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Abstract

This research proposes a strategy for reducing the running costs of hybrid microgrids

which include both renewable and conventional power generation. The developed

system uses metaheuristic methods for microgrid optimisation enabling the planning,

maintenance, and effective cost management of the system. The target application

for the research is a typical Nigerian remote rural community, not connected to

any form of centralised power supply with the dwellers of the community practising

peasant farming.

The location for application of the proposed microgrid is first examined to determine

renewable resources available, current power supply source, their behaviour and

electricity consumption patterns, future plans for consumption, and willingness to

purchase electricity if provided. In the absence of smart metering, energy use data

are gathered through questionnaires and the bottom-up approach adopted for hourly

time-step load demand profiles development. Using both end-use and econometric

indices, a ten year load forecast is done with the fifth year forecast employed in

design analysis. These forecast based on real world questionnaire will provide good

resource in real world application.

The Hybrid Microgrid (HMG) system is designed using HOMER to cope with

variability from both weather and unexpected changes in the load, and has photovoltaic

panels, wind turbines, battery storage systems, and a diesel generator in its configuration.

The research compares the effectiveness of three optimization strategies, the

Genetic Algorithms (GA), Particle Swarm Optimisation (PSO), and Simulated Annealing

(SA) by tuning algorithm parameters to improve the speed and quality of solutions.

This is the first time its being used for developing country microgrids.



The HMG optimisation objective is to minimise its operating costs by reducing

the generator running hours. The optimisation is constrained by the requirement

to meet the variable load demand at all times. The results showed PSO had the

lowest diesel generator run hours, a 65.2% reduction in the diesel running hours is

achieved compared to HOMER simulations of the HMG. The adaptability of the

system means that the operator can choose the optimisation strategy based on the

required output.
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STC : Standard test conditions

t : time

T : Temperature

Tamb : Ambient temperature

Tc : Cell temperature

TSTC : Photovoltaic temperature at STC

UNew : Number of new consumers per year

v : Wind speed



vci : Cut-in wind speed

vco : Cut-out wind speed

vr : Rated wind speed

vref : Wind speed at reference height

V : Wind velocity

Vc : Cell voltage output

Vij : Particle velocity

VM : Module voltage

VT : Thermal voltage

w : Inertia coefficient

Xij : Particle position

Xminj, Xmaxj : Minimum and maximum value of the individual in the population



Chapter 1

Introduction

1.1 Background

Typical Nigerian rural communities are inaccessible due to their geographical terrain,

causing difficulty to access both grid electricity and fossil fuels as a result of poor

roads and economic feasibility [1]. These communities are characterised by load

demand, population density, income, and education at low levels. Dwellers in these

communities rely on generators to meet electricity needs, wood fuel, charcoal and

waste for cooking and heating purposes.

However, due to the income levels and inaccessible roads to purchase and transport

fuels, running generators for 24 hours a day is a challenge, also taking into account

the maintenance and fuel costs, amongst other constraints. As a result, candles,

kerosene lanterns, and time spent to fetch woods for cooking and heating activities

are used as substitutes. These rural communities are endowed with Renewable

Energy Resources, RERs, such as solar, wind, small hydro sources of power [2].

Deploying varying RERs mix (onshore wind turbines and solar photovoltaic systems)

can achieve a 100% renewable energy supply by 2050, also reducing harmful gas

emissions [3].

1
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In recent times, countries around the globe continually invest in the growth,

development and deployment of more sustainable RERs to cater for the electricity

and heat demands of their citizens [4]. Ongoing research by government organisations,

parastatals, businesses and academics have looked at the efficient use of RERs,

demand-side energy management, optimised designs and operations as the solution

to shifting complete reliance on the depleting coal/oil reserves and also preserve the

ecosystem.

A single or combination of RERs forms an island microgrid when operating

independently or grid-tied microgrids when connected to the national grid. Microgrids

have proven to be the solution to the relentless shift to clean and sustainable sources

of power generation.

1.2 Motivation

Lack of access to electricity supply limits access to essential life-sustaining facilities

such as clean water, food storage, a comfortable schooling environment, basic health

facilities with power supply and limitations to how much and what kind of businesses

to run.

Nigeria forms 10% of unelectrified Sub- Saharan Africa [5] and the Nigerian grid

system suffers from reliability, blackouts, vandalization, and inefficiencies to meet

its vastly growing population. Renewable energy resource-based microgrids for rural

electrification controlled by its community dwellers could help alleviate the problems

of both the national grid and populace by reducing dependence on the grid, creating

awareness, and also job opportunities to the community members on how to manage

their power plants.

The unpredictable nature of the RERs, which is a drawback to implementing

isolated power systems, gave rise to the mix and combination of the renewable

2
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resources to form the microgrid system design, allowing for reliability, flexibility,

efficiency and cost-effectiveness. It is a challenge designing renewable energy microgrid

systems to account for cost, socio-economic and environmental impacts; as such,

accurate knowledge of the factors that influence the system performance and accurate

modelling is essential to develop the right system. In Nigeria, stand-alone systems

comprising solar or wind or solar and wind technologies are standard in use. In

this research, a system consisting of solar, wind, battery and diesel generator will be

investigated.

For this study, a load demand profile is developed and forecasted, an isolated

microgrid design using Homer Pro design software is carried out. In order to develop

a cost-effective and reliable system that considers load variability, the need for

optimisation of the designed system using metaheuristic optimisation strategies are

employed to manage the system operation.

1.3 Nigerian Energy Scenario

Nigeria’s energy sector in recent years has experienced grid failure and collapse. Since

the privatisation of the electricity sector in 2013 up to 2020, the grid has experienced

grid failure and collapse 84 and 43 times respectively [6]. According to the World

Bank, Nigeria has a yearly population growth rate of 2.5% [7], it generates less than

5 Gigawatts (GW) annually [8]. As a result, insufficient and unreliable electricity

severely constrains its economic growth and development.

In 2019, the Federal Government of Nigeria (FGN) through financing from the

World Bank and the African Development Bank signed an agreement to upgrade

Nigeria’s electricity transmission infrastructure, and supply to 25GW in what is

called the Presidential Power Initiative [6]. The FGN seems to be incapacitated in

handling the issues associated with the grid. Continuous blackout appears to be the

3



1.3. NIGERIAN ENERGY SCENARIO CHAPTER 1. INTRODUCTION

order of the day for the average Nigerian, with individuals sourcing alternatives to

power their homes and businesses.

The privatised generation companies are contractually obligated to increase generation

for each plant over certain years, achieving 6GW of installed capacity. Finally, an

additional 2GW increase will stem from investments by new Independent Power

Producers (IPP). In achieving these goals, the FGN focuses on sustained and established

investment climate for the participation of the private sector, expansion of the

transmission and distribution networks to meet customers power needs, establishing

cost-reflective tariffs, sustaining a creditworthy off-taker of electricity, and reducing

inefficiency in support of affordable end-user tariffs.

As at early 2015, the FGN in accordance with established contracts, instructed

the electricity market to operate, including the Power Purchase Agreements for

generators and Vesting Contracts for the delivery of power to distribution companies.

All market members had to pay or receive for what they receive from or supply to

the system, which is a crucial stride to gaining investor confidence in the sector.

Also, The Renewable Energy Master Plan (REMP), seeks to improve on the

supply from RERs from 13% of total power generation in 2015 to 23% in 2025

and 36% by 2030. With RER accounting for 10% of the country’s total power

consumption by 2025.

The Plan also considers installed capacity targets for some RERs as follows [9]:

• Solar PV: 0.5GW by 2025.

• Windpower: 40MW for wind energy by 2025.

• Smallhydro: 0.6GW in 2015 and 2GW by 2025.

• Biomass power plants: 50MW in 2015 and 0.4GW by 2025.
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1.4 Nigerias’ Policies on Microgrid

Microgrid is a new concept developed to bring out the tremendous potential of

distributed generation into the mainstream power sector. It is considered an extension

of a distributed generation because of its composition, which comprises different

distributed generator sources, both renewable and non-renewable.

Microgrids are a localised grouping of electricity generation, energy storage,

energy control and conversion, energy monitoring and management, and load management

tools, which can operate while connected to the traditional power grid or function

independently. The concept of microgrid is referred to as a single electrical power

subsystem associated with a small number of distributed energy resources, both

renewable and conventional sources, including photovoltaic, energy storage systems,

wind power, hydro, internal combustion engine, and gas turbine together with a

cluster of loads [10]. For some, microgrid holds the promise of becoming the basic

building block in implementing the next-generation intelligent grid infrastructure.

However, like most new technologies, there are significant implementation challenges

to overcome [11].

Microgrid and distributed generation technologies are developing rapidly, and

with the enormous potential of solar resources, these technologies seem to be the

most viable if properly harnessed to meet the increasing need for electrical energy in

Sub-Saharan Africa.

Also according to [12], regulatory bodies and policies are in place to direct

and facilitate loans and grant for microgrid developments in the country. Some

of these bodies include: National Electric Power Policy (NEPP) of 2001, and The

Nigerian Electricity Regulatory Commission’s Mini-Grid Regulation of 2017, Rural

Electrification Agency (REA) is responsible for the coordination and implementation

of rural electrification strategies and activities under the supervision of the Federal

5
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Ministry of Power, Works and Housing (FMPW&H). Further description of the

microgrid supporting policies can be found in the Table 1.1.
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It is expected that with these policies in place, the Microgrid developments,

especially for rural communities, is promoted.

1.4.1 Microgrid Projects in Nigeria

Nigeria is heavily dependent on limited installed available fossil fuel plants for electricity

production. The power utility cannot cope with the increasing electricity demand.

According to the World Bank [7]press release in February 2021, 85 million people of

the Nigerian population are without access to electricity which is about 43% of the

Nigerian population. This invariably makes Nigeria one with the most significant

deficit in energy access across the globe serving as a constraining factor to private

sector growth and development. It is estimated that over 4trillion Naira is spent to

power small scale fuel and diesel generator, amounting to 14GW annually [6].

Presently, the majority of the Nigerian population rely on traditional biomass

and private generator sets such as petrol and diesel generators to meet their daily

electricity demands. However, these generators are costly, expensive to maintain, and

are not environmentally friendly. Most of the population that do not have access

to electricity in 2018 live in the rural areas, accounting for 64% without access.

Due to the poor electrification rate caused by earlier mentioned challenges, some

federal, state government and non-governmental organisations in Nigeria initiated

the microgrid rural electrification initiatives.

Rural dwellers incur some amount of cost implication on energy alternatives and

can pay for microgrid services. Deutsche Gesellschaft für Internationale Zusammenarbeit

(GIZ) estimates that 30 solar microgrids with a total installed capacity of 1MW,

serving 6,000 customers currently are in operation in Nigeria [12]. A movement in

this direction could meet 14% of the Nigerian population if 100kW sites are put in

10,000 more locations by 2023.

8



1.4. NIGERIAS’ POLICIES ON MICROGRID CHAPTER 1. INTRODUCTION

Some of these initiatives gave birth to what is known as the Jigawa State Alternative

Energy Trust Fund and Sokoto State energy research Centre, among others. These

entities have been using RERs, especially photovoltaic (PV) and Small Wind Turbine,

to provide electricity in remote areas. There are a list of pilot PV based and HMG,

projects provided by the government agencies in Nigeria [12]. They have provided

electricity to thousands of people and health care centres in some rural communities

across Nigeria. These projects have slightly improved the national electrification rate

in rural communities, mainly in Northern Nigeria. Other existing projects across the

country include 50kW Angwan Rina, Shendam LGA of Plateau State, 85kW Gbamu

Gbamu, Ijebu East LGA of Ogun State, and 10kW Egbeke, Etche LGA of Rivers

State, amongst others as shown in the Figure 1.1.

Figure 1.1: Existing Microgrid Sites in Nigeria [12]

Installed microgrid in Nigeria caters for an average population of 2,500 persons

living in 300-500 households. Before the inception of microgrids, these community

dwellers who primarily engage in farming and fishing relied on candles, kerosene

lamps, torch-lights, non-cooking energy source generators, and wood fuels as cooking

9



1.5. RENEWABLE ENERGY RESOURCE (RER) AVAILABILITY AND
POTENTIALS IN NIGERIA CHAPTER 1. INTRODUCTION

energy sources. Other commercial activities include welding, grain milling, barbing,

retailing, and cash and food crops. On average, the reflective cost of microgrid tariffs

is near N200/kWh ($0.57/kWh) [13], which is lower than the cost of running a diesel

or petrol generator.

The design of microgrids differ with different applications as they rely on the

resources specific and available to the location of the application. As such, knowledge

of the renewable energy resource available to Nigeria as a whole is presented in the

next section.

1.5 Renewable Energy Resource (RER) Availability

and Potentials in Nigeria

Great potential for RER exists in Nigeria that is yet to be tapped. Some of the

barriers to RER development include the large oil and gas production down south,

the lack of clarity and market information on private government fuel subsidies

and independent sector opportunities, and the knowledge gap concerning financial

support mechanisms available within the country.

With Nigeria crude oil reserves estimated at over 36 billion barrels, natural gas

reserves over 5 trillionm3, and coal and lignite reserves estimated at over 2.5 billion

tons amongst others readily available, it could be difficult switching to RERs, as the

bulk of the populations continuous dependence on oil has only increased since late

the 19th century [13]. Nonetheless, RER can serve as an alternative energy source

to the remnant of the populace not on the national grid. RERs offer possible safe

options for clean and environmentally friendly energy.

Nigeria, endowed with vast amount of RERs, has an average daily global horizontal

solar irradiation ranging from 4.2kWh/m2 in the south to 6.2kWh/m2 in the north,

10
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experiences 5 to 7 hours of daily sun hours on average, and has moderate wind energy

potentials ranging between 2m/s in the coastal areas and 4m/s in northern Nigeria at

10m hub height. Nigeria has an estimated 3.5GW of small hydropower potential, but

only 64.2MW has been exploited, while for large hydropower, an estimated potential

of 11,250MW with 1900MW exploited capacity. Nigeria’s biomass resources include

crops, forage grasses, shrubs and animal wastes with daily production of animal

waste is estimated to be 227,500 tonnes [14].

The world is evolving, adopting and laying emphasis on the use of renewable

energy options as the sure means in attaining energy sustainability and, consequently,

environmental sustainability.

Some prosperous countries engaged in promoting Renewable Energy, such as the

USA, Japan, Denmark, Germany, and China, a solid and long-term commitment

from the government is crucial in realising policies that lead to efficient Renewable

Energy development GoN finds challenging. The Government of Nigeria, GoN is

faced with suboptimal development of RERs primarily and in part due to policies

that are not clear and incentives too weak to attract investors.

About 90% of the Nigeria rural dwellers make use of fuelwood energy. Woodfuel

derived from non-fossil and non-nuclear sources which can be replenished while

harvesting [14].

Nigeria is among the highest producers of greenhouse gas emissions in Africa [15].

They are emitted into the atmosphere when oil companies operating in the country

carry out gas flaring. The Carbon dioxide, CO2 emissions in the country rank as the

second highest in Africa [15].

Environmental degradation, unstable international market oil prices, the social

crisis in the Niger Delta area, where the bulk of Nigeria’s crude oil is extracted,

and global warming makes the choice of alternative energy source unavoidable. The

potential of RER in Nigeria is about 1.5times that of fossil energy resources; in

11
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energy terms. Hydro, solar, biomass and wind have significant potential to improve

and make a difference in the low-level access to electricity in Nigeria.

1.5.1 Solar Energy

Solar energy can be described as the energy gotten from the heat and light rays of the

sun through solar concentrators and photovoltaic cells. It is naturally abundant and

can be harnessed for powering rural communities. Solar energy in rural and remote

areas of Nigeria already serve as an alternative energy source used in drying crops for

preservation. Also, with Nigeria located at the equator, it receives abundant solar

radiation and sunshine [16].

With a 5% solar device conversion efficiency, it is estimated that the beneficial

annual solar energy potential in Nigeria approximates 1.5×1018J , equivalent to 4.11×

1010litres of crude oil, corresponding to the fossil fuel annual production currently

in Nigeria [17]. Consequently, this amounts to 4.2 × 105GWh of annual electricity

production, 26 times the current annual electricity production of 16,000GWh.

Solar energy is a promising RER in Nigeria due to its apparent abundance. The

assumed power potential for solar concentrators and PV power is about 427,000MW

[18]. According to estimates, designating 5% of suitable land in the central and

northern part of Nigeria for solar thermal could provide a theoretical generation

capacity of 42,700MW.

Nigeria has an average of 1.804× 1015kWh of solar energy incident annually on

Nigerias’ land area of 924×103km2 and an average of 5.535kWh/m2/day [19]. Hence,

it implies that 3.7% of Nigeria’s land is required to collect solar energy equivalent to

its available conventional energy reserves.

Solar energy is the primary energy resource driving other RERs such as hydropower,

wind, wave and biomass. Although, current Nigerian installation of solar energy is
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insignificant compared to that of South Africa’s, which already have over 200,000

off-grid PV installations [12], Nigeria is hence developing its capabilities to utilise

solar energy through its National Energy Policy. Part of the challenges to PV

power development can be attributed to ineffective policies in these areas, and GoN

commitment in these directions have brought about minimal results.

1.5.2 Hydroelectric Energy

Nigeria has large water bodies and natural falls, including the Benue and Niger rivers,

amongst others, contributing approximately 16% of the total installed electricity

generation capacity [20]. The total hydropower exploitable in Nigeria is over 14.5GW,

above the current total of approx. 13GW. Potential sites exist for untapped small

hydropower in the country, estimated at 3.5GW, and water bodies comprising dams

and rivers capable of proving 11.2GW exploitable hydropower energy. It follows

that if adequately harnessed, small hydropower can address and offer solutions to

electricity access to environs within these water bodies proximity.

Hydropower is another form of RERs that can supply uninterrupted electricity

as long as their water levels are within range. These water levels can be affected

by times and seasons. The higher the rainfalls, river systems and distribution, the

greater the generation capacity. Annual rainfall is estimated between an excess of

3500mm in the south coastal areas and reduces progressively to 500mm moving to

the extreme Northern part of the country [21].

The Figure 1.2 below shows a representation of the water body distribution, and

potential sites for hydropower exploitation in Nigeria.
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Figure 1.2: Nigeria’s Large and Small Hydopower Potentials [21]

Nigeria faces financial challenges in hydropower development as they involve

significant investment cost as experienced with the Mambilla plateau. Nigeria plans

to increase its hydropower generation by upgrading old hydro plants and installing

new ones to generate up to 5.6GW.

1.5.3 Wind Energy

Wind energy is one of the rapid developing RERs around the world, with Nigeria

having moderate wind energy potential. Figure 1.3, presents the wind speed distribution

in Nigeria. From the figure, it can be inferred that states with wind speeds above

4m/s are considered sites for potential good wind energy exploitation. Many renewable

energy grid projects across the country use predominantly solar energy in their

designs except for a 10MW land base wind energy project in Kastina State. According

to [22], wind energy is not only cheaper and durable, it is does not require high

maintenance and environmentally sound. Nigeria has 33.66% of its land mass having

over 100W/m2wind energy potential.
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The estimated wind energy potential exploitable annually at 10m height is 156MWh/yr

from Yola, Jos and Sokoto. Studies carried out by [4,23], show detailed wind energy

exploitable potential description for 22 selected states across the country at 25m

turbine height and 10m blade diameter. Sokoto ranked the highest state with great

potentials with Minna showing the least exploitable potential.

Wind energy can be harnessed for water pumping at wind speeds between 2.5m/s

- 4.0m/s and electricity generation at wind speeds > 4m/s.

The development of wind energy in Nigeria is yet to grow when compared to

South Africa, which has 30,000 installed systems for water pumping and 3 electricity

generating wind turbine plants on its utility grid. Nigeria needs to improve in this

regard to meet the shortages across the country.

Figure 1.3: Nigeria’s Wind Power Potential [22]

1.5.4 Biomass

Biomass are fuels gotten from organic matter for heating and electricity production.

Forestry, agricultural, industrial, municipal activities form the primary source of
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waste used for biomass production in Nigeria. Considerable potential for biomass

exists in Nigeria as over 70% of the countries land is used for agricultural purposes.

Solid biomass and its waste account for 80% of energy consumed primarily by

Nigerians for heating and cooking, especially among the rural area dwellers to meet

their daily needs [14]. As at 2019, using the GoN data, Nigeria has about 8×102MJ

biomass capacity available. Biomass can serve small industries as fuel sources. Wood

is not only used as fuel; it is used by construction and furniture industries for erecting

electric cables, plywood and paper production, among others. This demand has

resulted in shortfalls in the overall biomass capacity from 9.1× 1012MJ in 1973 [17].

Biogas produced from the fermentation of biomass in anaerobic bacteria.

Dry biomass from shrubs and grasses is estimated to release about 2.28×106MJ

of energy [24]. Because Nigerians consume a large amount of wood fuel for domestic

purposes, about 350,000ha of the country’s natural vegetation and the forest is

consumed annually, also contributing to the shortfall as only 50,000ha annually

afforestation rate is in place to replenish the biomass shortage [25]. Apart from

biomass shortages, environmental effects such as soil erosion and desert encroachment

are consequences of excessive deforestation.

Consequently, solar concentrators can be developed to reduce the dependence on

fuelwood. This will help alleviate the heat waste, preserve the ecosystem, and reduce

cooking time and health effects caused by inhaling fumes from wood burning.

Biomass is an RER, and its conservation requires adequate understanding. Nigeria

is naturally endowed with biomass energy as countries within the equator with similar

weather and vegetation that use municipal waste for paper production, plant residues

for biogas production rather than the use of wood fuel.
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1.5.5 Biogas

Biogas is a combination of the different types of biomass in the gaseous state used

as an energy source for heating, cooling and electricity generation. Nigeria has the

potential to generate 169.5GWh (23.53 billion m3) annual biogas and 88 million

tons/year of biofertilizer [26].

Biogas is an RER and can be employed to replace the use of wood fuel, diesel,

charcoal and the rest. Also, biogas poses no health hazards, no environmental

pollution and burns clean for cooking. Biogas technology is considered feasible in

meeting the cooking energy needs of small households with livestock able to produce

50Kg of animal dung per day (3 cow or 6 pigs) and serve as fermented manure for

plant food.

In Nigeria, agricultural residues are economically feasible for biogas production

though not yet listed among its energy mix. However [27], stipulated that the daily

cooking needs of a house of 9 persons can be adequately met using a 6.0m3 biogas

digester, producing 2.7m3 of biogas in a day at an initial cost of $500 (at current

exchange rate = 190,000Naira), $70 annual expenditure and $160 annual benefit. [27],

in their conclusion, presented an inexpensive project which could be infeasible for

low-income earners dwelling in the rural areas but can be deployed if incentives are

made available to reduce the developments initial cost.

For extensive cooking in prisons, boarding schools, hospitals and households,

biogas offers a potential substitute if subsidised against the use of wood fuel.

More effort needs to be enacted by the GoN to deploy and encourage the use

of single or a combination RERs to generate both electricity and cooking energy

required for daily living, especially for those in remote rural areas.
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1.5.6 Nigeria’s Energy Policies Summarised

The GoN approved the National energy policy in Nigeria in 2003. The policy was

called the National Energy Policy (NEP) to exploit the country’s energy resources,

both fossil and RERs, for sustainable development and active involvement of the

private sectors. The NEP stipulated that [28]:

• increasing the reserve base for crude oil, natural gas exploration and development

to the highest levels possible.

