the CNN technique. Again, Dujon et al. (2021) developed
a deep CNN using UAS imagery to detect three types of species, in
particular, gannets with an overall precision of 0.74. Hong et al. (2019)
employed several types of DNNs in non-marine bird detection, resulting
in precision values ranging from 85.01% to 95.44%. Hayes et al. (2021)
employed CNN in counting two types of birds on the shore in the sitting
state using UAS at a close range, resulting in success rates of 97.66%
for Black-browed Albatrosses, and 87.16% for Southern Rockhopper
Penguins. Close-range use of UAS may disturb wildlife or disrupt their
normal activities (Johnston, 2019), especially for flying birds. Akçay
et al. (2020) conducted on-ground flying bird detection on bird popu-
lation movement trends using several DNN techniques with precision
values ranging from 0.86 and 0.94. Alqaysi et al. (2021) found the pre-
cision values ranging from 60% to 92% for bird detection around wind
farms using DNN. There is no guarantee in achieving good accuracy
rates using the most popular learning technique, the so-called DNNs. It
can be concluded that these approaches require a huge amount of data
samples to achieve a satisfactory training outcome (Delhez, 2022). The
aforementioned techniques are discussed in Section 7 considering the
proposed approach in this study. It is worth discussing the emerging
promising approach, namely, Deep Reinforcement Learning (DRL) here
as well. Recent revolutionary advances in artificial intelligence (AI)
using the learning principles of biological brains and human cognition
has fuelled the development and use of Deep Reinforcement Learning
(DRL) in numerous fields such as Atari games (Mnih et al., 2015),
poker (Moravčík et al., 2017), multiplayer games (Jaderberg et al.,
2019), and board games (Silver et al., 2016; Silver, Hubert et al., 2017;
Silver et al., 2018; Silver, Schrittwieser et al., 2017). DRL has surpassed
human-level performance in many similar applications. It, with goal-
directed behaviour and representation learning with the ability to learn
different levels of abstraction from data, has emerged as a very effective
approach by combining the strengths of two successful approaches – RL
and DNN – to overcome the representation problem of RL as function
approximators, which generalises knowledge to new unseen complex
situations. More explicitly, DRL can be defined as a function approxi-
mation method in DNN to generalise past experiences to new situations
in complex scenarios by mapping them to near-optimal decisions using
scalable and generalisable optimal policies. DRL, in particular, with
the most commonly used Deep Q-Networks (DQN), has been found
successful in addressing high dimensional problems with less prior
knowledge. However, to the best of our knowledge, DRL has been
employed for generalising past experiences to a new situation to find
the best optimal decision and has yet to be employed for a problem
space similar to the one mentioned in this paper. Therefore, this method
seems not applicable to our objectives considering the aforementioned
problem space which is defined in Section 3.

3. Problem definition

Very large areas need to be surveyed in shorter time spans to
understand the ecological footprint and to take necessary measures
accordingly in a timely manner. Despite recent advances in computer
3

vision and learning techniques as well as many attempts to monitor
off-shore species in an automated manner, comprehensive large off-
shore wildlife censuses are still conducted manually by experienced
ecologists, ethologists, ornithologists (e.g., JNCC, 2022; Thompson,
2021) due to unmet expectations in accuracy rates for the counting
and classification of multispecies via automated methods. Manual ap-
proaches increase the cost of surveying large areas significantly and
required regular surveys may not be conducted due to this high cost.
New automated computer-based approaches are required to observe
large areas efficiently and effectively to meet the desired objectives
of the research community. We performed a literature survey analy-
sis (Section 2) and conducted several preliminary experiments using
the most commonly used techniques to develop the most appropriate
approach that can meet the expectations of the research community.
The outcomes of our preliminary tests are elaborated in Section 4.1.
To summarise considering the survey analysis and preliminary tests
specific to the airborne survey data, (i) template-matching approaches
(e.g., SIFT) that requires no prior training are far from being able to
realise any objectives desired by the research community due to the in-
distinct features of very small objects within very complex background,
(ii) off-the-shelf computer vision techniques (e.g., OBIA) and off-the-
shelf ML techniques that require prior training don‘t result in high
accuracy rates due to the indistinct features of very small objects in
very big images, and (iii) DNN (e.g., R-CNN), requiring prior training
with a large number of data instances, do not converge to a desired
solution due to the limited number of instances with the indistinct
features of very small objects within a diverse background; Besides, the
misclassification of multispecies is high with DNN where data instances
in different groups resemble each other too closely as seen in bird
species.

The literature, to the best of our knowledge, has a gap that can
be filled with the research of computer-automated study analyses of
species datasets acquired from the photogrammetry settings which use
small aeroplanes to survey very large areas in shorter time spans when
compared with other approaches that use static locations, ships or
UAS. Due to low accuracy rates in detecting small animals in the
marine ecosystem using several off-the-shelf computer vision tech-
niques, off-the-shelf ML techniques, template-matching approaches,
and DNN, which is elaborated in Section 4.1 regarding the preliminary
experiments with our findings (e.g., the changing and complicated
background of the sea, number of data samples in the training set, low-
quality images of small species that lack clear features due to them
being captured by small aeroplanes with remotely-sensed aerial moni-
toring photogrammetry settings), we developed a novel approach using
an ensemble of ML and RL with a motivation to increase the detection
accuracy to reach our target (>0.95) and classify multispecies for the
further improvement of the application with multispecies training.

4. Methodology

4.1. Technical background

Repetitive surveying of very large areas for the purpose of observing
trends and population fluctuations, which also use human-dependent
approaches, may result in huge financial and time costs. Therefore,
sampling is commonly employed to census species within represen-
tative sample areas using varying sampling strategies and a way of
statistical prediction or projection to a whole figure to avoid high costs
where the larger the sample of sites, the better the approximation.
However, there can be many sampling biases in such datasets like
spatial, taxonomic, or temporal leading to inaccurate inferences: Spatial
bias refers to uneven sampling efforts across a region; Taxonomic bias
can include over- or under-representation of certain species in the
dataset; Temporal bias occurs when records are collected in one season
only, or more often at certain times of the year (Jayadevan et al., 2022).
Sampling may not be extrapolated to a reliable figure, in particular,

for rare species, considering the high percentage of negative images
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in whole surveys(> %95) and uneven density and variance in counts
of species from one habitat to another, mostly, related to the habitat
associations (e.g., food, breeding, sheltering) leading to poor sampling
(i.e., oversampling, undersampling), which may produce misleading
inferences. Several studies developed particular approaches to mitigate
the effect of biases in surveys. For instance, Smyser et al. (2016) utilised
a double-observer survey configuration to quantify and correct the bias
caused by the failure of observers in aerial surveys. Monitoring all
regions of interest and counting all species of interest is crucial to reach
highly reliable outcomes and proper decisions with appropriate inter-
pretations. Aerial surveys are an efficient survey platform, capable of
collecting wildlife data rapidly across large spatial extents in short time
frames; however, these surveys can yield unreliable data if not carefully
executed (Davis et al., 2022). To this end, numerous approaches such
as entropy-based information screening method (Li et al., 2021) and
normalised double entropy (NDE) (Li et al., 2023) were developed to
distinguish bad and redundant image data to increase the quality of
sampling.

