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Abstract

Using N-body simulations, we explore the effects of growing a supermassive black hole (SMBH) prior to or during the
formation of a stellar bar. Keeping the final mass and growth rate of the SMBH fixed, we show that if it is introduced
before or while the bar is still growing, the SMBH does not cause a decrease in bar amplitude. Rather, in most cases, it is
strengthened. In addition, an early-growing SMBH always either decreases the buckling amplitude, delays buckling, or
both. This weakening of buckling is caused by an increase in the disk vertical velocity dispersion at radii well beyond the
nominal black hole sphere of influence. While we find considerable stochasticity and sensitivity to initial conditions, the
only case where the SMBH causes a decrease in bar amplitude is when it is introduced after the bar has attained a steady
state. In this case, we confirm previous findings that the decrease in bar strength is a result of scattering of bar-supporting
orbits with small pericenter radii. By heating the inner disk both radially and vertically, an early-growing SMBH
increases the fraction of stars that can be captured by the inner Lindblad resonance (ILR) and the vertical ILR, thereby
strengthening both the bar and the boxy-peanut-shaped bulge. Using orbital frequency analysis of star particles, we show
that when an SMBH is introduced early and the bar forms around it, the bar is populated by different families of regular
bar-supporting orbits than when the bar forms without an SMBH.

Unified Astronomy Thesaurus concepts: Galaxy evolution (594); Barred spiral galaxies (136); Supermassive black
holes (1663); Galaxy bulges (578); Galaxy bars (2364); Galaxy nuclei (609); N-body simulations (1083); Orbital
resonances (1181)

1. Introduction

One of the most consequential astronomical discoveries of the
past 25 yr is that most massive galaxies contain supermassive
black holes (SMBHs) in their nuclei, and that the large-scale
properties of host galaxies and the masses of nuclear SMBHs are
linked through several scaling relations such as those between
black hole mass MBH and central stellar velocity dispersion σ (the
MBH–σ relation; e.g., Ferrarese & Merritt 2000; Gebhardt et al.
2000; Merritt & Ferrarese 2001; Gebhardt et al. 2003; Gültekin
et al. 2009; McConnell & Ma 2013; Saglia et al. 2016), MBH and
bulge (spheroid) stellar mass or luminosity (e.g., Häring &
Rix 2004; Gültekin et al. 2009; Scott et al. 2013), MBH and stellar
light concentration (Graham et al. 2001; Savorgnan et al. 2013), as
well as correlations with several other galaxy properties (for recent
compilations and reviews see, e.g., Kormendy & Ho 2013; Saglia
et al. 2016). These scaling relations are widely considered to be
evidence that, despite constituting only ∼0.2% of the mass of their
hosts, SMBHs (via active galactic nuclei, AGNs) influence the
growth of the galaxies on scales that are orders of magnitude larger
than the black hole sphere of influence, rBH.

5

While the origin of these scaling relations is still actively
debated, the view that the scaling relations are evidence for

tight coevolution between SMBHs and their host galaxies
mediated by AGN feedback (Fabian 2012; King 2014) is being
replaced by the view that SMBH growth may also be driven by
the averaging of BH and galaxy properties via hierarchical
merging (Jahnke & Macciò 2011) and by secular evolution in
disk galaxies.
Nonaxisymmetric disk structures like bars and spirals have

long been considered important drivers of secular evolution in
disk galaxies, which for instance can lead to the formation of
pseudobulges (Kormendy & Kennicutt 2004) as well as the
boxy-peanut-shaped bulges that are observed in at least half of
all edge-on disk galaxies (Lütticke et al. 2000) and
probably exist in most massive barred galaxies (Erwin &
Debattista 2017). Simulations show that bars (especially nested
bars) can facilitate the outward transport of angular momentum
and the inflow of gas and stars (Shlosman et al. 1989). In the
presence of gas, which experiences shocks and undergoes
clumping, a diverse range of nonaxisymmetric morphologies
(spirals, rings, and bars; Hopkins & Quataert 2010, 2011)
enables the outward transport of angular momentum and the
inward flow of mass over a wide range of physical scales (from
kiloparsec to subparsec scales) down to the accretion disks that
ultimately fuel the central black holes.
Several authors have found that black holes in late-type

galaxies, especially those with bars and pseudobulges, fall
below the black hole scaling relations for higher-mass elliptical
galaxies and disk galaxies with classical bulges (e.g.,
Graham 2008; Greene et al. 2010; Graham et al. 2011;
Kormendy et al. 2011; Graham & Scott 2015). However, in a
recent study of 66 local AGNs, Bennert et al. (2021) used high-
spatial-resolution Hubble Space Telescope imaging, ground-
based high-resolution near-infrared imaging with adaptive
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5 The radius within which the mass of the SMBH is equal or greater to that of
the stellar component. The definition based on velocity dispersion within the
effective radius was not used because effective radius is difficult to determine
and changes significantly as the bulge grows. Effective radius is also undefined
at times before the bulge has formed.
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optics and sophisticated modeling of surface photometry to
obtain accurate morphological classifications and characteriza-
tion of the spheroids of the AGN host galaxies. They combined
these data with high spatial resolution spectroscopy obtained
with Keck/LRIS (Harris et al. 2012) to determine the central
stellar velocity dispersions in all of the galaxies in a consistent
manner and used single-epoch reverberation mapping to
determine black hole masses for the entire sample. Their
analysis found no dependence on the morphological type of the
host, presence of either a pseudo or classical bulge, or the
presence of a bar for any of the three black hole scaling
relations that they examined, supporting the idea that secular
evolution in disks remains a viable black hole growth
mechanism. However, since this latter study focused only on
active galaxies while the former studies focused on quiescent
galaxies, it is unclear whether there is a discrepancy.

The enthusiasm for bar-mediated SMBH growth was
dampened in part by the fairly weak observational evidence
for correlations between the existence of AGNs and bars
(Cisternas et al. 2013) and in part as result of a series of N-body
simulations showing that the growth of central black holes
weakened or even destroyed stellar bars (e.g., Hasan et al.
1993; Norman et al. 1996; Shen & Sellwood 2004; Athanas-
soula et al. 2005; Hozumi & Hernquist 2005; Du et al. 2017).
These N-body simulations showed that when a central point
mass representing an SMBH of realistic bulge mass fraction
(∼0.10%–0.20%) was introduced into a bar that had reached a
steady state (i.e., the bar strength was no longer changing), it
weakened the bar. While unrealistically large SMBH masses of
2%–5% were required to destroy large-scale bars, realistic
SMBH mass fractions of ∼0.20% could weaken bars and even
destroy nuclear bars (Du et al. 2017). The weakening and
destruction of the bar has been primarily attributed to chaotic
scattering of a significant fraction of the bar-supporting
centrophilic orbits by the compact central black hole (Hasan
et al. 1993; Merritt & Valluri 1996; Norman et al. 1996; Shen
& Sellwood 2004). While the details of the simulations varied,
all of these authors introduced the point mass representing the
SMBH after the bar had attained steady state and found similar
results regarding bar weakening and/or destruction. Shen &
Sellwood (2004) noted that their bars buckled prior to the
introduction of the central mass concentration (CMC), while
Hozumi & Hernquist (2005) studied a 2D model, where
buckling is not possible, and the others do not comment on the
prior evolution of their bars.

Seed black holes are expected to form at high redshifts in
compact galaxies that evolve to form the galactic nuclei of most
present-day galaxies (Volonteri 2010). Most present-day disk
galaxies probably form around such galactic nuclei, and there is
evidence that since at least z= 2, a significant fraction of
SMBH growth has occurred primarily in disk galaxies probably
driven by secular evolution rather than mergers (Gabor et al.
2009; Georgakakis et al. 2009; Cisternas et al. 2011;
Schawinski et al. 2011; Kocevski et al. 2012; Donley et al.
2018).

In the local Universe, ∼65% of disks have stellar bars (e.g.,
Knapen 1999; Eskridge et al. 2002; Marinova & Jogee 2007).
This fraction drops to ∼20% by z= 0.84 (Sheth et al. 2008). A
study of AGNs and quiescent barred galaxies shows that when
matched for stellar mass, disks with an AGN have a slightly
higher bar fraction than inactive disks (Cisternas et al. 2015);
although, the differences between the fraction of bars in active

and inactive disks decreases with increasing redshift and could
be consistent with no difference. However, since bars are
generally long-lived (surviving many gigayears in simulations)
but AGN duty cycles are short (<108 yr), the absence of a
strong correlation between the presence of a bar and the
presence of an AGN is unlikely to be a strong indicator of the
importance (or not) of bars.
Boxy-peanut/X (hereafter BP/X)–shaped bulges are so

called because of the easily identifiable eponymous shape they
present when the disk is viewed edge-on and the bar major axis
lies between ∼30° and 90° to the line of sight. Simulations
have shown that disks easily form bars and BP/X bulges from
a variety of initial conditions. Early simulations showed that
BP/X bulges can form following a buckling event in a bar
(e.g., Combes et al. 1990; Pfenniger & Friedli 1991; Raha et al.
1991). Bending and buckling instabilities were first described
by Toomre (1966) for an idealized infinite, uniform density,
thin sheet and further investigated by simulations and analytic
work in increasingly more complex and realistic stellar
distributions (e.g., Araki 1985; Raha et al. 1991; Merritt &
Sellwood 1994; Sellwood & Merritt 1994; Debattista et al.
2017; Collier 2020). Bar buckling, which occurs over a short
interval of time, results from an asymmetric bending of the bar
out of the disk midplane, with the inner portion moving upward
(downward) and the outer portions moving downward
(upward). This instability is believed to arise because the
radial stellar velocity dispersion (σR; dispersion along the
length of the bar) increases as the bar lengthens and strength-
ens, but the vertical velocity dispersion (σz) is not significantly
altered by bar growth. As a result, a small vertical displacement
of the bar mid-section relative to the disk plane causes the
highly radially anisotropic bar-supporting orbits to speed along
a curve experiencing a (centrifugal) force perpendicular to the
disk along the radius of the curve, further increasing the
displacement in the same direction (Raha et al. 1991; Merritt &
Sellwood 1994). Buckling results in a redistribution of kinetic
energy from the radial direction to the vertical direction. The
resultant vertical heating dramatically thickens the bar, while
reducing its radial extent. The asymmetric buckling event itself
is short lived and produces a thicker bar that is approximately
symmetric about the midplane (and may have a BP/X shape).
Simulations show that although buckling heats the disk and
weakens a bar (Martinez-Valpuesta & Shlosman 2004; Marti-
nez-Valpuesta et al. 2006), bars may continue to grow after a
buckling event and may even undergo subsequent buckling
events (e.g., Martinez-Valpuesta et al. 2006; Collier 2020).
Observational evidence for ongoing buckling has also been
reported (Erwin & Debattista 2016) and confirms that buckling
does occur in real galaxies and is short lived like in simulations.
While it has long been thought that the buckling event itself

is responsible for the formation of the BP/X structure
associated with bars, there is growing evidence that orbital
resonances could play an important role in producing and
enhancing these structures (e.g., Quillen 2002; Quillen et al.
2014; Sellwood & Gerhard 2020). In this resonant sweeping
scenario, orbits are still altered by interaction with the
resonance, which causes them to be elevated to high |z|, but
do not become trapped in the resonance permanently, implying
that nonresonant orbits primarily contribute to the overall bulge
structure (Quillen et al. 2014; Sellwood & Gerhard 2020).
To our knowledge, no previously published works describe

how preexisting SMBHs or the early growth of a black hole
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(e.g., during bar formation) affect the structure of a bar and its
associated BP/X bulge. The aim of this work is to examine
how the early growth of SMBHs, either before or coeval with
bar formation, can affect the structure of the bar, including the
boxy/peanut-shaped bulge, present in most massive barred
galaxies. In this paper we explore the interaction and
coevolution of the SMBH with the bar using a suite of pure
N-body model disk galaxies that naturally form bars susceptible
to buckling; we vary only the time at which we begin to grow
an SMBH relative to the formation time of the bar in the
control model (which does not include an SMBH). Our
SMBHs begin to grow at all stages of bar evolution: from the
very start in the initially axisymmetric model, at various times
throughout bar formation, growth, and buckling, and finally
after buckling. In all cases, the growth rate and final mass of the
SMBH are kept fixed.

In Section 2 we describe the initial conditions, the SMBH
growth parameters, and the N-body simulation method and
parameters. In Section 3 we describe the effects of the SMBH
on the bar and its buckling and also discuss the sensitivity of
our results to small changes in initial conditions. In Section 4
we give a brief description of bar buckling, its dependence on
stellar velocity anisotropy and show how and why the SMBH
alters the buckling behavior. In Section 5 we explore the
importance of resonances in the formation of the BP/X-shaped
bulge, and the effect of the SMBH on the trapping of stars into
resonances. Finally we discuss a few implications of this work
in Section 6 and summarize our results in Section 7.
Appendix A describes various numerical tests and additional
simulations (including with other initial conditions) that we
carried out to validate our results. In Appendix B we provide a
full list of input parameters used to run our models.

2. N-body Models

2.1. Simulation Method and Initial Conditions

We use the grid-based N-body simulation package
GALAXY6 (Sellwood 2014) to simulate the growth of point
masses representing an SMBH at various stages in the
formation of the bar. All models discussed in this paper were
evolved from initial conditions used in previous works
(Debattista et al. 2017, 2020; Anderson et al. 2022) and were
generated using GALACTICS (Kuijken & Dubinski 1995;
Widrow & Dubinski 2005; Widrow et al. 2008). These models
consist of exponential disks within a modified Navarro–Frenk–
White (NFW; Navarro et al. 1996) live dark matter halo. For all
initial conditions the spherical halo density distribution ρ(r) is
described by

r
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where σh characterizes the halo velocity dispersion, and ah
characterizes the halo scale radius. C(r) is a function that
smoothly truncates the model at a finite radius (Widrow et al.
2008):
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When γ= 1 and rh→∞, Equation (1) is exactly the NFW
distribution. For all models considered in this paper, the halo
parameters are σh= 400 km s−1, ah= 16.7 kpc, γ= 0.873,
rh= 100 kpc, and δrh= 25 kpc (Debattista et al. 2020). The
live dark matter halo consists of 4× 106 particles of mass
;1.7× 105Me each.
The disk has an exponential radial density profile and an

isothermal vertical density profile described by

R z R R z z, exp sech 3d d0
2( ) ( ) ( ) ( )S = S -

where Rd (zd) is the disk scale length (height), set to 2.4 kpc
(0.3 kpc; Debattista et al. 2020). The initial kinematics of the
disk are such that the radial velocity dispersion decreases
exponentially as

R R Rexp , 4R
2

0
2( ) ( ) ( )s s= - s

in which Rσ is fixed at 2.5 kpc and σR0 is the disk’s central
radial velocity dispersion (Debattista et al. 2020). The disk
consists of 6× 106 equal mass particles contributing to a total
disk7 mass of ;5.37× 1010Me.
We assign the disk particles to a cylindrical polar grid nested

within a larger spherical grid to which the halo particles are
assigned. These grids share an origin that is relocated to the
disk particle centroid at regular intervals to ensure the greatest
spatial resolution at the central region of greatest density. This
model does not contain a classical bulge component, and only
forms a boxy or peanut-shaped bulge as a result of secular
evolution.
The results in the main body of this work are evolved from

the initial conditions for Model 2 from Debattista et al. (2020),
for which σR0= 128 km s−1, and which is our principal control
model (Model C). In order to evaluate the robustness of our
results against stochastic effects, in Section 3.3 we present
results from three azimuthally scrambled versions of Model C,
and in Appendix A we also briefly consider results from two
additional models from Debattista et al. (2020)—their Model 1
and Model 3 (also known, respectively, as D5 and D2 in
Debattista et al. 2017). These models differ by having a value
of σR0= 90 km s−1 and σR0= 165 km s−1, respectively, with
all other parameters identical to the control model.