• exploring other options for power generation and continued improvement in

reliable electric power to 75% of the country’s population by 2020.

Nigeria Electric Power Authority (NEPA) now the Power Holding Company of

Nigeria in the energy policy of 2003, encouraged the development of RERs. Table

1.2, shows the plan for every RER from The Energy Commission of Nigeria (ECN)

an agency mandated for developing and promoting RER technologies in Nigeria,

includes the whole energy sector coordination of policies, strategic planning and

performance monitoring. Also, ECN proffers guidelines for using the different energy

types for particular applications and developing recommendations on new RERs.
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Table 1.2: Energy Forms and Policies [31]

Energy Form Policy

Solar Develop the capabilities to utilize solar energy

Wind Develop the capabilities to utilize wind energy

Biomass Promote biomass as an alternative energy source

Woodfuel Promote the use of alternative energy source to
fuelwood De-emphasize fuelwood as part of the

nation’s energy mix

Hydropower Promoting rural electrification through SHP, Fully
harness the hydropower potential through

environmentally friendly means and through the
private sector

Other RERs Will remain interested in other emerging energy
sources.

RERs are, therefore, a component of ECNs mandate. The policy’s elements of

significance in the development and utilization of RERs and their technologies are

as follows [29]:

• to develop, promote and harness the RERs of Nigeria and incorporate all viable

ones in the national energy mix,

• to promote decentralized energy supple (microgrids), especially in rural areas,

based on RERs,

• to discourage the use of woodfuel and promote efficient use of biomass energy,

• to follow up on the international development in RER technologies and application.

19



1.6. RESEARCH AIMS CHAPTER 1. INTRODUCTION

1.6 Research Aims

This research aims to develop an optimisation strategy for renewable energy-based

HMG systems for rural applications in developing countries.

1.7 Research Objectives

Challenges identified while developing the HMG model include: lack of historical

load data as the community has no access to a centralised power supply, and energy

use smart meter measuring devices. Language barriers encountered during data

collection, which was an estimate of their current use and intended future use

based on information gathered; and how to distribute load models to match other

corresponding rural communities and determine suitable forecasting methods for

application. Thus, the aim of the research is achieved by these objectives:

• Demand profile development: to design a cost-effective and reliable HMG

system, significance is paid in getting the load model right. State-of-the-art

methods for load profile development and forecasting for unelectrified rural

communities are investigated.

• HMG system design: with the need for high renewable energy penetration to

design a comprehensive state-of-the-art HMG system, investigation into the

resource availability and component selection suitable for use with low cost,

integrating DG back-up are researched.

• Algorithm development: considering the stochastic nature of RER and for

optimal operation of designed HMG system, an investigation into metaheuristic

optimisation strategies and their performance in operating the HMG system

is done. This understanding establishes the effects of algorithm parameters on
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the different strategies developed.

1.8 Research Contributions

1. In this research, significant contributions are made in the design and forecast

of load profiles for microgrid applications in rural electrification, particularly

in load estimation and indices considered in forecasting loads over a ten-year

period. The study employed the bottom-up simulation approach for demands

in houses, schools, worship centres and commercial businesses combined with

physical and behavioural approaches, which is validated using energy consumption

pattern of similar communities as found in the literature.

2. This research also shows existing load forecast methods and their suitability

for different applications. Results obtained showed that no single forecast

methods fit all data types. Developed forecasting models using socio-economic

components are compared with literature for similar applications to validate

models employed.

3. HOMER design tool is employed for the HMG design, comprising RERs,

diesel generator and energy storage systems as backup. System analysis are

investigated over varying indices to decide system suitable for application.

4. Also, three metaheuristic optimisation methods are adopted and evaluated

to improve the HMG operations for varying load profiles for a year. Effects of

parameter tuning on the optimisation strategies are considered. The optimisation

strategies minimize the DG operation through the year at different levels in

the HMG design system, considering constraints on the system components

and reliability of meeting the load demand at all times and constraints for DG

operation and battery charging of the system. The results show that parameter
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tuning is significant to avoid constraint violation and performance of the HMG

design.

1.9 Research Organization

The chapters following the thesis are organised as Chapter 2 introduces the concept,

inception, research, and applications of microgrids. It discusses the available microgrid

technologies, design methods, load forecasting methods, optimisation methods applicable

to microgrids. Chapter 3 gives a background to the location under study. It presents

the demand profile developed and forecasting implemented to suit community demand.

Chapter 4, the available RERs are gathered and component selection established.

The HMG is modelled in Homer and compared with a DG only base model, and

RERs only model. Chapter 5 defines the optimisation problem formulation with

characteristic constraints on the system, HMG components are modelled in Matlab,

three metaheuristic optimisation methods are developed, and the system simulated

under different load conditions and parameter settings. Chapter 6 presents the main

conclusions to all aspects considered in the research, including recommendations and

future work.
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Figure 1.4: Research Organisation
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Chapter 2

Microgrid Overview

2.1 Introduction

Research into microgrids has been carried out by many institutions and individuals

around the world. These studies have considered the design make-up, control,

operations and safety concerns of microgrids. However, these studies have not fully

explored the potentials and benefits of microgrids regarding efficient power generation

and energy management. In this chapter, the review of microgrid research as carried

out by several countries is presented, which considered the microgrid operational,

management and control features. The microgrid types, benefits, characteristic, and

concept of microgrids are considered as it pertains to load estimation and forecasting,

component selection and sizing, design models, and optimisation.

2.2 Microgrid Definitions

Several definitions and well-designed scheme of classification for microgrids exist

in the literature. A broadly cited description, developed by the US Department of

Energy [30], defines a microgrid as a group of organised loads and Distributed Energy
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Resources, DERs within clear defined electrical boundaries, able to act independently

as a single controllable entity from the grid. A microgrid can be connected and

disconnected from the grid and operate efficiently in grid-tied or island modes. It,

therefore, implies from the above that.

1. A microgrid can either be island or grid-tied

2. Microgrids are identifiable in the distribution system

3. Microgrids may include a number of complementary resources in its configuration.

Microgrid benefits have led to an increasing introduction and development of policy

and regulatory incentives for its growth and applications. These include

• Subsidies to reduce the initial cost of investment and operational costs of

implementing a microgrid [31].

• Financial support policies to secure finances for rural electrifications at reduced

rates [32].

• Tax incentives to provide exemption or reduction on renewable energy equipment

taxes [33].

• Concession policies which seek to minimise competition among investors by

assigning geographical areas to that region’s sole providers of electricity services

[34]. It encourages investors to devote themselves to microgrid projects to

protect their investments from competition medium to long term.

2.2.1 Microgrid Inception and Research

Microgrids continue to be a key topic for research in rural electrification, power

systems, distributed generation, and sustainable energy. Several countries are involved
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in microgrid research for remote communities, and have published papers in this

area [35]. Part of the focus of this study is microgrid planning aspects for remote

rural communities.

Consortium for Electric Reliability Technology Solutions (CERTS), in the US

and the European MICROGRIDS project began the research and development into

microgrids. Microgrid description in developed1 (US, Spain, Japan) and developing2

(China) [36] countries are discussed further below.

2.2.1.1 US Research

CERTS anchored the grid-tied concepts of microgrids. Its microgrids allowed island

operation, supplying sensitive and some adjustable loads at events of any main-grid

disturbances. In its architecture, the microgrid consisted of loads(sensitive, shed-able

and adjustable), micro sources with capacities less than 500km connected to the

adjustable and sensitive loads supplying feeders connected via static switches to

the leading network. The power electronic control method technology enabled the

microgrid’s island operation, allowing the micro sources to supply essential loads

during unplanned events by isolating the load-carrying feeders. The CERTS microgrid

had room for expansion, and all its micro sources had individual storage at their

busbars. An idea was tested at Wisconsin University with success [37,38].

2.2.1.2 European Research

The power supply security, electricity market, and environmental protection were

essential considerations when the European research proposed and developed the

smart grid technology. The European study also focused on, increasing high penetration
1A country having an effective rate of industrialization and individual income is known as

Developed Country.
2Developing Country is a country which has a slow rate of industrialization and low per capita

income.
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of RERs and DERs, improving power quality, minimizing power losses and encouraging

islanding to increase the reliability of the microgrids. Its architecture comprised of

micro sources, controlled low voltage loads and flywheel energy storage systems.

Spain, Greece and Germany formed the experimental platforms for the fundamental

communication, control, protection, security and operation theories [39]. In Spain,

University of Seville microgrid configuration consisted of the photovoltaic, fuel cell,

and lead-acid batteries. An electrolyser was placed in the in the distribution line to

overcome the intermittent nature of the photovoltaic system, excess power generated

used to produce hydrogen stored in lead-acid batteries used by the fuel cells to

produce electricity that served external grids.

2.2.1.3 Japan’s Research

Japans research and development into microgrids reduced environmental pollution,

met consumer needs, and energy supply diversification. They focused on balancing

intermittent generation and fluctuation, employing controlled generation and energy

storage systems in their microgrid architecture from optimal renewable energy generation.

Photovoltaic and wind power systems having lead-acid batteries for storage were

mostly considered to meet residential loads and serving as a support to the grid in

existence as in Kythnos Island microgrid. Remote monitoring and control were used

to maintain load demand, with standards used to build their centralised control

systems. In addition, it broadened the CERTS microgrid definition to include

traditional power supplied by independent power systems. Japan focuses on deploying

new energies, RERs and their applications sponsored by The New Energy and

Industrial Technology Development Organisation [40].
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2.2.1.4 China’s Research

China microgrid research undertaken by many institutes involved developing an

experimental platform comprising of loads, RERs, and energy storage systems, distributed

generation function system, integration and control technology of power systems

with distributed pluripotent complementary energy microgrid, and also a PV-Wind

system built to provide to electricity to HeFei University campus during power

outages [41]. The microgrid system had photovoltaic systems and inverters, wind

power systems and inverter, active and passive loads, and lead-acid batteries. The

system employed the master-slave structure for smooth transitioning issues of microgrids.

The configuration had one inverter as the master inverter with island mode voltage

control and grid-tied mode current control operating selection modes, and others as

current sources slave inverters.

[42] mentions microgrids, a critical part of the future of smart grids to offer

a better quality of power, flexibility control and improved reliability. [43] further

stresses [42] view in which a review of microgrid experiments and tests are presented.

The results confirmed that microgrids play a significant role in smart grid evolution.

Nevertheless, it identified the need for more research into dependable control strategies

to improve system reliability and develop a generic simulation tool to ease further

research in transient stability performance, control and protection strategies, and

development of design guidelines standards for microgrids [43].

From the study, the microgrids discussed had in common lead-acid batteries

for storage, photovoltaic systems and wind turbine power systems implying their

popularity in use. Storage systems are important to help stabilise microgrid operations

and where absent, grid-tied connections are essential. Due to the intermittent nature

of renewable power source, power quality is a problem with microgrid deployment.

As such, more work is needful to improve stability and reliability issues affecting
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performance and power quality of microgrids.

2.3 Microgrid Technologies

Microgrids constitute DERs, Energy Management System, EMS, power converters,

controllers, and communication systems to obtain flexible energy management [44,

45]. The consumer is an essential component for microgrid implementation and

promotion [46].

• DERs consists of distributed generator and storage and supplies power to meet

energy demand.

• Energy management systems are employed to control, monitor, optimise, and

evaluate the power system [47]. It is utilised for renewable energy power

prediction and planning and load forecasting.

• Power converters are equipment used for electrical energy conversion, which

can either be simple or complex depending on the operational frequency and

voltage. They are utilised to detect the microgrid running state. Also, the

DERs produce either DC or AC voltages at varying frequency and amplitudes

than the grid; thus, a power electric converter interface is essential [48].

• Controllers are vital in microgrid implementation for maintaining power quality,

voltage and frequency parameters by managing DERs and load in power systems

[49].

• Communication systems convey, monitor, manage, and controls the operations

in microgrids. It interconnects the different parts within the microgrid and

ensures control and management [50,51].
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• Customers can also be energy suppliers and affect the choice technique selected,

load operation and control of the microgrid considering cost and efficiency. A

microgrid can have a consumer-driven demand response arrangement [52]. The

involvement of consumers is fundamental to intelligent grid development and

strongly promotes developers engagement [53]. The consumers function in user

behaviour change, interaction needs, resource management and community

schemes [54].

The capacities of DERs referred to in microgrids are somewhat small scales, although

without worldwide agreement. It is mentioned to be less than 100kW by [55, 56],

micro-generation having even smaller capacities of 30kW thermal and less than 3kW

electrical were considered, EU standard defines micro-generation capacities reaching

50kW depending on the scale of the residential load. [48] considered micro sources less

than 500kW. By and large, the power generators should have comparable capacities

as the energy demand within the microgrid and located close to final consumers.

Emerging technologies like photovoltaic arrays, wind-power generators, combined

heat and power, including small hydro and internal combustion driven generators,

make up the distributed generators for microgrid applications [44, 57, 58]. Due

to either main-grid disturbances or intermittency in RERs, a microgrid response

to sudden load changes or disturbances causes instability. Thus Energy Storage

Systems (ESS) are essential for microgrid deployment, particularly in architectures

with RERs, few energy generation options are available, and the microgrid is typical

in island operation. ESS are advantageous in reshaping peak demand and energy

storage during times of surplus for later use [59].

Because of the intermittency experienced in deploying RERs, integrating DERs

into the microgrid is optimally beneficial. When varying generator types are accessible

they compensate for each other and the energy storage offers energy stability and
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quality, enabling high penetration of different distributed generators [60].

2.3.1 Microgrid Optimal Design and Planning

Microgrid studies can be classified into microgrid design and microgrid operational

planning [61]. They are critical for the successful development of microgrid for

real-time system applications [62]. System design for microgrids involves long term

optimal selection and sizing of DERs whilst considering some objectives: energy

security issues, minimum cost, and environmental issues [47]. The design of DERs is

vital to maintain the power grid reliability, power flow, level of short-circuit current,

and node voltage [63]. The load demand, technology information, weather conditions,

utility tariffs from different tariff schemes, and operation and maintenance cost limit

the microgrid component selection technique deployed. An optimal capacity sizing

is a trade-off between investment cost minimisations and peak load satisfaction.

Furthermore, with given DERs, capacity operation planning deals with short

term optimal microgrid planning ranging from one to seven days, having a time

interval of one hour or less. Microgrid planning embraces all aspects of microgrid

management. Its goal is to achieve attractive economic performance during power

demand fluctuations and uncertain disturbances resulting from the variability in

RERs.

The optimal microgrid operation consists of two primary functions, demand-side

and supply-side management (DSM and SSM).

DSM entails modifying the energy demand, controlling the condition of the energy

system, changing the load shape and generation optimisation, end-use and delivery

processes [64, 65]. Also, DSM allows all the flexible loads and power-consuming

devices for rescheduling. DSM promotes peak load reduction and profile reshaping,

overall emission, and cost reductions.
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The SSM decisions include the DER operations, ranging from the fuel types,

production output or switch on/off and the buying and selling of electricity to the

grid [66]. Generation scheduling refers to the organised dispatch of power produced

from generation sources over a specific time horizon whilst satisfying system and

technology constraints. DERs generation scheduling achieves cost savings under

operational constraints of each DER over given periods [67].

In Nigeria, microgrid development can play pivot roles in combating electricity

challenges by coordinating the use of RERs from the rooftops PV arrays or wind

turbines with intelligent technologies and devices. Microgrids can operate on either

island or grid-tied in the event there is an electric grid within proximity. However, for

study purposes, the microgrid considered allows for grid connection in future. This

kind is applicable for off-grid designs in remote rural areas, academic institutions,

hospitals, isolated communities, or commercial purposes to supply their power demand

whether or not connected to the grid or having grid problems.

Microgrids can also serve as part of the central grid providing support for peak

hour loads, grid failures and poor quality instances. DERs microgrid systems can

offer solutions to the electrification crisis in rural Nigeria to match modern intelligent

grids. Several forms of RERs power generation projects are in operation in different

parts of the country. These projects comprising single RERs are developed for

application in schools, health centres, rural communities, street lighting, communication

industries. Some potential sites have been identified for solar, wind and small

hydropower development.

Already existing microgrid applications can serve as an experience to improve

better practice in new microgrid deployments in off-grid rural locations. Instead

of building massive centralised power stations with enormous investment, lengthy

construction periods, the GoN can invest in using RERs for microgrid development.

Research offers many business models of microgrids that are applicable for remote
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rural communities off the grid. Microgrid clusters are possibilities where neighbourhood

by neighbourhood, their local demands and distributed generation systems balanced

amongst themselves. These clusters can allow Nigerian off-grid remote communities

to interconnect with each other, enabling national grid connection. Private investors

find the microgrid interconnection idea an economic venture when compared to

isolated grid systems. The advantages of exploiting Nigeria’s RERs cannot be

overemphasised as it is required to ease its current energy crisis. At most times,

remote power access as a result of cost is not feasible.

However, after many years, Nigeria cannot deliver electricity to rural communities

due to low load factor, area topology, and cost inhibiting socio-economic development.

Depending on load type and resource availability, adopting a mix of RERs sources

and energy storage systems, and backup power sources can serve. This combination

can provide a reliable electricity supply, is economical and environmentally friendly

than a single power source supply.

A Hybrid Microgrid (HMG) system can cater to connected load demands with

appropriate coordination and control and make it more suitable for remote rural

applications. HMG models can be developed and optimised to suit applications

considering the locations topology, socio-economic status, type of load demand and

availability of RERs to the area. RERs are cost-effective for investment, operations

and maintenance, environmentally friendly, create jobs and allow for decentralised

systems in communities. They also serve the communities with power supply for

their homes, farms, small commercial businesses, water pumping and irrigation.

Independent operation necessitates a stable micro-grid that can, without help from

the grid, supply power to its consumers load demand. These applications require

some distributed generators to give the necessary reliability. As such, the sizing of the

HMG components for autonomous operation becomes a significant consideration.
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2.4 Microgrid Design

Microgrid design involves different microgrid facets such as load modelling, generation

component selection, sizing and modelling, storage option, and control strategy

determination. System cost, operation and reliability are significant concerns when

designing the microgrid.

[68], presented microgrid evolution worldwide, proposed a standard microgrid for

better power quality, and optimised energy generation aiding designers in optimising

green distributed system efficiency for reliable supply. [43] presented a review that

described what a microgrid is and provided a multidisciplinary portrait of the present

microgrid real-world applications, challenges, drivers and prospects. It brought

forward that because of the dropping cost for RERs and ESS, parity in cost is

evident with the traditional energy sources, causing more RERs adoption.

[69], a review of microgrid issues and studies carried out in microgrid-related

areas were discussed. The study areas presented include the benefits of microgrids,

microgrid value propositions, distributed generation, power electronic applications,

economic issues, control and operation in microgrids, microgrid clusters, and protection

and communications issues. Microgrid technologies, [70], presented an overall microgrid

description and typically distributed generation technology and described microgrid

control methods with pros and cons, providing insight into future grid evolution. [71]

presented a review of microgrid architectures, providing the benefits of grid-tied and

island microgrids with energy storage.

A study on microgrid village design with DERs and its economic feasibility

evaluation is presented in [72]. Five steps are provided for the microgrid village

design, which includes;

1. The annual demand and location climate conditions estimation

2. The selection of the DERs and RERs,
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3. Optimization of the selected facility,

4. System operational stability analysis,

5. Fixed and variable costs economic evaluation.

[73], carried out another study on the design and operation of a remote microgrid.

The results showed that remote microgrids, optimal ESS and RERs and an optimal

unit dispatch mechanism lead to a significant reduction in the lifetime cost and

emissions. Similar results were obtained in [74], which considered the optimal design

and operation of a grid-tied microgrid.

In designing microgrids, it is essential to note that microgrids can be AC or

DC. [75] suggests considering the DC/AC load ratio before choosing either an AC

or DC microgrid design. A change in the ratio affects the total cost. It makes it a

practical way for defining the economic point for either DC or AC microgrid selection.

The DC microgrid is economical when the ratio is greater than the threshold ratio,

and if less, the AC microgrid is considered more economical. The costs considered

include the investment cost, operation cost and reliability cost.

HMG include loads, DERs (fuel cells, Solar PVs, microturbines, wind turbines,

diesel generators), ESS (flywheels, batteries, superconductor inductors). Loads are

the energy demand of the consumers that must be met by the HMG design throughout

the project life. DERs can be divided into two groups:

1. DER grid-tied with the inverter (Solar PVs, fuel cells)

2. DER direct-tied conventional rotating machines (an induction generator driven

by a fixed-speed wind turbine).

ESS can be charged with excess power and discharged during power deficits, enhancing

microgrid reliability and rendering it economical and efficient. Furthermore, energy

storage used for fast responses prevent transient instability and participate in voltage
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and frequency control of the microgrid by delivering the balance reserve extending

from a short time. Figure 2.1 represents the diagram of a microgrid which includes

many systems: load demand, Solar PV, wind power generator, diesel generator and

battery storage. DERs interface with the corresponding bus through a power-electronic

converter where needed. The diesel generator serves as a backup when the power

from RERs and ESS are insufficient to meet the load. Thus, the microgrid continues

to operate, providing a reliable power supply at all times. The microgrid operates

in the island mode.

Figure 2.1: Microgrid

2.4.1 Load Estimation and Forecasting

2.4.1.1 Load Profile Estimation

Two common approaches are used for demand profile modelling, namely the statistical

and the bottom-up method. The statistical method aims at characterising the

input data description based on measured demand profiles, with a forecast done

on the extracted character [76, 77]. In contrast, the bottom-up approach focuses on
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developing the load profile from each terminal appliance [78, 79]. Looking at the

statistical modelling approach, [80] suggested a multiple linear regression model for

maximum demand forecasting and total energy usage, taking into account social-economic

aspects (bedroom number, home composition and dwelling type). [81] recommended

dividing historical time series into components based on weekdays and seasons to

model the trend energy demand, termed decomposition approach. [82] designed

a time-varying multiple regression model for load forecasting, looking at utility

production and consumer behaviour efficiency for every hour.

[83] introduced a structure that analyses local energy consumer usage practices,

assuming that load demands follow a non-stationary multivariate Gaussian distribution.

[84] suggested a functional vector autoregressive state-space model for predicting

energy demand for application between local and national grids. Though the bottom-up

approach involves significant data relating to household appliance consumption behaviour,

its accuracy is high. Data acquisition challenge has impaired the bottom-up approach

development in the past. However, in recent years, intelligent infrastructure developments

in homes have made energy load prediction attention in the bottom-up prediction

method [85]. For instance, the use of intelligent sockets to gather and upload

information about the energy use of every appliance to the Wi-Fi communication

data centre, in turn, contributes to the load forecast accuracy and efficiency.

[86] suggested a bottom-up approach by adding up each appliance consumption

to form household load profiles. [87] presented a model of both statistical and measured

data combination using the 1-min power cycle and using single appliance qualities

as the primary building block. [88] recommended a stochastic bottom-up design to

predict demand for domestic lighting; a three-state non-homogeneous Markov chain

was employed to illustrate the occupancy patterns of lighting demand. [89] developed

as random processes each appliance start, depending on social and seasonal factors.