As an active research direction for decades, object recognition and
detection have had increased importance within many fields such as
nature, biometrics, medicine, and robotics. Current clustering algo-
rithms, in which no prior training is performed, on visual datasets,
are not successful in grouping similar objects with high rates of ac-
curacy, particularly, for objects with very complex backgrounds (Kuru
& Khan, 2018). One of the oldest methods of object recognition is the
template-matching approach. It consists of sliding a particular template
over the search area (usually an image in which we are trying to
locate) and at each position, calculating a distortion or correlation
measure that estimates the degree of dissimilarity or similarity between
the template and the candidate (Reyes, 2014). Then, the minimum
distortion or maximum correlation position (depending on the imple-
mentation) is taken to represent the instance of the template into
the image under examination. There are various ways of calculating
the degree of dissimilarity or similarity, such as the Sum of Absolute
Differences (SAD) and the Sum of Squared Differences (SSD). The Nor-
malised Cross-Correlation (NCC) is by far one of the most widely used
correlation measures (Stefano et al., 2003; Yang, 2010). Recently, sev-
eral well-advanced template-matching techniques have been developed
to detect objects automatically. These off-the-shelf template-matching
techniques are scale-invariant feature transform (SIFT), speeded-up
robust features (SURF), features from accelerated segment test (FAST),
binary robust independent elementary features (BRIEF), oriented FAST
and rotated BRIEF (ORB), maximally stable extremal regions (MSER)
and binary robust invariant scalable key points (BRISK). In these tech-
niques, a similarity value regarding the specified number of most
important key points is utilised to determine if there is a similarity
between the reference object and the objects in images, videos, or real-
time scenes given a threshold value. No pre-processing and training is
required. We tested these approaches on our sample datasets and the
preliminary results indicated that none of these approaches is successful
enough to detect and split very small birds with many different postures
in large-scale images against the changing and complicated background
of the sea (Ex: Figs. 6, 16). It is noteworthy to mention that variations
in sea-state, marine environments, atmospheric conditions, and solar
illumination angles combine to produce a wide range of sea surface
image patterns that form the background to the targets of a bird
mapping operation (Groom et al., 2013).

The other approach is the supervised ML approach, which requires
prior datasets to both determine the common features and train the
system for further similar detections based on these features. Accuracy
rates of detection are mainly dependent on the quality of datasets used
in training in terms of representing the real environment by avoiding
overfitting. In the training process, general features are acquired and
these features are then compared to the features of objects in test
datasets to observe how well the features are detected and to determine
4

if these features are suitable to be employed in real life. Trained d
models (i.e., detectors) are used for the detection of similar objects
after the evaluation is conducted successfully by using an evaluation
dataset. Our preliminary tests on the sample datasets using the super-
vised ML approaches showed promising results, which is elaborated
in Section 4.2. The frequent low numbers of marine birds in any
given area adds to the complexity of developing methods for large-
scale operational surveys (Groom et al., 2013). Most of the time, there
might be a single gannet in a large-scale image (Ex: Fig. 16) within
our surveys. This makes detecting them highly difficult with regards
to splitting the images with gannets from those without gannets, for
aerial surveys with more than half a million images, into the positive
folder. In other words, it would be easier to detect at least one gannet
among several gannets in a large-scale image rather than detecting a
single gannet in the image.

To summarise, as explained above, our preliminary test results
showed that employing a template matching approach did not work
for detecting and splitting birds in large-scale aerial images, because,
despite their distinctive features (Ex: Fig. 1) the birds are not very
clear in very complex and changing sea textures despite the high
quality of the images with a very high camera resolution (i.e., > 50
Megapixels). Moreover, DNN techniques do not result in satisfactory
outcomes where the number of instances in domain sets is not many
as in our case in this study even though they are recently popular and
successfully employed in many different types of application fields and
these techniques have far exceeded the accuracy rates of current ML
methods. More importantly, our preliminary test using DNN showed
that the misclassification of multispecies is high if data instances in
different groups resemble each other too closely as seen in bird species.
Therefore, we have employed an ensemble of ML and RL techniques for
automated recognition, splitting, and counting of birds in aerial surveys
to both reach our goals in accuracy rates and classify multispecies in
the further development of the proposed application and a user-friendly
application was developed using Matlab Simulink MatWorks R2020,5
as displayed in Fig. 2. The algorithms were developed to work on any
size of bird objects using interpolation and extrapolation techniques,
providing there is a training data set available. In particular, the
methods of the sliding window (Forsyth & Ponce, 2012) and Gaussian
pyramid (Witkin, 1984) are applied to detect any object that can appear
in different regions of the image and in different scales. A detection
window in the sliding window method slides over the image to extract
the regions. The Gaussian pyramid (Witkin, 1984) method is primarily
applied to the image during the detection stage of the sliding window
to operate a scale search.

Three feature extraction techniques are employed in our methodol-
ogy, namely Haar Cascades, Local Binary Patterns (LBP), and Histogram
of Oriented Gradients (HOG). Each of these techniques acquires dif-
ferent features of objects using different mathematical modelling. We
applied these techniques to establish the detectors in our implemen-
tation using Matlab ready-to-use commands along with the Viola–
Jones matching technique.6 (i) Haar cascade technique resembling Haar
wavelets was first introduced by Papageorgiou et al. (1998) and Viola
and Jones (2001). First, the pixel values inside the black area are
added together; then the values in the white area are added together.
Following that, the total value of the white area is subtracted from
the total value of the black area. This result is used to categorise
image sub-regions (Cruz et al., 2015), which requires a fair amount
of time to train a classifier and generate the Haar training set. The
calculation method of Haar-like features is faster by introducing an
integral image or summed-area table (Viola & Jones, 2001), which
makes the computing of Haar-cascade classifiers more efficient. (ii)

5 MATLAB and Simulink are registered trademarks of the MathWorks, Inc.
ee www.mathworks.com/trademarks.

6 https://uk.mathworks.com/help/vision/ug/train-a-cascade-object-
etector.html.

https://uk.mathworks.com/help/vision/ug/train-a-cascade-object-detector.html
https://uk.mathworks.com/help/vision/ug/train-a-cascade-object-detector.html
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Fig. 2. Interfaces of the application from top to bottom: (i) the main, (ii) training for ROI selection, (iii) training for blank set and parameter selection and (iv) recognition/splitting.
LBP was first introduced by Wang and He (1990) and analysed in
detail by Ojala et al. (1994). It has been improved by several other
studies regarding object identification and recognition (Ojala et al.,
2002; Trefný & Matas, 2010; Zhang et al., 2007). In the LBP technique,
the texture is defined as a function of spatial variations in the pixel
intensity of an image with a low computational cost by focusing on a
small set of critical features, discarding most of the non-critical ones
to increase the speed of the feature extraction and classification sig-
nificantly without affecting accuracy; common features, such as edges,
lines, points, flat areas, and corners can be represented by a value in a
particular numerical scale (Cruz et al., 2015). Therefore, it is possible
to recognise objects in an image using a set of values extracted a
priori and several weak classifiers turn into a strong classifier regarding
recognition (Cruz et al., 2015). (iii) HOG which explores gradient in-
formation and local shape information was first explored by McConnell
(1986) and improved by Dalal and Triggs (2005). The technique counts
occurrences of gradient orientation in localised portions of an image,
which is computed on a dense grid of uniformly spaced cells and
uses overlapping local contrast normalisation by the distribution of
intensity gradients or edge directions. Due to the strong texture and
shape description ability, HOG can be used in the detection of many
different types of objects. It is highly sensitive to object orientation.
It responds rapidly to changing parameters of FAR and TPR based on
its feature extraction method which uses histograms. (iv) The Viola–
Jones technique that is included in Matlab Computer Vision System
Toolbox (i.e., vision.CascadeObjectDetector) is used to match acquired
features in detectors to those of the objects in images for comparison
and detection. This technique along with feature extraction techniques
is highly sensitive to different orientations of objects in images/videos.
The main reasons for choosing Viola–Jones are its fast detection speed
and its high accuracy detection rate regarding the large-scale aerial
images on which we are working. How these techniques are employed
in a novel approach in our methodology is explored in the following
sections, particularly, Sections 4.2 and 5.

The main components of the platform, WILDetect, built in this
study are depicted in Fig. 3. The phases are (i) data preparation/pre-
processing (A.1), (ii) feature extraction/training (A.2), (iii) viability
testing of the detectors and specifying the best detectors (A.3), (iv)
implementation of the model in splitting and counting in surveys (A.4)
(i.e., determining the best detectors in splitting and counting using the
recursive RL approach (A.4.1), recognition and splitting (A.4.2.Phase1),
5

recognition and counting (A.4.2.Phase2)), and (v) database operations
(A.5) that are explained in the following sections respectively.

