
 
 

1 

 
 

 

Predicting Meningioma Recurrence Using 

Spectrochemical Analysis of Tissues and Subsequent 

Predictive Computational Algorithms 

 

by 

 

 

Taha Luay Lilo 

 

 

 

A thesis submitted in partial fulfilment for the requirements for the 
degree of Doctor of Philosophy at the University of Central Lancashire  

 

 

 

 

March 2022  

  



 
 

2 

RESEARCH STUDENT DECLARATION FORM    

 
Type of Award    PhD 
 
School    School of Pharmacy and Biomedical Sciences 

 
Sections marked * delete as appropriate 
 
1. Concurrent registration for two or more academic awards 
  
Either *I declare that while registered as a candidate for the research degree, I have not been a 

registered candidate or enrolled student for another award of the University or other 
academic or professional institution 

 
 
2. Material submitted for another award 
 

Either *I declare that no material contained in the thesis has been used in any other submission 

for an 
                 academic award and is solely my own work 
 
or * 
 
 
3.  Collaboration 
 
 Where a candidate’s research programme is part of a collaborative project, the thesis must 

indicate in addition clearly the candidate’s individual contribution and the extent of the 
collaboration.  Please state below: 

 
 _________________________________________________________________________ 
 
4. Use of a Proof-reader 
 
 
 
 
or *No proof-reading service was used in the compilation of this thesis. 
 
 
 
Signature of Candidate    

 
 
 
 
Print name:   Taha L Lilo   



 
 

3 

ABSTRACT 

INTRODUCTION Meningiomas are the most common types of tumour of the central nervous 

system (CNS) and are classified as WHO grades (1,2 ,&3) depending on histological sub-type, 

tumour growth rate and the likelihood of recurrence. The majority of meningioma are benign, 

yet, around 10% will recur following resection. Variation in follow-up of patients comes with 

significant clinical, logistical, and financial implications, hence, the search for predictors for 

meningioma recurrence has become an increasingly urgent research topic. 
 

AIM The aim was to assess the suitability of biospectroscopy sensor-based techniques Fourier-

transform infrared (FTIR) and Raman spectroscopy for analysis of meningioma tissues to 

accurately segregate patients with benign meningioma (WHO 1 &2) into either high-risk group 

for recurrence or low risk group based on the spectrochemical signature. 
 

METHODS Patients with convexity meningioma (n=99), Simpson grade 1 or 2 only and WHO 

grade 1 (n=70) or grade 2 (n=24) with a minimum 5 years follow up (n=5 recurrence) were 

consented for study. Formalin-fixed paraffin-embedded (FFPE) were sectioned and de-waxed 

prior to ATR-FTIR or Raman spectrochemical analyses. Derived spectral datasets were then 

explored for discriminating features via multivariate analysis and machine learning algorithms, 

such as principal component analysis linear discriminant analysis (PCA-LDA) and partial least 

squares discriminant analysis (PLS-DA). Three-dimensional (3D) discriminant analysis 

techniques were also used to analyse Raman hyperspectral tissue images in a (3D) fashion. 
 

RESULTS: WHO grade 1 verses grade 2 meningioma samples and those that recurred from 

those that did not recur were accurately and blindly segregated. For the ATR-FTIR data, PLS-

DA gave the best results where grade 1 and grade 2 meningiomas were discriminated with 79% 

accuracy, 80% sensitivity and 73% specificity; while grade 1 vs. grade 1 recurrence and grade 

2 vs. grade 1 recurrence were discriminated with 94% accuracy (94% sensitivity and 

specificity) and 97% accuracy (97% sensitivity and 100% specificity), respectively. For the 

Raman data, the classical spectral analysis after extracting each spectrum from the Raman 

imaging area achieved best classification performances by using principal component analysis-

quadratic discriminant analysis (PCA-QDA) and successive projections algorithm quadratic 

discriminant analysis (SPA-QDA), resulting in accuracies of 96.2%, sensitivities of 85.7% and 

specificities of 100% using both algorithms. For the Raman 3D image data, 3D principal 

component analysis quadratic discriminant analysis (3D-PCA-QDA) was able to distinguish 

grade 1 and grade 2 meningioma samples with 96% test accuracy (100% sensitivity and 95% 

specificity), and most recurrence samples were predicted as grade 2 which have higher 

likelihood of recurrence. 
 

DISCUSSION Several wavenumbers were identified as possible biomarkers towards tumour 

differentiation, associated with lipids, protein, DNA/RNA, and carbohydrate alterations. For 

Raman spectroscopy, the following wavenumbers were found to be associated with class 

differentiation: 850 cm-1 (amino acids or polysaccharides), 1130 cm-1 (phospholipid structural 

changes), the region between 1230–1360 cm-1 (Amide III and CH2 deformation), 1450 cm-1 

(CH2 bending), and 1858 cm-1 (C=O stretching). These findings highlight the potential of 

Raman microspectroscopy imaging for determination of meningioma tumour grades. 
 

CONCLUSION Reagent-free, non-destructive, and low-cost ATR-FTIR and Raman 

spectroscopy techniques could give predictive information towards meningioma grade 

discrimination and the propensity of meningioma to recur. This has enormous clinical potential 

with regards to being developed for intra-operative real-time assessment of disease. In addition, 

by building a predictive reoccurrence model in advance, it would be possible to predict the best 

treatment for the patient according to the likelihood of tumour reoccurrence.  
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PROLOGUE 

 

Back in 2013, when I was a junior neurosurgical registrar at the department of neurosurgery 

at the Royal Preston Hospital; Professor Charles Davis, called me to his office.  Thoughts 

started rushing into my head. I was walking through the department corridors trying to think 

of reasons of why I got summoned to his office and what I possibly may have done wrong in 

the past week or two. 

When I got to him, he asked me to tell him what I knew about meningioma. I promptly 

recited a couple of paragraphs I remembered from a neurosurgical textbook I was studying 

on, which only reflected the basic level of understanding that I had for the topic at the time. 

Despite the coarseness of my knowledge, saying that the reason I was asked to his office is 

that he was looking for someone with “inquisitive mind” and my name was suggested.  

He then continued: “Do you know what those lockers on both side of the corridor are?”. 

I replied negatively. He explained that those were the files of his meningioma patients. He 

proudly carried on telling me about him starting the very first meningioma clinic in the UK in 

1989.  

He then ended the conversation with this very statement:  

“Those files are yours now; you breath, eat, wake up and sleep with those folders in your 

mind until we get answers!”. 

Although I kept quiet but, in my head, I was wondering “answers for what?”.  

During the six months that followed, we underwent a full retrospective and prospective 

review of meningioma patients, examining the conventional methods to predict recurrence 
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with various hormone receptors and other immunohistochemistry markers. New slides were 

made, prepared, and examined.  

After many hours of hard work and dedication, we finally had the occasion to present our 

work to the British Neuro-Oncology Society (BNOS) meeting in July 2013. On that warm 

British summer day in Durham, with the title “Meningioma-Predicting Recurrence”, We 

concluded that with our then current knowledge and understanding of the disease, we did not 

actually comprehend which meningioma recurs nor why and when they do! Therefore, it is 

very difficult for the neurosurgeons to justify discharging meningioma patients even if the 

disease was deemed “benign”. 

The audience were then divided into two groups: a group opposing my suggestion for 

logistic, financial, and capacity reasons pertaining to the NHS setting. The other group, that 

was more supportive of our suggestion of following up meningioma patients for life giving 

the current evidence. It seemed to me the latter group was made up mainly of senior 

neurosurgeons. Possibly with their wide and extensive experience, they came across one or 

two difficult scenarios where they have discharged a patient to discover years later their 

disease have recurred and probably at that point it was too late to do something about it.  

On that evening, as I was driving back home, I had a mixture of feelings; a feeling of joy for 

winning the prize of best oral presentation at the BNOS and another feeling, that was the one 

nagging me: earlier that day I presented only a problem without a solution! 

When the endorphins of triumph eventually faded, I was only left with the unanswered 

question: “Why the so called “benign” meningioma recurs?”  
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Ultimately, after more than a year of asking myself this question I only developed the 

courage to carry this question forward to academics, who helped me formulate and structure 

this quest. The following six years or so was what I did.   

First, I started looking into lipids biomarkers and immunohistochemistry and after almost a 

year and half and a couple of experiments I concluded this is probably not the best way 

forward for me, so I started all over again. This time with spectrometrical analysis.  

Between changing direction of my research, being a full-time doctor and subsequently the 

pandemic, I cannot deny that more than few times I was close to giving up, I am now very 

glad I did not.  

The following few chapters are my attempts to answer this question I asked myself driving 

back from Durham, is there a better way than following up all meningioma patients for life? 

Can we segregate those patients who deemed benign but have more potential for recurrence?  

I hope this work provides the first steps for much longer path for myself and may be useful 

also for future researchers.   

I would like to think of this work as a story that applies to almost anything in life: Do not be 

afraid to ask questions; If there is a question, there must be an answer to it somewhere.  

No matter how difficult or daunting the journey might seem, enjoy the process and every step 

along the way.   

 

Taha L. Lilo 

Preston, UK  

October 2021  
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CHAPTER 1 | INTRODUCTION 

 

1.1 Introduction to meningioma 

 

The majority of brain cancers are classified as glioma or meningioma (Gajjar et al., 

2013). Gliomas are a more aggressive type of tumour, defined as neuroepithelial tumours 

originating from the glial or supporting cells of the central nervous system (CNS) (Davis et al., 

2018). Meningiomas are the most common type of brain and intradural spinal tumour, 

originating from meningeal coverings that surround the brain and the spinal cord. The location, 

progression, and severity for patients with meningioma varies, but are typified as slow-growing 

tumours with a poor prognosis; and are often diagnosed at a very large size (Mehta et al., 2019). 

The majority of meningioma occur in a supratentorial location, while a few arise in the posterior 

cranial fossa and, rarely, as extra cranial meningiomas (Takahashi et al., 2019). Meningioma 

often manifests as single or sporadic lesions, producing symptoms such as sensory and motor 

deficits and gait disturbance, while multiple meningiomas are commonly associated with 

neurofibromatosis type II (Yeo et al., 2019).  

Meningiomas can be divided into WHO grade 1 (benign), grade 2 (atypical) and grade 3 

(anaplastic) (Louis et al., 2021). Grade 1 meningiomas are the most common type of 

tumours, with slower growth and lower likelihood of recurrence; grade 2 meningiomas also 

have a slower growth, compared to grade 3, but higher likelihood of recurrence. One recent 
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study found the median progression free survival in all patients was 4.6 years for grade two 

meningiomas (Bender et at., 2021).   

  Grade 3 meningiomas are a very rare type of tumour with fast growing rate and much 

higher likelihood of recurrence. Accurate diagnosis is important since surgical outcomes and 

treatment are dependent on the meningioma grade and histological subtypes. 

  

1.2 History of meningioma terminology  

 

Having an appreciation of the history of meningiomas is of vast importance so we better 

understand the evolution in the nomenclature of histological classification. Interestingly, the 

nomenclature was not only the product of the histopathological basis of identification, but also 

of other factors, such as the socio-national influence of the era (Barthélemy  et al., 2016). 

Cushing first introduced the term “meningioma”, in 1922 (Cushing, 1922). The tumour 

commonly runs a benign course; however, around 20-35% of the tumours are atypical or 

malignant (McLendon et al., 2006). Although Cushing was the first to use the term, he was not 

the first to describe “meningiomas” (Ellenbogen et al., 2018). In fact, he stated in his paper that 

those lesions must have struck the anatomists for long time (Cushing, 1922). The first known 

description of meningioma in an autopsy report was by Felix Plater in 1614 (Rockhill et al., 

2007). The first specific scientific publication to describe the tumour was written by the French 

surgeon Antoine Louis 1774 who wrote the first scientific treatise devoted exclusively for this 

tumour called: “fungoid tumours of the dura mater” (al-Rodhan & Laws Jr, 1990; Netsky & 

Lapresle, 1956). Following that, the 19th century the French pathologist Jean Cruveilhier 

dedicated a chapter in his book “Pathological Anatomy of Human Body” for the “Cancerous 
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tumours of the meninges” (Bakay, 1989).  His description included a beautifully hand drawn 

pictures of meningiomas (Figure 1.1).  

 

 

Figure 1.1 Cruiveilhier’s Anatomie Pathologique Du Corps Humain showing (Cancerous 

Tumors of the Meningies).  Public Domain; courtesy of the University of Low Libraries.  
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Cruveilhier, however, was uncertain whether those tumours were malignant or not so 

he suggested the use of the term “cancerous” delicately (Barthélemy  et al., 2016). In the 19th 

century, the Franco German histopathologist Hermann Lebert gave the name “Fibroplastic intra 

cranial tumours” in his histopathological description of tumours of the CNS. He initially 

regarded them as benign tumours, however in his later works he divided them into benign and 

those with malignant potential (Lebert, 1851). Around the same period, in 19th century 

Germany, the prominent physician, Virchow, noticed the granular nature of some of the 

specimens he came across for which he used the term “psammoma” borrowing from Greek for 

sand “brain sand tumours” (Barthélemy  et al., 2016). Virchow’s supremacy drew attention 

away from his contemporaries attempts to name the lesions; like the British surgeon and 

pathologist Sir James Paget who described them “myeloid” in nature and the German Heinrick 

Meckel who used the term “acervuloma” (Cushing & Eisenhardt, 1938). Virchow later offered 

the term “sarcoma” in addition to his previously suggested name. Thus, he expressed his belief 

of the malignant nature of those tumours despite his earlier support to Lebert’s claims of the 

benign nature of those lesions (Barthélemy et al., 2016). Another term was proposed by Charles 

Philippe Robin “epithelioma”; yet, it did not get much attention.  By the end of the 19th and the 

beginning of the 20th century, the terms “endothéliome” and “endothelioma” by Bouchard and 

Golgi respectively dominated in Europe. In fact, it was used an alias for “Meningiomas” in 

Cushing’s 1922 Cavendish lecture in London (Barthélemy  et al., 2016). 

In 1879, the prominent Scottish surgeon, William Macewen, described what could have 

been the first meningioma surgery. In his 1888 invited address to the British Medical 

Association society in Glasgow, he described seven brain surgeries he had conducted 

successfully using his own brain mapping technique through clinical signs and symptoms 

(Figure 1.2). One of which was his operation on Barbara Watson, a fourteen year- old who 

presented with recurrence of tumour above her left eyeball. He had removed her periosteal 



 
 

23 

tumour a year before. This time she presented with left pupillary miosis, pain and cognitive 

slowness. While she was admitted to his ward for observation, she was found to suffer from 

right sided convulsions involving the face, arm and the leg followed by a generalised seizure 

with loss of consciousness. He started his surgery by removing a barley sized lesion which was 

adherent to the periosteum and similar in consistency to the lesion he removed a year before. 

He found the bone rough and soft to touch. Then he removed a 1-inch piece of bone by trephine 

and found a similar finding on the inner table of the skull. He found that a considerable amount 

of the tumour had spread over the inner plate and into the dura matter of the brain. He removed 

as much as was practical. Barbara recovered well after surgery and her symptoms improved. 

She lived for another 8 years and she died of an unrelated cause secondary to Bright’s disease, 

known today as acute or chronic nephritis. Her post-mortem autopsy showed no evidence of 

tumour recurrence. Macewen never received the recognition as the first meningioma surgeon 

for a number of reasons, one of which was the absence of any histopathological evidence in 

addition to the autopsy result. Cushing himself questioned the nature of the lesion that he came 

across by saying he was unfortunate not have happened on a true brain tumour. Cushing, 

however, gave Macewen the credit of being the chief pioneer in cranio-cerebral surgery 

(Macmillan, 2005). 
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Figure 1.2 The localisation of the lesion in the first documented surgical removal of 

meningioma (Macmillan, 2005).  

As the global leadership in medicine and surgery was gradually shifting across the 

Atlantic, William Keen was the first brain surgeon who performed a successful brain tumour 

resection in the United States in December 1887, on a convexity meningioma. The patient 

survived 30 years after his surgery. Keen used to use the term “endothelioma” nevertheless, 

both the surgeon and the patient referred to it as a “fibroma” (Doyle et al., 2017).  

Cushing’s observation of the nomenclature confusion over the past two centuries in 

Europe supported by his awareness of a new American leadership in the field possibly 

encouraged him to introduce a new term for those tumours. His choice of the new term was 

selected regardless of their histology, calvarial involvement or any other varieties (Cushing, 

1922).   

 

1.3 Origin 

 

The origin of meningioma is thought to be located in the progenitor cells that give rise 

to arachnoid cap cells outside of the thin arachnoid layer that covers the CNS (Pećina-Šlaus et 
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al., 2016). There is striking resemblance between meningiomas and arachnoid cap cells 

(Wiemels et al., 2010). They both share structural and functional features, like; desmosomes, 

tight junctions, pinocytic vesicles (Pećina-Šlaus et al., 2016).  

When Cushing used his new term, it was already known that meningiomas did not arise 

from the meninges but from the arachnoid villi (Barthélemy  et al., 2016).  Those are primarily 

found along major venous sinuses, mainly around the superior sagittal sinus (Asaoka et al., 

2002). Yet, meningioma can be present anywhere arachnoid villi are abundant (Kleihues et al., 

1993). Hence, there are many reported cases of rarely located meningioma. This may represent 

a diagnostic challenge clinically and radiologically (Kleihues et al., 1993). 

 

 

1.4 Epidemiology  

 

Meningioma represents over 36% of all primary CNS tumours according to the latest 

CBTRUS statistical report (Ostrom et al., 2016). That makes meningioma the most common 

CNS primary brain tumour (Figure 1.3) with overall prevalence of 97.5/100000 reported cases 

in the United States (Wiemels et al., 2010). The incidence of meningioma in the UK from 1996 

to 2008 was 5.30 per 100,000 person-years (Cea-Soriano et al., 2012). The true prevalence, 

however, could be higher; one autopsy study found that 2.3% of individuals have undiagnosed 

asymptomatic meningioma (Larjavaara et al., 2008).   

Meningioma affects more women than men in adults with a male: female ratio ranging 

from 1:4 up to 1:10 and a 1:2 male: female ratio for cranial meningioma (Ellenbogen et al., 

2018; Levy Jr et al., 1982). Spinal meningioma represents only 7.5-12.7% of all meningiomas 
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(Solero et al., 1989). In the UK, incidence was found to be higher in women than in men (7.19 

vs. 3.05 per 100,000 person-years) (Cea-Soriano et al., 2012). 

The risk of developing meningioma increases with age (Longstreth Jr et al., 1993) with 

a peak incidence around the sixth to seventh decades of life (Louis et al., 2007). In children, 

meningiomas are less common, representing 0.4-4.6% of all childhood central nervous system 

tumours and 1.5-2% of all meningiomas (Louis et al., 2007). Using data from the National 

Cancer Intelligence Network on tumour site, to identify 42,207 tumour cases, self-reported 

ethnicity was obtained from hospitals and meningioma was found to be significantly (p<0.01) 

more common in Black African populations compared to White with an incidence rate ratio of 

1.29 (1.05–1.59) (Maile et al., 2016). A similar pattern was observed in the US where Black 

Africans had a higher incidence compared to White and Hispanic races (Wiemels et al., 2010).  
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Figure 1.3 The relative incidence of CNS brain tumours from the CBTRUS report (Ostrom et 

al., 2016). 

 

1.5 Meningioma Genetics and Molecular Profiling  

 

There are a number of genetic alterations observed in meningiomas for example 

inactivating mutations in NF2 and MEN1 and recurrent somatic mutations in PIK3CA, TRAF7, 

KLF4, AKT1, SMO, and POLR2A in benign (grade 1) tumours (Yuzawa et al., 2016). 