[90] developed a predicting model to examine occupant behaviour, appliance
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efficiency and stock effects on each household demand profile. [91] experimented

utilising real-world smart meter datasets from used energy behavioural analysis got

from big data mining technology designed. [92] introduced a high-resolution design

for household energy usage based on appliance use and occupant activity. It follows

from the research that various appliances exist in households, and family structure,

behaviour, and environment influence how they are used. In the bottom-up research

approach, some studies considered the extraction process of historical days; there

are many historical days where days differ in terms of weekday type and weather

condition from the forecasted day. The forecast accuracy decreases if days without

high historical similarity are used to forecast the demand. The use of energy varies

with changing human behaviour and ambient conditions; the energy demand profile

for every hour demonstrating the dynamic problem nature is applied to microgrid

designs [93, 94].

Therefore, in this study, considering the limited data available, and lack of

smart metering for better accuracy, a bottom-up demand profile model is formulated

and replicated to represent a year for the community based on analysing energy

use behaviour for each appliance. In order to extract the consumption behaviour

precisely, load variability is introduced to depict real-life scenarios.

2.4.1.2 Load Forecasting

Load forecasting is necessary for the decision-making process to deal with consumer

demand changes and seasonality carried out by energy management systems. In

recent times, the complexness and quality of forecasting methods have developed

rapidly, using artificial intelligence algorithms, which give room for carrying out

energy management activities from low-level forecast uncertainties. It is common

practice for different purposes to employ varying forecast methods as no single
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methods fits all purposes.

The accuracy in electricity demand forecasting helps in the decision on power

production and infrastructural development. Its inaccuracy can result in both social

and economic consequences. Underestimating the forecast for energy demand results

in forced outages and shortage in power supply, while over-prediction could result in

over-investment in power generation and possible spiked electricity prices.

Nevertheless, accuracy on load forecasting is a complex parameter to achieve,

primarily because certain factors influence energy consumption factors such as weather

(temperature, rainfall, humidity, wind), holidays, economic status, and human behaviour

in electricity use. Many methods have been utilised over the years, which can be

classed as either short-term and long term forecasting. These are also approached

on different aggregate levels.

• A top-down scheme from the utility side

• A bottom-up scheme from the user side by analysing consumer activities.

1. Short-term forecast: This type of forecast ranges between an hour to a week.

It is relevant in generator scheduling and maintenance, security analysis, and

economic dispatch of power systems. Methods used include trend and same-day

approach.

2. Long-term forecast: This type of forecast covers periods over a week and

is vital to policymaking, supply capacity expansion, and design/adoption of

advanced technology power systems. Methods used include end-use methods

and econometric models.

Load forecasting techniques are typically classified into two groups: statistical techniques

and artificial intelligence techniques, though the boundary between the two is becoming
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more and more ambiguous due to multidisciplinary collaborations in the scientific

community. A review of load forecasting techniques are presented in Table 2.1 below.

The selection of a forecasting technique depends on several factors ranging from

• Context of forecasting,

• Available and relevant historical data,

• Desired degree of accuracy,

• Expected forecast period,

• The value of the forecast to the forecaster, and

• The time available for making the analysis.

These factors must be considered continuously and on a variety of levels. In general,

a technique that makes the best use of available data and acceptable accuracy is

widely preferred when forecasting.

A forecasting method that considers factors significantly influencing energy consumption,

such as human behaviour, is designed to predict energy demand over ten years. The

forecasting process considers a continuous assumed increasing load factor, transmission

and distribution losses to reduce the influence of under design of the HMG system

to meet the predicted demand profile.

2.4.2 Distributed Energy Resources (DERs)

DERs are a combination of RERs and conventional energy generating sources.

Renewable energy refers to those naturally occurring energy resources that are

self-replenishing. They are distributed naturally, enabling power generation in remote

areas and reducing the need for transport systems investment [98]. Examples of
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Table 2.1: Load Forecasting Review

Forecasting
Techniques

Model Used Strength Weakness Reference

Regression Multiple Linear
Regression,

Simple Linear
Regression

Previous forecast load
and factors such as
time of the day and

weather are relatable.
Useful in non-real time

forecasting.

Not accurate for
real time load
and unable to

handle nonlinear
load

consumption.
Adding

parameters make
it unstable

[95]

Time Series
Analysis

Auto Regressive
Moving Average,
Auto Regressive

Integrated
Moving Average,

Deterministic
decomposition

Capable of
accommodating

seasonal component
effects

Suffer numerical
instability

[95, 96]

Artificial
Neural

Networks

Multilayer
Perceptrons,

Back Propagation
Algorithm,

Steepest descent
Error Back
Propagation

Adjusting the weights
during the training
process allows for
better handling of

nonlinear relationships
in load consumption

Large amounts of
data are essential
to train models

and complexity in
the training of

such data

[97]

Fuzzy
Inference
System

Defuzzification
Method using

Centre of Area,
Middle of

Maxima, Last of
Maxima and

Centre of gravity

Fast and accurate in
performance including
ease in formating rule

Based on trial
and error the
membership

fuction rule is
selected

[96]

Support
Vector

Machine

Support Vector
Regression using

Incremental
Learning
Algorithm

Support Vector
Regression

It enhances higher
feature space

dimensionality by using
ε-insensitive loss for

linear regression
computation and

reduction in model
complexity.

major concerns
are in selecting
suitable kernel

and
interpretation

difficulties

[97]
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RERs was introduced in Chapter 1, to include solar, wind, hydro, biomass geothermal

and tidal energy.

Figure 2.2: RERs Flow Paths

Figure 2.2 shows the primary paths for obtaining RERs from the earth. PV and

Wind applications offer potentials in the study location, implying the sun is the

primary source for accessible RERs in these regions [98]. Other advantages of RERs

are:

• They are natural/infinite.

• Because of their low greenhouse emissions, they are referred to as clean energy.

• RERs maintenance could be less expensive compared to conventional generators.

• RERs proffer reliable energy with proper planning and infrastructure.

RERs support the needed flexibility in power generation reducing fossil fuel dependence

[99].
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2.4.2.1 PV Cell

A PV cell converts sunlight into DC electricity. Cells are connected and positioned

in a glass layered supporting material cover known as a module. The PV module

can operate connected to the grid or isolated through inverters.

The PV cell (monocrystalline or polycrystalline) have two silicon semiconductor

layers (n-type silicon and p-type silicon) sandwiched and doped to allow for electricity

flow [100]. The resultant is a p-n junction. The concept is illustrated in Figure 2.3

below.

Figure 2.3: PV Cell Concept

Electrons are produced from the n-type layer in the presence of solar radiation.

The electric field repels these electrons at the p-n junction.

A connected external circuit allows electrons to move to the p-layer from the

n-layer. Current then flows from the positive-negative terminal. The equivalent

solar cell electrical circuit is represented in Figure 2.4.
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Figure 2.4: PV Equivalent Circuit [102]

It consists of a current source in parallel with a diode. The series resistor, Rs

and the shunt resistor, Rsh are included in catering for any losses that are likely to

occur in the PV cell [100].

The current to the load from the connected PV cell is given by

I = IPH − ID − Ish (2.1)

Where, IPH is the light-generated current in the cell, ID is the voltage-dependent

current lost to recombination, and Ish is the current loss due to shunt resistances.

Ish =
V + IRs

Rsh

(2.2)

In this single diode model, ID is modelled using the Shockley equation for an

ideal diode:

ID = I0

[
exp

(
V + IRs

nVT

)
− 1

]
(2.3)

where n is the diode ideality factor (unitless, usually between 1 and 2 for a

44



2.4. MICROGRID DESIGN CHAPTER 2. MICROGRID OVERVIEW

single-junction cell), I0 is the saturation current, and VT is the thermal voltage given

by:

VT =
kTc

q
(2.4)

where k is Boltzmann’s constant (1.381 × 10−23J/K) and q is the elementary

charge (1.602× 10−19C).

Writing the shunt current as Ish = V+IRs

Rsh
and combining this and the above

equations results in the complete governing equation for the single diode model:

I = IPH − I0

[
exp

(
q(V + IRs)

nkTc

)
− 1

]
− V + IRs

Rsh

(2.5)

The parameters in equation (5) are primary to all single diode equivalent circuit

models:

IPH : light current (A)

I0: diode reverse saturation current (A)

Rs: series resistance (Ω)

Rsh: shunt resistance (Ω)

n: diode ideality factor (unitless)

In an ideal PV cell, Rsh is infinite and Rs = 0; therefore, the current delivered to

the load is represented as equation.

I = IPH − I0

[
exp

(
q(V + IRs)

nkTc

)
− 1

]
(2.6)

The I-V curve of the PV cell is represented by the Figure 2.5 below.
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Figure 2.5: PV cell I-V curve [102]

The characteristics of the PV cell, as shown in the Figure 2.5 above has a short

circuit current, ISC the open-circuit voltage, VOC , and the maximum power point,

Pmp, which is a product of ISC and VOC .

PV Module The PV module consists of parallel and series connection combinations

of PV cells [101]. The cell number in parallel determines the current output from

the module, and the voltage output depends on the number of cells in series. If the

number of cell in parallel, Np and Ns the number of cell in series, a cell current Ic,

and cell voltage output, Vc respectively, then the current and voltage from the given

module will be:

IM = Np × Ic (2.7)

VM = Ns × Vc (2.8)

[101]further explains that the PV module current output is directly proportional

to the solar irradiation. Nevertheless, as the temperature increases, the voltage and
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power outputs reduces. The modules cell temperature depends on irradiation and

the voltage-temperature relationship that will be addressed later.

2.4.2.2 Wind Turbine

Wind turbines are systems that include a generator, a rotor, turbine blades, and a

drive. As the wind blows through the blades, air utilizes aerodynamic forces that

make the blades turn the rotor. When the rotor turns, the turbine speed is adjusted

to match the operating speed of the generator. Most wind turbines systems have

a gearbox and generator in a single unit at the rear of the turbine blades. Like

photovoltaic (PV) systems, the wind generators output is processed by an inverter

that changes the electricity from DC to AC to be used.

The working principles of the wind turbine are illustrated with two processes

carried out by its main components: the generating system, which converts mechanical

torque into electricity and the rotor, which gets kinetic energy from the wind through

its blades and converts it into mechanical torque.

Figure 2.6 illustrates the working principles of a wind turbine.

Figure 2.6: Wind Turbine Operating Principle
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A wind turbine is equipped with any three-phase generator. Several generator

types are used in wind turbines [102], but three types of wind turbine generators

typically used:

• Squirrel cage induction generators,

• Direct drive synchronous generators,

• Doubly fed (wound rotor) induction generators,

Wind Turbine Modelling In this section, an overview of the developments

in wind turbine modelling is presented. The first wind turbines were centred on

a direct grid coupled synchronous generator with pitch-controlled rotor blades to

restrict the mechanical power in high wind speeds. Hence, the first modelling

efforts were devoted to this wind turbine concept [102,103]. The direct grid coupled

synchronous generator was followed by a direct grid coupled asynchronous squirrel

cage induction generator. This type of generator has a more favourable torque versus

speed characteristic than the synchronous generator, thus reducing the mechanical

loads, and it is also cheaper. This concept is still applied nowadays by some manufacturers.

To curb the power extracted from the wind at high wind speeds, either stall control

or pitch control is used. Many papers on modelling a wind turbine with a direct

grid coupled squirrel cage induction generator can be found in the literature, with

both stall control and pitch control combination of the mechanical power [103–106].

A modern variable speed wind turbine with a doubly fed induction generator has

replaced the conventional constant speed wind turbine with a direct grid coupled

squirrel cage induction generator. The manufacturers have also started to apply a

direct drive synchronous generator grid coupled through a power electronic converter

of the total generator rating.

Therefore, modelling efforts have been given to these wind turbine concepts as
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well. Because the variable speed wind turbines are complicated systems, most papers

addressing their modelling cover one subsystem; the electromechanical conversion

system, the drive train, the control of the generator currents and the DC link voltage

or the rotor speed controller, [105,107]. As the power created is proportional to the

cube of the wind speed, it is imperative to locate any electricity-generating turbines

in locations with high annual mean wind speeds, and the available wind resource

is a vital factor in determining where the wind farms are sited [108]. High wind

speed areas will often be away from the habitation and the associated well-developed

electrical distribution network, leading to a requirement for careful consideration of

the integration of wind turbines to relatively weak electrical distribution networks.

The difference in the working fluid density (water and air) illustrates clearly why a

wind turbine rotor of a given rating is much larger than a hydro-turbine [108].

Wind turbines operate by obtaining kinetic energy from the wind passing through

their rotor. The wind turbine power generated is given by [103]:

P = 0.5CpρV
3A (2.9)

where

P = power in watts,

Cp = power coefficient,

V = Wind velocity in meters per second,

A = swept area of rotor disc in meter square,

ρ = density of air (1.225kg/m3).

The force obtained on the rotor is proportional to the square of the wind speed;

hence the wind turbine must be developed to withstand bad storms. Most modern

designs are three-bladed horizontal-axis rotors as this gives a good value of peak Cp

and an aesthetically pleasing design [108]. The power coefficient, Cp, measures the
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amount of wind energy extracted by the turbine.

2.4.2.3 Diesel Generator

Diesel Generators (DGs) were developed over 100 years ago, forming the first among

distribution generator technologies. The Otto (spark ignition, SI) and Diesel cycle

(compression ignition, CI) engines have gained extensive recognition in almost every

economic sector. Because of their high reliability and efficiency, they are utilized

on many scales, ranging from small units of 1 KW to numerous MW power plants.

Smaller engines are mainly designed for transportation and can be converted to

power generation with slight modification. Large engines are frequently designed for

mechanical drives, power generation, or marine propulsion. As sudden changes occur

in load demands by the consumers, the diesel generators prime mover must have a

fast dynamic response and good disturbance rejection capabilities.

The Diesel Engine model describes the fuel consumption rate as a function of

speed and mechanical power at the engine’s output and is usually modelled by a

simple first-order model relating the fuel consumption to the engine mechanical power

[109].

The power outputs of the engine and generator are varied with the changing load

to meet the consumer demands. The governor’s task is to adjust the fuel flow and

then regulate the inputs of the engine and generator, and hence provide the necessary

power to meet the change in the load.

DGs are the most common type of microgrid technology in use today. The role

of DGs has been the provision of standby power and peak shaving. The fuel cost

of a power system is expressed mainly as a function of its actual power output and

modelled by a quadratic polynomial [110]. The total diesel fuel consumption rate

L/hr for the DG can be expressed as:
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GEN = αDG + βDG.PDG−nom + γDG.P
2
DG−out (2.10)

Where, α, β, and γ are cost coefficients of the particular generator, PDG−nom is

the nominal power of the diesel generator in kWassumed to be known and PDG−out is

the power produced as a result of the DG being ON. The constants cost coefficients

α, β, and γ are gotten from the manufacturers manual.

2.4.3 Energy Storage System (ESS).

The microgrid concept integrated with ESSs has gained interest and acceptance

because it stores energy during surplus energy generation hours and supplies energy

at peak load hours and energy deficit periods.

[59], a study was carried out on the optimal sizing of energy storage for microgrids.

Lithium-ion (Li-ion) batteries were the focus of the study in which the cost-benefit

analytical technique was used to estimate the economic feasibility of the battery

storage for both the grid-connected and island modes.

ESSs are classified based on the usage of energy in a specific form. ESSs can be

categorised as Mechanical Energy Storage (MES), Electrochemical Energy Storage

(EcES), Chemical Energy Storage (CES), Electrical Energy Storage (EES), Thermal

Energy Storage (TES), and Hybrid Energy Storage Systems (HESS). Also, these

systems can be classified depending on the formation process and materials used.

Table 2.2 and Table 2.3, presents a detailed ESS classification.
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Table 2.2: ESS Classification

Category Operating

Principle

Modes Examples Advantages Disadvantages References

MES deliver the

stored power

when required

for mechanical

work .

pressurized gas,

forced spring,

kinetic energy

potential energy.

flywheel,

pumped hydro

storage,

compressed-air

Gravity ESS

operate flexibly

to convert, store

energy from

sources .

high capital

cost, negative

environmental

impact, reduced

geological

implementation

[37]

[111]

TES store energy in

the form of heat

or ice

low-temperature
TES,

high-temperature

TES

liquid (water,

molten salt, and

thermal oil),

solid (stone,

concrete, metal,

and ground), or

liquid with a

solid filler

material (molten

salt/stone) .

alternative

technology to

replace the use

of fossil fuels

and can meet

the demand of

sustainable

energy

regulations, low

capital cost

($3–60/kWh),

low

self-discharge

rate

(−0.05%−1%),

secured energy,

environment -

friendliness, and

acceptable

energy density

life expectancy

remains low

(−30%–60%)

[112]

[113]

CES released through

electron transfer

reactions to

produce

electricity

directly

energy is stored

in the chemical

bonds of atoms

and molecules

coal, gasoline,

diesel, propane,

ethanol,

hydrogen,

liquefied

petroleum gas.

stores significant

amount of

energy for long

periods, desired

environmental

impact of , Due

to available raw

material

resource, per

unit cost is

reduced.

efficiency is the

most critical

criteria to

develop this

technology .

[114]

[115]
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Table 2.3: ESS classification continued

Category Operating

Principle

Modes Examples Advantages Disadvantages References

EESS Energy can be

stored by

modifying the

electrical or

magnetic fields

with the help of

capacitors,

super-conducting

magnets

Super-capacitor

SS,

Super-magnetic

ESS

used as

short-term

storage devices

in case of high

flow current

given that the

capacity of the

conventional

capacitor is

limited.

Integrating the

transmission

and distribution

system with

renewable

energy sources.

high

self-discharge

rate (up to 40%

per day) and

costs (6000

dollars/kWh).

[115]

[116]

HESS integration of

two or more

ESSs

combines the

characteristics of

high power and

high energy

storage system

to improve the

stability and

reliability of the

system with the

reduction of the

power quality

problems .

battery/SC ,

battery/SMES ,

battery/ FC ,

FC/ SC , and

SC/ RFB is

possible.

system efficiency

and life

expectancy of

the battery have

been improved.

the extension of

life cycle up to

75% through

peak shaving

and related

thermal burden

reaction

[117]

[118]

[119]

[120]

[121]

[117]

[122]

EcSS chemical energy

in the active

material is

converted into

electrical energy

Conventional

rechargeable

batteries, flow

batteries

Lead-acid SS,

Lithium-ion SS,

Nickel-cadium,

redox flow

battery SS,

Sodium Sulphur

SS.

minimal

maintenance is

needed, storage

devices are

available in

different sizes

chemical

reaction reduces

the life

expectancy and

energy of

battery

[123]

Flywheel energy storage (FES) [124], Batteries [119], compressed air energy
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storage (CAES) [122], SCs [120,125], superconducting magnetic energy storage (SMES)

[126], hydrogen storage [127], with hybrid energy storages (HESs) [122], are commonly

used storage technologies for microgrid applications.

In [127], an investigation was carried out to determine the impact of electrical

storage and grid upgrades on the optimal design and operation of a microgrid

under different carbon emissions constraints. The trade-off between storage and

grid upgrade was examined and compared to those of a reference case.

[128], presented ESS technology comprehensive review, structure, configurations,

features, classification, energy conversion and evaluation processes. The paper also

identified vital factors, issues, and challenges with possible recommendations for

further developing ESS in future microgrid applications.

However, ESS technologies face energy storage challenges such as charging/discharging,

life cycle, safety, size, reliability, cost, and overall management. Thus, accurate

selection and design of ESSs are required regarding capacity, energy management

protection, and characteristics to enhance the performance of ESSs in microgrid

applications.

Battery storage is one of the major options for energy storage in systems using

either solar PV and wind energy or their combination [126]. For study purposes,

the battery energy storage systems are considered in detail because of their use and

availability in the region.

2.4.3.1 Battery Energy Storage Systems (BESS)

BESS is widely applicable in the power systems generation, transmission, and distribution

sectors, benefiting consumers [129]. [130, 131] carried out a comprehensive review

on battery storage technologies, such as lithium-ion, lead-acid, redox flow, and

nickel-cadmium.
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Figure 2.7 illustrates for one day the power profile of BESS. From the power curve

Figure 2.7, the horizontal axis (time) denotes the discharging characteristics of the

battery to compensate for the power deficit. Power below the time axis depicts the

charging state of the cell during excess generation [132].

Figure 2.7: Charging and Discharging of BESS [134]

Battery capacity is a vital contributing factor when selecting a storage device.

Battery capacity is the total quantity of electrical charges delivered in a single

discharge by the cell. The State of Charge (SoC), is the ratio of remaining capacity

to the nominal capacity. Separate studies show that a quasi Z-source inverter is

a suitable technique for parallel battery operation, [133] proposed a quasi Z-source

inverter for BESS for microgrid applications. The study results proved that microgrid

voltage remains balanced in the unbalanced load conditions. Examples of BESS are

Lead-acid, lithium-ion and sodium-sulphur storage systems are discussed in [128].

For study purposes, the Lead-acid battery technologies are considered practicable

and available storage technology and discussed further.

56



2.4. MICROGRID DESIGN CHAPTER 2. MICROGRID OVERVIEW

Lead-Acid Storage Systems Lead-acid (PbA), batteries are well-used rechargeable

storage devices with various designs and sizes for different applications [134]. The

PbA battery shows high efficiency (70%–80%) and possesses the highest cell voltage

among all electrolyte batteries [135].

The cathode is made of PbO2 and anode Pb, with sulphuric acid as the electrolyte.

According to [82,90], they are less expensive than other battery technologies and

suitable for large-scale microgrid applications. Other PbA advantages are, it provides

tremendous charge holding and energy density with fast response and long life

cycle (5–15 years) [112]. Nevertheless, the traditional PbA battery has a short

cycle lifetime (500–2000 cycles), periodic water maintenance, low specific energy,

and premature failure due to sulphonation. Sophisticated PbA batteries have been

developed that addresses the above limitations, possessing nine times higher capability

for handling power and four to ten times increased life cycles [136].

The development of lead-acid batteries has focused on innovative materials for

improvement in the performance and implementation of PbA for applications in the

integrated wind, PV power, and automobile sectors. Reference [137] investigated an

islanded renewable energy microgrid emulator with a PbA battery. The proposed

method can be applied in different microgrid configurations using the combinations

of available generating units.

The cost of the energy storage option is crucial in deciding what storage technology

to use. A comprehensive study on the costs of various storage technologies is detailed

in [138]. The findings are summarised as:

1. Though energy storage technologies are becoming attractive for microgrid use,

their high costs and are not competitive enough as anticipated by renewable

energy advocates.

2. Energy storage are expected to reduce essentially in few years due to increased
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use of RERs. Enforcement of government policies that support energy storage,

the call for a reduction in fossil fuel usage, and numerous changes are expected

as the power grid evolves.

2.5 Microgrid Optimisation Methods

In Microgrid constrained optimisation, the general practice is to convert the problem

into more manageable subproblems that can be solved and used as the basis of an

iterative process. Various optimisation techniques for microgrids can be found in

the literature, revealing various heuristic optimisation techniques described to solve

the constrained problems, which are nonlinear. These techniques mainly focus on

microgrids and also define the operational settings of the non-dispatchable distributed

energy resources and dispatchable distributed energy resources.

2.5.1 Optimal Planning in Microgrid

The optimal planning of microgrids has attracted much attention over the years.

Above and beyond the microgrid design, microgrid operation planning over the

short term is a branch addressed by several pieces of research. [139] described energy

management systems and optimal scheduling of microgrid. The optimal decisions,

including generators for power and heat production, proper load management, storage

system scheduling, and local grid power selling and purchasing for the next day, are

decided by maximum profit.