4.2. Establishment of the methodology

The defined problem space (Section 3), considering the literature
analysis (Section 2) and the obtained results from the preliminary tests
(Section 4.1) using off-the-shelf approaches, necessitates the develop-
ment of a new approach to achieve the objectives of the research
community while performing airborne wildlife census automatically
in the marine ecosystem. With this in mind, the approach built here
is explained step by step in the following subsections (Sections 4.2.1,
4.2.2 and 4.2.3) and the results of the implementation using large
surveys are provided in Section 5).

4.2.1. Data sets, data preprocessing/preparation (A.1)
The main subcomponents of this phase along with their interaction

are illustrated in the dedicated section of Fig. 3 titled ‘‘A.1’’. A dataset
consisting of images with the object of interest and a dataset consisting
of blank/background images that represent anything except the ob-
ject of interest are needed to establish a supervised ML approach for
training, testing, evaluation, and validation. Data preparation and data
management in those steps are demonstrated in Fig. 4. The negative
set typically contains more images than the positive set in order to
complete the training phase where every positive image needs more
background images that represent the real-world environment. APEM
has many surveys in its repository in which almost %95 of the images
are blank background images with no targeted object types. APEM
conducts offshore digital wildlife surveys for the offshore renewables
sector, reliably capturing imagery all year round in all lighting con-
ditions and sea states up to four. The data is captured on a variety
of sensor formats including both 35 mm and medium format from
various manufacturers, in both single camera and multiple camera
configurations, depending on the project requirements. The images are
collected by these advanced cameras mounted in a small twin-engine
aeroplane (Ex: Fig. 5) within a route in which all regions of interest are
surveyed.

A snag library that consists of around 1 million snags (i.e., cropped
images with objects of interest; ex: Fig. 6) has been established by
APEM. We aimed to incorporate all possible targeted positive images
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Fig. 3. Main components of the methodology.
into the methodology, either for training/testing or evaluation and
validation to create a positive dataset that can represent the real-world
object types by avoiding overfitting during the decision-making phase
of the implementation in real-field tests. We pre-processed the gannets
in this library by selecting the convenient gannet samples. Our prelim-
inary tests showed that flying gannets with their partial body parts can
be detected using whole body sets, but, a whole gannet body cannot be
detected by a trained set that consists of various partial parts of gannets
(e.g., only one wing). Furthermore, partial body parts can increase the
false-positive (FP) rate. Therefore, in this phase, we aim to select as
many gannets as possible that have whole bodies (i.e., two wings, head,
and tail), but in all possible postures. With this in mind, we prepared
two sets of gannets (50%/50%), one of which is for training/testing
with 1073 snags (Fig. 4I) and the other one is for evaluation with again
1073 snags in many different postures (Fig. 4II). Our preliminary test
results suggest that the detectors built using the three feature extraction
techniques (i.e., Haar, LBP, HOG) based on the specific orientations
(i.e., north, east, south, west) improve the accuracy rate significantly
where these techniques are highly sensitive to different orientations of
objects in images as explained in Section 4.1. Therefore, all the gannet
objects in these sets are rotated into 4 directions automatically using
the codes produced in this study for the data preprocessing phase,
namely, north, east, south, and west, by which 4 sets of gannet objects
totalling 1073 × 4 = 4292 were generated for training/testing and eval-
uation, rather than separating them into these directions into 4 groups,
which would reduce the number of objects substantially. In this way, 4
types of detectors are needed with the orientations north, south, east,
and west, as well as a large number of negative images. The greater the
variety of these snags/images representing the real environment, the
better the detectors avoiding overfitting and consequently the higher
6

the accuracy of detecting targeted objects in images in real field tests.
A sub-sample of the dataset in which all gannets are almost rotated to
the north is presented in Fig. 6. More snag examples can be found in
our technical report — MarineObjects_Gannet_Supplement_2.pdf in the
supplementary materials. Moreover, the gannet objects in large-scale
images (Ex: Fig. 16) are presented in our technical report — MarineOb-
jects_Gannet_Supplement_3.pdf in the supplementary materials with
many different postures and background textures.

In addition to the positive dataset, a blank/background/negative
dataset was established using 26 surveys collected by APEM between
2014 and 2017. These surveys were acquired from different parts of
the world in different seasons and time zones using different settings
and types of image-capturing technologies. The texture of the neg-
ative images in these surveys differs from each other as displayed
in Fig. 7, which makes the implementation more challenging. More
examples specific to the surveys can be found in our technical report
— MarineObjects_Gannet_Supplement_1.pdf in the supplementary ma-
terials. We were given around 1 million images that are the subsets
of these surveys. We used this large number of surveys, a volume of
around 10 TB, to find out the general characteristics of aerial surveys.
The diverse features revealed from these large surveys help make our
approach strong and promising for further use of the application in any
circumstances while separating targeted objects from their background.
This large dataset was stored in high-powered servers and processed
using these servers (A storage unit (12 TB), 2 Novatech servers and
5 HP servers connected to each other via the network. The storage
unit is used for placing the big size of the datasets and applications
on servers are run using the datasets placed in the storage unit for
development, evaluation and validation. The specifications of the No-
vatech servers: Intel (R) Xeon (R) CPU E5 26300 2.30 GHz 2.30 GHz (2
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Fig. 4. Use of datasets during training, testing, evaluation, and validation of WILDetect.
Fig. 5. APEM aeroplane during a remotely-sensed aerial survey using advanced aerial
high resolution photogrammetry.

processors), 64 bit, 64 GB RAM, GPU (NVIDIA GeForce GTX 680). The
specifications of the HP servers: Intel (R) Xeon (R) CPU 5160 3.00 GHz,
64 bit, 8 GB RAM. We established a sub-sample set from the diverse
surveys that consisted of 100,000 images (Fig. 4I) to use in the training
process, with the aim of incorporating all the characteristics of the
current and future surveys into implementation. It is worth emphasising
that an equal number of negative images from all sub-surveys (107
sub-surveys), within the above-mentioned 26 surveys, were included
considering the seasons and time zones to create a negative dataset
that can represent the real-world circumstances. Rather than using
1 million images, this sub-sampled set would reduce the processing
time of training significantly, in particular, while singling out the
consecutive new sets for each following training iteration, which is
elaborated in Section 4.2.2. Readers are referred to Fig. 4 in the related
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sections below in which the evaluation and validation are explained
after revealing the establishment of the methodology in the following
sections.

4.2.2. Feature extraction and training (A.2)
The main subcomponents of this phase along with their interaction

are illustrated in the dedicated section of Fig. 3 titled ‘‘A.2’’. Automatic
detection systems usually require large and representative training
datasets to achieve good detection rates with fewer FP rates (Vállez
et al., 2015). The training phase is very important for the successful
recognition of objects in the further use of the application. One badly
trained file/classifier can cause the splitting process (A.4.2. Phase1 in
Fig. 3) to function poorly and many positive images may be placed in
the negative folder and vice versa, which we aim to avoid. The user
interface developed for the training phase is displayed in Fig. 2ii and
iii. With this interface, the detectors can be generated using several
parameters such as true positive rate (TPR), false alarm rate (FAR),
number of training stages, number of background images, and neg-
ative sample factor (NSF), with respect to the number of positive
images in each training stage and the feature extraction techniques,
i.e., Haar, LBP, and HOG. A mathematical model of the objects is
extracted using these techniques as explained in Section 4.1. These
techniques were selected, because, in addition to providing detectors
with encouraging accuracy, they produce detectors that can function
efficiently. For instance, objects can be detected in a few seconds in
an image with 50 million pixels. The training interface lets the user
feed the system with positive images for ROI selection and negative
images for background analysis, as well as specify the parameter values.
ROIs are specified in positive images by the user (at least one ROI in
each image), and the feature descriptors are extracted based on ROIs
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Fig. 6. Examples of the gannet snags for the north direction in several postures and background textures.
using the aforementioned techniques in the training process. Several
training sets were acquired using different FAR and TPR parameters
for each feature extraction technique. In each training, the number of
training stages was 20 (i.e., 20-fold cross-validation) along with the
number of the negative samples 3, which means that the number of
the different negative images to be used in each training stage of the
20 iterations would be as many as 3 times the number of positive
images. Our preliminary tests show that (1) decreasing the number
of iterations (e.g., 10-fold) increases the training time significantly,
(2) the recognition accuracy rate is almost the same with negative
sample factors of 3 and 10; however, the processing time increases
significantly with the value of 10. Therefore, the training parameters
20 for iterations rather than most commonly used 10-fold and 3 for
negative sample factor were selected to decrease the training time.
In each iteration, the techniques choose a set of different negative
images in the negative dataset whose texture features are supposed
to be different from the previously selected sets. The system stops if
not sufficient negative images with different features are provided.
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Therefore, the images in the negative dataset must be different from
each other with respect to their textures. A large number of images
in the negative dataset increase the chance of finding a new set for
each following training iteration. As explained earlier, 100,000 images
selected for the negative datasets from different surveys provide enough
distinctive iteration sets for our training iteration steps.

