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ABSTRACT

Aims. The origin and evolution of the magnetic helicity in the solar corona are not well understood. For instance, the magnetic helicity
of an active region is often about 1042 Mx2 (1026 Wb2), but the observed processes whereby it is thought to be injected into the corona
do not yet provide an accurate estimate of the resulting magnetic helicity budget or time evolution. The variation in magnetic helicity
is important for understanding the physics of flares, coronal mass ejections, and their associated magnetic clouds. To shed light on
this topic, we investigate here the changes in magnetic helicity due to electric currents in the corona for a single twisted flux tube that
may model characteristic coronal structures such as active region filaments, sigmoids, or coronal loops.
Methods. For a bipolar photospheric magnetic field and several distributions of current, we extrapolated the coronal field as a nonlinear
force-free field. We then computed the relative magnetic helicity, as well as the self and mutual helicities.
Results. Starting from a magnetic configuration with a moderate amount of current, the amount of magnetic helicity can increase by
2 orders of magnitude when the maximum current strength is increased by a factor of 2. The high sensitivity of magnetic helicity to
the current density can partially explain discrepancies between measured values on the photosphere, in the corona, and in magnetic
clouds. Our conclusion is that the magnetic helicity strongly depends on both the strength of the current density and also on its
distribution.
Conclusions. Only improved measurements of current density at the photospheric level will advance our knowledge of the magnetic
helicity content in the solar atmosphere.
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1. Introduction

Magnetic helicity is an important quantity in the physics of erup-
tive events occurring in the solar corona. Active region fila-
ments and sigmoids have been observed and modelled as twisted
flux bundles (Rust & Kumar 1996; Aulanier & Démoulin 1998;
Canfield et al. 1999; Aulanier et al. 1999; Régnier et al. 2002;
Gibson et al. 2002; Régnier & Amari 2004; Török & Kliem
2003). Magnetic helicity is also thought to play an important role
in the formation of filaments (e.g., Mackay et al. 1997; Mackay
& van Ballegooijen 2005) and possibly in coronal heating (e.g.,
Heyvaerts & Priest 1984; Priest 1999). The instability of coro-
nal structures is related to the amount of helicity stored in the
magnetic field and the possible transfer of twist to writhe or self
helicity from mutual helicity.

Nevertheless, only proxies of the magnetic helicity have
been used to estimate the twist of magnetic structures. In
Leamon et al. (2004), the linear force-free parameter α was de-
rived as a proxy for the twist of coronal structures observed
in X-rays based on the thin flux tube approximation. The twist
values of the coronal structures and of the associated magnetic
clouds are inconsistent, suggesting that the propagation of coro-
nal mass ejections (CMEs) in the corona involves a transfer be-
tween the mutual helicity of the overlying field and the self he-
licity of the flux rope. Based on a linear force-free assumption,
Démoulin et al. (2002) have shown that the helicity of magnetic
clouds is comparable to the end-to-end helicity of the twisted
bundle formed in the associated active region. This suggests

that the helicity is more likely to be injected through the pho-
tosphere by flux emergence or localized magnetic field motions
(see also Chae 2001; Kusano et al. 2002; Welsch & Longcope
2003; Magara & Longcope 2003; Longcope et al. 2007). The
helicity injection processes play a key role in the long-term evo-
lution of solar magnetic field (e.g., Yeates et al. 2008). The
helicity of magnetic clouds, however, is often found to be one
or two orders of magnitude greater than the estimated coronal
helicity. In this Letter, we model coronal structures by a single
twisted flux tube with several distributions of current density and
study the variations in the helicity content due to an increase in
current density.