Nevertheless, the majority of meningiomas are sporadic. Monosomy of chromosome 22 and 

NF2 are by far the most common and the most established (Louis et al., 2007). Studies go back 

to 1972 linking meningiomas to monosomy of chromosome 22 (Hartmann et al., 2006). Loss 

of 22q occurs in up to 50-60% patients and it is the most frequent chromosomal alteration in 

meningioma (Hartmann et al., 2006). Recent scientific advances have improved our knowledge 

to how the NF2 gene loss results in tumour formation though its product protein, Merlin 

(Pećina-Šlaus, 2013). Patel et al. (2019) have managed to characterise the molecular profile of 

the high-grade meningioma, most likely to reoccur having loss of the repressive DREAM 

complex, a highly conserved set of proteins involved in regulating the cell cycle and keeping 

cells quiescent. When this repression is lost, cell cycle progression and proliferation became 

elevated. 

Almost 61% of meningiomas are progesterone receptor positive (PR+). Typically, PR+ 

meningiomas run a benign course (Louis et al., 2007). The expression of oestrogen receptors 

(ER), however, may be of less prognostic value (Alexiou et al., 2011). Since somatostatin 

receptors are expressed in 70-100% of meningiomas, they may be utilised to maximise 

resection and early detection of recurrence through imaging the radiolabelled tumours (Alexiou 

et al., 2011). Other markers have also been researched in meningiomas with possibly less 
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clinical significance, such as epidermal growth factor receptor (EGFR) and platelet-derived 

growth factor (PDGF). Cyclooxygenase-2 (COX-2) expression has also been linked to tumour 

progression and angiogenesis (Alexiou et al., 2011).  

In the most recent updated WHO guidelines the following molecular biomarkers have 

been defined for classification and grading of meningiomas, including SMARCE1 (clear cell 

subtype), BAP1 (rhabdoid and papillary subtypes), and KLF4/TRAF7 (secretory subtype) 

mutations, TERT promoter mutation and/or homozygous deletion of CDKN2A/B (CNS WHO 

grade 3) to predict early recurrence, H3K27me3 loss of nuclear expression to predict poor 

prognosis and methylome profiling to predict recurrence risk (Louis et al., 2021). 

A recent large study examining over 3000 meningiomas found some interesting 

corelations between meningioma genomic subgroups and clinical features including tumour 

location. Those genomic subgroups were linked with tumour locations, such as the relation of 

HH tumours with midline location, and the relation of non-NF2 tumours in anterior skull base 

regions. Those findings along with other relations of genomic subgroups to patients and clinical 

features will help us to use targeted therapies. Coupled with machine learning algorithms, those 

findings open the door for non-invasive diagnosis (Youngblood et al., 2020).  
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1.6 Risk Factors  

 

Some authors classify risk factors in meningioma to modifiable and non-modifiable 

risk factors as shown in Table 1.1.  

Table 1.1 A summary of predisposing risk factors to meningioma.  

Non-Modifiable Risks Modifiable Risks 

Age: meningioma is more 

common in adults 

Exposure of brain to ionising radiation: There are a number of ways 

through which iatrogenic radiation could have happened:  

A cohort of children immigrants to Israel were treated for head worms 

(Tinia Capitis) by exposure to ionising radiation during the 1950’s. It 

was noted since the 1980’s there was a significant increased incidence of 

meningioma in this group compared to public (Sadetzki et al., 2000).  

The survivors of atomic bomb exposure in Nagasaki and Hiroshima: A 

review of the bombing survivors suggested a statistically significant 

increase for schwannomas and statistically non- significant increase for 

meningioma and other CNS tumours (Preston et al., 2002).  

Radiotherapy for other cranial conditions: A review of literature looked 

into patients who received radiotherapy in the pediatric and young adult 

age group found increased risk of meningioma including WHO 1, 2 &3 

with a latency period of 22.911.4 years (Yamanaka et al., 2017).  

Dental x-rays: A study found increased incidence of meningiomas in 

patient who have been exposed to dental x-ray in the past when the 

radiation exposure was higher compared to the modern era (Claus et al., 

2012).  

Gender: Female more 

common than Male  

 

Exposure to exogenous sex hormones in females: Some papers have 

found a statistical link between sex hormones and the development of 

meningiomas while others have found no significant link have been 

found between external exposure to female sex hormones and 

meningiomas (Claus et al. 2013; Jhawar et al., 2003) 

Genetic disorders; such as 

NF2 

Meningioma and obesity: A strong positive relation was found between 

females with high BMI and the development of meningioma. There is 

relation between obese men and increased risk of meningioma probably 

through conversion of androgen to estrogen in peripheral tissue (Claus et 

al. 2013). 

Ethnicity: more common in 

Black Africans 

 

 

  



 
 

30 

1.7 Histopathological classification 

 

Meningioma histological classification is part of the WHO classification of central 

nervous tissue tumours. Historically, this was first initiated by the WHO and the world health 

assembly in 1956 and 1957 respectively. The objective was to unify a worldwide accepted 

system through which a clear histopathological and clinical diagnosis can be made. Without it, 

no large-scale international collaborative epidemiological studies or clinical trials would have 

been possible.  

The criteria have evolved over the years reflecting the progressive advances in the field 

of diagnostics; in 1979 the first edition was published reflecting the histological typing. 

Followed by the 1993 second edition which included immunohistochemistry into diagnostic 

pathology. The third edition was published in 2000 which incorporated genetic profiles. In this 

edition, the blue book, as the series known, have markedly evolved to feature sections on 

imaging, clinical findings, epidemiology, prognosis, and predictive factors. The 2007 edition 

has included more collaboration with geneticists and featured new variants and entities. The 

2016 included brain invasion as a criterion for WHO 2meningioma. The 2021 edition 

introduces major changes that advance the role of molecular diagnostics in CNS tumour 

classification integrated with other established approaches such as histology and 

immunohistochemistry (Louis et al., 2021).  

1.7.1 Grade 1 

 

For tumours with low proliferative potential and possibly cure following surgery. 

Within the benign WHO 1 category for meningiomas, there are several subtypes: 

Meningothelial, fibrous, transitional, psammomatous and angiomatous meningiomas. Those 
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classifications are imprecise in predicting patient outcome and recurrence. The most common 

subgroups for grade 1 are meningiothelial, fibrous and transitional. 

1.7.2 Grade 2 

 

Implies infiltrative behaviour of the tumour and often recurs. It also has the potential to 

progress to a higher-grade malignant tumour. For the WHO grade 2 meningiomas, subgroups 

include clear cell and choroid. 

1.7.3 Grade 3 

 

For tumours with malignant features like nuclear atypia and brisk mitotic activity. 

Those lesions usually require adjuvant therapy. grade 3meningiomas include; anaplastic, 

papillary and rhabdoid.  

In Table 1.2 is shown the WHO criteria for the histological grading of meningiomas 

(Perry et al., 1997). 

Table 1.2 WHO criteria for the histological grading of meningiomas. 

Benign WHO grade 1 Atypical WHO grade 2 Anaplastic WHO grade 3 

 

Histological variant other than clear 

cell, Chordoid, papillary and 

rhabdoid  

Mitotic activity ≥ 4/10 HPF  

Plus; 

 

Mitotic index ≥ 20/10 HPF 

Lacks criteria of atypical and 

anaplastic meningioma  

Brain invasion  

Or;  

Papillary 

Rhabdoid 

Frank anaplasia  

Malignancy cytology 

(resembling sarcoma, carcinoma or 

melanoma-like histology)  

Meningiothelial 

Fibrous 

Transitional 

Psammomatous 

Angiomatous 

Microcystic 

Secretory 

Lymphoplasmacyte-rich 

Metaplastic 

 

At least 3 of 5 parameters:  

-sheeting architecture (loss of  

whirling and/or fascicles) 

-small cell formation (high 

nuclear-to-cytoplasmic ratio)  

-macronucleoli 

-hypercellularity 

-spontaneous necrosis (not 

induced by radiation or 

embolization)  

*any one of the above qualify 
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The WHO then classified the histological subtypes into two groups according to their 

risk of recurrence and aggressive behaviour, as shown in Table 1.3. 

Table 1.3 2016 Meningioma variants grouped by the WHO grade and biological behaviour 

Meningiomas with low risk of recurrence;  

Histology Grade  

Meningiothelial  WHO 1 

Fibrous (Fibroplastic)  WHO 1 

Transitional (mixed) WHO 1 

Psammomatous  WHO 1 

Angiomatous WHO 1 

Microcystic WHO 1 

Secretory  WHO 1 

Lymphoplasmacyte-rich  WHO 1 

Metaplastic WHO 1 

 

 

1.7.5 The histological variants of meningiomas  

 

The three most common histological subtypes are the meningiothelial, fibrous and the 

transitional. 

1.7.5.1 Meningothelial meningioma 

 

A classic common type characterised by a medium sized epithelioid tumour cells 

forming lobules partly demarcated by a thin collagenous septa. The tumour cells of this type 

are largely uniform with oval nuclei. Eosinophilic cytoplasm is abundant. Whorls and 

psammoma bodies are infrequent. However, when present they tend to be less formed than in 

the transitional, fibrous or psammomatous subtypes (Figure 1.4).  
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    Figure 1.4 Meningiothelial meningioma. 

1.7.5.2 Fibrous meningioma 

 

Another classic and common type of meningioma. Consists of spindles of cells forming 

parallel storiform and interlacing bundles in a collagen rich matrix. Similar to meningiothelial 

meningioma, whorl formation and psammoma bodies are infrequent (Figure 1.5).  

       Figure 1.5 Fibrous meningioma.  

1.7.5.3 Transitional meningioma  

 

Another common variant. Contains meningiothelial and fibrous patterns as well as 

transitional features. Lobular and fascicular foci appear side by side with conspicuous tight 

whorls and psammoma bodies. Common in NF2 mutation meningiomas (Figure 1.6).  
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       Figure 1.6 Transitional meningioma.  

1.7.5.4 Psammomatous meningioma  

 

Contains an abundance of psammoma bodies over tumour cells commonly in the 

transitional variant. Often the psammoma bodies become confluent forming irregular calcified 

masses and occasionally bone. Commonly found in thoracic spine meningioma. Bone related 

proteins including osteopontin produced by CD68 positive macrophages are thought to play a 

role in its formation (Al-Metfy et al., 2011) (Figure 1.7).  

  Figure 1.7 Psammomatous meningioma. 

1.7.5.5 Angiomatous meningioma  

 

Also known as vascular meningioma. Features numerous small and medium size blood 

vessels with hyalinised walls. Often constitute a greater proportion of the tumour mass than 

other types. The differential diagnosis of this type includes vascular malformations and 

haemangioblastoma (Figure 1.8).  
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   Figure 1.8 Angiomatous meningioma. 

1.7.5.6 Microcytic meningioma 

 

Characterised by cells with thin elongated processes encompassing microcysts and 

creating a cobweb-like background. Atypia and cerebral oedema are common, but they are 

typically benign (Figure 1.9). 

  Figure 1.9 Microcystic meningioma. 

1.7.5.7 Secretory meningioma  

 

Characterised by the presence of focal epithelial differentiation in the form of 

intracellular lumina with periodic acid-Schiff (PAS) positive eosinophilic secretion which has 

been termed pseudopsammoma bodies. Carcinoembryonic antigen (CEA) is secreted from the 

tumour cells which are also positive for cytokeratin. Luminal secretions are CEA, therefore 

CEA blood levels can be measured as a biomarker and are seen to drop following resection of 

the tumour and raise in recurrence (Figure 1.10).  
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  Figure 1.10 Secretory meningioma. 

 

1.7.5.8 Lymphoplasmacyte-Rich  

 

A rare type of WHO 1 meningioma, characterised by extensive inflammatory infiltrates 

on a background of meningiothelial, fibrous or transitional meningioma. Usually, abundant 

lymphoplasmacytic infiltration which sometimes include lymphoid follicle formation, which 

may obscure the meningiothelial components of the tumour requiring immunohistochemistry 

to rule out the lymphoproliferative process. Sometimes, macrophages become the predominant 

cell rather than the plasma cells, therefore, the term inflammation-rich meningioma has been 

suggested. Systemic abnormalities may be associated with this condition like 

hyperglobulinaemia and iron-refractory anaemia (Figure 1.11).  

Figure 1.11 Lymphoplasmacyte-Rich meningioma. 

 

1.7.5.9 Metaplastic meningioma  
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Another rare type exhibiting metaplastic changes that may be cartilaginous, osseous, 

xanthomatous, myxoid or lipomatous. The mesenchymal changes can be focal or widespread 

(Figure 1.12).  

 Figure 1.12 Lipomatous metaplastic meningioma. 

 

1.7.5.10 Chordoid meningioma  

 

A rare variant of meningioma that resembles chordoma. Characterised by cords of 

trabeculae of eosinophilic often vacuolated cells in a mucoid matrix. Typically, they are 

clinically large supratentorial tumours. They have a high rate of recurrence. They may, 

infrequently, be associated with haematological conditions such as anaemia or Castleman 

disease (Figure 1.13).  

 Figure 1.13 Chordoid meningioma. 
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1.7.5.11 Clear cell 

 

A rare variant of meningioma with commonly no pattern or sheeting architecture and 

round to polygonal cells with clear, glycogen-rich cytoplasm and prominent perivascular and 

interstitial collagen. Clear cell meningioma has a tendency towards cerebellopontine angle 

location in the brain and the cauda equina region in the spine. It has also tendency to affect 

younger adults and children. There is also a family tendency, in association with SMRCE1 

mutation. They generally carry aggressive behaviour with potential CSF seeding (Figure 1.14). 

 Figure 1.14 Clear cell Meningioma. 

 

1.7.5.12 Atypical meningioma  

 

Intermediate grade between benign and malignant forms. Under the microscope, they 

resemble their benign counterpart with increased mitotic activity ≥ 4/10HPF, brain invasion, 

or at least three of the following features:   increased cellularity, small cells with high nuclear 

to cytoplasmic ration, prominent nucleoli, sheeting, and spontaneous necrosis (not induced by 

embolization or radiation). Brain invasion has to be associated with breach of pia. This is 

usually quantified by immunohistochemistry with glial fibrillary acidic protein (GFAP) to 

highlight the intervening brain parenchyma.  Extension into the Virchow Robin space without 

pial breach is not brain invasion. Even benign meningioma can have brain invasion, 

nevertheless, they still carry a higher likelihood of recurrence. Therefore, brain invasion is a 

criterion of atypical meningioma (Louis et al., 2016) (Figure 1.15).  
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  Figure 1.15 Atypical meningioma. 

 

1.7.5.13 Papillary meningioma  

 

A rare aggressive tumour. Characterised by the presence of perivascular 

pseudopapillary pattern constituting most of the tumour. They commonly occur in young 

adults. Brain invasion has been noted in 75% of cases. Extra cranial metastasis reported in 20% 

of cases mainly to lung (Figure 1.16).  

  Figure 1.16 Papillary meningioma. 

 

1.7.5.14 Rhabdoid meningioma  

 

An uncommon aggressive variant, consists primarily of rhabdoid cells (plump cells 

with eccentric nuclei, open chromatin and a prominent nucleolus with abundant eosinophilic 

cytoplasm containing whorls of intermediate filaments. Sometimes other types of meningiomas 
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contain focal rhabdoid features; such cases are less aggressive and therefore, it is suggested 

that they are graded as normally but with the added with “rhabdoid features” (Figure 1.17).  

 Figure 1.17 Rhabdoid meningioma. 

1.7.5.15 Anaplastic(malignant) meningioma 

 

Account for 1-3% of meningiomas. Exhibit malignant cytology similar to that of 

carcinoma, melanoma, or high-grade sarcoma and/or markedly elevated mitotic activity ≥ 

20/10 HPF. Other features include extensive necrosis and a Ki-67 proliferation index >20% . 

Confirmation of the meningiothelial origin of cases with diffuse anaplasia often requires 

history of meningioma at the same location, immunohistochemistry and/or genetic support. 

Survival is usually 2-5 years depending on the degree of resection. However, surgical tumour 

margin can be a challenge since these is a lack of interphase between atypia and anaplasia 

(Figure 1.18).  

 Figure 1.18 Anaplastic meningioma. 
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1.7.5.16 Other morphological variants 

 

These are a wide group of other rare meningioma variants addressed collectively under 

one headline. The reason being, is the insufficient level of current evidence to support giving 

them a distinct variant. These include meningiomas with oncocytic, mucinous, sclerosing, 

whorling-sclerosing, GFAP-expressing and granulofilamentous inclusion-bearing features. 

Another pattern is the meningothelial rosette which is rarely seen secondarily in a variety of 

meningiomas.  

The previously known pigmented meningioma, is currently described as 

melanocytoma. The international Agency for Research on Cancer (IARC) along with the 

International Society of Neuropathology (INS) produced a reference book based on the WHO 

classification, the blue book. Throughout the successive editions of the book, the evolutionary 

process in the tissue diagnosis throughout the years is evident. Tumour grade along with other 

factors can be used as a prognostic tool to predict overall patient prognosis and survival (Louis 

et al., 2016). 

 

1.8 Location   

 

Cranial Meningiomas have been found in a number of locations. The location is important 

as it may bring different symptoms. Also, the ease of surgical removal and the chance of full 

excision can be successfully conducted in some locations more than others.  

The majority of meningiomas are located in the convexity and this is followed by 

parasagittal meningioma and sphenoid wing meningioma. A list of tumour locations benign 

and malignant tumours and percentage relative to the total number is shown for each location 

in Table 1.4 (Rockhill et al., 2007).  
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Table 1.4 A list of where benign and malignant meningioma have been located and ranked in 

terms of percentage relative to total number measured.  

Tumour Location No. Benign (%) No. Malignant (%) 

Convexity 60 (34) 7 (50) 

Parasagittal 39 (22) 4 (29) 

Sphenoid ridge 30 (17) 3 (21) 

Lateral ventricle 10 (5) 0 (0) 

Tentorium 7 (4) 0 (0) 

Cerebellar convexity 9 (5) 0 (0) 

Tuberculum sellae 7 (3) 0 (0) 

Intraorbital 4 (2) 0 (0) 

Cerebellopontine angle 4 (2) 0 (0) 

Olfactory groove 6 (3) 0 (0) 

Foramen magnum 1 (1) 0 (0) 

Clivus 1 (1) 0 (0) 

Other 1 (1) 0 (0) 

Total 179 14 

 

 

1.9 Clinical Course  

 

Meningiomas are slow growing tumours, therefore, the clinical course quite commonly can 

be insidious (Rockhill et al., 2007). Depending on the location and size it may cause symptoms 

with the most common of which being headache. Yet, patients may also present with an array 

of other symptoms such as seizures, visual disturbance, limb weakness, loss of smell sense, 

depression, or personality change. Some of the meningiomas are incidentally found on 

scanning for other causes. In fact, around 40% of meningiomas are asymptomatic (Yano et al., 

2006). Those who are symptomatic, there are two types of symptoms:  

a) Non-specific: which are related to increase intracranial pressure that may lead to 

headache, nausea, vomiting or visual disturbance. 

b)  Specific: which are related to the location and size of meningioma like seizures, 

hemiplegia, ophthalmoplegia, gait disturbance and personality changes.  
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1.10  Diagnosis  

 

Meningioma diagnosis is usually radiological. The lesions usually appear as a solitary 

extra axial mass with close proximity or contact to dura matter. The modality of choice for 

diagnosing meningioma is MRI scan, however, CT scan is also useful in high probability cases 

and when there is a need for good bony definition and for looking for calcification (Nagar et 

al., 2007). 

