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ABSTRACT Our study was designed to develop a customisable, wearable, and comfortable medical device
— the so-called “MyPAD” that monitors the fullness of the bladder, triggering an alarm indicating the need
to void, in order to prevent badwetting — i.e., treating Nocturnal Enuresis (NE) at the pre-void stage using
miniaturised mechatronics with Artificial Intelligence (Al). The developed features include: multiple bespoke
ultrasound (US) probes for sensing, a bespoke electronic device housing custom US electronics for signal
processing, a bedside alarm box for processing the echoed pulses and generating alarms, and a phantom to
mimic the human body. The validation of the system is conducted on the tissue-mimicking phantom and
volunteers using Bidirectional Long Short-Term Memory Recurrent Neural Networks (Bi-LSTM-RNN) and
Reinforcement Learning (RL). A Se value of 99% and a Sp value of 99.5% with an overall accuracy rate of
99.3% are observed. The obtained results demonstrate successful empirical evidence for the viability of the
device, both in monitoring bladder expansion to determine voiding need and in reinforcing the continuous
learning and customisation of the device for bladder control through consecutive uses.

Clinical impact: MyPAD will treat the NE better and efficiently against other techniques currently used
(e.g., post-void alarms) and will i) replace those techniques quickly considering sufferers’ condition while
being treated by other approaches, and ii) enable children to gain control of incontinence over time and
consistently have dry nights. Category: Early/Pre-Clinical Research

INDEX TERMS Nocturnal enuresis, long short-term memory recurrent neural networks (LSTM-RNN),
reinforcement learning (RL), wearable medical devices, incontinence.

I. INTRODUCTION complementary and/or alternative medicine (CAM), medi-

Nocturnal enuresis (NE), also known as nighttime bedwet-
ting, results in the involuntary discharge of urine due to
a congenital or neurological defect [1]. Interested readers
are referred to our previous studies [1], [2], [3] to find
out more detailed information about NE, its prevalence
and its negative effects on children and their families as
well as the cost analysis. Besides, current post-void alarms,

cations that have been deemed unsatisfactory, and previous
unsuccessful development trials aimed at finding a pre-void
solution were analysed in these studies. Successful treatment
of NE both changes the lives of those families significantly
and impacts children positively with their daily routines and
self-esteem [3], [4], [5] by enhancing the quality of life
(QoL).

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
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FIGURE 1. Main components and techniques of the modular decision-making methodology.

Smart Mechatronics is a cutting-edge field that is redefin-
ing the way medical devices are designed and manufactured.
This study has been carried out to develop a miniaturised
Advanced Mechatronics System (AMS) that could devise a
pre-void alert, minimizing bedwetting, reaching stable dry-
ness through learning bladder control and enhancing QoL
for those with NE. AMSs aim to produce high-quality
autonomous intelligent products and maintain a competitive
edge by improving product performance through effective
sensing, self-learning, self-optimisation, self-configuration,
self-diagnosis, and precise autonomous decision and actua-
tion [6]. In the framework of this scheme, a wide range of
disciplines (e.g., medicine, electronics, ultrasonics, design,
data science and Artificial Intelligence (Al)) as well as the
relevant community with NE are collaborating to develop
a device — the so-called “MyPAD”. The main components
and techniques of the developed system in this research are
outlined in Fig. 1. Following are some of the specific contri-

butions this research makes to clarify its novelty.
1) A bespoke advanced electronic device housing custom

ultrasound (US) electronics involving required soft-
ware for signal processing is developed.

A tissue-mimicking phantom is produced, which sim-
ulates the human tissue, bladder and its expansion
concerning urine-like liquid volume.

A cluster of US probes, with low power and low
frequency, are designed and built specifically for this
application area.

The validation of the system is conducted both on
the tissue-mimicking phantom and on volunteers using
Long Short-Term Memory Recurrent Neural Net-
works (LSTM-RNN) and Reinforcement Learning
(RL) resulting in successful empirical evidence for its
viability in monitoring bladder expansion and deter-
mining associated voiding need.

The developed approach not only triggers a pre-void
alarm, but also, aims to help the child i) control his/her
bladder with consecutive uses of the MyPAD by mod-
elling the dynamic and nonlinear behaviours of the

2)

3)

4)

5)
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bladder and ii) live a normal life without using any
device over time.
6) The development of the miniaturised version of the

system is still ongoing to enhance its ergonomic use.
The remaining of this research is organised as follows. The

proposed system is revealed in Section II. The experimental
design is delineated in Section III and the results are presented
in Section IV. Discussions are provided in Section V. Finally,
Section VI concludes with key findings.

Il. METHODOLOGY

A. BACKGROUND

Developing an effective and comfortable device that uses
artificial intelligence (AI) techniques to learn and evaluate
the bladder, surrounding tissues, and urine intelligently by
harbouring customisable abilities for children with various
body morphologies is an urgent need to determine imminent
voiding needs and provide pre-void alerts accordingly, allow-
ing the child to void with dignity [1]. This device should help
the child control his/her bladder with consecutive uses of
the device and live a normal life without using any device
or medication. Readers are referred to [1] and [2] for the
feasibility of such a system and they are referred to [7] for
the related patents generated by us in several large coun-
tries and regions, namely, Canada (CA2993156A1 (2017)),
Europa (EP3328279B1 (2020); EP3834726A3 (2021)),
Japan (JP6847943B2 (2021)), China (CN114521896A
(2022)) and USA (US11482327B2 (2022)).

Before exploring the particular techniques, approaches,
and modules (Fig. 1) in this study in detail, we would like to
summarise the particular improvements regarding the previ-
ous studies in the following subsections to be able to highlight
the main points and glean the novel aspects better in this
study.