In reconstructed magnetic fields, the magnetic energy in-
creases when the current density is increased; however, we can
only inject a finite amount of current into a finite domain of com-
putation. An upper limit of the amount of free magnetic energy is
given by the Aly-Sturrock (AS) limit (Aly 1984; Sturrock 1991)
stating that, for a magnetic field strength decaying fast enough
at infinity in the half space above the photosphere, the magnetic
energy of the open magnetic field is the least upper bound of
the magnetic energy of a force-free field. Thus, the magnetic he-
licity that can be injected into a magnetic configuration is also
bounded. The magnetic energy of the open field configuration
is about twice the magnetic energy of the potential field (e.g.,
Amari et al. 2000). Both the potential field energy and open field
energy depend of the total unsigned flux magnetic field through
the surface. In a finite domain of computation as is the case for
magnetic field extrapolations, the AS limit is used to check the
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validity of a magnetic configuration, therefore the extrapolated
configuration is considered valid when the magnetic energy of
the force-free field is lower than the magnetic energy of the open
field. This condition is true when closed boundary conditions are
used to derive the nonlinear force-free field.

2. Magnetic field and current distributions

The first step in order to derive the magnetic helicity content in
the corona is to compute the 3D magnetic field in a finite volume.
We assume that the coronal magnetic field is described well by
a nonlinear force-free field satisfying the following equations:
∇ ∧ B = αB, where α is the force-free function depending on
the position, and B · ∇α = 0, which implies that α is a constant
along a given field line. The magnetic field also has to satisfy the
solenoidal condition (∇ · B = 0). We solve this problem in ac-
cordance with the method developed by Grad & Rubin (1958).
Following Sakurai (1981), the boundary conditions for solving
this set of equations as a mathematically well-posed boundary
problem are the vertical component of the magnetic field every-
where on the surface δΩ, and the distribution of α in one cho-
sen polarity on δΩ±. We use the numerical scheme developed
by Amari et al. (1997; 1999), which was successfully applied to
solar active regions by Régnier et al. (2002, 2004, 2006) by qual-
itatively comparing the computed field lines to multi-wavelength
observations. It is important to note that we use closed boundary
conditions on the sides of the computational box, different from
the bottom boundary, which are compatible with the boundary
conditions used to derive the helicity integrals (see Sect. 3).

The second step is to define the appropriate boundary con-
ditions on the bottom boundary: the vertical magnetic field on
the surface and the distribution of the force-free function α in
one chosen polarity. As depicted in Fig. 1 left, the vertical mag-
netic field on the bottom boundary is a bipolar field embedded
in a large field-of-view in order to minimise the influence of
the boundaries on the magnetic field configurations. The vertical
magnetic field component Bz is described by a Gaussian distri-
bution (see Fig. 1a) with a maximum field strength of 2000 G
and a full-width at half-maximum (FWHM) of about 15 Mm.
The field-of-view is 150 × 150 Mm2 with a spatial resolu-
tion of 1 Mm. The peak-to-peak separation of the polarities is
about 30 Mm.

The vertical current distributions are defined in the positive
polarity as follows:

– Constant: α is a constant (see Fig. 1b) corresponding to
a linear force-free field. The current distribution is then a
Gaussian distribution with the same FWHM as Bz and a max-
imum current density strength Jz0.

– Divided: the distribution is defined from a Hermite polyno-
mial of 1st order dividing the polarity into a negative and a
positive part (see Fig. 1c):

Jz(r) = 2 Jz0 r exp

(
− r2

σ2

)
, (1)

where r is the distance from the centre of the polarity. The
current density flux through the positive polarity at the bot-
tom boundary is then balanced. A free parameter of the cur-
rent distribution is the angle θ between the polarity inver-
sion line (PIL) and the current inversion line (CIL) in the
positive polarity. We have chosen θ = 0 (with the negative
currents towards the PIL) such that the magnetic energy is
maximised.

(a) (b)

(c) (d)

Fig. 1. Left: distribution of the vertical component of the magnetic field
on the bottom boundary. The polarities are defined as Gaussian distribu-
tions with the same maximum strength in absolute value and the same
FWHM. The field-of-view is 150 × 150 Mm2. The negative (positive)
polarity is black (white). Right: a) vertical magnetic field component
in the positive polarity; b) Gaussian distribution of the vertical current
corresponding to a constant α field; c) divided distribution of current;
d) ring distribution of current.