[140], a general formulation to establish the optimal strategy and cost optimisation

scheme for a microgrid is described accounting for emission cost, start-up costs,

operation cost and maintenance costs.

The mixed-integer linear programming model in [141] obtains optimal economic
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operation scheduling of a microgrid in an isolated load area, and a virtual power

producer is used to operate the generation units optimally. The methodology is

applied to an actual microgrid case study. Also, [142] presented a framework for the

energy production planning problem to minimise the total cost and heat interchange

within subgroups of the overall microgrid using the mixed-integer linear programming

methods.

[143], a short-term DER management methodology in smart-grids is presented

as short as five minutes ahead of schedule, and the earlier achieved schedule is

rescheduled; thus, the Genetic Algorithm, GA approach is used for optimisation.

[144] investigate the operational planning of an independent microgrid with solid

oxide fuel cells, tidal power generators and PV. The microgrid supplies heat and

electricity to the surrounding towns and harbour facilities.

[145] proposed a probabilistic energy management system to optimise the microgrid

operation based on an efficient point estimate method. [146] proposed an intelligent

energy management system to optimise the operation of DERs in a combined heat

and power-based microgrid over a 24-hour time interval with a modified bacterial

foraging optimisation algorithm. Both operation cost and emissions were considered

for minimisation. [147] investigated the optimal operation management of DER in

a renewable microgrid for a 24-hour time interval, and it considers the uncertainties

from load demand forecasting error, grid bid changes and non-dispatchable generator

output power variations. [148] propose a functional architecture for an island microgrids

real-time operation, and day-ahead scheduling and real-time scheduling are considered.

A chaotic quantum genetic algorithm is applied for the environmental, economic

dispatch problem for DERs in an intelligent microgrid [149]. Operation planning of

an independent microgrid is obtained from the genetic algorithm, where solar cell,

heat pumps, fuel cells and water electrolysers are applied.

[89] formulated an optimisation problem based on consumer demand and RERs
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modifications and uses an imperialist competitive algorithm to calculate the cost

function. [90, 91] included the sizing and operational analysis of a standalone

hybrid microgrid in the formulated objective function, then resolved using ant colony

and a multiobjective algorithm. [92] overcomes the stability problem of a hybrid

microgrid with the harmony search-based hybrid firefly solver. [93] employed a

particle swarm-based solver to search for the setting for microgrid control parameters.

[95, 96] suggested that overall power generation costs for the microgrid owner, fuel

consumption by DGs, BSS life cycle characteristics, and power losses are significant

factors in their formulated fitness functions. [97] a genetic algorithm is applied

simultaneously, with the mixed-integer linear programming to solve a two-stage

optimisation problem for a multi-microgrid network considering utility profits and

consumer satisfaction. [98] used a non-dominant sorting genetic algorithm-II, a fast

and elitist type of genetic algorithm, used to solve a multiobjective optimisation

problem of microgrids by controlling the load imbalance in the microgrid.

Similarly, various types of genetic algorithm, such as the actual coded genetic

algorithm, hybrid-Fuzzy genetic algorithm, and floating-point genetic algorithm,

are used in [99, 101] to solve the optimisation problem for standalone microgrids

and power systems. Contrary to most genetic algorithm-based techniques that

consider binary numbers in their genes and chromosomes, a floating-point number

is used in each gene and chromosome of a floating-point genetic algorithm [102].

Hence, floating-point genetic algorithms have more advantages than binary genetic

algorithms. The main reasons are more efficiency, less memory utilisation, and

increased precision. Moreover, different operators can be utilised for greater flexibility

[103]. The operation of a genetic algorithm-based solver can be improved by considering

the scaling operator and the traditionally used crossover and mutation operators

[104]. The scaling operator can be applied in the form of a different function. Using

an appropriate scaling function can reduce the problem complexity and speed up
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identifying a solution [105].

2.5.2 Operation Management of Microgrids

[150] formulated an economic load dispatch problem of a microgrid using four

different optimisation algorithms. The generating cost of the dispatchable DGs

present in the microgrid is taken as the objective function. In [151], authors have

inspected the effect of these constraints on two different test systems. Simulation

results show that the lambda logic technique had the fastest computational time.

[152] proposed the optimal generation scheduling problem for a microgrid consisting

of conventional generators, PV systems, WT generators, electric vehicles and BSS.

Application results of the optimal generation scheduling of the microgrid with and

without EVs and battery storage are attained for comparison. Simulation results

reveal that the optimum cost incurred in microgrid with the electric vehicles and

BSS is minimal.

[153] proposed a new model for optimal microgrid operation comprising wind

turbine, microturbine, energy storage system and loads. Particle Swarm Optimization,

PSO algorithm was used to optimise the operation of this microgrid. Alternatively,

the Monte Carlo simulation method has been applied to model the uncertainties

of wind generation, power consumption of uncontrollable loads, energy price of the

upstream distribution network, and the disconnection probability from the network

and failure probability of units. This method encompassed all probabilistic conditions

and at last presented a probability distribution function for all the decision variables.

Simulation results showed that using a deterministic method in the optimal operation

of microgrids with non-dispatchable resources was not appropriate and stochastic

methods must be applied.

[154] proposed a multiobjective and stochastic problem for optimal scheduling
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of microgrid comprising electrical and thermal loads, conventional energy sources

(microturbine and boiler), non-conventional energy sources (PV and WT), combined

heat and power, energy storage systems (electrical and thermal storages) and series

flexible alternating current transmission system devices. In order to attain a higher

power transfer to the upstream grid, a dynamic voltage restorer is incorporated in the

line between the leading network and the microgrid. In the proposed optimisation

technique, solar radiation, wind speed and loads are considered uncertain parameters

based on a stochastic approach. The proposed stochastic and multiobjective optimisation

problem was solved using the augmented Epsilon-constraint technique. The proposed

optimisation technique simulation results were compared with results attained using

other heuristic algorithms to reveal the efficacy and viability of the proposed optimisation

technique simulation results.

[155] proposed a probabilistic unit commitment model for the optimal operation

of plug-in electric vehicles in a microgrid. The microgrid considered here comprises

wind turbines, microturbines, plug-in electric vehicles, boiler, battery storage and

thermal storage. The usual unit commitment schedule total profit was taken as the

objective function. PSO algorithm is applied to minimise the fitness function. Even

though probabilistic UC-Vehicle to Grid, V2G cannot represent the indeterminate

nature of load, wind and vehicles, the attained values are nearer to reality in association

with the deterministic ones. Comparing the simulation results of deterministic and

probabilistic UC-V2G reveals that the probabilistic method does not overrate the

total expected profit.

In [156], an optimal management strategy of WT/PV/DG independent hybrid

systems for supplying required energy in autonomous microgrids is proposed. Guaranteed

convergence PSO with Gaussian Mutation, GPSO-GM is developed to solve the

optimisation problem of demonstrating the effectiveness and validity of GPSO-GM.

Results obtained were compared with results obtained by using particle swarm
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optimisation and genetic algorithm. Simulation results demonstrate that the design

of hybrid energy systems based on using both battery banks and diesel generators

to support non-conventional energy sources is more efficient than the design, which

only battery banks or diesel generators exclusively.

Optimal operation of microgrids considering the uncertainty of non-conventional

energy generation was presented by [157]. Simulation results reveal that stochastic

methodology can be applied successfully for optimal microgrid operation with uncertainties

through the case study. In [158], near-optimal operation/allocation of Grid-level

battery energy storage system has been investigated with the deliberation of lifetime

characteristics. Simulation results reveal that the ADP can optimise the system

operation under various scenarios. In [159] has proposed an optimisation-based MG

framework for optimal microgrid operation. The proposed optimisation framework

comprises three optimisation components to carry out unit commitment, consumer

load scheduling and power balancing. The optimisation problem is developed considering

transmission constraints, ramp-up/ramp-down constraints.

[160] proposed an economic operation model of isolated community microgrid

comprising micro-gas turbine, wind turbine, heat pump and energy storage battery.

The optimisation problem is solved using the hybrid PSO technique. Simulation

results reveal that temperature adjustment of temperature controlling devices can

lessen charge-discharge cycles of the energy storage system and enhance microgrid

schedulability besides improving the economic efficiency of the microgrid. [161] proposed

an improved bat algorithm and a point estimate method to optimise the operation of

microgrid comprising wind turbine generator, solar photovoltaic system, microturbine,

fuel cell and battery. [162] proposed an optimal scheduling strategy for microgrid

operation considering constraints of island capability. A new concept called the

probability of successful island is developed. The proposed chance-constrained model

has two advantages when compared to the deterministic model.
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[163] proposed a multiobjective bi-level optimal operation model for distribution

network with grid-connected microgrids to obtain operation benefits of both distribution

network and microgrids. The simulation studied was carried out in the IEEE 33-bus

distribution network with Europe’s typical microgrid and a real system with 128

nodes and seven microgrids in Shandong, China. In [164], a cost-effective hybrid

power system in a coastal area of Bangladesh is proposed, which minimises gas

emission by a substantial amount owing to reduced fuel consumption. HOMER

software is used to determine the reduction in gas emission.

[165] formulated an optimisation model based on the day-ahead forecasted power

of non-controllable loads at each time interval of the day (the load profile for the

equipment of a greenhouse) in addition to the weather forecast based estimation of

the solar energy availability. The optimisation time period is one day (24 hours)

that is divided into hourly slots. The optimisation model aims to optimise three

non-conventional energy sources (biogas, photovoltaic, geothermal), reducing the

daily costs necessary for the dispatchable generators. In order to validate the results

obtained, an experimental system equipped with intelligent metering instruments is

introduced.

A load control algorithm is developed to consider PV generation operating in

island mode [166]. LABVIEW software is used to design the load control algorithm.

[167] presented two mixed-integer linear programming models for complete microgrid

planning under uncertainties in solar irradiance, electricity demand and wind speed.

To demonstrate and compare the effectiveness of the RO and 2SSIP model, the

author presented a case study in which the two models are applied to plan a standalone

microgrid in Singida, Tanzania. In [168] proposed optimal economic dispatch of a

grid-connected microgrid. The microgrid comprised wind, solar photovoltaic and

diesel power sources. Simulation results reveal that lower costs are attained in

the microgrid when the grid operators DR benefit is maximised at the outlay of
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minimising transaction/fuel costs.

[169] presented optimal operation management of microgrids using the point

estimate method and firefly algorithm considering uncertainties in probabilistic energy

management systems. Simulation results revealed that if the uncertain parameters

considered can be calculated or projected, the distributions of all of the optimal costs

and state variables can be precisely and proficiently evaluated utilising Hong’s point

estimate method.

[170] presented an efficient algorithm based on PSO for energy and operation

management of a microgrid comprising various distributed generation units and

energy storage devices. PSO is applied to sort out the optimisation problem. The

obtained simulation results substantiated the efficiency of the proposed approach

to sort out both probabilistic and deterministic energy and operation management

problems under various equipped scenarios of the microgrid.

[171] proposed an optimal day-ahead scheduling model for a microgrid system

with wind turbine units, photovoltaic cells, battery storage systems and diesel generators.

Simulation has been performed on three different IEEE standard bus systems. Simulation

results reveal that the proposed optimisation technique is consistent under normal

and fault operation conditions for the optimal day-ahead scheduling of microgrids.

[172] presented a comparative study between three different configurations for supplying

an irrigating pumping system and a farmers house with the required electrical demand

in two different regions. Hybrid Optimisation by Genetic Algorithms simulation

software tool is utilised for optimal sizing and cost-effective analysis of a hybrid

standalone photovoltaic-wind system.

[173] presented a model predictive control based optimal operation approach for a

residential microgrid considering forecast uncertainties. The control accomplishment

at each sampling time is attained by solving a novel mixed-integer linear programming

optimisation problem. Simulation results specify that the operation cost of the model
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predictive control approach is appreciably lower than the conventional day-ahead

programming approach under a perfect forecasting situation. In [174], a cuckoo

search algorithm was implemented for solving the environmental, economic dispatch

problem of a microgrid.

[175] presented a parametric programming based approach for energy management

in microgrids. The optimisation problem is solved offline on a flexible time-scale

basis, permitting online realisation to be attainable on real-time system state updates.

By using operational and design boundaries on the renewable energy systems, renewable

resource inconsistency is captured as different parametric apprehensions of solar and

wind power, which results in the conversion of the problem from a nonlinear to a

linear form. The algorithm was tested using various electricity pricing information to

construct two case studies for the system’s incentivised and open market operations.

Both cases studies are applied to the same renewable energy apprehensions to optimise

the decisions of a microgrid over a one-week operational period. Simulation results

reveal that under the incentivised program, the storage system is almost not utilised,

and the power production extras to local demand are sold to the main grid.

A direct current microgrid with improved maximum power point tracking algorithms

for solar and wind energy systems is developed in [176]. A two-model maximum

power point tracking technique is implemented to improve the PV system power

generation.In addition, an Optimal Power Control maximum power point tracking

algorithm is included for the wind energy conversion system with the pitch angle

controlling method to improve the supply to the grid. [177] presented optimal operation

planning for an isolated microgrid comprising PV, WT, DG, and BSS. This optimisation

problem is solved using PSO. Simulation results reveal that the operation cost of the

operation planning attained with an indeterminate cost model is more significant

than that with an indiscriminate cost model.

In [178], the microgrid stochastic economic load dispatch problem is devised based
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on the wait-and-see approach. Simulation results reveal that the new mechanism

in IPSO adds to the optimisation capability. [179] developed a PI controller based

voltage controller on improving the voltage profile of island microgrid. In [180], a

power allocation approach for storage batteries and diesel generators is proposed

by the overall deliberation of system operations financial and ecological benefits.

The non-dominated sorting genetic algorithm solves the optimisation problem. The

model is analysed by solving a problem on a realistic island, and the sagacity of

the proposed model and the power allocation approach is confirmed. [181] presented

the instantaneous scheduling of electric vehicles and receptive loads to minimise

operation cost and emission in the occurrence of PV and WT in a microgrid. Simulation

results revealed that electric vehicles integration and reactive loads reduce system

emission and operation costs.

The Integrated Renewable Energy System (IRES) by [16] considered PV arrays,

solar thermal, wind-power, biomass and small hydro as RERs and discussed methods

developed to design IRES using linear programming (LP) approach to minimise total

annual cost and subject to some energy and power constraints. Another research

utilised the idea based on appropriately combining wind-power, solar, and biomass

systems and demonstrated that IRES is reliable and a practical concept from the

energy deployment and generation standpoint. Therefore, it established that IRES

plays a vital role in meeting the energy demands of rural dwellers and improving

their living conditions. An optimal renewable energy model, OREM developed and

considered 38 various RERs options in trying to minimise the cost ratio with resource

restriction, social recognition, reliability and demand factors used as constraints.

67



2.6. OPTIMISATION STRATEGY SELECTIONCHAPTER 2. MICROGRID OVERVIEW

2.6 Optimisation Strategy Selection

From the sections above, many optimisation techniques have been applied to the

study of microgrids for different applications. To decide what algorithms are employed

in the research carried out, the different techniques are considered and demonstrated

in the Figure 2.8 below.

Figure 2.8: Optimisation Technique Description.

Exact methods These are methods used to find the optimal solution to an optimisation

problem. These methods include dynamic programming, linear programming methods.

They are restricted to the kind of problems they solve (NP-complete problems), and

more time is required to solve real time problems.

Approximate methods These methods do not guarantee optimal solutions but

are suitable for more complex, stochastic, and demanding exponential effort (NP-hard

problems).
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Heuristics Heuristic designates a computational procedure that determines an

optimal solution by iteratively trying to enhance a candidate solution considering a

provided measure of quality. Examples are black-box optimisation techniques and

direct search.

Metaheuristics A metaheuristic is a higher-level heuristic designed to find and

generate a suitable solution to optimisation problems with little or no information

and limited computation capacity. Its stochastic nature easy recovery from the

local minima, deal with objective uncertainties and handle multiple objectives with

minimal changes required. Metaheuristics can further be divided into Trajectory-based

algorithms, Evolutionary-based algorithms and Swarm-based algorithms. Figure 2.8,

one method each is selected, and their performances are evaluated further.

2.6.1 Design and Optimisation Software Tools

Different software is used for microgrid design and optimisation. The widely used

software options available are detailed in the Table 2.4 below:
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Table 2.4, presents different tools and achievable components of available microgrid

design tools. Amongst all tools listed, HOMER PRO, HYDROGEMS, and HOGA

tools are comparable with HOMER PRO selected because of the control strategy

component absent in HYDROGEMS, and free component absent with HOGA as

seen in Table 2.4.

2.7 Conclusion

The concept, research inception of microgrids has been established to be an electrical

entity able to operate independently, grid-connected or in clusters. The different

technologies in application described as consisting broadly of loads, generating sources,

and controls. The different methods of load forecasting is established and finally,

optimisation of the microgrids in term of optimal planning and various operational

strategies as seen in literature are described.

The deployment of microgrids with RERs is common with its configuration as

they have self replenishing power sources that are environmentally friendly. Though

with issues of power quality due to their intermittent nature, and continuous load

demand variations, ESS becomes essential to improve reliability and stability of the

the network. Microgrid planning, operational management, and optimisation offers

strategies to efficiently curb excess power losses, minimise design cost, manage power

demand and supply.

Several factors impact the advance in microgrid research and development. These

include:

1. The availability of RERs and harvestable local clean energy.

2. Energy cost, reliability and power quality. It means meeting the sensitive load

requirement by high-quality power local provision and exploiting the use of
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DERs assets via embedded intelligence, minimising power disturbances.

3. Energy efficiency. The improved understanding of energy use, knowledge on

efficient energy appliances and appliance switch-off. Increased control of demand

offers evidence that leads to energy use efficiency.

Depending on the objective (economic, environmental, and energy performance) of

study, an optimisation strategy is adopted. Common features of these optimisation

strategies include the objective function (single or multiple), decision variable, and

constraints. The robust nature of metaheuristics informed its selection for the

economic performance of the microgrid considered in research.

The various optimisation strategies require separate tuning of their specific parameters.

Parameter tuning is a critical issue, as it directly affects the performance of selected

strategies. Improper tuning could result in achieving local optima solutions or

increased computation time which will be addressed in study.

In determining the load estimation approach, data type available, and the need to

improve accuracy informed the choice of the bottom-up approach requiring questionnaire

development to best suit research problem and with the absence of smart metering,

the data gathered is replicated to form a years worth for design and simulation

purpose. This also affects the choice of forecasting technique deployed to include

population growth and appliances assumed to be reasonable added over the forecast

period as indices considered.

The benefits of microgrids include; reduction in gaseous emissions (mainly CO2),

energy efficiency or rational use of energy, deregulation or competition policy, growing

increase in demand for power, diversification of energy sources, national and global

power requirements, modular generating plants availability, reduced construction

time and capital costs of smaller plants, ease of finding sites for smaller generators,

and generating may be sited closer to load, which may reduce transmission costs.
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Chapter 3

Load Design and Forecasting

3.1 Introduction

In this chapter, the methods employed for the load estimation and forecast is presented.

The current load demand based on each household, school, worship centres and

commercial businesses are considered in developing the community’s demand profile

developed in Excel. An improved community load profile is developed, taking into

account the use of energy-efficient appliances, and assumptions are made in order

to shift the base loads from points of zero demands to base loads > 0kW. Refer to

Appendix A.1 and A.2, for sample questionnaires.

Furthermore, a forecast is carried out on the maximum load demand over ten

years, and the 5th years forecast is used for the design of the hybrid microgrid.

Excel is a spreadsheet from Microsoft which allows data organising, formatting,

graphical representation and calculations. The graphs plotted in excel shows the load

demand flow in every hour over a 24 hours for individual load demand categories

considered.
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3.2 Load Estimation

Kogi state located in Nigerias’ middle belt area, popularly called the confluence

state because of the coming together of the Niger and Benue river which meets at

the state’s capital Lokoja (the first administrative capital of modern-day Nigeria).

Agriculture and natural minerals are the central part of its economy, (agriculture:

cocoa, coffee, palm oil, cashew, groundnut, maize, cassava, rice, melon, and minerals:

coal, limestone, iron, petroleum and tin). Its coordinates are 7.73370N, 6.69060E.

Kogi State has 21 local government areas. Igah community under Olamaboro local

government is considered for research purpose.

The resource gathered was for Igah community, Figure 3.1 (7010.4
′
N, 7032.4

′
E)

is a pictorial representation of the selected community. Sixty houses are considered

with an average population of 240 people, increasing during the festive periods to

over 300 people. Igah community spans an area of 1,132km2.

Figure 3.1: Igah Community

The people of Igah are not connected to the national grid; hence, they rely

on kerosene lamps, torch lights, solar rechargeable lamps, wood fuel and mini fuel
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generators to meet their daily electricity demand. The populace, including children,

are known for farming, and as such, their day to day activities (Monday - Saturday)

involves walking long distances to their farms and carrying harvest to the markets

in neighbouring villages. Igah community is made up of a couple of worship places,

a primary and secondary school, a barbing saloon, a blacksmith, a food milling site,

and mini grocery sites located in private homes.

Education is not free; only those who can afford it are able to attend. Those

unable to afford to accompany their parents to the farm and the elderly are left

at home. It is observed that on a typical Monday to Saturday from 4:30 am, Igah

dwellers start their day heading to their farm sites, where most of the day is spent

on-farm activities (planting, weeding, harvesting). At 05:00 pm,they start returning

home. Schools operate between 08:00 am - 04:00 pm, the blacksmith and barbing

saloon operate between 09:00 am - 05:00 pm. When the dwellers are at their farm

sites, they have their generators Off and back On when they are home. In the day

times, it is mostly the barbers, blacksmith, school, and milling machines that tend to

run their generators in other to carry out their activities. On a typical Sunday, the

Igah dwellers spend the day in the worship centres, visiting neighbours and engaging

in different village meetings.

In order to design accurate and efficient power systems, a good knowledge of

the expected power demand for applications is required from the study area. For

research purposes, this was estimated through interviews of the village head, school

teachers, farmers, and rural dwellers. These indices were considered during the load

demand survey of the study area for the proposed HMG.

• Population

• Number of houses

• Number of house occupants
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• Average daily electrical energy consumption

• Number of schools, churches, and their energy Demand.

• Commercial businesses and their energy consumption.

The data obtained are based on the results obtained from the electrical load survey

conducted in Igah by the researcher in December, 2018. The primary load is residential

with some load for commercial, churches and school. During the survey period, there

was no health centre available. The load is composed of household devices such as

lighting points, fans, rechargeable lamps and radios. Note that refrigerators, ironing

devices and other heavy electric equipment were included in the calculation but

considered extras because not every house during the survey had these appliances.

The actual energy consumed by each of the categories is shown in Table 3.1.

Table 3.1: Basic Inventory

Table 3.1 shows an estimation of each appliance’s rated power, quantity, and

average hours of use by the categories in a single day. The data collected aimed to

understand the general behaviour of the people regarding the use of electricity as
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shown in Figure 3.2, their current usage and future usage if constant electricity was

made available.

Energy consumed (Wh/day) is a product of each appliance quantity, power rating

and hours of use in a day. The total individual energy (kWh/day) is the sum

total energy consumed by each category of user in kWh/day [186], while the total

community energy is the cumulative sum for all members of the different categories

under study described as:

EnergyConsumed = Quantity × PowerRating ×Hours (3.1)

TotalIndividualEnergy = Sum(EnergyConsumed)/1000 (3.2)

TotalCommunityEnergy = TotalIndividualEnergy ×NumberOfUsers (3.3)

Figure 3.2: Basic Graph of Current Load Model
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Figure 3.2 is a plot showing the demand of each load category against each hour

in a day.

