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A B S T R A C T

Three-phase graphene/fibre-reinforced cantilever skew laminates are optimized with the design objective of
maximizing the fundamental frequency. Four optimal design problems are formulated involving one, two,
three, and four design variables: graphene content, fibre content, layer thicknesses, and the fibre orientations.
Optimization is implemented using a Sequential Quadratic Programming optimization algorithm within finite
element analysis. It is observed that optimizing the graphene and fibre contents across the thickness leads to
increased fundamental frequency. A trend is observed for the frequency of skew laminates to increase but for
their design efficiency to decrease compared to rectangular laminates.
1. Introduction

The use of laminated rectangular and skew plates as structural
components has increased due to their significant advantages. These
include high strength/weight and high stiffness/weight ratios com-
pared to conventional materials. Composite plates, used as lightweight
components, are often exposed to severe vibrations. In this case, a
critical issue is to avoid resonance when the natural frequency of the
laminate coincides with the excitation frequency. Avoiding resonance
becomes particularly important in aerospace applications due to weight
limitations. One of the methods adopted to resolve this issue is to
design a laminate such that its fundamental frequency is higher than
the excitation frequency. This approach leads to an optimal design
problem with the objective of maximizing the fundamental frequency
for a given weight of the laminate.

One of the recently introduced technologies to produce lightweight
composites is to use nanoscale reinforcements which have high
stiffness–weight ratios compared to traditional fibre reinforcements.
Currently, carbon nanotubes (CNTs) and graphene nanoplatelets (GPLs)
are among the most widely used nanomaterials introduced as reinforce-
ments. Due to their excellent mechanical properties, a small amount of
nano reinforcement can substantially improve the mechanical proper-
ties and the vibration response of the laminates.

Several studies on skew plates’ vibration response have been re-
ported in the literature. Vibrations of skew laminates with cut-outs

∗ Corresponding author at: Discipline of Civil Engineering, University of Central Lancashire, Preston, UK.
E-mail address: gdrosopoulos@uclan.ac.uk (G.A. Drosopoulos).

were studied in [1], and the vibrations of laminated skew plates with
and without cut-outs in [2]. Vibrations of skew cantilever plates with
stiffeners were studied in [3] to observe the differences in the frequen-
cies compared to rectangular plates. Results indicated that cantilever
skew plates provide improved flexural rigidity as compared to rect-
angular plates. Vibrations of laminated cantilever trapezoidal plates
were the subject of the study in [4]. In [5,6], free vibrations of skew
laminates were studied, and it was observed that as the skew angle
increases, the natural frequency also increases. In [7], an investigation
of the free vibrations of skew plates indicated an increase of the
fundamental frequency with increasing skew angle, aspect ratio and
width to thickness ratio. In [8], vibrations of laminated skew plates
were studied, and it was observed that the frequency increases with
increasing skew angle.

Several studies focused on the response of graphene or carbon
nanotube-reinforced laminates known as two-phase nanocomposites.
Vibrations of functionally graded and carbon nanotube reinforced skew
laminates were studied in [9–12]. The effects of nanotube content
on the frequencies of skew laminates were investigated in [13], and
the impact of carbon nanotube waviness and agglomeration on the
vibrations of skew laminates in [14]. The vibration response of skew
plates with varying stiffness was studied in [15], and it was observed
that an increase in the skew angle increased the fundamental frequency
confirming the previous results.
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Several studies involved the vibrations of functionally graded
graphene nanoplatelet-reinforced two-phase composites. The studies
[16–19] observed that a small increase in the graphene content in-
creased the fundamental frequency substantially. Functionally graded
graphene-reinforced plates subject to thermal and mechanical loads
were investigated in [20]. This study also indicated that adding a
small amount of graphene leads to a considerably higher fundamental
frequency.

Several investigations studied the optimal design of skew laminates.
Optimization of skew laminates to maximize the frequency was the
subject of the paper [21], with the study based on the first-order shear
deformation theory. It was observed that as the skew angle increased,
the optimal fibre orientations increased and for large enough skew
angles, the influence of the fibre orientations became insignificant. Fun-
damental frequencies of symmetric and anti-symmetric skew laminates
were maximized in [22] by determining the optimal stacking sequence.
Genetic algorithms, particle swarm optimization and cuckoo search
methods were used in [23] to maximize the fundamental frequency of
skew plates.

The vibrations of graphene-reinforced skew plates on point supports
were studied in [24]. The nonlinear vibration response of graphene-
reinforced beams was studied in [25] and it was observed that the
non-uniform distribution of graphene across thickness yielded better
results as compared to the uniform distribution of graphene. The ef-
fect of graphene nanoplatelets on a polymer composite was studied
in [26] and it was noted that a proper alignment of the nanoplatelets
significantly improved the mechanical response compared to randomly
orientated GPLs.

Recently, the mechanical response of three-phase composites us-
ing GPLs or CNTs and with glass or carbon fibre reinforcements in
a polymer matrix has been investigated. These studies aim to bal-
ance the benefits of nanoscale reinforcements to achieve lower weight
and higher stiffness with the increased cost of using nano materials.
An investigation on the optimization of three-phase graphene/fibre-
reinforced rectangular laminates with the objective of maximizing the
fundamental frequency was presented in [27]. Design variables used
in this study were the graphene content, the fibre content, the layer
thicknesses and the fibre orientations and the numerical results were
given only for the simply supported and clamped boundary condi-
tions. Results highlighted the improvement of the design efficiency by
introducing optimal non-uniform distributions of graphene and fibre
reinforcements across the laminate thickness. The vibration response
of three-phase, graphene/carbon fibre-reinforced laminates was studied
in [28], emphasizing the contribution of graphene reinforcement to
increase the fundamental frequency. In [29], the influence of using
graphene reinforcement in addition to carbon or glass fibres on the
buckling response of angle-ply laminates was evaluated. Results in-
dicated that an increase in the graphene content led to substantially
higher buckling loads.

Based on the literature study and according to authors’ best knowl-
edge, no research has been conducted on optimizing the fundamen-
tal frequency of three-phase graphene/fibre-reinforced skew cantilever
laminates. The present article involves the optimal designs of three-
phase, skew cantilever laminates using four design parameters. Both
graphene nanoplatelets and glass or carbon fibres are used as reinforce-
ments leading to three-phase laminates. Design variables include the
graphene and fibre contents of layers, the thickness of each layer and
the fibre orientations. The overall scheme is implemented in MATLAB
using finite element analysis. A design efficiency factor is introduced to
provide a quantitative criterion to compare and assess the results of dif-
ferent optimal designs and the effectiveness of the design parameters.
The vibration response and the design efficiency of three-phase skew
and rectangular plates are also evaluated for comparison purposes.

Sections 2 and 3 of the article provide basic constitutive equations
and the finite element formulation adopted in this work. The effec-

tive material properties using micromechanics equations are given in t

2

Section 4. Section 5 presents the optimal design problems, formulated
for an increasing number of design variables. The verification of the
proposed scheme by comparison with published literature and commer-
cial finite element software is provided in Section 6. Sections 7 and 8
present the investigation’s results, discussions, and conclusions.

2. Basic equations

The geometry of the skew plate under consideration is shown in
Fig. 1. The length, width and thickness of the plate are defined as 𝑎, 𝑏
and 𝐷 in the 𝑥, 𝑦 and 𝑧 directions, respectively. Clamped boundary
conditions are imposed on one side of the skew plate with a length
equal to 𝑏 (Fig. 1). The remaining three edges have free boundary
conditions. The laminate consists of 𝑁 layers with 𝜃𝑘 denoting the angle
between the principal material direction and the coordinate 𝑥 of the 𝑘th
lamina. The mid-plane of the laminate coincides with the 𝑥𝑦 plane as
shown in Fig. 1. The skew angle of the laminate is denoted by 𝛼. The
coordinates of the bottom and top of the 𝑘th layer are denoted as 𝑧 = 𝑧𝑘
nd 𝑧 = 𝑧𝑘+1 in the thickness direction.

.1. Kinematics

The kinematics of the composite plate are formulated using the
irst-order shear deformation theory (FSDT) with the displacement field
efined as:

1 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢 (𝑥, 𝑦, 𝑡) − 𝑧𝜑𝑥 (𝑥, 𝑦, 𝑡) (1a)

2 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑣 (𝑥, 𝑦, 𝑡) − 𝑧𝜑𝑦 (𝑥, 𝑦, 𝑡) (1b)

3 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑤 (𝑥, 𝑦, 𝑡) (1c)

here {𝑢} = {𝑢1, 𝑢2, 𝑢3}𝑇 is the displacement vector and
{

𝑢
}

=
{𝑢, 𝑣,𝑤, 𝜑𝑥, 𝜑𝑦}𝑇 indicates the vector of generalized displacements in
terms of the three mid-plane displacements and the normal rotations
about the 𝑥 and 𝑦-axes. The strain vector is given by:

𝜀} = ∇𝑆
{

𝑢
}

(2)

where {𝜀} =
{

𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝛾𝑥𝑦, 𝛾𝑦𝑧, 𝛾𝑥𝑧
}𝑇 and ∇𝑆 is defined as

∇𝑆 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕∕𝜕𝑥 0 0 −𝑧𝜕∕𝜕𝑥 0
0 𝜕∕𝜕𝑦 0 0 −𝑧𝜕∕𝜕𝑦

𝜕∕𝜕𝑦 𝜕∕𝜕𝑥 0 −𝑧𝜕∕𝜕𝑦 −𝑧𝜕∕𝜕𝑥
0 0 𝜕∕𝜕𝑦 0 −1
0 0 𝜕∕𝜕𝑥 −1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(3)

