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ABSTRACT
Data Analytics is the art of turning data into insights for efficient
and effective business decisions. Data visualization is among the
most powerful tools in the data analyst’s arsenal, enabling the
transformation of data into effective visualizations that can be easily
comprehended. However, its effectiveness is often affected by the
data analysts’ experience and their ability to quickly understand and
interpret information. Even though business analytics tools have
made a significant progress to deliver immersive data visualization
environments for improving users’ efficiency and effectiveness,
they still do not consider the individual differences in the core
process that influences the visualization structure, encoding, and
readability.

This paper leverages the users’ individual differences to deliver
a novel human-centered by-design adaptation engine for business
users. The adaptation engine aims to improve the comprehension
of data visualizations by delivering personalized content (visualiza-
tion type and adaptation of visual elements), which in turn leads
to improved accuracy and time-to-action efficiency. The proposed
adaptation mechanism is evaluated using 45 professional business
analysts from multiple industry sectors. The results suggest that
individual differences can play an important role in the adaptation
process of data visualizations enhancing analysts’ comprehensibil-
ity and decision making.
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• Human-centered computing→ Visualization toolkits; Visual
analytics; Information visualization; User models; User cen-
tered design;Visualization techniques; • Information systems
→ Personalization.
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1 INTRODUCTION
The last decade has witnessed a phenomenal growth in the volume
of information and data science, revolutionizing many industry
domains [35]. With such large volumes of data being generated,
companies that want to stay competitive in today’s data driven mar-
ket adopt Business Intelligence and Analytics (BI&A) software [22].
These software support the full data lifecycle, from raw data to vi-
sualizations, delivering actionable insights to decision makers [23].

Recently, BI&Aplatforms adopted techniques, such as self-service
analytics, to empower non-expert analysts to seamlessly utilize all
the facilities of the BI&A environment [8]. Despite the assistance of
such facilities, the non human-centered one-size-fits-all approach
adopted for delivering data visualizations [28] may disorient users
since they are faced with an abundance of features to select and
customize. More specifically, the rendered data visualizations are
solely based on hard-coded user preferences (e.g., preferred visual-
ization types, color themes), the selected dataset’s metadata (e.g.,
categorical vs. numerical data) or the current analysis task (e.g.,
time-series analysis), not considering the user’s requirements or
individual differences [24].

Research on individual differences in visualization is progres-
sively growing, demonstrating that interaction with data visual-
izations can be affected by the individual user’s cognitive abili-
ties (e.g., visual working memory [31]), cognitive styles (e.g., field
dependent [30]), personality factors (e.g., extraversion [14]), and
expertise/experience [19, 20]. Recent works [2, 3, 37] have started
exploring the impact of individual differences of business users
on the performance of understanding and interpreting data visual-
izations in the business domain for taking prompt and actionable
decisions. These works identify the need for the design and devel-
opment of adaptive data visualization systems that consider the
unique characteristics and requirements of business analysts.

This paper presents a novel human-centered adaptation engine,
which aims to enhance the comprehensibility of data visualizations
to improve user accuracy and time-to-action efficiency. The adapta-
tion engine adopts an ensemble system with a fuzzy rule inference
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engine to predict the best fit visualization type and style (i.e., set of
visual elements) for business data analysts. The studies that sup-
ported the design, development, deployment, and integration of
the adaptation engine took place between Sep’2021 and Nov’2022.
Firstly, the user model of all users was extracted, recording human
factors in individual differences, demographics, experience, and
expertise, using psychometric tests and questionnaires based on
our previous work in [2, 33]. Next, the fuzzy rules were constructed
based on several user studies that assessed the impact of cognitive
factors on the understandability of data visualizations (see Sec-
tions 4.3 and 4.4). These rules were then combined by the inference
engine to produce the adapted content (see Section 3).

The adaptation engine was evaluated using 45 professional ana-
lysts from multiple industry sectors. Our evaluation results show
that the delivered adaptation improves: (i) user’s performance (i.e.,
time taken to address an analysis task) by an average of 8.1s; (ii)
task accuracy (i.e., correctness of analysis task response), where
62% of users were more accurate; and (iii) usability, by improving
perceived user experience by 9% .

The rest of the paper is structured as follows: Section 2 presents
the system model, consisting of the core adaptation engine inputs:
user model, analysis tasks, data, and data visualizations. Next, Sec-
tion 3 introduces the adaptation engine and its two phases: genera-
tion of adaptation rules and adaptation process. The rule extraction
process is further described in Section 4. Section 5 presents the user
study that was conducted to evaluate the adaptation engine’s im-
pact on user’s efficiency and effectiveness. The results of the study
are presented in Section 6. Then, Section 7 presents related work
on data visualization adaptation based on individual differences.
Finally, Section 8 concludes the paper.

2 SYSTEM MODEL
In this section, we provide an overview of the system model. The
system consists of a set of data analyst users {𝑢1, 𝑢2, ..., 𝑢𝑁 } ∈ 𝑈 ,
and for each user 𝑢𝑖 the system maintains a user model 𝑢𝑚(𝑢𝑖 ) to
store the user’s characteristics (e.g., demographics, psychometric
indicators). We assume that each user 𝑢𝑖 is assigned a subset of the
organization’s data analysis tasks𝑇 ′ ⊂ 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑀 } that need
to be addressed through appropriate explorations. We also assume
that a task 𝑡 𝑗 is atomic (i.e., not composed of several sub-tasks) and
will require the construction of a single query 𝑞 that will retrieve
the required data 𝑑 to address the task. The data will be visualized
using appropriate visualizations within the user interface.