It was gathered that no generators were in use in the residential houses between

the hours of 6:00 am - 3:00 pm, as they were mostly in their farms or market. Their

mini generators started coming on after 05:00 pm, electricity use peaking between

7:00 pm-midnight. The school had its generator ON between 8:00 am - 4:00 pm

during term time weekdays only. The barbing saloon, welders shop, grinding/milling

machine and worship centres had their generators at different times of the day

depending on their activities. From Figure 3.2, it can also be inferred that at a

particular time of the day, the whole community is in blackout with zero, 0kW of

energy generated.

Also from Figure 3.2, the demand for the houses has the highest demand of

14kW between 1700hrs and 0100hrs when compared to other entities considered, with

schools having the lowest demand between 0800hrs and 1600hrs. At all other times,

the demand is 0kW when the school is closed. The church, commercial load demand

are also represented. The Extra load profile represents appliances not common with

every household as seen in Table 3.1.

An improved load curve was assumed considering every house had the essential

appliances (bulb, fan, radio, phone, television and fridge) and based on the possible

constant power supply to the community to make up a daily baseload ≃ 14kW, to

be able to carry out system design, and predictions with ease and shown in Table

3.2.
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Table 3.2: Improved Load Demand

From Table 3.2, it can be seen that energy savings is achieved by using lower

power rated appliances (e.g bulb). Comparing Table 3.2 and Table 3.1, improved

hours of use from 8 to 12.67 hours for residential bulb demand, 8 to 24 hours for

residential fridge demand assuming constant electricity supply.

Figure 3.3 is a load curve generated based on the data gathered and the improved

load demand containing assumed loads. It shows that differences exist between the

actual and the improved load profiles. A notable difference is seen in the profile load

peaks. This results from using energy-saving types of equipment in the improved

load demand development. Also, we assume commercial businesses operate on a

regular 09:00 am - 05:00 pm steady power supply, and every residential house has a

fridge ON for 24hrs, causing a shift from the 0kW loads.

As with Table 3.1, same calculations apply to Table 3.2, with the use of energy

saving appliances and variations in the daily running hours considered.
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Figure 3.3: Load Curves

The total hourly demand of the community on Y-axis is plotted against 24 hours

on X-axis shown in Figure 3.3. It can be seen that the actual demand starts at

18kW, peaks at 1900hrs with 26kW load demand and comes to an end having 20kW

load demand. The peak occurs at 1900hrs resulting from more people using energy

at this time after returning from the farms and school.

The improved demand starts at 10.5kW, peaks at 22kW (1700hrs) and ends at

15kW. The improved demand was derived by assuming the community had steady

power supply and using energy saving appliances. These assumptions improved

the profile by shifting the profile point from the 0kW points and also decreasing

the demand at the peak point. The rise and fall in plots depicts more appliances

switched ON and OFF by users.

The nature of human activities in the community gives rise to the Figure 3.4,

showing a lower demand during the daytime on Sundays and the evenings and night,

having similar demand. Also, no change in energy use is experienced over the year.

Day/Night hour changes due to seasons are assumed negligible as the average sun

hours during the summer (Apr-Oct) months was found to be 12.19hrs of daylight,

and for winter (Nov-Mar) months, 11.57hrs of daylight.
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Figure 3.4: Typical Mon-Sat and Sun Load Profile

Figure 3.4, is a representation of the improved load profile showing the profile

behaviour Monday - Saturday and Sunday. The difference exist as businesses are

closed on Sundays. A combination of the load profiles in Figure 3.4, gives the

improved load profile in Figure 3.3.

3.3 Load Forecasting

A bottom-up approach is considered using a combination of both end-use and econometric

methods for the microgrid design. They are suitable for the long-term and allow

for varying demand pattern simulation alongside introducing new and advanced

technologies, and also considers the changes in consumer activities. This approach

relies on the accuracy and amount of information provided by the end-user, economic

and behaviour indices. Table 3.3 shows the factors considered for load forecasting.
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Table 3.3: Consumer Load Demand

S/N Consumer
Type

Average
Daily

Consumption
Per House

Current
number of
consumers

Per Annual
Increase in
Consumption

(%)

Number of
New

Consumers
Per Year

1 Residential 4.55 60 5 3

2 Church 3.27 2 5 -

3 School 3.15 1 5 -

4 Commercial 46.36 1 5 1

The study adopted a 5% increase for annual increase in consumption from questionnaire

data gathered and interacting with the rural dwellers, and 1 new addition to commercial

load to include all the different businesses within it.

In forecasting the load, the load factor is important, and it is referred to as the

ratio of the average load to the maximum demand during a certain period of time.

The load factor is always < 1since the maximum load is expected to be greater than

the average load [187].

LF =
DemandAverage

DemandMaximum

(3.4)

Where LF = load factor (assumed values)

DemandMaximum =
ActualUnitsTotal

LF × 8760
(3.5)

where

UnitsTotal = Total number of units supplied in a year

8760 = Total number of hours in a year.

The following equations are used for the yearly forecast with values from Table

3.3.
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Year 1. For S/N 1 - 4.

Consumer Type =
Total Individual Energy ∗Number of Users ∗Days in a year

1000
(3.6)

Year 2 - Year 10 For S/N 1 - 4.

Consumer Type =
((Total IndividualEnergy ∗ 365) + 5% of Total IndividualEnergy ∗ Days in a year)) ∗ (Number of Users + UNew)

1000
(3.7)

where

UNew = Number of New Consumers Per Year (assumed from interaction with

community dwellers).

Table 3.4, shows the results for the load forecast.

Table 3.4: Ten Year Load Forecast

S/N Consumer Yr1 Yr2 Yr3 Yr4 Yr5 Yr6 Yr7 Yr8 Yr9 Yr10

1 Residential 99.60 109.86 120.57 131.78 143.49 155.70 168.40 181.60 195.30 209.50

2 Church 2.39 2.51 2.63 2.75 2.86 2.98 3.10 3.22 3.34 3.46

3 School 1.15 1.21 1.26 1.32 1.38 1.44 1.49 1.55 1.61 1.67

4 Commercial 16.91 17.76 20.30 24.53 30.45 38.06 47.36 64.27 84.57 100.64

5 Miscellaneous 5.00 6.50 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00

6 Sum 1-5 125.10 137.83 151.76 168.37 187.18 208.17 231.36 262.65 297.83 329.27

7 10% T&D losses 12.51 13.78 15.18 16.84 18.72 20.82 23.14 26.27 29.78 32.93

8 Demand at 6+7 137.61 151.62 166.93 185.21 205.90 228.99 254.49 288.92 327.61 362.20

9 Demand approx. 138 152 167 185 206 229 254 289 328 362

10 Assumed LF 0.5 0.55 0.6 0.65 0.7 0.71 0.72 0.73 0.74 0.75

11 Maximun Demand, kW 31.42 31.55 31.76 32.53 33.58 36.82 40.35 45.18 50.54 55.13

From Table 3.4, the categories load demand (S/N 1 - 4), Miscellaneous demand

is introduced to take care of uncertainties with demand increase by users and 10%
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losses for transmission and distribution losses that may be experienced in moving

power from the microgrid to the consumer locations.

Reasonable electricity usage is achieved with load factors > 0.75 with limited

demand control benefit. For load factors < 0.5, periods of high demand use and low

utilisation rate is experienced. As such, for possible benefit in the demand control,

load factors between 0.5 - 0.75 were considered.

Preceding years of interest that will be used for further research are Yr1, Yr5 and

Yr10, having maximum demands of 31.42kW, 33.58kW and 55.13kW, respectively.

Figure 3.5, shows the maximum energy use expected over ten years.

Figure 3.5: Ten Year Load Forecast

From Figure 3.5, for every year, assumptions are made on the load profile that

changes its pattern. This is because it is expected that with available power supply,

the behaviour, social status and engagements tend to shift slowly as seen in Year 1

- 5. Then power supply becomes steady, there is significant change in their lifestyle

(need for comfort), people purchase more appliances for their homes, businesses and

farms..

Year 1 - 5 is seen to have a slow increase in the maximum yearly demand from

31.42kW - 33.58kW resulting from a 0.05 increase in the load factor and for year 5 -
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10 experienced an exponential increase from 33.58kW - 55.13kW due to a 0.01 load

factor increase.

Figure 3.6 below gives a presentation of these effects on the load profile’s daily

load profile for the 1st, 5th-year and 10th-year load forecast.

Figure 3.6: Year 1, Year 5 and Year 10 Average Daily Load Profile

As with the improved load demand profiles in Figure 3.3 represented as Y1,

Figure 3.6 demand profile is further improved to accommodate the changes resulting

from the load forecasting causing the shift in Y5 and Y10 demand respectively. Y5

load curve starts with a demand of 15.44kW at night when the light bulbs and fans

are in use, then increases to 21kW when some commercial loads (grinding machines)

start coming ON. The load is seen to remain flat between the 0600 - 1400 hours, by

this time the grinding machine businesses have gone OFF and community dwellers

gone to their farms, schools and other businesses in operation. From 1400 - 1800

hours, the curve is seen to rise to 30kW because schools close about this time and

more appliances come ON. The curve remains flat for the next 2 hours when farmers

return and begins to drop as businesses shut down and user retire to bed.

Y10 load curve is similar to that of Y5 in terms of the pattern but differ in the
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demand value. Between 0300 - 0600 hours, the curve increases and flattens because

the grinding business is assumed to operate for longer periods as a result of growth

experienced.

3.4 Variable Demand

The system is bound to face variability in consumer demand as a result of changes

in daily human activities, which need to be considered to show the robustness and

reliability of the microgrid design application. Random variability is introduced to

the load data, making it more realistic. Day-to-day and Timestep are the random

variability inputs to HOMER. HOMER puts together a year-long array load data

from specified daily load profiles, then steps through the time series. In each time

step, it multiplies a perturbation factor, α by the value in that time step [188].

α = 1 + δd + δts (3.8)

where

δd = daily perturbation value

δts = time step perturbation value

The variable load can then be defined as any event that causes spikes to the

baseload demand. The microgrid must meet these spikes within certain limits. A

proposed load model is developed to show uncertain events that are likely to occur at

different times throughout the year due to changes in peoples consumption behaviour.

The system designed is robust enough to meet uncertainties. A variable load curve

to demonstrate more realistic events through a year is shown as Figure 3.7, for the

1st year.
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Figure 3.7: Variable Load Curve for Year 1

Figure 3.7 is a representation of the monthly load demand profile developed

in HOMER and showing the effects of random variability through the year. The

random variability inputs are 20% day-to-day and 15% timestep. HOMER randomly

draws the daily perturbation value once per day from a normal distribution with a

mean of zero and a standard deviation equal to the daily variability (Day-to-day)

input. It randomly draws the time step perturbation value every time step from

a normal distribution with a mean of zero and a standard deviation equal to the

time-step-to-time-step variability (Timestep) input value.

3.5 Conclusion

In this chapter, the load assumptions, design and forecast is considered. A 10yr

forecast was carried out on the load developed from data gathered. It is also

observed that the type of data available limits the type of forecasting methods

utilised for demand prediction. The forecast carried out considering both end-use
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and econometric indices showed a progressive increase in the load demand over the

years. This is expected as growth and development happen with power availability.

Also, the essential lifestyle is likely to improve with people acquiring more gadgets

to make a living more convenient.

The Maximum load demand, assumed load factor, percentage increase on the

end-user sides, including system losses, are considered in predicting the load demand.

The load for Yr5 is further employed for HGM system design in the following chapter.
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Chapter 4

Microgrid Design using Homer

The HMG is designed using Homer Pro software, six microgrid designs are presented,

and the results are discussed.

Homer Pro (HOMER), created by the National Renewable Energy Laboratory

(NREL) USA, is employed to develop a hybrid renewable energy system [188]. It is,

among others, a global software tool for designing optimised microgrids in varying

sectors, ranging from grid-tied microgrid systems, island system designs and rural

system designs.

4.1 Simulation Process

In HOMER, the location for the study is defined and selected. HOMER contains

up to 30 years of historical meteorological data from NREL for different locations

around the globe. The average daily load characteristics are also inputted. HOMER

uses the load data provided to estimate and develop year-long load information.

The desired microgrid components are selected, and the characteristics of the cost of

each component stated. Desired constraints and sensitivity variables consideration

are finally selected for the simulation process to commence. HOMER simulates
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multiple microgrid design combinations based on the chosen components selected

and simulates the microgrid system’s operation for an entire year in one hour time

steps. HOMER also examines the different microgrid combinations for a run, and

based on variables considered for optimisation, it provides the system configurations.

4.2 Sensitivity Analysis

Sensitivity analysis can be carried out in HOMER, allowing comparison amongst

multiple simulation results for particular variables/options of interest to see their

impact on system designs. Worthy of note is that HOMER provides the fuel cost and

cost of the components, which can be modified to fit specific design considerations.

It also provides cost for grid extension for the proposed location of consideration,

which allows for decisions on the viability of the system design installation or grid

extension.

The resulting output after a complete simulation presents a number of microgrid

combinations with different Net Present Cost (NPC) component capacities and

system performance characteristics. The base case configuration for meeting the

load is considered a system consisting of only a diesel generator. Decisions on the

microgrid configuration selected are assumed to be a system design with the desired

component selected, sensitivity variables, and the least NPC.

The system proposed is designed to have a photovoltaic system, wind turbine

system, an energy storage system, a converter, and a diesel generator. Furthermore,

it consists of 2 load buses, a DC bus connecting the photovoltaic system and energy

storage systems, an AC bus connecting the diesel generator, and the wind turbine

system.

The optimised system and variables used in HOMER are imputed into MatLab

for further optimisation using some optimisation strategies to evaluate the system’s
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operation at a reduced cost.

4.3 Inputs and Component Selection

In simulating real-life scenarios, a realistic load profile must be proposed for areas

without historical user data. Basically, in rural areas, electricity consumption is

mainly for domestic lighting and entertainment, community schools, and small-scale

commercial activities (food processing and blacksmithing). Therefore, a carefully

assumed load demand is proposed for use.

4.3.1 Load Data

The load demand carefully developed in Chapter 3 is used as input to HOMER. A

community of 60 residential houses, a school (secondary and primary), two worship

centres, and commercial loads (blacksmith and food processing) is analysed. In

determining the daily usage of the rural dwellers, the load curve seeks to explain

the consumption pattern of the community. Bearing in mind that energy saving

and carbon reduction components are introduced, the electricity usage equipment

includes lighting, television and radio sets, table or ceiling fans, fridges, sound

appliances, food processors and other electrical pieces of equipment. Other sources

(microwave, washing machine, pressing iron, electric stove, air-condition) of usage

are not considered in the load profile development. Also, the building types and

sizes, occupant number, behaviour and exact activities are considered not in detail

but assumed where necessary. Note that all appliances implemented are not all

simultaneously in use during the 24hr period, as can be seen in Figure 3.4. 8760

hourly electrical load value for one entire year using the load profile with some added

random variables such as day-to-day and time-step-to-time- step is then generated
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by HOMER. During the simulation process of the synthetic 8760 load data to depict

a real life scenario, a 20% day-to-day randomness and 15% time-step-to-time-step

randomness are used to implement the variable load curves as shown in outliers

presented in Figure 4.1, Figure 4.2, and Figure 4.3. The outliers shows the extremely

low and extremely high load demand points relative to the nearest load demand point

and the nearest of the neighbouring co-existing values in the load demand dataset

considered.

Figure 4.1: Monthly Variable Load Curves for Year 1

The 1st year load forecast, as shown in Figure 4.1, for each month, the top line

corresponds to that month’s overall maximum load demand with the least demand

value 32kW in February and highest demand value of 48kW in December. The

bottom line corresponds to the overall minimum load demand with lowest value

experienced May. The top of the blue box is the average of the daily maximums of

all of the days in the month with August having the highest value 26kW, and the

bottom of the box is the average daily minimum load demand. The middle line is

the load demand overall average for the whole month.

92



4.3. INPUTS AND COMPONENT SELECTIONCHAPTER 4. MICROGRID DESIGN USING HOMER

Figure 4.2: Monthly Variable Load Curves for Year 5

For the HOMER HMG design, the 5th year load forecast was utilised. Figure

4.4, The overall highest maximum and lowest minimum, average daily maximum

and average daily minimum, and least average monthly load demand have the load

demand values of 57kW, 0kW, 48kW, 12kW and 20kW occurring in the months of

December, May, August, May and February respectively.
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Figure 4.3: Monthly Variable Load Curves for Year 10

The 10th year load forecast, as shown in Figure 4.3,The overall highest maximum

and lowest minimum, average daily maximum and average daily minimum, and least

average monthly load demand have the load demand values of 80kW, 0kW, 54kW,

22kW and 35kW occurring in the months of December, May, August, May and

February respectively.

Figure 4.1, Figure 4.2, and Figure 4.3 all have similar outlier patterns with

variations seen only with their respective load demand values and common values

for the overall minimum load demand experienced in the month of May.

Figure 4.4 shows the load demand input into HOMER.
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Figure 4.4: Year 5 Load Profile

The load demand for every hour is specified alongside the random variability of

20% on day to day basis with a time step of 15%. Then HOMER generates the

results as shown in Figure 4.4.

4.3.2 Meteorological Data

The proposed system design for Igah community needing meteorological data comprises

PV, WT. With average annual wind speeds > 4m/s, the site has wind potential

to produce power for the system. No potential for small hydro and ready to use

biomass, hence not considered. Nevertheless, the HMG system offered the potential

to generate electricity with up to 80% degree of the renewable fraction. Solar

availability in the study location obtained from NASA surface meteorology available

in HOMER tool software.

Based on the available RERs common within the study area, solar and wind

resource selected for the location coordinates in HOMER are discussed further.
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4.3.2.1 Solar Radiation

Solar radiation values for Igah, 7010.4
′
N, 7032.4

′
E, as earlier said, was obtained

from the NASA website. It shows a 22yr average monthly solar radiation data at

1hr intervals represented in Figure 4.5. The clearness index seen on the right axis of

the Figure 4.5 is generated by HOMER after imputing the daily radiation data.

Figure 4.5: Average Monthly Solar Radiation

The solar radiation ranges between 5.89kWh/m2/day in February and 4.19kWh/m2/day

in August with an average clearness index1 of 0.519 and a scaled annual average of

solar radiation estimated to be 5.13kWh/m2/day. Solar radiation was observed to

be high for the months of November to May with readings > 5kWh/m2/day, and

low for the months June - October, where there is a slight drop due to seasonal

variations representing the dry and rainy seasons respectively.
1A measure of atmosphere clearness, and calculated as the fraction of the actual total solar

radiation on the surface of the Earth during a certain period over the theoretical maximum radiation
during the same period. It is a dimensionless quantity and vary from 0 to 1.
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4.3.2.2 Wind Speed

The wind speed data were obtained from the same NASA website for same study

location. It is a 30yr average monthly wind speed and was measured at 50m above

the surface of the earth in the interval of 1hr represented in Figure 4.6.

Figure 4.6: Average Monthly WindSpeed

From Figure 4.6, the monthly annual average wind speed is 4.24m/s, and wind

speed ranges from 2.93m/s to 5.05m/s. The high wind speed above 4m/s occurred

between January and September, peaking in July and the low wind speeds noticed

between October and December with the least wind speeds in November. For design

purposes, the wind and solar systems are expected to compensate for one another

throughout the calendar year because of their seasonal availability.

4.3.3 System Components, Cost and Design Specification

Component costs were gotten from live online prices, market surveys and open

literature. Import taxes, transportation, and installation expenses are not included
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in the calculations.

PV, WT, lead-acid batteries, and diesel generators were selected from the HOMER

component library. With the diesel generator included in the design as back-ups.

The batteries are charged when there is excess power generated from the renewable

sources and discharged when the available renewable sources do not meet the load

demand. The diesel generators come ON when both the renewable and the energy

storage systems are unable to meet the load demand.

4.3.3.1 Photovoltaic Panels

The annual average solar radiation for the proposed location is 5.13kWh/m2/day

shown in Figure 4.5 above. Central HMG installation is proposed for the location in

an open field, where design and planning for the position of PV module surface are

not affected by shading.

Refer to Table 4.1 for further specifications of the HMG components, (N = Naira).

Table 4.1: System Components, Cost and Design Specification

S/No Component Cost (N/kW) O&M Lifetime

1 Generator2 35,600.00 11.430/hr 15,000hrs

2 Photovoltaic Panel3 215,00.00 860.00/yr 20yrs

3 Wind Turbine3 175,600.00 1,317.00/yr 15yrs

4 Battery3 56,250.00 562.50/yr 10yrs

5 Converter3 168,000.00 1,680.00/yr 15yrs

2https://ade-power.com/generators/cummins/62kva. Accessed 2020/08/17
3https://shop.vesselnetsolar.com/?_ga=2.1539638.60783952.1652902511-387653600.1605849321

Accessed 2020/08/17
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4.3.3.2 Wind Turbine

A generic wind turbine selection is made, with a capital cost of N175,600/kW. See

Figure 4.7, for the wind turbine power curve and Table 4.1 for other wind turbine

specifications.

Figure 4.7: Wind Turbine Power Curve

From Figure 4.7, at wind speeds 0m/s to 24m/s, the respective power output

is presented. It can be seen that the wind turbine starts to produce power at

3.5m/s wind speeds and increases progressively with increased wind speed, attaining

maximum power output at wind speeds 14m/s-15m/s. For wind speeds >15m/s

the output power decreases, and shuts down for wind speeds greater than 24m/s

for safety. This is because the wind turbine systems (blades, and mechanism) are

put under stress causing excess friction and damage when operating at excessive

wind speeds. From Figure 4.6, it can be said that the wind turbine produces power

throughout the year except for the months of October, November and December.
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4.3.3.3 Battery Storage Systems

A generic Lead Acid battery is selected for study purposes. It has a nominal capacity

of 83.4Ah and a voltage of 12V. One battery has 1kWh of energy stored, maximum

capacity as restricted with HOMER. Refer to Table 4.1 for the cost of the battery

and Figure 4.8, for battery properties.

Figure 4.8: Lead-Acid Battery Properties

The cost of each battery is considered as N56,250.00 for a working life of 10 years.

The minimum SoC is considered as 20% and 100% initial state of charge, this means

the battery is able to charge to full capacity but stops discharging when it is 20%

full capacity. After 10 years, the batteries are due replacement.

4.3.3.4 Power Converter

The converter is used as a coupling between DC and AC system so that electrical

power can flow in a bidirectional way. It also acts as an inverter and rectifier

depending on power flow direction. In this study, the converter used is a generic

system converter. For simulation purpose, the inverter efficiency is considered as

100



4.3. INPUTS AND COMPONENT SELECTIONCHAPTER 4. MICROGRID DESIGN USING HOMER

95% [189] for a life span of 15 years and the rectifier efficiency is considered 95% for

a relative capacity of 100%. Higher inverter efficiencies lower associated losses in the

inverter and efficient at full load. The selected converter for this study has a rating

of 35.9kW with capital and replacement cost of N168,000.00 each. See Table 4.1 for

details of the converter.