2.2. Constitutive equations

The constitutive equation of the 𝑘th lamina is expressed as:

{𝜎}𝑘 = [𝑄]𝑘 {𝜀} (4)

where {𝜎} is the stress vector and [𝑄] is the elastic stiffness matrix.
Under plane-stress conditions, the non-zero components 𝑄(𝑘)

𝑖𝑗 of the
lastic stiffness matrix for an orthotropic material are given by [30]:

(𝑘)
11 =

𝐸(𝑘)
1

(

1 − 𝑣(𝑘)12 𝑣
(𝑘)
21

) , 𝑄(𝑘)
12 =

𝑣(𝑘)12 𝐸
(𝑘)
2

(

1 − 𝑣(𝑘)12 𝑣
(𝑘)
21

) = 𝑄(𝑘)
21 ,

(𝑘)
22 =

𝐸(𝑘)
2

(1 − 𝑣(𝑘)12 𝑣
(𝑘)
21 )

,

(𝑘)
66 = 𝐺(𝑘)

12 , 𝑄(𝑘)
44 = 𝑘𝑠𝐺

(𝑘)
23 , 𝑄(𝑘)

55 = 𝑘𝑠𝐺
(𝑘)
13 (5)

n the above equations, 𝐸(𝑘)
1 , 𝐸(𝑘)

2 are the longitudinal and transverse
oduli, 𝑣(𝑘)12 , 𝑣

(𝑘)
21 denote the Poisson’s ratios, 𝐺(𝑘)

12 , 𝐺
(𝑘)
23 , 𝐺

(𝑘)
13 denote the

hear moduli of the 𝑘th layer and 𝑘𝑠 is the shear correction factor
aken as 5/6. The elastic coefficient 𝑄(𝑘) in the material coordinates
𝑖𝑗



Y. Jeawon, G.A. Drosopoulos, G. Foutsitzi et al. Thin-Walled Structures 189 (2023) 110903

c

o

3

F
g
i
a
f
f
𝑥

Fig. 1. Geometry of the laminated skew plate.
Fig. 2. Transformation of an isoparametric element from Cartesian (global) coordinates to natural (local) coordinates.
an be transformed into the coefficients 𝑄
(𝑘)
𝑖𝑗 referred to the laminate

coordinate system (𝑥, 𝑦, 𝑧) using the relation:
[

𝑄
]

(𝑘)
=
(

[𝐿]𝑇 [𝑄] [𝐿]
)

(𝑘) (6)

where [𝐿(𝜃𝑘)] is a transformation matrix and 𝜃𝑘 is the fibre orientation
f the 𝑘th lamina as shown in Fig. 1 [30].

. Finite element formulation

To solve the vibration problem, the finite element method is used.
or skew plates, the borders of the elements are not parallel to the
lobal axes of the plate as shown in Fig. 2. In the present study,
soparametric elements are utilized due to their capacity to simulate
n arbitrary geometry accurately. The skew plate is discretized using
our-noded isoparametric quadrilateral elements with five degrees of
reedom (DOF) per node. Using these elements, the global coordinates
and 𝑦 are related to the natural coordinates 𝜉 and 𝜂 as follows:

𝑥 (𝜉, 𝜂) =
4
∑

𝑗=1
𝑁𝑗 (𝜉, 𝜂) 𝑥𝑗 , 𝑦 (𝜉, 𝜂) =

4
∑

𝑗=1
𝑁𝑗 (𝜉, 𝜂) 𝑦𝑗 (7)

where the Lagrange interpolation functions 𝑁𝑗 are given by

𝑁𝑗 (𝜉, 𝜂) =
1
4
(

1 + 𝜉𝑗𝜉
) (

1 + 𝜂𝑗𝜂
)

(8)

In Eq. (8), 𝑥𝑗 , 𝑦𝑗 are the coordinates of the node 𝑗 in the cartesian
(physical) domain and 𝜉𝑗 , 𝜂𝑗 are the coordinates of the node 𝑗 in
the natural (computational) domain as shown in Fig. 2. The same
interpolation functions are used to define the generalized displacement
vector within an element as

{

𝑢 (𝑥, 𝑦, 𝑡)
}

≡
{

𝑢, 𝑣,𝑤, 𝜑𝑥, 𝜑𝑦
}𝑇 =

4
∑

𝑗=1

(

𝑁𝑗 (𝜉, 𝜂) [𝐼]5×5
{

𝑑𝑗 (𝑡)
}

𝑒

)

=
[

𝑁𝑢
]

{𝑑 (𝑡)}𝑒 (9)

where
{

𝑑𝑗
}

𝑒 =
{

𝑢𝑗 , 𝑣𝑗 , 𝑤𝑗 , 𝜑𝑥𝑗 , 𝜑𝑦𝑗
}𝑇 is the nodal displacement vector

at the 𝑗th node of the element 𝑒 and [𝐼]5×5 denotes the 5 × 5 identity
matrix.
3

Substituting Eq. (9) into (2) gives:

{𝜀 (𝑥, 𝑦, 𝑡)} = ∇𝑆
(

[𝐻]
[

𝑁𝑢
]

{𝑑}𝑒
)

= [𝐵] {𝑑}𝑒 (10)

where [𝐵] is the strain–nodal displacement matrix.

3.1. Governing equations

The equations governing the dynamic response and the variationally
consistent boundary conditions of the composite plate shown in Fig. 1,
are derived using Hamilton’s principle

∫

𝑡2

𝑡1
(𝛿𝑇 − 𝛿𝑈 + 𝛿𝑊 ) 𝑑𝑡 = 0 (11)

where 𝑇 is the kinetic energy, 𝑈 is the strain energy and 𝑊 is the work
done by external forces. At the initial and final times 𝑡1 and 𝑡2, the first
variations vanish. The energy terms in Eq. (11) are defined as follows:

𝑇 = 1
2 ∫𝑉

𝜌 {�̇�}𝑇 {�̇�} 𝑑𝑉 = 1
2

𝑁
∑

𝑘=1
∫𝐴 ∫

𝑧𝑘

𝑧𝑘−1
𝜌𝑘 {�̇�}𝑇 {�̇�} 𝑑𝑧𝑑𝐴

𝑈 = 1
2 ∫𝑉

{𝜎}𝑇 {𝜀} 𝑑𝑉 =
𝑁
∑

𝑘=1
∫𝐴 ∫

𝑧𝑘

𝑧𝑘−1
{𝜎}𝑇𝑘 {𝜀} 𝑑𝑧𝑑𝐴,

𝑊 = {𝑢}𝑇
{

𝑓𝑐
}

+ ∫𝑆1

{𝑢}𝑇
{

𝑓𝑠
}

𝑑𝑆 + ∫𝑉
{𝑢}𝑇

{

𝑓𝑣
}

𝑑𝑉 (12)

where 𝑁 is the number of layers, 𝑉𝑘 is the volume and 𝜌𝑘 is the density
of the 𝑘th layer. 𝑉 and 𝑆1 denote the volume and the surface area of
the plate, respectively.

{

𝑓𝑐
}

denotes the concentrated forces and
{

𝑓𝑆
}

,
{

𝑓𝑉
}

denote the surface and volume forces, respectively. Finally, a dot
over a variable represents a time derivative.

Using the displacements relations (1), the strain displacement re-
lations (2) and the constitutive relations (4), the Hamilton’s principle
(11) can be written as:

∫

𝑡2

𝑡1

{ 𝑁
∑

𝑘=1

(

∫𝐴 ∫

𝑧𝑘

𝑧𝑘−1
{𝛿𝜀}𝑇

[

𝑄
]

𝑘
{𝜀}𝑑𝑧𝑑𝐴 − ∫𝐴 ∫

𝑧𝑘

𝑧𝑘−1
{𝛿�̇�}𝑇 𝜌𝑘{�̇�}𝑑𝑧𝑑𝐴

)

−
(

{𝛿𝑢}𝑇
{

𝑓𝑐
}

+ ∫𝐴
{𝛿𝑢}𝑇

{

𝑓𝑠
}

𝑑𝐴 + ∫𝑉
{𝛿𝑢}𝑇

{

𝑓𝑉
}

𝑑𝑉
)}

𝑑𝑡 = 0
(13)
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Next, the displacements given by Eq. (9) and the strain–nodal displace-
ment relations (10) are substituted in (13) to discretize the variational
expression (13). Assembly of the discretized equation for the total
number of elements is then implemented and the global mass matrix,
stiffness matrix, as well as the displacement and force vectors are
derived. The equations of motion of the system can be expressed as
follows [27]

[𝑀]
{

𝑑
}

+ [𝐾] {𝑑} =
{

𝐹𝑚
}

(14)

here [𝑀], [𝐾], {𝑑} and
{

𝐹𝑚
}

are the global mass matrix, the global
inear stiffness matrix, the global displacement vector and the force
ector, respectively. It is noted that the essential boundary conditions
re enforced by imposing prescribed values at the corresponding DOF
f the discretized domain. Then, in the system of equations of motion,
he lines and columns of the prescribed degrees of freedom, as well as
he lines of the force vector are eliminated.

.2. Eigenvalue problem

By setting the force term to zero, and assuming that the plate
ndergoes a harmonic motion 𝑑 = 𝑑0𝑒−𝑖𝜔𝑡, the generalized governing
quation (14) can be used to solve the free vibration problem for the
aminated skew plate. In this case, Eq. (14) can be expressed as:

𝐾]
{

𝑑0
}

= 𝜆 [𝑀]
{

𝑑0
}

(15)

here eigenvalue 𝜆 = 𝜔2 and 𝜔 is the frequency of natural vibrations.
o obtain the numerical solution of the problem, a MATLAB code is
eveloped based on the finite element formulation of the problem.
t is noted that the selective integration technique is adopted for the
alculation of the stiffness matrix in order to avoid shear locking
ffect. The present finite element formulation can now be used to solve
ptimization problems and maximize the fundamental frequency of
kew laminates.