– Ring: the vertical current density is defined as a Hermite
polynomial of 2nd order in 1D:

Jz(r) = 2 Jz0 (r2 −C0) exp

(
− r2

σ2

)
(2)

where r is the distance from the centre of the polarity. A typ-
ical ring distribution is plotted in Fig. 1d with negative cur-
rents in the central region surrounded by positive currents.
The constant C0 is such that the vertical current density in
the positive polarity is balanced.

3. Helicity measurements

3.1. Magnetic helicities

The magnetic helicity describes the complexity of the field in
terms of its topology, connectivity or braiding, and it is a mea-
sure of both the twist of field lines around the flux bundle axis
and writhe of the axis itself (Berger 1999). The magnetic helicity
is a conserved quantity in ideal MHD for a volume bounded by a
surface on which the normal field component is fixed. However,
the magnetic helicity is not conserved whilst modelling the so-
lar corona above the photosphere since helicity may be injected
from below the photosphere into the corona (e.g., Régnier &
Canfield 2006) or it may be expelled in magnetic clouds during
CMEs into the interplanetary medium.

The magnetic helicity is defined as follows:

Hm(B) =
∫
Ω

A · B dΩ (3)

for a magnetic field B and its vector potential A in a volume Ω.
The vector potential is not defined uniquely but depends on a
gauge. Here we use a gauge-free expression of the magnetic he-
licity due to Berger & Field (1984) and called the relative mag-
netic helicity

ΔHm(B, Bpot) =
∫
Ω

(A − Apot) · (B + Bpot) dΩ, (4)

where B and A describe the magnetic field of the configuration,
and, Bpot and Apot describe a reference field taken to be the po-
tential field. We use the same boundary conditions as for the
universal helicity formula derived by Hornig (2006).
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Following Berger (1999), we define the self and mutual he-
licities as

Hself(Bcl) =
∫
Ω

Acl · Bcl dΩ (5)

and

Hmut(Bpot, Bcl) = 2
∫
Ω

Apot · Bcl dΩ (6)

when the field B can be decomposed into two fields, the refer-
ence field Bpot and the closed field Bcl. The boundary conditions
are explained in Régnier et al. (2005) and they are the same as
used to compute the nonlinear force-free field in this experiment.

We note that those definitions of self and mutual helicities
are different from the recent definitions given by Longcope &
Malanushenko (2008). In the solar context, the self and mu-
tual helicities as derived by Berger (1999) have been defined
in Régnier et al. (2005) from measurements based on simple
configurations and observed active regions. The self helicity is
a measure of the twist and writhe of flux bundles confined in the
coronal volume. The mutual helicity characterises the crossing
of field lines and the large-scale twist.

3.2. Helicities vs. current

We now compute the nonlinear force-free field in the corona
for the three different distributions of current, and we study the
changes in the magnetic configurations caused by an increase in
the maximum vertical current strength Jz0. In a forthcoming pa-
per, we will extensively study the changes in the geometry of
field lines, the magnetic connectivity, and the magnetic energy
budget. In this Letter, we focus our study on the changes in the
magnetic helicity content of the bipolar field for the three dif-
ferent current distributions described in Sect. 2. The maximum
current strength ranges from 0 to 24 mA m−2. We first plot the to-
tal unsigned current insideΩ as a function of Jz0 in Fig. 2 for the
three current distributions. In Fig. 3, the self and mutual helici-
ties are the blue and green curves, respectively, whilst the total
relative magnetic helicity is the red curve. We also indicate the
AS limit when the magnetic energy of the nonlinear force-free
field is 1.7 times the magnetic energy of the potential field, cor-
responding to the magnetic energy computed for the open field.
This upper limit gives Jz0 = 6.6 mA m−2 for the constant distri-
bution, 13.6 mA m−2 for the divided distribution. For this range
of Jz0 values, there is no upper limit for the ring distribution,
which indeed corresponds to a twisted flux bundle confined by
return currents.