The training process is repeated to obtain several detectors using
different parameters, in particular, reducing the values of TPR and FAR
to flag fewer FPs. This is mainly beneficial to the analysis of different
types of surveys with regard to their varying textures, as explained in
the following sections. As soon as the detectors are generated, they
are tested on the sample test dataset and the threshold parameters
are reduced until almost all negative images are transmitted into the
negative directory. This may cause several positive images to be missed
with respect to each technique with reduced threshold parameters.
However, these techniques use different features and if one detector
with a technique misses one positive image, there is a high probability
that one of the other two detectors using the other two techniques may
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Fig. 7. Examples of blank images from 6 different surveys with various textures.
Table 1
Processing time of the detectors in days.

Techniques 0.30–0.985 0.35–0.985 0.40–0.985 0.40–0.995 0.45–0.995 0.50–0.995

Haar 51 45 38 31 28 23
LBP 31 26 22 18 16 13
HOG 43 38 33 27 25 21
Fig. 8. Processing time of detectors in Table 1.

specify this image as a positive image. Therefore, we are employing
these three techniques at the same time for the splitting phase to
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overcome the reduced sensitivity (Se) because of the FNs with respect
to each technique in order not to miss any positive image, which is
explained in Section 4.2.3 in detail with examples.

Detectors for the specific types of objects are created only once and
can be used whenever needed to recognise, split and count specific
objects in images for further analysis. Six trained sets — detectors
consisting of 72 trained files (i.e., 6 threshold values × 3 techniques × 4
directions = 72) were created using 6 threshold values, as displayed in
Table 1. In other words, 12 trained files were obtained for each trained
set, 4 for each technique (i.e., Haar, LBP, HOG) and each of which
represents the gannet sets in one of the four directions (i.e., north, east,
south, west) (i.e., 12 trained files for each detector × 6 detectors =
72). The processing time of the training in terms of threshold values
is shown in Table 1 and Fig. 8. The smaller the threshold values, the
longer the training time.

4.2.3. Viability testing of the detectors and specifying min/max threshold
parameters (A.3)

The acquired trained files were evaluated on the evaluation dataset
(i.e., 1073 snags in four directions) spared for evaluation (Fig. 4II) as
mentioned in Section 4.2.1. The evaluation results are presented in
Table 2 and Fig. 9. As it is noticed in Fig. 9, the detection success of
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Table 2
Accuracy rates of the training phase with the snag dataset based on the detectors with 6 different parameters: all snags are recognised successfully
by the parameters, FAR = 0.50 and TPR = 0.995 with the combination of 3 techniques.

Techniques 0.30–0.985 0.35–0.985 0.40–0.985 0.40–0.995 0.45–0.995 0.50–0.995

Haar 0.825 0.975 0.98 0.985 0.989 0.993
LBP 0.675 0.925 0.935 0.966 0.984 0.992
HOG 0.735 0.85 0.9 0.993 0.994 0.994

Combined 0.84 0.99 0.992 0.995 0.996 1
the feature extraction techniques varies depending upon the approaches
followed in these techniques as elaborated in Section 4.1 as the pa-
rameters concerning the features of the datasets changed. For instance,
the effect of the HOG technique is relatively poor when the parameters
are small, and it increases rapidly after the values of parameters are
increased. In this way, the drawbacks of one technique considering the
features of data can be compensated by the other two techniques while
the parameters need to be changed for achieving the desired goals,
either for increasing Se or for increasing Sp. The trained files with the
parameters FAR = 0.30 and TPR = 0.985 resulting in a Se value of
0.840 are excluded from the trained folder in order not to be used for
further recognition and splitting process. Because the main objective
of this research is to obtain a Se value greater than 0.95 which is
one of the targeted success criteria, i.e., threshold level, as shown in
Fig. 9 with the green line. In other words, we do not want to miss
positive images at any cost even with small Sp values by achieving
this success criterion. As explained in Sections 5.1 and 5.2, the system
with established detectors was run on various evaluation and validation
surveys (Fig. 4III and IV) with varying characteristics to find out the
detectors’ viability on further surveys based on the observed Se and Sp
values, strictly speaking, Sp after achieving a satisfactory Se value with
5 threshold intervals, all of which are above the targeted sensitivity
value, 0.95.

The use of three feature extraction techniques at a time is more
important where the detectors with smaller threshold parameters are
selected by the system with the RL approach as explained in the
following Section 5. Some of the gannet objects detected by only one
of the feature extraction techniques are presented in Fig. 10 where FAR
= 0.35 and TPR = 0.85. These three gannet objects are detected by the
three techniques at the same time with bigger threshold values where
FAR = 0.50 and TPR = 0.95. We would like to note that these high
threshold values may cause many FPs depending on the complexity
of the background and it may not be a good option to use them for
particular types of surveys, which is explained in the following sections
in detail.

5. Implementation of the methodology in splitting and counting
(A.4) using the recursive RL technique

Objects can appear in different regions of the image and in different
scales. In order to solve this problem, the sliding window method
(Fig. 3) is used (Forsyth & Ponce, 2012). It consists of a detection
window that slides over an image extracting regions and classifying
them. A Gaussian pyramid (Witkin, 1984) (Fig. 3) is also applied to
the image to perform a scale search to detect similar objects in different
sizes.

A multi-threaded approach was established to speed up the calcula-
tions and reduce the processing time. In this multi-threaded approach,
jobs are distributed among the resources in the same network, partic-
ularly among the multi-core processors, with one job for each core.
The user can choose one of the two processing options, either multi-
threaded where powerful computing resources can be deployed to
perform many tasks at once, or sequentially where operations are
performed in order and results can be followed by the user per image.
The multi-threaded option reduces the processing time significantly
based on the power of the resources used. Some of the resources in
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use can be stopped to be used for other purposes, and vice versa, new
Fig. 9. Results for Table 2: The accuracy rate of recognition is increased by combining
3 techniques, which is depicted by the yellow line. Combination of 3 techniques is more
important where the FAR and TPR parameters are smaller to acquire a satisfactory
recognition rate. The horizontal green line drawn on 0.95 Se is the objective threshold
level; the Se values over this line are acceptable in terms of the yellow line.

resources can be incorporated into the system while the splitting or
counting process is ongoing, using a novel flexible cloud computing
approach built in this study.