. Effective material properties

The skew plate is a three-phase multiscale laminate reinforced with
raphene nanoplatelets and glass or carbon fibres. Effective material
roperties of the nanocomposite are determined using the Halpin–Tsai
odel and the rule of mixtures as detailed in [31,32]. First, microme-

hanical equations are used to determine the effective properties of
he (two-phase) graphene-reinforced matrix. Next, using the effective
roperties of the graphene-reinforced matrix, the properties of the
hree-phase nanocomposite are computed based on the micromechan-
cal relations given in [33]. It is noted that the present approach of
irst determining the properties of the two-phase composite and then
alculating the overall properties of the three-phase graphene/fibre-
einforced composite, has also been adopted in a number of studies. For
xample, the micromechanics equations used in [34] for a two-phase
ibre-reinforced composite were also applied in [35] to calculate the
ffective material properties of a three-phase graphene/fibre-reinforced
atrix. This approach can also be observed in [36,37].

.1. Effective material properties of the graphene-reinforced matrix

The effective material properties of graphene-reinforced matrix are
etermined using the micromechanics equations given in [31,38–40].
ubscripts GPL, M and GM refer to graphene nanoplatelets, the matrix
nd the graphene-reinforced matrix, respectively. The effective Young’s
odulus of the graphene-reinforced matrix is calculated using the

elation:

𝐺𝑀 =
(

3
8
1 + 𝜉𝐿𝜂𝐿𝑉𝐺𝑃𝐿
1 − 𝜂𝐿𝑉𝐺𝑃𝐿

+ 5
8
1 + 𝜉𝑤𝜂𝑤𝑉𝐺𝑃𝐿
1 − 𝜂𝑤𝑉𝐺𝑃𝐿

)

𝐸𝑀 (16)

here 𝑉𝐺𝑃𝐿 is the volume of graphene nanoplatelets and 𝐸𝑀 is Young’s
odulus of the matrix. In Eq. (16), 𝜉L and 𝜉𝑤 are given by:

𝜉L = 2
𝑙𝐺𝑃𝐿 , 𝜉w = 2

𝑤𝐺𝑃𝐿 (17)

ℎ𝐺𝑃𝐿 ℎ𝐺𝑃𝐿

f

4

here 𝑙𝐺𝑃𝐿 is the length, 𝑤𝐺𝑃𝐿 is the width and ℎ𝐺𝑃𝐿 is the thickness
of the graphene nanoplatelets. The values for 𝜂𝐿 and 𝜂𝑤 used in Eq. (16)
an be determined from the following expressions:

𝐿 =

(

𝐸𝐺𝑃𝐿∕𝐸𝑀
)

− 1
(

𝐸𝐺𝑃𝐿∕𝐸𝑀
)

+ 𝜉L
, 𝜂𝑤 =

(

𝐸𝐺𝑃𝐿∕𝐸𝑀
)

− 1
(

𝐸𝐺𝑃𝐿∕𝐸𝑀
)

+ 𝜉𝑤
(18)

where 𝐸𝐺𝑃𝐿 is the Young’s modulus of graphene nanoplatelets and 𝐸𝑀
s the Young’s modulus of the matrix. The volume 𝑉𝐺𝑃𝐿 of the graphene
anoplatelets can be calculated from the Eq. (19):

𝐺𝑃𝐿 =
𝑊𝐺𝑃𝐿

𝑊𝐺𝑃𝐿 +
(

𝜌𝐺𝑃𝐿∕𝜌𝑀
) (

1 −𝑊𝐺𝑃𝐿
) (19)

where 𝑊𝐺𝑃𝐿 is the weight fraction of graphene nanoplatelets. The
effective shear modulus, Poisson’s ratio and density for the graphene-
reinforced matrix are given by:

𝐺𝐺𝑀 =
𝐸𝐺𝑀

2(1 + 𝑣𝐺𝑀 )
(20a)

𝑣𝐺𝑀 = 𝑣𝐺𝑃𝐿𝑉𝐺𝑃𝐿 + 𝑣𝑀
(

1 − 𝑉𝐺𝑃𝐿
)

(20b)

𝜌𝐺𝑀 = 𝜌𝐺𝑃𝐿𝑉𝐺𝑃𝐿 + 𝜌𝑀
(

1 − 𝑉𝐺𝑃𝐿
)

(20c)

where 𝜌𝐺𝑃𝐿 and 𝜌𝑀 represent the mass densities of the graphene
nanoplatelets and of the polymer matrix, respectively.

4.2. Effective material properties of the graphene and fibre-reinforced ma-
trix

The effective material properties of the three-phase nanocomposite
are determined using the following equations [29,33]:

𝐸11 = 𝐸𝐹11𝑉𝐹 + 𝐸𝐺𝑀
(

1 − 𝑉𝐹
)

(21)

𝐸22 = 𝐸G𝑀

(

𝐸𝐹22 + 𝐸𝐺𝑀 +
(

𝐸𝐹22 − 𝐸𝐺𝑀
)

𝑉𝐹
𝐸𝐹22 + 𝐸𝐺𝑀 −

(

𝐸𝐹22 − 𝐸𝐺𝑀
)

𝑉𝐹

)

(22)

𝐺12 = 𝐺13 = 𝐺𝐺𝑀

(

𝐺𝐹12 + 𝐺𝐺𝑀 +
(

𝐺𝐹12 − 𝐺𝐺𝑀
)

𝑉𝐹
𝐺𝐹12 + 𝐺𝐺𝑀 −

(

𝐺𝐹12 − 𝐺𝐺𝑀
)

𝑉𝐹

)

(23)

𝐺23 =
𝐸22

2
(

1 + 𝑣23
) (24)

𝑣12 = 𝑣𝐹12𝑉𝐹 + 𝑣𝐺𝑀
(

1 − 𝑉𝐹
)

(25)

𝑣23 = 𝑣𝐹12𝑉𝐹 + 𝑣𝐺𝑀
(

1 − 𝑉𝐹
)

⎛

⎜

⎜

⎝

1 + 𝑣𝐺𝑀 + 𝑣12𝐸𝐺𝑀
𝐸11

1 − 𝑣2𝐺𝑀 + 𝑣12𝑣𝐺𝑀𝐸𝐺𝑀
𝐸11

⎞

⎟

⎟

⎠

(26)

𝜌 = 𝜌𝐹𝑉𝐹 + 𝜌𝐺𝑀 (1 − 𝑉𝐹 ) (27)

n Eqs. (21)–(27), the subscripts 𝐹 and 𝐺𝑀 refer to fibres and
raphene-reinforced matrix, respectively. 𝑉𝐹 and 𝜌𝐹 denote the fibre
olume content and the density, respectively.

. Optimal design problems

The present study aims to maximize the fundamental frequencies of
5◦ skew graphene/fibre-reinforced laminates. The design variables are
efined as the GPLs and fibre contents of laminate, the layer thicknesses
nd the fibre orientations. These are among the design variables that
rucially affect the mechanical response of laminates, and they are
ey parameters in industrial applications. A sequence of optimization
roblems is formulated with the number of design variables increasing
rom one set to four sets of design variables. This approach makes it
ossible to evaluate the effectiveness of each set of design variables as
ompared to one another.

In the first optimization problem, the graphene contents of lay-
rs are specified as the design variables taking the layer thicknesses
niform and fibre contents of layers constant. In this case, GPLs are
istributed non-uniformly across the thickness. In the second optimiza-
ion problem, two design variables are specified, namely, the GPLs and
ibre contents of each layer, leading to laminates with non-uniformly
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distributed reinforcements. In the third design problem, three design
variables are the graphene and fibre contents as well as the layer
thicknesses leading to laminates with non-uniform layer thicknesses.
The last problem involves four design variables, namely, the graphene
and the fibre contents, the thickness and the fibre orientation of each
layer. As it will become apparent in the numerical results, the chosen
order of adding variables leads to a gradual increase of the fundamental
frequency, for increasing number of design variables. It is noted that
different order of adding variables could also be adopted within the
same numerical framework. In such a case, the vibration response
may provide additional results, noticing though, that for the case that
all design variables are considered (e.g., the four design variables of
this article), the same results with the present investigation would be
expected. This task is left for future investigation.

The layer thicknesses are denoted by ℎ𝑘 and the number of layers by
. The layer thicknesses are kept constant in the first two optimization

roblems and the total thickness of the laminate is 𝑁ℎ = 𝐷.
In the third and fourth optimization problems layer thicknesses ℎ𝑘

re non-uniform and the total laminate thickness is given by ∑𝑁
𝑘=1 ℎ𝑘 =

. The GPL and fibre contents of the 𝑘th layer are denoted by 𝑉𝐺𝑃𝐿𝑘
nd 𝑉𝐹𝑘, respectively.

.1. Optimization problems with one and two design variables

In the first two optimization problems, the layer thicknesses are
aken as uniform. Design variables are the GPLs content (Problem 1)
nd the GPLs and fibre contents (Problem 2). The volume of fibres
𝑉 𝑜𝑙𝐹𝑘) in the 𝑘th layer is given by 𝑉 𝑜𝑙𝐹𝑘 = 𝑎𝑏ℎ𝑉𝐹𝑘 where ℎ is the
ayer thickness and 𝑉𝐹𝑘 is the fibre volume content of the 𝑘th layer.

The total volume of fibres in the laminate is then given by summing up
the fibre volumes and is given by 𝑉 𝑜𝑙𝐹𝑇 =

∑𝑁
𝑘=1 𝑉 𝑜𝑙𝐹𝑘 = 𝑎𝑏ℎ

∑𝑁
𝑘=1 𝑉𝐹𝑘.

