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Abstract: The outdoor thermal environment can be regarded as a significant factor influencing indoor
thermal conditions. The application of phase change materials (PCMs) to the building envelope has
the potential to improve the heat storage performance of building walls and, therefore, effectively
regulate the temperature variations of the inner surfaces of walls. COMSOL Multiphysics software
was adopted firstly to perform the simulations on the thermoregulation performance of phase change
wall; the time duration of the temperature at the internal side maintained within the thermal comfort
range was used as a quantitative evaluation index of the thermoregulation effects. It was revealed
from the simulation results that the time durations of thermal comfort were extended to 5021 s and
4102 s, respectively, when the brick walls were filled with two types of composite PCMs, namely
eutectic hydrate (EHS, Na2CO3·10H2O and Na2HPO4·12H2O with the ratio of 4:6)/5 wt.% BN
and EHS/5 wt.% BN/7.5 wt.% expanded graphite (EG), under the conditions of 18 ◦C ambient
temperature and 60 ◦C heating temperature at the charging stage. Both of them were longer than
3011 s, which corresponds to a pure brick wall. EHS/5 wt.% BN/7.5 wt.% EG exhibited better leakage
prevention performance and, therefore, was a candidate for actual application, in comparison with
EHS/5 wt.% BN. Then, a machine learning training process focused on the temperature control effects
of phase change wall was carried out using a BP neural network, where the heating surface and
ambient temperature were used as input variables and the time duration of indoor thermal comfort
was the output variable. Finally, the learning deviation between the raw data and the results obtained
from machine learning was within 5%, indicating that machine learning can accurately predict the
temperature control effects of the phase change wall. The results of the simulations and machine
learning can provide information and guidance for the advantages and potentials of PCMs of hydrate
salts when being applied to the building envelope. In addition, the accurate prediction of machine
learning demonstrated its application prospects to the research of phase change walls.

Keywords: phase change wall; radiative heating; numerical simulation; machine learning