It is worth noting that datasets are imbalanced -i.e., not uniform
within surveys most of the time as mentioned earlier regarding the
larger number of negative images (negative class) compared to a
smaller number of positive images (positive class). This imbalance
is mitigated using an ensemble of ML and RL techniques within the
research in two phases of automated data analysis. The selection of
the best detectors in the splitting phase is based on the features of the
background to discard most of the negative images while aiming to
place all the positive images in the positive folder whereas it is based
on the features of the targeted objects in the counting phase to count
all the objects in the images placed in the positive folder while aiming
to discard all the remaining negative images placed in the positive
folder during the splitting phase. Four values are measured to assess
the obtained results, namely,

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑆𝑒 = 𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒(𝑇𝑃𝑅) = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁),

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑆𝑝 = 𝑇 𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒(𝑇𝑁𝑅) = 𝑇𝑁∕(𝑇𝑁 + 𝐹𝑃 ),

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐴𝑐𝑐 = (𝑇𝑃 + 𝑇𝑁)∕(𝑃 +𝑁) = (𝑇𝑃 + 𝑇𝑁)∕(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁),

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃𝑟 = 𝑇𝑃∕(𝑇𝑃 + 𝐅𝐏)

(1)

The first three values — Se, Sp, and Acc — are explained in Section 6
in detail based on the data analysis of the particular approaches. Pr is
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Fig. 10. Snag examples detected by only one of the techniques with the parameters of FAR = 0.35 and TPR = 0.85.
mainly employed to identify the class imbalance problem and assess
how imbalanced data in favour of ‘‘negative images’’ that may lead to
large FPs is influencing the results. More specifically, this assessment
helps to understand (i) if the high values of Se, Sp and Acc are biased
and most importantly (ii) if the two phases of using an ensemble of
learning techniques help alleviate the bias regarding the improvement
in Pr through obtaining the final counting results. The low values of
Se, e.g., < 0.80, require the implementation of cost-sensitive analy-
sis (CSA), as we conducted in our previous research in Kuru et al.
(2013) to get more reliable improved results. In CSA, classes have
different costs associated with them using weights with respect to
the number of instances; the classes with fewer instances, i.e., under-
represented classes (positive cases in this research) are assigned higher
costs (i.e., adding cost-sensitivity, e.g., P:N = 10:1) to reduce the
number of false predictions, particularly in favour of the class with
less number of instances, and consequently increase the reliability of
the results related to that class by assigning different penalties to
misclassification of samples (Kuru et al., 2013) in which there is a
trade-off between Se and Pr.

5.1. Implementation of the platform in splitting

Most of the time, more than 95% of images in a survey contain no
targeted objects, and therefore this phase of the implementation aims
to separate out the images with no targeted objects in a reduced overall
processing time. Strictly speaking, the main objective of this phase is to
perform the best splitting between negative and positive images based
on the parameters specified in Section 4.2.3. The negative images are
placed in the negative folder and the positive images are placed in the
positive folder. Then, the images in the positive directory are analysed
in detail to locate all targeted objects, which is explained in Section 5.2.
The methodology selects a set of detectors for each feature extraction
technique to deploy during the splitting process based on the particular
characteristics and specific patterns of the images in surveys. This step
is explained in Section 5.1.1. Then, how the splitting is performed is
explored using these selected detectors in Section 5.1.2.

5.1.1. Pattern recognition and specification of the best feature extraction
detectors for splitting using RL (A.4.1)

The methodology chooses the best detectors regarding separating
negative images from positive images successfully based on the texture
patterns and characteristics of the images in the surveys using the user-
model-data interaction as illustrated in Fig. 3, A.4.1. The components
of the recursive RL algorithm employed in this phase are demonstrated
in a broader perspective in Fig. 11 and the main steps are explained as
follows.

First, a very small subset of the negative images (i.e., 5–10) rep-
resenting the whole of the negative images (i.e. background) in the
survey is selected by the user. The characteristics of this very small set
play an important role in determining the best convenient detectors.
Therefore, the user is expected to choose blank images that have
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diverse background textures in the survey. For instance, at least a blank
image taken from each camera mounted on the aeroplane and blank
images taken from different time intervals should be placed in this
set in order to represent the background characteristics of the whole
survey. Alternatively, processing of the images from different cameras
or in different time intervals – subsets of surveys – can be conducted
separately, which can increase the efficacy of the platform further.

Second, the blank images selected by the user are processed by the
approach to determine the best detectors for each technique based on
the observed Sp (i.e., TN/(TN+FP)) values. In this process, a screening
test is performed with preferably higher Sp values to increase the
chance of placing images with no targeted object in the negative folder.
In other words, the FP cases are reduced to a minimum resulting in very
high Sp values with an ability to correctly place the negative images
in the negative folder and this means that if an image is tagged as
negative, it is a high probability that there is no object in that image.
The RL algorithm makes the detectors run on the sample negative im-
ages fed by the user using the Viola–Jones matching technique to single
out the successful detectors for splitting based on the characteristics of
the background texture. This process starts from the detectors with the
highest threshold values (i.e., 050–0995 in Table 2) that may result
in many FPs reducing Sp whereas the background has a complicated
texture. However, no FP may be obtained if the background has a clear
texture. This iterative process using predetermined nominated detectors
(Fig. 9) proceeds (Fig. 11) until no FP is obtained per detector where
Sp is 1. In other words, the process stops per detector where Sp is 1
and the detector is selected at this stage in which a satisfactory pattern
is observed and learned by the system. Otherwise, the last detectors
with the smallest threshold values are processed where the Sp may be
slightly smaller than 1 and they are selected for splitting.

Finally, the methodology determines the most suitable detectors for
each technique (i.e., Haar, LBP, HOG) through the detector sets trained
previously as depicted in Table 2 that are above the green line in Fig. 9.
The results of the RL process for the 13 surveys regarding the selection
of the detectors for splitting are explained in Section 6.1.

5.1.2. Object recognition and splitting (A.4.2.Phase1)
The detectors determined by the RL approach at the start of the

splitting process as explained in Section 5.1.1 are utilised in this phase.
The methodology makes these detectors run on all the images using
the Viola–Jones matching technique and the images are placed in the
negative directory if they are specified as negative; in other words,
these are the images in which no object is detected by any of these
detectors. The images are readily placed into the positive directory
when an object is detected by any detector without screening the
image for other objects using the remaining detectors. The main aim
is to increase Sp by reducing FPs with respect to each technique, but
to increase Se using 3 techniques at the same time by reducing FNs
regarding the number of positive images (see Fig. 10). The higher the
number of objects in an image, the more likely that the image will be
put into the positive directory. The splitting phase was evaluated on
several surveys (Fig. 4III) and the results (Table 3) are explained in
Section 6.1.
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Fig. 11. Use of Reinforcement Learning (RL) for selecting the best detectors for splitting.
5.2. Implementation of the platform in counting objects

In the splitting phase, the application places any image into the
positive directory when an object is detected without screening the
image for other objects using the remaining detectors. In this way, the
processing time of the splitting is reduced significantly. On the other
hand, the aim of the counting phase is to detect every targeted object
in images placed in the positive directory. New detectors are selected
to complete this task using a similar recursive RL approach explored
above, but differently as explained in Section 5.2.1 in order not to miss
any targeted object in the positive images.

5.2.1. Pattern recognition and specification of the best feature extraction
detectors for counting using RL (A.4.1)

The methodology chooses the best detectors regarding counting ob-
jects in the images placed in the positive folder based on the particular
patterns and characteristics of the objects in those images as illustrated
in Fig. 3, A.4.1. The main objective of this phase is to detect and count
all the targeted objects successfully. The components of the recursive
RL algorithm employed in this phase are demonstrated in Fig. 12 and
the main steps are explained as follows.

First, a very small subset of the positive images (i.e., 2–5) in the
survey are selected and all the objects in these images are outlined
with a bounding box along with the targeted object counts per image
by the user upon the interface provided in the application during the
selection of a subset of the negative samples at the start of the survey
analysis as mentioned in Section 5.1. In other words, the detectors for
both splitting and counting are designated by the recursive RL approach
before the survey analysis starts. In this way, the methodology carries
out the counting process automatically after the splitting phase is
completed.