The maximum fibre volume for the laminate is given by 𝑉 𝑜𝑙𝐹𝑚𝑎𝑥 =
𝑎𝑏𝐷𝑉𝐹𝑚𝑎𝑥 with 𝑉𝐹𝑚𝑎𝑥 denoting the maximum fibre volume content. The
design constraint on the total fibre volume can be expressed as:

𝑉 𝑜𝑙𝐹𝑇 ≤ 𝑉 𝑜𝑙𝐹𝑚𝑎𝑥 ⇒ 𝑎𝑏ℎ
𝑁
∑

𝑘=1
𝑉𝐹𝑘 ≤ 𝑎𝑏𝐷𝑉𝐹𝑚𝑎𝑥 (28)

nequality (28) implies that ℎ
𝐷
∑𝑁

𝑘=1 𝑉𝐹𝑘 ≤ 𝑉𝐹𝑚𝑎𝑥. In the present study,
he results are given for laminates with 8 layers and in this case, the
nequality (28) can be expressed as:

1
8

8
∑

𝑘=1
𝑉𝐹𝑘 ≤ 𝑉𝐹𝑚𝑎𝑥 (29)

imilarly, the constraint on the weight of GPLs can be expressed as:

1
8

8
∑

𝑘=1
𝑊𝐺𝑃𝐿𝑘 ≤ 𝑊𝐺𝑃𝐿𝑚𝑎𝑥 (30)

where 𝑊𝐺𝑃𝐿𝑚𝑎𝑥 is the total weight of GPLs reinforcement and 𝑊𝐺𝑃𝐿𝑘
is the weight of GPLs in the 𝑘th layer. The optimization problem can
be stated as follows:

Maximize the fundamental frequency 𝜔
(

𝑉𝐹 ,𝑊𝐺𝑃𝐿
)

(31a)

subject to the constraints

1
8

8
∑

𝑘=1
𝑉𝐹𝑘 ≤ 𝑉𝐹𝑚𝑎𝑥 (31b)

1
8

8
∑

𝑘=1
𝑊𝐺𝑃𝐿𝑘 ≤ 𝑊𝐺𝑃𝐿𝑚𝑎𝑥 (31c)

𝑊𝐺𝑃𝐿𝑘 ≥ 0 (31d)

1 ≤ 𝑉𝐹𝑘 ≤ 𝑑2 (31e)

nequalities (31b) and (31c) are the constraints on the maximum fibre
nd GPLs contents, respectively. Inequality (31e) limits the minimum
 s

5

and maximum fibre volume content of layers. In the present study, the
lower fibre limit is specified as 𝑑1 = 10% and the upper fibre limit as
𝑑2 = 60%.

An important consideration for optimal design problems is the
efinition of a criterion that can be used to assess the improvement
chieved by optimization as compared to non-optimal designs. Fur-
hermore, the criterion can also be used to compare and assess the
ontributions of different design parameters for improving the objective
unction. In the present study, non-optimal solutions correspond to the
olutions obtained for laminates with uniform GPLs and fibre distri-
utions across the thickness, that is, 𝑊𝐺𝑃𝐿𝑘 =

(

𝑊𝐺𝑃𝐿𝑚𝑎𝑥
𝑁

)

and 𝑉𝐹𝑘 =
𝑉𝐹𝑚𝑎𝑥
𝑁

)

, for 𝑘 = 1 to 𝑁 . In order to assess the effectiveness of optimal
solutions, a design efficiency factor is introduced. It is defined as the
ratio of the maximum fundamental frequency 𝜔𝑀𝐴𝑋 corresponding to
the optimal design and the frequency 𝜔0 of the laminate with uniform
properties. As such, 𝜔0 can be described as the reference frequency. In
the present case, the reference frequency corresponds to the frequency
of a laminate with uniformly distributed graphene and fibre contents
across the laminate thickness. Thus, the design efficiency factor is given
by:

𝜂 =
𝜔𝑀𝐴𝑋

(

𝑉𝐹𝑘,𝑊𝐺𝑃𝐿𝑘
)

𝜔0(𝑉𝑘,𝑊𝑘)
(32)

where the fibre content 𝑉𝑘 and the graphene content 𝑊𝑘 of the 𝑘th layer
of the reference laminate are given by:

𝑉𝑘 =
𝑉𝐹𝑚𝑎𝑥

8
, 𝑊𝑘 =

𝑊𝐺𝑃𝐿𝑚𝑎𝑥
8

for 𝑘 = 1, 2… , 8 (33)

with 𝑉𝐹𝑘 and 𝑊𝐺𝑃𝐿𝑘 in Eq. (32) determined optimally. For the cal-
culation of the reference frequency 𝜔0 shown in Eq. (32), a uniform
thickness is considered for all layers and a symmetric stacking sequence
[90/0/90/0]s is adopted.

5.2. Optimization problems with three and four design variables

Optimization problems with three and four design variables and
non-uniform layer thicknesses are formulated next. In this case, in
addition to the contents of fibres and GPLs in each layer, the layer
thicknesses and the fibre angles are also determined optimally. For
these design problems, non-uniform layer thickness of the 𝑘th layer is
denoted as ℎ𝑘 and the fibre volume as 𝑉 𝑜𝑙𝐹𝑘 = 𝑎𝑏ℎ𝑘𝑉𝐹𝑘. The total fibre
volume of the laminate is 𝑉 𝑜𝑙𝐹𝑇 =

∑𝑁
𝑘=1 𝑉 𝑜𝑙𝐹𝑘 = 𝑎𝑏

∑𝑁
𝑘=1 ℎ𝑘𝑉𝐹𝑘. The

constraint on the total volume of fibres is defined as:

𝑉 𝑜𝑙𝐹𝑇 ≤ 𝑉 𝑜𝑙𝐹𝑚𝑎𝑥 ⇒ 𝑎𝑏
𝑁
∑

𝑘=1
ℎ𝑘𝑉𝐹𝑘 ≤ 𝑎𝑏𝐷𝑉𝐹𝑚𝑎𝑥 (34)

which leads to the constraint:

1
𝐷

𝑁
∑

𝑘=1
ℎ𝑘𝑉𝐹𝑘 ≤ 𝑉𝐹𝑚𝑎𝑥 (35)

Similarly, the constraint on the total graphene weight is

1
𝐷

𝑁
∑

𝑘=1
ℎ𝑘𝑊𝐺𝑃𝐿𝑘 ≤ 𝑊𝐺𝑃𝐿𝑚𝑎𝑥 (36)

ayer thicknesses are subject to the constraint:
𝑁
∑

=1

ℎ𝑘
𝐷

= 1 (37)

For an 8-layered laminate, the optimal design problem with four design
variables can be expressed as:

Maximize the fundamental frequency 𝜔
(

𝑉𝐹𝑘,𝑊𝐺𝑃𝐿𝑘,
ℎ𝑘
𝐷

, 𝜃𝑘

)

(38a)

ubject to:
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c
a

1
𝐷

8
∑

𝑘=1
ℎ𝑘𝑉𝐹𝑘 ≤ 𝑉𝐹𝑚𝑎𝑥 (38b)

1
𝐷

8
∑

𝑘=1
ℎ𝑘𝑊𝐺𝑃𝐿𝑘 ≤ 𝑊𝐺𝑃𝐿𝑚𝑎𝑥 (38c)

𝑊𝐺𝑃𝐿𝑘 ≥ 0 (38d)

𝑑1 ≤ 𝑉𝐹𝑘 ≤ 𝑑2 (38e)

− 90◦ ≤ 𝜃𝑘 ≤ 90◦ (38f)
8
∑

𝑘=1

ℎ𝑘
𝐷

= 1 (38g)

he inequality (38f) limits the fibre orientation of the 𝑘th layer, 𝜃𝑘.
The design efficiency factor for this case, which involves four design
variables, is given by:

𝜂 =
𝜔𝑀𝐴𝑋

(

𝑉𝐹𝑘,𝑊𝐺𝑃𝐿𝑘,
ℎ𝑘
𝐷 , 𝜃𝑘

)

𝜔0(𝑉𝑘,𝑊𝑘,
ℎ
𝐷 , 𝜃0)

(39)

with 𝑉𝐹𝑘, 𝑊𝐺𝑃𝐿𝑘, ℎ𝑘∕𝐷 and 𝜃𝑘 to be determined optimally. For the
calculation of the reference frequency 𝜔0 shown in Eq. (39), 𝑉𝑘 and 𝑊𝑘
are given by Eq. (33), a uniform thickness is considered for all layers
and a symmetric stacking sequence [90/0/90/0]s is adopted.

5.3. Optimization algorithm

For the numerical solution of the optimal design problems, Se-
quential Quadratic Programming Algorithm (SQP) is implemented. SQP
generates a sequence of steps by solving quadratic sub-problems for
nonlinearly constrained problems [41–43]. At each iteration, the algo-
rithm calculates an approximation of the Hessian of the Lagrangian
function using a quasi-Newton updating method which searches for
zero values, local maxima and local minima of the function. This is
then adopted to create a Quadratic Programming sub-problem with the
solution used to define a search direction. More details for the SQP
algorithm can be found in [41]. The solution is implemented using
MATLAB [44].