User Model: The user model of a user 𝑢𝑚(𝑢𝑖 ) is a set of triplets
of the form (𝑐𝑡, 𝑐ℎ, 𝑣𝑎𝑙), where 𝑐𝑡 represents the category (e.g.,
𝑑=demographics, 𝑝=psychometric characteristics), 𝑐ℎ represents
the characteristic that belongs to the triplet’s category (e.g., age
for demographics), and 𝑣𝑎𝑙 represents the respective value for that
characteristic (e.g., 35 for age). An example of a user model for user
𝑢𝑖 can be 𝑢𝑚(𝑢𝑖 ) = {(𝑑, 𝑎𝑔𝑒, 35), (𝑝,𝑤𝑚, 𝑙𝑜𝑤), (𝑝, 𝑓 𝑑𝑖, 𝑓 𝑑)}, denot-
ing that the user 𝑢𝑖 has an age of 35, a low Working Memory and
is classified as field-dependent.

Tasks: A task (𝑡 𝑗 ∈ 𝑇 ) represents a business question, such as
“Identify if the glass bottles pack type is growing in terms of sales
value in August of 2021 compared to June 2021.”, that needs to
be addressed through appropriate explorations. A task is a tuple

𝑡 𝑗 = (𝑡𝑒𝑥𝑡, 𝑡𝑦𝑖 ) consisting of: (i) the narrative (𝑡𝑒𝑥𝑡 ); and (ii) the
task’s type (𝑡𝑦𝑖 ∈ 𝑇𝑌 ), as summarised in Table 1 (following the
work of Amar et al. [1], which presented a set of low-level analytical
tasks that largely capture people’s activities while interacting with
information visualization tools). An example of a task 𝑡 𝑗 is (𝑡𝑒𝑥𝑡 =,
“Identify if all Soft Drinks sales were affected by seasonality in
2019”, 𝑓 𝑎𝑛), where the type of the task 𝑡𝑦𝑖 is 𝑓 𝑎𝑛 = 𝐹𝑖𝑛𝑑𝐴𝑛𝑜𝑚𝑎𝑙𝑦).

Data: The system employs an information retrieval engine that
can support the users’ data explorations. In the context of this
work, we assume that the system maintains a number of high-
quality prepared datasets. The datasets can be accessed via a query
engine, which can specify queries in a supported language (e.g.,
𝑞 =“Retrieve Month, SalesValue From SalesDataset”).

DataVisualizations:The systemmaintains a Data Visualization
Engine that is responsible for rendering all data visualizations. All
data visualizations 𝑣𝑘 ∈ 𝑉 have a set of adaptable visual elements
(𝑣𝑒𝑖 ∈ 𝑉𝐸) (e.g., the color and width of a bar, enabling/disabling
grids), which can be enabled by the adaptation engine for delivering
the desired adaptation/personalization. Table 2 lists the set of visual
elements 𝑉𝐸 and their applicability on each of the available data
visualization types 𝑉 . In order to render a data visualization, the
Data Visualization Engine requires: (i) the data returned by the
query engine; (ii) the type of data visualization 𝑣𝑖 to render; and
(iii) the set of visual element modifications 𝑣𝑒𝑖 as selected by the
Adaptation Engine.

Table 1: Available System Task Types (𝑇𝑌 )

Task Name Task Descriptions [1]

Retrieve Value (𝑟 𝑣𝑙 ) Find and retrieve attribute values.
Compute Derived
Value (𝑐𝑑𝑣)

Compute a summary (numeric) of data.

Find Anomalies (𝑓 𝑎𝑛) Identify any anomalies within a given set of
data cases with respect to a given relation-
ship or expectation, e.g., statistical outliers.

Correlate (𝑐𝑜𝑟 ) Given a set of data cases and two attributes,
determine useful relationships between the
values of those attributes.

Simple Comparison
(𝑐𝑜𝑚) (not in [1])

Simple data value comparison e.g., finding
the lowest or the highest value in the dataset.

3 ADAPTATION ENGINE
The adaptation engine is responsible for delivering the best fit
data visualization to the analyst user by utilizing the user’s model
𝑢𝑚(𝑢𝑖 ), an analysis task 𝑡 𝑗 , and two sets of adaptation rules. The
rules are used for selecting: (i) the best fit data visualization type
and (ii) a set of visual element modifications that further personalize
the data visualization. The construction and utilization of the two
rule sets are detailed in the subsequent sections.

3.1 Adaptation Rules
The adaptation rules are fuzzy if-then rules that are triggered during
the adaptation process. They are stored in two sets: (i) rules for
adapting visualization types (𝐴𝑅𝑉𝑇 ) and (ii) rules for adapting
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Table 2: Table ofAdaptive Elements𝑉𝐸 and their applicability
to Data Visualization Types

𝑣𝑒𝑖 Description Visualization Type∗
B C L R P T

ℎ𝑔𝑙 Enables horizontal and ver-
tical grid lines

× × × ×

𝑐𝑝𝑡1 Switches to color palette 1
(duller colors compared to
𝑐𝑝𝑡2)

× × × × ×

𝑐𝑝𝑡2 Switches to color palette 2
(brighter colors compared
to 𝑐𝑝𝑡1)

× × × × ×

𝑑𝑡 Enables dark background
and white text (dark theme)

× × × × × ×

𝑒𝑠𝑖𝑧 Changes the default size
of primary elements (bars,
columns, lines)

× × × ×

𝑝𝑟𝑜𝑥 Changes the default prox-
imity between primary el-
ements (bars and columns)

× ×

𝑑𝑙 Displays data values on top
of elements (e.g., bars)

× × × × ×

∗Visualization types: B:Bar, C:Column, L:Line, R:Radar, P:Pie, T:Table

visualization elements (𝐴𝑅𝑉𝐸). Example rules from the 𝐴𝑅𝑉𝑇 and
𝐴𝑅𝑉𝐸 rule sets can be seen in Table 3 and Table 4, respectively.