2.2. Growing the SMBH

The SMBH is represented as a Plummer potential using a
built-in function in GALAXY and is initialized with a small
nonzero SMBH mass. The mass of the SMBH (MBH) grows as
a function of time to a final mass Mfin according to the
equation:

M t
M
M

0.02 0.98 sin 2 0 1
1

5BH
fin

2

fin

⎧
⎨⎩

( ) ( ( ) ( ) pt t
t

= +
>

where τ= t/ tgrow, and tgrow is the timescale over which the
SMBH grows.
Since this is a pure N-body simulation, accretion by the

SMBH is not modeled. Rather, our SMBH grows strictly due to
an artificial deepening of the Plummer potential as given by
Equation (5). The final mass of the SMBH in all cases is
0.0014Mdisk, which is comparable to the black hole mass

6 Publicly available at http://www.physics.rutgers.edu/galaxy/.

7 Note that the disk total mass and individual disk particle mass were
misquoted in Debattista et al. (2020).
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fraction in M31 (Bender et al. 2005; Tamm et al. 2012). Since
the SMBH potential is free to move due to accelerations from
other particles, we introduce it with an initial mass of
0.02 ·Mfin. Through testing we have found this mass (equal
to 168 times the disk particle mass) is the minimum necessary
to reduce early random motion of the SMBH and is required to
ensure the SMBH does not accelerate away from the galaxy
center while at ∼0 mass.

To introduce the SMBH into a model at a specific time, we
use a snapshot of Model 2 evolved with no SMBH until the
desired time as the initial conditions for a new model. Our
SMBH potential is then added and evolved as in Equation (5).
In this way we may grow an SMBH at a known stage in the
evolution of a model by branching a new model off from the
case where no SMBH is present.

In all models we keep the final mass (Mfin), the initial mass,
the growth period (tgrow), and Plummer potential softening
length fixed (see values listed in Table 1) and only vary the
time of introduction of the SMBH. Previous works have shown
that long-term effects on measurable bar quantities are fairly
independent of tgrow, but depend strongly on Mfin and softening
length (Shen & Sellwood 2004). Since our tests showed similar
results, we consider a single growth period of tgrow= 50
dynamical times in simulation units, equivalent to 378Myr.

We use an SMBH softening length ε= 33.33 pc, or two-
thirds of the global ε= 50 pc (for both disk and halo particles).8

This is more diffuse than the most compact CMCs meant to
represent an SMBH with ε∼ few parsecs, such as in Shen &
Sellwood (2004), but still much more compact than simulated
gas concentrations and star clusters (Shen & Sellwood 2004;
Athanassoula et al. 2005; Sellwood & Gerhard 2020). This
choice was motivated primarily by computational considera-
tions; reducing ε for the given mass greatly increases the time
resolution requirements in the vicinity of the SMBH. We
choose a base time resolution of 0.03784Myr (0.005 dynamic
times) for all models. At larger radii, particle motion is
calculated every 2N time steps for N zones beginning at 2.4,
7.2, 12, and 19.2 kpc (multiples of scale radii). The criterion of
Shen & Sellwood (2004) demonstrates that our chosen
softening length is large enough that a circular orbit on the
scale of ε will be sufficiently resolved, i.e., an orbital period
will take 100 time steps. Increasing base time resolution to

the extent required to reduce the SMBH softening length by a
factor of 5–10 was prohibitively expensive.9,10

Simulation parameters required to evolve these models using
GALAXY version 15.4, including full details of grid structure,
are included in Appendix B. Simulation snapshots used for
analysis were saved every 800 time steps; therefore, the time
resolution for results presented in plots is 30.3 Myr unless
otherwise noted.

2.3. Overview of Models

The results presented in most of this paper are based on a
small handful of models that we refer to as the principal set,
detailed in Table 2. Each represents a scenario in which an
SMBH is introduced into a snapshot of the control model,
Model C, which is evolved from the initial conditions of
Debattista et al. (2020) Model 2 with no SMBH. All other
models in Table 2 are grown from snapshots of Model C with
the SMBH introduced at the indicated time, and advanced
forward to reach the same duration of total evolution,
Tfinal= 7.568 Gyr.
In Model BF0, the SMBH is introduced at t= 0, before bar

formation i.e., before the m= 2 amplitude begins to increase
from zero (SMBH growth is completed by t= 0.387 Gyr). The
three models in which the SMBH is introduced before Model C
experiences bar buckling are labeled Model BB1, BB2, and BB3.
The buckling time is considered to be the time of peak buckling
amplitude (defined below).
These three models branch from Model C at t= 0.575,

1.150, and 1.877 Gyr, respectively (corresponding to conve-
nient times in internal simulation units). Finally, to compare

Table 1
Simulation Parameters for Models

Parameter Value

General Base Time Step 3.784 × 10−2 Myr
Softening Length 50 pc
Disk Mass (Mdisk) 5.37 × 1010 Me

Halo Mass 6.77 × 1011 Me

SMBH Final Mass ( Mfin) 0.0014 Mdisk

Initial Mass 0.02 Mfin

Growth Period ( tgrow) 378 Myr
Softening Length 33.33 pc

Note. “General” parameters apply to all models, while “SMBH” parameters are
common to all models containing an SMBH. A comprehensive list of
simulation parameters may be found in Appendix B.

Table 2
List of Principal Set of Models Considered in This Work

SMBH Growth Epoch Model Name SMBH Inserted

“Control”—No SMBH
C L

Before bar formation
BF0 0 Gyr

Before bar buckling
BB1 0.575 Gyr
BB2 1.150 Gyr
BB3 1.877 Gyr

After bar buckling
AB1 3.784 Gyr

Note. The control model (Model C) has the same initial conditions as Model 2
in Debattista et al. (2020). The left-hand column describes the state of the bar at
the time the SMBH is introduced in the model. The middle column gives the
model name. The right-hand column gives the time (in gigayears for our choice
of model parameters) at which the SMBH is inserted and starts to grow from its
initial value of 0.02 Mfin.

8 We note that Debattista et al. (2017, 2020) also used ε = 50 pc for disk
particles, but 100 pc for dark matter halo particles. GALAXY uses a single
softening length for all components.

9 Our models were run using GALAXY version 15.4, which included the
option of guard radii to approximate increased time resolution in fixed radial
regions, which advanced particle motions at smaller Δt than the base time step.
However, the potential was not recalculated between base time steps. This is
justified only for cases when the potential is dominated by a constant value in
known radial regions (such as a rigid potential at the origin). However in our
case the SMBH moved sufficiently that this justification did not apply at the
small scales required. Therefore, we did not implement guard radii. See Shen &
Sellwood (2004) for an in-depth description of their use.
10 The newest versions of GALAXY, version 16.0 and onward, allow the time
step at which a particle’s coordinates are advanced to be chosen according to
the acceleration it is experiencing, which would likely mitigate some of these
issues.
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with previous work (e.g., Hasan et al. 1993; Norman et al.
1996; Shen & Sellwood 2004; Athanassoula et al. 2005;
Hozumi & Hernquist 2005; Du et al. 2017) in which the SMBH
was grown after the bar had reached a quasi-equilibrium state,
we also ran a model with the SMBH introduced in Model C at
t= 3.784 Gyr, after buckling has occurred (Model C buckles at
2.85 Gyr), which we call Model AB1. Section 3.3 and
Appendix A describe additional models that we explored to
assess the generality of our results.

3. Impact of SMBH Growth on Bar Morphology

To quantify and compare the bar large-scale properties, we
employ the commonly used measurements of bar amplitude
(Am = 2) and buckling amplitude (Abuck; e.g., Sellwood &
Athanassoula 1986; Debattista et al. 2020). These quantities are
defined using the m= 2 symmetry mode of an azimuthal
Fourier transform of the face-on disk, normalized by the m= 0
mode as follows:

A
m e

m
, 6k k

i

k k
m 2

2 k

( )=
å
å

f

=

and
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where mk, fk, and zk are the mass, azimuth, and vertical
position of the kth particle, respectively. Abuck is a measure of
asymmetry of m= 2 structures about the midplane of the disk,
which is sensitive to the bar bending during buckling.
Following previous authors (e.g., Debattista et al. 2020), the
sums in the above equations are taken over all disk particles,
which allows for more direct comparison between different
galaxies. Consequently, although both Am = 2 and Abuck are
dominated by contributions from a bar, they may also include
contributions from other two-fold symmetric structures such as
spiral arms. Spiral structures are significant in our models in
only the very early stages of evolution as axisymmetry is first
broken, but quickly dissipate as the bar forms, leaving the bar
as the dominant contributor to the m= 2 mode.

3.1. Bar Strength and Buckling Amplitude

We first examine the effect of SMBH growth on the bar
strength (quantified by bar amplitude Am = 2) both prior to
buckling (when the bar is forming and growing) and at late
times. Figure 1 shows Am = 2 (top) and buckling amplitude
Abuck (bottom) as a function of time. Each curve corresponds to
a different model from the principal set in Table 2. Model C
(blue) is the control model without an SMBH. The other curves
show models with a growing SMBH, and the vertical bands
show the period during which the SMBH grows in the model
with the curve of the same color. In all models, bar buckling is
characterized by a sharp drop in Am = 2 in the top panel and a
corresponding spike in Abuck in the lower panel.

The early rise and drop in Am = 2 prior to ∼1.1 Gyr is
associated with formation then dissolution of a strong m= 2
spiral pattern. Although a weak bar first forms during this time,
its contribution to the measured m= 2 mode is subordinate to
the spiral. During this time no buckling occurs (despite the drop
in Am = 2), as is evident from the fact that Abuck∼ 0. After the

drop at t∼ 1.1 Gyr, the bar becomes the dominant m= 2
structure, and remains dominant for the remainder of the time.
Model C (no SMBH) buckles the earliest with the lowest bar

amplitude prior to buckling. The lower panel also shows that
this model has the greatest buckling amplitude. After buckling,
its bar ceases growth and quickly reaches an approximately
steady state in bar amplitude that lasts throughout the
simulation period. In contrast, Model BF0 (orange), where the
SMBH starts to grow at t= 0, buckles later than all other
models with a much lower spike in Abuck than Model C.
Model BF0 has the largest Am = 2 at late times. This difference
in bar amplitude is also apparent shortly after buckling, before
any further bar growth occurs.
Figure 1 (top) shows similar trends for the other models with

SMBHs introduced before buckling: SMBHs that start growing
later (but before bar buckling) have smaller late-time bar
amplitudes than Model BF0, but all have higher Am = 2 than
ModelC. Consistent with previous work (e.g., Shen &
Sellwood 2004; Athanassoula et al. 2005; Hozumi &
Hernquist 2005), Model AB1 (brown curve) in which the
SMBH is grown after bar buckling, when bar growth has
ceased, is the only model in which Am = 2 at late times is lower
than in Model C.

3.2. Weakening and Delay of Buckling

Figure 1 (bottom) shows that in cases in which the SMBH is
introduced prior to bar buckling, the buckling event is partially
suppressed. We define “suppression” as either the reduction of
buckling amplitude (Abuck), a delay of the buckling event
(location of the peak in Abuck), or both, relative to Model C. In
Models BF0, BB1, and BB3, buckling is both weakened and
delayed. Model BB2 produces a strong buckling event, almost
as strong as the buckling experienced by Model C; however, it
is still significantly delayed compared to Model C such that the
final bar amplitude at late times is still significantly larger than
in Model C. We assert that since buckling weakens the bar, the
delay in buckling allows the models to develop a stronger bar
prior to buckling. Simultaneously a generally weaker buckling
event is associated with a smaller decrease in bar amplitude
during buckling. Therefore, both effects contribute indepen-
dently to a greater final bar strength than in Model C. The
reasons for this suppression of buckling are explored in depth
in Section 4.
Finally we draw attention to the long-term Abuck behavior of

Model BF0, which after buckling remains elevated relative to
other models and gradually increases with time for the duration
of the simulation (Figure 1 lower panel). This is indicative of a
persistent m= 2 asymmetry about the midplane (in both the bar
and disk). In other words, the bar and disk remain bent
throughout the duration of the simulation rather than only
bending out of plane for a short period during buckling. This is
similar to behavior encountered, but typically not elaborated
upon, in multiple other works (e.g., Gardner et al. 2014; Li &
Shen 2015; Debattista et al. 2017; Smirnov & Sotnikova 2018),
and is poorly understood. Cuomo et al. (2023) carried out a
detailed study of such long-term asymmetry about the midplane
in both simulations and observations. We do not investigate
this asymmetry further in this paper, although we note that
similar long-term bending was also observed in a few other
simulations with other initial conditions that we simulated
(see, e.g., Figures 2 and 3). This long-term bending is seen in
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simulations with and without SMBH and has also been found
by other authors (all without SMBH).

3.3. Tests of Stochasticity and Sensitivity to Initial Conditions

Sellwood & Debattista (2009) have shown that large N-body
systems are inherently chaotic and thus susceptible to stochastic
effects, where even small differences in the initial conditions, even
for the same model parameters can build to significant differences

late in the simulation (affecting quantities such as bar growth rates
and susceptibility to repeated buckling). These authors assert that
all outcomes are, however, equally valid representations of the
evolution of the system. In the previous subsections, ModelC was
evolved from the same set of initial conditions as Model 2 of
Debattista et al. (2020), which are evolved for a longer period by
Anderson et al. (2022). An observant reader will notice that while
the bar amplitude of ModelC does not increase after the buckling
event at t= 2.85Gyr, the bar amplitude in Model 2 of Anderson

Figure 1. Plots of the globally measured bar quantities as a function of time. Top: the bar amplitude ( Am=2, scaled m = 2 Fourier amplitude); Bottom: the buckling
amplitude ( Abuck, scaled m = 2 asymmetry about the midplane). Each color represents a different model grown as a branch from Model C. The curves therefore begin
at the time the SMBH is introduced. The SMBH growth period for each model is indicated by the vertical shaded regions of the same color.

Figure 2. Similar to Figure 1, to test the impact of stochasticity on the initial conditions of Model C (see the text for details on how initial conditions forC¢,Ci
~
, andCii

~

were generated). All models were run under identical parameters to Model C.
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et al. (2022; which first buckles at a similar time t= 2.9 Gyr)
continues to grow and eventually buckles a second time. We draw
attention to this difference as a possible example of stochasticity,
where the two models diverge in behavior gradually and relatively
late in their evolution (in this case, a small difference in how hot
the disk is at the time after buckling). Sellwood & Debattista
(2009) demonstrated that such effects can grow from differences as
minute as a difference in memory allocation between two
processors or a change in the order in which particle coordinates
are listed in the initial conditions, with all other factors being equal.
Therefore, a late time divergence of model behaviors (even
beginning from exactly the same initial conditions) evolved using
entirely different simulation codes, such as GALAXY by us and
PKDGRAV (Stadel 2001) by Anderson et al. (2022) is virtually
unavoidable. This was already demonstrated by Sellwood &
Debattista (2009) in a particularly relevant direct comparison of
initial conditions evolved using GALAXY and PKDGRAV.

As a further test for sensitivity to stochastic effects with the
same code (GALAXY) and same parameters, we ran two
additional tests starting with the initial conditions for Model C
presented in the previous two subsections.

1. We use a feature provided by the GALAXY code that
allows various sectoral harmonics of the Fourier expan-
sion of the potential to be turned on/off, thereby turning
on/off particular forces in calculation and allowing for
enforcement of certain symmetries. We disabled all
modes other than m= 0, and evolved ModelC for 48
dynamical times (363Myr). In this case, we did not grow
an SMBH during the time the higher Fourier modes were
turned off. This model effectively resulted in a new set of
axisymmetric equilibrium initial conditions with overall
model parameters identical to Model C. We note that the
suppression of all modes except m= 0 results in a disk
with somewhat lower radial velocity dispersion than in

Model C, but with otherwise identical properties. This
simulation was treated as a separate set of initial
conditions, and evolved further without an SMBH
(ModelC¢) and with an SMBH inserted at t= 0
analogous to BF0 (Model BF0 ¢). Since ModelC¢ has
smaller radial velocity dispersion than Model C, the bar
strength initially increases more slowly than in Model C
and buckles significantly later than in Model C (see
orange curve in Figure 2). As can be seen in Figure 2, the
bar in ModelC¢ continues to grow in amplitude after
buckling (orange curve) unlike ModelC (blue curve). In
Model BF0 ¢ (not shown), the final bar strength was
stronger than the bar in ModelC¢ at the final time step
and is also stronger than for Model BF0.