4.3.3.5 Diesel Generator

For the study purposes, the peak demand is considered when selecting a generator for

microgrid design. In the study, the peak load demand is 55.70kW, and a generator

with a capacity of 62kW was selected by HOMER to achieve minimum cost. A

Cummins manufactured generator that operates on a 4-cylinder turbocharged engine

at 1500RPM is selected. Other generator specifications are seen in Table 4.1. In

addition, the diesel price in Nigeria when the study was carried out was N225/ltr

in urban areas. Based on an exchange rate of N412.56 to $1, the dollar equivalent

will be $0.54/ltr. Due to the values of the global market and variations between

countries, diesel prices constantly fluctuate. HOMER simulates three different diesel

prices per litre, which accounts for deflation and inflation of fuel prices. Refer to

Figure 4.9 for the resultant fuel curve for the diesel generator.

Figure 4.9: Fuel Curve
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The Y-axis and X-axis are the fuel consumption in litres per hour, and amount of

power generated respectively from the selected DG. It can be seen that no power is

generated when the DG starts running even though fuel is consumed and maximum

power is achieved at a fuel consumption rate approximately 22L/HR.

4.4 Dispatch Strategy

The dispatch strategy explains the principles for charging the energy storage system.

For isolated microgrids with power generation from 100% RES, the energy storage

systems are charged by excess renewable energy. While for systems that consist of

the diesel generator and energy storage systems, managing the charging operation

of the system as it regards how the diesel generator charges the battery systems is

of critical significance. For research purposes, the cycle charging dispatch strategy

is used. It involves operating the generator at total capacity to meet the load and

also charge the batteries with the excess power produced. During the operation, the

battery’s minimum SoC of 20% stimulates the generator to come ON. A set-point

SoC of 80% was selected for this study to enable the generator to continue charging

the battery until it reaches the chosen set-point SoC.

4.5 Economic Analysis

The economic parameters utilised by HOMER are the annual Interest rate and

Project lifetime. The software ranks all systems according to the net present cost

and considers the Levelized cost of energy. These parameters are discussed below:

Annual Interest Rate It is the discount rate and is calculated as [13]:
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Annual real Interest rate,

I =
i
′ − f

1 + f
(4.1)

Where,

i
′
=nominal interest rate

f = annual inflation rate

Net Present Cost (NPC) It is the cost for installing and operating the system

for the estimated project lifetime. It is referred to the lifecycle cost of the project.

HOMER simulation results are ranked and based on total NPC, and it is calculated

as follows [12]:

CNPC =
CAnnualTotal

CRF (iR, N)
(4.2)

CRF (iR, N) =
iR(1 + iR)

N

(1 + iR)N − 1
(4.3)

Where,

CAnnualTotal =The total annualized cost (N/yr) and includes capital, replacement,

annual operating and maintenance and fuel cost.

CRF =Capital Recovery Factor is used to calculate the present value of a series

of equal annual cash flow.

iR = real interest rate

N =project lifetime

Levelized Cost of Energy It is the average cost per kilowatt-hour N/kWh of

used electrical energy produced by the system. It is calculated as [12]:
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COE =
CAnnualTotal

EAC + EDC

(4.4)

Where,

CAnnualTotal = The total annualized cost

EAC = AC primary load served, kWh/yr

EDC = DC primary load served, kWh/yr

4.6 Results and Discussion

HOMER considers the various factors such as technical feasibility, climate, load

consumption and diesel prices, the net present cost of developing a particular system

and the cost of energy. Then, depending on all these factors, the HOMER system

picks the best feasible solution by trying various combinations from the primary

proposed system consisting of PV, WT, DG, BSS.

Based on the input parameters in the sections above, a simulation was performed

with a 6% annual real interest rate [190], 5th-year load forecast. Three configurations

were selected from HOMER simulations for comparing the optimal configuration of

the entire system.

Two categories of simulations are considered.

1. The load Without Variability, WoV HMG design.

2. The load With Variability, WV HMG design.

Year 5 Load WoV HMG Design. Figure 4.10 presents the load model fed in

HOMER.
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Figure 4.10: Yr 5 Load WoV

From the Figure 4.10 above, the Day-to-day and Timestep random variability are

set at 0%. This gives give no room for the system to operate during load fluctuations

beyond the designed load and in event of increase in load demand the system is likely

to fail and therefore unreliable for use.

The simulation of the Year 5 load without considering variability in the load

model produced the system specifications for different design technologies as presented

in Table 4.2 below. The base case is having only a DG, 34kW.
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Table 4.2: Load WoV HMG Design Model Results.

Component DG only HMG Capacity PV-WT-BSS Unit

DG 34 34 - kW

PV - 58.8 123 kW

WT - 92 107 kW

BSS - 168 536 -

Converter - 21.6 40.7 kW

DG only Lowest Cost System, HMG PV-WT-BSS Unit

NPC N185 N133 N143 Million

Initial Cost N1.21 N43.1 N82.2 Million

O & M N14.4 N7.0 M4.8 Million/yr

LCOE N77.27 N55.48 N61.94 /kWh

The HMG presented a 66% RERs fraction and has a DG running time of 3,266

hours in a year. With the DG running almost half of the year, the lifespan is reduced,

having a considerable cost for its operation and maintenance. Also, implying the

DG would need replacement after 4.5 years and approximately 7 times through the

project life. The PV-WT-BSS technology had unmet electrical loads, making it

unreliable.

For the three technologies evaluated, the emission results are presented in Table

4.3 below.
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Table 4.3: DG, HMG and PV-WT-BSS Model Emission Results for Yr5 Load WoV.

DG only HMG PV-WT-BSS

Quantity Value Value Value Units

Carbon Dioxide 159,052 55,483 0 kg/yr

Carbon Monoxide 1003 350 0 kg/yr

Unburned Hydrocarbons 43.7 15.3 0 kg/yr

Particulate Matter 6.08 2.12 0 kg/yr

Sulphur Dioxide 389 136 0 kg/yr

Nitrogen Oxides 642 329 0 kg/yr

Load WV HMG Design The variable load is employed in the HMG system

design, and the results presented in Table 4.4. The simulation is performed by

comparing the optimal configuration of HMG systems. The simulation was performed

for a project lifetime of 25years. HOMER software simulated 33,981 solutions in a

time span of about 22 minutes and found 35,692 feasible solutions based on the

geographic location, technical feasibility and Economics.
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Table 4.4: Load WV HMG Design Model Results

Component DG only HMG Capacity PV-WT-BSS Unit

DG 62 62 - kW

PV - 78.8 136 kW

WT - 101 132 kW

BSS - 299 516 kWh

Converter - 21.6 39.2 kW

Base Case, DG Lowest Cost System, HMG PV-WT-BSS Unit

NPC N221 N144 N147 Million

Initial Cost N2.21 N58.4 N88.0 Million

O & M N17.1 N6.71 N4.65 Million/yr

LCOE N92.65 N60.37 N63.75 /kWh

HOMER results show cases for optimised results and sensitivity analysis. The

scenarios are as shown below:

1. The first scenario simulates a base case system configuration having just a

diesel generator as the power source.

2. The second scenario simulates a system configuration having a diesel generator,

wind turbine, PV system, and an energy storage system.

3. The third scenario simulates a system configuration having only RERs without

the diesel generator.

4.6.1 Diesel Generator System

A 62kW diesel generator only system design as shown in Figure 4.11
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Figure 4.11: DG only Configuration

From the results:

1. The DG only system gives the cost of energy of N92.65/KWh, a net present

cost of N221.41Million, an operating cost of N17.2Million/yr and an initial cost

of N2.21Million.

2. The renewable energy fraction for this system is about 0%.

3. Maximum energy is supplied to the load using just the DG

4. The CO2 emissions is 185,078kg/yr, fuel consumption/yr is 70.705Ltr, excess

power of 5,400kWh/yr.

The gases emitted in the atmosphere during the project life cycle of 25 years due to

burning diesel is shown in Table 4.5.

4.6.2 Diesel Generator - Wind Turbine - Solar PV - Energy

Storage System

The optimal design and component capacities for this configuration are represented in

Figure 4.12 and Table 4.4. The HMG system considered in HOMER for optimisation

consists of PV modules, Wind, Batteries and converters, Diesel generator sets. This

system is islanded.
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Figure 4.12: HMG Design

From the results of simulating scenario 2:

1. The HMG only system gives the cost of energy of N60.37/KWh, a net present

cost of N144.3Million, an operating cost of N6.7Million/yr and initial cost of

N58.5Million. DG O&M is found to be N3,391,595/yr

2. The renewable energy fraction for this system is about 77.3%.

3. 85% of energy is supplied to the load using RERs, and the DG supplies 15%

of the total energy supplied with running hours of 1,735hrs.

4. The CO2 emissions is 39,419kg/yr as seen in Table 4.5, reduced to a great

extent as most of the energy utilized by the load is drawn from renewable

energy resources implemented in the system. Fuel consumption is 15,059L/yr,

excess power of 79,032kWh/yr.

4.6.3 Wind Turbine - Solar PV - Energy Storage System

In this scenario 3, a 100% RERs penetration is simulated. The design and configuration

of the system are as shown in Figure 4.13, Table 4.4 and results summarised below.

110



4.6. RESULTS AND DISCUSSIONCHAPTER 4. MICROGRID DESIGN USING HOMER

Figure 4.13: RERs Microgrid Design

From the results of simulating scenario:

1. The HMG only system gives the cost of energy of N63.73/KWh, a net present

cost of N147.4Million, operating cost of N4.7million/yr and initial cost of

N88Million.

2. The renewable energy fraction for this system is about 100%.

3. Maximum energy is supplied to the load using RERs.

4. The CO2 emissions is 0kg/yr, Fuel consumption is 0L/yr, excess power of

154,540kWh/yr, and 6,146kWh/yr unmet electrical load.

Table 4.5 presents the emission results from the three scenarios considered.

Table 4.5: DG, HMG and PV-WT-BSS Model Emission Results for Yr5 Load WV.

DG only HMG PV-WT-BSS

Quantity Value Value Value Units

Carbon Dioxide 185,078 39.419 0 kg/yr

Carbon Monoxide 1,167 248 0 kg/yr

Unburned Hydrocarbons 50.9 10.8 0 kg/yr

Particulate Matter 7.07 1.51 0 kg/yr

Sulphur Dioxide 453 96.5 0 kg/yr

Nitrogen Oxides 1096 233 0 kg/yr
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As expected, PV-WT-BSS produced 0kg/yr of harmful emissions, HMG had

significant emission production with DG only configuration producing the highest

amount of emissions resulting from burning diesel fuel used for its operation.

4.7 Conclusions

In this chapter, the predicted load for year five is utilised in homer for the HMG

design. In order to design a robust system, the design considers load variability,

making the system cope with uncertainties that may occur. After that, a survey

on available resource to the study location for the feasibility of RERs development

is done. It is observed that the average annual wind speeds through the year were

4.24m/s, with average solar radiation of 5.13kWh/m2/day. Lead-acid batteries and

a backup diesel generator are included in the HMG design. Different configuration

scenarios are then simulated, depending on the performance in terms of meeting the

load, cost and emissions, and the desired HMG is selected for further optimisation

using three metaheuristic techniques in MatLab to improve the system operation

improving the overall system efficiency.

Scenario 2, having the HMG simulation, offered a preferable result for a reliable

system always able to meet the load presented in Table 4.6 below.
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Table 4.6: Result Summary and HMG Design Specifications

Component DG RERs HMG

Diesel Generator 62 - 62

Solar PV - 136 78.2

Wind Turbine - 132 101

Battery Storage System - 516 299

Converter - 39.2 29

Measured Indices DG RERs HMG Unit

NPC N221.41 N147.4 N144.3 Million

LCOE N92.65 N63.75 N60.37 /kWh

O & M N17.2 N4.7 N6.7 Million/yr

Initial cost N2.21 N88 N58.5 Million

Measured Indices DG RERs HMG Unit

Fuel Cons 70,705 - 15,059 ltr/yr

DG Hours 8760 - 1,753 Hrs

Total Energy Produced 192,346 359,290 282,231 kWh/yr

Excess Energy 5,400 154,540 79,032 kWh/yr

Unmet Load - 6,146 - kWh/yr

CO2Emission 185,078 - 39,419 kg/yr

From Table 4.6, it is clear that the HMG model offers more economic benefit when

compared to other microgrid designs. The HMG offers almost 79% CO2 gas emission

compared to the DG only system. According to the research conducted by scientific

America’s energy and environmental editor, David Bello, when a trillion tons of

carbon is released into the atmosphere, the temperature increases by CO2, which is

dangerous. As such, carbon emissions must be kept below a trillion tons to minimise

global warming effects. HMG system subsequently reduces fuel consumption and
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carbon emissions enormously.

Though the RERs microgrid model has no emissions, the system fails to meet

6,146kWh/yr of electric load every year, making the system unreliable. Consequently,

the cost of electricity for the favourable systems is N60.37/kWh (0.15/kWh), having

the least COE among all configurations and having the least NPC of N144.3Million.

With HMG clearly offering better options to power generation, RERs suffer a

number of factors limiting its deployment in Nigeria which include the significant

costs of RERs components, costs installation and maintenance, non- involvement of

the private sector, inadequate investment in the energy sector; lack of technological

know-how, the subsidies granted to generators of energy from fossils, and political

instability.

Recall from the load forecasting carried out in Chapter 3, Year 5 calculations

assumed a load factor of 0.7 corresponding to that produced by HOMER and the

DG system estimated by HOMER of 34kW was designed able to meet the maximum

demand of 33.58kW of the forecasted load without considering variations in the load

to achieve minimum cost.
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Chapter 5

Microgrid Optimisation

5.1 Introduction

This chapter introduces the three algorithms used for the DG running hours minimisation.

The literature on various optimisation techniques have been considered in Chapter

2, where metaheuristic strategies are selected for implementation. The genetic

algorithm, particle swarm and simulated annealing optimisation methods are described,

and the problem formulation is described, an objective function developed that

describes the DG operation, including its maintenance. The RERs are not considered

in the objective function equation but are included in the simulation process as

constraints on the HMG system. MatLab is used to carry out the HMG system

optimisation. The input data (meteorological and component specifications) are the

same as those used in Homer. The results are further discussed for each algorithm

and scenarios considered.

The HMG optimisation proposed in this study was implemented using MatLab

software. MatLab has been chosen as the preferred software for simulating the HMG

model because of its freedom to define its parameters to achieve the desired design.

The amount of data to be handled in this research such, as weather data, load
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data, also necessitates using a fast computing platform that MatLab offers. MatLab

also allows for flexible manipulation and fine-tuning of parameters for the control of

algorithms.

5.2 Algorithm Design

5.2.1 Genetic Algorithms

In 1975 [191], Holland developed the genetic algorithms for the survival of the fittest

based on the Darwin’s theory of evolution. It involves creating a group of candidate

solutions represented as strings of a point in a search space, an objective function

that evaluates the solutions, a set of genetic operators generating new solutions from

old ones while adhering to some genetic rules. Each candidate solution is weighed by

its objective function until the best solution is achieved. Tasks carried out by GAs

are:

• Choice of string representation,

• Selection of genetic operators,

• Determine the Fitness function,

• Determine the probabilities for controlling the genetic operators

The standard GA operators include Selection, Crossover, Mutation, and Elitism.

1. Selection: Here, the next generation parent is selected to give more reproductive

chances to the population members with better fitness.

2. Crossover: This is the random process of recombining parents. Depending

on the crossover probability, an exchange of characters between strings are

performed. The process involves selecting two mating parents, selecting a
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crossover point, and exchanging the chromosomes between the two strings.

This operation enables the GA to acquire information from the generated

individuals. The genetic search space is thus extended and more complete.

3. Mutation: This process involves periodic arbitrary modification of the string

bits. In binary representation, this implies flipping the state of a bit from 1 to

0 or vice versa.

4. Elitism: At this stage, the best solutions found are preserved by retaining a

selected number of them in the next generation. Elitism is essential to prove

the convergence to the optimum through a Markov chain analysis. Elitism also

prevents the event of losing the best individual in each generation. Fig 5.1gives

a representation of the GA operators.

Figure 5.1: GA operators

An outline of GAs basic principle is described below:

Randomly generate a population with chromosomes and their objective functions.

The chromosome in this research are DG ON/OFF states with different sets of

DG energy production and represent the quality of each plan. Generate a new
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population-based on Darwin’s theory of evolutionary using the four genetic operators

described in Fig 5.1 and perform

Selection: Select two chromosomes from a population with a probability based

on their objective functions;

Crossover: Elements of two-parent chromosomes are crossed over based on a

specific rule to create two children chromosomes;

Mutation: Elements in an arbitrary chromosome is mutated with a mutation

probability.

Elitism: Carryover elites to the next generation

The four operations are repeated until a new population is generated. Then, keep

generating a new population until the stop criterion is reached and the chromosome

with the minimum objective function is considered the optima.

GA flowchart can be seen in Fig 5.2.

Figure 5.2: GA Flowchart
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5.2.2 Simulated Annealing

In 1953 [191], Metropolis et al developed the simulated annealing optimisation technique.

As from the algorithm’s name, SA mimics the annealing process in metallurgy, a

technique that involves the heating and regulated cooling of a material to enhance

the size of its crystals and lower defects in the materials. SA simulates the reordering

of particles in a body to crystalline state followed by temperature decrease, thus

exposing a solution to heat and slow cooling, delivering a more optimal solution

(lower energy state). SA is applied to complex computational optimisation problems

where particular algorithms fail; even though it usually attain approximate solutions

to the global minimum, it could be sufficient for various fundamental problems. SA

solves problems having an objective function of many variables and subject to many

constraints. The idea of slow cooling employed in the SA algorithm is explained as

a gradual decrease in the chance of accepting worse solutions while exploring the

solution space. Accepting worse solutions gives room for a more general search for

the global optimum.

Generally, SA algorithms work as follows. The temperature gradually decreases

from an initial positive value to zero. At each time step, SA selects at random a

solution close to the current one, measures its fitness, and moves to it according

to the temperature-dependent probabilities of selecting better or worse solutions,

which during the search respectively remain at 1 (or positive) and decrease towards

zero. Simulated annealing: mimics annealing in metallurgy that involves the slow

and controlled cooling of a material to increase crystal sizes and reduce defects in

the material. Cooling is controlled by a temperature-like parameter that is closely

related to the Boltzmann Probability Distribution (BPD) concept. Which is [191],:

P (E) = exp
−E
kT (5.1)
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For

k =Boltzmann constant, 1.38x10−22J/K

T =Temperature

E =Energy

SA begins with an initial solution at a relatively high temperature. A second

point is created within the vicinity of the initial point, and ∆E is calculated. If

∆E is negative, the new point is accepted; otherwise, the point is accepted with a

probability of exp −△E
kT

. This completes one iteration. In the next generation, T is

reduced and the process repeated. Before every temperature reduction, all solutions

generated are tested.

The concept of SA follows the Monte-Carlo iterative method described as follows

1. Choose an arbitrary initial solution X0, a stopping criterion ε. Set T sufficiently

high, decide on n and set t = 0.

2. Determine the neighbouring point X(t+1) = N(X t). Normally, a random point

in the neighbourhood is created.

3. If △E = E(t + 1) − E(t) < 0, set t = t + 1. Else create a random r in the

range (0,1). If r ≤ exp −△E
kT

, set t = t+ 1. Else go to 2.

4. If |X t+1−X t| ≤ ε and T is small, stop. Else reduce T according to cooling

schedule and go to 2.

SA flowchart can be seen in Fig 5.3.
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Figure 5.3: SA Flowchart

5.2.3 Particle Swarm Optimisation

Particle swarm optimisation designed in 1995 [192] by Kennedy and Eberhart is a

metaheuristic technique that uses computer programming to model the swarming

behaviour of naturally occurring instruments (birds, bees or fishes) referred to as

particles. PSO involves replicating the social behaviour among individual particles

flying through a defined search space, with each particle representing a single interaction

of all search dimensions. The particles evaluate their positions on every iteration

relative to the objective function, and neighbourhood particles share their best

position memories. Based on their memories, they adjust their velocities and positions

afterwards. In so doing, the particles converge towards a global solution.

PSO makes little or no assumptions about the optimisation problem and can

search a multidimensional search space of possible solutions. Furthermore, as with

other classical optimisation techniques, a problem does not need to be differentiable

as PSO does not require the gradient of the optimisation problem.

In 1998, Shi and Eberhart [192] made improvements to the overall PSO technique
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performance by introducing the inertia, w parameter. The inertia weight was introduced

to regulate the influence of the previous velocity histories on the current velocities,

consequently influencing the trade-off between the local and global explorative capabilities

of particle flying points. Small inertia weights tend to facilitate local search, while

large inertia weights enable global search to fine-tune current exploration area. The

appropriate selection of the inertia weight provides a balance between the local

and global exploration abilities and consequently reducing the number of iterations

required to reach optimum. Thus the inertia weight aids non-dominated solution

generation and maintains diversity.

Many challenging engineering problems are optimisation problems which can be

stated as min/max of ƒ(x). Some simple functions ƒ for which problems of the sort

are solved. For other functions, just one method exists to solve the problem, which is

evaluating the function at numerous points, hoping to find the best one. PSO offers

explorative abilities that involve selecting points at which to evaluate the fitness

within the computer program.

The investigations carried out by Kennedy and Eberhart suggested that particles

benefit from both individual and collective memory of the swarm, which is the

concept behind the PSO technique. PSO starts with an initial velocity matrix of

the form [192]:

Vij = Xmin,j + r1 ∗ [Xmax,j −Xmin,j] (5.2)

where,

i = the population size,

j = the number of decision variables,

Xmin,j = the minimum value of an individual in the population,

Xmax,j = the maximum value of the individual in population.
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Further, new particle positions are expressed using the following equation:

Xij(t+ 1) = Xij(t) + Vij(t+ 1) (5.3)

where X is the particle position and V is the particle velocity in iteration t

The velocity is calculated and updated using the following equation:

Vij(t+ 1) = w [Vij(t) + r1c1(Pij(t)−Xij(t)) + r2c2(Pgj(t)−Xij(t))] (5.4)

w =
2∣∣∣2− ∅ −
√
∅2 − 4∅

∣∣∣ (5.5)

∅ = c1 − c2

∅ > 4

Where,

Vij = the inertia, makes the particle move in the same direction with the same

velocity,

w = the inertia coefficient,

Pij= the best individual particle position,

Pgj = the best global position,

r1r2 = real random numbers between 0 and 1,

c1, c2 = cognitive and social parameters (positive constants),

r1c1(Pij(t)−Xij(t)) = the cognitive component which allows the particle to return

to a previous position of high fitness value,

r2c2(Pgj(t) − Xij(t)) = the social component which allows the particle return

to the best region the swarm has found so far and to follow the best neighbours

direction.

The first term in the equation is inertia, w inclining the particle to maintain its
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current velocity and preventing the influence of latter terms early in the process.

The second term is a personal memory, which draws the particle back towards its

ever best position occupied. The third term is the swarm memory, which draws

the particle towards the best position ever occupied by any particle in the swarm.

PSO is dependent on the fact that at first, particles tend to move around randomly,

exploring multidimensional areas. Then, the particles will tend to surge around the

best option found. This allows the search space around the current optimum to be

explored in detail. It follows that if c1 ≫ c2, then the particle is attracted to the

individual best position and if c2 ≫ c1, the particle is attracted to the global best

position.

PSO has four main steps, which include:

• Generate and evaluate each initial particle fitness

• Updating the individual and global best fitness and positions

• Updating the velocity and position of particles

• Terminate when the objective function or the number of iterations is achieved.