The rules consist of several metadata attributes that allow them
to be triggered according to the user, task, and data characteristics.
For example, the Factor and Level columns in both rule sets refer
to user’s classification for a human factor (e.g., Working Memory -
High). The rule sets are also augmented with several other metadata
attributes (e.g., TaskType) to cater for filtering each of the rule sets
prior to adaptation. This structure is flexible to cater for future
metadata enhancements. The filtered rules are then combined to
recommend the best fit visualization type.

Similarly, the𝐴𝑅𝑉𝐸 rule set contains the ChartType and Element
columns, which refer to the chart type and visual element modifica-
tion that a specific rule applies. The adaptation engine combines the
filtered 𝐴𝑅𝑉𝐸 rule set for determining the adaptation of a specific
visual element (e.g., dark theme) on the selected data visualization.

Table 3: Example Adaptation Rules for Visualization Type
(ARVT)

Factor Level TaskType Vis. Type∗ Weight (%))
B R C L P T

WM High 𝑓 𝑎𝑛 4 0 96 0 0 0
WM High 𝑓 𝑎𝑛 0 92 0 4 0 4

∗Visualization types: B:Bar, C:Column, L:Line, R:Radar, P:Pie, T:Table

The selected representation of the rules is twofold: (i) to facilitate
efficient execution of the rules and (ii) to improve the explainability

Table 4: Example Adaptation Rules for Visual Elements
(ARVE) for Dark Theme (𝑑𝑡)

Factor Level ChartType Element ENABLE DISABLE

WM High Bar 𝑑𝑡 60 % 40 %
WM High Line 𝑑𝑡 32 % 68 %

of the inference process carried out by the system. A simplified ex-
ample of the first rule in Table 3 is presented below: IF Factor=“WM”
and Level=“High” and TaskType=“Find Anomaly” THEN Visualiza-
tionType=Column=95%, Bar=4%.

3.2 Adaptation Procedure
The adaptation procedure can be conceptually illustrated as the
function 𝑎𝑝 (𝑢𝑖 , 𝑡 𝑗 , 𝑞) = (𝑑, 𝑣𝑘 ,𝑉 𝐸′). The adaptation procedure func-
tion receives a query 𝑞 for a task 𝑡 𝑗 by user 𝑢𝑖 , and returns the
desired data and visualization instructions in the form of a triplet
that contains the data 𝑑 , best fit data visualization type (𝑣𝑘 ), and
any visual element modifications (𝑉𝐸′ ⊂ 𝑉𝐸). The output of this
function is used as input to the Data Visualization Engine. The
detailed steps of the process are presented in Algorithm 1.

The procedure starts by retrieving the data 𝑑 for query 𝑞 (line
#1) and the task metadata 𝑡𝑚 (line #2). If the task has a prede-
fined data visualization (line #3) the algorithm stops execution
and returns the pre-selected data visualization type for the task
(𝑡𝑚.𝑝𝑟𝑒𝑑𝑒 𝑓𝑉 𝑖𝑠𝑇𝑦𝑝𝑒), the retrieved data, and a default set of visual
element adaptations {𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠} (line #4). Otherwise, adap-
tation is initiated by first retrieving the user’s model (𝑢𝑚(𝑢𝑖 )) (line
#6) and subsequently identifying the best fit data visualization type
(𝑣𝑘 ) by combining adaptation rules. This is done by first filtering
down the𝐴𝑅𝑉𝑇 rule set (line #7) according to the user’s model (𝑢𝑚)
and task metadata (𝑡𝑚). The resulting𝐴𝑅𝑉𝑇 ′ rules set is forwarded
to the fuzzy classifier that aggregates the votes for each of the avail-
able visualization types and returns the winner data visualization
(line #8).

Algorithm 1 Adaptation Algorithm 𝑎𝑝 (𝑢𝑖 , 𝑡 𝑗 , 𝑞)
1: 𝑑 ← 𝑞𝑢𝑒𝑟𝑦𝐸𝑛𝑔𝑖𝑛𝑒 (𝑞)
2: 𝑡𝑚 ← 𝑔𝑒𝑡𝑇𝑎𝑠𝑘𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎(𝑡 𝑗 )
3: if Not 𝑡𝑚.𝑝𝑟𝑒𝑑𝑒 𝑓𝑉 𝑖𝑠𝑇𝑦𝑝𝑒𝑖𝑠𝑛𝑢𝑙𝑙 then
4: return (𝑑, 𝑡𝑚.𝑝𝑟𝑒𝑑𝑒 𝑓𝑉 𝑖𝑠𝑇𝑦𝑝𝑒, {𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠})
5: end if
6: 𝑢𝑚 ← 𝑢𝑚(𝑢𝑖 )
7: 𝐴𝑅𝑉𝑇 ′ ← 𝑓 𝑖𝑙𝑡𝑒𝑟𝐴𝑅𝑉𝑇 (𝑢𝑚, 𝑡𝑚)
8: 𝑣𝑘 ← 𝑣𝑖𝑠𝑇𝑦𝑝𝑒𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 (𝐴𝑅𝑉𝑇 ′)
9: 𝑉𝐸′ ← ∅
10: for each 𝑒𝑙 ∈ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 do
11: 𝐴𝑅𝑉𝐸′ ← 𝑓 𝑖𝑙𝑡𝑒𝑟𝐴𝑅𝑉𝐸 (𝑢𝑚, 𝑣𝑘 , 𝑒𝑙)
12: 𝑒𝑛𝑎𝑏𝑙𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ← 𝑣𝑖𝑠𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑉𝑜𝑡𝑒𝑟 (𝐴𝑅𝑉𝐸′)
13: if 𝑒𝑛𝑎𝑏𝑙𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡 then
14: 𝑉𝐸′ ← 𝑉𝐸′ ∪ {𝑒𝑙}
15: end if
16: end for
17: return (𝑑, 𝑣𝑘 ,𝑉 𝐸′)
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The algorithm then selects a number of visual element modifica-
tions (𝑉𝐸′ ⊂ 𝑉𝐸) that are specific to the winner data visualization.
Initially an empty set (𝑉𝐸′) is initialized (line #9) for maintaining
visual element modifications that will be applied to the selected data
visualization type. Line #10 begins examining all possible visual
element modifications (𝑉𝐸) supported by the visualization engine
iteratively, and filters rules from the 𝐴𝑅𝑉𝐸 rule set using the user’s
model (𝑢𝑚), the winner data visualization type (𝑣𝑘 ), and the visual
element (𝑒𝑙 ) that is to be voted. The filtered set of rules (𝐴𝑅𝑉𝐸′) is
forwarded to the voter function (line #12) that combines the votes
and decides if the current visual element modification 𝑒𝑙 will be
enabled or disabled. The result of the vote is added in the 𝑉𝐸′ set
(line #14). The procedure finishes once all elements are evaluated
(line #16) and returns the data (𝑑), winner data visualization type
(𝑣𝑘 ), and the visual element modifications set (𝑉𝐸′) (line #17). The
result will be forwarded to the Visualization Engine for rendering.