1. Introduction

Outdoor climate conditions tend to influence the indoor thermal environment to
a great extent. The application of phase change walls to building enclosures has great
prospects to improve effectively the indoor thermal environment and reduce the energy
consumption generated by heating and cooling and, thus, makes contributions to providing
better thermal comfort conditions for humans. In view of the large costs in time and some
restrictions in construction of the actual building, numerical simulation is one type of
research method that has received much attention and is intended to supply guidance
for practical application [1]. At present, many researchers place much emphasis on the
influences of the thermophysical properties, contents, and positions of phase change ma-
terials (PCMs) and their combination with building materials. Additionally emphasized
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are the climate conditions on the heat transfer characteristics of phase change walls and
indoor air temperature and the energy consumption based on the corresponding math-
ematical models. The associated indexes can be adopted to describe specific influence
effects, which usually include the efficiency of the PCM coverage, temperature time lag,
temperature decrement factor, and the energy demand and energy saving rate. Javidan
et al. [2] conducted numerical simulations on paraffin phase change walls to study the
melting characteristics when different constant heat fluxes were imposed respectively, and
it was revealed that the larger heat flux corresponded to the quicker melting rate and more
evident buoyancy effects. In addition, the delay effects of the heat transferred from the
external side to the internal side became more significant as the thickness of the phase
change layer increased. Li et al. [3] established the heat transfer model of a phase change
mortar wall whose thermophysical properties were determined by a mesoscopic model to
discuss the variations of heat transfer characteristics brought by differences in the concen-
trations, phase change temperatures, and latent heats of the PCMs. It was demonstrated
that the phase change wall contributed to reducing the fluctuation of indoor tempera-
ture in transition seasons and to decreasing the summer building energy consumption
effectively in terms of the climate conditions of hot summer and cold winter regions. Ye
et al. [4] compared different influencing factors on the temperature variations and energy
saving effects based on the phase change building enclosure model with the mixture of
CaCl2·6H2O and expanded graphite (EG) as the PCM and concluded that the density and
thermal conductivity of the PCM failed to influence greatly the thermophysical properties
of the building enclosure, while the thickness of the PCM layer, the building orientation,
and the local climate were significant factors for the phase change process of the PCM.
Derradji et al. [5] adopted numerical simulations to study the positive effects of the office
model incorporating PCMs, and the simulation results suggested that indoor temperatures
in the winter and summer could be increased by approximately 3 ◦C and reduced by 7 ◦C,
respectively. Charvátová et al. [6] applied PCMs to a wooden house model to study the
changes of temperature with the time of indoor air and the temperature distribution of
the building enclosure after the addition of the PCM, and the simulation results revealed
that, in comparison with the building model with PCMs positioned in the ceiling and
walls, the wall opposite the window side covered by the PCM at the internal side was
more advantageous in decreasing the indoor temperature, where the maximum reduction
reached 31.1%. Ye et al. [7] laid the composite PCMs of CaCl2·6H2O-Mg(NO3)2·6H2O/EG
at the roof and south wall, respectively, the melting temperature and latent heat of which
could vary with the increase in the ratio of two hydrate salts, to determine the appropriate
melting temperature of the PCM and the position of the PCM layer for an evident decrease
in energy demand in different climate regions based on the simulation results of various
cases. It was advised that a PCM layer positioned at the internal side always corresponded
to low energy demand, and the melting temperature of the PCM required to obtain a large
reduction in energy demand would change in different areas. Zhu et al. [8] simulated the
application of double-layer Trombe phase change walls in a building enclosure on the basis
of the Wuhan climate, and it was found that peak cold and heat loads of the building were
lowered by 9% and 15%, respectively, compared with that of the Trombe wall without
PCMs. Rehman et al. [9] carried out numerical simulations on double-layer phase change
walls with two types of PCMs at the melting temperatures of 29 ◦C and 13 ◦C to improve
thermal comfort conditions and reduce energy consumption both in cold and hot weather
conditions. Gopinath et al. [10] studied the heat storage performances of phase change
walls packed with PCMs of CaCl2·6H2O, n-octadecane, and Na2CO3·10H2O, respectively,
and concluded that indoor temperatures at 12 p.m. could be reduced by 4~5 ◦C. Kant
et al. [11] investigated the influences of the position and thickness of the PCM layer as well
as the phase change temperature of the PCMs on the heat transfer characteristics of the
phase change walls by numerical simulations, and it was found that when a PCM layer
with a wide thickness was laid in the middle side and its melting temperature was close to
the indoor air temperature, the heat transfer from outdoors to indoors could be lowered.
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Govindasamy and Panwar [12] adopted palm fat as bio-PCM and discussed the effects of
the thickness of the PCM layer on the thermal comfort performance in buildings and, on the
basis of simulation data, pointed out that the temperature fluctuation of the inner surface
of the phase change wall, especially within the scope of 2 p.m.~10 p.m., could be evidently
reduced by the increase in the PCM layer. Rai [13] simulated the variations of building
peak loads caused by different positions of the PCM layer and insulation layer, which were
found to be greatly decreased when the phase change temperature of the PCM layer was
near or slightly higher than the indoor temperature and was arranged at the internal side,
with the insulation layer at the external side. Zhang et al. [14] investigated the new-type
phase change walls, whose PCMs would reverse position with the insulation material. In
daytime, it was close to the external side and could absorb the heat transferred from the
outdoors to the walls in the winter, while the position of the PCM after sunset would be
close to the internal side; therefore, heat was released indoors in a timely manner, which
allowed the time duration of the indoor temperature to be maintained within the extended
thermal comfort range compared with that of traditional phase change walls. Mi et al. [15]
compared the energy saving effects and economic benefits of a building model containing
PCMs in five climate zones in China by simulation and concluded that the application
of phase change walls in the hot summer and cold winter regions achieved the optimal
energy conservation effects and corresponded to higher economic values. Qu et al. [16]
analyzed different influences of four factors—building type, layout position of PCM layer,
PCM type, and PCM thickness—on extending the thermal comfort time and reducing
the electricity consumption based on multi-factor orthogonal simulations, whose results
indicated that the building type was the more critical parameter, while the variation of the
PCM thickness corresponded to a lesser influence. Wang et al. [17] proposed applying the
PCM with variable optical characteristics in building roofs to achieve energy saving effects
by changing the solar energy absorption in different seasons. Abd El-Raheim et al. [18]
integrated various PCMs with different melting temperatures at different layout positions
and wall orientations into a heavy-structure building envelope to compare the positive
roles of the reduction in hours not within thermal comfort conditions or cooling demand in
hot regions.

In addition to numerical simulations, machine learning can also be considered as an
efficient research method, which not only avoids much time and material costs but has great
advantages and prospects in terms of reliable analysis on abundant data and their inherent
relationships [19]. At present, machine learning has been widely applied in the field of
energy saving in buildings [20,21]. Bacher et al. [22] adopted machine learning to predict
the heat loads of 16 houses in Denmark based on the least squares time series model, which
could output the results of heat loads per hour, with a maximum of 42 h in advance. Idowu
et al. [23] investigated 10 buildings in Sweden, including houses and commercial structures,
as the study subjects and employed different machine learning methods to predict the
heat loads. It was suggested that the method of support vector machine returned the best
prediction effects and could restrict the deviation to within 7%. Al-Shammari et al. [24]
optimized the algorithms for the prediction of building heat load based on support vector
machine, and the obtained results were then compared with other ones corresponding to the
artificial neural network, genetic algorithm, and original support vector machine models. It
was concluded that the model after optimization had better prediction accuracy. Jovanović
et al. [25] made predictions on the heating consumption of a university campus via three
types of artificial neural network models, including feed forward backpropagation neural
network, radial basis function network, and adaptive neuro-fuzzy interference system,
involving various input variables, such as mean daily outside temperature and heating
consumption of the previous day. It was advised that the ensemble of neural networks
corresponded to more accurate prediction results in comparison with that of a single model
due to the better fitting effects and lower error between measured heating consumption
and predicted consumption. In addition to the studies on the building loads [26] and
building energy consumption [27], machine learning is also viewed as an effective way
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to research the associated contents of the PCMs incorporated into the building envelope.
Bhamare et al. [28] adopted different models based on machine learning and deep learning
to predict the thermal performance of PCMs contained in building roofs with the variation
of thermophysical properties and concluded that the gradient boosting regression model
and artificial neural network model presented higher prediction accuracy according to
the evaluation index of the measure of key responses. Alnaqi et al. [29] combined the use
of PCMs in the building envelope and extra convection to lower the energy demand and
conducted studies on the heat transfer of the phase change walls and phase change roof
based on a neural network, the calculation results of which showed good agreement with
the numerical data, where the corresponding coefficients of determination reached 0.991
and 0.979, respectively. Urresti et al. [30] applied the artificial neural network to analyze the
thermal behavior of PCMs integrated in the building envelope and discussed the heat flux
with the variation of time. The training results of machine learning were close to those of
the simulation data, and the mean squared error (MSE) was only 0.0584 W/m2, which was
lower than the accuracy error. However, the model after training had worse generalization
when data different from the training data were input.