 

1.10.1 MRI scan  

 

The modality of choice is MRI scan with gadolinium. Meningioma appears as 

isointense lesion on T1 weighted images before contrast and homogenous uptake of contrast. 

FLAIR (Fluid Attenuated Invention Recovery) sequence is useful in evaluating surrounding 

oedema. MR angio/venogram is a useful tool to define the vascular supply of the lesion and/or 

the invasion of the venous sinuses. DWI sequence can be useful in detecting dedifferentiation 

of WHO 2or 3 meningioma and the progression of tumour grade (Nagar et al., 2007). 

 

1.10.2 CT scan 

 

Meningioma appears as a hypodense lesion on plain CT and bright after contrast. Useful 

in detecting bony definition and invasion. Calcification within the tumour is better visualised 

on a CT scan although it still can be detected on T2 weighted images MRI scan.  
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1.10.3 Cerebral Angiography  

 

Not a diagnostic tool as such, nevertheless, it is a useful addition for the definition of 

vascular supply for surgical planning.  It can also be used as a therapeutic tool; cerebral 

embolisation pre-operatively to reduce the surgical blood loss have become a standard practice 

in many centres. However, the EANO meningioma guidelines do not recommend it as a routine 

practice but only useful in selected cases (Goldbrunner et al., 2016).  

 

1.10.4 SPECT Octreotide Scintigraphy  

 

This technique is based on the presence of high number of somatostatin receptors (SSr); 

however, it is a rarely used method, used to detect difficult tumours that do not appear well on 

an MRI scan such as lesions like skull base, optic sheath and tumour recurrence that are difficult 

to differentiate from scar tissue (Krenning et al., 1993).  

 

1.11 Management  

 

Despite being the most common brain tumour, the level of evidence is low in the 

management of meningiomas. Hence, the meningioma task force of the European Association 

of Neuro- Oncology (EANO) reviewed the scientific literature and composed a framework of 

the best possible evidence-based recommendations for clinicians. In general, the following are 

the recommended treatment options. Large tumours may require treatment either surgically or 

with radiotherapy or both. Recurrence is possible with meningioma. Although the potential for 

recurrence is directly proportional to tumour grade, low-grade tumours do not confirm safety. 

There is no strong data to support the use of pharmacological agents in any of the 

aforementioned management plans (Venur et al., 2018). The clinical dilemma stems from the 
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follow up arrangements that are required for the patients. NICE guidelines describe follow up 

arrangement for meningioma with clear follow up instructions up to 9 years however, at 9 years 

plus, the recommendation is to consider discharging the patient if there is no recurrence.  In 

practice, some surgeons follow up patients for few years with interval MRI scans. Others prefer 

to follow up patients for life. In the absence of reliable indicator of recurrence, there is no 

strong basis to any particular longer term follow up arrangement given that even benign 

Meningiomas can recur (Pećina-Šlaus et al., 2016). This commitment has its own financial, 

logistical, and patient convenience implications. Hence, the search for predictors for 

meningioma recurrence has been an increasingly popular research topic in recent years. There 

is an argument can be made for long term follow up and one against; although long term follow 

up or follow up for life can be safe and a surgeon, therefore, would unlikely miss a tumour 

recurrence or find it when it is too late. However, the counter argument is the implication of 

follow up arrangement from financial costs, from scans, to setting up clinics and travelling time 

and effort. Not to mention the anxiety patient can experience and go through  waiting for the 

results and the MRI scan experience itself (scanxiety).  

 

1.12 Predicting Recurrence 

 

The recurrence of meningioma has been a clinical challenge for decades with 

meningioma recurrence being greater with partial resection and higher WHO grade. 

Nevertheless, a WHO 1 meningiomas still carry significant risk of recurrence (7-23% at 5 

years, 20-39% at 10 years, and 24-60% at 15 years) (Marosi et al., 2008). Moreover, recurrent 

meningioma carries higher risk of disease progression within shorter disease-free intervals 

(Marosi et al., 2008).   
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As previously stated, the higher the WHO grade, the higher the chance of recurrence 

with poorer overall survival. A recent study looked into 49 cases of WHO grade 2 meningioma. 

Various factors were examined including patient and clinical characteristics, location, MRI 

findings, Simpsons grade, time to recurrence, and p53 expression. The authors found that 

atypical meningiomas tend to be associated with about an eight- fold increased risk of 

recurrence compared with WHO grade 1. They also concluded that if time to recurrence was 

less than 24 months, there was a threefold increase in further relapse and this group of patients 

needed closer follow up (Cao et al., 2015).  

Other researchers have focused on the radiological findings of the tumour to predict 

recurrence. A study that examined various independent variables of recurrence including MRI 

findings suggested that mushroom-shaped meningiomas were associated with a significantly 

higher incidence of recurrence compared to those with smooth borders.  They also concluded 

that there is no relation between radiological calcification of the tumour and recurrence (Ildan 

et al., 2007). Supporting this evidence, another paper reviewed 335 patients that underwent 

surgical resection of intracranial benign and atypical meningiomas also agreed with the higher 

recurrence rate in the radiological mushroom-shaped meningiomas.  This radiological finding 

may represent the invasive potential of the tumour. More interestingly, they found that pial 

invasion was also a significant predictor of recurrence in both benign and atypical meningiomas 

(Nowak et al., 2015).  

Although there is an agreement to the role of radiotherapy in the overall survival of 

meningioma patients, timing of adjuvant radiotherapy has been extensively researched with 

mixed results in literature. Nevertheless, significant advances may only reap their rewards 

following the conduction of a prospective, randomized trial of early adjuvant radiotherapy 

(Klinger et al., 2015).  
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1.12.1 Markers of meningioma prognosis 

 

Since the turn of the century, scientists have been focusing more on the molecular and 

genetic profile of the tumour to predict the recurrence of meningioma as previously introduced 

in Section 1.4. Table 1.5 outlines some of the molecular changes associated with meningioma 

aggressiveness and recurrence. 

Table 1.5 Possible molecular markers of meningioma prognosis. 

Molecular Marker 

 

Biological Role Reference 

CCNB1 overexpression 

 

Cell cycle progression Bie et al., 2011 

CDC2 overexpression 

 

Cell cycle progression Bie et al., 2011 

AKT2 overexpression 

 

PI3K signalling Wang et al., 2014 

HES1 overexpression 

 

Notch pathway signalling Yew et al., 2013 

NF2 mutation 

 

Growth regulation, motility Alexiou et al., 2011 

MKI67 over expression 

 

Proliferation protein Roser et al., 2004 

MDM2 loss of expression 

 

p53 antagonist Amatya et al., 2004 

 

Immunohistochemistry has provided an alternative route for the identification of a 

recurrence profile. Typical immunohistochemical targets within meningioma tissue include: 

EGFR E30, VEGF-A, HER2, IGF-1r, GHr, CD34, Caspase-3, PR and AR (Kärjä et al., 2010). 

They also have audited a wide range of immunohistochemical targets within meningioma tissue 

with a view to the identification of protein expression patterns which may be associated with 

tumour aggressiveness and recurrence. Unfortunately, their findings were inconclusive. 

 



 
 

48 

1.12.2 Simpson Grade and its relevance to recurrence  

 

In 1957, Donald Simpson published his famous paper regarding the recurrence of 

meningiomas after surgical treatment. In his paper, and after he reviewed the results of various 

centres, he linked the completeness of surgical resection with the chance of recurrence 

(Simpson, 1957). He then graded the degree of surgical resection which is still widely used in 

most neurosurgical centres as a tool to report the surgical level of excision and as a predictor 

of recurrence as shown in Table 1.6. 

Table 1.6 A summary of the Simpson grade used to predict recurrence based on degree of 

surgical resection 

Simpson Grade Degree of surgical resection  Prediction of recurrence 

Grade I complete removal including resection of 

underlying bone and associated dura 

9% symptomatic recurrence at 

10 years 

 

Grade II complete removal and coagulation of 

dural attachment 

 

19% symptomatic recurrence 

at 10 years 

 

Grade III complete removal w/o resection of dura or 

coagulation 

 

29% symptomatic recurrence 

at 10 years 

 

Grade IV subtotal resection 

 

44% symptomatic recurrence 

at 10 years 

 

Grade V simple decompression with or without 

biopsy 

 

100% symptomatic recurrence 

at 10 years (small sample in 

original paper) 

Recently, a number of papers have been published to challenge the value of Simpson 

grade. Oya et al. (2012) found that the value of the Simpson grade has been diluted recently 

with the emergence of other prognostic factors. A relatively similar conclusion was reached by 

Sughrue et al. (2010). Despite these challenges and the evolution of diagnostic and surgical 

techniques, more recent series still find the Simpson grade of value in predicting recurrence 

(Klinger et al., 2015). 
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             1.13 Research problem: meningioma verses meningiomas?  

 

In the absence of high level evidence, the management and follow up arrangement for 

meningioma patients is highly driven by local tradition and experience-based practice. 

Although a number of studies are looking into predictor of recurrence, currently there is no 

single reliable predictor of recurrence with strong level of evidence. Therefore, clinicians have 

to individually tailor the therapy for each patient based on a number of factors including 

clinical, surgical, radiological, histopathological, genetic, and molecular factors. The number 

of variables that play a role in the aggressiveness of meningiomas, as well as the insidious 

nature of progression begs the question whether we are dealing with a single disease. Therefore, 

is it meningioma or meningiomas? 

 

1.14  Aims and Objectives 

 

The aim of the thesis was to assess the suitability of biospectroscopy sensor-based 

techniques to analyse the molecular signatures of meningioma and accurately segregate 

patients with benign meningioma into either high-risk group for recurrence or low risk group. 

Hence, this would ideally allow safe discharge of patients from the low-risk group after a period 

of follow up and identification of the high-risk patients to be followed up for life.  

Objectives: 

I. To be able to segregate the WHO Grade 1 meningioma from WHO Grade 1 recurrence 

using ATR-FTIR and Raman spectroscopy. 

II. To be able to segregate the WHO Grade 2 meningioma from WHO Grade 1 using ATR-

FTIR and Raman spectroscopy; 
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III. To be able to segregate the WHO Grade 2 meningioma from WHO Grade 1 recurrence 

using ATR-FTIR and Raman spectroscopy; 

IV. To compare ATR-FTIR vs. Raman for distinguishing Grade 1vs Grade 1 recurrence vs 2  

1.15  Justification and Novelty 

 

The biospectrometry methods Raman and ATR spectroscopy were chosen for analysis 

of meningioma tumour samples. The reason for this choice was that these methods are cheap, 

reliable, fast, reproducible, simple and have been used extensively in other tumours such as 

ovarian cancers, gliomas. To our knowledge we are the first group working on segregating 

benign WHO 1 meningiomas into two separate subgroups determining which patients will 

require long-term follow-up based on predictions of aggressiveness and recurrence. 

 

 1.16 Hypothesis  

 

The hypothesis is that the variability in the molecular phenotype of meningiomas (for 

example Grade 1, Grade 2, recurrence) are sufficiently different from one another that 

biospectrometry techniques are sensitive enough to stratify the patient into different 

categories based on the meningioma aggressiveness and potential for recurrence.  
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 1.17 Spectroscopy  
 

1.17.1 FTIR Spectroscopy  

 

The infrared (IR) region encompasses radiation with wavenumbers ranging from about 

12,800 to 10 cm-1 (0.78 to 1000 µm). This IR range is divided into three regions: the near-IR, 

the mid-IR, and the far-IR region (Skoog et al., 2007). These three IR regions differ 

considerably and mid-IR is more commonly employed for analysing biological samples, 

since it detects fundamental vibration molecular modes (Skoog et al., 2007). 

 IR spectroscopy is based on the vibrational motions of chemical bonds, like bending, 

stretching, rocking, and scissoring, where each type of vibration is specifically related to a 

vibrational energy level. The vibrational absorption of energy occurs only when the molecular 

bond has an electric dipole moment changeable by atomic displacement due to its vibration. 

The IR spectral signature then is transformed via a Fourier-transform (FT) filter to change the 

time domain to frequency, thus generating the term FTIR (Santos et al., 2017). The mid-IR 

region also contains an important wavenumber range of biological interest, the so-called 

“biofingerprint” region (Baker et al., 2014). The biofingerprint region covers the region 

between 900–18000 cm-1, and it is where biomolecules such as lipids, carbohydrates, proteins, 

and nucleic acids absorbs IR light (Table 1.7) (Santos et al., 2017). 

Table 1.7 Main spectral features in the IR biofingerprint region (Santos et al., 2017). 

Wavenumber (cm-1) Assignment Biomolecule category 

970 𝜐s(R − PO4
2−) of phosphorylated proteins Proteins 

1030 𝜐(C − O/C − C) of glycogen Carbohydrates 

1080 𝜐s(PO2
−) of phosphodiester groups Nucleic acids 

1155 𝜐(C − O) Carbohydrates 

1225 𝜐as(PO2
−) in RNA/DNA Nucleic acids 
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1260 Amide III: 𝜐(C − N) Proteins 

1550 Amide II: 𝛿(N − H) coupled to  𝜐(C − N) Proteins 

1650 Amide I: 𝜐(C = O) Proteins 

1750 𝜐(C = C) Lipids 

𝜐 = stretching; 𝜐s  = symmetric stretching; 𝜐as  = asymmetric stretching; 𝛿 = bending 

 

 Figure 1.19 shows the main absorption bands for these biomolecules in the IR 

biofingerprint region (Kelly et al., 2011). Changes in the IR signature for these biomolecules 

are associated with concentration changes (changes of band intensity) and changes of 

molecular configuration and neighbouring functional groups (band shifts towards higher or 

lower wavenumbers). 

 

Figure 1.19 IR biofingerprint region with main absorption assignments. (Reprinted (adapted) 

with permission from Kelly et al., 2011. Copyright 2011 American Chemical Society). 

 

The FTIR spectrometer is composed of five main parts: (1) light source, (2) 

spectrograph, (3) sampling area, (4) detector, and (5) computer module. The (1) light source 
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generates IR radiation; the (2) spectrograph is an optical apparatus containing an 

interferometer, diffraction grating or prism to split the IR light into different wavenumbers; the 

(3) sampling area contains the sample apparatus to hold the sample while it is irradiated with 

IR light, being a transmittance or reflectance apparatus, such as an attenuated total reflection 

(ATR) module, in which a crystal (typically a diamond crystal) is placed in contact with the 

sample where internal reflections between the crystal and the sample material attenuates the IR 

signature; the (4) detector is responsible for capturing the diffracted IR light, thus generating 

an electrical response; and, the (5) computer module process the electrical signature 

transforming it into an interferogram and, by using the Fourier-transformation, into a spectrum. 

Figure 1.20 shows an example of an ATR-FTIR spectrometer.     

 

 

Figure 1.20 ATR-FTIR spectrometer. 
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1.17.2 Raman spectroscopy 

Raman is an advanced spectroscopy technique capable of obtaining spectra from chemical 

species according to their polarizability changes and includes a wide range of polar and non-

polar chemical bonds. When photons from a monochromatic light source interact with the 

chemical bonds present in a sample, these photons are then absorbed, hence, increasing the 

molecular vibrational energy. Thereafter, these photons are emitted, thus returning the 

molecule to their initial vibrational energy. This process itself is called elastic scattering and 

no Raman signature is observed. However, during this process, a small portion of molecules 

do not return to their initial vibrational energy stage, thus causing a difference between the 

absorbed and emitted energy. This is called inelastic scattering and it is the source of Raman 

spectroscopy. This inelastic scattering phenomenon occurs in less than 1% of absorbed 

photons, and it is divided into two subtypes of scattering: Stokes and anti-Stokes scattering. In 

the Stokes scattering, the molecule absorbs part of the energy from the incoming 

monochromatic light, thereby emitting a wavelength of less energy than the wavelength 

received; and, in the anti-Stokes scattering, the molecule emits a wavelength of higher energy 

than the wavelength from the monochromatic light. The anti-Stokes scattering happens under 

certain circumstances when the molecule is partially excited before absorbing the light from 

the monochromatic source. The Raman instrument then filters the elastic scattering so that only 

the Raman scattering is detected, and this signal is used to produce a spectrum containing peaks 

representing chemical information, and frequency shifts representing the wavenumbers from 

the Raman scattering (Santos et al., 2017). Both Stokes and anti-Stokes scattering occur, but at 

room temperature, there is a low population of molecules in an initial excited energy state, thus 

the anti-Stokes signal is weaker than the Stokes signal, hence, many Raman spectrometers only 

records the Stokes scattering (Skoog et al., 2007).   
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 Raman is often used to analyse biological samples, since it is water transparent, that is, 

the water signal in Raman is very small so not masking the signal from the other chemical 

compounds below 3000 cm-1 (Skoog et al., 2007). IR is sensitive to water; therefore, samples 

are often measured dry in IR spectroscopy to minimise the water interference; while Raman 

can measure all forms, including liquids or dry samples (Butler et al., 2016). The Raman 

biofingerprint region is between 2000–500 cm-1, and comprises mostly stretching vibrations 

for carbohydrates, lipids, proteins, and nucleic acids (Figure 1.21) (Kelly et al., 2011). 

 

Figure 1.21 Raman biofingerprint region with main absorption assignments. (Reprinted 

(adapted) with permission from Kelly et al., 2011. Copyright 2011 American Chemical 

Society). 

 

 The Raman spectrometer is composed of five main parts: (1) a monochromatic laser 

source, (2) a sampling area, (3) a spectrograph, (4) a detector, and (5) a computer module. The 

(1) monochromatic laser light, often in the visible or near-IR range, is used to excite the samples 

to virtual energy levels where the inelastic scattering occur; the (2) sampling area is usually a 

moving stage where the sample is affixed; the (3) spectrograph is usually a fixed diffraction 

grating; the (4) detector is a charge-coupled device (CCD) detector where the full spectrum is 

record with no need for a Fourier-transformation; and (5) the computer module is responsible 
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for converting the CCD detector signal into a spectrum. Figure 1.22 shows an example of a 

Raman spectrometer. 

 

Figure 1.22 Raman spectrometer. 

 

Both FTIR and Raman spectroscopy can be employed for the chemical analysis of 

tissue, where vibrational signals are obtained from biomolecules bonds that compose the tissue. 

These unique spectral features for FTIR and Raman make these spectroscopy techniques very 

attractive to determine chemical compositions of unknown substances. FTIR spectroscopy, as 

well as other molecular spectroscopy techniques such as liquid chromatography-mass 

spectrometry (LC/MS), nuclear magnetic resonance (NMR) spectroscopy, near-infrared (NIR), 

and Raman spectroscopy provide robust and supportive data about the sample chemical 

composition.  



 
 

57 

FTIR and Raman spectroscopies are a fast, low-cost, and reagent-free tool for cancer 

diagnostics (Bury et al., 2019b). They are a high throughput technique which, together with 

multivariate analysis or machine learning algorithms, can be used for cancer detection in an 

automatic, quick, and easy fashion (Morais et al., 2020b). For brain cancers specifically, 

knowing the tumour type or subtype is essential to start the correct patient treatment and reduce 

post-surgery risks (Bury et al., 2019b), which ultimately will decrease patient mortality. 