1) PHANTOM

The phantom established in our previous phases of the
project using the chicken tissues could not be used effectively
because of its ephemeral characteristics [2] and in this study,
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a reusable advanced phantom that mimics the human body,
in particular, the bladder, its surrounding tissues, and urine is
established, which is described in Section II-B.

2) US TRANSDUCERS

Readers are referred to the supplements of our study in [1] for
the detailed analysis of the dynamics of the bladder regarding
US beams and the sensors we utilised in our previous phases
of the project. PZT (Lead-Zirconate-Titanate), more specifi-
cally piezoceramic US transducers are developed in this study
because of their response/sensitivity and performance for this
particular study on the bladder. The electrodes are placed
on the flat surface of the sensing element. The design and
development of the cluster probes specific to the subject area
are explained in detail in Section II-C.

3) ELECTRONICS HARDWARE

A bespoke advanced electronic device' housing custom US
electronics, involving required software for signal processing,
was developed in our previous study [2]. A miniaturised
version of this system (Ex: Figs. 9, 10, 11) is still ongoing
to enhance its ergonomy and provide children with a more
comfortable wearable bladder monitoring device, which is
explained in Section II-D. The techniques in our previous
papers have been improved by considering further tests based
on the miniaturisation design of the system, which is elabo-
rated in the following section.

4) SOFTWARE/APPLICATION/INTERFACE

We utilised ML techniques, more specifically ensemble tech-
niques (i.e., bagging, boosting) and functions (i.e., Sequential
Minimal Optimisation (SMO) and Linear Regression (LR))
to train the datasets collected from the volunteers based on
a set of signal features and classify the bladder status in
our previous studies [1], [2]. 3/4 full voiding-need triggering
point sensitivity (Se) and specificity (Sp) values were 0.89 and
0.93, respectively. Based on the Se value of 0.89, 11 alarms
out of 100 might be false alarms causing sleep interruption.
Based on the Sp value of 0.93, 7 out of 100 times no alarm
sounds when the child should have been woken up, result-
ing in a wet bed. It was determined that the Al techniques
need improvement in order not to cause any predicament
for the children and their families as discussed in [1]. In
this sense, in this study, we employ LSTM-RNN, a type of
RNN to reveal the patterns in acquired signals and to obtain
better success rates, which is explained in Section II-D.2
in detail. Furthermore, alarm triggering points regarding the
voiding need differ slightly from one child to another and
this point should be adjusted and customised concerning the
particular characteristics of the child to produce a successful
wearable pre-void alarm device that does not require specific
training for every child. With this in mind, a new RL tech-
nique is developed both to be able to customise the device

IThe tissue-mimicking phantom and US electronic device involving the
transducers have been developed in the Novosound laboratories.
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autonomously and to help children with NE control their
bladder with consecutive uses of the device to live a normal
life as their peers. The particular implementation of the novel
RL technique is revealed in Section II-D.3. We would like to
explain the general aspects of LSTM-RNN here involving the
reason why it fits the particular characteristics of the datasets
acquired by the sensors in this study. Following the unveiling
of LSTM-RNN, the merits of the RL techniques in the cus-
tomisation of applications in highly dynamic environments,
along with their general principles, are pointed out.

a: LONG SHORT-TERM MEMORY RECURRENT NEURAL
NETWORKS (LSTM-RNN)
Within a highly connected multi- and hidden-layered network
design, a bio/neurons-inspired Artificial Neural Network
(ANN) mimics certain functional processing capabilities of
the human brain by learning from examples using the con-
nection power of neurons (i.e., weights as the neuron input
and basic means of long term memory), particular activation
functions, and by reorganising itself from this learning expe-
rience in tuning the connection weights through iterations
with the backpropagation technique based on output errors
and gradual learning. Recently, ANN has been employed
successfully with higher accuracy rates in many applications
within various disciplines from aerospace to medicine even
though it requires both many samples for training and longer
processing time compared to feature-based ML approaches.
ANN models can extract features on their own different from
the feature-based ML techniques through an iterative learning
process. ANN can be categorised as Feed-forward Neural
Networks (FFNN) and RNN. With FENN, information is
always fed forward, never fed back during learning iterations
whereas, with biologically more realistic RNN, feedback
loops are possible at any sub-steps of a learning iteration in
training cycles. Technically speaking, with FFNN, no links
are allowed between the hidden nodes in the same hidden
layer while proceeding from the input layer to connected
hidden layers and then to the output. RNN is mainly used to
describe the temporal dynamic behaviours of time-sequential
data [8] where the traditional neural network cannot deal
with this kind of problem well because of its limited network
design structure [9]. RNN has been proven to yield high
performance in classifying time-series sequences for many
applications even though it requires a longer computation
time for training when compared to FFFN. FFNN with a fixed
time window size cannot solve time-series tasks [10] both
short- and long-term relevant and hence, we employ LSTM-
RNN for determining bladder status with high accuracy rates.
As a kind of RNN and against the regular RNN suffering,
vanishing and exploding gradients, LSTM-RNN was first
introduced by Hochreiter et al. [11] in 1997. Since then,
it has been improved with its newer versions to solve various
learning problems for a wide range of engineering appli-
cations, in particular, long-term learning dependence prob-
lems. LSTM-RNN can memorise long-term dependencies
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between consecutive time steps of a sequence [12] using
three gates network structure as an inherent memory stor-
ing the past information, namely, input, forget and output,
by which the information at the cell state used for maintaining
long-term information in the hidden layer can be updated
selectively using a “‘receive” and “‘delete’” dynamic process
within LSTN-RNN. Furthermore, Bidirectional LSTM RNN
(Bi-LSTM-RNN) with forward and backward manner intro-
duced by Schuster and Paliwal [13] can observe complete
information and establish temporal dependencies from past
and future information in each sequence. More explicitly,
the single-directional LSTM-RNN can observe the tempo-
ral sequence in the forward direction, while Bi-LSTM-RNN
observes it in both directions. Each sample of acquired sensor
data in this study represents a timing relationship between
frequency cycling within a depth up to 15 cm and LSTM-
RNN can acquire these timing relationships successfully as
emphasised by Shi et al. [14] where the values of the echoed
US pulses before and after any point in our case are not
independent, rather, they are strongly related to each other
in representing the dynamic status of the bladder as a whole
with respect to the expansion with increasing urine based on
the elapsing time. Therefore, Bi-LSTM-RNN in the positive
and negative time direction is utilised in this study to obtain
the past and future information of the echoed pulses in a depth
at a time — the propagation of an emitted signal in media
and cycles of pulses acquired in different time intervals. The
particular implementation of Bi-LSTM-RNN in this research
is explained in Section II-D.2.