Based on the above research of simulation and machine learning regarding the phase
change walls, most of the PCMs were organic ones or single inorganic hydrate salt, and the
physical properties of the PCMs were sourced from simulation software in other cases. In
addition, the PCMs were usually incorporated into the building walls in the form of panel
or direct mixing with the building materials. Additionally, there is relatively little research
focused on the application of machine learning to study phase change building walls. In the
present study, the topic is focused on studying the thermoregulation performances of phase
change brick walls at the inner face under different ambient conditions via simulations and
machine learning. The accuracy of the simulated models and relevant settings was verified
firstly by comparing the simulation results and experimental data at the same ambient
and heating temperatures. Then, other simulations under different ambient temperatures
and heating temperatures were conducted to research their effects on extending the time
duration within the thermal comfort range. Finally, the series simulation results were
applied to machine learning to predict the thermoregulation effects of the phase change
walls under unknown conditions after demonstrating the accuracy of the machine learning
model. The PCMs we used were binary eutectic hydrate salts of Na2CO3·10H2O and
Na2HPO4·12H2O added with BN or EG, which not only avoided the safety issues caused
by organic PCMs but also allowed the retrieval of the supercooling and phase separation
phenomena of single hydrate salt. Moreover, the phase change building wall in this
work is structured by hollow bricks where PCMs are filled into the holes, which makes
contributions to weakening the negative effects of the melting process, such as leakage
coupled with EG. Additionally, the investigations on the influence of PCMs on lowering
the temperature of the phase change wall at the internal side under different environmental
conditions are significant since the reduction would influence the radiation heat transfer
between the walls and humans and, therefore, improve the indoor thermal comfort to
different extents in the summer.

2. Numerical Simulations

The models of the pure brick wall and the brick walls filled with composite PCMs
were established with COMSOL Multiphysics 6.0, so as to further study the improvements
in the thermoregulation performance of the phase change walls compared with the pure
brick wall under various environmental conditions. In addition, the overall temperature
distributions of the walls could be intuitively observed. Additionally, the simulation results
provided more raw data for machine learning, which was beneficial for the enhancement of
the training and prediction effects. In the present study, two types of PCMs were involved:
EHS/5 wt.% BN and EHS/5 wt.% BN/7.5 wt.% EG, both of which possess appropriate
melting temperatures within the thermal comfort range of 22~28 ◦C [31]. EHS denotes the
mixture of Na2CO3·10H2O and Na2HPO4·12H2O with the ratio of 4:6; both Na2CO3·10H2O
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and Na2HPO4·12H2O belong to inorganic hydrate salts and, therefore, avoid the potential
safety issues brought by organic PCMs, such as flammability and toxicity. Moreover, the two
types of hydrate salts possess high charging/discharging efficiencies and economic benefits
due to their large latent heat values and low costs in comparison with organic PCMs and
other hydrate salts. EHS was prepared by mixing Na2CO3·10H2O and Na2HPO4·12H2O
to regulate the melting temperature within the thermal comfort temperature range and
to eliminate the phase separation phenomenon. The addition of BN was beneficial for
decreasing the subcooling degree of EHS, while EG could make contributions to enhancing
the thermal conductivity and preventing the leakage of PCMs caused by melting. However,
the existence of EG caused the latent heat to be reduced. The specific values of melting
temperature and latent heat for the two types of PCMs are summarized in Table 1, which
were presented in a previous study [32].

Table 1. Melting temperatures and latent heat values of composite PCMs [32].

PCMs Melting Temperature (◦C) Latent Heat (kJ/kg)

EHS/5 wt.% BN 25.49 196.85
EHS/5 wt.% BN/7.5 wt.% EG 25.99 171.63

2.1. Geometric Models

The models of the pure brick wall and brick wall filled with composite PCMs were
structured by eight bricks with the size of 200 mm × 50 mm × 50 mm, and the cement
with the thickness of 10 mm was paved on the upper side of the bricks and the combi-
nation positions of the bricks; thus, the two models on the whole presented the size of
410 mm × 50 mm × 240 mm. The simulated models were consistent with the experimental
walls in terms of structure and size [32], which are shown in Figure 1(a-I,a-II); the models
after meshing are shown in Figure 1(b-I,b-II).