The magnetic helicities have a positive sign, except for the
relative magnetic helicity of the ring distribution below Jz0 =
5 mA m−2 (see Fig. 3c). From these computations, the mutual
helicity values are most sensitive to the existence of an upper
bound for the magnetic energy. For the constant and divided dis-
tributions (see Figs. 3a,b), the behaviour of the mutual helicity
is strongly modified above the AS limit, whilst we get a smooth
curve of mutual helicity for the ring distribution.

For all of the imposed current distributions, the magnetic
helicity of the bipolar field is dominated by the self helicity,
and thus the configurations are twisted flux tubes confined in a
small domain of the computational box according to the defini-
tion given in Régnier et al. (2005). The helicity values vary from
1038 to 1042 G2 cm4 for the constant and divided distributions,
from 1037 to 1041 G2 cm4 for the ring distributions. The ring dis-
tribution tends to reduce the amount of magnetic helicity stored

Fig. 2. Total unsigned current (A m) inside the computational volume as
a function of the current density Jz0 for a constant distribution (dashed
line), a divided distribution (dot-dashed line), and a ring distribution
(solid line).

in the confined twisted flux tube. The relative and self helicities
show an exponential growth with increasing current density (lin-
ear trend in Fig. 3). For moderate values of the current density,
these helicities vary by more than 1 order of magnitude when the
current density Jz0 is multiplied by a factor of 2. For high values
of Jz0, a plateau exists for all helicities. This suggests that insta-
bilities such as kink instability can develop when the maximum
helicity is reached inside the twisted flux bundle. The increase
in magnetic helicity as a function of the total current is reduced
compared to the evolution with respect to Jz0, but it is still sig-
nificant depending on the distribution of Jz.

4. Discussion and conclusions

By modelling coronal magnetic structures by a bipolar field con-
taining a single twisted flux tube, we have demonstrated that
the magnetic helicity can vary by more than an order of mag-
nitude when the current density is increased by a factor of 2.
This shows that the departure from the potential field state has
important consequences on the amount of magnetic helicity that
can be stored in the corona, and therefore on the helicity content
expelled during CMEs.

In terms of magnetic field modelling, we have shown that
the behaviour of the magnetic helicity in a nonlinear force-free
field strongly depends on the chosen distribution of current. If
we inject a large amount of current density within the ring distri-
bution, the magnetic helicity values are one order of magnitude
lower than for the divided distribution as the twisted flux tube
remains confined to a small fraction of the coronal volume. This
is caused by the existence of return currents at the edges of the
twisted flux bundle, whilst for the constant and divided current
distributions, the field lines can expand towards the boundaries.

In terms of observation, the vertical current density is de-
duced from vector magnetic field measurements in the photo-

sphere (or in the chromosphere): Jphot
z = 1

μ0

(
∂Bphot
y

∂x − ∂B
phot
x
∂y

)
. The

uncertainties on the vertical current density strongly depend on
the noise level of the transverse field components inverted from
spectropolarimetric observations. From the above conclusions,
it is worth noticing that magnetic helicity values in the corona
obtained from photospheric observations have to be considered
with caution as a small error on the measurement of the field
components can dramatically change the value of the magnetic
helicity. And so to better understand the physics of twisted flux
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(a) (b) (c)

Fig. 3. Relative magnetic helicity (red solid line), self helicity (blue dot-dashed line), and mutual helicity (green dashed line) as a function of the
maximum vertical current density Jz0 from 0 to 24 mA m−2 for a) a constant distribution; b) a divided distribution; c) a ring distribution. The
helicities are expressed in units of 1040 G2 cm4. The straight dashed lines indicate the Aly-Sturrock limit.

bundles in the corona, it is important to improve the polarimet-
ric resolution to increase the signal-to-noise ratio on the trans-
verse field components and to increase the spatial resolution to
resolve the current which is distributed on small scales (e.g.,
Parker 1996). Even if the effects are weaker, these conclusions
also apply to the change in helicity as a function of the total un-
signed current.
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