Second, these selected positive images are processed with respect to
the user-specified objects by the RL approach to determine the best de-
tectors for each technique based on the observed Se (i.e., TP/(TP+FN))
values. In this step, an object recognition test is performed with prefer-
ably higher Se values to increase the chance of detecting a targeted
object in the positive folder. In other words, the FN cases are reduced
substantially with respect to the targeted objects, preferably to zero,
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resulting in very high Se values with an ability to correctly detect the
objects in the images. The RL algorithm makes the detectors run on the
sample positive images using the Viola–Jones matching technique to
single out the successful detectors for counting by referencing the users’
object inputs from the selected positive images. This time, different
from the splitting phase, the process starts from the detectors with the
lowest threshold values (i.e., 035–0985 in Fig. 9) that may result in
many FNs which may reduce Se. This iterative process proceeds until no
FN is obtained per detector where Se is 1. In other words, the process
stops per detector where Se is 1 and the detector is selected at this
stage in which a satisfactory pattern is observed and learned by the
system. Otherwise, the last detectors with the highest threshold values
are processed where the Se may be slightly smaller than 1 and they are
selected for counting. Additionally, the last detector with the highest
threshold values may result in several FP where the images have com-
plex backgrounds, which may reduce Sp of the system at this stage. But,
the objective is to detect all targeted objects successfully with a high Se,
preferably 1, as specified earlier even though compromising Sp slightly.
The use of multiple designated detectors at a time in a collective way
aims to ensure a high Se — one of the other two detectors can detect
an object if it is missed by a detector.

Finally, the methodology places the most convenient detectors for
each technique (i.e., Haar, LBP, HOG) through the detector sets trained
previously as depicted in Table 2 that are above the green line in Fig. 9.
The results of the RL process for the last survey (Table 3) regarding
the selection of the detectors for counting are explained in Section 6.2
(Fig. 4III).

5.2.2. Object recognition and counting of objects in surveys (A.4.2.Phase2)
In this phase, the aim is to detect all targeted objects in the positive

images with an increased Se by giving several FPs if necessary, in order
not to miss any targeted objects. Every image in the positive directory is
processed by the Viola–Jones technique using each designated detector
and objects are tagged wherever they are detected and coordinates
for one or more rectangular ROI (coloured bounding box around the
recognised object (e.g., Fig. 13)) are returned. These coordinates are
mainly utilised for both counting each detected object once using
the non-maximum suppression technique (Fig. 3), as explained in the
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Fig. 12. Use of Reinforcement Learning (RL) for selecting best detectors for counting.
Fig. 13. Two magnified gannet objects detected by several detectors (left) and counted only once (right).
following paragraph, and cropping the tagged objects automatically for
further analysis.

Due to the fact that detection windows overlap each other, the same
object can be counted more than once. The main reason for this is
that 12 detectors are applied for detecting objects in any direction,
which may detect and specify an object several times. For instance,
a gannet object is detected by 3 detectors and consequently counted
3 times and likewise, another gannet object is detected by 5 detectors
and counted 5 times in Fig. 13(left). The non-maximum suppression
technique, in which windows with a local maximum classifier response
suppress nearby windows (Forsyth & Ponce, 2012), is employed to
13
count the same object only once as shown in Fig. 13(right). Two
gannets are located by the detectors several times and they are counted
as 2 objects in a whole image in Fig. 14 using the non-maximum
suppression technique.

6. Results for splitting and counting

6.1. Results for phase 1: splitting

The methodology was evaluated on each of the 13 surveys (Fig. 4III)
in which gannet objects exist to observe the success rates of splitting.
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Table 3
Accuracy rates of the snag dataset based on the trained files of 4 different parameters for splitting images into positive and negative categories: all snags are recognised successfully
by the training parameters, FAR = 0.50 and TPR = 0.995 with the combination of 3 techniques.

Selected parameters for three techniques

Haar LBP HOG

Surveys NegativeImages PositiveImages GannetsTot # TP TN Se Sp FAR TPR FAR TPR FAR TPR

Survey 1 100 31 31 30 99 0.968 0.990 0.350 0.985 0.400 0.995 0.350 0.985
Survey 2 100 7 7 7 93 1.000 0.930 0.350 0.985 0.350 0.985 0.350 0.985
Survey 3 100 3 3 3 97 1.000 0.970 0.350 0.985 0.400 0.995 0.400 0.985
Survey 4 100 2 2 2 92 1.000 0.920 0.350 0.985 0.350 0.985 0.350 0.985
Survey 5 100 1 1 1 99 1.000 0.990 0.500 0.995 0.500 0.995 0.500 0.995
Survey 6 100 2 2 2 99 1.000 0.990 0.350 0.985 0.400 0.995 0.400 0.985
Survey 7 100 10 10 9 99 0.900 0.990 0.350 0.985 0.400 0.995 0.400 0.985
Survey 8 100 3 3 3 100 1.000 1.000 0.400 0.995 0.400 0.995 0.500 0.985
Survey 9 100 1 1 1 99 1.000 0.990 0.500 0.995 0.500 0.995 0.500 0.995
Survey 10 100 1 1 1 97 1.000 0.970 0.400 0.995 0.400 0.995 0.350 0.985
Survey 11 100 10 10 10 98 1.000 0.980 0.350 0.985 0.400 0.995 0.450 0.995
Survey 12 100 3 3 3 99 1.000 0.990 0.400 0.995 0.500 0.995 0.400 0.995
Survey 13 500 202 256 196 484 0.970 0.968 0.350 0.985 0.350 0.985 0.400 0.995

Split Avg 0.988 0.975
Fig. 14. Gannets detected by the convenient detectors: Multiple gannet objects detected
by several detectors (top) and counted only once (bottom).

The number of gannets and the negative images along with the success
rates are presented in Table 3 and Fig. 15 with respect to the surveys.
The detectors selected by the system for each feature extraction tech-
nique are shown in the column titled ‘‘selected parameters for three
techniques’’ of Table 3 regarding each survey. For instance, the values
FAR = 0.350 and TPR = 0.985 for survey 1 correspond to the four
detectors, namely, 0.35–0.985-North.xml, 0.35–0.985-East.xml, 0.35–
0.985-South.xml, and 0.35–0.985-West.xml determined for the Haar
technique.

The large images with gannets that were not detected as posi-
tive are presented in our technical report — MarineObjects_Gannet_
14
Fig. 15. Visualisation of Se and Sp results of the surveys in Table 3 for splitting images
into positive and negative categories.

Supplement_4.pdf in the supplementary materials. Additionally, the
blank images with no gannets that were detected as positive are pre-
sented in our technical report — MarineObjects_Gannet_Supplement_
5.pdf as well. The average Se of the system concerning the Se results of
13 surveys based on the number of images (i.e., the column titled Se
in Table 3) is 0.988. The average Sp of the system concerning the Sp
results of 13 surveys based on the number of images (i.e., the column
titled Sp in Table 3) is 0.975.

Se – correctly-detected-positive-images/all-positive-images –
shows the power of the techniques used in the paper in giving assurance
that if an image is tagged as a positive image, with at least one bird,
that image most probably comprises at least one bird with a belief, an
average confidence level of 0.988. In other words, we can conclude
that there is a chance that this image does not comprise a bird with
an average confidence level of 0.012, which is significantly low in
a sense of showing high confidence when a decision is given about
an image that is determined as ‘‘positive’’. How the splitting process
is implemented successfully can be noticed in Table 3 in the column
‘‘TP’’ compared to the column ‘‘Positive Images’’. Almost all positive
images with birds are placed in the positive folder for further processing
(e.g., counting). This success is clearer in Survey 13 with many negative
images and positive images with multiple targeted objects. On the other
hand, Sp – correctly-detected-negative-images/all-negative-images –
shows the power of the techniques in giving assurance that if an image
is tagged as a negative image, that image most probably comprises no
bird with a belief, an average confidence level of 0.975. In other words,
we can conclude that there is a chance that this image is not a bird-free
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Fig. 16. Examples of gannet objects in whole images not detected by the trained classifiers.
image with an average confidence level of 0.025, which is significantly
low in a sense of showing high confidence when a decision is given
about an image that is determined as ‘‘negative’’.