The front and rear sides of the models represented the indoor and outdoor sides, re-
spectively. Four temperature probes were arranged in the middle of the bricks’ surface of the
second and third layers at the internal side so that the temperature corresponding to internal
side could be calculated, which equaled the average of the four monitored temperatures.
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Furthermore, some assumptions were made regarding the models in the simulations
for simplification:

(1) The contact between the bricks and cement or the PCMs formed a good fit; therefore,
the thermal contact resistance between them could be disregarded;

(2) The PCMs and bricks were distributed evenly and possessed isotropy characteristics in
terms of physical properties, such as thermal conductivity. In addition, the variations
in volume for the PCMs during the phase change process were disregarded;

(3) The phase changes of the PCMs were characterized by the enthalpy method; thus,
tracking the position of the solid–liquid interface in the phase change process could
be avoided, and the internal convection was not taken into account due to the small
size of the holes in the bricks.

2.2. Solution of the Models
2.2.1. Governing Equation

The energy equation involved in the simulation is shown as follows:

ρc p
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where T (K), ρ (kg/m3), cp (J/(kg·K)), and k (W/(m·K)) refer to temperature, density,
specific heat capacity, and thermal conductivity, respectively.

2.2.2. Boundary Conditions

The temperature of the outer surface of the mathematical model was known, whose
values with the variation of time were obtained from the experimental results measured by
thermocouples and then input as the partial boundary conditions to perform the simulation.
Considering the mathematical model of the phase change brick wall filled with EHS/5 wt.%
BN/7.5 wt.% EG as an example, the specific temperature variation profiles of the outer
surface under the three heating temperatures of 50 ◦C, 55 ◦C, and 60 ◦C are shown in
Figure 2 [32]. In addition, the bottom of the mathematical model was the adiabatic surface,
and the remainder of the surfaces, including the upper and inner surfaces as well as two
sides, were set as natural convection heat transfer with ambient air. The temperature of
these surfaces was 18 ◦C, and the coefficients of convection heat transfer at the upper
horizontal face and vertical faces, including the inner face and two sides, were calculated
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based on the Equations (2) and (3), both of which were sourced from COMSOL Multiphysics
software 6.0.

h1 =


k
L 0.54Ra1/4

L if T > Text and 104 ≤ RaL ≤ 107

k
L 0.15Ra1/3

L if T > Text and 107 ≤ RaL ≤ 1011

k
L 0.27Ra1/4

L if T ≤ Text and 105 ≤ RaL ≤ 1010

(2)

where h1 is the convection heat transfer coefficient at the horizontal face, (W/(m2·K)); L
denotes characteristic length, (m); and RaL stands for Rayleigh number, the expression of
which is shown in Formula (4).

h2 =



k
L

0.68 + 0.67Ra
1
4
L(

1+
(

0.492k
µcp

) 9
16

) 4
9

 RaL ≤ 109

k
L

0.825 + 0.387Ra
1
6
L(

1+
(

0.492k
µcp

) 9
16

) 8
27


2

RaL > 109

(3)

where h2 is the convection heat transfer coefficient at the vertical face, (W/(m2·K)); µ means
dynamic viscosity, (Pa·s).

RaL = GrPr =
ρ2gαcp∆TL3

µk
(4)

where Gr and Pr are the Grashof number and Prandt number, respectively; g is the gravita-
tional acceleration, (m·s2); α is the volume expansion coefficient of the air, (1/K); and ∆T is
the temperature difference between the inner face of the wall and the air, (K).
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2.2.3. Initial Conditions

The initial temperature of the entire mathematical model remained the same as that
in the experimental measurements. Due to the influence of the local climate, there existed
a temperature fluctuation of the indoor air in spite of the temperature being regulated at
18 ◦C by the air conditioning equipment; thus, the initial temperature of the brick models
in the simulations exhibited changes.
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2.2.4. Physical Properties of Materials and Initial Values

The associated parameters of thermal conductivity, specific heat capacity, and density
were required to describe the thermodynamic properties of the materials involved in the
simulations. The specific values of the cement, brick, EHS/5 wt.% BN, and EHS/5 wt.%
BN/7.5 wt.% EG are summarized in Table 2 [32]. In terms of the specific heat capacity, a
differential scanning calorimeter (DSC) was used to conduct the measurements. It can be
seen from Figure 3 that the specific heat capacity of the brick in the range of 10~70 ◦C had
little changes and was, therefore, viewed as a constant of 3040 J/(kg·K) in the simulations,
which was the mean value in the above-mentioned temperature range. By contrast, obvious
peaks appeared in the specific heat capacities curves of EHS/5 wt.% BN and EHS/5 wt.%
BN/7.5 wt.% EG around the phase change temperature; thus, the corresponding specific
heat capacities with the changes of temperature were input as the form of the interpolation
function. Based on the enthalpy method, the phase change process of the PCMs in the
bricks could be presented by the specific heat capacity.

Table 2. Physical properties of various materials [32].