6. Verification of the optimization code

The finite element formulation and the optimization scheme are
verified using the results available in the literature and ABAQUS com-
mercial finite element software. First, the frequencies obtained in the
present work are compared with skew plate frequencies available in the
literature. The first four eigenfrequencies calculated by the proposed
finite element formulation are compared with the frequencies given
in [8], using skew angles of 𝛼 = 30◦ and 𝛼 = 45◦ for SSSS and CCCC
boundary conditions. Material and geometric properties are 𝐸11∕𝐸22 =
40, 𝐺12 = 𝐺13 = 0.6𝐸2, 𝐺23 = 0.5𝐸2, 𝜈12 = 𝜈13 = 𝜈23 = 0.25, 𝑎∕𝐷 = 10 [8].
The non-dimensional frequency is given by 𝛺 = (𝜔𝑎2∕𝜋2𝐷)

√

𝜌∕𝐸2. The
results are presented in Tables 1 and 2, for two stacking sequences
of 𝛼 = 30◦ and 𝛼 = 45◦. The comparison indicates that frequencies
btained by the present approach are close to those in [8].

To further verify the results in the present article, frequencies are
ompared with those given in [45] for different skew angles. Material
nd geometric properties are taken as 𝐸11∕𝐸22 = 40, 𝐺12 = 0.6𝐸2, 𝐺13 =

𝐺23 = 0.5𝐸2, 𝜈12 = 𝜈13 = 𝜈23 = 0.25, 𝑎∕𝐷 = 10 [45].
Results presented in Tables 3 and 4 indicate that the frequencies

obtained by the present approach and the ones given in [45] are quite
close.

A further comparison is given between the frequencies obtained
by the present approach and the ones given in [46] for cantilever
skew plates. The material properties are taken as 𝐸11 = 𝐸22, 𝐺12 =
𝐸11∕(2 (1 + 𝑣)), 𝐺13 = 𝐺23 = 𝐺12, with 𝐸11 = 71.02 GPa, 𝑣 = 0.333. In
Table 5, the results of the comparison are presented for different aspect
6

Table 1
Fundamental frequencies 𝛺 = (𝜔𝑎2∕𝜋2𝐷)

√

𝜌∕𝐸2 of 5-layered skew laminates with
stacking sequence [90/0/90/0/90], 𝑎∕𝐷 = 10, 𝑎∕𝑏 = 1.

Skew angle Mode SSSS CCCC

Present work
(mesh 12 × 12)

Ref. [8] Present work
(mesh 12 × 12)

Ref. [8]

30

1 2.0848 2.0911 2.8388 2.8003
2 3.6112 3.5138 4.1801 4.0576
3 4.7697 4.7002 5.1229 5.0306
4 5.0427 4.8869 5.4646 5.3010

45

1 2.8410 2.8829 3.5274 3.4745
2 4.3390 4.2841 4.8950 4.7408
3 5.8240 5.5876 6.1907 5.9583
4 6.2147 6.1920 6.5084 6.3817

Table 2
Fundamental frequencies 𝛺 = (𝜔𝑎2∕𝜋2𝐷)

√

𝜌∕𝐸2 of 5-layered skew laminates with
stacking sequence [45/−45/45/−45/45], 𝑎∕𝐷 = 10, 𝑎∕𝑏 = 1.

Skew angle Mode SSSS CCCC

Present work
(mesh 12 × 12)

Ref. [8] Present work
(mesh 12 × 12)

Ref. [8]

30

1 2.1039 2.0018 2.7137 2.6641
2 3.7737 3.6276 4.2492 4.1408
3 4.4619 4.2875 4.8365 4.7411
4 5.281 5.0723 5.6414 5.5027

45

1 2.5616 2.4796 3.4126 3.3529
2 4.4007 4.2221 4.9539 4.8122
3 5.7859 5.5867 6.1886 6.0713
4 5.8596 5.6013 6.3145 6.1108

Table 3
Fundamental frequency 𝛺 = (𝜔𝑎2∕𝜋2𝐷)

√

𝜌∕𝐸2 of 5-layered skew laminates with
stacking sequence [90/0/90/0/90], 𝑎∕𝐷 = 10, 𝑎∕𝑏 = 1.

Skew angle SSSS CCCC

Present work
(mesh 12 × 12)

Ref. [45] Present work
(mesh 12 × 12)

Ref. [45]

15 1.6892 1.6874 2.4323 2.4750
30 2.0348 2.0884 2.7327 2.7922
45 2.7525 2.8932 3.3793 3.4739

Table 4
Fundamental frequency 𝛺 = (𝜔𝑎2∕𝜋2𝐷)

√

𝜌∕𝐸2 of 4-layered skew laminates with
stacking sequence [45/−45/45/−45], 𝑎∕𝐷 = 10, 𝑎∕𝑏 = 1.

Skew angle SSSS CCCC

Present work
(mesh 12 × 12)

Ref. [45] Present work
(mesh 12 × 12)

Ref. [45]

15 1.9653 1.9366 2.3752 2.4007
30 2.1482 2.1196 2.7024 2.7418
45 2.6237 2.6752 3.3759 3.4434

and length-to-thickness ratios. It is observed that the frequencies of the
two approaches are quite close for different skew angles.

To verify the overall optimization scheme, a model of the two-
layered skew cantilever laminate with uniformly distributed graphene
nanoplatelets, fibre reinforcements and layer thicknesses is developed
using commercial finite element software. A 10 × 14 mesh size is
used and shell elements are adopted. The skew angle for this case is
specified as 45◦. To compare with the optimization results, a different
stacking sequence is adopted at each finite element simulation and the
corresponding frequency is computed. Subsequently, an optimization
problem is formulated and solved using the proposed optimization
method with fibre angles specified as the only design variables. This
process aims to compare the optimal frequency and fibre orientations
obtained from the optimization with the maximum frequency and the
corresponding stacking sequence calculated using the commercial finite
element software.
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Fig. 3. Design efficiencies of anti-symmetric and symmetric laminates with GPLs content as the single design variable.
Table 5
Fundamental frequencies (Hz) of cantilever thin skew plates.

Skew angle Aspect ratio 𝑎∕𝑏 Length-to-thickness ratio 𝑎∕𝐷 Mode CFFF

Present work (mesh 15 × 15) Ref. [46]

15 2.80 143

1 42.240 42.1970
2 235.200 234.280
3 278.146 275.620
4 704.614 690.730

30 2.43 138.5

1 47.5120 47.441
2 234.410 233.320
3 330.610 327.060
4 687.360 675.860

45 1.89 138

1 53.631 53.450
2 223.690 222.400
3 394.000 387.980
4 629.730 618.940

60 1.35 138.5

1 65.400 64.688
2 235.650 233.410
3 462.590 452.010
4 677.100 657.240
7

7

d
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Table 6
Properties of constituent materials.

Material 𝐸11
(GPa)

𝐸22
(GPa)

𝐺12
(GPa)

𝑣12 Density
(kg/m3)

GPLs 1010 1010 𝐸11∕2(1 + 𝜈) 0.186 1060
Matrix 3 3 𝐸11∕2(1 + 𝜈) 0.34 1200
Carbon fibres 263 19 27.60 0.20 1750
Glass fibres 72.4 72.4 𝐸11∕2(1 + 𝜈) 0.20 2400

A non-dimensional fundamental frequency 𝛺 is defined and used for
he present results, as well as in the subsequent sections of the article:

= 𝜔𝐷
√

𝜌𝑀
𝐸𝑀

(40)

with 𝜌𝑀 and 𝐸𝑀 representing the density and the Young’s modulus
of the matrix. The material properties used in the numerical results
are given in Table 6. Dimensions of GPLs used in the present and
subsequent sections are 𝑙𝐺𝑃𝐿 = 2.5 μm, 𝑤𝐺𝑃𝐿 = 1.5 μm, and ℎ𝐺𝑃𝐿 =
1.5 nm. The weight of GPLs is specified as 1% and the fibre volume
content as 50%. The results of this comparison are given in Table 7.

Results obtained using the commercial software package show that
the stacking sequence [0◦, 0◦] produces the maximum frequency which
is equal to 0.00364. The present optimization scheme gives a maximum
frequency of 0.0037 with fibre orientations of [−0.28◦, 0.28◦]. Thus,
oth the solution produced by the commercial finite element software
nd the one obtained by the proposed MATLAB optimization code
ead to almost identical results for the optimal frequency and the fibre
rientations.
7

. Results and discussions

.1. Optimization using the graphene content as the single design variable

In the present case, GPLs distribution across the thickness is the only
esign variable. Layer thicknesses and fibre distributions are defined
s uniform with the results given for symmetric and anti-symmetric
aminates. Numerical results are given for the fibre volume contents
f 30% and 60% in Table 8. The frequency of the optimal laminates
s indicated in non-dimensional form in Eq. (40) as 𝛺. The non-
imensional frequency 𝛺0 of the reference laminate is determined by

substituting 𝜔0 as defined at the end of Section 5.1, into the Eq. (40).
Design efficiency for this case is given by 𝜂 = 𝛺

𝛺0
which is the same as

the one defined in Section 5.1 by Eq. (32).
Table 8 indicates that the distribution of the GPLs across the thick-

ness tends to be higher in the outer layers with the inner layers having
zero GPLs content. This is due to the outer layers contributing more
to the laminate stiffness as compared to the middle layers. It is noted
that a significant increase in the fundamental frequency is observed
with the GPLs distributed optimally as compared to the laminates with
uniformly distributed GPLs. A maximum increase of 28.1% is observed
for the symmetric laminates having a glass fibre content of 30%. The
corresponding increase for the anti-symmetric laminates is 21.2%. Con-
cerning the laminates with 30% carbon fibre content, the fundamental
frequency increases by 11.9% for the symmetric and 10.9% for the anti-
symmetric cases. In the case of laminates with 60% glass or carbon fibre
contents, a lower percent of increase in the frequency is observed. The
increase in the fundamental frequency of laminates with optimal GPLs
distributions is shown in Fig. 3.
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Table 7
Comparison of the optimal non-dimensional frequencies 𝛺 with those obtained from the commercial finite element software for GPLs/glass fibre
skew plates with 𝐷∕𝑎 = 0.03, 𝑊𝐺𝑃𝐿 = 0.01, 𝑉𝐹 = 0.50, 𝑎∕𝑏 = 0.71 and skew angle 𝛼 = 45◦.