b: REINFORCEMENT LEARNING (RL)

Without requiring prior datasets/instances for training, RL
can be simply described as the science of automated learn-
ing by interacting with the highly dynamic environment for
exploring and exploiting by using i) model-based methods
(e.g., Markov Decision Process (MDP)) or ii) model-free
methods with trial-and-error learners in a greedy behaviour
to achieve the desired goal — the targeted terminal state. With
model-based methods, RL decides on a course of action by
considering possible future situations before they are actually
experienced, primarily with offline mechanisms with map-
ping from states to action whereas, with model-free methods,
RL behaves with instant trials and observed sub-rewards on
sub-states using error learners with online active learning
mechanisms. Within this context, RL is highly useful where
there are no prior datasets or the environment is changing
dynamically and it may not be feasible to train the system
using a data set with no patterns, which requires self-learning
with interactions with the environment [15]. It maps situa-
tions to actions to maximise a numerical reward signal by
discovering which actions yield the most reward by trying
them [16]. Interested readers are referred to [16] and [17]
for more information about RL and its implementation. The
particular implementation of RL in our study is explained
in Section II-D.3 for customising the device and helping
children with NE control their bladder over time.

VOLUME 12, 2024
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FIGURE 2. Components of the phantom: a) outer perspex cylinder;
b) TMM 1 (top) (2.5 cm thick); c) 8 inner perspex cylinders in different
heights (1-8 cm) corresponding to the expansion of the bladder from
empty to full; d) TMM 2 (bottom) (3 cm thick); e) TMM preservation fluid;
f) whole phantom design: container with TMM 1 (top), TMM 2 (bottom),
inner perspex cylinder and TMM preservation fluid between these two
layers; g) real phantom.

B. PHANTOM DESIGN AND DEVELOPMENT
A tissue-mimicking phantom has been built as illustrated
in Fig. 2 to both simulate the human tissue, bladder and
its expansion with respect to the changing amount of
urine-like liquid and test the efficacy of the developed
PZT ultrasonic transducers (Section II-C) and mechatronics
(Section II-D.1) as well as the application (Sections II-D.2
and II-D.3). The phantom is composed of a container and
two tissue-mimicking materials (TMMs). TMM is designed
for the acoustic and thermal characterisation of high-intensity
focused US (HIFU) devices to mimic the human body. It is
produced from a material that encompasses similar acoustic
characteristics of the human’s soft tissue. Currently, there
is a variety of TMMs used both commercially and within
laboratories. Normally, TMM is manufactured under the
International Electrotechnical Commission (IEC) 2001
“Ultrasonics - flow measurement systems - flow test
objects” [18]. For this project, the acoustical features of
these TMMs are designed to match with US parameters and
features suggested by the IEC. More information can be
found under the term “IEC agar-TMM™ The basic ingre-
dients of TMM are water, glycerol, agar, aluminium oxide
powder (in two different particle sizes), silicon carbide and
benzalkonium chloride which acts as an antibacterial agent.
With regards to the acoustic properties, TMM has been
manufactured to have 1544 + 3.5 m/s, the speed of sound, and
attenuation of 0.5 £ 0.05 dB/cm at room temperature, which
increases with frequency [19]. A particular TMM preserva-
tion fluid is needed to prevent TMM from drying and glycerol
leaching which occurs when the TMM is simply immersed
in water; Drying and glycerol leaching cause changes in the
acoustic properties of the TMM [19]. The acoustic charac-
terisation of the TMM preservation fluid was performed by
the National Institute of Physics (NPL, Teddington, UK) [19].
The speed of sound was measured as 1538.15+0.22 m/s with
an attenuation of a([dB cm]) = 0.00309f2 — 0.004996f as a
function of frequency, over the frequency ranging between
1 - 60 MHz. The ingredients of the TMM preservation
fluid [20] are summarised in Table 1.

C. MULTIPLE SENSOR DESIGN AND DEVELOPMENT
Detection of desired echoed pulses may not be possible using
one receiver because of the reflection and the refraction

207



|EEE Journal of Translational

Engineering in
Health and Medicine

K. Kuru et al.: Treatment of NE Using Miniaturised Smart Mechatronics With Al

TABLE 1. Compounds of TMM preservation liquid.

Ingredients Volume (ml)
99% Glycerol 143.9
10% Benzalkonium Chloride | 58.71
Degassed deionized water 1000

of emitted incident beams and the dynamics of the blad-
der. The reflection at the interface of two media is calculated
using the formula, R = (Z1-Z2/Z1+Z2) [21] where Z1 repre-
sents the impedance value of the proximal side of the interface
and Z2 represent the impedance value of the distal side. No
refraction occurs at the interface if the beam is perpendicular
no matter what the sound speed difference is between the two
materials. On the other hand, the refraction occurs based on
Snell's law, sinQ, /sinQ; = cz/cy [21] where ¢ and ¢; indi-
cate the propagation speed of the US beams within the first
media and second media respectively. Therefore, 4 receiver
transducers and 1 transmitter transducer are incorporated into
the study and in this way, we intend to acquire desired echoed
pulses using at least one sensor based on the US refraction and
reflection laws.? The design and development of the cluster
probes to be connected to the electronics are depicted in Fig 3.

h —

FIGURE 3. Cluster design of miniaturised probes with 5 mm apart.