Materials Thermal Conductivity (W/(m·K)) Specific Heat Capacity (J/(kg·K)) Density (kg/m3)

Cement 0.93 1050 1800

Brick 1.209 3040 2240

EHS/5 wt.% BN 0.917 Interpolation method 1380

EHS/5 wt.% BN/7.5 wt.% EG 2.360 Interpolation method 1420
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2.2.5. Validated Experiments

As mentioned above, the temperatures of the surface representing the outdoor side in
simulations were determined by the experiments. The experimental apparatus illustrated
in the previous study [32] was composed of four parts: infrared controller, infrared, experi-
mental wall, and data acquisition instrument. The heat of infrared controlled by an infrared
controller at a certain constant temperature was used to heat the surface of the experimen-
tal wall, and a data acquisition instrument was able to collect the temperatures with the
variations of time via thermocouples, which were the data required by the simulations. The
temperatures of the surface opposite the heated surface could also be determined by the
average of the four temperatures measured by the thermocouples arranged in the middle
of four bricks at the second and third layers, respectively, which could be compared with
the simulation results to verify the accuracy of the simulation process. In addition to the
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charging process, the experiments at the discharging stage were conducted by turning off
the infrared and recording the temperature variations in the process of natural cooling
to room temperature. In addition, the experimental wall and infrared were positioned in
parallel, and the distance between them was maintained at a constant 30 cm.

2.3. Grid Independence

The verification of grid independence for the model was carried out on the phase
change wall with EHS/5 wt.% BN as the PCMs. The mesh images of walls with different
grid amounts of 159,016, 48,082, and 18,762 are shown in Figure 4a–c, respectively, and the
corresponding simulation results are compared in Figure 4d, which suggest that there was
almost no difference among the three profiles. Therefore, the wall model with 48,082 grid
amounts was used for the later simulation, and the time step was set as 1 s, considering the
balance between the calculational time and accuracy.

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 23 
 

  
(a) (b) 

  

(c) (d) 

Figure 4. Schematic diagram of phase change wall after grid division with different grid quantities: 
(a) 159,016 grid quantity; (b) 48,082 grid quantity; and (c) 18,762 grid quantity. (d) Simulation results 
at the heating temperature of 50 °C under different grid quantities. 

3. Simulation Results 
Both the simulations and the experiments were carried out under the three heating 

temperatures of 50 °C, 55 °C, and 60 °C at two stages of charging and discharging, and the 
obtained results were presented and analyzed as follows. 

3.1. Pure Brick Wall 
The accuracy of the simulation can be determined by comparing the temperatures of 

the internal surface of the wall obtained from the experimental and the simulation data, 
and the time duration of the temperature within the thermal comfort range was used as 
the quantitative evaluation index. The typical curves of temperature variation at the inter-
nal surface of the pure brick wall corresponding to the simulation and experimental re-
sults [32] at both the charging and discharging stages are compared in Figure 5(a-Ⅰ,a-II). 
The specific values of time duration within the thermal comfort range under the different 
heating temperatures of 50 °C, 55 °C, and 60 °C are summarized in Table 3. It can be con-
cluded that there exists good agreement between the experimental and simulation results. 
The deviations of the time duration in the charging and discharging processes were ap-
proximately 10% and 7%, respectively, which were likely to be attributed to the influence 
of the fluctuation of the environmental temperature during the experiments and the ex-
istence of the thermal contact resistance between the bricks and the cement. 

Figure 4. Schematic diagram of phase change wall after grid division with different grid quantities:
(a) 159,016 grid quantity; (b) 48,082 grid quantity; and (c) 18,762 grid quantity. (d) Simulation results
at the heating temperature of 50 ◦C under different grid quantities.

3. Simulation Results

Both the simulations and the experiments were carried out under the three heating
temperatures of 50 ◦C, 55 ◦C, and 60 ◦C at two stages of charging and discharging, and the
obtained results were presented and analyzed as follows.
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3.1. Pure Brick Wall

The accuracy of the simulation can be determined by comparing the temperatures of
the internal surface of the wall obtained from the experimental and the simulation data,
and the time duration of the temperature within the thermal comfort range was used
as the quantitative evaluation index. The typical curves of temperature variation at the
internal surface of the pure brick wall corresponding to the simulation and experimental
results [32] at both the charging and discharging stages are compared in Figure 5(a-I,a-II).
The specific values of time duration within the thermal comfort range under the different
heating temperatures of 50 ◦C, 55 ◦C, and 60 ◦C are summarized in Table 3. It can be
concluded that there exists good agreement between the experimental and simulation
results. The deviations of the time duration in the charging and discharging processes
were approximately 10% and 7%, respectively, which were likely to be attributed to the
influence of the fluctuation of the environmental temperature during the experiments and
the existence of the thermal contact resistance between the bricks and the cement.
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Table 3. Time duration within thermal comfort temperature range at different heating temperatures
of pure brick wall.