2. We azimuthally scrambled the initial conditions of
Model C, creating two more axisymmetric models by
generating random azimuthal angles for all particles (and
appropriately rotating their Cartesian planar velocities).
The two models dubbed Ci

~
and Cii

~
were created by the

same process, with the only difference being the starting
value of the random seed used to scramble (see green and
red curves in Figure 2). As can be seen in this figure both
these scrambled initial conditions buckle slightly later
than Model C (but before ModelC¢). In particular
ModelCii

~
buckles only weakly and ends up with a higher

bar amplitude than any of the other Model C analogs.

We also studied the effect of both early-growing black holes
(BF0 analogs) and black holes introduced after bar buckling
(AB1 analogs) on the final bar strength. Since the scrambled
control models (C C,i ii

~ ~
) do not reach steady state (unlike

ModelC), for the AB1 analogs we introduce the SMBH
the same number of dynamical time units after bar buckling
as we do for model AB1. Figure 3 shows Model C analogs

Figure 3. Similar to Figure 1. Models BF BF,i ii0 0
~ ~

are analogous to BF0, and Models AB AB,i ii1 1
~ ~

are analogous to AB1 but are evolved from the corresponding
scrambled initial conditions C C,i ii

~ ~
. The vertical orange and purple bands at ∼t = 0 show where the SMBH in the BF0 analogs grow and the green and brown bands

show where the SMBH in the AB1 analogs grow. Similarly to Figure 1, the early introduction of an SMBH in Models BF BF,i ii0 0
~ ~

does not reduce the bar amplitude in
absolute terms.
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(C C,i ii
~ ~

), Model BF0 analogs (BF BF,i ii0 0
~ ~

), and Model AB1

analogs (AB AB,i ii1 1
~ ~

). To avoid crowding, we do not show
models C¢, BF0 ¢, and AB1¢ but the latter two models show a
similar degree of stochasticity to the models shown in Figure 3.

Both BF i0
~

and BF ii0
~

buckle later and more weakly than their
corresponding control models. As in BF0, the bar amplitudes in
BF i0
~

and BF ii0
~

continue to grow after buckling. Since
Model BF i0

~
buckles later than Model BF0, it does not attain

as high an amplitude as BF0 but it still has a stronger bar than
its counterpart without an SMBH (ModelCi

~
). In contrast, both

ModelCii
~
(red) and Model BF ii0

~
(purple) buckle so weakly that

they have similar bar strengths at the end of the simulation.
However, even in this case, the buckling amplitude is lower for
the model with the SMBH, and buckling is delayed relative to
the control, confirming our findings in Section 3.2.

The Model AB1 analogs also show interesting results. In the
case of AB i1

~
(green), the bar is slightly weakened relative to the

control model (Ci
~
) (blue). However, introduction of the SMBH

does not stop bar growth; therefore, it does not weaken or
destabilize the bar in absolute terms. In the case of AB ii1

~

(brown), the final bar strength is identical to that of the control
model Cii

~
(red), which, as we saw in Figure 2, has the strongest

bar amplitude of all of the control models.
There is clearly a great deal of stochasticity in the models we

have presented in this section. However, we can confidently
state that an SMBH of 0.2% of disk mass that grows prior to
bar formation never destabilizes or weakens a bar. The
theoretical analysis presented in Sections 4 and 5 sheds light
on the empirical results found in this section. Although an
SMBH introduced after buckling might slightly weaken a bar
relative to a case with no SMBH, it does not always do so,
especially if the bar is still growing (as we see for Model AB ii1

~
).

Since the previous generation of simulations all introduced
an SMBH after the bar had attained a steady state (e.g., Hasan
et al. 1993; Norman et al. 1996; Shen & Sellwood 2004;
Athanassoula et al. 2005; Hozumi & Hernquist 2005; Du et al.
2017) and since our principal control ModelC is the only one
that attains a steady state after buckling, in the remainder of this
paper we will primarily focus on Model C and the models
derived from it that are listed in Table 2.

3.4. Strength of the Boxy-peanut/X-shaped Bulge

We now examine how the growth of an SMBH affects the
strength of the BP/X-shaped bulges that form in our
simulations. Figure 4 shows x–z projections of the surface
density of final snapshots of four models. The BP/X-shaped
bulge is evident, and the models with stronger bars (Models
BF0, BB1) clearly show stronger BP/X shapes than models
with weaker bars (Models C, AB1).

We parameterize the shape of the BP/X bulges using a new
bar-deprojection method developed by Dattathri et al. (2023),
which we briefly describe here. We construct parametric 3D bar
models that are added as additional modules to the surface-
brightness fitting routine IMFIT (Erwin 2015). IMFIT is able to
take any input 3D distribution and project it at an arbitrary
orientation to derive the best-fit parameters of the 3D model
required to fit the image. In the new BP/X bar fitting module
the bar is assumed to have a sech2 profile in a scaled radius

given by
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The origin of the coordinate system is the galaxy center; Xbar,
Zbar, and Ybar are the semiaxis lengths of the bar along the long-
axis (x), the axis perpendicular to the disk plane (z), and y is the
other axis in the disk plane (these describe an ellipsoidal bar).
c∥ and c⊥ control the diskiness/boxiness of the bar (the 3D
analog of the parameters proposed by Athanassoula et al.
1990). While Dattathri et al. (2023) explored a range of values
for c∥ and c⊥, here we set c∥= c⊥= 2 (corresponding to an
ellipsoidal bar). The BP/X shape is determined by a scale
height perpendicular to the disk that depends on the position in
the x− y plane represented by a double Gaussian centered at
the galactic center:
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where Rpea and σpea are the distance of the center of the peanuts
from the galaxy center and the width of each peanut,
respectively. Apea measures the vertical extent of the peanut
above the ellipsoidal bar z0 (not the distance from the
midplane), since z0 is the base vertical scale height of the
bar. The maximum distance of the peanut from the midplane is
therefore given by

h z A , 11pea 0 pea ( )» +

which we refer to as the “peanut height,” which is the
maximum value of Zbar. We note that in our model the peanut is
entirely associated with the bar, and there is no separate bulge
component.
Equation (10) is similar to the “peanut height function”

proposed previously by Fragkoudi et al. (2015), with the
additional assumption that both halves of the peanut are
symmetric about the origin, and the peanuts are aligned with
the major axis of the bar.
The shape of the bar is controlled primarily by three

parameters: Rpea, hpea, and σpea. Dattathri et al. (2023)
demonstrated that these three parameters offer great versatility
for modeling a variety of shapes for the BP/X feature. They
also show, by fitting mock 2D surface-brightness data
generated from some of the N-body models in this work, that
the 3D density distribution and potential arising from this
parameterization of the bar and BP/X bulge closely match the
N-body density and potentials. Dattathri et al. (2023) also
showed that the BP/X shape parameters can also be obtained
for an N-body model by fitting Equation (10) directly to the
stellar particle distribution in order to obtain the “true” values
of Rpea, hpea, and σpea instead of going through the deprojection
algorithm. Dattathri et al. (2023) found that this 3D fit to the
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N-body particle distribution gives a better representation of the
gravitational potential.

Here we use this direct 3D fitting to the N-body stellar
particle distribution to quantify the strength of the BP/X bulge
at the final time step of 12 different models. The key
parameters that determine the BP/X shape: Rpea, hpea, and
σpea, are recovered for each model at the final time step.

Figure 5 shows the values of the parameters Rpea and hpea
obtained via 3D fitting as a function of the bar amplitude of the
model (σpea shows no correlation with bar amplitude and hence
is not shown). It is clear that the strength of the peanuts as
parameterized by hpea and Rpea are strongly correlated with bar

amplitude. This strong correlation between the bar amplitude
and the parameters (Rpea and hpea) characterizing the BP/X
shape does not depend on whether or not a model includes a
black hole (the points with black edges are control models
while the others have an SMBH). The cause of this correlation
is investigated in Section 6. While further simulations are
needed to confirm this correlation in hydrodynamical simula-
tions, the existence of these correlations has an important
implication. For edge-on disks in which the m= 2 bar
amplitude is impossible to measure by traditional means, the
use of the BP/X fitting function in Equation (10) could enable
a determination of bar strength (if the bar major axis is 25°–90°

Figure 4. Projected logarithmic surface density maps of selected models at the final snapshot of the simulation (evolution time = 7.568 Gyr). Each projection
orientation is normalized by the maximum projected surface density of Model C viewed from that orientation. Therefore, for each orientation all models share a
common normalization in which 0 represents the maximum density of Model C in that orientation, and are directly comparable. The increased prominence of the bar
and BP/X bulges of models in which an SMBH is grown early (Models BF0, BB1) is clearly evident.
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to the line of sight). This will be investigated further in the
future.

4. Causes of the Weakening/Delay of Bar Buckling

As briefly mentioned in Section 1, several previous papers
studying the origin of the buckling instability identified a large
velocity anistotropy as one of the primary causes of out-of-
plane bending, with in-plane velocity dispersion, σR, signifi-
cantly higher than the velocity dispersion perpendicular to the
plane, σz. Toomre (1966) showed analytically for an idealized,
infinite thin sheet that there is a critical value of σz/σR> 0.3,
which when satisfied stabilizes the sheet to out-of-plane
bending. This value was subsequently revised by simulations
of a finite thin sheet (Araki 1985) and analytic stability analysis
for a stellar distribution of finite thickness and finite extent
(Merritt & Sellwood 1994), both of which showed a larger
critical value of σz/σR> 0.6 where the systems were stable to
bending. The higher value of σz/σR> 0.6 was confirmed for
simulated triaxial ellipsoids and finite disk systems by
Sellwood & Merritt (1994). While the precise critical value of
σz/σR depends on the complexity of the system, it is clear that
an increase in σz/σR in the disk decreases the susceptibility of
the system to out-of-plane bending/buckling. The buckling
event itself significantly redistributes the stellar kinetic energy
from the radial direction to the vertical direction causing a

sharp and sudden increase in σz/σR, and therefore generally
stabilizing the system against subsequent bending.
Since previous work shows that the value of σz/σR

determines the susceptibility to buckling, we now compute
this quantity for our simulations. In this section we focus on
our principal suite of simulations Model C, BF0, BB1, AB1

although we briefly discuss this anisotropy for one of the other
sets of models (Cii

~
and its derivatives) in Appendix A. For each

snapshot, we compute both σR and σz for disk particles in 257
radial bins with ∼2.3× 105 star particles in each bin. We
disregard the outermost bin containing the most diffuse particle
distribution on the outskirts of the disk, leaving 256 bins with a
maximum extent of R= 19 kpc. Figure 6 shows contour plots
of σR (left), σz (middle), and σz/σR (right), each as a function of
time (x-axis) and radius R (y-axis) for the four models (C, BF0,
BB1, AB1).
In the top row, for Model C (similar to other models at early

times), we see that the formation of the bar (t 1 Gyr)
coincides with an increase in σR for R 4 kpc (left columns),
while σz is much less significantly changed. This leads to a
decrease of σz/σR through much of the disk (manifesting as a
deep blue hue at 0.5< t/Gyr< 2.2). As the bar grows, σR
continues to grow in magnitude in the inner disk, while σz also
increases at a rate such that σz/σR remains at a relatively
constant value in the inner disk until the bar buckles—see also
Figure 1 (bottom panel). During bar buckling (peak buckling
time denoted by vertical white line), the bending and
thickening of the bar results in significant vertical heating,
thus rapidly increasing σz over a short time. Buckling also
radially shortens the bar on a similar timescale, resulting in
decreased σR. This produces a very rapid increase of σz/σR
over much of the inner disk. All radii within ∼5 kpc reach
values of σz/σR 0.6 and appear to become stable to buckling.
In the second and third rows of Figure 6, we see that the

introduction of an SMBH prior to buckling very quickly begins
to produce more vertical heating in the center of the disk upon
introduction, due to scattering of stars by the SMBH. This
increases σz significantly, thus increasing σz/σR. This can be
seen as the appearance and widening in radius of red-colored
regions in the right-hand contour plots (i.e., 0.6< σz/σR< 0.7)
at small radii soon after the white-shaded vertical region
marking the growth of the SMBH (i.e., as early as 0.5 Gyr in
model BF0 and by 1 Gyr in model BB1). This increase in σz/σR
slowly propagates to larger radii (∼1 kpc), well beyond the
expected SMBH sphere of influence, rBH= 0.1–0.175 kpc11

when the SMBH has reached full mass. rBH is greatest for
Model BF0, and less for other models. This increase to
σz/σR 0.6 in the inner region appears to be responsible for
reducing the susceptibility of the bar to buckling. However, this
effect is fairly localized and does not propagate outward rapidly
enough to completely suppress buckling at all radii. None-
theless, as demonstrated in Figure 1, it clearly delays and/or
weakens buckling in all of our models with an early-
growing SMBH.
In the fourth row of Figure 6, we see that the introduction of

the SMBH after buckling (Model AB1) has very little to no
effect on σz, and thus has no noticeable effect on long-term
σz/σR when compared to Model C. This is because the bar is
already significantly vertically heated during buckling.

Figure 5. The values of Rpea (top) and hpea (bottom) plotted as a function of the
bar amplitude at the final time step. The points with black edges are the control
models. Cyan points are Models C, BF0, BB1...; red points are ModelsCi

~
and

its BF0, AB1 analogs; and gray points are Cii
~

and its BF0, AB1 analogs. The gray
points overlap significantly since all of these models have nearly identical
behavior.

11 Here we use the radius from the center within which the mass of star+dark
matter particles equals the mass of the SMBH, a quantity that varies slightly
depending on the models.
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We note that while σR does not appear to change much with
the introduction of the SMBH, in Models BF0 and BB1, σR is
significantly higher than in Models C and AB1 (note the very
light yellow color indicating σR 150 km s−1). We will return
to discuss the significance of this difference in Section 6.2.

When models BF0 and BB1 do buckle, the reduced
magnitude of buckling can also be observed from Figure 6.
The change in σz/σR is not as large at most radii as in the
control Model C, which is primarily due to a comparatively less
significant decrease in σR, despite a similar or greater increase
in σz due to SMBH effects prior to buckling. This implies that
during the strong buckling of ModelC the value of σz/σR in the
inner disk crests well above the stability threshold value.

While the bar in ModelC does not grow after buckling, the
continued growth of the bar amplitude after buckling observed
in Models BF0, BB1, BB2, and BB3 (in Figure 1 top) manifests
as an increase of σR throughout the disk. σz also continues to
gradually grow in the inner disk, a consequence of the increase
in bar strength, but in the models with an SMBH, σz/σR
actually decreases due to the increase in σR over a range of radii
compared to Model C, where σz/σR remains effectively
constant after buckling (since the bar does not continue to
grow). Despite the slight decrease in σz/σR in the models with
an SMBH, σz/σR remains above 0.6 for R< 5 kpc. This is
noteworthy since it explains why the models with an SMBH
are not prone to a second buckling episode despite the steadily

Figure 6. Evolution of velocity dispersion and velocity anistropy as a function of radius in the stellar disk. Each row corresponds to a particular model as labeled. The
left column shows radial velocity dispersion (σR), the center column shows vertical velocity dispersion (σz), and the right column shows the ratio (σz/σR). In cases
where an SMBH is present, a transparent shaded region marks the growth period of the SMBH beginning at its introduction, ending when the SMBH has reached full
mass. The time of peak buckling amplitude for each model is indicated by a thin vertical white line. σz/σR begins to increase shortly after introduction of the SMBH in
Models BF0 and BB1 thereby partially stabilizing the disk against buckling, whereas in Model C, σz/σR remains effectively constant at all radii until buckling.
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increasing bar amplitude (on the range of timescales we
explored). We evolved Model BF0 for an additional 7.5 Gyr
(15 Gyr in total), but found no evidence of further buckling.