Various particular PZT (Lead-Zirconate-Titanate), more
specifically piezoceramic US transducers have been devel-
oped because of their large response/sensitivity and perfor-
mance. The features of the transmitter and the receivers are
explained in Table 2. An example of the data acquisition
interface is provided in Fig. 4 using the probes which have
their housing displayed in Fig. 5 d.

D. COMPONENTS OF ELECTRONICS AND SOFTWARE
IMPLEMENTATION

1) ULTRASOUND ELECTRONICS

The components of the hardware involving their connection
to each other to collect data samples are shown in Fig. 5. The
functions of these components as well as their properties are

2The physics of US on the human body, particularly bladder and urine was
explored in our previous study [1] in detail.
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explained in Table 2. 19,879 data points representing 15 cm
of the propagation depth of US beams throughout the human
body are acquired per channel, i.e., a receiver that makes use
of these electronics. The pulses are sampled at a frequency
sample of 100 Hz. An example of data points acquired at a
time from four channels involving their A-mode presentation
is provided in Fig. 4.

FIGURE 4. Pulse acquisition interface: Pulses with 4 receivers in their
dedicated channels and their composite outcome at the bottom. The first
amplitudes in the frames correspond to the echoed pulse coming from
the anterior wall whereas the second amplitudes correspond to the
pulses from the posterior wall of the bladder. The red circles indicate the
places where no echoed pulses are detected from the anterior wall
because of the reflection and refraction angles of the emitted US beams
from the transmitter. The amplitudes in the yellow ovals indicate the
noise caused by the high signal-to-noise ratio.

Arduino and Jiepie

3 Receivers

1 Transmitter and Receiver

FIGURE 5. Components of the electronics and their connection.

2) SOFTWARE IMPLEMENTATION: DEVELOPMENT OF LONG
SHORT-TERM MEMORY RNN (LSTM-RNN)

LSTM-RNN is employed to classify the US data acquired
from the phantom, bladder and its surrounding tissue over
a period of time in different filling levels. There are five
types of data representing the bladder status, namely, i) empty
bladder, ii) quarter bladder, iii) half bladder, iv) three-quarters
bladder, and v) full bladder. The voiding need usually starts
at the 3/4 bladder level where the bladder wall gets thinner
as the urine fills the bladder and hence, pressure on nerves
is expected to increase [1], [2]. Therefore, the system is
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TABLE 2. Features of the elements presented in Fig. 5.

Components Properties

Functions

Custom electronics
and US system

Arduino, 4 channel pre-amplifier, US system

Short-term memory; Gain in the receive stage: currently set to 40
dB; sampling frequency: current value 200MSa/s; averaging 4; chirp
parameters including start/stop frequency (current value 0.55-8MHz),
duration (8us) and Tukey window

dB dynamic range

TiePie Differential / single-ended switchable inputs with SafeGround pro-
tection; 1 GS/s 14-bit quad differential channel high-resolution PC
oscilloscope; point-by-point arbitrary waveforms with exceptionally
low jitter and high fidelity; 7.45 Hz resolution bandwidth and 140

Quick setup for every type of measurement; continuous data logging;
SafeGround to protect the measuring object; SureConnect to make sure
the oscilloscope probe is connected; CMI to couple more instruments
to one multi channel instrument, high-resolution and the lowest noise;
generate pulses

measure of the magnitude of a varying quantity

Transmitter Flexible frequency generation PZT transducer with a center fre- | Transmit the pulses in various frequencies.
quency of 10MHz with a wideband enough to be used with a chirp
sweeping from 5MHz to 15MHz.
Receivers PZT sensors with a resonant center frequency of the receiver probes | Receive the echoed pulses.
is 43MHz with a bandwidth of ranging from 2MHz to SMHz.
BNC to SMA cables | BNC: British Naval Connector or Bayonet Nut Connector,a type of | Establishment of the connection between the sensors and the US

connector used with coaxial cables; SMA: Signal magnitude area, a

system (the connection between the EP system and the D185 multi-
pulse cortical stimulator from digitimer)

BNC to BNC cable
connector used with coaxial cables

BNC: British Naval Connector or Bayonet Nut Connector, a type of

Establishment of the connection between the TiePie and the US system
(the connection between the EP system and the D185 multipulse
Cortical Stimulator from digitimer )

Trigger cable Stimulator Generation of pulse trigger

USB cables USB3 Establishment of the connection between the 1) Arduino and the USB
hub, 2) pre-amplifier and the hub

Power supply AC Adapter; input:100-240 V; output: 12V Provide the required currency for custom electronics and US system

expected to classify 3/4 bladder and full bladder in one group
as “Alarm” and the rest prior to the 3/4 bladder level in
another group as “No-Alarm” (Fig. 7). In this way, the
system can trigger an alarm to wake up the child when a
voiding need is detected —i.e., an acquired data is classified as
“Alarm” in a binary classification by differentiating acquired
echoed pulses that fit the features (e.g., characteristics of
the amplitudes, distances between amplitudes, distances of
amplitudes from the sensors) in “Alarm” class from the
pulses indicating the features in “No-Alarm™ class.