Stage Heating Temperature
Time Duration within the Thermal Comfort Temperature Range (s)

(Simulation Results)

Charging
50 ◦C 6383
55 ◦C 3499
60 ◦C 3011

Discharging
50 ◦C 7562
55 ◦C 8220
60 ◦C 7404

3.2. Phase Change Walls

Both the phase change walls with EHS/5 wt.% BN and EHS/5 wt.% BN/7.5 wt.% EG as
the PCMs, respectively, were simulated and investigated under the heating temperatures of
50 ◦C, 55 ◦C, and 60 ◦C. Considering the phase change wall with EHS/5 wt.% BN/7.5 wt.% EG
as PCMs at 60 ◦C as an example, the comparative results at the charging and discharging
stages are presented in Figure 5(b-I,b-II). In the charging stage, the rate of temperature
rise turned out to be smaller, approximately 26 ◦C, which could be explained by the phase
change behavior of the PCMs, which absorbed abundant heat and led to the temperature
increasing more slowly. In the discharging stage, the existence of a supercooling phe-
nomenon of the PCMs caused the evidently reduced temperature drop rate to appear at
approximately 22 ◦C, lower than the melting temperature of 26 ◦C. In addition, the values
of the specific heat capacity used in the charging process were applied to simulate the
discharging process due to the difficulty in obtaining the correct specific heat capacity of
the PCMs in the solidification process by DSC, which also brought about the deviation
between the results of the experiments and the simulations due to the subcooling degree.
The specific values of time duration within the thermal comfort temperature range for the
two types of phase change walls are shown in Table 4.

Table 4. Time duration within thermal comfort temperature range at different heating temperatures
of phase change walls.

PCM Filled into Bricks Heating Temperature
Time Duration within the Thermal Comfort Temperature Range (s)

(Simulation Results)

EHS/5 wt.% BN
50 ◦C 12,093
55 ◦C 7002
60 ◦C 5021

EHS/5 wt.% BN/7.5 wt.% EG
50 ◦C 6722
55 ◦C 4734
60 ◦C 4102

3.3. Comparisons between the Pure Brick Wall and Phase Change Walls

The temperature nephograms at 2000 s, 4000 s, 6000 s, and 8000 s of the three types of
walls, including the pure brick wall, phase change wall with EHS/5 wt.% BN/7.5 wt.% EG
as the PCMs, and another phase change wall with EHS/5 wt.% BN as the PCMs, and cross
sections of the walls from the external to the internal sides during the charging process
under the heating temperature of 50 ◦C are shown in Figure 6, Figure 7 and Figure 8,
respectively. The temperature range of color legends for all the temperature nephograms
was set from 15 ◦C to 60 ◦C for the convenience of mutual comparison. It can be seen
intuitively that the overall temperatures of the walls gradually increased due to the heat
transferred from the outside to the inside, and the pure brick wall corresponded to the
highest internal surface temperature and the largest temperature rise rate within 8000 s due
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to the poor heat storage performance compared with the phase change walls. In addition,
the phase change wall with EHS/5 wt.% BN as the PCMs had the lowest internal surface
temperature due to the optimal heat storage effects brought about by the largest specific
heat capacity during the phase change process. Similar heat transfer characteristics for the
three types of walls appeared in the temperature nephograms of the cross section of the
walls in terms of the rate of the temperature rise. Therefore, it was concluded that the phase
change walls made contributions to delaying the heat transferred from the external to the
internal sides, and the brick wall filled with EHS/5 wt.% BN presented an advantage in
terms of thermoregulation performance.
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Figure 6. Temperature contours of pure brick wall at different times: (a-I) overall cloud map at 2000 s;
(a-II) internal cross section at 2000 s; (b-I) overall cloud map at 4000 s; (b-II) internal cross section at
4000 s; (c-I) overall cloud map at 6000 s; (c-II) internal cross section at 6000 s; (d-I) overall cloud map
at 8000 s; (d-II) internal cross section at 8000 s.
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Figure 7. Temperature contours of phase change wall filled with EHS/5 wt.% BN/7.5 wt.% EG: (a-I)
overall cloud map at 2000 s; (a-II) internal cross section at 2000 s; (b-I) overall cloud map at 4000 s;
(b-II) internal cross section at 4000 s; (c-I) overall cloud map at 6000 s; (c-II) internal cross section at
6000 s; (d-I) overall cloud map at 8000 s; (d-II) internal cross section at 8000 s.
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Figure 8. Temperature contours of phase change wall filled with EHS/5 wt.% BN: (a-I) overall cloud
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4. Machine Learning

The application of machine learning to the studies of phase change walls has outstand-
ing advantages in terms of prediction ability and low costs, which, therefore, can be used in
combination with the experiments and simulations. Currently, the research method of ma-
chine learning are involved mainly with the random forest method [21], logistic regression
method [33], artificial neural network method [34], and Bayesian learning method [35]. In
the present study, the BP neural network method with the prediction ability for nonlinear
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system was adopted to conduct machine learning on the thermoregulation effects of the
phase change walls and to make predictions. In addition, it was found that the EHS/5 wt.%
BN/7.5 wt.% EG as the PCMs had the best leakage prevention in a preliminary study [32].
The content of machine learning was focused on the variations of the time duration of the
temperature at the internal side within the thermal comfort range during the charging
process for the phase change wall with EHS/5 wt.% BN/7.5 wt.% EG as the PCMs under
different environmental conditions to reveal the thermal response characteristics.

4.1. The Introduction to the BP Neural Network

The BP neural network relies on the information connection and delivery layer by
layer to process abundant data by imitating the animal neural structure [19]. The training
samples were first input into the input layer and then transmitted from the hidden layer to
the output layer. Finally, the output results could be obtained via signal transformation.