Although FTIR and Raman spectroscopy share similarities in the measurement of 

molecular vibration signatures. there are direct points that distinguish the origin, functionality, 

and the mode of identification of unknown materials by the two techniques (Poletto et al., 

2012). By principle, as mentioned earlier, FTIR is based on changes of dipole moment while 

Raman in changes of molecular polarizability, hence, the spectral profile for a same sample 

measured by both techniques will be substantially different, where signatures will be present 

at specific wavenumber positions in the FTIR spectrum while not in the Raman spectrum or 

vice-versa. Additionally, from a practical point-of-view, these techniques considerably 

diverge. FTIR is a more robust technique with less physical interfering however not as sensitive 

as Raman spectroscopy to analyse certain compounds, such as inorganic substances. Also, 

FTIR is greatly affected by water absorption. On the other hand, Raman is water-free and is a 

powerful technique to analyse inorganic substances, such as silica crystals and carbon 

nanotubes. However, Raman is highly affected by cosmic rays and fluorescence interfering 

which can mask the signal of interest. The latter is especially apparent when analysing coloured 

substances, hence, making it difficult to analyse these types of substances with Raman. Table 

1.8 summarises the main differences between the two spectroscopic techniques. 
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Table 1.8 Main differences between Raman and IR spectroscopy. 

Raman spectroscopy Infrared spectroscopy 

It is based on molecular polarizability changes, 

therefore, only molecules with variation of its 

polarizability after vibration are Raman active 

It is based on changes of molecular dipole moments, 

therefore, only molecules that change their resultant 

dipole moment after vibration is IR active 

Raman is a scattering technique where the light source 

is a monochromatic laser not necessarily in the IR 

region 

IR is an absorption technique where the light source 

emits IR radiation 

Raman is water-free There are several water absorptions in the IR spectrum 

which may mask the information of interest. Spectra 

of aqueous samples should be analysed carefully.  

Depending on the power or exposure time of the laser 

light, Raman can be destructive to the sample 

IR is not destructive to the sample 

Relative higher instrumentation cost Relative lower instrumentation cost 

 

Several studies have used FTIR or Raman spectroscopy to investigate biological 

samples, either tissues or biofluids, to detect brain cancers and their subtypes. Table 1.9 

summarises the main findings along with the classification algorithms used to distinguish the 

samples. The classification performance to distinguish non-cancer from cancer samples or 

cancer subtypes seems to improve overtime. The results are dependent on the instrumentation, 

sample type and preparation and the algorithm used to process the spectral data. The results 

also look more promising when using mapping or imaging techniques instead of point-spectra, 

since spatially-distributed information carry more information about the sample specimen and 

often improves the classification (Morais & Lima, 2017; Morais et al., 2019c). Also, the 

analyses were made using different algorithms which have weight in the classification 

outcomes. Often PCA-LDA (or just LDA), PLS-DA and SVM are used to discriminate and 

classify the samples.  
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Table 1.9 Overview of FTIR and Raman studies to investigate brain cancers.    

Technique Sample type Samples Algorithm Main results Reference 

FTIR 

(Imaging) 

Tissue (snap-

frozen) 

Non-cancer control 

Astrocytoma grade 3 

Astrocytoma grade 2 

Glioblastoma 

GA-LDA Sample discrimination at 

89% accuracy  

Steiner et al. 

(2003) 

FTIR 

(Imaging) 

Tissue (snap-

frozen) 

Non-cancer control 

Glioblastoma grade 4 

Astrocytoma grade 3 

Astrocytoma grade 2 

ga_ors 

(Nikulin et 

al., 1998)  

Samples groups 

classified at 64% overall 

accuracy. Control tissues 

classified at 95% 

accuracy. 

Beleites et 

al. (2005) 

Raman 

(Mapping) 

Tissue (snap-

frozen) 

Normal dura mater 

Meningioma 

LDA  

PLS-DA 

100% discrimination 

between normal and 

meningioma 

Koljenović 

et al. (2005) 

Raman 

(Resonance) 

Tissue (snap-

frozen) 

Meningiomas 

Normal tissue 

Glioblastoma 

Acoustic neuroma 

Pituitary adenoma 

PCA-SVM 90.9% sensitivity and 

100% specificity to 

discriminate the samples 

Zhou et al. 

(2012)  

FTIR 

(ATR-FTIR) 

Raman 

Tissue (FFPE) Normal brain 

Meningioma 

Glioma 

Brain metastases  

LA 

AA 

GBM 

LDA 

PCA-LDA 

Statistically significant 

differences were found 

between the samples 

groups and subgroups  

Gajjar et al. 

(2013) 

FTIR 

(ATR-FTIR) 

Serum Non-cancer control 

Glioma (HGG, LGG) 

SVM Discrimination of non-

cancer vs. gliomas with 

an average sensitivity of 

93.75%, and average 

specificity of 96.53% 

Hands et al. 

(2014)  

FTIR 

(ATR-FTIR) 

Serum Non-cancer control 

Brain cancer 

Metastatic cancer 

Glioma (HGG, LGG) 

Meningioma 

SVM Samples groups and 

subgroups were classified 

with accuracies between 

80-100%   

Hands et al. 

(2016)  
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FTIR 

(ATR-FTIR) 

Serum Non-cancer control 

Brain cancers 

Random 

forest 

2D 

correlation 

analysis 

Samples discriminated at 

92.8% sensitivity and 

91.5% specificity. 

Smith et al. 

(2016) 

Raman Serum Non-cancer control 

Meningiomas 

PCA-LDA Sample discrimination at 

80% sensitivity and 92% 

specificity 

Mehta et al. 

(2018)  

Raman  Tissue (fresh,  

snap-frozen, 

FFPE) 

Astrocytoma 

IDH-wildtype 

IDH-mutant 

Oligodendroglioma 

PCA-LDA 79%-94% sensitivity and 

90-100% specificity to 

classify glioma subtypes 

and 91% sensitivity and 

95% specificity to 

classify IDH mutation.  

Livermore et 

al. (2019)  

FTIR 

(ATR-FTIR) 

Serum Non-cancer control 

Brain cancers 

PLS-DA 

SVM 

Random 

forest 

Non-cancer vs. cancer 

discrimination at 91% 

sensitivity and 

specificity. Glioblastoma 

vs. lymphoma 

discrimination at 90.1% 

sensitivity and 86.3% 

specificity.  

Cameron et 

al. (2019)  

FTIR 

(ATR-FTIR) 

Serum Non-cancer control 

Brain cancers 

SVM Sample discrimination at 

93.2% sensitivity and 

92.8% specificity 

Butler et al. 

(2019)  

Raman 

(Handheld) 

Tissue (FFPE, 

fresh) 

Normal brain 

LGG 

HGG 

Meningiomas 

Metastases 

Lymphoma 

PCA-LDC Samples groups were 

discriminated at 90.3–

99.6% accuracies (fresh 

tissue) and 88.0–99.5% 

accuracies (FFPE) 

Bury et al. 

(2019a) 

FTIR 

(ATR-FTIR) 

Plasma Normal brain 

HGG 

LGG 

Meningioma 

Brain metastases 

PCA-LDC 

SVM 

Discrimination between 

normal vs. LGG vs. HGG 

at 100% accuracy 

Discrimination between 

all groups at 97% 

accuracy 

Bury et al. 

(2019b) 

FTIR 

(ATR-FTIR) 

Raman 

Tissue (fresh-

frozen) 

Normal brain 

Glioma 

Meningioma 

PCA-QDA 

GA-QDA 

Non-tumour vs. tumour 

were correct classified at 

Bury et al. 

(2020)  
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94% (Raman) and 97.2% 

(FTIR) 

FTIR 

(ATR-FTIR, 

Synchrotron) 

Serum 

Tissue 

Gliomas (IDH1 

mutated and wild-type) 

LDA 

PLS-DA 

Discrimination of IDH1 

samples using serum at 

69.1% accuracy; and, 

using tissue at 82.9% 

accuracy 

Cameron et 

al. (2020a)  

FTIR 

(ATR-FTIR) 

Serum Non-cancer control 

Glioblastoma 

Meningioma 

Lymphoma 

Metastasis 

PLS-DA 

SVM 

Random 

forest 

Discrimination between 

controls vs. brain cancers 

at sensitivity and 

specificity above 90%. 

Discrimination brain 

lesions with accuracies 

above 80%. 

Cameron et 

al. (2020b) 

ATR-FTIR: attenuated total reflection Fourier-transform infrared spectroscopy. FFPE: formalin-fixed paraffin-

embedded. LA: low-grade astrocytoma. AA: anaplastic astrocytoma. GBM: glioblastoma multiforme. HGG: high-

grade glioma. LGG: low-grade glioma. GA-LDA: genetic algorithm linear discriminant analysis. LDA: linear 

discriminant analysis. PLS-DA: partial least squares discriminant analysis. PCA-LDA: principal component 

analysis linear discriminant analysis. PCA-SVM: principal component analysis support vector machines. SVM: 

support vector machines. PCA-QDA: principal component analysis quadratic discriminant analysis. SPA-QDA: 

successive projections algorithm quadratic discriminant analysis. PCA-LDC: principal component analysis linear 

discriminant classifier. GA-QDA: genetic algorithm quadratic discriminant analysis. 

 

These algorithms are applied after pre-processing the samples spectra, where peak 

removal (e.g., cosmic rays removal in Raman spectroscopy), selection of specific spectral 

regions of interest (e.g., biofingerprint region), smoothing, baseline corrections, derivatives, 

and normalisation procedures are performed to reduce spectral interferences and improve the 

signal-to-noise ratio of the spectra (Morais et al., 2019d; Morais et al., 2020b). The final 

classification is then made by these machine learning algorithms where a training set of 

samples feeds the model while a test set validates them towards external samples prediction 

(Morais et al., 2020b). It is important to test different types of algorithms since results may 

vary depending on the algorithm chosen and validated them by cross-validation and external 

predictions in order to avoid overfitting, which may lead to false results (Morais et al., 2020b).  
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CHAPTER 2 | MATERIAL AND METHODS 

 

2.1 Samples and Patient Demographics 

2.1.1 Sample collection  

 

Ninety-nine formalin-fixed paraffin-embedded (FFPE) brain tissue samples (70 WHO 

grade 1 meningiomas, 24 grade WHO 2 meningiomas and 5 grade 1 meningiomas that re-

occurred) were used for analysis. The 99 patients in the cohort were divided into a wide range 

of age group ranging from 36 to 92 years at presentation. 73 F and 26 M. F:M ratio= 2.8:1. 

Mean age 59 and standard deviation = 11.67.   Samples were collected at 10-µm-thick and 

sourced from the Brain Tumour Northwest (BTNW) biobank (National Research Ethics 

Service ethics approval NRES14/EE/1270). A dedicated neuropathologist examined the 

paraffin blocks for the patients and decided on which one to proceed with. There was a 

discission of whether we map the samples should be mapped out or not.  We elected to keep 

the samples unmapped to be more representative of a real-world setting taking advantage of 

the number of points or spectra we are taking for each patient. Therefore, the same method can 

be replicated in real time for future application.  All experiments were approved by the STEMH 

(Science, Technology, Engineering, Medicine and Health) ethics committee at the University 

of Central Lancashire (STEMH 917). The patient demographics are show in Table 2.1 and 

H&E images for all samples are available upon reasonable request to the BTWN biobank.  

Table 2.1 Patient demographics for the FFPE brain tissue samples used in the study. 

Patient Number WHO grade Sex Age Histology 

1 1 F 67 Fibrous 
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2 1 F 63 Transitional 

3 1 M 47 Transitional 

4 1 F 70 Transitional 

5 1 F 35 Transitional 

6 1 F 54 Fibrous 

7 1 F 53 Fibrous 

8 1 F 43 Transitional 

9 1 F 55 Transitional 

10 1 M 70 Transitional 

11 1 F 50 Transitional 

12 1 M 55 Transitional 

13 1 F 59 Meningothelial 

14 1 F 65 Meningothelial 

15 1 M 47 Syncytial 

16 1 M 58 Secretory type 

17 1 M 55 Secretory type 

18 1 M 55 Secretory type 

19 1 F 76 Transitional 

20 1 F 50 Meningothelial 

21 1 F 41 Meningothelial 

22 1 F 41 Transitional 

23 1 M 69 Transitional 

24 1 F 48 Fibrous 

25 1 F 52 Fibrous 

26 1 F 54 Secretory type 

27 1 M 88 Fibrous 

28 1 F 86 Fibrous 

29 1 F 76 Fibrous 

30 1 M 76 Syncytial 
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31 1 F 59 Fibrous 

32 1 F 52 Fibrous 

33 1 F 36 Fibrous 

34 1 F 50 Fibrous 

35 1 F 73 Syncytial 

36 1 F 58 Transitional 

37 1 M 60 Transitional 

38 1 M 55 Transitional 

39 1 F 55 Secretory type 

40 1 F 60 Transitional 

41 1 F 76 Transitional 

42 1 M 50 Microcystic 

43 1 F 54 Secretory type 

44 1 F 54 Secretory type 

45 1 M 61 Secretory type 

46 1 F 48 Transitional 

47 1 F 77 Secretory type 

48 1 F 42 Fibrous 

49 1 F 68 Transitional 

50 1 F 65 Transitional 

51 1 F 81 Meningothelial 

52 1 F 54 Secretory type 

53 1 M 59 Syncytial 

54 1 F 72 Fibrous 

55 1 F 44 Angiomatous 

56 1 F 64 Psammomatous 

57 1 F 66 Transitional 

58 1 F 51 Transitional 

59 1 F 50 Meningothelial 
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60 1 F 58 Meningothelial 

61 1 F 47 Secretory type 

62 1 F 61 Fibrous 

63 1 F 53 Fibrous 

64 1 F 52 Secretory type 

65 1 F 51 Secretory type 

66 1 F 57 Meningothelial 

67 1 F 58 Fibrous 

68 1 M 39 Angiomatous 

69 1 F 43 Fibrous 

70 1 F 57 Fibrous 

71 2 F 67 Atypical 

72 2 F 67 Atypical 

73 2 M 62 Chordoid 

74 2 M 62 Atypical 

75 2 M 57 Atypical 

76 2 F 76 Atypical 

77 2 F 66 Chordoid 

78 2 F 53 Chordoid 

79 2 F 58 Atypical 

80 2 M 40 Chordoid 

81 2 M 80 Atypical 

82 2 F 44 Atypical 

83 2 F 44 Atypical 

84 2 F 60 Atypical 

85 2 F 60 Atypical 

86 2 M 66 Atypical 

87 2 F 57 Chordoid 

88 2 F 92 Atypical 
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89 2 F 79 Atypical 

90 2 M 75 Atypical 

91 2 F 75 Atypical 

92 2 F 62 Atypical 

93 2 F 62 Atypical 

94 2 M 61 Atypical 

95 1-recurrence M 69 Transitional 

96 1-recurrence F 50 Transitional 

97 1-recurrence M 55 Transitional 

98 1-recurrence F 59 Meningothelial 

99 1-recurrence F 65 Meningothelial 

 

 

2.1.2 Sample measurement 

 

The FFPE brain tissue samples were placed onto aluminium-covered glass slides for 

spectroscopy measurement. Aluminium foil is an inexpensive way to improve the signal-to-

noise ratio in both FTIR and Raman spectroscopy (Paraskevaidi et al., 2018). For FTIR 

measurements, the samples were affixed onto a moving platform with the sample facing up 

against the ATR crystal, defined by an internal reflective element (diamond crystal) with an 

approximately area of 250 µm × 250 µm. De-parrafinisation was performed prior to 

commencing measurements using local protocols with xylene and ethanol (Baker et al., 2014). 

Moving the platform upward allowed the specimen to contact the diamond crystal for spectral 

acquisition at 8 cm-1 spectral resolution, over the range between 4000 and 400 cm-1 (32 co-

addition scans). Ten spectra were collected per tissue sample in different random locations to 

minimise bias. After each sample, the ATR crystal was cleaned with distilled water and a new 



 
 

68 

background spectrum was acquired to take into account ambient changes before the next 

sampling. The time to measure each sample was approximately 10 min. 

A similar protocol was performed on Raman spectroscopy, where the same samples 

were analysed. For Raman, each tissue sample was affixed onto a moving platform (sample 

facing up toward the laser and acquisition lens) and microspetroscopy imaging was performed 

with an acquisition area of approximately 100 µm × 50 µm. The instrument was calibrated with 

a reference silica standard before measurements and no contact between the sample material 

and the acquisition lens was made. Samples were measured at 50× magnification using a 785 

nm laser (50% laser power (150 mW)) and 0.1 s exposure time over the spectral range between 

780 and 1858 cm-1. The spectra were acquired using the StreamHRTM imaging technique (high-

confocality mode) with a grid area of 42 x 28 pixels, resulting in 1176 spectra for each tissue 

image (1 cm-1 data spacing). The laser power was set relatively high to ensure a good signal-

to-noise ratio. To minimise any potential photodamage to the sample, the laser exposure was 

set to only 0.1 s. Moreover, no damage was visually observed in the samples after 

measurements. The sample acquisition time was approximately 8 min for each sample.     

 

 

2.2 Data Analysis 

2.2.1 Pre-processing 

 

The first step to analyse spectral data is to pre-process them in order to maximise the signal-

to-noise ratio and minimise any spectral interference. The protocol for pre-processing follows 

four steps depending on whether some corrections are needed or not: (1) to minimise random 

noise; (2) to remove light scattering effects; (3) to correct baseline distortions; and, (4) to 
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normalize the spectra by a spectral feature or a factor (Morais et al., 2020b). The (1) random 

noise is minimised after employing smoothing techniques, such as the Savitzky-Golay 

smoothing filter, where a moving window filter out the noise through a polynomial curve 

fitting procedure. The (2) light scattering is rarer to occur in both FTIR and Raman 

spectroscopy, but when present, it is characterised by a large distortion of the baseline acting 

differently for each sample, so the spectra shift in the y-axis in a systematic fashion. It is 

corrected by filters such as the standard normal variate (SNV) or the multiplicative scatter 

correction (MSC). The (3) common baseline distortions are frequent in FTIR and Raman 

spectroscopy, and they are corrected by filters that create an artificial baseline for the spectral 

spectroscopy, so an artificial baseline is fitted to the peaks which after subtraction makes the 

real baseline close to zero. The (4) spectral normalization is made to correct problems 

associated with unknown concentration changes or changes of tissue thickness, and it will 

depend on the application of interest. Usually, Amide I or vector normalization is performed. 

Amide I normalization is made when Amide I peak is not an important feature in the data, so 

this peak will have maximum absorption of 1 for all spectra and the remaining will be scaled 

accordingly. The vector normalization is made when Amide I may be an important peak, so 

the spectra is normalized against the spectral norm instead. Operations in 2D and 3D 

computer graphics are often performed using copies of vectors that have been normalized i.e., 

converted to unit vectors. The normalized vector of X is a vector in the same direction but 

with norm (length) 1. It is denoted  X^^ and given by 

 X^^=(X)/(|X|),  

where |X| is the norm of X. It is also called a unit vector. 
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 Another common pre-processing used to smooth out and correct baseline problems in 

the spectra are the Savitzky-Golay derivatives, which simultaneously perform steps (1) to (3) 

and can enhance small spectral differences between the samples (Morais et al., 2020b).  

The data analysis for the FTIR tissue spectra was performed within MATLAB R2014b 

environment (MathWorks, Natick, USA) using the Classification Toolbox for MATLAB 

(Ballabio & Consonni, 2013). The biofingerprint spectra (1800-900 cm-1) were pre-processed 

by Savitzky-Golay 2nd derivative (window of 7 points, 2nd order polynomial fit) and vector 

normalisation for correcting random noise, baseline distortions and to improve the signal-to-

noise ratio (Baker et al., 2014; Morais et al., 2019d). The Raman images were converted into 

suitable .txt files using the Renishaw WiRE software and processed using MATLAB R2014b 

with lab-made routines. All the samples’ images were pre-processed by cosmic rays (spikes) 

removal, Savitzky-Golay smoothing (window of 15 points, 2nd order polynomial fitting) and 

asymmetric least squares baseline correction. The window size in the Savitzky-Golay 

smoothing was determined visually by testing different window sizes, where the smallest 

window size that removed random noise and kept the same spectral shape and intensity without 

smoothing-out relevant spectral peaks was chosen. 