6.2. Results for phase 2: counting

The last survey – Survey 13 – in Table 3 was used to evaluate the
viability of the object recognition and counting phase (Fig. 4III). The
reason for selecting this survey is that it is the largest survey and has
multiple gannets in some of the images, which can help quantify the
obtained results more realistically with less bias. The detectors with the
parameters of 0.40–0.995, 0.45–0.995, and 0.40–0.985 were selected
respectively for Haar, LBP, and HOG techniques by the recursive RL
technique. These parameters are bigger than the parameters selected
by the RL algorithm in phase 1 (i.e., splitting with 0.35–0.985, 0.35–
0.985, and 0.40–0.995) as explained in Section 5.2.1. This shows that
15
different detectors may be chosen for different purposes (i.e., splitting
and counting) by the same recursive RL technique using two different
approaches to realise the two different objectives, higher Sp with a high
level of splitting and higher Se with a high level of object detection
respectively. 248 objects out of 256 objects in 202 images were tagged
as positive successfully resulting in a Se value of 0.968 which is 0.976
during the splitting phase regarding the number of objects. 6 objects
are missed during the splitting phase within 6 different positive images
(Table 3) and 2 objects within 2 different images are missed here during
the counting phase. The two objects not detected by the application
are shown in Fig. 16. The difference in Se, i.e., 0.08 (0.976–0.968), is
not found to be significant (p > 0.01 using the statistical paired t-test).
Se – correctly-detected-positive-objects/all-positive-objects – shows the
power of the techniques used in the paper in giving assurance that if
an object is tagged as a positive gannet, that object most probably is a
gannet with a belief, a confidence level of 0.968. In other words, we
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Fig. 17. Performance of the counting phase with respect to splitting regarding Survey
13 presented in Table 3.

can conclude that there is a chance that this object is not a gannet with
a confidence level of 0.032, which is significantly low in a sense of
showing high confidence when a decision is given about an object that
is determined as ‘‘positive’’.

On the other hand, it could be highly informative to compare
the results between the splitting and counting phases based on the
number of images rather than the number of objects for assessing how
the counting phase is performing in further splitting, particularly, in
handling the imbalanced data. 194 images out of 202 images were
tagged as positive successfully resulting in a Se value of 0.960 which is
0.970 during the splitting phase. 6 positive images are missed during
the splitting phase (Table 3) and 2 positive images are missed here
during the counting phase. The difference in Se, is not found to be
significant (p > 0.01, i.e., 0.1578). There were 4 FPs where waves
were shaped similarly to the shape of gannets in the snags included
in the training process. 496 out of 500 negative images are detected
correctly as TN after the counting process whereas it is 484 during
the splitting phase for survey 13 (Table 3). This results in a Sp value
f 0.992 whereas it is 0.968 during the splitting phase based on the
umber of images. The difference, 0.024 (0.992–0.968), was found to
e statistically significant (p < 0.01, i.e., 0.0005015) considering the
umber of negative images, i.e., 500, using the statistical paired t-test.
he reduction of FP regarding the increased Sp is highly important,
articularly for the surveys that are comprised of a great majority
f bird-free negative images (e.g., >%95) leading to imbalanced data
istribution and bias on the obtained results as elaborated above in
ection 5. Moreover, Pr is increased slightly from the splitting Pr, 0.925

(TP / (TP + FP) = 196 / (196 + 16) = 0.925), to the counting Pr, 0.980
(196 / (196 + 4)) based on the number of images, which is statistically
significant (p < 0.01). Finally, overall Acc rises from 0.969 ((196 +
484) / (202 + 500)) to 0.985 ((196 + 496) / (202 + 500)) based on
he number of images, which is statistically significant (p < 0.01) as
ell. The results are presented in Fig. 17 for better visualisation. To

ummarise, the techniques used during the counting phase provide (i) a
uccessful way of object detection leading to counting objects correctly,
nd (ii) further successful splitting leading to discarding the FP images
ubstantially as well. The high value of Pr indicates that there is still

large room to perform CSA by which Se can be increased while
ompromising Pr slightly if Se, resulting from the minority positive
lass, is not deemed as satisfactory (<%95 for our research) due to the

imbalanced data class distribution that may cause unreliable results.
These outcomes demonstrate that the two phases of using ensemble
techniques proposed in this study can work successfully in perform-
ing the offshore bird censuses even without needing to perform CSA
(Section 5) and most importantly, the proposed approaches can be
generalised to the automated counting of broader species.

A comprehensive field test with a completely new survey has not
yet been completed. The system was validated by two field experts
from APEM using a completely new evaluation dataset with a decent
16

number of example species (i.e., 20 positive images with 21 gannets
and 500 negative images (Fig. 4IV) taken from other recent surveys
at the end of the project at the UCLan Intelligent Systems Laboratory
before a comprehensive field survey is conducted using the established
system in this study. There was a single juvenile gannet in this dataset
and this was not detected as positive where all other gannets (i.e., 21)
were detected correctly without missing a single one and without
producing any FP by excluding other types of flying birds such as
terns (i.e., 2 terns) and shearwaters (i.e., 11 shearwaters) as TN. The
reason for not detecting this juvenile gannet is that the features of
the juvenile gannets seem significantly different from their mature
ones, e.g., first-year juvenile gannets are almost black, and subsequent
sub-adult plumages show increasing amounts of white (SeabirdCentre,
2017). It is noteworthy to mention that there were no juvenile gannets
either in our training nugget dataset or in our surveys. We suggest the
construction of new classifiers specific to juvenile gannets to increase
the chance of their detection. The correct labelling of the other images
with other types of species (e.g., terns and shearwaters) as TN indi-
cates that the classifiers established for gannets perform perfectly for
detecting gannets as anticipated, and particular classifiers need to be
established for the other species as mentioned in Sections 4.2.1–4.2.3
to identify them. This outcome confirms that the designed techniques
in this research enable the automated classification of multispecies and
counting them since every targeted species has its particular classifiers.

7. Discussion

Prevention of regional and global extinction of species during indus-
trial developments and environmental changes (e.g., climate change,
habitat loss with rapid urbanisation and coastal disturbance, toxic
pesticide use) is a social responsibility from a conservationist point of
view. In this sense, a species whose population is in decline needs to be
identified urgently and should be protected with higher priority before
it is too late. Data science is considered by Gibert et al. (2018) as the
multidisciplinary field that combines data analysis with data processing
methods and domain expertise, transforming data into understandable
and actionable knowledge relevant to informed decision-making. In-
terdisciplinary efforts will help precipitate the shift towards increased
use of computer-automated aerial photographic species census tech-
niques (Chabot & Francis, 2016). Within this context, this study by
bringing domain expertise and data scientists together in a fruitful
collaborative team aims to develop a novel environmental platform
for monitoring the marine ecosystem and performing bio censuses
in an automated manner at regular intervals to track changes in a
particular species population. Birds are sensitive indicators of biological
richness, environmental health, ecosystem integrity, and environmental
trends and fulfil many key ecological functions; they contribute to
our understanding of natural processes (Bibby et al., 1998; Burger &
Gochfeld, 2004; Morelli, 2015). Extinction of the passenger pigeon
(Ectopistes migratorius), once likely the most numerous bird on the
planet, provides a poignant reminder that even abundant species can
go extinct rapidly (Rosenberg et al., 2019). Continuously, automated
monitoring of species is of paramount importance which requires the
use of advanced tools equipped with effective intelligent surveillance
techniques. In this sense, a new non-parametric platform composed of
an ensemble of supervised ML and RL techniques, WILDetect, is built
to segment, split and count maritime species, in particular, birds for
performing automated censuses in a highly dynamic maritime envi-
ronment. Typically, parameter selection to mitigate the variations in
datasets and obtain the best possible outcome in an intelligent au-
tonomous system are carried out by users based on several predictions
and trials and the success rates of the systems are highly associated with
the wisdom of this assumption and implementation of trials correctly,
which is a non-trivial task, specifically for ordinary users. Furthermore,
there is no single best approach that suits every type of problem