The schematic diagram of the topological structure of the BP neural network is pre-
sented in Figure 9. The calculation expression of the output is y = Σωixi − θi, where xi is the
input value; ωi denotes the synaptic weight of the neuron; and θi refers to the threshold of a
certain layer. Additionally, when the neuron outputs the objects, an appropriate activation
function is required to be employed due to the nonlinearity of the data, and the frequently
used activation functions are introduced as follows: Softmax function, Tansig function,
Relu function, and Sigmoid function. Generally speaking, the Tansig function is adopted
at the hidden layer, while the Sigmoid function is used at the output layer to address the
classification issues; however, this is not fixed, and it is necessary to make some adjustments
based on the results of machine learning. In the present study, the Tansig function was
applied for each layer, and its expression is shown in Equation (5):

f (z) = tan sig(z) =
exp(z)− exp(−z)
exp(z) + exp(−z)

(5)
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In the training process of machine learning, the associated parameters, such as the
numbers of hidden layers and nodes, the learning rate, and the momentum factor, are
required to be set and then modified based on the training results, especially for the number
of hidden nodes. Having fewer hidden nodes tends to cause a decrease in the machine
learning ability of the entire neural network; therefore, the performance processing of the
data and the prediction accuracy would be lowered. Moreover, hidden nodes in large
quantities also reduce the learning efficiency due to the increase in the complexity of the
model, which definitely consumes a longer learning time and introduces the problem of
overfitting. Thus, the number of hidden nodes can be gradually increased from a small
level in a small-scale neural network. Figure 10 shows the specific logical procedures
of the BP neural network in this work. Before training, firstly, the input and output
parameters were defined; the former denotes the independent variable, while the latter
denotes the dependent variable influenced by the input parameters. In addition, 70% of
the data collected were used as the training set, and the remainder of the data were evenly
divided into two parts to serve as the verification and test sets, respectively. Moreover, the
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training parameters should be adjusted multiple times and then determined. In terms of the
stopping criteria of the training process of machine learning, the associated requirements
should be satisfied and are described as follows:

(1) The maximum training times serve as the first judgment basis. When the training
times reach the maximum value, the training process can be stopped. Otherwise, the
training accuracy error must be inspected.

(2) The training accuracy error is the next level judgment parameter. If the training results
meet the requirement of deviation accuracy, the training process can be regarded as
completed. Otherwise, the training must continue to proceed.
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4.2. Parameters Determination in the BP Neural Network

In the BP neural network, the raw data were divided into training, testing, and
verification sets in the random form, and the Bayesian regularization function was used
for training on the neural network. The training set provides the raw data for training in
machine learning, and the verification set can be used to check the learning effects after
several iteration processes. When the accuracy of the learning model is found to have
little increase, it is necessary to modify the associated parameters required to avoid the
appearance of this issue after the learning process is finished. The data of the test set are not
covered by machine learning and, thus, can be employed to measure the learning effects of
the final model. Generally, including more data in the training set tends to produce better
training effects. The effects of machine learning in this study would decrease if the raw
data were involved only in the results from the experiments [32]. Therefore, simulations
were conducted to apply the corresponding results to further enlarge the amount of raw
data. It was demonstrated that there existed a good agreement between the experiment
and the simulation results; hence, the wall model could be used to make simulations to
enrich the training set. In this work, the ambient temperature and heating temperature
were defined as input parameters, the specific scope of which are shown in Table 5. The
ambient temperature varied within the range of 18~24 ◦C; here, 2 ◦C was a changing
internal, while the heating temperature varied from 36 ◦C to 72 ◦C, and the corresponding
changing internal was set as 3 ◦C. In addition, the time duration of the temperature at
the internal side within the thermal comfort range of 22~28 ◦C was the output parameter.
Figure 11 shows the variations of the thermal comfort duration at the ambient temperature
of 18 ◦C as the heating temperature increased from 45 ◦C to 72 ◦C based on the simulation
results, and it was revealed that the thermal comfort duration decreased to 3787 s when the
heating temperature reached 72 ◦C.
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Table 5. Input parameters settings.

Input Parameter Range Unit

Ambient temperature (18, 2, 24) ◦C
Heating temperature (36, 3, 72) ◦C
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The determined values of the critical parameters of the BP neural network are summa-
rized in Table 6. In consideration of the single change trend between the input and output
parameters after the adjustments, two hidden layers were arranged, and the corresponding
numbers of neural units were set to 30 and 40. Additionally, the maximum number of
iterations, the learning rate, and the momentum factor were determined as 50, 0.01, and 0.9,
respectively. Additionally, the quality of the training results was evaluated by the mean
squared error, and the deviation of the training accuracy was set to 0.25% to enhance its
accuracy. The entire training process underwent multiple stages, including the input layer,
hidden layer, and output layer, with the intention of obtaining the optimization results.

Table 6. Key parameters of BP neural network.