 

2.2.2 Exploratory Analysis 

 

 After pre-processing, the spectra are analysed using exploratory analysis tools. The 

most common exploratory analysis tool employed to analyse spectral data is the Principal 

Component Analysis (PCA) (Bro & Smilde, 2014). In PCA, the pre-processed data are 

decomposed into a few numbers of factors called Principal Components (PCs) responsible for 

most of the variance within the original dataset. The PCs are orthogonal to each other and are 
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built in a decreasing order of explained variance, so that the first PC explains most of the 

variance, followed by the second PC and so on (Morais et al., 2020b). Each PC is composed 

of scores, representing the variance on the sample direction, and loadings, representing the 

variance on the wavenumber direction. The PCA decomposition takes the form shown in 

Equation 2.1 (Bro & Smilde, 2014): 

 

𝐗 = 𝐓𝐏𝐓 + 𝐄          (Equation 2.1) 

 

where 𝐗 is a matrix containing the mean-centred pre-processed spectral data; 𝐓 is a matrix 

containing the PCA scores for a determined number of PCs; 𝐏 is a matrix containing the PCA 

loadings for a determined number of PCs; 𝐄 is a residual matrix; and the superscript 𝐓 

represents the matrix transpose operation. 

The scores can be used to identify similarities/dissimilarities between the samples 

through the visualisation of clustering patterns, while the loadings can be used to discover the 

wavenumbers of highest importance responsible for clustering segregation. Besides being an 

unsupervised tool for exploratory analysis, PCA also acts as a tool for data reduction and 

feature extraction, since the PCA scores can be used to represent the sample input data instead 

of the full spectrum in further machine learning algorithms, and the PCA loadings can be used 

for biomarkers detection (Morais et al., 2019d). In addition, the PCA results can be used for 

outlier detection by means of a Hotelling’s T2 versus Q residuals test (Morais et al., 2019d). 

For imaging data, besides PCA, another important technique is the Multivariate Curve 

Resolution Alternating Least Squares (MCR-AL) (Jaumot et al., 2015). MCR-ALS assumes a 

bilinear model that is the multi-wavelength extension of the Beer-Lambert’s law. It 
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decomposes an experimental matrix 𝐃 into concentration and spectral profiles as shown in 

Equation 2.2 (Jaumot et al., 2015): 

𝐃 = 𝐂𝐒𝐓 + 𝐄          (Equation 2.2) 

 

where 𝐂 is a matrix containing the concentration profiles for a determined number of pure 

components in 𝐃; 𝐒 is a matrix containing the spectral profiles for the pure components in 𝐃; 

and 𝐄 is a residual matrix. 

 MCR-ALS can remove noise and physical/chemical interferences from the spectral 

matrix 𝐃, and allow one to recover the pure concentration and spectral profiles of the 

components that make the spectral matrix 𝐃. Therefore, MCR-ALS is very useful to handle 

image data since it allows the reconstruction of image maps based on the recovered 

concentration profiles, where one can identify spatial and chemical differences between the 

samples being imaged (Prats-Montalbán et al.,  2011). 

2.2.3 Feature Selection and Classification 

 

 In addition to PCA, there are other tools commonly used to extract useful information 

from the spectral data in order to reduce their size and to simplify biomarker discovery. These 

are the tools of feature selection, where specific spectral features responsible for maximising 

the segregation between groups of samples are selected from the dataset in a supervised 

fashion. Two common tools for feature selection are the Successive Projections Algorithm 

(SPA) (Soares et al., 2013) and the Genetic Algorithm (GA) (McCall, 2005). SPA is an iterative 

forward feature selection algorithm operating by minimising the collinearity in the spectral 

dataset, thus selecting wavenumbers whose information content is minimally redundant; and, 

GA is an iterative combinational algorithm inspired by Mendelian genetics, where a set of 

initial wavenumbers undergo selection, cross-over combinations, and mutations until the fittest 
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set of wavenumbers are found (Morais et al., 2020b). The selected wavenumbers by SPA and 

GA are then used to identify possible biomarkers, and they are also used as input data for 

classification.  

The full spectra, PCA scores or SPA/GA selected wavenumbers can be used for 

classification using machine learning techniques. The simplest of these techniques belong to 

the area of discriminant analysis, in which the most commonly used algorithms are the linear 

discriminant analysis (LDA), quadratic discriminant analysis (QDA) and partial least squares 

discriminant analysis (PLS-DA) (Dixon & Brereton, 2009; Brereton & Lloyd, 2014). LDA and 

QDA are supervised discriminant analysis techniques based on a Mahalanobis distance 

calculation between the samples, where the main difference between these techniques is that 

in LDA the calculation assumes that the classes have similar variance structure, thus using a 

pooled covariance matrix; while in QDA, the calculation is made assuming the classes with 

different variance structures, thus using the variance-covariance matrix for each class 

individually (Morais & Lima, 2018). The data input for LDA or QDA must be the PCA scores 

or the SPA/GA selected wavenumbers, since these algorithms are not capable of working with 

the full spectral data.  

PCA-LDA and PCA-QDA are supervised discriminant analysis algorithms based on a 

PCA model followed by a LDA or QDA classifier (Morais & Lima, 2018). Initially, the pre-

processed spectral data is reduced by PCA to a small number of PCs accounting for the majority 

of the data explained variance (Bro & Smilde, 2014). Then, a LDA or QDA model is built 

using the PCA scores, where the samples are assigned to classes based on a Mahalanobis 

distance calculation (Morais & Lima, 2018). The LDA (𝐿𝑖𝑐) and QDA (𝑄𝑖𝑐) classification 

scores can be calculated in a non-Bayesian form as shown in Equations 2.3 and 2.4 (Dixon & 

Brereton, 2009; Morais & Lima, 2018):   
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𝐿𝑖𝑐 = (𝐱𝑖 − �̅�𝑐)T𝐶pooled
−1 (𝐱𝑖 − �̅�𝑐)       (Equation 2.3) 

𝑄𝑖𝑐 = (𝐱𝑖 − �̅�𝑐)T𝐶𝑐
−1(𝐱𝑖 − �̅�𝑐)       (Equation 2.4) 

where 𝐱𝑖 is a vector containing the scores for sample i; �̅�𝑐 is the mean vector for class c; 𝐶pooled 

is the pooled covariance matrix; and 𝐶𝑐 is the variance-covariance matrix of class c. 𝐶pooled 

and 𝐶𝑐 are calculated as shown in Equation 2.5 and 2.6 (Morais & Lima, 2018): 

𝐶pooled =
1

𝑛
∑ 𝑛𝑐𝐶𝑐

𝐶
𝑐=1         (Equation 2.5) 

𝐶𝑐 =
1

𝑛𝑐−1
∑ (𝐱𝑖 − �̅�𝑐)(𝐱𝑖 − �̅�𝑐)T𝑛𝑐

𝑖=1        (Equation 2.6) 

in which n is the total number of samples in the training set; C is the total number of classes; 

and 𝑛𝑐 is the number of samples in class c. 

In addition to the regular PCA-LDA and PCA-QDA, their three-dimensional versions 

(3D-PCA-LDA and 3D-PCA-QDA) can be applied to classify imaging data (Morais et al., 

2020a). In these algorithms, the 3D imaging data for each sample are firstly arranged into a 4D 

hypercube with sizes s × n × m × k, where s represents the number of samples, n the number of 

pixels in the x-axis, m the number of pixels in the y-axis, and k the number of spectral 

wavenumbers. This hypercube is then analysed by 3D-PCA as described by Morais et al. 

(2019c), where scores and loadings are obtained for each pixel position (x, y) in the image 

surface. The scores represent the variance on the sample direction, thus being used to assess 

similarities and dissimilarities between the samples; and the loadings represent the variance on 

the wavenumber direction, thus being used to identify possible discriminant wavenumbers.   

This procedure reduces the hypercube size into two 4D structures: (1) s × n × m × t, 

where t represents the scores according to the number of principal components (PCs), which in 

this case were 2 PCs; and (2) p × n × m × k, where p represents the loadings on each PC, which 
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in this case were 2 loadings arrays. Then, the scores and loadings are averaged on the n and m 

directions generating a single scores array for each sample (s × t) and two loadings arrays with 

k wavenumbers (p × k).  The scores are used as input for linear and quadratic discriminant 

analysis (LDA and QDA) as described in equations 2.3 and 2.4, and the loadings are used to 

extract important wavenumbers related to class separation.  

PLS-DA is a supervised feature extraction and classification algorithm where partial 

least squares (PLS) is applied to the pre-processed spectral data reducing the original 

wavenumbers to a small number of latent variables (LVs). Then, a linear discriminant classifier 

is used for classifying the groups (Brereton & Lloyd, 2014). PLS-DA usually performs better 

than PCA-LDA, therefore it is commonly employed as a benchmark technique for spectral 

classification (Morais et al., 2020b). PLS-DA works similarly to PCA-LDA, where the spectral 

data are firstly decomposed by PLS, however, differently from PCA-LDA, the input class label 

for the training samples (e.g., +1 or -1) are used during this process, since PLS maximises the 

covariance between the spectral information and the sample category. The samples are then 

assigned to classes based on a straight line that divides the classes’ spaces (Brereton & Lloyd, 

2014). 

Another commonly used technique for classification is the Support Vector Machines 

(SVM) (Cortes & Vapnik, 1995). SVM is a very powerful machine learning algorithm where 

the full spectral dataset or the PCA scores and SPA/GA selected variables can be used for 

classification. SVM works firstly by transforming the data space into a feature space by means 

of a kernel function which is often non-linear. Then, a linear decision boundary is fit between 

the closest samples to the border of each class (these samples are called support vectors), hence 

classifying the samples according to this boundary (Brereton & Lloyd, 2010; Morais et al., 

2020b). Although being an algorithm that often outperforms LDA, QDA or PLS-DA, SVM is 

very susceptible to overfitting, so it must be used with caution (Morais et al., 2019b).     
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Overfitting is often used in statistics, data science and machine learning. It refers to a 

modelling error that occurs when a function corresponds too closely to a particular set of data. 

Consequently, overfitting may fail to fit new data, in return may affect the accuracy of 

predicting future observations. It is easy to spot overfitting when the training set results are far 

more promising that the test set. To avoid overfitting there are several techniques can be 

applied, such as, cross validation, adding more data, dividing the training data, etc. If the 

problem persists, then to avoid this particular algorithm and try a different one. It is useful to 

spot this problem early in the data analysis.  Algorithms that are known to be prone for this 

kind of problem should be avoided or used with caution.  

 

2.2.4 Biomarkers Identification 

 

 The biomarkers identification is made by discovering the spectral markers responsible 

for class differentiation. There are ways to find these spectral markers, such as the PCA 

loadings, SPA and GA selected wavenumbers, or even the PLS-DA regression coefficients. 

Also, there is the combination of these outputs in order to see spectral markers that reoccur in 

different algorithms. The best spectral markers are those that gave the best classification 

performance in unknown test samples, and they can be validated by calculating some statistics 

such as p-values per wavenumber and the difference-between-mean (DBM) spectra, where one 

can see the absorbance effect on each of the spectral markers wavenumbers. The biomarker 

assignment is then made based on reference tables (Movasagui et al., 2007; Movasagui et al., 

2008), where each wavenumber is related to a specific vibration and molecular functional 

group.        
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2.2.5 Statistical Validation 

 

In order to validate the classification results, unknown test samples must be evaluated 

with each classification model and algorithm. To have reliable results, the classification 

performance of test samples must be high and close to the performance obtained during training 

and cross-validation, in which known samples are used (Morais et al., 2020b). The test set is 

usually extracted from the experimental set of samples measured in the laboratory by using a 

sample selection algorithm, such as the Kennard-Stones (KS) (Kennard & Stone, 1969) or 

MLM (Morais et al., 2019e) method. These test samples do not participate in any of the data 

analysis steps and are only used at the end when the classification models are already built. 

The main metrics used to evaluate the test performance and consequently the algorithm 

performance are the accuracy (AC), sensitivity (SENS) and specificity (SPEC) (Morais et al., 

2020b). These metrics are calculated as shown in Equations 2.7, 2.8 and 2.9. 

AC (%) =
TP+TN

TP+FP+TN+FN
× 100       (Equation 2.7) 

SENS(%) =
TP

TP+FN
× 100        (Equation 2.8) 

SPEC (%) =
TN

TN+FP
× 100        (Equation 2.9) 

where TP stands for true positives, TN stands for true negatives, FP for false positives and FN 

for false negatives.  

Accuracy, sensitivity, and specificity values close to 100% is an indication of a perfect 

model prediction, as well as receiver operating characteristics (ROC) curves with the area 

under the curve (AUC) close to 1.0. To qualitatively assess the model performance taking into 

consideration the AUC, the general understanding is: 0.5 – no sample discrimination; between 
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0.7 and 0.8 – acceptable results; between 0.8 and 0.9 – excellent results; and, above 0.9 – 

outstanding results (Mandrekar, 2010).   
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CHAPTER 3 | FTIR SPECTROSCOPY ANALYSIS 

 

 

 

3.1 Results 

This study is composed of 99 patients separated into 3 groups: grade 1 meningiomas (n 

= 70, 700 spectra), grade 2 meningiomas (n = 24, 240 spectra) and grade 1 meningiomas that 

re-occurred (n = 5, 50 spectra) (see Table 2.1). Sample groups were pre-defined based on 

histopathologic evidence before spectral acquisition. Figure 3.1 shows an example of H&E 

slide for WHO Grade 1 and Grade 2 meningiomas. The raw and pre-processed (Savitzky-Golay 

2nd derivative and vector normalisation) IR spectra for the tissue samples are shown in Figure 

3.2a-c and in the Appendix B (Figures B1 and B2). 

 

Figure 3.1 H&E slides. (a) WHO grade 1 meningioma (transitional meningioma); and (b) 

WHO grade 2 meningioma (clear cell). 

 

(a) (b)
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Figure 3.2 Infrared spectra for meningioma tumour samples (grade 1, grade 1–recurrence, and 

grade 2) in the biofingerprint region (1800–900 cm-1). (a) Raw spectra and (b) pre-processed 

spectra (Savitzky-Golay 2nd derivative and vector normalisation), where black line: mean 

spectrum. (c) Mean spectrum for each class overlaid. (d) Difference-between-mean (BDM) 

spectrum for Grade 2 (+) vs. Grade 1(-) meningiomas; (e) difference-between-mean (BDM) 

spectrum for Grade 2 (+) vs. Grade 1-recurrence (-) meningiomas; and (f) difference-between-

Grade I

Grade I-rec.

Grade II

Grade I

Grade I-rec.

Grade II

(a) (b)

(c) (d)

(e) (f)
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mean (BDM) spectrum for Grade 1-recurrence (+) vs. Grade 1(-) meningiomas, where solid 

dots represent spectral wavenumbers with absolute coefficients >0.01. 

 

Grade 1 and Grade 2 meningiomas exhibit higher levels of variability in comparison 

with Grade 1 recurrence most likely due to the smaller number of Grade 1 recurrence spectra 

(Figure 3.2b). The difference-between-mean (DBM) spectrum for Grade 2 (+ coefficients) and 

Grade 1(- coefficients) meningiomas is shown in Figure 3.2d, where 15 spectral markers were 

found with absolute coefficient intensity >0.01: 1725 cm-1 (lower coefficient in Grade 2, C=O 

stretching in fatty acids), 1708 cm-1 (lower coefficient in Grade 2, C=O stretching in thymine), 

1698 cm-1 (higher coefficient in Grade 2, C2=O stretching in guanine), 1663 cm-1 (lower 

coefficient in Grade 2, C=O stretching in cytosine), 1639 cm-1 (lower coefficient in Grade 2, 

Amide I), 1624 cm-1 (higher coefficient in Grade 2, base carbonyl stretching and ring breathing 

mode in nucleic acids), 1604 cm-1 (lower coefficient in Grade 2, adenine vibration in DNA), 

1562 cm-1 (higher coefficient in Grade 2, ring base), 1550 cm-1 (lower coefficient in Grade 2, 

Amide II), 1530 cm-1 (lower coefficient in Grade 2, C=N and/or C=C stretching), 1512 cm-1 

(higher coefficient in Grade 2, C-H in-plane bending), 1481 cm-1 (lower coefficient in Grade 

2, Amide II), 1454 cm-1 (higher coefficient in Grade 2, asymmetric methyl deformation), 1396 

cm-1 (higher coefficient in Grade 2, symmetric CH3 bending of the methyl groups of proteins), 

and 1068 cm-1 (higher coefficient in Grade 2, C-O stretching in ribose) (Movasaghi et al., 

2008). Nine spectral markers with absolute coefficients >0.01 were found in the DBM spectrum 

for Grade 2 (+ coefficients) vs. Grade 1 recurrence (- coefficients) (Figure 3.2e): 1708 cm-1 

(lower coefficient in Grade 2, C=O stretching in thymine), 1643 cm-1 (lower coefficient in 

Grade 2, Amide I), 1624 cm-1 (higher coefficient in Grade 2, base carbonyl stretching and ring 

breathing mode in nucleic acids), 1600 cm-1 (lower coefficient in Grade 2, C=O stretching in 

lipids), 1512 cm-1 (higher coefficient in Grade 2, C-H in-plane bending), 1490 cm-1 (lower 
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coefficient in Grade 2, C=C and/or in-plane C-H bending), 1454 cm-1 (higher coefficient in 

Grade 2, asymmetric methyl deformation), 1339 cm-1 (higher coefficient in Grade 2, collagen), 

and 1068 cm-1 (higher coefficient in Grade 2, C-O stretching in ribose) (Movasaghi et al., 

2008). The DBM spectrum for Grade 1recurrence (+ coefficients) vs. Grade 1(- coefficients) 

meningiomas (Figure 3.2f) indicates 10 spectral markers with absolute coefficients >0.01: 1698 

cm-1 (higher coefficient in Grade 1 recurrence, C2=O stretching in guanine), 1663 cm-1 (lower 

coefficient in Grade 1 recurrence, C=O stretching in cytosine), 1647 cm-1 (higher coefficient 

in Grade 1 recurrence, Amide I), 1624 cm-1 (lower coefficient in Grade 1 recurrence, base 

carbonyl stretching and ring breathing mode in nucleic acids), 1550 cm-1 (lower coefficient in 

Grade 1 recurrence, Amide II), 1527 cm-1 (lower coefficient in Grade 1 recurrence, C=N and/or 

C=C stretching), 1496 cm-1 (higher coefficient in Grade 1 recurrence, C=C stretching and/or 

C-H bending), 1460 cm-1 (lower coefficient in Grade 1 recurrence, asymmetric CH3 bending in 

collagen), 1393 cm-1 (higher coefficient in Grade 1 recurrence, symmetric CH3 bending in 

proteins), and 1335 cm-1 (lower coefficient in Grade 1 recurrence, CH ring deformation in 

polysaccharides or pectin) (Movasaghi et al., 2008). 