Solution obtained by the commercial finite element software Solution obtained by the proposed optimization code

Case Stacking sequence Non-dimensional
frequency

Optimal stacking
sequence

Optimal non-dimensional
frequency

1 [0,0] 0.00364 [−0.28, 0.28] 0.0037
2 [30,0] 0.00356
3 [45,0] 0.00336
4 [60,0] 0.00332
5 [90,0] 0.00333
6 [0,30] 0.00344
7 [30,30] 0.00328
8 [45,30] 0.00320
9 [60,30] 0.00317
10 [90,30] 0.00318
11 [0,45] 0.00336
12 [30,45] 0.00320
13 [45,45] 0.00313
14 [60,45] 0.00310
15 [90,45] 0.00311
16 [0,60] 0.00332
17 [30,60] 0.00317
18 [45,60] 0.00310
19 [60,60] 0.00306
20 [90,60] 0.00307
21 [0,90] 0.00333
22 [30,90] 0.00318
23 [45,90] 0.00311
24 [60,90] 0.00307
25 [90,90] 0.00309
Table 8
Optimal fundamental frequencies of an 8-layered cantilever skew laminates having the design variable 𝑊𝐺𝑃𝐿 with 𝑊𝐺𝑃𝐿𝑚𝑎𝑥 = 0.0125, 𝐷∕𝑎 = 0.03,
ℎ∕𝐷 = 0.125, 𝑎∕𝑏 = 0.71 and skew angle 𝛼 = 45◦.

Stacking sequence Fibre content Optimal 𝑊GPL per layer 𝛺 𝛺0 𝜂 = 𝛺
𝛺0

[90/0/90/0]anti-s

Glass 30% [0.050/0.0/0.0/0.0]anti-s 0.0040 0.0033 1.212
Glass 60% [0.039/0.011/0.0/0.0]anti-s 0.0040 0.0037 1.081
Carbon 30% [0.050/0.0/0.0/0.0]anti-s 0.0051 0.0046 1.109
Carbon 60% [0.041/0.009/0.0/0.0]anti-s 0.0057 0.0055 1.036

[90/0/90/0]s

Glass 30% [0.050/0.0/0.0/0.0]s 0.0041 0.0032 1.281
Glass 60% [0.048/0.002/0.001/0.0]s 0.0040 0.0036 1.111
Carbon 30% [0.050/0.0/0.0/0.0]s 0.0047 0.0042 1.119
Carbon 60% [0.041/0.009/0.001/0.0]s 0.0051 0.0049 1.041
The highest fundamental frequency is obtained for the anti-
ymmetric case for laminates with a 60% carbon fibre content as shown
n Table 8. An increase of 42.5% in the frequency is observed for this
ase as compared to the frequency of the graphene and glass fibre-
einforced anti-symmetric laminates with 60% fibre content. Table 8
ndicates that graphene–glass fibre-reinforced laminates with 30% and
0% fibre contents have the same frequency for the anti-symmetric
ase. For the symmetric case, laminates with 30% glass fibre content
ave a slightly higher frequency than those with 60% glass fibre
ontent. Thus, higher glass fibre content has a minor effect on the
undamental frequency for cross-ply laminates.

The design efficiencies of the graphene–glass fibre-reinforced lam-
nates with optimal GPL distribution across the thickness are inves-
igated in Fig. 4. Glass fibre reinforcement is uniformly distributed
ith a 30% fibre content. Results are given for symmetric and anti-

ymmetric laminates. It is observed that the effect of the stacking
equence on the design efficiency depends on the type of stacking se-
uence with anti-symmetric laminates having higher design efficiencies
p to [50/40/50/40]anti-s stacking sequence. Symmetric laminates have
igher design efficiencies for the stacking sequences [75/30/75/30]s
nd [90/0/90/0]s indicating that design efficiencies depend on the type
f laminate.

Maximum fundamental frequencies are plotted against GPLs weight
ontents in Fig. 5 for the symmetric stacking sequences and in Fig. 6 for
he anti-symmetric stacking sequences. The design variable in Figs. 5

nd 6 is the optimal distribution of GPLs across the thickness with fibres

8

distributed uniformly. Results are given up to a graphene weight of 10%
to observe the effect of high graphene content on the frequency and
determine the cross-over points.

Fig. 5 shows that the frequencies of the symmetric graphene–glass
fibre-reinforced laminates are higher for 60% fibre content up to a
value of about 1% graphene content. Afterwards, laminates with 30%
fibre content have higher frequencies than those with 60% glass fibre
content. A similar trend is observed for the anti-symmetric graphene–
glass fibre laminates as shown in Fig. 6.

In the case of carbon fibre-reinforced laminates, the same phe-
nomenon is observed for both the symmetric and the anti-symmetric
cases but for a higher graphene weight of about 3%. These results
indicate that higher fibre content exceeding a certain value (cross-over
points) leads to diminishing returns and not cost-effective designs for
skew laminates. In the case of 60% fibre reinforcements, a significant
drop is observed in the slope of the curves as shown in Figs. 5 and 6
after the cross-over points which highlights this comment.

7.2. Optimization using GPLs and fibre distributions as design variables

The next optimization problem introduces two design variables,
namely the GPLs and the fibre contents. Layer thicknesses are specified
as uniform and the results are shown in Table 9.

Table 9 indicates that optimization leads to higher GPL and fibre
contents in the outer layers as expected. Similar to the previous case

of optimization using only the GPL distribution as the design variable,
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Fig. 4. Design efficiencies for anti-symmetric and symmetric laminates with GPLs content as the single design variable and 30% uniform glass fibre distribution.
Fig. 5. Fundamental frequency vs. GPLs content for laminates with symmetric stacking sequence [90/0/90/0]s, 𝐷∕𝑎 = 0.03, ℎ∕𝐷 = 0.125, 𝑎∕𝑏 = 0.71 and skew angle 𝛼 = 45◦.
Fig. 6. Fundamental frequency vs. GPLs content for laminates with anti-symmetric stacking sequence [90/0/90/0]anti-s, 𝐷∕𝑎 = 0.03, ℎ∕𝐷 = 0.125, 𝑎∕𝑏 = 0.71 and skew angle 𝛼 = 45◦.
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lass fibre reinforcement leads to higher design efficiencies as com-
ared to the carbon fibre reinforcement. For the symmetric laminates,
esign efficiency is 34% and for the anti-symmetric laminates 27% in
he case of glass fibre reinforcements. Both these values are higher as
ompared to carbon fibre-reinforced laminates as shown in Table 9.
ompared to carbon fibres, lower material properties in the case of
lass fibres, resulting in a lower laminate stiffness, leads to GPL re-
nforcements being more effective for graphene–glass fibre laminates.
 o

9

t is noted that this result applies to design efficiencies, and not the
aximum frequencies which are higher in the case of carbon fibre

einforcements as expected.
A comparison between Tables 8 and 9 indicates the effect of in-

reasing the number of design variables on the fundamental frequency.
ith carbon fibre reinforcement, frequency increases by 9.8% for anti-

ymmetric and by 17% for symmetric stacking sequence. In the case
f glass fibre reinforcement, the corresponding frequency increase is
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Table 9
Fundamental frequencies of 8-layered laminates with two design variables, namely, GPLs and fibre distributions across the thickness with
𝑊𝐺𝑃𝐿𝑚𝑎𝑥 = 0.0125, 𝑉𝐹𝑚𝑎𝑥 = 0.30, 𝐷∕𝑎 = 0.03, ℎ∕𝐷 = 0.125, 𝑎∕𝑏 = 0.71 and skew angle 𝛼 = 45◦.

Stacking sequence Fibres Optimal 𝑊GPL per layer Optimal 𝑉𝐹 per layer 𝛺 𝛺0 𝜂 = 𝛺
𝛺0

[90/0/90/0]anti-s Glass [0.037/0.013/0.0/0.0]anti-s [0.60/0.40/0.10/0.10]anti-s 0.0042 0.0033 1.273
Carbon [0.047/0.004/0.0/0.0]anti-s [0.43/0.57/0.10/0.10]anti-s 0.0056 0.0046 1.217

[90/0/90/0]s Glass [0.050/0.0/0.0/0.0]s [0.40/0.60/0.10/0.10]s 0.0043 0.0032 1.344
Carbon [0.050/0.0/0.0/0.0]s [0.10/0.60/0.40/0.10]s 0.0055 0.0042 1.310
Table 10
Fundamental frequency of an 8-layered skew laminate with zero graphene content and the single design variable 𝑉𝐹 subject to
𝑉𝐹𝑚𝑎𝑥 = 0.30 with 𝐷∕𝑎 = 0.03, ℎ∕𝐷 = 0.125, 𝑎∕𝑏 = 0.71 and skew angle 𝛼 = 45◦.

Stacking sequence Fibres Optimal 𝑉𝐹 per layer 𝛺 𝛺02 𝜂2 =
𝛺
𝛺02

𝜂 = 𝛺
𝛺0

[90/0/90/0]anti-s
Glass [0.60/0.40/0.10/0.10]anti-s 0.0027 0.0022 1.227 0.818
Carbon [0.54/0.46/0.10/0.10]anti-s 0.0046 0.0038 1.211 1.000

[90/0/90/0]s
Glass [0.40/0.60/0.10/0.10]s 0.0025 0.0021 1.190 0.781
Carbon [0.10/0.60/0.40/0.10]s 0.0043 0.0033 1.303 1.024
5% for anti-symmetric and 4.9% for symmetric stacking sequences.
These results indicate that a cost-effective design can be achieved using
less fibre reinforcement if both graphene and fibres are distributed
optimally across the thickness.