4 USER STUDY – PHASE A: ADAPTATION
RULES EXTRACTION

This section describes how the adaptation rule sets and user models
were extracted through a user study that analyzed the interactions
(performance and accuracy) of 60 business data analyst participants
with different data visualizations types and visual elements.

4.1 Study Setup
Participants: The study recruited 60 business data analyst partici-
pants from two industry organizations (RAI Consultants LTD1 and
KPMG Cyprus2) working in diverse industry fields such as Retail,
and Consumer Marketing, Advisory Services, Audit, and Risk As-
sessment, who had on average at least 2 years of experience in the
field of data analytics and were using data visualizations on a daily
basis. Moreover, the sample consisted of 30 male and 30 female
participants, with age ranging from 24 to 57 (mean age 33.9 ± 7.8).
All participants had varying expertise levels, including decision
makers and managers, and executive-, senior- and junior-analysts.

User Modeling: The user model included human factors in
individual differences, demographics, experience, and expertise,
of all users. The parameters were extracted using psychometric
tests and questionnaires based on our previous work in [2, 33].
The resulting model consisted of the Field Dependent-Independent
(FDI) cognitive style construct, cognitive processing abilities (con-
trol of attention, speed of processing, visual working memory)
and demographic information (gender, age, educational status, and
experience/expertise characteristics.

Dataset: To cater for the diverse user analysts’ expertise, a syn-
thetic sales dataset was constructed, consisting of comic book sales
with typical dimensions, such as time, product characteristics, loca-
tion characteristics, and distributive and algebraic measures, such
as quantity, price, amount, average price, and weighted price.

Data Visualization Types: According to our previous find-
ings [2] we opted for the most frequently used data visualizations
of our user group, which included the Bar Chart, Line Chart, Pie
Chart, Column Chart, Data Table, and Radar Chart.

1https://www.rai.com.cy/
2https://home.kpmg/cy/

Data Visualization Tasks: Using the synthetic comic book
sales dataset, we produced 160 visual exploration tasks, each requir-
ing participants to interact with a data visualization and answer
a question. In the background, the system recorded the partici-
pant’s response time (ms) and assessed whether the response was
correct. The tasks were organized into four experiments: (i) Chart
Type experiment; (ii) Task Complexity experiment; (iii) Dimension-
ality experiment; and (iv) Visual Elements experiment, to capture
user interactions with visualizations of varying types (see Table 1),
complexity, dimensionality, and appearance, respectively. Tasks
were delivered using default visual settings (i.e., no modifications
on visual elements) and acted as control tasks to the Visual Ele-
ments experiment. The tasks for the Visual Elements Experiment
were divided into seven sets, each one introducing a visual element
modification (𝑣𝑒𝑖 ∈ 𝑉𝐸) as seen in Table 2.

4.2 Study Procedure
Due to the implications of the national restrictions in response to
the COVID-19 pandemic, it was decided that the study had to be
conducted in a remote manner. The study received ethics approval
from Cyprus National Bioethics Committee and followed all the
relevant protocols. The study was conducted for seven days and
participants had to complete all four experiments, consisting of
160 visual exploration tasks. Each participant was given access to
the experiment platform. Once an experiment began, the platform
loaded the analysis tasks and presented them in a random order.
A task was completed once the participant provided a response.
One important constraint enforced was that once an experiment
started it could not be stopped until all tasks were addressed. At the
beginning, users were given instructions on how to set their screen
environment, such as setting the minimum screen size and screen
resolution, to ensure that the study experience was as identical as
possible across different participants. Moreover, prior to being able
to engage with the experiments, instructions were provided to the
participants describing the experiment process and the approximate
amount of time required to complete each experiment. Finally, all
participants were given a set of training analysis tasks similar to
those of the four experiments.