The spectral data underwent chemometric analysis by means of PCA-LDA, as a first 

discriminant attempt, and then by PLS-DA as a final and best discriminant model. The 

following comparisons were investigated: (1) grade 1 vs. grade 2 meningioma; (2) grade 1 vs. 

grade 1 meningiomas that re-occurred; and, (3) grade 2 vs. grade 1 meningiomas that re-

occurred. An outlier test was performed using the Hotelling’s T2 versus Q residuals test and no 

spectral outlier was observed in the dataset (Appendix B, Figure B3). Thereafter, the samples 

for grade 1 and grade 2 meningiomas were divided into training (70% of samples) and 

validation (30%) sets using the Kennard-Stone uniform sample selection algorithm (Kennard 

& Stone, 1969). Cross-validated PCA-LDA and PLS-DA were built using venetian blinds 

cross-validation with 10 data splits. 
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3.1.1 Grade 1 vs. Grade 2 meningiomas 

The training set was used for model construction, while the validation set for final 

model evaluation. PCA-LDA was applied to the spectral data using 10 PCs (98% explained 

variance, Appendix B, Figure B5), where training and validation accuracies were estimated at 

89% and 71%, respectively (Table 3.1). Although reasonable accuracies and sensitivity (89% 

in the validation set), the specificity in validation was 20%, indicating that many grade 1 

meningiomas were predicted as grade 2. PLS-DA was then applied to the spectral data as a 

most powerful alternative for class differentiation. PLS-DA model was built with 11 LVs (93% 

spectral explained variance, Appendix B, Figure B5), generating accuracies of 97% and 79% 

in the training and validation sets, respectively (Table 3.1). The sensitivity and specificity in 

the validation set were equal to 80% and 73%, respectively, with an area under the curve (AUC) 

value equal to 0.82, which indicates a good classification model. 

Table 3.1 Quality metrics for PCA-LDA and PLS-DA models to distinguish grade 1 vs. grade 

2 samples. 

Algorithm  Dataset Accuracy (%) Sensitivity (%) Specificity (%) 

PCA-LDA Training 89% 98% 62% 

 Validation 71% 89% 20% 

PLS-DA Training 97% 96% 99% 

 Validation 79% 80% 73% 

 

The PLS-DA discriminant function (DF) graph and receiver operating characteristic 

(ROC) curve to discriminate grade 1 and grade 2 meningiomas are depicted in Figure 3.3. PLS-

DA coefficients were used to extract biomarkers information through an automatic peak 

detection algorithm that sought for the 8 most relevant peaks representing the wavenumbers 

with highest absolute coefficients (Table 3.2).  
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Figure 3.3 PLS-DA results to distinguish grade 1 vs. grade 2 meningiomas. (a) Discriminant 

function (DF) plot for samples’ spectra; (b) receiver operating characteristic (ROC) curve, 

where AUC stands for area under the curve. 

  

(a)

(b)
Spectra
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Table 3.2 Spectral markers identified by PLS-DA in order to discriminate grade 1 and grade 2 

meningiomas. P-value calculated by an ANOVA test. 

Wavenumber (cm-1) Tentative assignment Relative intensitya P-valueb 

1651  Amide I ↓ 0.035 (*) 

1593 NH2 adenine ↓ <10-7 (**) 

1546 Amide II ↑ 0.637 

1500 δ(CH) in-plane  ↑ <10-4 (**) 

1454 δ(CH3) asymmetric ↓ <10-13 (**) 

1377 v(C-O) ↓ 0.030 (*) 

1227 vas(PO2
-)  ↓ 0.051 

1122 v(C-O) in carbohydrates ↑ 0.014 (*) 

a↑ = higher intensity in grade 2 meningioma;  ↓ = lower intensity in grade 2 meningioma. bP-value <0.05 

considered statistically significant (*) and P-value <0.001 considered statistically highly significant (**). δ: 

bending, v: stretching, vas: asymmetric stretching. 

 

3.1.2 Grade 1 vs. Grade 1 meningiomas that re-occurred 

Cross-validated PCA-LDA was applied to the spectral data using 17 PCs (97% 

explained variance) (Appendix B, Figure B7), where both training and validation accuracies 

were estimated at 95% (Table 3.3). Although excellent values of accuracy and sensitivity 

(99%), the specificity is again low in validation (32%), indicating that many grade 1 

meningiomas were predicted as grade 1 that reoccurred. PLS-DA was applied to the spectral 

data with 17 LVs (95% spectral explained variance) (Appendix B, Figure B7), generating 

accuracies of 96% and 94% in the training and validation sets, respectively (Table 3.3). 

Table 3.3 Quality metrics for PCA-LDA and PLS-DA models to distinguish grade 1 vs. grade 

1 recurrence samples. 

Algorithm  Dataset Accuracy (%) Sensitivity (%) Specificity (%) 

PCA-LDA Training 95 99 34 

 Validation 95 99 32 

PLS-DA Training 96 96 100 

 Validation 94 94 94 
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The sensitivity and specificity in the validation were both equal to 94%, with an AUC 

value equal to 0.98, which indicates an almost perfect classification. The PLS-DA DF graph 

and ROC curve to discriminate grade 1 and grade 1 recurrence meningiomas are depicted in 

Figure 3.4. The wavenumbers with highest absolute PLS-DA coefficients are depicted in Table 

3.4.  

 

Figure 3.4 PLS-DA results to distinguish grade 1 vs. grade 1 recurrence meningiomas. (a) 

Discriminant function (DF) plot for samples’ spectra; (b) receiver operating characteristic 

(ROC) curve, where AUC stands for area under the curve. 

 

 

 

  

(a)

(b)
Spectra
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Table 3.4 Spectral markers identified by PLS-DA in order to discriminate grade 1 and grade 1 

recurrence meningiomas. P-value calculated by an ANOVA test. 

Wavenumber (cm-1) Tentative assignment Relative intensitya P-valueb 

1755 v(C=O) in lipids ↓ <10-3 (**) 

1693 Amide I (antiparallel β-sheet) ↑ <10-3 (**) 

1477 δ(CH2) in lipids ↓ 0.229 

1423 δ(CH2) in polysaccharides ↑ 0.722 

1400 vs(COO-) in amino acids (aspartate, 

glutamate) 

↓ <10-5 (**) 

1369 v(C-N) in cytosine and guanine ↓ 0.542 

1346 δ(CH2) in collagen ↓ 0.940 

1246 vas(PO2
-) ↑ <10-4 (**) 

a↑ = higher intensity in grade 1recurrence meningioma;  ↓ = lower intensity in grade 1recurrence meningioma. bP-

value <0.05 considered statistically significant (*) and P-value <0.001 considered statistically highly significant 

(**). δ: bending, v: stretching, vs: symmetric stretching, vas: asymmetric stretching. 

 

3.1.3 Grade 2 vs. Grade 1 meningiomas that re-occurred 

Cross-validated PCA-LDA was applied to the spectral data using 12 PCs (96% 

explained variance) (Appendix B, Figure B9), where both training and validation accuracies 

were estimated at 90% (Table 3.5). Once more, the specificity of PCA-LDA is highly affected 

(45%), although the good accuracies and sensitivity (99%). PLS-DA was applied to the spectral 

data with 13 LVs (95% spectral explained variance) (Appendix B, Figure B9), generating 

accuracies of 99% and 97% in the training and validation sets, respectively (Table 3.5).  

Table 3.5 Quality metrics for PCA-LDA and PLS-DA models to distinguish grade 2 vs. grade 

1recurrence samples. 

Algorithm  Dataset Accuracy (%) Sensitivity (%) Specificity (%) 

PCA-LDA Training 90 99 47 

 Validation 90 98 45 

PLS-DA Training 99 98 100 

 Validation 97 97 100 
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The sensitivity and specificity in the validation were both equal to 97%, with an AUC 

value equal to 0.99, which indicates a close to perfect classification. The PLS-DA DF graph 

and ROC curve to discriminate grade 2 and grade 1 recurrence meningiomas are depicted in 

Figure 3.5, where the wavenumbers with highest absolute PLS-DA coefficients are depicted in 

Table 3.6.  

 

 

Figure 3.5 PLS-DA results to distinguish grade 2 vs. grade 1 recurrence meningiomas. (a) 

Discriminant function (DF) plot for samples’ spectra; (b) receiver operating characteristic 

(ROC) curve, where AUC stands for area under the curve. 
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Table 3.6 Spectral markers identified by PLS-DA in order to discriminate grade 2 and grade 1 

recurrence meningiomas. P-value calculated by an ANOVA test. 

Wavenumber (cm-1) Tentative assignment Relative intensitya P-valueb 

1639 Amide I ↓ 0.579 

1597 NH2 adenine ↑ 0.001 (*) 

1547 Amide II ↓ 0.425 

1523 v(C=N) ↑ 0.018 (*) 

1454 δ(CH3) asymmetric ↑ <10-3 (**) 

1265 vas(PO2
-) ↑ <10-11 (**) 

1242 Amide III ↑ <10-5 (**) 

1122 v(C-O) in carbohydrates ↓ 0.251 

a↑ = higher intensity in grade 1recurrence meningioma;  ↓ = lower intensity in grade 1recurrence meningioma. bP-

value <0.05 considered statistically significant (*) and P-value <0.001 considered statistically highly significant 

(**). 

 

 

3.2 Discussion 

 

Normal and tumour brain tissues have been previously discriminated using IR or 

Raman spectroscopy (Gajjar et al., 2013), where neoplastic tissue (meningioma, glioma, and 

brain metastasis) was found to be statically significantly different from normal tissue using 

PCA-LDA as the multivariate spectral analysis technique. Hands et al. (2016) reported serum 

diagnostic of brain tumours using ATR-FTIR spectroscopy with support vector machines 

(SVM) with sensitivity of 89.4% and specificity of 78.0% to distinguish cancerous from non-

cancerous samples, and sensitivity of 82.1% and specificity of 75.0% to distinguish glioma 

from meningioma tissue. Bury et al. (2019) reported the use of ATR-FTIR spectroscopy to 

analyse plasma samples in order to distinguish non-cancer from different cancerous brain 

samples. Normal and meningioma samples were differentiated with 87% accuracy using PCA-

LDA and 95% accuracy using SVM; and meningioma samples were diagnosed among several 
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groups of samples (normal, high-grade glioma, low-grade glioma, and brain metastasis) with 

an accuracy of 63% using PCA-LDA and 100% using SVM. 

Herein, WHO grade 1 and grade 2 meningiomas were discriminated with 79% accuracy 

in the validation set (80% sensitivity, 73% specificity, AUC = 0.82) using PLS-DA, a simpler 

and less susceptible method to overfitting than SVM; indicating a satisfactory clinical 

performance taking into consideration the complexity of the data obtained, as demonstrated by 

the patient demographics in Table 2.1, and the inherent spectrochemical complexity of tissue 

samples. Although having high accuracies and sensitivities, the lower specificities of the PCA-

LDA models indicate that these models are skewed towards the bigger class size, so the model 

is classifying the samples from this class more accurately (high sensitivity) than the samples 

from the smaller class (low specificity). The accuracy is influenced by the class size, so it tends 

to follow the sensitivity. The PLS-DA models, on the other hand, have a better consistency 

between sensitivity and specificity, thus indicating no overfitting. The statistically significant 

spectral markers were mainly associated with proteins (Amide I, Amide II), carbohydrates 

(v(C-O)), and DNA/RNA functional groups (NH2 adenine, vas(PO2
-)) (Table 3.2). Proteins play 

an important role in the molecular pathways for meningiomas, where, for example, integrin 

exhibits different expression profile within different grades of meningioma (Abbritti et al., 

2016). In addition, Amide I, Amide II, and carbohydrate absorptions have been associated with 

differences between normal and meningioma tissues (Bury et al., 2019b), and δ(CH), δ(CH3), 

v(C-O) and vas(PO2
-) have been found related to spectral markers associated with brain tumours 

in general (Hands et al., 2016). These findings indicate that IR spectroscopy allied with 

chemometrics could be used to aid clinical differentiation of grade 1 and grade 2 meningioma 

tumours in a non-destructive, fast, and sensitive way. 

“Grade 1” and “Grade 1 recurrence” were found to be clearly different, in which a discriminant 

performance of 94% accuracy (94% sensitivity and specificity) was obtained to distinguish 
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both types of tumours. This indicates that one can assess the presence of recurrence in 

comparison with regular grade 1 tumours in an objective and automatic fashion by using IR 

spectroscopy and chemometrics. This is immensely important stratification information, which 

cannot be routinely derived or inferred from the histological examination of meningiomas lying 

within a WHO grade. The spectral markers associated with recurrence (Table 3.4) were mainly 

protein (Amide I), lipids, collagen, and DNA/RNA changes (vas(PO2
-)). DNA alterations, in 

special DNA methylation, are highly associated with meningioma progression, especially as a 

discriminant feature between NF2-mutated and non-NF2-mutated tumours (Suppiah et al., 

2019). By evaluating the spectral profile of all patients in grade 1 cohort, 12 patients (patients 

2, 11, 16, 22, 26, 30, 34, 38, 50, 56, 57, 69) were found to have these spectral markers following 

the same trend observed in grade 1 recurrence, in terms of relative intensity. This corresponds 

to 17% of grade 1 cohort, and these patients could be potential candidates to have grade 1 re-

occurring in the future, once their spectral markers profile are similar to the ones in grade 1 

recurrence cohort. In this case, these patients could be followed closely in the clinical scenario 

to evaluate if the tumour will reoccur in the future. Since meningioma reoccurs with an average 

time of 10 years, this pilot study does not have this confirmative information for these patients, 

although the estimated recurrence rate of 17% is close to the usual meningioma grade 

1recurrence rate of 10%. It is worth mentioning that if 12 Grade 1 tumours (non-recurrent) had 

the spectral pattern of the 5 with Grade 1 recurrencies. Meaning only 5/17 (29%) with the 

spectral pattern will actually progress (low PPV) but can exclude the other Grade 1 (non-

recurrent tumours). Can therefore reduce number of patients needing follow up. 

This is just a hypothesis that needs further validation, but if this methodology is proved 

true, one could use this spectrochemical information to follow up patients with higher 

likelihood of recurrence and provide them with more specific treatments and closer attention, 

reducing existent costs associated with unknown recurrence odds. How to apply this principle 
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in a clinical setting will be our future target to move forward with this project. To achieve this 

target, setting up a spectroscopy lab within the neurosurgical unit with the appropriate hard and 

software and trained staff will give this technology its full potential with real time application. 

A number of neurosurgical units all over the world are using spectrometrical tools in practice 

for diagnostic and operative purposes. However, designing a Raman system for neurosurgical 

applications demands significant technical considerations both in terms of hardware 

implementation and data science methods (DePaoli et al.,2020). More on that in Chapter 5 

under future work.   

 Finally, grade 2 and grade 1 recurrence were discriminated based on their 

spectrochemical profile with an accuracy of 97% (97% sensitivity and 100% specificity) and 

the main spectral markers associated with recurrence (Table 3.6) were proteins (Amide I, 

Amide II, and Amide III), carbohydrates (v(C-O)), and DNA/RNA alterations [NH2 adenine, 

vas(PO2
-)], therefore indicating that these tumour types are very different. An important 

advantage of using ATR-FTIR spectroscopy is that due to its non-destructive nature, the same 

tissue section could theoretically be used for conventional histological analysis. Moreover, the 

sensitivity and specificity for meningioma tumours detection towards clinical diagnosis might 

improve in future applications using FTIR microspectroscopy due to its relatively larger spatial 

resolution in comparison with ATR-FTIR spectroscopy, which enables the acquisition of richer 

spatially-distributed spectrochemical information. 
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CHAPTER 4 | RAMAN SPECTROSCOPY ANALYSIS 

 

 

4.1Results 

4.1.1 Classical discriminant analysis 

Ninety brain tissue samples (66 meningiomas Grade 1, 24 meningiomas Grade 

2) were analysed by Raman microspectroscopy imaging. The median microscopic and 

Raman image for meningiomas Grade 1 and Grade 2 are depicted in Figures 4.1a–1d 

(the colour figures represent the mean response (average Raman intensity between 780–

1858 cm-1) of the median image for each group). Notably, each image presents different 

visual features due to the different distributions of chemicals on the sample surface, but 

their spectrochemical profile are very similar as shown in Figure 4.1e and 4.1f, 

indicating that chemical differences between meningiomas Grade 1and Grade 2 are not 

visually clear.  

The pre-processed spectra from the images acquired in the spectral range 

between 780–1858 cm-1 (Figure 4.1f) were used for further analysis. This spectral region 

includes the Raman fingerprint region, hence, encompassing spectrochemical signals of 

the main biomolecules present in the tissue samples (Kelly et al., 2011). The assignment 

of the main peaks of the pre-processed Raman spectrum is depicted in Figure 4.1f. These 

include C-C stretching [ν(C-C)1] in amino acids or polysaccharides at 850 cm-1, C-C 

stretching [ν(C-C)2] in proteins at 890 cm-1, C-C stretching [ν(C-C)3] in amino acids at 

930 cm-1, C-C stretching [ν(C-C)4] in phenylalanine at 1003 cm-1, phospholipid 

structural changes at 1130 cm-1, Amide III peak at 1265 cm-1, CH2 bending [δ(CH2)1] in 

lipids at 1296 cm-1, CH3/CH2 deformation modes in DNA/RNA at 1336 cm-1, CH2 
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bending [δ(CH2)2] in malignant tissues at 1450 cm-1, NH2 bending [δ(NH2)] in cytosine 

at 1610 cm-1, and Amide I absorption at 1665 cm-1 (Movasaghi et al., 2007). Some of 

these peaks are discriminant features between the samples and some of them are 

common amongst the tumour types. The identification of relevant distinguishing 

spectral features between Grade 1 and Grade 2 samples are achieved by chemometric 

techniques. 

 

 

Figure 4.1 Median Raman miscrospectroscopy images. (a) Microscopic image of Grade 1 

meningioma tissue; (b) microscopic image of Grade 2 meningioma tissue; (c) median raw 

image for meningioma Grade 1 samples; (d) median raw image for meningioma Grade 2 

samples; (e) median raw spectra for meningiomas Grade 1 and Grade 2; (f) median pre-
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processed spectra (Savitzky-Golay smoothing and asymmetric least squares baseline 

correction) for meningiomas with a tentative assignment of the main Raman peaks. Grade 1 

and Grade 2. Colour bar: Raman intensity. ν: stretching vibration, δ: bending. 

Initially, outlier detection was performed by a Hotelling T2 versus Q residuals 

test, where 4 samples (2 meningiomas Grade 1, 2 meningiomas Grade 2) were removed 

(Appendix C, Figure C1). First-order algorithms were used to analyse the pre-processed 

spectral data after outlier removal. Feature extraction and classification by means of 

principal component analysis linear discriminant analysis (PCA-LDA), principal 

component analysis quadratic discriminant analysis (PCA-QDA) and principal 

component analysis support vector machines (PCA-SVM); and feature selection and 

classification by means of successive projections algorithm linear discriminant analysis 

(SPA-LDA), successive projections algorithm quadratic discriminant analysis (SPA-

QDA), successive projections algorithm support vector machines (SPA-SVM), genetic 

algorithm linear discriminant analysis (GA-LDA), genetic algorithm quadratic 

discriminant analysis (GA-QDA) and genetic algorithm support vector machines (GA-

SVM), were applied to distinguish meningiomas Grades I and II on sample basis. 