To assess the effect of GPLs reinforcement on optimal design,
graphene content is set to zero and optimization is performed using the
fibre reinforcement as the only design variable. The results are given
in Table 10 for both anti-symmetric and symmetric cases.

Two design efficiencies are shown in Table 10, namely, 𝜂2 = 𝛺
𝛺02

,
and 𝜂 = 𝛺

𝛺0
. The design efficiency 𝜂2 is computed as the ratio of the

maximum frequency 𝛺 and the reference frequency 𝛺02 corresponding
to a laminate with zero graphene content. This index can be used to
evaluate the increase in the fundamental frequency of the laminate
with non-uniform (optimal) fibre distribution only as compared to the
frequency of the reference laminate with uniform fibre distribution
across the thickness. In addition, 𝜂 is calculated using the reference
frequency 𝛺0, which corresponds to the frequency of a laminate with
uniform graphene content of 1.25% per layer. This index will be used
to compare the efficiencies of the optimal two-phase fibre-reinforced
composite laminates (only fibre reinforcement, Table 10) and the effi-
ciencies of the optimal three-phase graphene/fibre-reinforced laminates
(Table 9).

Noting the values 𝜂2 of the design efficiency, it is observed that
a significant increase of 𝜂2 from 19% to 30% is observed for the
two-phase fibre-reinforced laminate with optimal (non-uniform) fibre
distribution across the laminate thickness as compared to the frequency
corresponding to the laminate with uniform fibre distribution.

To investigate the impact of introducing graphene reinforcement on
the frequency, a comparison of the results presented in Table 10 (zero
graphene, optimal distribution of fibres) and Table 9 (optimal distri-
bution of both graphene and fibres) is made. For the anti-symmetric
laminate with non-zero graphene and glass fibre reinforcement, a de-
sign efficiency of 1.273 is obtained in Table 9, indicating an increase
of 27.3% of the frequency as compared to the reference plate. For
the same fibre type and orientation, but for zero graphene content
(Table 10), the design efficiency 𝜂 is 0.818 which indicates a decrease
of 1.000 − 0.818 = 0.182 or 18.2% in the fundamental frequency as
compared to the reference frequency. For this case, the overall increase
of the fundamental frequency of the laminate with non-zero graphene
content is equal to 27.3%+18.2%=45.5% as shown in Table 11 in
comparison to the laminate with zero graphene. This is a substantial
improvement of the frequency which is due to adding a small graphene
content as reinforcement.

As shown in Table 11, an even higher increase of 56.3% is obtained
for the symmetric glass fibre/graphene-reinforced laminate. For anti-
symmetric and symmetric carbon fibre/graphene-reinforced laminates,
the increases of the fundamental frequency are equal to 21.7% and
28.6%, respectively, as compared to the frequencies of the optimal

two-phase fibre-reinforced laminates.

10
7.3. Optimization with three and four design variables and non-uniform
layer thicknesses

Next, non-uniform layer thicknesses and fibre angles are introduced
as additional design variables, leading to optimization with three and
four design variables. These are graphene and fibre contents, the layer
thicknesses and the fibre angles. Results with three design variables and
predefined stacking sequences are given in Table 12.

Table 12 indicates that higher graphene and fibre reinforcements
are assigned to outer layers as expected. Furthermore, two outer lay-
ers have lower thicknesses as compared to the inner layers for the
anti-symmetric laminates. In the case of symmetric laminates, only
the surface layer has a lower thickness with the other layers having
the same thicknesses. The increase in the fundamental frequency, as
compared to the reference frequency, is 30.3% and 23.9% for the
anti-symmetric case with glass and carbon fibre reinforcements, re-
spectively. For the symmetric laminate, the increases are 46.9% and
54.8%, and thus, significantly higher than the anti-symmetric case.
A comparison with the laminates with uniform layer thicknesses (Ta-
ble 9), indicates that in the case of non-uniform layer thicknesses
(Table 12), an increase in the fundamental frequency, with respect to
the reference frequency, occurs. For the anti-symmetric case, this is
equal to 3% and 2.2% for glass and carbon fibre reinforcements. For the
symmetric laminates with non-uniform layer thicknesses, the increase
in the fundamental frequency is 12.5% and 23.8% for glass and carbon
fibre reinforcements, respectively.

The fourth optimization problem involves GPLs and fibre contents,
layer thicknesses and fibre angles as the design parameters, with the
results shown in Table 13.

The increase in the fundamental frequency (compared to reference
frequency) of anti-symmetric laminates is 45.5% for glass fibre and
52.2% for carbon fibre reinforcements. For the symmetric laminate, the
increase is 46.9% for glass fibre and 64.3% for carbon fibre reinforce-
ments. The same increase was observed for the symmetric laminates
with glass fibre reinforcement and predefined stacking sequence, as
shown in Table 12. Therefore, the stacking sequence [90/0/90/0]s,
which was used in Table 12, is the optimal one.

In the case of laminates with four design variables (Table 13) involv-
ing glass and carbon fibres (anti-symmetric laminate) and carbon fibres
(symmetric laminate), the increases in the fundamental frequencies
(comparing to reference frequency) are higher by 15.2%, 28.3%, and
9.5% as compared to the case with three design variables (Table 12).

The improvement in the frequencies is due to including the fibre an-
gles in the optimization process. It is noted that for both anti-symmetric
and symmetric cases, higher frequency and higher design efficiency are
observed for carbon fibre-reinforced laminates as compared to the glass
fibre-reinforced ones.
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Table 11
Comparison between the maximum and the reference frequencies for the results shown in Table 9 (non-zero, optimal graphene/fibre distribution)
and Table 10 (zero graphene, optimal fibre distribution).

Stacking sequence Fibre type Maximum frequency 𝛺 Reference frequency 𝛺0 𝜂 = 𝛺
𝛺0

𝛺−𝛺0

𝛺0
(%)

Optimal graphene
distribution

[90/0/90/0]anti-s Glass 0.0042 0.0033 1.273 27.30%
Carbon 0.0056 0.0046 1.217 21.70%

[90/0/90/0]s Glass 0.0043 0.0032 1.344 34.40%
Carbon 0.0055 0.0042 1.310 31.00%

Zero graphene

[90/0/90/0]anti-s Glass 0.0027 0.0033 0.818 −18.20%
Carbon 0.0046 0.0046 1.000 0

[90/0/90/0]s Glass 0.0025 0.0032 0.781 −21.90%
Carbon 0.0043 0.0042 1.024 2.40%
Table 12
Fundamental frequencies of 8-layered skew laminates with three design variables (GPLs and fibre contents, thickness ratios) and with 𝑊𝐺𝑃𝐿𝑚𝑎𝑥 = 0.0125, 𝑉𝐹𝑚𝑎𝑥 = 0.30, 𝐷∕𝑎 = 0.03,
∕𝑏 = 0.71 and skew angle 𝛼 = 45◦.
Stacking sequence Fibres Optimal 𝑊𝐺𝑃𝐿 per layer Optimal 𝑉𝐹 per layer ℎ∕𝐷 𝛺 𝛺0 𝜂 = 𝛺

𝛺0

[90/0/90/0]anti-s
Glass [0.046/0.019/0.0/0.0]anti-s [0.60/0.60/0.10/0.10]anti-s [0.09/0.11/0.15/0.15]anti-s 0.0043 0.0033 1.303
Carbon [0.054/0.016/0.0/0.0]anti-s [0.60/0.60/0.10/0.10]anti-s [0.08/0.12/0.15/0.15]anti-s 0.0057 0.0046 1.239

[90/0/90/0]s
Glass [0.127/0.0/0.0/0.0]s [0.10/0.60/0.27/0.10]s [0.05/0.15/0.15/0.15]s 0.0047 0.0032 1.469
Carbon [0.127/0.0/0.0/0.0]s [0.10/0.60/0.27/0.10]s [0.05/0.15/0.15/0.15]s 0.0065 0.0042 1.548
Table 13
Fundamental frequencies of 8-layered skew laminates with four design variables (GPLs and fibre contents, thickness ratios, fibre angles) and with 𝑊𝐺𝑃𝐿𝑚𝑎𝑥 = 0.0125, 𝑉𝐹𝑚𝑎𝑥 = 0.30,
∕𝑎 = 0.03, 𝑎∕𝑏 = 0.71 and skew angle 𝛼 = 45◦.
Fibres Optimal 𝑊𝐺𝑃𝐿 per layer Optimal 𝑉𝐹 per layer ℎ∕𝐷 Optimal fibre angles 𝛺 𝛺0 𝜂 = 𝛺

𝛺0

Glass [0.141/0.0/0.0/0.0]anti-s [0.10/0.60/0.27/0.10]anti-s [0.05/0.15/0.15/0.15]anti-s [45/−8/−8/29]anti-s 0.0048 0.0033 1.455
Carbon [0.141/0.0/0.0/0.0]anti-s [0.10/0.60/0.27/0.10]anti-s [0.05/0.15/0.15/0.15]anti-s [−9/−5/−6/−25]anti-s 0.0070 0.0046 1.522
Glass [0.127/0.0/0.0/0.0]s [0.10/0.60/0.27/0.10]s [0.05/0.15/0.15/0.15]s [90/0/90/0]s 0.0047 0.0032 1.469
Carbon [0.027/0.045/0.0/0.0]s [0.60/0.10/0.27/0.10]s [0.15/0.05/0.15/0.15]s [−6/50/−18/88]s 0.0069 0.0042 1.643
Table 14
Fundamental frequencies of 8-layered skew (𝑎∕𝑏 = 0.71) and rectangular (𝑎∕𝑏 = 1) laminates with the design variable 𝑊𝐺𝑃𝐿 and with
𝑊𝐺𝑃𝐿𝑚𝑎𝑥 = 0.0125, 𝐷∕𝑎 = 0.03, ℎ∕𝐷 = 0.125.