To summarize the results of this section, we conclude that
the primary reason for the early-growing SMBH to cause both
an increase in bar amplitude and either a delay or a weakening
of bar buckling (or both) is that the SMBH causes rapid vertical
heating of the stellar disk almost as soon as it is introduced. The
extent of the vertical heating increases in radius with time,
greatly exceeding the nominal sphere of influence of the black
hole, in large part because the stars in the bar have highly radial
orbits and therefore can experience scattering by the central
black hole even if they have large apocenter radii. Since these
bar orbits are already highly radial, their radial velocity
dispersion is not significantly affected, and the primary effect is
an increase in σz/σR to values about ∼0.6 or greater, increasing
the stability of the disk. This delays bar buckling and/or
reduces the buckling amplitude.

5. The Role of Resonances and Resonant Orbits in Bar and
BP/X Strengthening

We show in Figures 4 and 5 that simulations with stronger
bars also have bulges with stronger BP/X shapes. The BP/X
shape has been attributed to either bar buckling (Raha et al.
1991; Merritt & Sellwood 1994; Sellwood & Merritt 1994;
Debattista et al. 2017; Collier 2020) or resonant trapping of
orbits into the vertical inner Lindblad resonance (ILR; Combes
et al. 1990; Pfenniger & Friedli 1991; Quillen 2002; Quillen
et al. 2014; Sellwood & Gerhard 2020). It is clear from the
previous section that the buckling instability is weakened by
the presence of an early grown SMBH (which causes vertical
disk heating) while, paradoxically, the BP/X shape is
strengthened. We therefore explore whether the role of
resonances and resonant trapping by the ILR and vILR is
enhanced by an SMBH.

In rotating disks, resonances arise between the vertical
oscillation frequency ν(R), the epicyclic (radial) oscillation
frequency κ(R), the circular orbit frequency Ω(R), and the bar
pattern speed Ωp. The ILR occurs when Ωp=Ω(R)− κ(R)/2.
Likewise, the vertical inner Lindblad resonance (vILR) arises
when Ωp=Ω(R)− ν(R)/2. Strictly speaking, the definitions
above only apply to axisymmetric or weakly nonaxisymmetric
systems, but we use them in Section 5.1 for a qualitative
discussion. Although we do not show Models BB1, BB2, and
BB3 to avoid crowding, all models in which the SMBH is
introduced prior to buckling develop trends similar to model
BF0, soon after the SMBH is introduced.

In Section 5.2 we use the powerful framework of orbital
frequency analysis and apply it to the orbits of 105 stars
selected in multiple snapshots of Models C, BF0, and AB1 in
order to identify the most important resonances in the
nonaxisymmetric potentials. (We do not show other models,
but the orbital frequencies of the BB models contain features
intermediate between ModelC and Model BF0.) Performing a
frequency analysis in both cylindrical and Cartesian coordi-
nates, we arrive at an explanation for why bars can be
strengthened in the presence of an early-growing black hole,
while an SMBH that has grown after the bar reaches a steady
state weakens the bar.

5.1. Resonances in the Quasiaxisymmetric Approximation

We use the AGAMA package (Vasiliev 2019) to estimate the
frequencies assuming a triaxial potential for the star particles
and an axisymmetric potential for the halo. Then, at each radius
we compute the average between the frequencies along the
major and minor axes of the bar.
In order to estimate the approximate location of the vILR and

ILR, we compute the pattern speed of the bar at various times.
This is done by fitting a straight line to the time evolution of the
phase angle of the bar (assumed to increase monotonically with
time) for 10 snapshots around the snapshot of interest. The
obtained pattern speeds are shown as horizontal dotted lines in
each panel of Figure 7 (with lengths corresponding to the bar
lengths in that snapshot). We compute the approximate location
of the vILR, ILR, and corotation resonances as the radii where
the curves for Ω(R) (thin solid), Ω(R)− κ(R)/2 (thick solid),
and Ω(R)− ν(R)/2 (dashed–dotted) intersect the average bar
pattern speed Ωp around that snapshot—see Figure 7.
At t= 0 all of the models are identical, so only Model C is

shown. The next four panels show the three simulations at
additional snapshots. The bottom-right panel shows the
approximate location of the ILR and vILR as a function of
time in each of the three models.
At t= 1.51Gyr, in Model BF0 (orange), Ω rises sharply at small

radii (a consequence of the early-growing SMBH and an increase
in the stellar density around it) and both Ω(R)− κ(R)/2 and Ω
(R)− ν(R)/2 have already begun to increase relative to ModelC.
At t= 2.27Gyr, both the ILR and vILR are present at small radii
in the model with an early SMBH but not in ModelC. This is
because of the combined effect of the increase in Ω and because
the SMBH has already started heating the disk vertically,
increasing σz, and therefore decreasing ν enough to cause
Ω− ν/2 to increase. These two factors cause the appearance of
both the ILR and vILR at small radii, nearly 0.5Gyr prior to the
appearance of these two resonances in Model C (see bottom-right
panel). In model BF0, the ILR and vILR appear at R 1 kpc by
around t; 2Gyr, and their radial location moves rapidly outward
between first appearance and the final snapshots (where it is
beyond 5 kpc). In ModelC (blue), these resonances appear later
(t= 2.5–3.0 Gyr), and these resonances stay within R∼ 3.5 kpc.
Model AB1 is only shown after the SMBH finishes growing (after
t= 4.232 Gyr). In this model, both ILR and vILR have
R< 3.5 kpc throughout the evolution, similar to Model C. The
resonance locations in both models C and AB1 show small
oscillations around a constant value after ∼3.5Gyr, which we
verified as being due to small oscillations in the estimated pattern
speeds.
We note that at t= 1.51 Gyr, the vILR is not present in any

model. By t= 4.54 Gyr, all models have buckled and the vILR
is present in all models thereafter, but it is clear that the SMBH,
despite having a small nominal sphere of influence
(rBH 0.175 kpc), is able to cause vertical heating in the bar
for stars that travel to much larger radii due to the high radial
anisotropy of the bar. The bottom-right panel suggests that the
vILR does not appear until the bar buckles in Model C, but it
appears far prior to bar buckling in Model BF0. Although not
shown, we note that in Model BB1 too, the vILR appears before
the bar buckles, although it appears slightly later than in Model
BF0, as would be expected for BB models in relation to BF0

from our previous results.
These results suggest that, since the vILR and ILR in Model

BF0 sweep over large radial range, they can resonantly capture a
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significantly larger fraction of disk stars than they do in ModelsC
and AB1, where they sweep a much smaller radial range.

5.2. Brief Overview of Orbital Frequency Analysis

We now briefly describe the orbital frequency analysis first
introduced by Binney & Spergel (1982, 1984). The method
was significantly improved and refined by Laskar (1990, 1993)
who referred to their algorithm as “Numerical Analysis of
Fundamental Frequencies (NAFF).”

In Hamiltonian dynamics, the angle variables and their
canonically conjugate actions Ji uniquely define a regular orbit
(Binney & Tremaine 2008). In a 3D potential, the Ji, i= 1,..,3
are conserved, and time derivatives of the angle variables

t i, 1 ,.., 3i i ( )qW = = are also constants of motion. Since
regular orbits in galaxies are quasiperiodic, their space and
velocity coordinates can be represented by time series of the
form:
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with similar expressions for y(t), z(t) and velocity components,
Vx(t), Vy(t), and Vz(t). The amplitudes Ak of the N (typically

N= 10–15) largest peaks in the spectrum and their corresp-
onding frequencies ωk are obtained by taking a Fourier
transform of a complex time series, e.g., fx(t)= x(t)+ iVx(t)
(and similarly for fy, fz) constructed from the spatial and
velocity coordinates of an orbit. This is followed by Gram–

Schmidt orthogonalization to properly extract additional,
lower-amplitude frequencies in the spectrum. Eventually, we
obtain the basis set of three linearly independent frequencies
Ωi. All of the other frequencies ωk in the three frequency
spectra (one each for fx, fy, and fz) can be written as integer
linear combinations of these three frequencies; therefore, the
Ωi, i= 1,..,3 are referred to as “fundamental frequencies.”
Here we use our implementation12 of the NAFF algorithm to

recover orbital fundamental frequencies (Valluri & Mer-
ritt 1998; Valluri et al. 2010) and to classify bar orbits (as
described in Valluri et al. 2016). With this code, the frequency
components in the spectrum can be recovered with high
accuracy (1 part in 105 or better) in ∼20–30 orbital periods.
Previous work has shown (Valluri et al. 2010, 2013, 2016)

that when frequency analysis is applied to a large representative

Figure 7. Approximate locations of the ILR and vILR in three models (legend) at five times (titles). Horizontal dotted lines show the corresponding bar pattern speeds,
with lengths representing bar lengths. Thin solid curves show the rotation frequency Ω(R), thick solid curves show Ω(R) − κ/2, and dashed–dotted curves show Ω
(R) − ν(R)/2 (see the text). The bottom-right panel shows the approximate radius of the ILR (thick solid lines) and vILR (dashed–dotted lines) in each model as a
function of time. The model with early SMBH introduction, BF0, develops an ILR and a vILR earlier than the control Model C, and these resonances sweep through
the disk to much larger radii (∼4.5–5 kpc, compared to ∼3–3.5 kpc).

12 Publicly available at https://sites.lsa.umich.edu/mvalluri/software/.
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sample of orbits drawn from a self-consistent distribution
function, the analysis of the frequency maps (plots showing
ratios of orbital fundamental frequencies plotted against each
other) and automated orbit classification enables a quantitative
assessment of the relative importance of different resonances
and different types of orbits to the phase-space structure of the
galaxy. It also enables one to understand how the orbital
distribution function is altered by evolution of the galactic
potential.

Frequency analysis is also a powerful means to assess
whether orbits are regular or chaotic. Since regular orbits
conserve actions, their frequencies also remain constant in a
static potential. By computing each of the three fundamental
frequencies Ωi over two separate time intervals T1, T2 one can
compute

T T

T
13i i
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1 2

1
i

( ) ( )
( )
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W - W

W
W

imax , 1, ,3 14i( ) ( )D = D = ¼W W

with ΔΩ defined as the frequency drift. Therefore, frequency
drift provides a measure of how chaotic (irregular) an orbit is.

For the analysis of the N-body simulations studied in this
paper, we randomly select 105 star particles from Model C in
the initial snapshot (t= 0). We integrate the orbits of this same
set of particles in all of the models at t= 1.51, 2.27, 3.03, 3.78,
4.54, and 7.57 Gyr (snapshots 200, 300, 400, 500, 600, and
1000, where the integers denote the number of dynamical times
elapsed since the start of the simulation) in the respective
potentials and in the presence of the rotating bars. The
potentials are estimated with AGAMA, assuming a triaxial
distribution for star particles, an axisymmetric distribution for
DM particles and a Plummer potential for the SMBH (when
one is present). While not all of these star particles eventually
end up in the bar in the final snapshot of any specific model, we
consider this selection to be sufficiently random and uniform to
enable us to compare the results of orbital frequency analysis of
the various models in an unbiased manner.

5.3. Frequency Analysis in Cylindrical Coordinates: Capture
into ILR and vILR

We first compute the orbital frequencies in cylindrical
coordinates in the inertial frame of the galaxy, which allows us
to properly identify the corotation resonance (Beraldo e Silva
et al. 2023). We use the standard cylindrical polar coordinates
R, vR, f, vf, z, vz. R, vR, and z, vz are the canonically conjugate
radial and vertical coordinates and momenta, respectively, and
hence can be used to define a complex time series
fR(t)= R(t)+ ivR(t) and fz(t)= z(t)+ ivz(t). However, since f
is an angular coordinate and vf is an angular velocity (not
linear coordinate and linear momentum), this pair does not
yield the correct tangential frequencies when used to construct
the time series for frequency analysis. Instead we use the
angular momentum Lz= xvy− yvx and the Poincaré symplectic
polar variables L2 cosz∣ ∣ f and L2 sinz∣ ∣ f to define
the complex time series f t L i2 cos sinz( ) ∣ ∣ ( )f f= +f
(Papaphilippou & Laskar 1996; Valluri et al. 2012). Beraldo
e Silva et al. (2023) further discussed the advantages of these
complex combinations.

Figure 8 shows histograms of (Ωf−ΩP)/ΩR (left) and
(Ωf−ΩP)/Ωz (right) at different times, color coded by the
mean zmax in each bin (with width 0.0025)—note the different

y-axis scales. The two left columns refer to Model C. The main
resonances are easily recognized from the sharp peaks: the
corotation ((Ωf−ΩP)= 0), the ILR ((Ωf−ΩP)/ΩR= 0.5; see
Athanassoula 2003), and the vILR ((Ωf−ΩP)/Ωz= 0.5).
The ILR is known as the main resonance supporting bars

(e.g., Contopoulos & Papayannopoulos 1980; Athanas-
soula 2003). The early significant development of this
resonance in Model C (upper-left panel of Figure 8) agrees
with the early development of the bar observed in Figure 1. It is
interesting to note that this early development of the ILR in
ModelC was not detected in the simpler quasiaxisymmetric
approximation—see Figure 7.
In the second column, we see that in Model C the vILR is

almost unpopulated at 2.27 Gyr, but a significant number of
orbits have crossed this resonance by 4.54 Gyr, i.e., have
(Ωf−ΩP)/Ωz 0.5. Interestingly, the mean zmax increases
abruptly for these orbits, in agreement with the theoretical
expectation of the excitement of vertical motion by this
resonance (Binney 1981; Pfenniger & Friedli 1991)—see also
Beraldo e Silva et al. (2023).
The two right columns of Figure 8 show the histograms for

the model BF0. The ILR (left panels) is similarly populated
over time, but it is more populated than Model C already at
1.51 Gyr, and the peak reaches significantly larger values at
t= 4.54 Gyr. At the final snapshot (bottom row), we identify
54,934 orbits within Δ|(Ωf−ΩP)/ΩR|� 0.01 from the ILR, in
comparison to 28,482 identified in the same range for Model C,
which agrees with the higher bar amplitude observed for model
BF0—see Figure 1.
The right panels show how the vILR is populated over time,

as it is already detected in Model BF0 at 2.27 Gyr, and that the
mean zmax increases abruptly for orbits crossing this resonance
(i.e., moving rightward in the histogram). In particular, we note
that this resonance is very strongly populated at t= 4.54 Gyr
and at t= 7.57 Gyr (much stronger than in Model C) and that at
the final snapshot the mean zmax for orbits close to the
resonance is substantially larger than in Model C, although the
number of stars strictly at the resonance is smaller. The number
of orbits that crossed the vILR is also significantly larger than
in Model C. Taking into account that the BP/X bulge is
stronger in this simulation, this suggests that after stars are
released from (or cross) the vILR, they continue to support the
BP/X. This seems to agree with the theoretical scenario
described by Quillen et al. (2014), where stars do not stay
trapped by the vILR for a long time, but crossing this resonance
is enough to promote stars to orbits with high zmax supporting
the BP/X shape—see also Sellwood & Gerhard (2020).
Finally, Figure 9 shows the histograms for Model AB1. It is

clear that at the final snapshot, both the ILR and the vILR are
less populated than in Model C. The figure also suggests that
the number of orbits that crossed the vILR and the mean zmax
around the vILR are smaller than in the control Model C, in
agreement with the weakness of the BP/X bulge in this
simulation.
In summary, these figures confirm the qualitative inferences

drawn from the quasiaxisymmetric approximation in Figure 7,
particularly the early development of the ILR and the vILR in
Model BF0, and that the effect of the ILR and vILR sweeping
outward in the disk is to capture a significantly greater fraction
of orbits into these resonances, strengthening the bar and
causing greater levitation of orbits to high |z| where they
support the BP/X bulge.
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To further understand why an early-growing SMBH (e.g., in
Model BF0) can strengthen both the bar and the BP/X bulge,
while the SMBH grown after bar buckling weakens a steady-
state bar, and the specific resonant orbit families that support
the BP/X shape, we now examine frequency maps in Cartesian
coordinates.