Key Parameter Value

Number of hidden layers 2
Numbers of neural units of hidden layers 30, 40

Activation function of hidden layers Tansig
Maximum number of iterations 50

Learning rate 0.01
Momentum factor 0.9
Training accuracy 0.0025

Error analysis MSE

4.3. Machine Learning Results Based on the BP Neural Network

The entire training process underwent 50 iterations. The training accuracy could be
enhanced after each iteration, and the final accuracy met the set requirement. The data
fitting effects of the training and test sets at 25 and 50 iterations exhibited a difference.
Specifically, the distribution of the output data was relatively scattered after 25 iterations,
and the fitting effects failed to reach the required training accuracy, producing the fitting
correlation coefficients of training and test results of only 0.96388 and 0.7922, respectively;
therefore, the training process was required to proceed. By contrast, both fitting correlation
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coefficients of the training and test results exceeded 0.99 after 50 iterations, which are clearly
shown in Figure 12. In addition, the training accuracy error was only 0.000211, which is
lower than 0.0025. Therefore, it can be concluded that the training accuracy of machine
learning achieved the expected effects, and, thus, the training process could be completed.
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Figure 12. Training results of BP neural network after 50 iterations: (a) training set and (b) test set.

In addition to the studies on the fitting effects of the training and test data, the accuracy
of the BP neural network after training was further verified based on the difference between
the learning results and the simulation data. Ten sets of data from the raw data were input
again into the model after the training process to obtain the specific deviation, and the
comparative results are shown in Figure 13. It was suggested that most deviations were
approximately 2%, and the maximum one corresponded to 69 ◦C, which equaled 4.9%,
which was lower than 5%. On the whole, there was no appearance of overfitting or
underfitting issues, and the BP neural network presented good machine learning effects in
terms of the thermoregulation performance of a single wall, making it suitable to use in
further predictions studies.
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Figure 13. Comparisons between machine learning results and raw data.

The prediction effects of the BP neural network for the phase change walls need to be
evaluated by the input of the unknown parameters that were excluded in the raw data. In
view of the ambient temperature of the raw data within the range of 18~24 ◦C, the ambient
temperature of the input data to be predicted was input as 18 ◦C or 24 ◦C, and another
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input parameter, namely the heating temperature, was randomly determined, as shown in
Table 7. Simultaneously, simulations were conducted at the same conditions. It can be seen
that the prediction results were close to the simulation data under different conditions, and
only a relatively large deviation appeared at ambient temperature of 24 ◦C and the heating
temperature of 58.5 ◦C; however, this was still less than 3.5%. Thus, it can be concluded that
the BP neural network had the ability to accurately predict the thermoregulation effects of
the phase change walls. In addition, machine learning exhibited the strength of having a
low time cost. The entire training process of the BP neural network was completed in only
12 s, and the machine learning model after verification could take several seconds to make
predictions. By contrast, 2~3 days would be consumed to simulate the thermoregulation
performance of the phase change wall under a certain ambient temperature and heating
temperature. Therefore, the application of machine learning to the studies of phase change
walls presented outstanding merits in terms of research cost and efficiency.

Table 7. Value comparison between prediction and simulation results.

Ambient Temperature (◦C) Heating Temperature (◦C) Simulation Results (s) Prediction Results (s)

18 52.5 5862 5706
18 58.5 5394 5507
18 70.5 3863 4007
24 52.5 9724 9593
24 58.5 7324 7810
24 70.5 5793 5880

5. Conclusions

In the present study, the application of PCMs of hydrate salts with high charg-
ing/discharging efficiencies, low costs, and great potential to the building envelope was
studied to discuss the thermoregulation performance of the phase change walls at the inner
faces under different environmental conditions via simulations and machine learning. The
thermal response characteristics of the phase change walls provided valuable informa-
tion and a basis for the practical usage of PCMs in the building envelope in terms of the
improvement of indoor thermal comfort. The obtained conclusions are as follows:

(1) The pure brick wall corresponded to the largest rate of temperature rise in the charging
process. By contrast, the phase change walls could evidently decay the heat trans-
ferred from the external to the internal sides. The brick wall filled with EHS/5 wt.%
BN/7.5 wt.% EG presented worse storage effects compared with that filled with
EHS/5 wt.% BN due to its lower latent heat value and larger thermal conductivity.
However, EHS/5 wt.% BN/7.5 wt.% EG had a better leakage performance and, thus,
had greater prospects for practical application in the building envelope.

(2) As the heating temperature increased, the extension effects of thermal comfort du-
ration brought by the PCMs were weakened due to the increase in heat transfer,
e.g., the time duration for EHS/5 wt.% BN at 50 ◦C and 60 ◦C were 12,093 s and
5021 s, respectively.

(3) The BP neural network was adopted to conduct machine learning on the thermoreg-
ulation performance of the phase change wall, which suggested that the learning
deviation between the raw data and the test results obtained from the BP neutral
network was within 5%. It was also found that the BP neural network after being well
trained could accurately predict the time duration of the temperature at the internal
side maintained within the thermal comfort since the deviation could be restricted to
within 3.5%, which suggested that machine learning had great prospects in the heat
storage of buildings.

(4) In the future, in addition to the exploration of PCMs with greater thermal properties
and cyclic stability, the application studies of phase change walls in different building
types and more actual building situations, such as the various sources of humans and
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equipment being considered, deserve to be carried out. Moreover, unified standards
for the evaluation of energy consumption and economic benefits are expected to be
established for the determination of reasonable applications of using PCMs in the
building envelope.
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