4.3 Adaptation Rules for Visualization Types
It must be noted that for generating the 𝐴𝑅𝑉𝑇 rule set, only re-
sponses from the three control experiments were used (i.e., re-
sponses for the Visual Elements experiment were excluded). The
following five steps describe the procedure performed to extract
rules for every human factor group. To facilitate our description, we
use as an example a single group of participants, the ones with High
Working Memory, as the process is identical for all other groups.
Step 1 started by filtering the responses to the selected group of
participants. In Step 2, the response time values were aggregated,
according to the task’s metadata and chart type, to produce the av-
erage response time of each participant on every data visualization
type, task type, and data characteristics. Step 3, ranked the data
visualization types for each participant at different task configura-
tion levels, such as task type and data characteristics. Ranking was
based on the average response time the participant achieved when
using a specific data visualization under a set of specific analysis

28



Human-centered Information Visualization Adaptation Engine UMAP ’23, June 26–29, 2023, Limassol, Cyprus

task configuration. Step 4 the results were further filtered to the
data visualization with the highest rank in combination with the
analysis task configuration. The results were then summarized for
all participants leading to six records, each representing the score
of each of the six available data visualizations used for a specific
analysis task configuration. Essentially, the score in this context
represents the number of times a specific data visualization had
the best performance in terms of time response (in milliseconds)
for a specific analysis task configuration across all participants. In
the final step, the data visualization scores were normalized to the
range [0..1], assuming that all rules represent homogeneous fuzzy
rules (i.e., all rules are of equal weight). The resulting 𝐴𝑅𝑉𝑇 was
used by the adaptation engine to select the best fit data visualization
as described in Section 3.

4.4 Adaptation Rules for Visual Elements
In this section, we define the rule extraction process of the 𝐴𝑅𝑉𝐸
set, which utilized the responses captured from both, the control
experiments and the visual elements experiment. For instance, rule
extraction for the “dark theme” visual element/setting required the
utilization of responses from the visual elements experiment, which
had "dark theme" enabled. All corresponding analysis tasks from
the rest of the experiments acted as control analysis tasks. Similarly
to the extraction of adaptation rules for Data Visualization Types,
the 𝐴𝑅𝑉𝐸 rule set was generated in five steps, aggregating the
response times of participants when a visual element was enabled
and disabled, across all data visualization types. The resulting rules
were used by the adaptation engine to configure the best fit data
visualization elements as described in Section 3.

5 USER STUDY – PHASE B: ADAPTATION
ENGINE EVALUATION

This section presents a user study that evaluates the use of personal-
ized data visualizations to improve the efficiency and effectiveness
of business data analysts. The adaptation engine utilized the adapta-
tion rules generated in the previous section. The study collected the
following evaluation metrics: (i) performance and accuracy of par-
ticipants when addressing visual analysis tasks; and (ii) perceived
user experience. For capturing the adaptation engine’s impact we
followed a within-subjects study design, enabling us to record all
evaluation metrics when the participant navigated over: (i) the orig-
inal non-adapted/personalized content, which included analysis
tasks with predefined data visualizations without any alterations or
enhancements and (ii) data analysis tasks that included dynamically
adapted/personalized data visualizations. Our null hypotheses are
the following:

H0: The performance of the participants in terms of milliseconds
taken to address an analysis task, between the two conditions (i.e.,
adaptation enabled and disabled) will not be significantly different.

H1: The accuracy of the participants in terms of the total num-
ber of tasks addressed correctly, between the two conditions (i.e.,
adaptation enabled and disabled) will not be significantly different.

H2: The system’s user experience score between the two condi-
tions (i.e., adaptation enabled and disabled) will not be significantly
different.

5.1 Study Setup
Participants: For this study, 45 business data analyst participants
were recruited (24 male and 21 female) with their age ranging
between 25 and 60 years (mean age 35.4 ± 8.8). On average, the
participants had at least 2 years of experience in the field of data an-
alytics. 21 out of the 45 participants volunteered from our previous
user study (Phase A), described in Section 4. The new participants
were recruited from the same organizations and adhered to the
same participation preconditions as in the above mentioned user
study. It must be noted that the new 24 participants were given
enough time to complete the necessary questionnaires/test to con-
struct their user models (i.e., perform all psychometric tests and
answer all questionnaires).

Dataset: Provided that some study participants were also part of
the previous study, a new dataset was constructed in collaboration
with the partner organizations to prevent the learning effect of
repeated experiments. A real dataset consisting of soft drinks sales
was selected to be used for the study. The dataset comprised of
19 attributes3 and three dimensions (time, product, and outlet),
and consisted of 731,446 real sale transactions recorded over a
period of three years (2019-2021). The outlet names, brands, and
product names of the dataset were anonymized upon request of the
providing organization.

Analysis Tasks: Using the realistic sales dataset, 38 analysis
tasks were created in pairs of equal complexity, resulting in 19 pairs
of tasks. Moreover, each pair of tasks had a specific analysis task
type assigned using the taxonomy of tasks presented in Table 1.
Each pair included: (i) the control non-adapted/non-personalized
task generated using a specific/predefined visualization type ap-
plicable to the task; and (ii) the personalized data visualization
generated by the adaptation engine for each participant and task.
The data visualization types used for constructing the set of tasks
for this experiment are the data visualization types used during
the previous user study in Section 4, which were identified as the
most commonly used by the user group. In the background, the
system recorded the time required for the participant to interact
and respond to the task (in milliseconds) and assessed whether the
response of the participant was correct.

Study Material: Besides recording performance and accuracy
for each task, the study aimed at capturing the users’ experience
factor. To this end, we utilized two accredited system evaluation
questionnaires, which we combined into a web-based questionnaire.
Specifically, for measuring the participants’ user experience we
used the User Experience Questionnaire Short Version (UEQ-S) [34].
According to the questionnaire’s authors, this questionnaire’s scales
“cover a comprehensive impression of user experience. Both classical
usability aspects (efficiency, perspicuity, dependability) and user
experience aspects (originality, stimulation) are measured”.