In our research, a single-layer Bi-LSTM-RNN with fully
connected layers and 100 hidden units is established to dis-
tinguish “Alarm” pulses from “No-Alarm” pulses using
one-dimensional input and binary output. The hidden units in
the last hidden state from the forward direction and in the first
hidden state from the backward direction are interconnected
to feed the output layer with a softmax layer. The outputs
of the softmax layer maintain the scores for the ‘Alarm”
and “No-Alarm” classes. The selected parameters that suit
the computing device and the distribution and characteristics
of the datasets for the training phase of Bi-LSTM-RNN are
presented in Table 3. These parameters have been determined
after several trials to obtain the best possible accuracy rate.
For instance, the epoch parameter with 30 results in a Se value
of 98.6 and a Sp value of 97.5; the epoch parameter with
50 results in a Se value of 98.7 and a Sp value of 97.1 with a
problem of overfitting, which are less than the values obtained
by the epoch with 40 (Table 7). With a problem of overfitting,
training using epoch with 50 shows that the accuracy is not
improving and it is not converging to a desired solution
with the oscillated upward and downward values without a
specific direction. The module, namely, ‘“‘B. Data processing
& Decision making” as outlined in Fig. 1 functions based
on the classifiers established by Bi-LSTM-RNN after the
sensor data is acquired as described in the module, “A. Data
acquisition”.

VOLUME 12, 2024

TABLE 3. Main parameters used in Bi-LSTM-RNN.

Parameters Values Explanation
- sequencelnputLayer = 1 - sequence input with 1 dimensions
- bilstmLayer =100, - bidirectional with 100 hidden features
Mg - OutputMode = last - output the last element of the sequence
i - fullyConnectedLayer(2) - 2 fully connected layer, two classes
- softmaxLayer - softmax layer
- classificationLayer - classification layer
" Epochs - MaxEpochs = 40 - 40 times over the training dataset
" Batch size - MiniBatchSize = 50 - 50 Iteration (training pulses) per epoch
Learning - InitialLearnRate = 0.01 - accelerate the learning process
rate
. - SequenceLength = 1000 -spli't the input_ pulse into ame_\ller siL_es,
length -easier processing by computing device
Curve - GradientThreshold = 1 - prevent the curve from getting too large
threshold
Environment | - ExecutionEnvironment = GPU | - use GPU for processing
Process - plots = training-progress - show the training iterations as processed
monitoring
Progress - Verbose = true - show the data output

3) SOFTWARE IMPLEMENTATION: DEVELOPMENT OF
REINFORCEMENT LEARNING

The RL technique developed in the methodology is used to
address various uncertainties within instant dynamic calcu-
lations, leading to a goal state or a terminal state through
a sequence of actions. Using the deterministic policy, this
particular technique entitled ‘‘Reinforcing stimulus for NE
(RstiNE)” is outlined in the dedicated section titled “C.
Alarm triggering & Bladder control module” in Fig. 1 and
is also presented within the pseudo-code in Algorithm 1.
RstiNE using a model-free method with action (exploration)
and selection (exploitation) policy () aims to help the
child control his/her bladder with consecutive uses of the
device in order to live a normal life without using any
device. Therefore, the alarm triggering point (i.e., the cur-
rent state of the environment) is moved further gradually
(i.e., 0.5 mm) from 3/4 bladder (i.e., =6 cm [2]) up to full
bladder (i.e., =8 cm [2]) as the child learns the controlling
of the previous alarm points. More explicitly, the current
point is aimed to be moved 0.5 mm further (i.e., one step
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Algorithm 1 Reinforcement Learning: C. Alarm trig-
gering & Bladder control module (Fig. 1 C)

Data: System input: CurrentAlarmPoint & AlarmRepetition & ElapsedTime
& USSensorBladderFILLING &USSensingTime &
MoistureSensingTime) & UserSensingTime & GOAL & Policy*

Data: Instant input: UserWET & MoistureSensorWET &
USSensorALARM & UserAlarmSTOP & GOAL

Result: triggerAlarm & NewAlarmTriggeringPoint & DelayTime

1 =>User starts the system after placing the undergarment as instructed;

2 =>Reading from bladder started;

3 while NOT UserAlarmSTOP do

4 => Alarm and learn where the bed is wet;

5 if NOT(UserWET== Null && USSensorALARM==Fulse &&

MoistureSensorWET==Fualse) then
6 =>The system works as desired;
7 if USSensorALARM==True & & MoistureSensorWET==False
& & UserWET==False then
8 triggerALARM(); AlarmRepetition = +1;
9 if StateAlarmRepetition== Policy* .StateAlarmRepetition
&& NOT (GOAL == FullBladder) then

10 => Alarm point incresed by 0.5 mm up to 20 mm;

1 =>Alarm time calculated w.r.t. new alarm
point(Table 4 or Table. 6);

12 AlarmRepetition=0; [NewAlarmTriggeringPoint,
DelayTime, GOAL] =
alarmPointFurther(CurrentAlarmPoint,Elapsed Time);

13 Policy* <== (State & AgentReward=+1);

14 EXIT();

15 =>The system not working as desired;

16 else if USSensorALARM==False & &

(MoistureSensorWET==True || UserWET==True) then

17 triggerALARM();

18 =>Check if undergarment placed properly;

19 if USSensorBladderFILLING==True then

20 => Alarm point reduced by 0.5 mm;

21 [NewAlarmTriggeringPoint] =
alarmPointBack(CurrentAlarmPoint);

22 Policy* <== (State & AgentReward=-1);

23 EXIT();

24 else

25 voiceAlarm"Please place the undergarment as
instructed";

26 EXIT();

27 end

28 else if USSensorALARM==True &&

(MoistureSensorWET==True||UserWET==True) then

29 triggerALARM();

30 =>If USSensingTime smaller than other two sensing inputs;

31 if (USSensingTime<MoistureSensingTime) & &

(USSensingTime < UserSensingTime) then

32 |  Goto Line 8;

33 else

34 => Alarm point reduced by 0.5 mm;

35 [NewAlarmTriggeringPoint] =
alarmPointBack(CurrentAlarmPoint);

36 Policy* <== (State & AgentReward = -1);

37 EXIT();

38 end

39 else

40 ‘ voiceAlarm‘‘Exception”;

a1 end

42 else

43 ‘ SLEEP 3;

44 end

45 end

ahead from the current experience) after the consecutive
successes at that point (i.e., > Policy*.StateAlarmRepetition)
based on the reward, R; (i.e., feedback signal given directly
by the environment — from the user, moisture sensor and/or
application indicating how well the system is doing at the
current state as a teaching agent: with the aim of max-
imising the expected rewards — value function (V* =
Z;Zl f(sy, an, ry)) in long-term policy making, learning
agent gets rewarded at the states either for successes by 1
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TABLE 4. Formula for determining the delay time based on the filling
time of the 3/4 bladder status.