5.4. Frequency Analysis in Cartesian Coordinates and the
Behavior of Resonant Bar Orbits

Valluri et al. (2016) showed that in frequency maps in
Cartesian coordinates, for orbits integrated in the rotating frame
of the bar, bar-supporting orbits are largely clustered in a cloud
with 0.45<Ωx/Ωz< 0.75 and 0.65<Ωy/Ωz< 0.95, approxi-
mately the same region occupied by box orbits in stationary
(nonrotating) triaxial potentials. These orbits (in the frame
rotating with the bar) primarily originate from bifurcations of
the linear long-axis orbit, which is the parent orbit of the “box”
orbit family in stationary triaxial potentials and are referred to
as the x1-orbit family in bars (Valluri et al. 2016). The BP/X-
shaped bulge is associated with several families of resonant
orbits, although it is not populated exclusively by resonant
orbits (Abbott et al. 2017).

The introduction of a central point mass (representing an
SMBH) in a (static) triaxial potential causes an increase in the
number of resonances populated by box-like orbits (Valluri &
Merritt 1998). As the mass of the SMBH increases, some of the
resonances on the frequency map become thicker (due to
increased resonant capture) while others are broken up or
“fractured” due to the increased overlap of resonances. It has
been well known since the early work of Chirikov (1979) that
increasing the strength of a perturbation in a potential increases
the number of resonances and that resonant overlap is an
important factor driving the increase in the fraction of chaotic
orbits. These chaotic orbits undergo mixing that drives the
potential to a new dynamical equilibrium with fewer chaotic
orbits (Merritt & Valluri 1998).
In Figure 10 we show frequency maps for Models C, AB1,

and BF0 at t= 4.54 Gyr and t= 7.57 Gyr constructed from the
integration of the same sets of 105 randomly selected star
particles considered in Figure 8. The points on the frequency
map are colored by the logarithm (base 10) of the pericenter
radius of each orbit (over the integration time of 100 orbital
periods).
The top row of Figure 10 shows that the number and strength

of most resonances in the control Model C do not change

Figure 8. Histograms of frequency ratios for the same particles at different times (rows). The two left columns refer to Model C, and the two right columns refer to
model BF0. The corotation ((Ωf − ΩP) = 0), the ILR ((Ωf − ΩP)/ΩR = 0.5), and the vILR ((Ωf − ΩP)/Ωz = 0.5) are strongly populated.

15

The Astrophysical Journal, 958:119 (26pp), 2023 December 1 Wheeler et al.



significantly between t= 4.54 Gyr and t= 7.57 Gyr (during
which time the bar strength remains almost constant). In Model
AB1 (middle row) the frequency map at t= 4.54 Gyr (only
0.75 Gyr after the SMBH was introduced) already shows some
differences from ModelC, with several new weak resonance
lines and increased clustering/scattering around the intersec-
tions of resonances. In addition, some strong resonances (e.g.,
(1, −2, 1) and (3, −5, 2)) appear “broken up” or “fractured” at
the places where they intersect other resonances. By
t= 7.57 Gyr it is clear from the colors of the points that all
of the orbits in Model AB1 have significantly higher pericenter
radii than they do in Model C or even in the previous snapshot
of Model AB1 at t= 4.54 Gyr. Furthermore, as can be seen in
Figure 12 at t= 7.57 Gyr, certain resonances, e.g., (1, −3, 2),
(1, −2, 1), and (2, 0, −1) in Model AB1 are depopulated
relative to their appearance at t= 4.54 Gyr.

The bottom row shows frequency maps for Model BF0

(SMBH introduced at t= 0). Recall that in this model the bar
formed and grew around the fully grown preexisting SMBH.
The frequency maps show that some resonances, e.g., (1, −3,
−2), (2,0, −1) are more strongly populated than in Model C
and some additional resonances (e.g., (3, 0, −5), (0, −1, 1))
have appeared. However, some strong resonances in the top
two rows (e.g., (1, −2, 1) and (3, −5, 2)) are depopulated.

The overall structure of the frequency map in Model BF0 is
also quite different from that in the top two rows, reflecting the
different orbit populations in this model. Since the bar forms
and grows around a fully grown SMBH, the growing bar
captures stars that then populate orbit families that are not
destabilized by the presence of the central SMBH. The
frequency map for Model BF0 at t= 7.57 suggests that the
bar-supporting resonant orbit families are populated in a
different manner than in Model C. Additionally in Model BF0

at t= 7.57 Gyr the diagonal resonance line ((1, −1, 0); mostly
occupied by disk stars) is much thinner than in the other panels
—further evidence that the bar, having captured a significantly
larger fraction of disk orbits, is much stronger in this model
than in any other.

Although we do not show it, the Cartesian frequency map for
Model BB1 at t= 7.57 Gyr appears intermediate between the
maps for Models C and BF0. Although the bar has already

begun to form prior to SMBH introduction, its continued
growth allows the stars to populate stable orbits.
Figure 11 shows histograms of the spherical pericenter

radius rlog per( ) for the 105 orbits shown in the frequency maps
in Figure 10. At t= 4.54 (left), Models C and AB1 differ very
little in the distribution of rlog per( ), and all three models show a
distinct peak of orbits at very small radii rlog kpc 1per( ) < - .
Note that this range of radii is comparable to the nominal
rBH∼ 0.1–0.175 kpc of the SMBH in Model AB1 and
Model BF0. It is important to point out that Model BF0 (with
the SMBH grown at t= 0) has a slightly higher fraction of
orbits at the smallest rper than even Model C (at t= 4.54),
which is evidence that a growing bar has absolutely no
difficulty in finding ways to populate stable orbit families that
pass quite close to the SMBH. Furthermore, the peak at the
smallest rper lies well inside the SMBH sphere of influence in
Model BF0 of 0.175 kpc.
By t= 7.57 Gyr, the peak in rper/kpc < −0.75 has decreased

slightly, consistent with the expectation that these orbits were
scattered by the SMBH to large radii. Despite the fact that
Model BF0 has an SMBH of exactly the same mass as AB1, the
peak at the smallest radii is more highly populated at
t= 7.57 Gyr, and has significantly more stars in this innermost
region than Model C (which has no SMBH).
The picture that emerges from the preceding analysis is that in

ModelAB1, the SMBH that was introduced after the bar formed
and reached equilibrium, scatters orbits with log(rper/kpc)
< −0.75 to larger pericenter radii. Presumably since many of
these were bar-supporting, their scattering weakened the bar and,
because the bar potential is no longer growing at this point, stars
cannot be captured onto alternative stable bar-supporting orbits.
However, when the bar forms and/or grows around the SMBH
(e.g., in ModelBF0), scattered orbits as well as newly captured
orbits succeed in populating alternative centrophobic resonant orbit
families that are bar-supporting.
The quantitative differences in the occupancy of resonant

bar-supporting orbits in Models C, AB1, and BF0 can be seen in
Figure 12, which shows the number of orbits with frequency
ratios within 5× 10−3 of the major resonances that appeared in
the frequency maps in Figure 10. Already at t= 4.54 Gyr, we
see that the occupancy of some resonances (e.g., (1, −3, 2), (2,
0, −1)) is significantly greater in Model BF0 compared to
ModelsC, AB1. Other resonances such as (1, −2, 1), (3, −5, 2),
and (3, 0, −2) are depopulated. At t= 4.54 Gyr, the differences
between Model C and AB1 are fairly small, but we begin to see
changes in the population of resonant orbits. By the end of the
simulation (right panel), we see that in Model AB1 the number
of orbits associated with several resonances ((1, −3, 2), (1, −2,
1), (3, 0, −5), and (2, 0, −1)) is reduced relative to the numbers
in Model C (although one resonance is more strongly populated
(3, −5, 2), which interestingly is the resonance least populated
in Model BF0). Figure 11 indicates that introduction of the
SMBH in Model AB1 weakens the bar, primarily by decreasing
the population of many bar-supporting resonances with the
smallest pericenter radius. Because the bar is no longer
growing after the introduction of the SMBH in Model AB1

(and the ILR and vILR do not move in radius), there is no
active mechanism by which the bar can adapt by capturing stars
onto orbits that are stable in the presence of the SMBH. In
contrast we saw in Figure 3 that if the bar amplitude continues
to grow after buckling, then introducing the SMBH later may
have little or no effect on the final bar strength.

Figure 9. Similar to Figure 8, but for the Model AB1 where the SMBH is
introduced late, after bar buckling. The ILR and vILR are less populated than in
Model C in the final snapshot.
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Figure 10. Frequency maps in Cartesian coordinates for the same set of 105 orbits at t = 4.54 Gyr and t = 7.57 Gyr for Model C (top row), Model AB1 (middle row),
and Model BF0 (bottom row). Orbits in each panel are colored by the logarithm of their spherical pericenter radius rper in that snapshot. Several resonances are marked
in each panel as (l, n, m) where the integers are coefficients of resonant conditions lΩx + mΩy + nΩz = 0. The orbits clustered around the diagonal resonance line ((1,
− 1, 0)) at the bottom-right corner of each panel are primarily associated with the disk rather than the bar (see Valluri et al. 2016, for exceptions).
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We note in passing that we also analyzed orbital frequency
drift ΔΩ (Equation (14)) of all 105 orbits in several models at
t= 7.57 Gyr. Interestingly we find no difference in the
distributions of this measure of chaoticity, and all models have
a similar (small) fraction of chaotic orbits. This implies that
although stars in Model AB1 are scattered by the SMBH, by
t= 7.57 Gyr they have successfully populated stable regular
orbits (primarily at larger distances from the center).

6. Discussion

6.1. Are the Effects of an Early- versus Late-growing SMBH
Observable?

The limited suite of simulations presented (as well as others
we briefly discuss in Appendix A) show that if a bar reaches a
steady state after buckling, then an SMBH that grows before
buckling results in a greater m= 2 amplitude as well as a
stronger BP/X shape (characterized by larger values of Rpea

and hpea) than the control simulation without an SMBH or the
simulation in which the SMBH grows after the bar reaches a
steady state. However, we also saw from our scrambled control
models that if the bar continues to grow after buckling, the late
introduction of an SMBH may have little or no effect. We now
ask if the early versus late growth of an SMBH can be inferred
from observations of a galaxy at a single time, for instance
from line-of-sight kinematics in external galaxies.

Sellwood & Gerhard (2020) argued that it is possible to
distinguish between bars that buckle and cases where a BP/X
bulge formed purely via resonant capture (no buckling) by
observing differences in the h4 component of the Gauss–
Hermite expansion of the line-of-sight velocity distribution in
the two cases. Restricting their measurement to observations of
a binned vertical region |z|< 200 pc, with the disk viewed face-
on, they find that as a result of buckling, h4 becomes strongly
negative as previously noted (Debattista et al. 2005). Sellwood

& Gerhard (2020) found for “the bar that did not buckle,” that
h4 remained positive or became more strongly positive.
However, they found that the negative h4 appeared to trend
to 0 with time, and any systematic differences between cases
became lost to noise by |z| 500 pc.
With the goal of searching for kinematic evidence for early-/

late-growing SMBHs, we analyzed 2D kinematic maps
(mimicking the Voronoi binned kinematics typically obtained
for external galaxies) generated from our N-body snapshots
both at early and late times in the evolution. Examples of
kinematics maps are presented for four galaxies at the final
snapshot (t= 7.57 Gyr) for both the face-on (Figure 13) and
edge-on (Figure 14) orientations.
Unlike the case in Sellwood & Gerhard (2020), all of our

models undergo buckling, although the magnitude of buckling
varies and is dependent on when the SMBH is introduced.
Therefore, we do not see a clear kinematic difference between
the systems in which resonant trapping into the vILR played a
stronger role (e.g., Models BF0, BB1), and models that buckled
more strongly (Models C, AB1). As previously noted
(Debattista et al. 2005; Sellwood & Gerhard 2020), the face-
on kinematic maps show strongly negative h4 values in the
central region, changing to positive h4 values at the ends of the
bar. In Figure 13 (face-on) we see that since the bar in Model
BF0 is much longer than in Model C, the distance from the
center at which h4 becomes positive is at or near the edge of the
nominal field of view in our kinematic maps, but the behavior
is otherwise similar. In Figure 14 (disk edge-on, bar side-on),
we see in Model C a positive h4 in a central ring with two
positive h4 extensions in the disk plane. In Models BF0 and
BB1, the ring-like h4 region is broken up and now shows a
quadrupolar structure. Although we do not show Models BF0

and BB1 at earlier times in their evolution when the BP/X
shape was weaker, both of these models showed the same type
of complete central ring-like structure with positive h4, which

Figure 11. Histograms of the logarithm of the spherical pericenter radius in kiloparsecs for Models C, BF0, and AB1 at two different times (dashed–dotted lines are for
t = 4.54 Gyr, solid lines are for t = 7.57 Gyr). At t = 4.54 Gyr (only 0.75 Gyr after the SMBH has been introduced), Model AB1 differs only slightly from Model C.
All three models have a significant peak at log(rper/kpc) < −1. By the end of the simulation, the peak in Model AB1 at small rper has decreased. In contrast, Model C
shows no significant change in the distribution, while in Model BF0, the peak has significantly increased despite the presence of the massive black hole. The
approximate location of the sphere of influence rBH of the SMBH is shown in BF0 and AB1 by the vertical dotted lines, clearly indicating that orbits associated with the
central peak in model BF0 have rper well within the SMBH’s sphere of influence.

18

The Astrophysical Journal, 958:119 (26pp), 2023 December 1 Wheeler et al.



appeared shortly after buckling (as in Model C), but changed to
the quadrupolar structure as the BP/X shape grew stronger. We
therefore believe that these differences only reflect the fact that
the models with the quadrupolar h4 have significantly stronger
BP/X bulges than the models with ring-like h4 structures. We
also see that the h3 bimodality along the bar is stronger in
Model C than in the models with early-growing SMBHs; but
that too appears to be a consequence of the differences in the
strength of the BP/X shape. It is outside the scope of this paper
to determine exactly which features of orbital kinematics give
rise to the different structures in h3, h4, and if signatures of
evolutionary history (early versus late SMBH growth) may be
extracted from a more detailed kinematic analysis.

6.2. Implications for the Offset of Bars from the MBH–σ
Relation

As discussed in Section 1, it has been known for a long time
that the tight MBH–σ relation observed in elliptical galaxies and
classical bulges does not appear to hold in the so-called
pseudobulges (with low Sérsic index n or exponential density
profiles) or in BP/X-shaped bulges, both of which are thought
to have formed by secular evolution. While the central velocity
dispersion σ in pseudobulges shows little correlation with MBH

(e.g., Kormendy et al. 2011), σ may be systematically higher in
barred spiral galaxies than in spirals with classical bulges (e.g.,
Graham 2008; Hartmann et al. 2014). The reason for the
increase in scatter in pseudobulges and possible offset in barred
spirals is still hotly debated.

The simulations presented in this paper have a fixed MBH for
all of the models, but the strength, and therefore mass, of the
BP/X structure parameters Rpea and hpea are correlated with
m= 2 bar amplitude. Also, as shown in Figure 6, both the
radial and vertical central stellar velocity dispersions (σR, σz)
are higher in models BF0 and BB1 than in Model AB1, despite
the latter having an SMBH of exactly the same mass.
Consequently, our simulations have resulted in galaxies with
the same MBH but with BP/X bulges of different masses and
different central velocity dispersions. We find that the average
3D velocity dispersion within r= 1.5 kpc in Model AB1 at late
times is 135 km s−1 while in Model BF0 it is 144 km s−1,
which is ∼7% larger for the same MBH. Furthermore, the
average 3D velocity dispersion of Model C at this time is
134 km s−1, nearly identical to Model AB1, despite not having
an SMBH.