space based on the changing characteristics of datasets (e.g., quantity,
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quality, attributes) and many other environmental dynamics (e.g., dif-
ferent seasons and time zones, different weather conditions, different
settings and types of image-capturing technologies). It can be concluded
based on the preliminary tests, as elaborated in Section 4.1, and the
current research attempts in the literature to count species and classify
multispecies, as elaborated in Sections Section 2, that (i) there is
no computer-automated study that analyses datasets of small species
acquired from the photogrammetry settings using small aeroplanes
to survey very large areas in shorter times compared to the other
on-ground, ships or UAS platforms, (ii) The most popular learning tech-
nique, the so-called DNN, yield the precision values ranging from 60%
to 97.66% for bird detection using the aforementioned platforms, (iii)
Large data samples with distinctive features (e.g., species that contrast
distinctively from image backgrounds) may result in high accuracy
rates in using DNN, (iv) The inner states of the DNN approaches are ac-
cepted as black boxes by the research community and these approaches
do not let the researchers intervene in their inner states which may
help increase their efficacy if they do not produce desired outcomes, (v)
The misclassification of multispecies is high using DNN and clustering
techniques if data instances in different groups resemble each other too
closely as seen in bird species. In the proposed intelligent platform –
within a dynamic approach that adjust its parameters according to the
features of targeted objects, their background and the targeted accuracy
rate – the best possible parameters, resulting in the best outcome,
are chosen by the platform itself through the automated selection of
pre-trained models, in which the parameters are instilled, using the
user-model-data interaction solution that is implemented within a new
recursive RL technique for mitigating the highly dynamic character-
istics of the maritime ecosystem as well as the concerns mentioned
with the aforementioned approaches. Additionally, the use of multiple
trained models at a time, focusing on different features, ensures a high
accuracy rate where one of the other two detectors/models can detect
an object if it is missed by the other detector/model in use as elaborated
in Section 4.2.2.

The validation of the platform, as summarised in Fig. 4, has been
performed on several aerial maritime domains resulting in successful
empirical evidence for the viability of the model. During the splitting
phase, a positive image is most likely to be placed in a positive folder
if there are several targeted objects in that image. Strictly speaking,
there is a very high probability that one of the objects in an image will
be detected by at least one of the three techniques using 12 detectors
regarding the orientation of the objects during the splitting phase.
Therefore, the more targeted objects in images, the higher the success
rate of splitting. We would like to emphasise that the success rates are
very high even though there is mostly only one gannet object in images
in the surveys in this study (Table 3 and Fig. 15). The main reason
for not detecting 2 of the gannet objects depicted in Fig. 16 in the
second phase (i.e., recognition and counting) is that one of them does
not look like the shape of a gannet in the training set, because, it is in
the diving position, while the other one was not detected because of the
very complex background texture behind the gannet. The training snag
set should have more similar object types to be able to represent the
real-world better and in this way, these types of objects are not missed
by the trained detectors.

The trained files established for the gannets do not detect other
types of birds as TP, such as common gulls, shearwaters, or terns.
Therefore, if the objective is to count other types of birds as well, all
bird types should be trained independently as explained in Section 4.2.2
to increase the accuracy of the system. In this way, the classification of
other bird species becomes possible using the specific classifiers trained
for these types of species. The methodology developed for the detection,
splitting, and counting of birds, particularly gannets, in large-scale
aerial images may be used for the UK marine gannet census since the
most important nesting ground for northern gannets is in the UK with
about half of the world’s population (55.6%) (JNCC, 2015). Further-
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more, multiple types of species of interest can be classified and counted
at once using the methodology (as concluded in Section 6.2) with the
multiple classifiers that can be obtained as explained in Section 4. It
is worth mentioning that the methodology can be expandable with
more feature extraction techniques in addition to the feature extraction
techniques (i.e., Haar, LBP, and HOG) that we employ in this study.

Given the current pace of global environmental change, quantifying
change in species abundances is essential to assess ecosystem impacts.
Evaluating the magnitude of declines requires effective long-term mon-
itoring of population sizes and trends, data that are rarely available for
most species (Rosenberg et al., 2019). Models perform better as they are
attributed to the results of more realistic/recent-data analysis on par-
ticular domains. With the proposed platform, current labour-intensive
and costly censuses of species conducted in longer time intervals can
be replaced with cost-effective and more robustly automated comput-
erised systems and can be repeated in an automated manner at regular
intervals. Hence, cycles of the census can be conducted more frequently
in shorter intervals over time, and incorporation of near-real-time
results along with the prior results (e.g., population fluctuations) at-
tributed to shorter intervals into these models paves the way for
developing more effective ecological environmental models with real-
istic data trends and future projections. This, in turn, can boost the
decision-making and prediction abilities of these data-driven simulation
models, particularly, about the ecological footprint of human activities
on the environment, specifically, on areas/offshores that are being
turned into industrial zones, for both assessing the likely impact of
the industrial developments on nature (e.g., habitat associations) and
constraining/alleviating their potential damaging effects.

8. Conclusions and future work

Advanced tools, enabling effective monitoring of species, are needed
to observe and predict the likely effects of environmental changes on
species, mostly caused by indispensable industrial developments to
take urgent proper actions, e.g., rebuilding natural habitats to main-
tain/increase species counts. Birds have been demonstrated to serve
as good indicators of biodiversity and environmental change and as
such can be used to make strategic conservation planning decisions for
the wider environment (Bibby et al., 1998). Based on the literature
reviewed in Chabot and Francis (2016), a major shift to computer-
automated aerial photographic bird censusing is not yet underway
and investigators are encouraged to study for potential approaches to
automate animal detection and enumeration in aerial images. In this
study, a novel supervised ML platform supported by a new recursive
RL approach using several off-the-shelf feature extraction techniques
and a matching algorithm were developed to conduct marine bird
censuses in an automated manner. In the proposed approach, the
uncertainties within a highly dynamic maritime environment and in-
consistencies/variations in the characteristics of datasets attributed to
the diverse sets of image-capturing technologies used in the maritime
ecosystem have been mitigated using the recursive RL technique with
the user-model-data interaction. In this technique, the most available
parameters based on the characteristics of the dataset to be anal-
ysed are selected within the platform by the direction of the user at
the start of the analysis to result in the best possible outcome. In
this way, the developed approach adapts itself to the characteristics
of the dataset concerning targeted objects and background and the
environmental dynamics, which leads to resulting a desired solution
to the current problem space in hand. The methodology has been
evaluated and validated by field experts using several surveys and
datasets that are independent of the dataset used in the training phase
as outlined in Fig. 4. Experimental results on many aerial surveys
demonstrate that the proposed methodology is effective and efficient
in the detection and segmentation of targeted objects in the maritime
ecosystem. The efficacy of the proposed approach can be increased as

the techniques are trained with larger datasets for particular species.
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The outcome of the study is expected to benefit the entire environ-
mental modelling community. In particular, the proposed techniques
can shed light on similar object detection implementations in finding
the best possible parameters for analysis in an automated manner
by employing the user-model-data interaction solution. Moreover, the
platform can be employed to detect all types of birds after these species
are pre-processed and trained, as mentioned in Sections 4.2.1–4.2.3.
The outcomes elaborated in Section 6 demonstrate that the proposed
approaches can be generalised to the automated counting of a broader
number of species in a given area and these automated approaches can
help track population changes of particular species at different specific
locations on a regular basis with a true picture. Strictly speaking, it can
be primarily deployed by environmentalists, researchers, authorities,
and policymakers to monitor the marine ecosystem for fulfilling their
goals effectively.

Within a holistic view, we aim to study other bird species and
other marine species (e.g., turtles) as well as man-made maritime ob-
jects (Kuru et al., 2022) to be able to observe the bio marine ecosystem
with the possible environmental footprint in the short, mid, and long-
term. Moreover, the automatic classification of maritime ecosystems
based on a variety of species will be in our future plans to support
all types of environmental models with near-real-time information with
multiple species.

9. Limitations of the study

The established environmental platform can work for other bird
species, but using the specific detectors that can be trained for each
species as explained in Sections 4.2.1 and 4.2.2. The higher the qual-
ity of the datasets representing the real environment, the higher the
accuracy rates. We aim to share our results with other papers about
our ongoing research on multispecies census of other species such as
shearwaters, terns, gulls, scooters, fulmars.
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