DelayTime(min) = (Elapsed3Q(min)*

(CurrentAlarmPoint(mm) + 0.5(mm)))/60(mm);

if CurrentAlarmPoint < 20 A Initial AlarmPoint = 3/4;

where Elapsed3Q = start time (0 min) - end time (3/4 bladder), CurrentAlarmPoint
indicates the previous alarm point in mm determined by this formula after 60 mm
that indicates the 3/4 full bladder level in children [2] and 0.5 mm corresponds to the
amount of moving the alarm triggering point further. Conversely, the current alarm
point is moved back when the child wets the bed with the current point to help
reinforce the learning through the exploring and exploitation steps.

Policy* <== (State & AgentReward= +1) or for failures
by -1 (Policy* <== (State & AgentReward=—1))). Moving
the alarm point further is realised by a delay time calculated
based on the initial alarm point (i.e., voiding need (3/4 blad-
der)) determined by the trained Bi-LSTM-RNN classifier as
explained in Section II-D.2. The formula for determining the
delay time based on the filling time of the 3/4 bladder status
(i.e., the elapsed time until the 3/4 filling level) to move the
current alarm point forward by 0.5 mm is given in Table 4.
In this way, irregular rapid changes in the bladder resulted
from various conditions (e.g., i) filling time of the bladder
based on the liquid consumed, ii) contraction of the bladder
wall based on the bladder expansion for triggering a nerve
stimulus, and ii) particular characteristics of the child) are
aimed to be mitigated by referencing the most recent observed
dynamic information. By maximising the cumulative reward
with a convenient selection of actions/transitions (i.e., state-
action-reward — sy, an, ', Sp+1 --.), the RL agent behaves
greedily to achieve the final goal (i.e., the terminal state or
final reward) that is reaching the full bladder status without
wetting the bed and voiding in a dignified manner in that state
with tuning the settings with most appropriate adjustments by
updating the current state of the action every time.

The initial triggering alarm point might be earlier than the
3/4 bladder filling level for several children, most probably
between 1/2 bladder and 3/4 bladder and needs to be cus-
tomised regarding the particular characteristics of the child.
In this case, RstiNE takes the 1/2 bladder level as a reference
point to specify the initial starting alarm point and does
the calculations mentioned above accordingly. However, this
time, the system is not taking the 1/2 bladder classifier as a
starting point instead of the 3/4 bladder classifier, because,
taking a point well behind the required voiding point would
hinder the learning at the start of the use of the device. The
formula to calculate the initial starting alarm point in mm
based on the 1/2 bladder level and bedwetting time is given
in Table 5.

TABLE 5. Formula to calculate the initial starting alarm point in mm
based on the 1/2 bladder level and bedwetting time.

Initial AlarmPoint(mm) = ((40(mm)X (ElapsedW et(min)—
ElapsedHalf(min)))/ElapsedHal f (min)) — 0.5(mm);

where InitialAlarmPoint is a point that indicates 0.5 mm back of the bedwetting
moment and a distance further away from the 1/2 bladder level; ElapsedWet indicates
the time when the bed gets wet from the start time; ElapsedHalf corresponds to the
time taken to get the 1/2 bladder filling level determined by the Bi-LSTM-RNN
classifiers.
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FIGURE 6. Data collection from the phantom (full bladder) (left) and the volunteer (3/4 full bladder) (right).
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FIGURE 7. Phases of data processing.

TABLE 6. Formula to determine the delay time based on the initial
starting alarm point and the current alarm point.

DelayTime = (ElapsedHalf(min)X (InitialAlarmPoint(mm) +
CurrentAlarmPoint(mm) + 0.5(mm)))/(40(mm) +
Initial AlarmPoint(mm));

if Initial AlarmPoint + Current AlarmPoint < 3/4 bladder level;
where ElapsedHalf corresponds to the time taken to reach the 1/2 bladder level;
InitialAlarmPoint is the point determined by Table V; CurrentAlarmPoint indicates
the previous alarm point in mm determined within this formula.

The linear increase of the moving alarm point (i.e., cur-
rently 0.5 mm) might be needed to be gradually reduced using
a realistic mapping function with respect to the particular
features as the alarm point approaches the full bladder level
where the pressure on nerves is supposed to increase as the
bladder wall gets thinner. We need to observe this issue as
the device is used by a sufficient number of children with
NE. On the other hand, the termination point for the RL
technique — full bladder is calculated by the delay time in
Table 4 where it indicates a ~2 cm distance from the 3/4
bladder level or in Table 6 where it indicates a ~4 cm distance
from the 1/2 bladder level based on the bedwetting reference
point. Alternatively, the full bladder level determined by the
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Bi-LSTM-RNN classifiers can be used to specify the termi-
nation point for the RL technique. In any case, the termination
point determined by these two approaches differently is
expected to indicate the same point and we would like to
observe this issue with our 14-week test on more volunteers
to be able to conclude safely.