5.2 Study Procedure
Due to the implications of the national restrictions in response to
the COVID-19 pandemic, we decided that the study was conducted
online. Following this decision, we also ensured that we maintained

3Date, Year, Month, Day, Quarter, Brand, Product Name, Promotion, Pack Type, Diet,
Outlet Name, Outlet Type, Urban Or Rural, Area Name, Size, Price, Quantity, Sales
Value and Sales Volume
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(a) the ecological validity of the study, since the experimental design,
procedure, and setting approximated the real-life context that is
under investigation [4], and (b) its internal validity as the accuracy
of the data and the respective conclusions are drawn from users
who were a good fit to the subject of the investigation (given their
business roles and daily business routine) [10].

At the beginning, all participants were invited to an online meet-
ing where the study and its goals were introduced. It was decided
that during the study participants would be assigned the role of
a Brand Manager employed at a fictitious company that sells soft
drinks of the brand “IdealCola”. A training session was conducted,
allowing participants to experience the system by addressing a few
demo analysis tasks through the user interface.

At the end of the training session, a recorded version of the
presentation, system demonstration videos, guidelines and access
credentials to access the platform were shared with the participants.
This served as a second training step, so that each participant could
login during their free time and practice an additional set of demon-
stration analysis tasks. This ensured that all participants were well
familiarized with the platform’s interface and analysis tools prior
to engaging with the study. Moreover, it must be noted that when
participants logged in for the first time, they were greeted with a
welcome presentation that demonstrated all the features of the data
exploration system and also GDPR-related features (e.g., enabling
a participant to request the deletion of their information). Finally,
since the study was conducted in a remote fashion, appropriate con-
trols were developed to prevent the system from tracking the user’s
view time/performance in the cases where the participant was dis-
tracted by external factors. In particular, if the participant was found
to be non-responsive for 30 seconds the platform prompted the user
to validate that they are still present, otherwise all recorded met-
rics were reset and the user had to restart the task. The 30-second
interval was decided with the industry partners after performing
some tests with tasks of varying complexity.

The rest of the study was divided into two parts. The first part
utilized the 19 non-adapted set of analysis tasks (i.e., the system
returned the same predefined data visualization for the specific
analysis task to all participants). The second part utilized the 19
adapted analysis tasks (i.e., the data visualizations were adapted
by the adaptation engine, according to the user model and task
characteristics). For each part, a participant could navigate in the
list of available tasks (presented in random order), study their ques-
tion/narrative, and select one that will serve as the current task.
The the participant could then navigate to the “Analysis Wizard”, a
tool which enabled participants to perform data explorations in a
step-by-step manner. The functionality of the Analysis Wizard was
limited to providing the capabilities required to address the study
tasks. In particular, during the exploration process, the participant
was required to perform three steps of the Analysis Wizard: (i) se-
lect analysis; (ii) select attributes; and (iii) view result (i.e., adapted
or non-adapted visualization). Furthermore, the current analysis
task’s narrative was available to users on the top of the Analysis
Wizard to remind them of what was required. Finally, once the
participant had an answer for the analysis task, they could navigate
back to the list of analysis tasks and provide their answer. During

the exploration process, the platform was monitoring the interac-
tion time of participants for all steps and assessed the correctness
of their responses.

After completing all analysis tasks the participants were required
to complete online questionnaires for assessing the system’s user
experience.

6 EVALUATION RESULTS
This section presents the results of our evaluation by reporting
the impact of data visualization adaptation on the participant’s
performance, accuracy, and perceived user experience as stated by
the Hypotheses in Section 5.

6.1 Impact on Analysis Task Performance
The analysis of performance consisted of comparing the time re-
quired for participants to address paired (non-personalized vs. per-
sonalized) analysis tasks. At the beginning, the results were filtered
to include only pairs where the participant responded accurately to
both analysis tasks. An outlier analysis was performed for assessing
each participant’s and each task’s response times to reveal abnor-
mal observations. Our analysis revealed that for Task 13, which
featured computation of a derived value, all participants took an
extreme amount of time to complete the personalized task. After
talking to participants, it was understood that the majority of the
participants were not aware of how to approach addressing Task
13. Additionally, some participants reported having to use a calcu-
lator to find the correct answer for this task. Consequently, it was
decided to remove the task results from the analysis.

The analysis across the two study conditions revealed that adap-
tation had a positive effect on participants’ performance enabling
them to achieve an average decrease of 8.1 ± 6.9s with regards
to task completion time. Moreover, with adaptation enabled, per-
formance improved for an average of 9 ± 2 tasks per participant
(max:15, min:5).

Analysis on the impact of adaptation with regards to perfor-
mance across different task types suggests that adaptation had
a positive effect on participants’ performance enabling them to
achieve: (i) a statistically significant average decrease of 7.8s for
Retrieve Value tasks (p < .01); (ii) a statistically significant average
decrease of 25.9s for Correlation tasks (p = .01); (iii) a statistically
significant average decrease of 8.2s on Simple Comparison tasks
(p < .01); and (iv) a non-statistically significant average decrease of
10.6s on Compute Derived Value tasks (p = 0.24).

Since Simple Comparison tasks was the larger group of analysis
tasks (10 task pairs), it was decided to further explore this group
of tasks by independently analyzing Simple Comparison tasks that
used time series data. Results suggest that with adaptation enabled,
participants achieved: (i) a statistically significant average decrease
of 9.9s on Simple Comparison tasks that used time series data (p
< .01) and (ii) a statistically significant average decrease of 4.5s
on the remaining Simple Comparison tasks (p < .01). Moving on,
the adaptation enabled performance improvements for an average
of 84 ± 82 task responses across all analysis task types (max:199
for Simple Comparison, min:5 for Compute Derived Value tasks).
Unfortunately, the sample of our tasks was limited to a single Find
Anomaly pair of tasks, for which the majority of participants only
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responded correctly to the personalized variant of the task, leav-
ing a very small sample of only four responses that could not be
incorporated in this analysis.