This supports previous arguments (e.g., Graham 2008;
Brown et al. 2013; Hartmann et al. 2014) that the scatter in the
MBH–σ relation for barred galaxies is due to differences in bar

strengths. Furthermore, quantities such as the half-light radius
(within which σ is generally computed) are harder to define
when dealing with a BP/X-shaped structure rather than a
classical bulge or elliptical galaxy since it is not well described
by an ellipsoidal light distribution.

6.3. Improving upon N-body Results

The pure N-body simulations studied in this paper showed
that the growth of an SMBH early in the life of a disk galaxy
dramatically alters the formation and evolution of the bar. The
SMBHs in these simulations were grown in an ad hoc manner
(similar to previous N-body simulations of SMBH growth in
bars), and therefore the simulations did not conserve mass, as
one would expect in the case of a real galaxy. Future
hydrodynamical simulations including star formation and more
realistic prescriptions for SMBH accretion should be carried
out to assess how general the results of our work are. In
particular, since gas “cools” the disk by producing young stars
on nearly circular orbits, disks with gas tend to have lower
velocity dispersion. Therefore, simulations with gas and star
formation may show less suppression of bar buckling. On the
other hand, gas being collisional and dissipative is more likely
to experience loss of angular momentum due to shocks in gas
arising from their noncircular motions around the bar. Angular
momentum transport by the bar could increase the growth rate
of the SMBH and somewhat alter the evolution we have
observed here. The most important point raised by our
experiments is that, contrary to popular belief, SMBHs do
not always weaken/destroy bars, and in fact bars have no
difficultly forming around fully grown SMBHs or growing co-
evally with SMBHs. In general we find that the presence of the
SMBH in a growing bar, far from weakening the bar, may
actually strengthen it by causing vertical and radial heating that
strengthen both the ILR and vILR.

7. Summary and Conclusion

We have evolved N-body simulations of disk galaxies prone
to bar formation, and have introduced and grown an SMBH at
various times during the formation and evolution of the bar. In
all cases, the SMBH’s final mass and growth rate are held
fixed, and only the time of introduction is varied. We obtain a
number of results that lead to new insights into the formation of
bars, factors that affect their buckling, and the formation and
growth of BP/X-shaped bulges. We use a new framework for
quantifying the strength of the BP/X-shaped bulge (from

Figure 12. Number of orbits associated with important resonances seen in Figure 10. Orbits that lie with frequency ratios within 5 × 10−3 of each of these resonance
lines are shown at two snapshots as indicated.
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Dattathri et al. 2023) to measure the strength/prominence of
the BP/X-shaped bulge. We list our main findings below.

1. In all simulations in which an SMBH was introduced prior
to bar formation or while the bar was still actively growing,
bar amplitude is never decreased. In nearly every case, the
bar amplitude relative to the control model without an
SMBH is notably increased. The only cases in which the bar
amplitude is decreased by the introduction of the SMBH is
when the SMBH was introduced after the bar had reached a
steady-state amplitude, consistent with previous findings (see

Figure 1). In cases where the bar amplitude continues to
increase after buckling, the late introduction of the SMBH
has little or no effect (see Figure 3).

2. Two new parameters, Rpea and hpea, that characterize the
strength of the BP/X shape, are found to be strongly
correlated with the m= 2 bar amplitude (see Figures 4
and 5). If these correlations are found to hold for
hydrodynamical simulations, it implies that the strength
of a bar in an edge-on disk can be inferred from these
observationally determinable quantities.

Figure 13.Mock IFU kinematic data generated from the final snapshot of Model C, BF0, BB1, and AB1 (top to bottom), with the disk face-on and the bar aligned along
the x-axis. From left to right: projected surface density and depiction of the kinematic field of view, line-of-sight velocity v, velocity dispersion σ, Gauss–Hermite
coefficients h3 and h4 (as labeled).
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3. The introduction of an SMBH prior to buckling partially
suppresses the buckling event either decreasing its
magnitude, or delaying it (allowing the bar to grow
stronger before eventually buckling), or both. This partial
suppression of bar buckling is primarily a result of the
increased vertical heating of the inner disk due to the
presence of the SMBH. This decreases the velocity
anisotropy (raises σz/σR 0.6), thereby making the bar
less vulnerable to buckling (see Figures 6 and 15).

4. Vertical heating of the inner disk due to the SMBH
causes a decrease in the vertical oscillation frequency ν,
and this results in the appearance of the vILR earlier than

in the models without an SMBH. An SMBH introduced
late (after the bar has buckled or reached steady state)
causes little or no heating to an already vertically hot
disk. We show that, in models with an SMBH, the ILR
and vILR appear early (prior to bar buckling) and rapidly
move outward in radius. The outward movement of these
resonances (resonant sweeping) allows them to trap a
larger fraction of orbits increasing the strength of the bar
and the BP/X shape. Orbits that cross the vILR are raised
to greater heights above the disk, contributing to a
stronger BP/X shape. In models with a steady-state bar,
the ILR and vILR move very little in radius after their

Figure 14. Same as Figure 13 with galaxies viewed edge-on and bar viewed side-on.
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appearance, therefore limiting their ability to trap orbits
and cause the bar to grow (see Figures 7, 8, and 9).

5. Using frequency analysis in Cartesian coordinates, we
show that the specific bar-supporting resonant orbits in
the bar depend on whether the bar formation and growth
occurred in the presence or absence of an SMBH. We
show that when an SMBH is grown after the bar has
already formed and reached equilibrium, it scatters bar
orbits at small pericenter radii resulting in a significantly
weaker bar. However, when the bar forms around a
preexisting SMBH or continues to grow after the SMBH
is introduced, the specific resonant orbit families
occupied and how heavily they are populated differ from
the case where the bar reaches steady state before the
SMBH is introduced. Many orbit families with small
pericenter radii, which are stable in the presence of the
SMBH, potentially exist, and are heavily populated (see
Figures 10, 11, and 12). It is clear that the ability to
populate orbit families that strengthen the BP/X shape
can even be enhanced when an SMBH is present during
bar growth. We argue that this is because vertical heating
by the SMBH allows more orbits to be captured by
the vILR.

6. Kinematic maps of our simulated galaxies viewed face-on
and edge-on showing line-of-sight velocity (v), velocity
dispersion (σ), and Gauss–Hermite coefficients (h3, h4)
do not reveal any obvious “smoking gun” differences
between models with early-growing, late-growing, or no

SMBH that can be attributed to the presence (or not) of an
SMBH. Instead we believe that the kinematic differences
we report are dominated by differing BP/X strength of
our models. Further studies of models with matched
BP/X and bar strength with early- and late-growing
SMBHs are needed to determine definitively whether a
signature of early growth is imprinted in the kinematics
(see Figures 13 and 14.)

The rich variety of surprising results presented in this paper
show that contrary to the currently prevailing view that SMBHs
weaken bars, the preexisting or coeval growth of an SMBH
with stellar bars may enhance both their strength and their
BP/X structure, once again demonstrating that SMBHs
influence galaxy evolution in profound and unexpected ways.
Quasars and AGNs powered by SMBHs have been observed in
disk galaxies at redshifts above z= 2 (e.g., Schawinski et al.
2011). On the other hand, disk galaxies form bars significantly
later: the fraction of spiral galaxies containing bars is about
20% at z∼ 0.85 compared to about 65% in the local Universe
(e.g., Sheth et al. 2008). Very recently, JWST CEERS NIRCam
images have shown evidence for bars in disk galaxies at
z∼ 1–2.3 (Guo et al. 2023). Although the number (six) of
JWST imaged galaxies in which bars have been identified so
far is too small to assess the global fractions of bars in disks at
these redshifts, it appears that bar instabilities can occur early,
and once formed, bars probably survive until the present time.
This supports the view that bar-driven secular processes may
have operated in disk galaxies over the past 8–10 Gyr.

Figure 15. Similar to Figure 6 for control model Cii
~

and its BF0 and AB1 analogs.
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Mass-matched samples of disks galaxies with/without X-ray
luminous AGNs show that the bar fraction is comparable or
marginally higher in disks with AGNs than in inactive disks
(out to z; 0.85; Cisternas et al. 2015). It is therefore
reasonable to assume that a significant fraction of the SMBHs
in barred galaxies began to form prior to bar formation and
have continued to grow and strengthen stellar bars. The results
we have presented here have potentially transformed our view
of the coevolution of bars and central SMBHs.

Acknowledgments

We thank Eric Bell for valuable discussions throughout the
course of this project. We thank Jerry Sellwood for making the
GALAXY N-body simulation code publicly available and for
his assistance in the initial phase of this project. We also thank
Eugene Vasiliev for making the AGAMA code (extensively
used in this paper) publicly available, for his assistance in its
usage, and for perennially enriching discussions. We thank
Rishabh Ranjan for assistance in finding an error in a previous
version of Figure 11. Finally, we thank the referee for
constructive feedback that improved this paper. V.W., M.V.,
L.B.e.S., and S.D. gratefully acknowledge funding from the
National Science Foundation (grants NSF-AST-1515001, NSF-
AST-2009122) and the Space Telescope Science Institute
(grant JWST-ERS-01364.002-A).

Software: GALAXY (Sellwood 2014), AGAMA (Vasiliev
2019), NAFF (Valluri &Merritt 1998), numpy (Harris et al. 2020),
scipy (Virtanen et al. 2020).

Data Availability

Snapshots from select models and times are available at
doi:10.5281/zenodo.8230972.

Appendix A
Additional Models and Validation Tests

In addition to the models described in the main body of this
paper, we ran several models both with the same set of initial
conditions but with different particle softening lengths,
integration time steps, simulation grid parameters (number of
radial, azimulthal, and polar cells), the use or not of “guard
radii,” and fixed and freely moving SMBHs. We also ran
models with additional sets of initial conditions. While there
are numerous minor differences between the various models
(such as how quickly the bar buckled, whether it continued to
grow after the first buckling, and whether it buckled twice), in
no case did we find that an early-growing SMBH weakened a
bar. In contrast, in cases where the SMBH was grown after the
bar reached a (quasi)equilibrium state, the SMBH weakened
the bar consistent with previous works. Therefore, we can
confidently state that the results presented in the main body of
our work are not numerical artifacts of a specific setup or a
result of stochastic behavior.

In Model C the bar does not evolve after buckling, and
therefore it is straightforward to compare the effects of the
black hole grown at various times relative to the time of
buckling. For some of the other initial conditions we
considered (e.g., C C C, ,i ii¢

~ ~
, discussed in Section 3.3), the bar

in the control model continued to grow after buckling, and
consequently the effects of the early-growing SMBH were less
dramatic (although they still increased the bar strength in all
cases relative to the case with no SMBH).

In particular, Cii
~

has the strongest bar of all of our models,
and all of the models with SMBH run with these initial
conditions had nearly identical final bar strengths. Figure 15
shows the radial and vertical velocity dispersions σR, σz and
their ratio σz/σR as a function of time and radius for this suite
of models (similar to Figure 6). Although the initial radial and
vertical velocity dispersions and density profile of this set of
initial conditions is identical to Model C, the disk is more
rapidly heated both radially and vertically. This causes both the
ILR and the vILR to be strengthened, and the more rapid
increase in σz/σR stabilizes the disk so that it buckles only
weakly (see Figure 2). As can be seen in Figure 15, the
introduction of the SMBH either early or later does have a
small effect but not enough to change the course of evolution.
Below we briefly describe our validation tests with other

simulation parameters and results of tests with some of the
other initial conditions. These additional initial conditions are
also from Debattista et al. (2020).
Runs with SMBH held fixed and guard radii. Shen &

Sellwood (2004) introduced guard-radii—a series of nested
radial zones immediately surrounding the SMBH in which they
progressively decreased, by a factor of 2 from the outermost
guard-radius inward, the time step on which the position and
velocity of a particle were updated (but the potential is only
recalculated at the base time step). The guard radii are designed
to improve the evolution of orbits in the vicinity of the SMBH
where the forces change more rapidly. In our initial tests we
also held the SMBH fixed at the center and used guard radii.
The effects of the early-growing SMBH in these simulations
were even stronger than in the models shown in the main body
of this paper. We were concerned that holding the SMBH fixed
in place (and turning off the m= 1 sectoral harmonic as
recommended in GALAXY documentation, thus disallowing
forces that would translate the disk away from the origin) was
artificially increasing the strength of the m= 2 (bar) mode. We
therefore removed the constraint of holding the SMBH fixed at
the center.
Although the SMBH can be allowed to move, while using

guard radii, the code centers the guard radii around the center
of the grid and does not allow it to move with the SMBH. This
results in unphysical effects, especially when the SMBH moves
outside the region occupied by the guard radii. As noted in the
main body of the paper, we do periodically relocate the origin
of the grid to follow the location of highest particle density, and
the guard radii are by definition centered about this origin;
however, this does not guarantee that the SMBH lies within the
innermost guard radii. Since it was not possible to modify
GALAXY to enable the center of the guard-radii to move with
the SMBH (and avoid unphysical numerical effects), we
entirely eliminated the use of guard radii and instead reduced
our base time step by a factor of 2 in all of our runs. While this
is more computationally costly (since the smaller time steps are
used everywhere), it achieves sufficient resolution given our
SMBH softening length to enable the SMBH to move freely.
Our main result—that the early-growing SMBH strengthens
rather than weakens the bar—is unaffected by the presence or
absence of guard radii, fixing the SMBH at the origin or
allowing it to move, and enabling or disabling the m= 1 mode
(although the magnitude of the strengthening depends slightly
on these details).
Run with a fully grown SMBH at t= 0. In one model (not

shown) using a feature of GALAXY, we turned off all
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harmonics other than the m= 0 mode, forcing the model to
remain axisymmetric while we grew the SMBH to full mass
over the same duration of 50 dynamical times. This resulted in
a strictly axisymmetric disk with a potential that is self-
consistent with the fully grown SMBH (of mass 0.0014Mdisk).
After the SMBH was fully grown and the disk had reached
equilibrium, we turned all modes back on and evolved the
model for a further 7.5 Gyr. This disk formed a strong bar.
Since this model was evolved with the SMBH held fixed in
place and used guard radii, we do not present the results here
but note that similar results have been obtained by W. Dehnen
et al. (2023, private communication) using NEMO with the
Gyrfalcon integrator. We therefore are confident that bars are
quite capable of forming from axisymmetric disks around
fully grown preexisting black holes (with masses ∼0.2% disk
mass), and the presence of a fully grown SMBH does not
prevent the formation of a large-scale bar. The later behavior
of this model in terms of strengthening of the bar/bulge and
suppression of buckling is very similar to the comparable case
in which the SMBH was grown beginning at time 0.

Run 5000 series. This set of initial conditions was referred to
as Model 1 in Debattista et al. (2020). All of the simulations in
the Run 5000 series experienced strong buckling on a shorter
timescale than models presented in the main body and showed
no continued bar growth after buckling both for cases with and
without an early-growing SMBH. However, the relative
differences in bar strength and the BP/X bulge strength are
still present but are less strong at late times than in the models
described in the main body of this paper, and are thus not
shown in detail.

Run 6000 series. Models of run 6000 series, evolved from
initial conditions of Model 3 in Debattista et al. (2020) are a
case in which the bar very quickly undergoes a small buckling
event, then subsequently experiences strong buckling on a
longer timescale and continues to grow thereafter in cases both
with and without an early-growing SMBH. Since the bar
strength in these models continues to increase in all cases, the
bars then buckle at least once more. The long timescale and
continued growth makes it difficult to predict the final
outcomes of the SMBH introduction to this system even with
a simulation time of 15 Gyr. This model suggests that the
SMBH suppressing/delaying/weakening of the first strong
buckling event (in addition to the early weak event) might lead
to a subsequent buckling event (which primarily occurs in the
outer bar at large R) that is stronger in amplitude although still
delayed, appearing to result in a weaker bar relative to the case
with no SMBH. However, the bar in both cases still continues
to grow for some time after this buckling event. Further testing
in systems that undergo repeated buckling is required to
explore the SMBH role in such systems and to answer
questions such as: would a third strong buckling event again
show the SMBH model to have weaker buckling and result in
stronger bar strength (a leap-frog effect with regard to
buckling)? and what are the effects of SMBH introduced
between two strong buckling events? This experiment suggests
that further investigation is required to fully understand the
interaction between the SMBH and the bar, but shows that this
interaction is much more nuanced than previous generations of
experiments implied.