Ill. EXPERIMENTAL DESIGN

A computing device with a GPU (Fig. 6) supported by the
Parallel Computing Toolbox of Matlab is used to mitigate
the very long training process and computational burden of
training in Bi-LSTM-RNN. 10,000 data samples representing
different filling levels with different positioning and angles of
the probes as shown in Fig 7 have been collected both from
the phantom using the inner perspex cylinders (see Fig 2 ¢) in
different heights and 2 volunteers as depicted in Fig 6. Only,
the composite data samples on which the distinctive values of
the sensor channels (see the top 4 subplots in Fig. 4) regarding
their amplitude are projected (see the bottom subplot in Fig. 4
are used to train the network. 9,000 data samples are used for
the training process and 1,000 data samples are reserved for
the evaluation of the trained network (Fig 7), in other words,
to test the accuracy of the network classifiers on the new data
samples to be able to observe both their performance on the
dataset not involved in the training phase and if the number
of the dataset is sufficient in regards to representing the
real-world environment by avoiding overfitting. The progress
of the training network phase is depicted in Fig 8 along with
the main selected parameters.

TABLE 7. Confusion matrix of the classifiers.

A. Training/Testing Results

Actual Class

B. Evaluation Results

Actual Class

Alarm No-Alarm | % Alarm No-Alarm | %
B | A [4417(TP) | 21 (FP) 99.5 (PPV) 476 (TP) | 4 (FP) 99.2 (PPV)
£ | NA [ EN) 4395 (TN) | 99.0 (NPV) T4 (FN) | 486 (TN) | 97.2 (NPV)
% 99.0 (Se) 99.5 (Sp) 99.3 (ACC) 97.1 (Se) | 99.2 (Sp) 98.2 (ACO)

IV. RESULTS, EVALUATION, AND VALIDATION

Oversampling was employed during the training phase to
equalise the two groups to avoid the classification bias
that might emerge while detecting the lesser number of
“Alarm” events in the larger population of “No-Alarm”
events (i.e., 87.3%) (Fig 7). Furthermore, the distribution
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FIGURE 8. Training phase of Bi-LSTM-RNN: The top subplot presents the progress of the training accuracy and the bottom subplot shows the
cross-entropy loss on each mini-batch - i.e., the reducing error down to zero if the training progresses successfully.

between “No-Alarm”™ and “Alarm” signals was evenly bal-
anced in the training and testing sets while selecting batch
samples to avoid any possible training bias and to make the
outcome resilient. Cross-entropy loss, one that approaches
zero (Fig 8 bottom) was used as a loss function while opti-
mizing the classification model of the Bi-LSTM-RNN. The
results of the training phase are summarised in Table 7 A.
A Se value of 99% and a Sp value of 99.5% with an over-
all accuracy rate of 99.3% are observed in this process,
which seems highly satisfactory. Strictly speaking, 99% of
“Alarm” signals are correctly classified as “Alarm™ and
99.5% of signals classified as “No-Alarm” are actually “No-
Alarm” . On the other hand, the trained network classifiers are
evaluated on the reserved dataset (i.e., 1,000 data samples)
and a Se value of 97.1% and a Sp value of 99.2% with an
overall accuracy rate of 98.2% are observed in this process
as shown in Table 7 B. Even though these results obtained
from the evaluation dataset are high, they, particularly the Se
value, are below the values obtained during the training phase
(i.e., 99-97.1 ~ 1.9). This difference suggests that the 10,000
data samples do not precisely represent the real-world envi-
ronment regarding the number of ““Alarm” events and should
be increased by several thousand to improve the Se to a level
that the training phase has in order to avoid any possible
overfitting. It is noteworthy to emphasise that Precision (Pr),
i.e., Positive Predictive Value — PPV=Pr = TP /(TP + FP) —
is 0.995 and 0.992 for the training/testing and evaluation
phases (Table 7). These high values demonstrate that the
model is highly successful in assigning “Alarm” events to
the “Alarm” class. In other terms, the number of false alarms
causing sleep interruption is reduced significantly. Having
said this, the number of the anticipated “Alarm” will be 1 (or
2 maximum) for a night. This means that 1 out of 160 echoed
pulses is supposed to be an “Alarm” for a night where beams
are emitted in every 3-minute intervals during the 8 hours
of sleep until the child is awoken with an “Alarm”. From
this perspective, the child is supposed to use the device for
a maximum of 14 weeks (i.e., 98 days), which means that
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the alarm might be missed for a maximum of 3 days wherein
involuntary voiding may occur, but the user is enabled to
void with dignity during the remaining 95 days. From the
other perspective, the next “Alarm” pulse will definitely be
detected as “Alarm” while the Se value is 97.1% before
voiding after the first “Alarm” has been missed for 3 min-
utes. More explicitly, beam emitting time intervals can be
adjusted accordingly, i.e., shortened (e.g., from 3 minutes to
1), to capture the next “Alarm’ pulse correctly before voiding
occurs. However, under these circumstances, the number of
FPs will increase leading to sleep interruption regarding the
Sp, 99.2%, e.g., 5 times among 480 signals emitted for each
minute. In other words, the more signal generation, the more
FPs, causing sleep interruptions. In this case, the alarm can be
triggered if 2 or 3 consecutive ‘“Alarm” events are observed
(i.e., “Alarm” 4 “Alarm” = “Alarm” or “Alarm” + “No
Alarm” = “No Alarm”) to avoid sleep interruptions where 5
FPs will be distributed randomly among 480 “No Alarm”
events through the random probability distributions — two
or more FPs will not be observed in detected consecutive
echoed pulses. In this way, it can be concluded that the child
will never wet the bed by being awoken by the next two
consecutive “Alarm” events if the first one has been skipped
by the system, leading to no unintentional sleep interruption.
This validates the robustness of the system even though a very
small number of FNs (Se = 97.1%) and FPs (Sp = 99.2%)
may occur.