Symmetric fibre orientation [90◦∕0◦∕90◦∕0◦]𝑠
Fibre type Laminate type 𝑊𝐺𝑃𝐿 𝛺 Increase (%) 𝛺0 𝜂 = 𝛺

𝛺0

Glass 30% Rectangular (0◦) [0.057/0.0/0.0/0.0]s 0.0031 – 0.0024 1.292
45◦ Skew [0.050/0/0/0]s 0.0041 32% 0.0032 1.281

Carbon 30% Rectangular (0◦) [0.057/0.0/0.0/0.0]s 0.0036 – 0.0032 1.125
45◦ Skew [0.05/0/0/0]s 0.0047 31% 0.0042 1.119
Table 15
Fundamental frequencies of 8-layered skew (𝑎∕𝑏 = 0.71) and rectangular (𝑎∕𝑏 = 1) laminates with two design variables (GPLs and fibre contents)
and with 𝑊𝐺𝑃𝐿𝑚𝑎𝑥 = 0.0125, 𝑉𝐹𝑚𝑎𝑥 = 0.30, with 𝐷∕𝑎 = 0.03, ℎ∕𝐷 = 0.125.

Symmetric fibre orientation [90◦∕0◦∕90◦∕0◦]𝑠
Fibre type Laminate type 𝑊𝐺𝑃𝐿 𝑉𝐹 𝛺 Increase (%) 𝛺0 𝜂 = 𝛺

𝛺0

Glass Rectangular (0◦) [0.0565/0.0/0.0/0.0]s [0.4/0.6/0.1/0.1]s 0.0033 – 0.0024 1.375
45◦ Skew [0.050/0.0/0.0/0.0]s [0.4/0.6/0.1/0.1]s 0.0043 30% 0.0032 1.344

Carbon Rectangular (0◦) [0.0565/0.0/0.0/0.0]s [0.1/0.6/0.1/0.4]s 0.0045 – 0.0032 1.406
45◦ Skew [0.050/0.0/0.0/0.0]s [0.1/0.6/0.4/0.1]s 0.0055 22% 0.0042 1.310
7.4. Comparison of the optimal designs of rectangular and skew laminates

In this section a comparison of the frequencies of the skew and
rectangular plates is presented with both plates being cantilevers.
Results are given for one, two, three and four design variables. The
fundamental frequencies for these cases are shown in Tables 14 to 17
with the number of design variables increasing from one to four.

Results indicate that the fundamental frequencies of the skew lam-
inates are higher than those of the rectangular laminates for both
glass and carbon fibre reinforcements. As observed in Tables 14 to 17,
increases are 32%, 30%, 31% and 47% for laminates with glass fibre
reinforcement with the increasing number of variables. In the case of
carbon fibre reinforcement, the increases in the fundamental frequen-
cies of the skew laminates as compared to the rectangular laminates
are 31%, 22%, 18% and 17% for laminates with one, two, three and
11
four design variables, respectively. These results agree with the results
given in the Refs. [5–8] where it was noted that the increase of the
skew angle increases the fundamental frequency.

Even though the fundamental frequencies of skew plates are higher,
their design efficiencies are lower compared to the rectangular plates
as shown in Tables 14–17. However, in the case of the skew plate
with glass fibre reinforcement and with four design variables, design
efficiency is higher than the rectangular plate as shown in Table 17.
Since higher design efficiencies are derived for most of the rectangular
plates as compared to the skew plates, the fundamental frequency
increases are higher for the rectangular plates as compared to the skew
plates. Thus, optimal, non-uniform graphene and fibre distributions
along the thickness is more effective for rectangular plates. The highest
design efficiency is obtained for the rectangular plate with four design
variables and carbon fibre reinforcement which is 1.844 (Table 17).
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Table 16
Fundamental frequencies of 8-layered skew (𝑎∕𝑏 = 0.71) and rectangular (𝑎∕𝑏 = 1) laminates with three design variables (GPLs and fibre contents, layer thickness ratios) and with
𝑊𝐺𝑃𝐿𝑚𝑎𝑥 = 0.0125, 𝑉𝐹𝑚𝑎𝑥 = 0.30, 𝐷∕𝑎 = 0.03.

Symmetric fibre orientation [90◦∕0◦∕90◦∕0◦]𝑠
Fibre type Laminate type 𝑊𝐺𝑃𝐿 𝑉𝐹 ℎ∕𝐷 𝛺 Increase (%) 𝛺0 𝜂 = 𝛺

𝛺0

Glass Rectangular (0◦) [0.14/0.0/0.0/0.0]s [0.1/0.6/0.1/0.27]s [0.05/0.15/0.15/0.15]s 0.0036 – 0.0024 1.500
45◦ Skew [0.13/0.0/0.0/0.0]s [0.10/0.60/0.27/0.10]s [0.05/0.15/0.15/0.15]s 0.0047 31% 0.0032 1.469

Carbon Rectangular (0◦) [0.14/0.0/0.0/0.0]s [0.1/0.6/0.1/0.27]s [0.05/0.15/0.15/0.15]s 0.0055 – 0.0032 1.719
45◦ Skew [0.13/0.0/0.0/0.0]s [0.10/0.60/0.27/0.10]s [0.05/0.15/0.15/0.15]s 0.0065 18% 0.0042 1.548
Table 17
Fundamental frequencies of 8-layered skew (𝑎∕𝑏 = 0.71) and rectangular (𝑎∕𝑏 = 1) laminates with four design variables (GPLs and fibre contents, thickness ratios, fibre angles) and
with 𝑊𝐺𝑃𝐿𝑚𝑎𝑥 = 0.0125, 𝑉𝐹𝑚𝑎𝑥 = 0.30, 𝐷∕𝑎 = 0.03.

Fibre
type

Laminate type 𝑊𝐺𝑃𝐿 𝑉𝐹 ℎ∕𝐷 𝜃 𝛺 Increase
(%)

𝛺0 𝜂 = 𝛺
𝛺0

Glass Rectangular (0◦) [0.037/0.0303/0.0/0.0]s [0.6/0.6/0.1/0.1]s [0.15/0.05/0.15/0.15]s [5/51/−20/88]s 0.0032 – 0.0024 1.333
45◦ Skew [0.127/0.0/0.0/0.0]s [0.1/0.6/0.27/0.1]s [0.05/0.15/0.15/0.15]s [90/0/90/0]s 0.0047 47% 0.0032 1.469

Carbon Rectangular (0◦) [0.01/0.111/0.0/0.0]s [0.6/0.1/0.27/0.1]s [0.15/0.05/0.15/0.15]s [3/50/0/88]s 0.0059 – 0.0032 1.844
45◦ Skew [0.027/0.045/0.0/0.0]s [0.6/0.1/0.27/0.1]s [0.15/0.05/0.15/0.15]s [−6/50/−18/88]s 0.0069 17% 0.0042 1.643
F

8. Conclusions

In the present study, maximizing the fundamental frequencies of
graphene/fibre-reinforced cantilever skew laminates is studied. Design
parameters include the distributions of the graphene and fibres across
the laminate thickness, layer thicknesses and the fibre angles. To assess
the effectiveness of different design variables in maximizing the funda-
mental frequency, the number of design variables is increased in steps.
The effective material properties are calculated using micromechanics
relations and the numerical solutions are obtained using finite element
analysis based on the first-order shear deformation theory. For the
implementation of the optimization scheme, a Sequential Quadratic
Programming algorithm (SQP) is adopted.

Results indicate that the optimal, non-uniform distributions of the
graphene and the fibres lead to higher contents in the outer layers and
lower or zero reinforcement in the inner layers. This result is expected
and is due to the outer layers contributing more to the stiffness of
the laminates. In the case of the graphene being the only reinforce-
ment in the optimization, diminishing returns were observed when the
graphene content exceeds a certain limit and the design becomes less
cost-effective.

When both graphene and fibre contents along the thickness are
adopted as the two design variables and the upper limit on total fibre
content is specified as 30%, a higher frequency is obtained as compared
to the case with 60% uniform fibre content. Thus, the skew laminates
can be designed cost effectively using lower fibre volume contents by
distributing the fibres and the graphene across the thickness optimally.

Comparisons are given for the optimal designs of three-phase
graphene/fibre-reinforced laminates (the present design) and the tradi-
tional two-phase laminates reinforced with fibres only. Results indicate
a substantial increase in the fundamental frequency for the three-phase
laminates as compared to the two-phase laminates. This increase is
higher for glass fibre reinforcement (more than 45%) but is also very
significant for carbon fibre reinforcement (more than 20%).

To provide a quantitative criterion for evaluating the results, a
design efficiency factor is defined and calculated for each optimal
design. Using this factor, optimal design results can be compared and
the design efficiencies of different reinforcements can be assessed.
The design efficiency increases when the number of design variables
increases as expected and the highest design efficiency corresponds to
the case with four design variables.

Finally, results for the optimal designs of rectangular and 45◦

kew plates are compared. It is shown that although the maximum
undamental frequency is higher for the 45◦ skew laminates, the de-
ign efficiency decreases compared to the rectangular laminates for
ost cases. The differences in the design efficiencies of these two

aminate types depend on the number of design variables used in the

ptimization.
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