Amongst the PCA-based algorithms (using 8 PCs, 98.94% explained variance; 

Appendix C, Figure C2), the best performance was obtained with PCA-QDA (96.2% 

accuracy, 85.7% sensitivity, 100% specificity, and F-score = 92.3%). Also, SPA-QDA 

was the best algorithm amongst SPA-based methods, with the same performance of 

PCA-QDA. GA-based methods showed overall poorer performance, where the best 

algorithm (GA-QDA) achieved 73.1% accuracy but 0% sensitivity, indicating that GA-

based models are most likely overfitted. More details about the predictive performance 

of each of these algorithms are provided in Table 4.1. The ROC curve for PCA-QDA 

and SPA-QDA models are shown in Figure 4.2, where the AUC value was found at 

0.929 indicating an outstanding classification performance for both algorithms.  
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QDA-based algorithms exhibit superior performance in comparison with LDA- 

and SVM-based methods. Usually, for complex biological data, QDA outperforms LDA 

since QDA-based algorithms model each class variance individually, while LDA 

assumes classes having similar variance structures (Morais & Lima, 2018). This occurs 

because the performance of QDA ultimately depends on the variance structure of the 

data. QDA is expected to work better than LDA for most biological applications, since 

quite commonly biological samples are composed of complex chemical matrices with 

different variances structures for each class. For example, diseases’ samples can have a 

smaller variance distribution than healthy control samples, since the latter can be 

composed of individuals with different life habits, while patients with a same specific 

disease usually have a similar lifestyle. The same can occur with different tumour 

grades, where one class can assume a different variance distribution in comparison with 

the other. The only situation where QDA underperforms LDA is when the number of 

samples in the dataset is small (Wu et al., 1996), since the variance of each group might 

not be totally covered by QDA hence increasing the degree of extrapolation needed and 

commonly leading the model to overfitting. Using multiple algorithms to train and test 

the data is a common procedure in data science and machine learning. Subsequently, we 

assess validity of the algorithm through accuracy, sensitivity, specificity, and F-Score. 

The rationale behind this practice is to pick the best algorithm for current and future 

application and to avoid the problem of under or overfitting. See Table 4.1.  

 

Table 4.1 Quality parameter for distinguishing Grade 1 and Grade 2 meningiomas in 

the test set.  

 

Algorithm Accuracy Sensitivity Specificity F-score 

PCA-LDA 46.2% 85.7% 31.6% 46.2% 

PCA-QDA 96.2% 85.7% 100% 92.3% 
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PCA-SVM 61.6% 28.6% 73.7% 41.2% 

SPA-LDA 57.7% 100% 42.1% 49.3% 

SPA-QDA 96.2% 85.7% 100% 92.3% 

SPA-SVM 34.6% 71.4% 21.1% 32.5% 

GA-LDA 61.5% 57.1% 63.2% 60.0% 

GA-QDA 73.1% 0% 100% 0% 

GA-SVM 42.3% 42.9% 42.1% 42.5% 

 

 

Figure 4.2 Receiver operating characteristic (ROC) curve for PCA-QDA and SPA-QDA. 

AUC: area under the curve. 

 

SVM-based models seem to be highly overfitted, since the training performance 

for these algorithms are excellent (Table 4.2; Appendix C, Table C1), with near 100% 

correct classification rates; however, test performance is highly affected as 

demonstrated in Table 4.1. SVM classification performance would probably improve 

by adding more samples to the training set, thus creating a most representative training 

model. Nevertheless, PCA-QDA and SPA-QDA performance are both excellent in the 

test set, indicating that these algorithms are robust to provide a satisfactory prediction 

towards external samples. 
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Table 4.2 Correct classification rate for distinguishing Grade 1 and Grade 2 meningiomas. 

Algorithm Class Training Test 

PCA-LDA Grade 1 80.0 31.6 

 Grade 2 66.7 85.7  

PCA-QDA Grade 1 97.8 100 

 Grade 2 73.3 85.7 

PCA-SVM Grade 1 100 73.7 

 Grade 2 100 28.6 

SPA-LDA Grade 1 75.6 42.1 

 Grade 2 66.7 100 

SPA-QDA Grade 1 95.6 100 

 Grade 2 46.7 85.7 

SPA-SVM Grade 1 77.8 21.1 

 Grade 2 100 71.4 

GA-LDA Grade 1 100 63.2 

 Grade 2 93.3 57.1 

GA-QDA Grade 1 100 100 

 Grade 2 86.7 0 

GA-SVM Grade 1 91.1 42.1 

 Grade 2 100 42.9 

 

The difference-between-mean (DBM) spectrum, PCA loadings on PC1 (56.64% 

explained variance), and SPA-QDA selected variables are shown in Figure 4.3. The 

PCA loadings indicate higher coefficients at ~850 cm-1, ~1003 cm-1, ~1130 cm-1, ~1337 

cm-1, ~1450 cm-1,  ~1665 cm-1, and ~1858 cm-1; and the SPA-QDA selected variables 

are: ~850 cm-1, ~1130 cm-1, ~1245 cm-1, ~1337 cm-1, ~1450 cm-1, and ~1858 cm-1. Only 

the variable at 1245 cm-1 selected by SPA-QDA does not have a high PCA loadings, 

while the other variables selected by SPA-QDA are very close or are a perfect match 

with the ones observed in PCA-QDA. The list of PCA and SPA-QDA selected variables 

and tentative assignment according to Movasaghi et al. (2007) are shown in Table 4.3. 

The Raman shift at 1858 cm-1 is unknown based on this reference, but this wavenumber 

has been associated to C=O stretching in other literature (Mayo et al., 2003). The peak 
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at around 850 cm-1 has been previously detected in meningioma samples as belonging 

to tyrosine (Mehta et al., 2018), an α-amino acid that constitute important structures in 

proteins responsible for signal transduction processes (Kato et al., 1993); and the peaks 

at 1003 cm-1 (phenylalanine) and 1450 cm-1 (CH2 bending in DNA) have also been 

reported as biomarkers of meningioma tumours (Mehta et al., 2018; Zhou et al., 2012). 

Phospholipids (1130 cm-1), Amide III (1245 cm-1) and Amide I (1665 cm-1) have been 

reported for brain tumours in general (Gajjar et al., 2013; Zhou et al., 2012). 

 

 

Figure 4.3 PCA loadings and SPA-QDA selected variables. (a) Difference-between-mean 

(DBM) spectrum (+ values: higher intensity in meningioma Grade 1 samples; - values: higher 

intensity in meningioma Grade 2 samples); (b) PCA loadings on PC1; (c) average training set 

spectrum and SPA-QDA selected variables (red circles) with their tentative assignment. ν: 

stretching vibration, δ: bending. 

 

 

 



 
 

100 

Table 4.3 Tentative assignment of PCA and SPA-QDA selected variables to distinguish 

meningiomas Grade 1and Grade 2. DBM: difference-between-mean spectrum, where ↑ 

represents higher intensity in meningioma Grade 1samples, and ↓ represents higher 

intensity in meningioma Grade 2 samples. 

Peak Algorithm Assignment DBM 

850 cm-1 PCA/SPA-QDA Amino acids or polysaccharides ↑ 

1003 cm-1 PCA C-C in phenylalanine ↑ 

1130 cm-1 PCA/SPA-QDA Phospholipid structural changes ↓ 

1245 cm-1 SPA-QDA Amide III ↑ 

1337 cm-1 PCA/SPA-QDA Amide III and CH2 wagging vibrations ↑ 

1450 cm-1 PCA/SPA-QDA CH2 bending ↑ 

1665 cm-1 PCA Amide I ↑ 

1858 cm-1 PCA/SPA-QDA C=O stretching ↑ 

 

MCR-ALS was employed to resolve the median Grade 1 and Grade 2 meningioma 

images in order to identify spectrochemical changes associated with tumour aggressiveness. 

MCR-ALS was performed with 4 components selected by singular value decomposition 

(99.99% explained variance, 0.21 lack of fit, non-negativity in concentration mode; Appendix 

C, Figure C3). The 1st component of MCR-ALS was found to be associated with Grade 2 

appearance (Figure 4.4a), once it is clearly present in the Grade 2 tissue sample. The spectral 

profile of the 1st component (Sopt 1) indicates distinguishing features at the region between 

1230 cm-1 and 1360 cm-1 in comparison with the spectral profiles for other components, where 

three peaks (1265 cm-1, 1296 cm-1 and 1336 cm-1) are presents. These peaks are associated with 

Amide III, CH2 deformation in lipids, and CH2/CH3 twisting in polynucleotide chains, 

respectively (Movasaghi et al., 2007). This region encompasses the wavenumber at 1337 cm-1 

(amide III and CH2 wagging vibrations) in Table 4.3. Similarly to Figure 4.1f, the peaks at 850 

cm-1 [ν(C-C)1, amino acids or polysaccharides], 890 cm-1 [ν(C-C)2, proteins], 930 cm-1 [ν(C-

C)3, amino acids], 1003 cm-1 [ν(C-C)4, phenylalanine], 1130 cm-1 (phospholipids), 1265 cm-1 

(Amide III),  1296 cm-1 [δ(CH2)1, lipids], 1336 cm-1 [δ(CH3/CH2), DNA/RNA], 1450 cm-1 
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[δ(CH2)2, malignant tissue], and 1665 cm-1 (Amide I) are also present. In addition, other peaks 

at 1060 cm-1 [ν(PO2
-), DNA/RNA], 1100 cm-1 [ν(C-C)5, lipids], and a small arm at 1459 cm-1 

[δ(CH2)3, deoxyribose] (Movasaghi et al., 2007) are observed as distinguishing features in the 

MCR-ALS Sopt 1 profile. 

Bury et al. (2019a) have recently used Raman spectroscopy to discriminate 

meningioma Grade 1 brain tissue among different brain pathologies (low-grade glioma, 

high-grade glioma, metastasis, lymphoma, and no-tumour) with 94.8% accuracy, 63.9% 

sensitivity and 97.1% specificity using PCA-LDA with smear-based samples; and, 

meningioma Grade 1 brain tissue among low-grade glioma, high-grade glioma, 

metastasis and lymphoma with 90.8% accuracy, 91.7% sensitivity and 90.8% specificity 

using PCA-LDA with FFPE samples. Mehta et al. (2018) have recently used Raman 

spectroscopy to discriminate healthy controls and meningioma patients based on serum 

using PCA-LDA. Seventy patients (35 controls, 35 meningiomas) were analysed, 

resulting in 70% accuracy to distinguish meningiomas versus controls in an independent 

test set; 72% accuracy to distinguish meningiomas Grade 1 versus controls; and 80% 

accuracy to distinguish meningiomas Grade 2 versus controls. The results reported 

herein (96.2% accuracy, 85.7% sensitivity, 100% specificity) are very promising to 

distinguish meningioma tissue grades, which is critical to delineate patient treatment; 

and evidences the potential of Raman spectroscopy to investigate brain tumour tissues.  
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Figure 4.4 MCR-ALS results. (a) Recovered image using the MCR-ALS concentration profile 

for the 1st component; (b) MCR-ALS spectral profile for the 1st component with its tentative 

spectral markers assignment. Colour bar: relative concentration. 

 

4.1.2 Three-dimensional discriminant analysis 

A total of 95 images were analysed for three-dimensional discriminant analysis (66 

grade 1 meningiomas, 24 grade 2 meningiomas, and 5 meningiomas from reoccurrence). 

Following pre-processing by spikes removal and baseline correction, the data underwent 

analysis by 3D-PCA-LDA and 3D-PCA-QDA in order to distinguish meningiomas grade 1 (n 

= 66) vs. grade 2 (n = 24), which are algorithms capable of working with the full 3D 
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hyperspectral images, with no need of unfolding them. Figure 4.5 shows examples of 

microscopy images for meningiomas grade 1 and 2 tissues (Figures 4.5a and 4.5b), as well as 

their average Raman imaging signatures (Figures 4.5c and 4.5d) and pre-processed spectra 

(Figures 4.5e and 4.5f). 

 

Figure 4.5 Examples of microscopic images of meningiomas (a) grade 1and (b) grade 2 tissues 

samples inside the Raman apparatus; average 3D Raman imaging signatures for meningiomas 

a b

c d

e f
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(c) grade 1and (d) grade 2 samples; average Raman spectral signatures for (e) grade 1 and 2 

meningiomas and (f) their standard-deviation. 

 

The Raman spectra were acquired at the spectral range between 780-1858 cm-1, which 

comprises the biofingerprint region where main absorptions for biomolecules such as 

carbohydrates, proteins, nucleic acids, and lipids can be observed (Kelly et al., 2011). There 

are visual spectral differences for grade 1 and 2 meningiomas. Firstly, in Figure 4.5f, the 

standard-deviation for grade 1 and 2 meningiomas are very different, where grade 1 

meningiomas show a large standard-deviation thus a wide spectral variation, while grade 2 

meningiomas show a quite narrow standard-deviation, indicating a low spectral variability for 

this type of tumour. Figure 4.5e also shows differences in the spectral means for grade 1 and 

grade 2 meningiomas, where grade 2 meningiomas have an average lower intensity spectrum 

than grade 1 meningiomas, particularly in the regions around 800-100 cm-1 and 1500-1800 cm-

1. The 800-100 cm-1 region is mainly characterised by carbohydrates (e.g., glucose at 842 cm-

1), nucleic acids (e.g., RNA at 813 cm-1, O-P-O stretching for DNA/RNA at 828 cm-1, RNA 

ribose vibration at 867 cm-1) and structural protein modes of tumours (~820 cm-1) (Movasaghi 

et al., 2007). The 1500-1800 cm-1 region is mainly characterised by the amide I peak of proteins 

(~1660 cm-1) (Movasaghi et al., 2007). 

The images dataset was split into 70% of samples for training (46 grade 1, 17 grade 2 

meningiomas) and 30% for testing (27 grade 1, 7 grade 2 meningiomas) before model 

construction. 3D-PCA-LDA and 3D-PCA-QDA models achieved very good performance in 

the training set where clear discrimination is observed using 2 PCs (Figure 4.6). The 

classification metrics for training, cross-validation (venetian blinds with 10 data splits) and test 

are shown in Table 4.4. The training and validation performance are perfect with accuracies of 

100%. The test predictions show good results with accuracies of 81% for 3D-PCA-LDA (100% 
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sensitivity and 75% specificity) and 96% for 3D-PCA-QDA (100% sensitivity and 95% 

specificity). QDA shows better specificity thus being more accurate to identify grade 1 

meningiomas. The F-score show better overall performance for 3D-PCA-QDA (F-score = 

97%), thus indicating this algorithm can predict better test samples. 

Table 4.4 Classification performance to distinguish meningiomas grade 1and II. 

Algorithm Set Accuracy Sensitivity Specificity F-score 

3D-PCA-LDA Training 1.00 1.00 1.00 1.00 

 Cross-validation 1.00 1.00 1.00 1.00 

 Test 0.81 1.00 0.75 0.86 

3D-PCA-QDA Training 1.00 1.00 1.00 1.00 

 Cross-validation 1.00 1.00 1.00 1.00 

 Test 0.96 1.00 0.95 0.97 

 

 

Figure 4.6 Discriminant boundaries for (a) 3D-PCA-LDA and (b) 3D-PCA-QDA showing the 

training samples. 

 

The confusion matrices representing the prediction of the test samples are shown in 

Table 4.5. Their AUC values were calculated at 0.886 (3D-PCA-LDA) and 0.975 (3D-PCA-

QDA), therefore being better for 3D-PCA-QDA (outstanding results). The remaining 5 

a b
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recurrence samples were blindly predicted, and their outcome were majorly as grade 2 

meningiomas using 3D-PCA-QDA (4 out of the 5 samples were predicted as grade 2, 

equivalent to 80%). The PCA loadings and the difference-between-mean (DBM) spectra for 

grade 1 and 2 meningiomas are show in Figure 4.7. Table 4.6 lists the main wavenumbers with 

the largest weights and their respective tentative assignments (Movasaghi et al., 2007).  

Table 4.5 Confusion matrix for the test set. 

Algorithm 
 Predicted 

Measured Grade 1 Grade 2 

3D-PCA-LDA 

(AUC = 0.886) 

Grade 1 15 5 

Grade 2 0 7 

 Recurrence 2 3 

  Grade 1 Grade 2 

3D-PCA-QDA 

(AUC = 0.975) 

Grade 1 19 1 

Grade 2 0 7 

 Recurrence 1 4 

 

 

Figure 4.7 (a) 3D-PCA loadings on PC1 and PC2 and (b) difference-between-mean (DBM) 

spectrum between meningiomas grade 2 and grade 1. “x” markers show the main wavenumbers 

responsible for class differentiation. 

a

b

x

x x x

x
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Table 4.6. Main wavenumbers responsible for classification. 

Wavenumber (cm-1) Tentative assignment 

832 υas(O-P-O) tyrosine 

978 υ(C-C) β-sheet of proteins / δ(=CH) of lipids 

1367 υs(CH3) of phospholipids 

1480 Amide II 

1642 Amide I 

 

 

4.2 Discussion 

 

The diagnosis of meningioma tumours is a laborious procedure that requires clinical 

assessments such as radiological imaging and tissue histology, and often with later prognosis. 

Grade 1 meningiomas show histological patterns other than papillary, chordoid, clean cell or 

rhabdoid; grade 2 meningiomas show clear cell or chordoid cell types and have three of the 

following patterns: macronuclei, spontaneous necrosis, hypercellularity, small cell formation 

or sheeting architecture; grade 3meningiomas are much rarer and histologically they resemble 

other tumours such as melanomas, carcinomas, or sarcomas (Lilo et al., 2020; Miller Jr et al., 

2014). The accurate and quick diagnosis can significantly aid clinicians planning the correct 

treatment and mitigate risks.  

The use of Raman spectroscopy provides the ability to optically characterise 

biomolecular changes associated with the tumour grades, where the unique spectral fingerprint 

generated represents the samples biochemical profile. Infrared and Raman spectroscopy have 

been previously used to discriminate normal and tumour brain tissues, where neoplastic tissues 

such as meningiomas were found to be statically significant from normal tissues using PCA-

LDA (Gajjar et al., 2013). Herein, meningiomas tumour grades were distinguished using 

Raman hyperspectral imaging, where Raman spectra are acquired per individual tissue 
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positions forming a 3D image-like data. The 3D imaging data were analysed by newly-

developed three-dimensional discriminant analysis algorithms (3D-PCA-LDA and 3D-PCA-

QDA) which quickly discriminated the tissue grades in an accurate and systematic way. 3D-

PCA-LDA achieved 81% accuracy (86% F-score, 100% sensitivity and 75% specificity) and 

3D-PCA-QDA achieved 96% accuracy (97% F-score, 100% sensitivity and 95% specificity) 

in the test set. Four out the five recurrence samples were predicted using 3D-PCA-QDA as 

grade 2 meningiomas, showing these samples are mostly different from regular grade 1 

meningiomas and are closer related to grade 2 meningiomas which have a higher likelihood of 

recurrence. The superior performance for 3D-PCA-QDA can be explained by the different 

variance structures for grades I and II meningiomas as shown in Figure 4.5f. QDA performs 

well when the data have difference variances for each class (Morais & Lima, 2018).  

Cancerous and non-cancerous brain tissue samples have been distinguished with 89.4% 

sensitivity and 78.0% specificity using infrared spectroscopy, and glioma and meningiomas 

tissues have been distinguished at 82.1% sensitivity and 75.0% specificity using the same 

technique (Hands et al., 2016). Meningiomas tumour grades have been distinguished using 

infrared spectroscopy with 79% accuracy (80% sensitivity and 73% specificity) using partial 

least squares discriminant analysis (PLS-DA) in Chapter 3. Serum-based Raman spectroscopy 

has been used to distinguish healthy controls vs. grade 1 meningiomas at 72% accuracy, and 

healthy controls vs. grade 2 meningiomas at 80% accuracy (Mehta et al, 2018). Grade 1 and 2 

meningiomas have been classified using Raman microspectroscopy with classical discriminant 

analysis with 96.2% accuracy and F-score of 92.3% (85.7% sensitivity and 100% specificity) 

using unfolded PCA-QDA and SPA-QDA in section 4.2.1. This latter is a more complex 

algorithm that requires much larger time for processing (Morais et al., 2020b). 