Every individual particle retains the best fitness value it has attained during the

algorithm run. The particle with the best fitness value, when compared to other

particles, is calculated and updated in iterations. PSO proves promising for the

future as it is a fast algorithm comparable to several optimisation techniques and far

faster than others. Also, it is more accessible to code and requires less storage space

than many other optimisation algorithms. It is considered that PSO speed can be

improved by fine-tuning the parameters. The trend in research replaces the values

of c in the defining equation with other weights to increase the speed of convergence.

PSO flowchart can be seen in Fig 5.4.
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Figure 5.4: PSO Flowchart

PSO has similarities with GAs. The system is initialised with a random solutions

population and searches for optimum via updating. Nevertheless, PSO does not have

any genetic operators such as crossover and mutation as GAs. PSOs are easy to

implement with few adjustable parameters.

Optimisation problems involving many local optima benefit from fast convergence

when solved with PSOs. This fast convergence is because standard PSOs exploits

neighbourhood information. As highlighted by a few authors in [193–195].

As discussed earlier in Chapter 2, many optimisation strategies have been research

to solve either economic, environmental, and energy performance of microgrid systems.

Minimising the operational cost of in microgrids is a difficult when it concerns

choosing suitable optimisation techniques. Metaheuristic methods are robust, due

to their stochastic nature they are able recover from local minima, they do not need

gradient information, and are able to tackle objective uncertainties. Metaheuristics

methods as describe above have parameters which affect the performance of these

strategies in terms of fast convergence and arriving at global optimal solutions.

Tuning of these parameters is essential to achieving desired results. As such, GA,
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PSO, and SA were selected from the different metaheuristic categories, and the

parameters tuned to achieve minimum cost of the HGM design studied.

5.3 Component Modelling (MatLab)

The meteorological data and component capacities obtained from the HOMER design

of the HMG serve as input parameters in carrying out optimisation simulations in

MatLab.

5.3.1 PV System Modelling

The input data for the PV system is the hourly solar radiation to the horizontal

surface of the site under consideration. The PV power output is calculated as [100]:

PPV−out = PSTC
GC

GSTC

[1 +Kt(TC − TSTC)] (5.6)

TC = Tamb + (0.0256×GC) (5.7)

Where

PPV−out = PV hourly output power

PSTC = Rated PV power output under STC

GSTC = 1000 W/m2 solar irradiance under STC

GC = Irradiance at operating point, W/m2

TSTC = 250C PV temperature under STC

TC = cell temperature

Tamb =Ambient temperature

Kt = temperature coefficient of power.
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STC = standard test conditions with a comparable optical quality of AM1.5

condition.

The PV system energy generated is presented in Figure 5.5 below.

Figure 5.5: PV Power Output.

The Figure 5.5, is a representation of the PV power output (Y-axis) in hours

(X-axis). There is power production in the day, with varying outputs depending

on the intensity of the solar irradiance, and no production during the dark periods.

Also the amount of PV power produced is affected by the seasons experienced in the

community.

5.3.2 Wind Turbine Modelling

The input data for the WT system is the hourly wind speed at a reference height

for the site under consideration. The power from the wind is calculated as [103]:
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PWT (v) =


0, v < vci, v > vco

PWT−rated(v−vci)

vr−vci
, vci ≤ v < vr

PWT−rated, vr ≤ v > vco

(5.8)

v

vref
=

(
hhub

href

)α

(5.9)

Where

v = Wind speed at desired hub height,(hhub = 50)

vref = Wind speed at reference height, ( href = 10)

α = is the ground friction coefficient

vci = Cut-in wind speed

vco = Cut-off wind speed

vr = Rated wind speed

PWT−rated= Wind turbine rated power output

The WT system energy generated is presented in Figure 5.6 below.

Figure 5.6: WT Power Output.
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Figure 5.6, shows the amount of power generated by the wind turbines, as with

RERs, these are dependent on the wind speeds per time. Power production is

achieved at speeds > 4.0m/s. At wind 2.5m/s - 4m/s water pumping is possible.

5.3.3 Battery Storage System Modelling

The battery storage systems are energy storage electrochemical devices. They store

energy from either DC or AC sources. The power stored in the batteries are used

when there is insufficient power from the renewable source to meet the load. Furthermore,

the power in the battery is recharged when the power produced exceeds the load

demand. As such the battery storage management plays a vital role in the overall

performance of the HMG. In other to design the battery storage, assumptions taken

into account include: at any scheduling time, the state of charge, SoC of the BSS

should be within the specified operating range, which can be expressed as [129]:

SoCmin ≤ SoC ≤ SoCmax (5.10)

Where

SoCmin/max = The lower and upper limit of state of charge.

The storage capacity to cater for the insufficiencies can be gotten from the

equation below.

Scap =
Lav × AD

DOD × INVeff ×Beff

(5.11)

Where

Lav = Daily average community load

AD = Autonomy days, number of days the battery can provide power without

charging
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DOD = Battery depth of discharge (80%)

INVeff , Beff = Inverter and battery efficiency respectively.

According to SoC and the rated power limit of battery charging and discharging,

the upper and lower limits of the battery output during each time period is calculated

to determine the regulating range of the battery. Let, PMaxC(t) and PMaxD(t) be the

maximum charging and discharging power during period t; SoC(t) represents the

status of battery during period t. SoCmax, SoCmin represents the upper and lower

limit of battery power. Scap represents the rated capacity of the battery, and PBattery

represents the rated power of the charging and discharging machine:

The purpose of the power regulation of the battery is as follows: when the output

power from the renewable energy is high, it is used to charge the battery; when the

power output of renewable energy is low, the battery is set to discharge to meet the

load demand of microgrid.

PMaxC(t) = min(Scap × (SoCmax − SoC(t)), PBattery) (5.12)

PMaxD(t) = min(Scap × (SoC(t)− SoCmin), PBattery) (5.13)

The BSS state of charge is presented in Figure 5.7 below, operating within bounds.
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Figure 5.7: Battery State of Charge

The BSS showing the SoC is presented in Figure 5.7. The BSS is designed to

discharge power up to 20% of its capacity. Continuous discharge beyond this limits

can affect the lifespan of the batteries. Charging of the batteries are achieved when

the is excess power production in the system.

5.3.4 Diesel Generator Modelling

Diesel generators are used as a backup power source in the proposed hybrid microgrid

power systems. The fuel consumption cost is used to model the actual power output

of the generator using a quadratic polynomial. The diesel generator fuel consumption

cost (Naira/hr) is given by,

GEN = αDG + βDG.PDG−nom + γDG.P
2
DG−out (5.14)

Where

PDG−nom =Diesel generator nominal power, kW

PDG−out =Diesel generator power output
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αDG, βDG, γDG =Diesel generator coefficient calculated from the manufacturers

datasheet.

For instance, the diesel fuel consumption data for a 62kW generic diesel generator

is shown in Figure 4.9, with αDG = 3.375, βDG = 0.3429 and γDG = 0.0005.

5.4 Problem Formulation

This optimisation process is broad and involves a mixed match of conventional and

non-convention power generators to meet a single objective of minimising operation

cost. In optimising the operation of power plants, specific considerations are taken

into account.

• turning ON/OFF of the power plant using binary variables,

• once turned ON subject to specified operating constraints. The amount of

electricity produced is considered a continuous variable.

A combination of the above which describes turning power plant ON/OFF and

producing at certain levels is considered in carrying out optimisation processes.

Associating these variables to pieces of information about how much it costs to

perform those operations forms the central part of the objective function.

Most power plants have a minimum generation at which they operate, so they

start at zero and work their way up. Usually, power plants have to be producing

several watts of electricity in other to function. So the decision to turn ON is

modelled as occurring at a minimum generation level. After that point, they ramp

up subject to some constraints.

For research purposes, we consider minimising the cost of operating the microgrid,

which could minimise electricity cost and increase system lifespan as the case. It is

assumed that the objective function of the program written depicts minimising the
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total cost of meeting electricity demand. What goes in the objective function depends

on the power plant portfolio and the geographical location considered. The location

determines what portfolio should be in place and all that is tied to geographical

differences in the resource.

In the objective function for trying to minimise the cost of meeting electricity

demand, the costs come from decisions made on operating the DG.

• Decisions on generator ON/OFF will need some binary variables involved,

• Decisions on how much power needs to be produced once the generator is

turned ON, which involves continuous variables.

Decisions are not made for renewable energy resources as they are stochastic (challenging

to predict accurately); their operation and output level is based on the availability

of the resources of which cannot be controlled. The RERs are not represented in

the objective function to minimize the cost of electricity demand as they have been

considered in Chapter 4 in the system design. They are considered in terms of

constraints in the sections following.

Therefore, the rest of the electricity that the RERs and battery do not meet

is met with fossil fuel plants. Therefore, modelling an optimal way to meet the

electricity demand using fossil power plants is contained in the objective function.

In modelling the DG, only the operational cost is considered. The capital cost

and money borrowed for investment or finance are not considered as they do not

factor in how the plant operates and were considered in the HOMER design. It

might affect decisions as to when to retire the plant, but since it is assumed a plant

already exists, the focus is minimising the total operational cost.
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5.4.1 Operational Cost

In formulating the operational cost, three components are considered, as shown

below.

1. Start-up cost: In AC power systems, every plant providing electricity to the

grid or a microgrid has to be operating at 50Hz, and so for a power plant to

go from offline to online and producing electricity at the right frequency, it

takes some time and fuel to ramp up the power plant to the point where it

is synchronized to produce electricity at the right frequency. There is a cost

associated with this process.

2. Fixed cost can be referred to as the cost that a power plant operator would

have to pay regardless of how much generation is produced. As long as a power

plant is online, there is a certain amount of cost that is incurred; an example

can be the operation and maintenance as a result of the plant being ON. It is

certain that when a plant is run for a certain period, something fails and would

need fixing at a cost referred to as fixed cost.

3. Variable cost is the cost accrued for the plant operator proportionally with how

much electricity is actually produced.

So for the power plant, three different cost components are employed. Remember,

for research purposes, we seek to minimise the cost of operation. Therefore, the

objective function should represent the cost components above. In other to achieve

this, the decision variables are defined as:

START: represented using binary variable 0, 1, this indicates that the plant is

started.

ON: represented using binary variables 0, 1, if ON = 1 for a given period, this

indicates that the plant is online.
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GEN: are continuous variables, it can take any value with some bound obviously

not zero as most plants have minimum generation level.

Cost coefficients used:

a = start-up cost associated with the plant start, which can be defined in

Naira/event or Naira/switching from OFF to ON

b = fixed Naira value that you have to pay every time the generator is ON,

regardless of how much electricity is produce. Assumed 5% of the DG initial cost

adopted from HOMER.

c = actual amount of electricity multiplied by a variable cost rate for producing

the electricity. It is assumed that the variable cost of power plant using marginal

cost can be modelled.

Fmin = START ∗ a+ON ∗ b+GEN ∗ c (5.15)

5.4.2 Objective Function

It follows that from equations (5.14) and (5.15) the objective function can be written

as (5.16)

Fmin = START ∗ a+ON ∗ b+ (αDG + βDG.PDG−nom + γDG.P
2
DG−out) ∗ c (5.16)

Where,

START ∗ a = 0

ON ∗ b = Maintenance cost (fuel cost * DG running hours)

GEN ∗ c = Fuel consumption cost.
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Fmin = ON ∗ b+ (αDG + βDG.PDG−nom + γDG.P
2
DG−out) ∗ c (5.17)

5.4.3 Constraints

The objective function is subject to a number of constraints which include:

1. System constraints

• System Power Balance

PDG(t) + PPV−out(t) + PWT (t) + PBSS(t) = PL(t) (5.18)

Where PDG(t), PPV−out(t), PWT (t), PBSS(t), PL(t) are the diesel generator output, PV

output, wind power output, battery output and the load demand. PBSS is positive

when discharging and negative when charging.

2. Component constraints

• Generator unit

Pmin ≤ PDG ≤ Pmax (5.19)

Where Pmaxis the rated power of the DG. For real DGs, there is a lower limit

Pminduring its operation. For research purpose, it is set to be 95% of its rated

power.

• Battery unit

PMaxC ≤ PBattery(t) ≤ PMaxD (5.20)
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Where PMaxD is the maximum output when the battery is discharging; PMaxC is the

maximum output when the battery is charging.

• Battery state of charge limit

SoCmin ≤ SoC(t) ≤ SoCmax (5.21)

where SoCmin and SoCmax are the minimum and maximum value of the SoC of the

battery; SoC(t) is the SoC of the battery during period t.

5.5 Simulations

The MatLab optimisation toolbox is used in the simulations of the three algorithms.

The steps carried out for each optimisation process is described. Different parameters

are experimented on and fine-tuned for each algorithm to produce desired results for

the DG performance and six load models are used for experiments. The first two load

models represent the developed first-year demand profile without variability (WoV)

and with variability (WV). The remaining are the forecasted load (WoV and WV)

demand for year 5 and year 10.

5.5.1 Particle Swarm Optimisation Implementation

Initial particles are first generated with initial velocities assigned to them. The

objective function is then evaluated at each particle location, and the best function

value and the best location determined. Next, new velocities are selected based on

the current velocity, the best locations for individual particles and their neighbours.

The particle locations, velocities, and neighbours are further updated iteratively. The
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Iteration process continues until the algorithm reaches a stopping criterion. Details

of the steps and experimental results (Table 5.3) are shown below.

Initialisation

• Load RERs data

• Load characteristics of components

• Load economic parameters

• Set the HMG system constraints

• Randomly select an initial position and velocity of the particles and evaluate

particles objective function within bounds to find the best particle providing a

minor DG operation and production.

• PSO records best particle current position and initialize neighbours, inertia

and stall counter

• Adjustable parameters include SelfAdjustmentWeight and SocialAdjustmentWeight

(c1, c2).

Iteration Steps The swarm is updated via, for particle i, which at position x(i):

1. Choose a random subset S of N particles other than i.

2. Find the best objective function among the neighbours and the position of the

neighbour with the best objective function.

3. Update the velocity (equation 20) for r1and r2 uniformly distributed random

vectors (0, 1).

This update uses a weighted sum of:
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• The previous velocity Vij(t)

• The difference between the current and the best positions seen by the particle

r1c1(Pij(t)−Xij(t))

• The difference between the current and the best positions in the current neighbourhood

r2c2(Pgj(t)−Xij(t))

4. Update the position x = x+ v.

5. Apply bounds; if any component of x is outside a bound, set it equal to that

bound.

6. Evaluate the objective function (equation 33).

7. If Fmin < fun(p), set p = x. Step 7 ensures p has the best position the particle

is stored.

8. If Fmin < b, set b = f and d = x. Step 8 ensures b and d have the best objective

function and location, respectively, in the swarm.

9. If the best function value lowers in step 8, then set flag = true. Otherwise, flag

= false. The flag value is used in the next step.

10. Update the neighbourhood. If flag = true:

• Set c1c2 = max(0, c− 1).

• Set N to minNeighborhoodSize.

• If c1c2 < 2, set w = 2 ∗ w.

• If c1c2 > 5, set w = w/2.

• Make sure w is in the bounds of the InertiaRange option.
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If flag = false:

• Set c1c2 = c1c2 + 1.

• Set N = min(N +minNeighborhoodSize, SwarmSize).

Stopping Criterion Check that the number of maximum iterations is reached;

otherwise, repeat the iteration process.

5.5.2 Genetic Algorithm Implementation

Firstly, GA generates an initial random population, followed by generating a sequence

of new populations. At every step, the GA uses the current generation of individuals

for the next population generation. In creating the new population, GA performs

the following: compute the fitness value for the current population and score each

individual (raw fitness scores). Scales the raw fitness scores to convert them into

a more usable range of values. The scaled values are referred to as expectation

values. Selects members (parents) based on their expectation. Individuals in the

current population having lower fitness are selected as elites and passed to the next

population. Children are then produced from the parents either by making random

changes to a single parent (referred to as mutation) or combining the vector entries

of a pair of parents ( referred to as crossover). Replace the current population with

the next generation children. The GA terminates when a stopping criterion is met.

A detailed step implementation is described as follows:

Initialisation

1. Load RERs data

2. Load characteristics of components
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3. Load economic parameters

4. Set the HMG system constraints

5. Initialize a random population of possible solutions.

6. Decode the load demand, battery SoC, DG operation and determine the total

power generated by applying the constraints

7. Evaluate the fitness function, Fmin.

Next Generation

1. Apply the genetic operating parameters to create a new population. GA

parameters adjustable to application include

• Selection

• Reproduction (Elitism)

• Crossover

• Mutation

Stopping criterion. If the iteration number exceeds the maximum iteration number,

then stop; otherwise, go to next generation 1.

5.5.3 Simulated Annealing Implementation

In the simulated annealing implementation, SA generates a trial solution within

bounds randomly and selects the distance of the trial solution from the current

solution by probability distribution with a scale-dependent on the current temperature.

The SA compares the new and current solutions for the better solution to become
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the next solution point. If the new is worse; it could still be accepted as the

following solution based on a default acceptance function. Next, SA lowers the

temperature while storing the best solutions found; else, SA reanneals to values

lower than iteration values raising every dimension’s temperature. The annealing

parameters depend on the values of estimated gradients of the objective function in

each dimension. Finally, SA terminates when the average change in the objective

function compared to the function tolerance is minimal or any other stopping criterion.

Details are described below.

Initialisation

1. Load RERs data

2. Load characteristics of components

3. Load economic parameters

4. Set the HMG system constraints

5. Initialize all variables(load demand, economic and generator characteristics)

and set iteration counter

6. Randomly find an initial feasible solution against the constraints

7. Calculate the Fmin.

Iteration Process

1. Determine the initial temperature that results in the high probability of accepting

any solution.

2. If the equilibrium is achieved, go to stopping criterion, otherwise, repeat iteration

process 3 and 4 for the same temperature until the equilibrium criterion is

satisfied.
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3. Find the trial solution, which is a neighbour to an initial solution, with Fmin.

4. Perform the acceptance test to accept or reject the trial solution.

Stopping Criterion If the stopping criterion is satisfied, stop, else decrease the

temperature and go to iteration process 2.

5.6 Parameter Setting

Parameter setting significantly affects the performance of meta-heuristics. Therefore,

experiments with a wide range of parameter values are used for trial and error to

converge on the values that provide the best DG running hours and production. A

list of parameters used for evaluation are presented in Table 5.1 below.

Table 5.1: List of Algorithm Parameters

Particle Swarm Genetic Algorithms Simulated Annealing

Swarmsize Population size Temperature

InertiaRange Selection AnnealingFcn

SelfAdjustmentweight EliteCount ReannealInterval

SocialAdjustmentweight MutationFcn AcceptanceFcn

MinNeighborFraction CrossoverFraction -

- MaxGeneration -

5.6.1 Definition of the Parameter Terms

The definitions of terms explored and their effects on their various optimisation

strategies are presented. Recall that the PSOs and GAs are population-based.

Population size and swarm size represent the number of initially random populations
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of the algorithms. The significant the number, the greater the chances of achieving

a feasible solution as it allows for exploration and exploitation of a more extensive

search space and increases the simulation time.Initial swarm span, maximum iteration,

and maximum generation increase all algorithm simulations search space and time.

InertiaRange (PSO), which Shi and Eberhart introduced to regulate the influence

of the previous velocity histories on the current velocities, consequently mentioned

earlier. Excluding it in the simulation limits the explorative abilities of the algorithm,

causing solutions to be found at local minima.

SelfAdjustmentweight and SocialAdjustmentweight are parameters that influence

how the algorithms explore the behaviours of the individual particles and the swarm

behaviours. With SelfAdjustmentweight > SocialAdjustmentweight, the solutions

tend towards a local minimum, and With SelfAdjustmentweight < SocialAdjustmentweight,

a global solution could be achieved.

MinNeighborFraction forces the swarm particles towards the use of SocialAdjustmentweight

target.

The parameters adjustable for parameters for GA having significant effects on the

performance and violating system constraints are CrossoverFraction and @selectiongaussian

(selection function).

5.7 Results and Discussions

5.7.1 Parameter Settings and Results

The parameters set for the different experiments are detailed in Table 5.2 below.

The experiments considered the standard, poor and tuned parameters to investigate

the effects of adjustable parameters on the performance of each algorithm.
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Table 5.2: Parameter Values Considered

Parameters Standard Poor Fine Tuned

Particle Swarm

Swarmsize 10*nvars > 100 200

InitialSwarmSpan 2000 >2000 20

Inertia range [0.01,1.1] [0,0] [0,1]

SelfAdjustmentweight 1.49 2 -

SocialAdjustmentweight 1.49 1 -

MinNeighborFraction 0.25 0.4 -

MaximumIterations 200 > 200 20

Genetic Algorithms

PopulationSize [] > 50 50

SelectionFcn @selectionstochunif @selectiongaussian -

EliteCount 0.05*PopulationSize - 20

CrossoverFraction 0.8 0 0.7

CrossoverFcn @crossoverscattered - -

MaxGeneration 100*nvars inf 12

Simulated Annealing

InitialTemperature 100 - >50

Temperature @temperatureexp @temperaturefast @temperatureboltz

AnnealingFcn @annealingfast @annealingboltz @annealingfast

ReannealInterval 100 - -

AcceptanceFcn @acceptancesa - -

MaxIterations Inf - 20

5.7.1.1 Standard MatLab Parameters

The algorithms were experimented using standard MatLab parameters Table 5.2,

and results presented in Figure 5.8 below. Figure 5.8, depicts the DG run hours

over six consecutive simulations for the standard algorithm parameters. It can be
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seen from the graph that for all runs and experiments except Yr10 load WoV and

Yr1 load WV, PSO and SA produce constantly similar results, with GA reaching

similar optimum results on different runs. Yr10 load WoV, had only PSO achieving

the lowest DG running hours.

Figure 5.8: Standard MatLab Parameter Results

Figure 5.8, presents six experimental simulations each for 3 different years, and

having 2 different load cases. On the Y- axis of each plot is the minimum number of

run hours experienced by the DG simulation, and on the X-axis is the the number of

simulations carried out. Standard MatLab parameters are MatLab default algorithm

parameters for the 3 algorithms employed. For example, Yr1 Load WoV on its first
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simulation, PSO and SA arrived at the same solution of 65 DG run hours while

GA produced a 67 hours for the operation of the DG. While for Yr1 Load WV,

PSO and SA produced 65 DG run hours and GA produced 97 DG run hours. The

difference in the number of DG run hours arises from the difference in the type of

loads considered. On every simulation as can be seen, PSO and SA arrived at the

same solution except for Yr10 Load WoV. The difference arises with the simulation

time and quality of the solution as will be seen later.

5.7.1.2 Poor Case Parameters

Figure 5.9 shows the effects wrong choice of parameters can have on achieving an

optimal or near optimal solution. The parameters were gotten experimentally. SA

parameter setting violated system constraints on the battery capacity, charge and

discharge limits, causing it to achieve infeasible results. GA and PSO achieved

corresponding results at certain points yet their results differ and are not as good as

those achieved in the experiments with standard parameters.
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Figure 5.9: Poor MatLab Parameter Results

For instance, Yr5 Load WoV and Yr5 Load WV in Figure 5.9 for the poor

case parameters,on the 1st run, SA produced the least DG operating hours >100

hours compared to PSO and GA (600 and 780 respectively). The quality of results

produced with these parameters were affected as the HMG constraints were not

adhered to especially for the SA simulations. The GA and PSO arrived at solutions

having poor quality when compared to the solutions arrived in the standard MatLab

parameters in Figure 5.8.
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5.7.1.3 Tuned Parameters

The simulation results as obtained for six experimental runs of the algorithms are

presented below. This section contains both the numerical and graphical results from

the simulations for the experimentally tuned parameters in MatLab. From Table 5.3,

Table 5.4 and Table 5.5, for each run, the DG run hours, DG energy production,

and simulation time are recorded for the scenarios considered. Finally an average is

calculated and presented below.