In conclusion, the above results reveal that when the adapta-
tion engine was enabled, participants’ performance was positively
affected, and thus, we reject the null hypothesis H0.

6.2 Impact on Analysis Task Accuracy
The analysis of accuracy considered the participants’ ability to ad-
dress (non-personalized vs. personalized) analysis tasks correctly.
For each of the study conditions a participant was able to achieve a
maximum score of 19 (i.e., the total number of tasks). Analyzing
the accuracy scores of each participant reveals that 62% of partic-
ipants were more accurate when addressing analysis tasks with
adapted/personalized data visualizations. Moreover, 18% of partici-
pants were not affected in terms of accuracy across the two study
conditions, while the remaining 20% of participants were negatively
impacted by adaptation in terms of accuracy. In contrast to analysis
tasks with no data visualization adaptation, participants were able
to address on average an additional 8% of analysis tasks correctly
when working with personalized visual elements tasks. Analysis of
accuracy scores across task types for both conditions revealed that
participants were generally much more accurate in addressing tasks
when adaptation was enabled for Simple Comparison, Compute
Derived Value, and Find Anomaly tasks. Specifically, participants
were more accurate by 6.6% for Simple Comparison tasks, 34.2% for
Computer Derived Value tasks, and 90% for Find Anomaly tasks.
In contrast, for Correlation and Retrieve Value task types we were
not able to see a significant impact in terms of accuracy when par-
ticipants were using adapted/personalized data visualizations for
addressing the analysis tasks.

In conclusion, the overall analysis of task accuracy revealed that
when the adaptation engine was enabled, participants’ accuracy
was positively affected, and thus, we reject the null hypothesis H1.

6.3 Impact on User Experience
During the evaluation study 35 out of 45 participants provided
voluntary responses to the User Experience Questionnaire (UEQ-
S) [34], right after they addressed all control analysis tasks (i.e.,
those tasks with a predefined/non-adapted data visualizations).
Additionally, the same 35 participants responded to the two ques-
tionnaires right after they had addressed all analysis tasks for which
the system produced an adapted data visualization. The collected
data was analyzed by an automated process offered by the ques-
tionnaire’s authors in order to investigate H2.

The User Experience Questionnaire has in total 8 scales, 4 scales
measuring Pragmatic Quality (a metric that focuses on the task-
oriented nature of an experience, e.g., considers the task’s efficiency
and ease of use) and 4 scales measuring Hedonic Quality (a metric
that focuses more on the fun, appeal, and more generally on the
originality aspects of the experience offered by a system). Using
the responses of all participants we calculated Cronbach’s alpha
(or coefficient alpha) for each set of scales belonging to each metric
(i.e., pragmatic quality and hedonic quality) for data collected in
both conditions (i.e., adaptation disabled/enabled). Alpha values for
both metrics across the two conditions were higher than 0.7, which

is considered acceptable. Generally, scales that belong to the same
group should show a high correlation. Therefore, using the Cron-
bach’s alpha, which is a measure for the consistency of a scale [11],
helped us ensure that the different scales of the questionnaire were
interpreted as intended by the participants. The baseline scores (i.e.,
adaptation disabled condition) for (i) pragmatic quality was 1.35, (ii)
hedonic quality was 0.86, and (iii) the overall user experience was
1.11. Moreover, with adaptation enabled the score for (i) pragmatic
quality was increased to 1.45, (ii) hedonic quality was increased
to 0.97, and (iii) the overall user experience was increased to 1.21.
The user experience scores achieved by the system across the two
conditions are above the value of 0.8, and thus, are considered
a positive evaluation [34]. The evaluation revealed that enabling
data visualization adaptation when participants interact with the
given analysis tasks facilitated an increase of their perceived user
experience, and thus, we reject the null hypothesis H2.

6.4 Discussion
Our user study evaluation shows that the current adaptation engine
with the adopted rule generation procedure improves the partici-
pants’ performance and accuracy across a variety of data analysis
tasks. The platform positively affects the participants’ perceived
user experience score. Furthermore, the fuzzy rule-based classifica-
tion framework enables the quick integration of new rules based
on new data visualization interaction data. Additionally, the fuzzy
adaptation logic and the ensemble processing approach used by the
adaptation engine makes it easier to combine and utilize in parallel
multiple adaptation driving factors (e.g., human factors), which
might interact with each other. The characteristics that we used in
the user profiles reflect human factors that complement each other
and have a specific impact on the type and presentation of data
visualization in relation always to the type of task and intent (e.g.,
working memory monitors the complexity, whereby cognitive style
the type). The computational model makes sure that aggregated
views (clusters) of specific user profiles are created dynamically,
matching specific adaptive conditions. This “cooperative” learning
process is optimized in time, improving the quality of the results
considering the current dataset. Moreover, the extraction of data vi-
sualization interaction data for adaptation rule generation can take
place during a user study using appropriate data collection tools,
similar to the ones used in this work, or can be be extracted from
other sources, such as data analysis tools offering user interaction
logging. Overall, the flexibility of the current framework allows
for quickly collecting interaction data and efficiently transform it
in adaptation rules. The framework is also flexible to be used for
experimentation in other domains.