Appendix B
Grid Parameters

Listed below is a full account of input parameters used to
specify model evolution in GALAXY version 15.4, which
makes up a simulation startup file. Unless otherwise noted, all
keywords and values correspond to built-in commands, which
are explained in the public documentation available at http://
www.physics.rutgers.edu/galaxy/. All dimensional values
here are entered in simulation units: the gravitational constant
G= 1, scale radius is set to unit length L= 1 (some inputs
further scaled by grid units: L× l scale), disk mass is set to unit
mass M= 1, dynamical velocity defined from the previous
quantities is also vdyn= 1, thus so is a unit of dynamical time
Tdyn= 1. Scaling relations follow from specifying any two of
the above in physical units, usually L and M.

run no 2099 # Internal model number for
model BF_0

grid type HYB 2 # Select 2 grids of different
types

1st type p3d
2nd type s3d
#
ncom 2 # Active mass components
#component 1, the disk
disk t # Specify is disk
type UNKN # UNKN used to specify exter-

nally created component
mass 1
scale 1 1
dftype none 1.5 # Unused DF and dummy para-

meter (ext comp)
taper f # No taper (ext comp)
#component 2, the halo
disk f
type UNKN
mass 1
scale 1
dftype none
# Instructions for p3d
grid size 172 256 405 # Radial division, azimuthal

division, z-division
z spacing 0.1 # In grid units
HASH 8 # Highest active sectoral

harmonic
softl 0.2083 # In grid units (shared by s3d)
sect 1 # Impose no symmetry con-

straints (shared by s3d)
skip # Skip no harmonics (shared

by s3d)
# Instructions for s3d
grid size 400 800 # Radial divisions, Radius of

outer boundary (grid units)
lmax 8 # Highest active spherical

harmonic
# Instructions for setrun
time step 0.005 # Units of T_dyn
zones 5 # Number of t step zones
2 1 # Advance motion every N steps

outside radius R
4 3
8 5
16 8
lscale 10 # Set scale grid unit scale factor

—10 grid units per L
offgrid t f f f # Flags for off grid particles
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(Continued)

uqmass t # particle unique mass (req as
disk and dm differ)

cntd 48 # recenter grids every 48 time
steps

supplement f # No supplemental forces added
# Instructions perturber # Section omitted for cases with

no SMBH
perturber GNRC 0.0014 0.0139 0.02 50.0 # * significantly edited, see

below
position 0.0 0.0 0.0 # initial position
velocity 0.0 0.0 0.0 # initial velocity
# further component info
icmp 1 # comp no
npar 6000000 # particle no
z0in 1 # initial thickness—dummy

input (ext comp)
pgrd 1 # primary grid assignment
start f f f # startup flags (all f, ext comp)
end data for component 1
#
icmp 2
npar 4000000
pgrd 2
start f f f
end data for component 2
# GALAXY analysis flags # Analysis using built-in tools**

analysis 800 # Perform analysis and output
snapshot*** every 800 steps

save # Following keywords specify
analysis to be performed

intg
danl
end of results file instructions
end
#
last step 200000

1. Inputs specifying perturber treatment have been signifi-
cantly edited from the original GALAXY version 15.4 to
facilitate evolution of rigid perturber mass. The first three
inputs following the keyword are default parameters that
specify a generic type perturber, which is used for user-
defined perturber potentials. Following this is the mass
and softening length in units of M and grid units,
respectively. The following two are bespoke additions
that specify the initial mass fraction (of final mass of the
perturber) and the growth period in Tdyn.

2. All analysis presented in this paper was performed using
methods external to GALAXY.

3. In the default prescription, snapshots are saved every 25
analysis steps. However this implementation has been
edited to output a snapshot on every analysis step. This
simplifies the input parameter.

ORCID iDs

Vance Wheeler https://orcid.org/0000-0003-4679-4435
Monica Valluri https://orcid.org/0000-0002-6257-2341
Leandro Beraldo e Silva https://orcid.org/0000-0002-
0740-1507
Shashank Dattathri https://orcid.org/0000-0002-7941-1149
Victor P. Debattista https://orcid.org/0000-0001-7902-0116

References

Abbott, C. G., Valluri, M., Shen, J., & Debattista, V. P. 2017, MNRAS,
470, 1526

Anderson, S. R., Debattista, V. P., Erwin, P., et al. 2022, MNRAS, 513, 1642
Araki, S. 1985, PhD thesis, Massachusetts Institute of Technology
Athanassoula, E. 2003, MNRAS, 341, 1179
Athanassoula, E., Lambert, J. C., & Dehnen, W. 2005, MNRAS, 363, 496
Athanassoula, E., Morin, S., Wozniak, H., et al. 1990, MNRAS, 245, 130
Bender, R., Kormendy, J., Bower, G., et al. 2005, ApJ, 631, 280
Bennert, V. N., Treu, T., Ding, X., et al. 2021, ApJ, 921, 36
Beraldo e Silva, L., Debattista, V. P., Anderson, S. R., et al. 2023, ApJ, 955, 38
Binney, J. 1981, MNRAS, 196, 455
Binney, J., & Spergel, D. 1982, ApJ, 252, 308
Binney, J., & Spergel, D. 1984, MNRAS, 206, 159
Binney, J., & Tremaine, S. 2008, Galactic Dynamics (2nd ed.; Princeton, NJ:

Princeton University Press)
Brown, J. S., Valluri, M., Shen, J., & Debattista, V. P. 2013, ApJ, 778, 151
Chirikov, B. V. 1979, PhR, 52, 263
Cisternas, M., Gadotti, D. A., Knapen, J. H., et al. 2013, ApJ, 776, 50
Cisternas, M., Jahnke, K., Inskip, K. J., et al. 2011, ApJ, 726, 57
Cisternas, M., Sheth, K., Salvato, M., et al. 2015, ApJ, 802, 137
Collier, A. 2020, MNRAS, 492, 2241
Combes, F., Debbasch, F., Friedli, D., & Pfenniger, D. 1990, A&A, 233, 82
Contopoulos, G., & Papayannopoulos, T. 1980, A&A, 92, 33
Cuomo, V., Debattista, V. P., Racz, S., et al. 2023, MNRAS, 518, 2300
Dattathri, S., Valluri, M., Vasiliev, E., Wheeler, V., & Erwin, P. 2023,

arXiv:2309.11557
Debattista, V. P., Carollo, C. M., Mayer, L., & Moore, B. 2005, ApJ, 628, 678
Debattista, V. P., Liddicott, D. J., Khachaturyants, T., & Beraldo e Silva, L.

2020, MNRAS, 498, 3334
Debattista, V. P., Ness, M., Gonzalez, O. A., et al. 2017, MNRAS, 469, 1587
Donley, J. L., Kartaltepe, J., Kocevski, D., et al. 2018, ApJ, 853, 63
Du, M., Debattista, V. P., Shen, J., Ho, L. C., & Erwin, P. 2017, ApJL,

844, L15
Erwin, P. 2015, ApJ, 799, 226
Erwin, P., & Debattista, V. P. 2016, ApJL, 825, L30
Erwin, P., & Debattista, V. P. 2017, MNRAS, 468, 2058
Eskridge, P. B., Frogel, J. A., Pogge, R. W., et al. 2002, ApJS, 143, 73
Fabian, A. C. 2012, ARA&A, 50, 455
Ferrarese, L., & Merritt, D. 2000, ApJL, 539, L9
Fragkoudi, F., Athanassoula, E., Bosma, A., & Iannuzzi, F. 2015, MNRAS,

450, 229
Gabor, J. M., Impey, C. D., Jahnke, K., et al. 2009, ApJ, 691, 705
Gardner, E., Debattista, V. P., Robin, A. C., Vásquez, S., & Zoccali, M. 2014,

MNRAS, 438, 3275
Gebhardt, K., Bender, R., Bower, G., et al. 2000, ApJL, 539, L13
Gebhardt, K., Richstone, D., Tremaine, S., et al. 2003, ApJ, 583, 92
Georgakakis, A., Coil, A. L., Laird, E. S., et al. 2009, MNRAS, 397, 623
Graham, A. W. 2008, ApJ, 680, 143
Graham, A. W., Erwin, P., Caon, N., & Trujillo, I. 2001, ApJL, 563, L11
Graham, A. W., Onken, C. A., Athanassoula, E., & Combes, F. 2011,

MNRAS, 412, 2211
Graham, A. W., & Scott, N. 2015, ApJ, 798, 54
Greene, J. E., Peng, C. Y., Kim, M., et al. 2010, ApJ, 721, 26
Gültekin, K., Richstone, D. O., Gebhardt, K., et al. 2009, ApJ, 698, 198
Guo, Y., Jogee, S., Finkelstein, S. L., et al. 2023, ApJL, 945, L10
Häring, N., & Rix, H.-W. 2004, ApJL, 604, L89
Harris, C. E., Bennert, V. N., Auger, M. W., et al. 2012, ApJS, 201, 29
Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Natur, 585, 357
Hartmann, M., Debattista, V. P., Cole, D. R., et al. 2014, MNRAS, 441, 1243
Hasan, H., Pfenniger, D., & Norman, C. 1993, ApJ, 409, 91
Hopkins, P. F., & Quataert, E. 2010, MNRAS, 407, 1529
Hopkins, P. F., & Quataert, E. 2011, MNRAS, 415, 1027
Hozumi, S., & Hernquist, L. 2005, PASJ, 57, 719
Jahnke, K., & Macciò, A. V. 2011, ApJ, 734, 92
King, A. 2014, SSRv, 183, 427
Knapen, J. H. 1999, in ASP Conf. Ser. 187, The Evolution of Galaxies on

Cosmological Timescales, ed. J. E. Beckman & T. J. Mahoney (San
Francisco, CA: ASP), 72

Kocevski, D. D., Faber, S. M., Mozena, M., et al. 2012, ApJ, 744, 148
Kormendy, J., Bender, R., & Cornell, M. E. 2011, Natur, 469, 374
Kormendy, J., & Ho, L. C. 2013, ARA&A, 51, 511
Kormendy, J., & Kennicutt, R. C., Jr 2004, ARA&A, 42, 603
Kuijken, K., & Dubinski, J. 1995, MNRAS, 277, 1341

25

The Astrophysical Journal, 958:119 (26pp), 2023 December 1 Wheeler et al.

https://orcid.org/0000-0003-4679-4435
https://orcid.org/0000-0003-4679-4435
https://orcid.org/0000-0003-4679-4435
https://orcid.org/0000-0003-4679-4435
https://orcid.org/0000-0003-4679-4435
https://orcid.org/0000-0003-4679-4435
https://orcid.org/0000-0003-4679-4435
https://orcid.org/0000-0003-4679-4435
https://orcid.org/0000-0002-6257-2341
https://orcid.org/0000-0002-6257-2341
https://orcid.org/0000-0002-6257-2341
https://orcid.org/0000-0002-6257-2341
https://orcid.org/0000-0002-6257-2341
https://orcid.org/0000-0002-6257-2341
https://orcid.org/0000-0002-6257-2341
https://orcid.org/0000-0002-6257-2341
https://orcid.org/0000-0002-0740-1507
https://orcid.org/0000-0002-0740-1507
https://orcid.org/0000-0002-0740-1507
https://orcid.org/0000-0002-0740-1507
https://orcid.org/0000-0002-0740-1507
https://orcid.org/0000-0002-0740-1507
https://orcid.org/0000-0002-0740-1507
https://orcid.org/0000-0002-0740-1507
https://orcid.org/0000-0002-0740-1507
https://orcid.org/0000-0002-7941-1149
https://orcid.org/0000-0002-7941-1149
https://orcid.org/0000-0002-7941-1149
https://orcid.org/0000-0002-7941-1149
https://orcid.org/0000-0002-7941-1149
https://orcid.org/0000-0002-7941-1149
https://orcid.org/0000-0002-7941-1149
https://orcid.org/0000-0002-7941-1149
https://orcid.org/0000-0001-7902-0116
https://orcid.org/0000-0001-7902-0116
https://orcid.org/0000-0001-7902-0116
https://orcid.org/0000-0001-7902-0116
https://orcid.org/0000-0001-7902-0116
https://orcid.org/0000-0001-7902-0116
https://orcid.org/0000-0001-7902-0116
https://orcid.org/0000-0001-7902-0116
https://doi.org/10.1093/mnras/stx1262
https://ui.adsabs.harvard.edu/abs/2017MNRAS.470.1526A/abstract
https://ui.adsabs.harvard.edu/abs/2017MNRAS.470.1526A/abstract
https://doi.org/10.1093/mnras/stac913
https://ui.adsabs.harvard.edu/abs/2022MNRAS.513.1642A/abstract
https://doi.org/10.1046/j.1365-8711.2003.06473.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.341.1179A/abstract
https://doi.org/10.1111/j.1365-2966.2005.09445.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.363..496A/abstract
https://ui.adsabs.harvard.edu/abs/1990MNRAS.245..130A/abstract
https://doi.org/10.1086/432434
https://ui.adsabs.harvard.edu/abs/2005ApJ...631..280B/abstract
https://doi.org/10.3847/1538-4357/ac151a
https://ui.adsabs.harvard.edu/abs/2021ApJ...921...36B/abstract
https://doi.org/10.3847/1538-4357/ace976
https://ui.adsabs.harvard.edu/abs/2023ApJ...955...38B/abstract
https://doi.org/10.1093/mnras/196.3.455
https://ui.adsabs.harvard.edu/abs/1981MNRAS.196..455B/abstract
https://doi.org/10.1086/159559
https://ui.adsabs.harvard.edu/abs/1982ApJ...252..308B/abstract
https://doi.org/10.1093/mnras/206.1.159
https://ui.adsabs.harvard.edu/abs/1984MNRAS.206..159B/abstract
https://doi.org/10.1088/0004-637X/778/2/151
https://ui.adsabs.harvard.edu/abs/2013ApJ...778..151B/abstract
https://doi.org/10.1016/0370-1573(79)90023-1
https://ui.adsabs.harvard.edu/abs/1979PhR....52..263C/abstract
https://doi.org/10.1088/0004-637X/776/1/50
https://ui.adsabs.harvard.edu/abs/2013ApJ...776...50C/abstract
https://doi.org/10.1088/0004-637X/726/2/57
https://ui.adsabs.harvard.edu/abs/2011ApJ...726...57C/abstract
https://doi.org/10.1088/0004-637X/802/2/137
https://ui.adsabs.harvard.edu/abs/2015ApJ...802..137C/abstract
https://doi.org/10.1093/mnras/stz3625
https://ui.adsabs.harvard.edu/abs/2020MNRAS.492.2241C/abstract
https://ui.adsabs.harvard.edu/abs/1990A&A...233...82C/abstract
https://ui.adsabs.harvard.edu/abs/1980A&A....92...33C/abstract
https://doi.org/10.1093/mnras/stac3047
https://ui.adsabs.harvard.edu/abs/2023MNRAS.518.2300C/abstract
http://arxiv.org/abs/2309.11557
https://doi.org/10.1086/431292
https://ui.adsabs.harvard.edu/abs/2005ApJ...628..678D/abstract
https://doi.org/10.1093/mnras/staa2568
https://ui.adsabs.harvard.edu/abs/2020MNRAS.498.3334D/abstract
https://doi.org/10.1093/mnras/stx947
https://ui.adsabs.harvard.edu/abs/2017MNRAS.469.1587D/abstract
https://doi.org/10.3847/1538-4357/aa9ffa
https://ui.adsabs.harvard.edu/abs/2018ApJ...853...63D/abstract
https://doi.org/10.3847/2041-8213/aa7ecb
https://ui.adsabs.harvard.edu/abs/2017ApJ...844L..15D/abstract
https://ui.adsabs.harvard.edu/abs/2017ApJ...844L..15D/abstract
https://doi.org/10.1088/0004-637X/799/2/226
https://ui.adsabs.harvard.edu/abs/2015ApJ...799..226E/abstract
https://doi.org/10.3847/2041-8205/825/2/L30
https://ui.adsabs.harvard.edu/abs/2016ApJ...825L..30E/abstract
https://doi.org/10.1093/mnras/stx620
https://ui.adsabs.harvard.edu/abs/2017MNRAS.468.2058E/abstract
https://doi.org/10.1086/342340
https://ui.adsabs.harvard.edu/abs/2002ApJS..143...73E/abstract
https://doi.org/10.1146/annurev-astro-081811-125521
https://ui.adsabs.harvard.edu/abs/2012ARA&A..50..455F/abstract
https://doi.org/10.1086/312838
https://ui.adsabs.harvard.edu/abs/2000ApJ...539L...9F/abstract
https://doi.org/10.1093/mnras/stv537
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450..229F/abstract
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450..229F/abstract
https://doi.org/10.1088/0004-637X/691/1/705
https://ui.adsabs.harvard.edu/abs/2009ApJ...691..705G/abstract
https://doi.org/10.1093/mnras/stt2430
https://ui.adsabs.harvard.edu/abs/2014MNRAS.438.3275G/abstract
https://doi.org/10.1086/312840
https://ui.adsabs.harvard.edu/abs/2000ApJ...539L..13G/abstract
https://doi.org/10.1086/345081
https://ui.adsabs.harvard.edu/abs/2003ApJ...583...92G/abstract
https://doi.org/10.1111/j.1365-2966.2009.14951.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.397..623G/abstract
https://doi.org/10.1086/587473
https://ui.adsabs.harvard.edu/abs/2008ApJ...680..143G/abstract
https://doi.org/10.1086/338500
https://ui.adsabs.harvard.edu/abs/2001ApJ...563L..11G/abstract
https://doi.org/10.1111/j.1365-2966.2010.18045.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.412.2211G/abstract
https://doi.org/10.1088/0004-637X/798/1/54
https://ui.adsabs.harvard.edu/abs/2015ApJ...798...54G/abstract
https://doi.org/10.1088/0004-637X/721/1/26
https://ui.adsabs.harvard.edu/abs/2010ApJ...721...26G/abstract
https://doi.org/10.1088/0004-637X/698/1/198
https://ui.adsabs.harvard.edu/abs/2009ApJ...698..198G/abstract
https://doi.org/10.3847/2041-8213/acacfb
https://ui.adsabs.harvard.edu/abs/2023ApJ...945L..10G/abstract
https://doi.org/10.1086/383567
https://ui.adsabs.harvard.edu/abs/2004ApJ...604L..89H/abstract
https://doi.org/10.1088/0067-0049/201/2/29
https://ui.adsabs.harvard.edu/abs/2012ApJS..201...29H/abstract
https://doi.org/10.1038/s41586-020-2649-2
https://ui.adsabs.harvard.edu/abs/2020Natur.585..357H/abstract
https://doi.org/10.1093/mnras/stu627
https://ui.adsabs.harvard.edu/abs/2014MNRAS.441.1243H/abstract
https://doi.org/10.1086/172644
https://ui.adsabs.harvard.edu/abs/1993ApJ...409...91H/abstract
https://doi.org/10.1111/j.1365-2966.2010.17064.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.407.1529H/abstract
https://doi.org/10.1111/j.1365-2966.2011.18542.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.415.1027H/abstract
https://doi.org/10.1093/pasj/57.5.719
https://ui.adsabs.harvard.edu/abs/2005PASJ...57..719H/abstract
https://doi.org/10.1088/0004-637X/734/2/92
https://ui.adsabs.harvard.edu/abs/2011ApJ...734...92J/abstract
https://doi.org/10.1007/s11214-013-0018-2
https://ui.adsabs.harvard.edu/abs/2014SSRv..183..427K/abstract
https://ui.adsabs.harvard.edu/abs/1999ASPC..187...72K/abstract
https://doi.org/10.1088/0004-637X/744/2/148
https://ui.adsabs.harvard.edu/abs/2012ApJ...744..148K/abstract
https://doi.org/10.1038/nature09694
https://ui.adsabs.harvard.edu/abs/2011Natur.469..374K/abstract
https://doi.org/10.1146/annurev-astro-082708-101811
https://ui.adsabs.harvard.edu/abs/2013ARA&A..51..511K/abstract
https://doi.org/10.1146/annurev.astro.42.053102.134024
https://ui.adsabs.harvard.edu/abs/2004ARA&A..42..603K/abstract
https://doi.org/10.1093/mnras/277.4.1341
https://ui.adsabs.harvard.edu/abs/1995MNRAS.277.1341K/abstract