PSO: From the results of the particle swarm optimisation simulation shown in

Table 5.3, the DG running hours and production for six runs of simulation is observed

to remain constant on every run with a difference in their individual run time.

Six load models are simulated, the Ideal developed load model for year 1 with its

corresponding variable load profile, forecasted load models for Year 5 and Year 10

with and without variability in their load models are also experimented.
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The average DG running hours obtained for the all simulated load model are

67, 95, 582, 605, 2,377 and 2,413, all in hours as depicted in Table 5.3, and having

simulation times ranging between 10.9 - 12.0 seconds. Results remained constant

throughout the simulation with difference occurring in the simulation time and

energy produced by the DG. This is as a result of the algorithm working with stored

information in its memory.

GA: Table 5.4, presents six runs for the genetic algorithms for corresponding load

models discussed under the PSO simulation. Experiments with different values of

the CrossoverFraction, in the range [0-1], and obtained the best results with 0.7.

Similarly, we found the best results with the EliteCount of 20 for a population of 50.

For larger population sizes, simulation run times proved to be extensive. This could

also be achieved with a population size of 50 and the number of generations set at

20.
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From Table 5.4, the average DG running hours obtained for all simulated load

model are 67, 99.33, 595.67, 617.17, 2,396.67 and 2,422, all in hours as depicted in

Table 5.4, and having simulation times ranging between 14.6 - 23.7 seconds. When

compared with the PSO in Table 5.3, PSO produced better results on the average.

From the results, it can be seen that the solution values change for every run due to

GAs stochastic nature.

SA: Table 5.5, presents six runs for the simulated annealing for corresponding load

models discussed in previous simulations. Experiments with different TemperatureFcn

options and set to temperatureboltz and obtained the best results with MaxIterations

of 20. For larger iteration values, simulation run times proved to be extensive. This

could also be achieved with iteration values of 20.

153



5.7. RESULTS AND DISCUSSIONSCHAPTER 5. MICROGRID OPTIMISATION

Ta
bl

e
5.

5:
SA

Si
m

ul
at

io
n

R
es

ul
ts

R
un

In
di

ce
s

Y
r1

Lo
ad

W
oV

Y
r1

Lo
ad

W
V

Y
r5

Lo
ad

W
oV

Y
r5

Lo
ad

W
V

Y
r1

0
Lo

ad
W

oV
Y
r1

0
Lo

ad
W

V

1
D

G
ru

nn
in

g
ho

ur
s,

hr
s

67
95

58
2

60
5

2,
37

7
2,

41
7

D
G

en
er

gy
pr

od
uc

ti
on

,k
W

h
3,

10
8.

9
4,

33
3

24
,4

37
23

,5
28

66
,3

04
63

,2
17

Si
m

ul
at

io
n

ti
m

e,
se

c
1.

96
80

65
2.

00
88

26
1.

97
59

05
2.

05
07

27
1.

99
02

96
2.

07
30

74

2
D

G
ru

nn
in

g
ho

ur
s,

hr
s

64
95

58
5

61
4

2,
37

9
2,

41
5

D
G

en
er

gy
pr

od
uc

ti
on

,k
W

h
2,

96
1.

2
4,

33
5.

8
24

,5
63

23
,8

91
66

,2
87

63
,1

26

Si
m

ul
at

io
n

ti
m

e,
se

c
1.

90
60

09
1.

97
54

68
1.

95
41

65
2.

08
47

04
1.

97
40

19
2.

15
42

31

3
D

G
ru

nn
in

g
ho

ur
s,

hr
s

64
13

2
58

2
60

6
2,

38
1

2,
41

3

D
G

en
er

gy
pr

od
uc

ti
on

,k
W

h
2,

95
5.

9
6,

18
7.

7
24

,4
43

23
,5

54
66

,2
76

63
,0

84

Si
m

ul
at

io
n

ti
m

e,
se

c
1.

81
92

88
1.

96
83

95
1.

91
63

09
1.

95
62

00
2.

12
14

82
2.

11
32

40

4
D

G
ru

nn
in

g
ho

ur
s,

hr
s

67
95

58
3

60
6

2,
37

7
2,

41
5

D
G

en
er

gy
pr

od
uc

ti
on

,k
W

h
3,

10
6.

9
4,

33
5.

1
24

,4
97

23
,5

45
66

,3
09

63
,2

23

Si
m

ul
at

io
n

ti
m

e,
se

c
1.

93
14

49
1.

96
69

12
2.

10
99

35
1.

98
76

46
1.

99
36

00
1.

98
80

08

5
D

G
ru

nn
in

g
ho

ur
s,

hr
s

68
96

59
6

61
0

2,
38

0
2,

41
3

D
G

en
er

gy
pr

od
uc

ti
on

,k
W

h
3,

16
9.

8
4,

38
8.

7
25

,0
95

23
,6

95
66

,2
45

63
,0

86

Si
m

ul
at

io
n

ti
m

e,
se

c
1.

96
83

48
1.

95
69

72
1.

97
42

95
1.

95
63

09
2.

03
94

41
2.

05
37

94

6
D

G
ru

nn
in

g
ho

ur
s,

hr
s

71
10

5
59

2
60

5
2,

38
4

2,
41

7

D
G

en
er

gy
pr

od
uc

ti
on

,k
W

h
3,

29
4

4,
80

3.
2

25
,0

09
23

,5
30

66
,4

25
63

,1
98

Si
m

ul
at

io
n

ti
m

e,
se

c
1.

95
68

89
2.

02
59

67
2.

10
41

70
1.

96
83

94
2.

07
51

28
1.

99
71

01

A
ve

ra
ge

D
G

ru
nn

in
g

ho
ur

s,
hr

s
66

.8
3

10
3

58
6.

67
60

7.
67

2,
37

9.
67

2,
41

5

D
G

en
er

gy
pr

od
uc

ti
on

,k
W

h
3,

09
9.

45
4,

73
0.

58
24

,6
74

23
,6

23
.8

3
66

,3
07

.6
7

63
,1

55
.6

7

Si
m

ul
at

io
n

ti
m

e,
se

c
1.

92
50

08
1.

98
37

56
2.

00
57

96
2.

00
06

63
2.

03
23

27
6

2.
06

32
41

154



5.7. RESULTS AND DISCUSSIONSCHAPTER 5. MICROGRID OPTIMISATION

From the results in Table 5.5, it can be seen that for every run, the solution values

changes. The average DG running hours obtained for all simulated load model are

66.8, 103, 586.67, 607.67, 2,379.67 and 2,415, all in hours as depicted in Table 5.5,

and having simulation times ranging between 1.9 - 2.1 seconds.

It can be inferred from Table 5.3, Table 5.4 and Table 5.5, the algorithms take

different times to complete a run, with SA, having the shortest running time and

GA, having the longest running times.

The Figure 5.10 presents the results obtained from tuning the algorithm parameters.

For all experiments, every algorithm achieved similar and near solutions on certain

runs. Here also, the speed of simulation is also improved over a considerable iterations,

starting points and initial population/ swarmsize as the case maybe.
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Figure 5.10: Fine Tuning of Parameters

Considering Yr10 Load WoV and Yr10 Load WV from Figure 5.10, two algorithms

on some simulations arrived at similar results for the DG run hours. With this

simulations, all system constraints were adhered to, simulation time improved, and

the desired quality of results achieved. Again, the GA result pattern is as a result of

its stochastic nature of operating.

5.7.2 Convergence Results

For the effects of parameter tuning, the convergence of the fitness solution is also

considered using Year 5 load WV and results presented.
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5.7.2.1 Particle Swarm Optimisation Convergence Comparison

The Figure 5.11 is a representation of the effects of the various parameter settings

on the ease of convergence of arriving at the final solution.

From Figure 5.11, it can be inferred that the tuned parameters achieved faster

convergence compared to the standard and worse simulation solutions. Also as

a result of parameter tuning, the fitness values are attained with lesser iteration

numbers, which reduces the simulation time.
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Figure 5.11: Standard, Worse and Tuned Convergence plots for PSO
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Function values achieved for the simulations are

• Standard = N1,606,000

• Worse = N1,732,400

• Tuned PSO = N1,606,000

5.7.2.2 Genetic Algorithm Convergence Comparison

The Figure 5.12 below is a representation of the effects of the various parameter

settings on the ease of convergence of arriving at the final solution.
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Figure 5.12: Standard, Worse and Tuned Convergence plots for GA
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• Standard GA = N1,738,400

• Worse GA = N17,739

• Tuned GA =N1,604,100

Figure 5.12 the results show that better fitness values were achieved using tuned

parameters. The case of the worse parameter simulation violated system constraints

on the battery.

5.7.2.3 Simulated Annealing Comparison

The Figure 5.13 below is a representation of the effects of the various parameter

settings on the ease of convergence of arriving at the final solution.
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Figure 5.13: Standard, Worse and Tuned Convergence plots for SA
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• Standard SA = N1,606,900

• Worse SA = N2,105,200

• Tuned SA = N1,606,900

From Figure 5.13, it is seen that though the standard and tuned simulations achieved

similar function values, the convergence differ with the tuned simulation having a

more progressive decline over the iteration period.

5.7.2.4 PSO, GA, and SA Convergence Comparison

Figure 5.14 presents a convergence comparison of the three algorithms using the

tuned parameter settings.
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Figure 5.14: Tuned PSO, GA and SA converging Comparison
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Figure 5.14, all algorithms start at different fitness values and work their way

through to their individual final fitness score of N1,606,000, N1,604,100, N1,606,900

for PSO, GA and SA, respectively. PSO and SA achieved similar fitness values while

GA achieved the least fitness score.

5.7.3 Average Result of Tuned Parameter Experiments

Table 5.6, Table 5.7 and Table 5.8, shows the average simulation results of running

the optimisation strategies for different variable loads corresponding to the different

load models. The system specifications employed were gotten from the HMG design

from Homer Pro.

The optimisation simulations carried out aimed at minimising the running operation

of the diesel generator while ensuring that the consumer demand is always met.

The RERs are efficiently utilised for serving the load demand and charging the

battery with the power excess from the RERs and DG. The DG, acting as a back-up

comes online when the PV+WT+BSS is unable to meet the load. The optimisation

technique parameters are simulated to give optimal results.
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Table 5.6: Average Year 1 Simulation Results

Year 1 Load without Variability.

DG Run Hours DG Energy Production, kW Simulation Time, sec

PSO 64 2,984 10.9093105

GA 67 3,111.68 14.643602

SA 66.83 3,099.45 1.925008

Year1 Variable Load.

DG Run Hours DG Energy Production, kW Simulation Time, sec

PSO 95 4,335.1 11.557647

GA 99.33 4,546.05 19.999756

SA 103 4,730.58 1.983756

Results presented in Table 5.6 Year 1 Load without Variability and Year 1

Variable Load shows PSO to have the lowest DG running hours and DG energy

production. While SA achieved the shortest simulation times of 17.7% of the PSO

simulation time.

Table 5.7: Average Year 5 Simulation Results

Year 5 Load without Variability.

DG Run Hours DG Energy Production, kW Simulation Time, sec

PSO 582 24,444 11.538171

GA 595.67 25,054 15.650682

SA 586.67 24.674 2.005796

Year 5 Variable Load.

DG Run Hours DG Energy Production, kW Simulation Time, sec

PSO 605 23,538 11.792770

GA 617.17 24,056 21.664545

SA 607 23,623.83 2.000663
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Results presented in Table 5.7 Year 5 Load without Variability and Year 5

Variable Load, shows PSO to have the lowest DG running hours and DG energy

production. At the same time, SA achieved the shortest simulation times of 17.4%

of the PSO simulation time.

Table 5.8: Average Year 10 Simulation Results

Year 10 Load without Variability.

DG Run Hours DG Energy Production, kW Simulation Time, sec

PSO 2,377 66,309 11.809578

GA 2,396.67 66,617.5 18.781296

SA 2,379.67 66,307.67 2.0323276

Year 10 Variable Load.

DG Run Hours DG Energy Production, kW Simulation Time, sec

PSO 2,413 63,114 12.038307

GA 2,422 62,493.5 23.670679

SA 2,415 63,155.67 2.063241

Results presented in Table 5.8 Year 10 Load without variability shows PSO to

have the lowest DG running hours, SA has the lowest DG energy production and

achieved the shortest simulation time. While results for the Year 10 Variable load,

it is observed that the PSO had the least DG running hours, GA produced the least

DG energy and SA the lowest run time.

5.7.4 Individual Run Comparison

From Table 5.3, Table 5.4 and Table 5.5, it can also be deduced the though the PSO

results were constant for DG running hours and energy production, the GA and SA

also achieved the lowest results on particular simulation runs. Table 5.4 loads WoV,
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best results in terms of DG running hours and energy production were achieved on

the 2nd run. Furthermore, for loads WV, corresponding best results were achieved

on the 1st run.

From Table 5.5 load WoV, best results were achieved on the 2nd, 1st and 1st run,

respectively. Furthermore, for the loads WV, the best results were achieved on the

1st, 1st and 3rd run.

From all the three algorithms simulated, the system is observed to meet the load

at all times, with the DG generating just enough power to meet the excess load

primarily as shown in the Figure 5.15 below.

Figure 5.15: Total Generation vs Load WV.

5.8 Conclusions

In this chapter, the three algorithms employed in the optimisation of the HMG

operation are described and implemented. The HMG system components are modelled

in MatLab. The HMG is then experimented with using adjustable simulation parameters,
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with parameters fine-tuned to produce desirable results while operating within design

constraints and ensuring the load demand is met at all times.

The performances of the methods implemented are assessed in regards to the

effects of parameter tuning on algorithms, the convergence of algorithms using tuned

parameters, quality of the solutions, simulation runtime, and repeatability.

5.8.1 Quality of Solution

Six simulations from each metaheuristic methods are evaluated. Their corresponding

solutions are also presented in Table 5.3, Table 5.4 and Table 5.5. It can be seen

that within the set operating parameters, the performances of every algorithm differ.

The optimal solutions are achieved at certain runs for all experiments conducted on

all the algorithms with the appropriate tuning of parameters that suit problems of

this kind.

5.8.2 Simulation Runtime

Each optimisation method was repeated six times, and the average simulation runtime

are listed in Table 5.3, Table 5.4, and Table 5.5. GA and PSO have comparable

runtime. SA runs faster per iteration because SA generates only one solution per

iteration while the other two methods generate 50 solutions in each iteration. However,

since SA cannot find optimal solutions with less iteration, its total runtime is longer

than the other two methods.

5.8.3 Repeatability

The DG running hours for the experimental runs are used to evaluate the repeatability

of each method. From the simulation results, it can be suggested that solutions from
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PSO were repeatable than solutions from the GAs and SAs.

The use of traditional optimisation methods for solving DG operation problems

in a HMG was limited due to lack of historical data. Introducing meta-heuristic

population based algorithms appears promising in handling problems of such kind.

In this study, the efficacy of dynamic non-linear inertia weight based particle swarm

optimisation was examined through solving HMG problems and compared with

genetic and simulated annealing algorithms. The findings of simulations show that

PSO achieved similar final results at the end of every run, only changing with

simulation time, offering a more promising technique for optimal DG operation in

the HMG system network as the number of times the function needed to be evaluated

and computation time were less when compared with the genetic algorithm and the

simulated annealing algorithms. Randomness in reaching a solution performs a vital

role; like GAs and SAs, it is seldom to assume the optimal values of PSO parameters.

Nevertheless, introducing the non-linear inertia weight accelerates the exploration of

a global solution.

GA took the lengthiest simulation runtime, producing different results at every

run, also containing the best solution amongst simulation conducted. As with

[196–198], GAs suffer the downsides of weak exploitative abilities and premature

convergence in optimising continuous multi-mode functions in particular. Loss of

diversity in the solutions population often causes premature convergence to a local

optimal solution. Optimization problems having many local optima points suffer

from extremely slow convergence when solved with GA because standard GAs do not

exploit the neighbourhood information [194, 195, 199]. Furthermore, GAs converge

steadily initially and slows down their rate of convergences after a number of iterations.

When discrete variables are expressed in binary forms, moving the decision variable

to neighbourhood point is rare through the crossover and mutation process. Good

solutions are made in multiple copies through the selection process in each generation;
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when these solutions undergo crossover and mutation process, more poor solutions

generally result.

SA having the least simulation run time on every simulation produced results

that were greater than the least results when averaged. This could be attributed to

the fact that SAs generate only one trial initial solution per iteration compared to

randomly generated initial solutions for PSOs and GAs. Furthermore, SAs require

many iterations to find an optimum reason for their high average result quality.

Furthermore, spikes were introduced to the 5th year load demand WV. It is

observed that the total power generated failed to meet the load at periods the spikes

were introduced owing to the limits of the system design.

171



Chapter 6

General Conclusions and Future

Work

This chapter presents the general conclusions of the objectives, goals of this research,

and the contributions achieved. The thesis limitations are outlined and also possible

areas for further research is presented.

6.1 General Conclusions

This study aimed to design an adaptive hybrid microgrid solution to meet the

needs of electricity demand in remote rural communities that have no access to any

form of centralised grid systems. With rural electrification by developing countries

continually seeking ways to improve their rate of electrification while adopting the

global trend of high renewable penetration to the main power grid or independently

of the grid, and the need for efficient operations and management to reduces energy

waste, system cost and global warming effects on the environment, the primary

objectives of undertaking this research were:

• The need to understand the background of the limitations to rural electrification,
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• Identify possible solutions affordable to the developing countries based on

available renewable resources and technological applications

• The need to design reliable, efficient, cost-effective systems with significant

renewable resource penetration and have the system adaptable to changes over

the years.

Chapter 1 introduced the issues with rural electrification and the energy situation for

the country of study. It also presented the efforts of the GoN in providing policies to

enhance the use of alternative energy sources to help the lapses experienced by the

centralised grid that is inefficient to cater for its continually increasing population.

The current microgrid projects were presented alongside the potentials of harnessing

renewable energy, including the research motivation described suggesting decentralised

renewable energy-based systems as possible solutions to rural electrification.

Chapter 2 presented an overview of microgrids concept, its inception, and research

around the world. It described the available technologies in existence, the benefits,

their designs, and optimal planning and operations optimisation practices. It also

presented the applications of different optimisation strategies to different aspects

of interest and applications. The microgrid configuration and development are

discussed, and tools for implementation presented. It concluded with a proposal for

the microgrid configuration and the selected metaheuristic optimisation strategies

implemented in the following chapters.

Chapter 3 presented a background of the rural location considered for the research

and developed a load model from data collected whilst making some assumptions that

considered possible changes likely to occur in the application being implemented. A

developed socio-economic forecast method was utilised to predict the community’s

electricity demand for ten years, utilising assumed load factors, system losses, and

miscellaneous loads. The chapter ended with a load model to depict the load growth
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over the ten years and introduced the concept of load variability to enable a robust

HMG design.

The hybrid microgrid is designed in Chapter 4. This chapter utilises weather data

specific to the application for system development. Generic components and their

costs are utilised for the microgrid design. Two load types (loads without variability

and loads with variability) for the fifth year is implemented for the design. Three

system configurations (diesel only, renewable resource only and hybrid microgrid)

considered. The results are discussed; the HMG offered a more cost-effective and

reliable system than the other configurations and a reduced environmental effect

compared to the diesel generator only configuration. The results from was then

utilised in Chapter 5.

Chapter 5 presented the description and implementation of the three optimisation

strategies (particle swarm optimisation, genetic algorithms and simulated annealing)

to the HMG system designed in chapter 4. The various components of the HMG were

modelled in MatLab, the optimisation cost function developed, and constraints set

on the system. The objective of this chapter was to minimise the DG running hours

in the system, compare among the metaheuristic strategies their performance, and

evaluate the effects of the algorithm parameter settings on the different strategies

at achieving optimal results. The experiments were carried out on Year 1, Year 5

and Year 10 loads (with and without variability). The results showed that each

algorithm presented effects of the parameter settings on their mode and rate of

convergence, simulation time and quality of results attained. The tuned parameters

improved the algorithms the convergence of solutions, simulation time, and reduced

the DG running hours at different experimental run by the three algorithms. A 65.2%

reduction was achieved from PSO application. Finally, spikes were introduced to the

load to establish uncertain events that could cause the system to fail to meet the load.

The spikes were introduced at different hours through the year to represent weather
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variation and holiday periods when possible changes beyond the design limits could

cause the system to fail as an introduction to applying machine learning to learn

from past events and accurately predict the expected electricity demand.

The conclusions of thesis are

• Electrification of remote rural communities in Nigeria is achievable using enabling

technologies such as HMG that allows the mix of RERs and conventional

systems.

• Load estimation and forecasting plays a pivot role in designing a cost effective

and reliable system. Using of low energy appliances helps in saving energy.

• Constant power supply gives room to growth and development. This in turn

causes individuals to seek better ways of survival, seeking comfort, easy business

operations affecting load forecasting.

• The self replenishing nature of RERs allows for high penetration and adoption

of its technologies in achieving clean power generation, stable and reliable

power, and reducing dependence on fossil fuels. For example the adoption

of BSS allows for continuous power supply during peak loads and night times.

• Further cost minimisation of the HMG operations of 65.2% could be realised

from employing metaheuristic techniques in its operation. Algorithm parameters

influence the quality of results achieved, repeatability, and simulation time.

Therefore tuning these parameters produces desired cost saving objectives and

environmental preservation from reduced fossil fuel burning in DGs.
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6.2 Further Work

Limitation encountered in the course of this study and suggested for future attention

include: data availability, studied community under safety alert and global pandemic

at the time of study.

1. Load estimation methodology.

An area for future research is in the area of load estimation. The approach proposed

can be expanded to accommodate more extensive questionnaires in the electrical

survey, emphasising other considerations not considered. Future work can also

be carried out to develop physical building properties and gender effect indicators

to compare consumption characteristics. As well as, using data gathered from

employing smart meters for more accurate estimations.

2. Studies on other microgrid components.

This study can be expanded to include consideration of other cost components in the

costing of the microgrid (cables, installations, controls, communications, and other

electronics). This further study would involve a specific detailed cost assessment of

these components and the effect on the overall cost of the system.

3. Studies on microgrid clusters.

This research can be further developed by looking at the possibilities of microgrid

interconnection between communities. To reduce excess energy losses and allow the

microgrids to compensate each other.

4. Incorporation of independent house electricity usage.

Further research can also involve investigating each independent demand profile for

the different building types, which would involve the demand-side management based
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on a combination of direct load control and real-time pricing/time of day. This

should put into consideration the nature of the communities and customers being

served as the success of demand-side management highly depends on the percentage

of controlled loads. Customer education and awareness is essential for its success.

5. Machine learning application.

Regarding the adaptability and sustainability of the system, future work includes

further development and implementation of real-time neural network applications to

evaluate the effects and correlation of influencing factors such as festivals, weather,

and electricity price on the communities electricity consumption behaviour.
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Appendix A

Load Data Questionnaire

Figure A.1: Residential Load Use Questionnaire
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APPENDIX A. LOAD DATA QUESTIONNAIRE

Figure A.2: Organisation and Commercial Load Use Questionnaire
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