While our work focused on the improvement of the overall ef-
ficiency and effectiveness of the business data analyst when ad-
dressing data analysis tasks, there are some limitations that we
would like to address in the future. The sample of analysis tasks
used during evaluation was not balanced in terms of task type,
since more focus was given on simpler comparison tasks. Moreover,
this work assumes homogeneous weak learners adaptation rules.
An alternative approach would be to use a boosting framework by
identifying which adaptations/interventions had the most influence
on the improvement with regards to accuracy and performance.
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Some questions arising from this work that we plan in address-
ing as part of future endeavors include: (i) How could our approach
offer a transparent explanation to the business analyst with re-
gards to why the best fit data visualization was selected? (ii) How
can we more effectively process the resulting user’s interaction
with the adapted output and further gain insight on which adap-
tation/intervention was the most helpful for that type of user?
and (iii) How does our adaptation perform with unexplored data
visualizations and analysis task types? Our goal is to attempt to
address these questions by first extending our sample of users and
gathering more data visualization interaction data that can yield
more diverse adaptation rules; thus, facilitating further exploration
of the interaction of human factors on data visualizations, but also
the exploration of this interaction as a driving force to the current
adaptation engine.

7 RELATEDWORK
Designing a user adaptive system involves the consideration of
three questions:what to adapt to, when to adapt, and how to adapt [5].
Our work turns the focus on what to adapt to and further explores
how to adapt aspects.

With regards to what to adapt to, research on information visu-
alization reveals that individual differences influence how a user
interacts, understands, and utilizes data visualizations for perform-
ing analytical tasks. In fact, the growing interest on the effect of
individual differences in information visualization resulted in com-
prehensive survey publications on the subject [21]. A subset of
works on individual differences and their effect on information
visualization includes, but is not limited to, the exploration of hu-
man factors such as cognitive abilities [6, 7, 19, 28, 31, 32, 36, 39],
cognitive styles [17, 25, 29, 30, 33], personality traits [9, 14, 38, 39],
and expertise/experience [19, 20, 31].

The question of how to adapt data visualizations is usually ad-
dressed (i) at the visualization type level, i.e., using recommenda-
tions for a best fit data visualization or (ii) at the individual visual
element level, i.e., applying modifications or additions of visual
elements on a data visualization. The works of Gotz et al. [12]
and Grawemeyer [13] focused on adaptation with regards to de-
livering data visualization type recommendations based on user’s
interaction behavior or task features. On the other hand, visual
element modifications are equally important to note. The work
of Carenini et al. [5] investigated how the effectiveness of a data
visualization (specifically a bar chart) can be increased with four
different adaptive interventions. Additionally, in the context of Se-
curity Information and Event Management systems, Yelizarov et
al. [37] proposed a graph of computer hosts that highlights the most
significant hosts (i.e., graph nodes) and dims (using opacity) the rest
according to the current cognitive load of the user for increasing
efficiency when dealing with system threats. While Yelizarov et
al. [37] leveraged the user’s cognitive load for adaptation, others
have utilized the underlying data for adapting the color of visual el-
ements according to their mapped data category in order to reduce
the user’s cognitive load [27].

By contrast to the above works, our goal is to build a flexible
human-centered by-design adaptation engine that leverages the

power of a multidimensional human-centered user model for de-
livering the best fit data visualization (both in terms of data visu-
alization type and visual element modifications). Specifically, our
work targets data analyst users who perform visual data exploration
in the context of a business environment, aiming to increase their
comprehensibility of information leading to improved accuracy and
time-to-action efficiency. Our adaptation engine utilizes a fuzzy
rules-based recommendation system based on established tech-
niques for multi classifier fusion [18, 26]. Similar to our approach,
fuzzy rules are obtained by computing the grade of certainty of a
rule [15, 26] and then a subset is selected based on specific criteria
to improve prediction accuracy [16]. However, our approach does
not include a step for fuzzy rules refinement as currently there is no
assessment of which rules contribute to the best recommendation.

8 CONCLUSIONS AND FUTUREWORK
The paper presented a novel adaptation engine that adopts a fuzzy
rule-based classification system, consisting of a fuzzy rule gen-
eration procedure and a classification procedure that selects the
best-fit data visualization for a user. The engine includes two steps:
(i) selection of the best visualization type and (ii) selection of the
visualization element modifications to be applied. Within this paper,
we presented the architecture of the adaption engine and also the
rule extraction process as this was performed using data visualiza-
tion interaction data that was captured during a user study.

The evaluation of the adaptation engine, using realistic data and
45 business data analysts, revealed that the majority of participants
were positively affected by the delivered data visualization adap-
tation, in terms of their ability to correctly address analysis tasks.
Additionally, we found that data visualization adaptation enabled
our participants to execute their tasks more efficiently. This latter
effect of performance improvement was more evident for simpler
types of analysis tasks (e.g., Simple Comparison and Retrieve Value
tasks). Moreover, the results show that the perceived user experi-
ence factor before and after adaptation was enabled was improved.

The designed adaptation rule extraction process is generic and
can be easily expanded to introduce additional factors, more fine-
grained factor levels, and new chart types and visual elements. In
addition, the user modeling platform can accommodate, with min-
imum effort, additional parameters for existing (i.e., demograph-
ics, experience, and expertise) or new dimensions (e.g., cultural
background). This enables the research team to test the proposed
framework to other industry domains, generating a larger sample
of more diverse adaptation rules. This, in turn, will enable the team
to further validate the adaptation approach with more complex
data visualizations and adaptive interventions. We also aim to in-
vestigate additional factors that contribute to the understandability
and comprehension of data visualizations, such as transparency
and explainability. Finally, we will investigate the benefits that can
be gained if the system adapts to the task and not to the user.
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