Laskar, J. 1990, Icar, 88, 266
Laskar, J. 1993, CeMDA, 56, 191
Li, Z.-Y., & Shen, J. 2015, ApJL, 815, L20
Lütticke, R., Dettmar, R. J., & Pohlen, M. 2000, A&AS, 145, 405
Marinova, I., & Jogee, S. 2007, ApJ, 659, 1176
Martinez-Valpuesta, I., & Shlosman, I. 2004, ApJL, 613, L29
Martinez-Valpuesta, I., Shlosman, I., & Heller, C. 2006, ApJ, 637, 214
McConnell, N. J., & Ma, C.-P. 2013, ApJ, 764, 184
Merritt, D., & Ferrarese, L. 2001, ApJ, 547, 140
Merritt, D., & Sellwood, J. A. 1994, ApJ, 425, 551
Merritt, D., & Valluri, M. 1996, ApJ, 471, 82
Merritt, D., & Valluri, M. 1998, NYASA, 858, 48
Navarro, J. F., Eke, V. R., & Frenk, C. S. 1996, MNRAS, 283, L72
Norman, C. A., Sellwood, J. A., & Hasan, H. 1996, ApJ, 462, 114
Papaphilippou, Y., & Laskar, J. 1996, A&A, 307, 427
Pfenniger, D., & Friedli, D. 1991, A&A, 252, 75
Quillen, A. C. 2002, AJ, 124, 722
Quillen, A. C., Minchev, I., Sharma, S., Qin, Y.-J., & Di Matteo, P. 2014,

MNRAS, 437, 1284
Raha, N., Sellwood, J. A., James, R. A., & Kahn, F. D. 1991, Natur, 352, 411
Saglia, R. P., Opitsch, M., Erwin, P., et al. 2016, ApJ, 818, 47
Savorgnan, G., Graham, A. W., Marconi, A., et al. 2013, MNRAS, 434, 387
Schawinski, K., Treister, E., Urry, C. M., et al. 2011, ApJL, 727, L31
Scott, N., Graham, A. W., & Schombert, J. 2013, ApJ, 768, 76
Sellwood, J. A. 2014, arXiv:1406.6606

Sellwood, J. A., & Athanassoula, E. 1986, MNRAS, 221, 195
Sellwood, J. A., & Debattista, V. P. 2009, MNRAS, 398, 1279
Sellwood, J. A., & Gerhard, O. 2020, MNRAS, 495, 3175
Sellwood, J. A., & Merritt, D. 1994, ApJ, 425, 530
Shen, J., & Sellwood, J. A. 2004, ApJ, 604, 614
Sheth, K., Elmegreen, D. M., Elmegreen, B. G., et al. 2008, ApJ, 675, 1141
Shlosman, I., Frank, J., & Begelman, M. C. 1989, Natur, 338, 45
Smirnov, A. A., & Sotnikova, N. Y. 2018, MNRAS, 481, 4058
Stadel, J. G. 2001, PhD thesis, Univ. of Washington, Seattle
Tamm, A., Tempel, E., Tenjes, P., Tihhonova, O., & Tuvikene, T. 2012, A&A,

546, A4
Toomre, A. 1966, Notes on the 1966 Summer Study Program in Geophysical

Fluid Dynamics at the Woods Hole Oceanographic Institution, ed.
W. V. R. Malkus,, 111

Valluri, M., Debattista, V. P., Quinn, T., & Moore, B. 2010, MNRAS, 403, 525
Valluri, M., Debattista, V. P., Quinn, T. R., Roškar, R., & Wadsley, J. 2012,

MNRAS, 419, 1951
Valluri, M., Debattista, V. P., Stinson, G. S., et al. 2013, ApJ, 767, 93
Valluri, M., & Merritt, D. 1998, ApJ, 506, 686
Valluri, M., Shen, J., Abbott, C., & Debattista, V. P. 2016, ApJ, 818, 141
Vasiliev, E. 2019, MNRAS, 482, 1525
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, NatMe, 17, 261
Volonteri, M. 2010, A&ARv, 18, 279
Widrow, L. M., & Dubinski, J. 2005, ApJ, 631, 838
Widrow, L. M., Pym, B., & Dubinski, J. 2008, ApJ, 679, 1239

26

The Astrophysical Journal, 958:119 (26pp), 2023 December 1 Wheeler et al.

https://doi.org/10.1016/0019-1035(90)90084-M
https://ui.adsabs.harvard.edu/abs/1990Icar...88..266L/abstract
https://doi.org/10.1007/BF00699731
https://ui.adsabs.harvard.edu/abs/1993CeMDA..56..191L/abstract
https://doi.org/10.1088/2041-8205/815/2/L20
https://ui.adsabs.harvard.edu/abs/2015ApJ...815L..20L/abstract
https://doi.org/10.1051/aas:2000354
https://ui.adsabs.harvard.edu/abs/2000A&AS..145..405L/abstract
https://doi.org/10.1086/512355
https://ui.adsabs.harvard.edu/abs/2007ApJ...659.1176M/abstract
https://doi.org/10.1086/424876
https://ui.adsabs.harvard.edu/abs/2004ApJ...613L..29M/abstract
https://doi.org/10.1086/498338
https://ui.adsabs.harvard.edu/abs/2006ApJ...637..214M/abstract
https://doi.org/10.1088/0004-637X/764/2/184
https://ui.adsabs.harvard.edu/abs/2013ApJ...764..184M/abstract
https://doi.org/10.1086/318372
https://ui.adsabs.harvard.edu/abs/2001ApJ...547..140M/abstract
https://doi.org/10.1086/174005
https://ui.adsabs.harvard.edu/abs/1994ApJ...425..551M/abstract
https://doi.org/10.1086/177955
https://ui.adsabs.harvard.edu/abs/1996ApJ...471...82M/abstract
https://doi.org/10.1111/j.1749-6632.1998.tb08957.x
https://ui.adsabs.harvard.edu/abs/1998NYASA.858...48M/abstract
https://doi.org/10.1093/mnras/283.3.L72
https://ui.adsabs.harvard.edu/abs/1996MNRAS.283L..72N/abstract
https://doi.org/10.1086/177133
https://ui.adsabs.harvard.edu/abs/1996ApJ...462..114N/abstract
https://ui.adsabs.harvard.edu/abs/1996A&A...307..427P/abstract
https://ui.adsabs.harvard.edu/abs/1991A&A...252...75P/abstract
https://doi.org/10.1086/341753
https://ui.adsabs.harvard.edu/abs/2002AJ....124..722Q/abstract
https://doi.org/10.1093/mnras/stt1972
https://ui.adsabs.harvard.edu/abs/2014MNRAS.437.1284Q/abstract
https://doi.org/10.1038/352411a0
https://ui.adsabs.harvard.edu/abs/1991Natur.352..411R/abstract
https://doi.org/10.3847/0004-637X/818/1/47
https://ui.adsabs.harvard.edu/abs/2016ApJ...818...47S/abstract
https://doi.org/10.1093/mnras/stt1027
https://ui.adsabs.harvard.edu/abs/2013MNRAS.434..387S/abstract
https://doi.org/10.1088/2041-8205/727/2/L31
https://ui.adsabs.harvard.edu/abs/2011ApJ...727L..31S/abstract
https://doi.org/10.1088/0004-637X/768/1/76
https://ui.adsabs.harvard.edu/abs/2013ApJ...768...76S/abstract
http://arxiv.org/abs/1406.6606
https://doi.org/10.1093/mnras/221.2.195
https://ui.adsabs.harvard.edu/abs/1986MNRAS.221..195S/abstract
https://doi.org/10.1111/j.1365-2966.2009.15219.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.398.1279S/abstract
https://doi.org/10.1093/mnras/staa1336
https://ui.adsabs.harvard.edu/abs/2020MNRAS.495.3175S/abstract
https://doi.org/10.1086/174004
https://ui.adsabs.harvard.edu/abs/1994ApJ...425..530S/abstract
https://doi.org/10.1086/382124
https://ui.adsabs.harvard.edu/abs/2004ApJ...604..614S/abstract
https://doi.org/10.1086/524980
https://ui.adsabs.harvard.edu/abs/2008ApJ...675.1141S/abstract
https://doi.org/10.1038/338045a0
https://ui.adsabs.harvard.edu/abs/1989Natur.338...45S/abstract
https://doi.org/10.1093/mnras/sty2423
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481.4058S/abstract
https://doi.org/10.1051/0004-6361/201220065
https://ui.adsabs.harvard.edu/abs/2012A&A...546A...4T/abstract
https://ui.adsabs.harvard.edu/abs/2012A&A...546A...4T/abstract
https://doi.org/10.1111/j.1365-2966.2009.16192.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.403..525V/abstract
https://doi.org/10.1111/j.1365-2966.2011.19853.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.419.1951V/abstract
https://doi.org/10.1088/0004-637X/767/1/93
https://ui.adsabs.harvard.edu/abs/2013ApJ...767...93V/abstract
https://doi.org/10.1086/306269
https://ui.adsabs.harvard.edu/abs/1998ApJ...506..686V/abstract
https://doi.org/10.3847/0004-637X/818/2/141
https://ui.adsabs.harvard.edu/abs/2016ApJ...818..141V/abstract
https://doi.org/10.1093/mnras/sty2672
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.1525V/abstract
https://doi.org/10.1038/s41592-019-0686-2
https://ui.adsabs.harvard.edu/abs/2020NatMe..17..261V/abstract
https://doi.org/10.1007/s00159-010-0029-x
https://ui.adsabs.harvard.edu/abs/2010A&ARv..18..279V/abstract
https://doi.org/10.1086/432710
https://ui.adsabs.harvard.edu/abs/2005ApJ...631..838W/abstract
https://doi.org/10.1086/587636
https://ui.adsabs.harvard.edu/abs/2008ApJ...679.1239W/abstract

	1. Introduction
	2. N-body Models
	2.1. Simulation Method and Initial Conditions
	2.2. Growing the SMBH
	2.3. Overview of Models

	3. Impact of SMBH Growth on Bar Morphology
	3.1. Bar Strength and Buckling Amplitude
	3.2. Weakening and Delay of Buckling
	3.3. Tests of Stochasticity and Sensitivity to Initial Conditions
	3.4. Strength of the Boxy-peanut/X-shaped Bulge

	4. Causes of the Weakening/Delay of Bar Buckling
	5. The Role of Resonances and Resonant Orbits in Bar and BP/X Strengthening
	5.1. Resonances in the Quasiaxisymmetric Approximation
	5.2. Brief Overview of Orbital Frequency Analysis
	5.3. Frequency Analysis in Cylindrical Coordinates: Capture into ILR and vILR
	5.4. Frequency Analysis in Cartesian Coordinates and the Behavior of Resonant Bar Orbits

	6. Discussion
	6.1. Are the Effects of an Early- versus Late-growing SMBH Observable?
	6.2. Implications for the Offset of Bars from the MBH–σ Relation
	6.3. Improving upon N-body Results

	7. Summary and Conclusion
	Data Availability
	Appendix AAdditional Models and Validation Tests
	Appendix BGrid Parameters
	References