V. DISCUSSION

There is increasing evidence that non-invasive pre-void alarm
systems can assist the younger demographic suffering from
NE in alleviating their problems significantly. The market
currently offers post-void alarms that are not considered
adequate. Our study was designed to develop a customis-
able, wearable medical device that generates pre-void alarms
using miniaturised mechatronics with Artificial Intelligence
(AI). The data samples in the datasets used in this study
involve data samples related to the echoed pulses within a

VOLUME 12, 2024



K. Kuru et al.: Treatment of NE Using Miniaturised Smart Mechatronics With Al

|EEE Journal of Translational
Engineering in
Health and Medicine

i

depth of 15 cm propagation of US signals through the body
with a sequence of data points, particularly, time pitches
of sequence data. These data samples are acquired in regu-
lar time intervals. With slightly changing features, they are
strictly related to each other as the bladder expands with
the filling of urine, which requires a time-series analysis.
Therefore, Bi-LSTM-RNN that can manage the sequence and
time-series analysis successfully is employed in this study.
The results suggest that the Bi-LSTM-RNN-based approach
substantially outperforms the feature-based ML techniques
(see Section II-A.4 and our previous study [1]) based on
the A-mode US signals and the datasets acquired from the
human body, primarily from the bladder. Furthermore, with
the help of the RL technique — RstiNE (Algorithm 1) built
in the study, the system does not need to train itself for each
child for customisation. From a technical standpoint, essen-
tial sensitive customisation and adjustments per child can be
carried out intelligently in an autonomous manner by con-
sidering the particular characteristics of the child during the
use of the device. More explicitly, the system, with RstiNE,
is turned into an intelligent system built upon Bi-LSTM-RNN
with pre-trained classifiers. It becomes a perpetual intelligent
learning system using RstiNE. The studies on alarm ther-
apy [22], [23], [24], [25] suggest that the child with NE can
learn to control his/her bladder using alarms over time. In
this sense, the pre-stimulus ability of RstiNE at the desired
points of the bladder filling levels customised per child helps
children control their bladders by adjusting their behaviours
over time yielding to the reduction of the frequency of NE.
With self-customisation abilities and increased efficacy, the
device can be used without requiring non-trivial and long
pre-training phases or manual customisation, which makes
the device highly attractive and functional in behaving specif-
ically to the particular needs of the child as desired with no
engineers and expert knowledge.

FIGURE 9. Design of the MyPAD with sensors, electronics, and battery
and its use with the undergarment on a manikin.

With the crafted miniaturised version of the data acquisi-
tion electronics with a size of 110 mm by 80 mm, the device
can be easily and comfortably placed in the undergarment
as shown in Fig. 9. An example of the early miniaturisation
trials of the device is displayed in Fig. 10. The first proto-
type assembly of the MyPAD device is depicted in Fig 11.
International standards such as CE mark, comfort (e.g., more
ergonomic geometry, aesthetics, and further miniaturised cas-
ing with further miniaturised electronics and sensors), and
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FIGURE 10. Early miniaturisation of the device.

FIGURE 11. First prototype assembly of the device.

safety concerns (e.g., waterproofing, cables, heating of the
electronics) will be ensured before long-term use of the
device with more volunteers. The developed techniques are
aimed to be validated on this device with 10 children that
have NE after these standards have been certified. Then, the
device is aimed to be inspected with larger groups before
mass production for commercialisation. The results of the
completed miniaturised device will be published in our next
paper after extensive tests and trials with children. The single-
to-noise ratio (SNR) is expected to be reduced significantly.
It is worth noting that the performance of the LSTM-based
method is expected to increase with the high quality of input
signals regarding less signal-to-noise ratio. Therefore, new
datasets will be collected both from the phantom and more
volunteers to train the system using the finalised miniaturised
version of the device with less signal-to-noise ratio. There-
after, the aim is to test the enhanced miniaturised device with
the younger demographic suffering from NE for 14 weeks to
i) get feedback associated with wearability and treatment of
NE, and ii) improve the decision-making ability of Bi-LSTM-
RNN concerning various morphology types with more train-
ing data collected via the cloud platform. With these tests,
we expect to conclude safely if 14 weeks is sufficient for the
child to learn how to control his/her bladder using intelligent
autonomous monitoring and customisation approaches built
in this research.

VI. CONCLUSION
Our study was designed to develop a customisable, wear-
able medical device that generates pre-void alarms using
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miniaturised mechatronics with Artificial Intelligence (AI)
to treat NE. In this context, the developed features include:
multiple bespoke US probes for sensing, a bespoke electronic
device housing custom US electronics for signal processing
and a bedside alarm box for processing the acquired signals
and generating alarms. With the implemented Bi-LSTM-
RNN in the study, we achieve a notable accuracy improve-
ment on the results compared to the results obtained from the
state-of-the-art feature-based ML classification techniques
in regards to the A-mode-based US datasets acquired from
deep within the human body, primarily from the bladder.
Moreover, incorporation of the RL technique — RstiNE —
proposed in the study into the decision-making phase not only
helps customise the device for the particular characteristics of
the user, especially finding the specific alarm points of their
bladder without needing any prior training, but also, supports
users to control their bladder with consecutive uses of the
device. The MyPAD device will highlight any differences in
terms of bladder fullness, leading to triggering of the alarm
and the need to void, for each child with NE, which will be
useful for those tasked with treating the condition and for
the child it will vastly improve their quality of life. Other
potential applications of My-PAD include stroke patients,
elderly care (geriatric) settings, urine retention diagnosis, and
veterinary science. Furthermore, this study sheds light on
studies with similar datasets about how to incorporate ANN
and RL into their studies to obtain the best possible results
from a clinical transitional perspective.
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