The spectral markers associated with grade 1 and 2 discrimination are shown in Table 

4.6. Most of them are associated with protein changes (832, 978, 1480 and 1642 cm-1), and 
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lipids changes (978 and 1367 cm-1). Protein changes such as Amide I (1642 cm-1) and Amide 

II (1480 cm-1) are known to be associated with brain cancer spectrochemical changes (Bury et 

al., 2019b). For meningiomas grade 1 vs. grade 2 specifically, spectral changes for Amide I 

and Amide II has been observed as important markers for tumour differentiation using infrared 

spectroscopy in Chapter 3. In addition, lipids features have found to be highly related to brain 

tumours differences using infrared spectroscopy (Hands et al., 2016). Although the molecular 

genetics and pathogenesis of meningiomas are not so well understood, growth factor alterations 

and signalling pathways have been reported, such as cell cycle deregulation and telomerase 

activation as signs for meningioma progression (Lilo et al., 2020; Miller Jr et al., 2014; Wrobel 

et al., 2005). Cell cycle control, telomerase dynamics and deoxyribonucleic acid damage 

control are highly entwined in meningioma progression (Miller Jr et al., 2014; Wrobel et al., 

2005). Meningiomas grade 1 are known to be characterised by overexpression of epidermal 

growth factor receptors and upregulation/overexpression of the platelet-derived growth factor 

receptor beta gene (Miller Jr et al., 2014), downregulation of proteins of 4.1 family members 

(Miller Jr et al., 2014; Saraf et al., 2011), and mutation of the NF2 gene on chromosome 22 in 

some meningiomas grade 1(Miller Jr et al., 2014). Higher-grade meningiomas are associated 

with alterations in chromosome 10 and other genetic non-NF2 changes (Miller Jr et al., 2014; 

Wernicke et al., 2010). Meningiomas grade 2 particularly are known to be associated with 

chromosome mutations in the 1p and 14p regions, which are responsible for housing tumour 

suppression genes, and other changes in chromosome 1 (Miller Jr et al., 2014). These 

biochemical alterations on meningiomas can be detected in the Raman spectrochemical 

signatures enabling an accurate and quick diagnosis of their tumour grades through 

computational techniques. An advantage of this technique is that it is reagent-free and not 

affected by water interference, which is ideal for biological medium. These findings show the 
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potential of Raman hyperspectral imaging for differentiation of meningioma tumours, being a 

feasible new diagnostic tool for tumour grade detection in the clinical setting.  
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CHAPTER 5 | OVERALL DISCUSSION AND 

CONCLUSION 

 

The proposed hypothesis was that the variability in the molecular phenotype of 

meningiomas (for example Grade 1, Grade 2, recurrence) were sufficiently different from one 

another that biospectrometry techniques were sensitive enough to stratify the patient into 

different categories based on the meningioma aggressiveness and potential for recurrence. The 

results presented in the thesis here confirmed that WHO grade 1 verses grade 2 meningioma 

verses grade 1 recurrence could be blindly discriminated using both ATR-FTIR and Raman 

spectroscopy. Several wavenumbers were identified as possible biomarkers towards tumour 

differentiation, associated with lipids, protein, DNA/RNA, and carbohydrate alterations, 

proving the hypothesis that there was a specific biomarker(s) responsible for the variability in 

the molecular phenotype. 

Brain cancers are one of the main causes of cancer-related deaths worldwide, 

accounting for 3% of all tumours diagnosed annually and with an increasing incidence rate 

over the last few years (Bury et al., 2020). Tumours are difficult to be fully removed thus 

causing post-surgery consequences and likely reoccurrence which increases mortality, even 

though they comprise a small portion of all tumours often diagnosed (Bury et al., 2020; Hollon 

et al., 2016). Most brain cancers are either meningioma or glioma tumours (Gajjar et al., 2013). 

Meningiomas are a less aggressive type of tumours, often benign, that occurs in a supratentorial 

location, such as towards the spinal cord or the meninges surrounding the brain (Huntoon et 

al., 2020; Lilo et al., 2020; Mehta et al., 2018). Glioma are a more aggressive type, comprising 

of neuroepithelial tumours originating from the glial or supporting cells of the central nervous 

system (CNS) (Davis, 2018). 
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Both FTIR and Raman spectroscopy can be employed for the chemical analysis of 

tissue, where vibrational signals are obtained from biomolecules bonds that compose the tissue. 

These unique spectral features for FTIR and Raman make these spectroscopy techniques very 

attractive to determine chemical compositions of unknown substances. FTIR spectroscopy, as 

well as other molecular spectroscopy techniques such as liquid chromatography-mass 

spectrometry (LC/MS), nuclear magnetic resonance (NMR) spectroscopy, near-infrared (NIR), 

and Raman spectroscopy provide robust and supportive data about the sample chemical 

composition.  

Herein, we investigated both FTIR and Raman spectroscopy for analysis of 

meningioma tissues towards differentiation between WHO grade 1 and 2 tumours. Chapter 3 

described the analysis using FTIR to investigative meningioma WHO tumour grades (grade 1 

and 2) and the recurrence. 

 In Chapter 3, ATR-FTIR in combination with chemometric techniques were employed 

to distinguish meningiomas grade 1, grade 2 and grade 1 that re-occurred. Ninety-nine patients 

(70 WHO grade 1 meningiomas, 24 WHO grade 2 meningiomas, and 5 WHO grade 1 

meningiomas from recurrence) were investigated in this study where their FFPE brain tissue 

samples were analysed by ATR-FTIR spectroscopy. Subsequent classification was performed 

via PCA-LDA and PLS-DA. PLS-DA gave the best results where grade 1 and grade 2 

meningiomas were discriminated with 79% accuracy, 80% sensitivity and 73% specificity; 

while grade 1 vs. grade 1 recurrence and grade 2 vs. grade 1 recurrence were discriminated 

with 94% accuracy (94% sensitivity and specificity) and 97% accuracy (97% sensitivity and 

100% specificity), respectively. Several wavenumbers were identified as possible biomarkers 

towards tumour differentiation. The majority of these were associated with lipids, protein, 

DNA/RNA, and carbohydrate alterations. These findings demonstrated the potential of ATR-
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FTIR spectroscopy towards meningioma grade discrimination as a fast, low-cost, non-

destructive, and sensitive tool for clinical settings. 

In Chapter 4, we reported the analysis of meningiomas grade 1 and 2 tumours 

using Raman spectroscopy by means of classical analysis and by three-dimensional 

analysis for Raman imaging. Raman microspectroscopy imaging was used to investigate 

95 brain tissue samples (66 WHO grade 1 meningiomas, 24 WHO grade 2 meningiomas 

and 5 WHO grade 1 meningiomas from recurrence) in order to differentiate 

meningiomas Grade 1 and Grade 2 samples, which are the commonest types of brain 

tumour. For the classical analysis using the unfolded spectra within the Raman 

microspectroscopy images, several classification algorithms using feature extraction 

and selection methods were tested, in which the best classification performances were 

achieved by unfolded PCA-QDA and SPA-QDA algorithms, resulting in accuracies of 

96.2%, sensitivities of 85.7% and specificities of 100% using both methods. A 

biochemical profiling in terms of spectral markers was investigated using the difference-

between-mean (DBM) spectrum, PCA loadings, SPA-QDA selected wavenumbers, and 

the recovered imaging profiles after MCR-ALS, where the following wavenumbers 

were found to be associated with class differentiation: 850 cm-1 (amino acids or 

polysaccharides), 1130 cm-1 (phospholipid structural changes), the region between 1230 

– 1360 cm-1 (Amide III and CH2 deformation), 1450 cm-1 (CH2 bending), and 1858 cm-

1 (C=O stretching). For the data analysis using the whole Raman hyperspectral images 

in Chapter 4, newly-developed three-dimensional discriminant analysis algorithms were 

used to process the hyperspectral imaging data in a 3D fashion. 3D-PCA-QDA was able 

to distinguish grade 1 and grade 2 meningioma samples with 96% test accuracy (100% 

sensitivity and 95% specificity), and 80% of the recurrence samples were classified as 

grade 2, indicating they are different from regular grade 1 meningiomas but closer 
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related to grade 2 tumours, which have much higher likelihood of recurrence. As 

advantage, Raman is reagent-free and not affected by water interference, which is ideal 

for biological medium. These findings show the potential of Raman hyperspectral 

imaging for differentiation of meningioma tumours, being a feasible new diagnostic tool 

for tumour grade detection in the clinical setting. 

Table 5.1 summarises the results obtained with FTIR (Chapter 3) and Raman (Chapter 

4) spectroscopy to distinguish meningiomas tumour grades. Raman spectroscopy has shown 

greater discrimination potential between grade 1 vs. II meningioma, while FTIR was able to 

detect differences between grade 2 and recurrence samples, whereas Raman predicted most of 

recurrence samples as grade 2 tumours.  

Table 5.1 Best results using FTIR and Raman spectroscopy to distinguish WHO grade 1 vs. 

grade 2 meningiomas based on tissue analysis.  

Technique Samples Algorithm Main results 

FTIR  

(ATR-FTIR) 

70 grade 1 

24 grade 2 

5 recurrences grade 1 

PLS-DA Grade 1 vs. 2: 79% accuracy (80% sensitivity, 

73% specificity) 

Grade 1 vs. I recurrence: 94% accuracy (94% 

sensitivity, 94% specificity) 

Grade 2 vs. 1 recurrence: 97% accuracy (97% 

sensitivity, 100% specificity) 

Raman 

(imaging) 

66 grade 1 

24 grade 2 

5 recurrences grade 1 

3D-PCA-QDA Grade 1 vs. 2: 96% accuracy (100% sensitivity, 

95% specificity) 

Recurrence prediction: 80% predicted as grade 2 

 

Both FTIR and Raman have proved to be high-throughput techniques which are 

reagent-free and non-destructive, giving accurate predictive information regarding the 

meningioma tumour grades, hence, having enormous clinical potential with regards to being 

developed for intra-operative real-time assessment of disease. Improvements of FTIR and 

Raman instrumentation overtime have finally put them in the lead through their improved 
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spectral quality, reproducibility of data, and user-friendliness coupled with relatively reduced 

maintenance cost. Advancements of Raman and FTIR spectroscopy have positively influenced 

the health sector to industrial and point-of-care applications. Real time application and the 

flexibility in the rapidly growing lasers and detectors have further offered the unique strengths 

in the existing diagnostic devices. Moving forward, the industrial production of lower-cost, 

sensitive and more modern devices are crucial for bringing these technologies into the clinical 

theatres as complementary tools to aid diagnostic. This in effect will reduce the death rates 

seen in the world today and it will also give timely and permanent solutions to chronic disease.  

              Limitations of this study are mainly the small number of grade 2 meningiomas. This 

is due to the natural distribution of ratio between grade 1 and grade 2 meningioma in a single 

centre in real world setting. In addition to that was our strict selection criteria and long term 

follow up which has excluded a number of pre-selected cases. The reason for this exclusion 

was to avoid selection bias. We tried to overcome this by obtaining multiple spectra points 

from each sample (10 for FTIR and 25 for Raman). This has helped to improve the results 

which is reflected by the performance of our selected algorithms.  

As future work, I would like to build a lab within the department of neurosurgery 

equipped with the latest hardware and software technology in Raman spectroscopy  that can be 

utilised for instant tissue diagnosis, prognostication, and surgical excision in real time.  The 

precision of this technology will likely improve over the course of the foreseen future; the 

coming quantum computation will allow for better and quicker machine learning algorithms. 

Collaboration with other groups working on the field will be very useful to help to expand our 

shared knowledge and experience allowing us to deliver tailored medical and surgical care for 

our patients.   
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APPENDIX A | BASIS OF FTIR AND RAMAN 

SPECTROSCOPY 

 

A1. Brief history of Fourier-transform infrared (FTIR) spectroscopy  

Infrared (IR) spectroscopy is a vibrational spectroscopy technique used to assess the 

chemical composition of a sample (Skoog et al., 2007). It is based on the absorption of infrared 

light by the molecules that compose the material, where all molecules with a resultant dipole 

moment different from zero will absorb infrared radiation. The scientific idea behind the 

Fourier-transform infrared spectroscopy (FTIR) was first initiated in the late 1880s by Albert 

A. Michelson. The founder invented an interferometer, a device that Albert and Morley used 

to perform famous experiments determined to measure the exact speed of light. Besides the 

Michelson interferometer, he also introduced the scientific optical instruments. His efforts were 

widely accepted and appreciated by the scientists of the day. Later in 1907, Michelson’s efforts 

and inventions were still applicable and won the Nobel Prize in Physics.  

Michelson knew the spectroscopic potential of his interferometer, although it lacked 

the sensitive detectors and the Fourier-transform algorithms that consequently barred the 

instrument from its practical application. However, he still manipulated and used it to solve 

many doublet spectra back then in the field (Navas et al., 2008). There were quite many 

challenges that scientists faced while using Fourier-transform spectroscopy (FTS) to compute 

the Fourier-transform of interferograms. It is because the FTS was not able to directly invert 

the values, so they guessed some spectra, calculated the inverse of their Fourier-transform, and 

then compared it to the interferogram they had earlier measured. The best results were obtained 

after modifying the guessed spectra to match the data at hand. 
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It is in the late 1940s that the practical application of the FTS was considered useful. 

The scientists first used the interferograms when measuring light from the celestial bodies after 

producing the first Fourier-transform spectrum in 1949. At this point, it became more 

accessible for the scientists to calculate the continuous necessary Fourier transforms though it 

became a task that was so difficult and consumed much time. Here, the scientists introduced 

the lamellar granting and the Fabry-Perot interferometers, besides the Michelson’s. The 

schematic Figure A1a below represents the basic Michelson interferometer. 

Movasaghi et al. (2008) speculated that the lamellar granting spectrometer share many 

standard features with the Michelson’s. These two beam and multicomplex devices have high 

optical ability to produce the interferograms, which, when Fourier-transformed, provide the 

desired spectrum. However, in the lamellar granting instrument, the optical modulation part 

constitutes a pair of mirrors that are arranged in a tongue and groove manner to bring the 

appearance of one large mirror divided into two or more horizontal strips as indicated in Figure 

A1b. 

Through the Fresnel mirrors, the scientists could observe interferences with the blue-

ray path difference near line F at wavelength 1737. After the reflection on both mirror surfaces 

on the thin plate, they noticed increased interference at wavelength 3406. Later, they perfected 

the technique and used it to detect IR radiations and to measure IR wavelengths. The lamellar 

granting interferometer is preferred to Michelson’s because it uses the entire wavefront, unlike 

the Michelson’s that loses one half of the total flux even when the beam splitter is perfect and 

efficient. Additionally, the lamellar granting interferometer has high efficiency due to its far-

infrared region. 

The increased interest in spectroscopy facilitated advancements in interferometers and 

its applications in physical systems. The improvements in the theories included the fast Fourier-
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transform algorithm that made the electronic computing of the Fourier transforms easy and 

efficient (Livingston, 1973). The idea substantially reduced the time of calculations and 

magnitude orders, as well as turning the interferogram to a readable spectrum feasible. The 

Fourier spectroscopy generated a new weapon to greater effectiveness to experimentalists in 

1969. 

The IR technique applied a reliable, simple, powerful, and most effective method to 

analyze organic materials with a dispersive technology in the early 1940s. However, there were 

shortcomings attached to its scanning speed and the general manual operations; it was too slow. 

The wavelength of the light that passed through also measured one by one with just a slit 

controlling the spectral bandwidth. The dispersive spectrometer required a source of visible 

wavelength calibrations because there was no reference to any. The dispersive spectrometer is 

shown in Figure A1c. 

These shortcomings enhanced further improvements on the dispersive. Consequently, 

the improved phase came handy with three significant advantages over the dispersive FTIR 

system. The modern FTIR spectrometer does not separate light into individual frequencies for 

measurements; instead, every interferogram has information from each wavelength of the light 

being measured (Duraipandian et al., 2013). Through the interferometer, the FTIR 

spectrometer modulates the wavelength from the broadband infrared source. The detector then 

measures the intensity of the transmitted and reflected light as a function of its wavelength.  
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Figure A1. (a) Schematic diagram of Michelson interferometer; (b) the lamellar granting 

interferometer; (c) dispersive spectrometer. 

 

With increased technology, modern spectrometers availability and enhanced 

capabilities increased with a gradual reduction in costs. Currently, the FTS hastened by the 

fastest computers processes the Fourier transformations with visible, infrared, and microwave 

regions in microseconds and are conventional devices in laboratories worldwide. The increase 

of performance and reduction in cost make FTS an attractive spectroscopy tool in many 

disciplines. Therefore, Fourier spectroscopy is a collective term that has been used while 

describing the breakdown of varying signals into the respective frequency components. It 

entails compelling mathematical methods that have been used by a series of spectroscopies, 
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including the Fourier-transform infrared (FTIR), Fourier-transform near infrared (FT-NIR), 

and Fourier-transform Raman spectroscopy.  

 

A2. Brief history of Raman spectroscopy  

On the other hand, Raman spectroscopy, a technique introduced in 1928 by Sir 

Chandrasekhara Venkata Raman, explained the effects of light changing its wavelength when 

it is passing through a transparent object. In his experiment, the Indian Physicist used sunlight 

as a source, liquid in a bucket as the collector, and his eyes, detectors. This remarkable 

phenomenon was called the Raman scattering. He gradually improved his instrumentation to 

achieve a better result; from helium, argon, rubidium and cesium lamps to lasers Ar+ (351.l-

514.5 nm), Kr+ (337.4-676.4 nm) and today laser diodes NdYAG (1,064 nm) while the 

photomultipliers and CCD cameras used as detectors. Moreover, the extended the progress to 

the detection systems from the cooled cascade RCA IP21 in 1942 to cooled RCA C-7073B 

photomultiplier in 1950 then cooled RCA IP21 photomultiplier tube that was used by 1953 

(Vandenabeele & Edwards, 2018). In the meantime, it was introduced a device called Hilger 

E612 that was used as a photoelectric instrument. Subsequently, Cary Model 81 Raman 

spectrometer came to existence. It used a three kilowatts helicon Hg arc of Toronto type with 

double gating, double slit twin monochromator. 

The persistence in developing the optical system continued in 1960. The scientists 

learned that a twin monochromator could eliminate the stray lights more efficiently compared 

to the single monochromator. Instead, they introduced a triple monochromator, which was 

perfect in removing the stray gleams. Eventually, in 1968, the Holographic gratings appeared, 

which wholesomely improved the efficiency of the Raman scattering and collection systems. 
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The developments have ensured the current commercial state of the art of the Raman 

measurements and instrumentation. 

Typically, the Raman scattering is used to collect spectroscopic data through an 

inelastic scattering process based on molecular polarizability changes (Santos et al., 2017). 

Inelastic scattering involves the frequency of changes that occur in the monochromatic photons 

in the light after interacting with samples. The electromagnetic scattering occurs due to 

vibrations and rotations between the molecules. The real photons have varied energy; therefore, 

the scattering system is likely to lose or gain power. The difference in the frequency of 

incoming and outgoing photons forms Stokes and anti-Stokes scattering, as shown in Figure 

A2.                     

 

 

Figure A2. Stokes and Anti-Stokes Raman scattering, where continuous arrow: absorbed 

electromagnetic radiation; dashed arrow: released electromagnetic radiation. 
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Figure B1. Raw IR spectra for meningiomas WHO Grade 1, 2 and 1-recurrence. 

 

Figure B2. Pre-processed IR spectra (Savitzky-Golay 2nd derivative and vector normalisation) 

for meningiomas WHO Grade 1, 2 and 1-recurrence. 
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Figure B3. a) PCA scores on PC1 versus PC2 for the pre-processed spectral data in the 

fingerprint region (Savitzky-Golay 2nd derivative [window of 7 points, 2nd order polynomial 

fit] and vector normalisation); (b) Hotelling’s T2 versus Q residuals chart (6 PCs, 85.57% 

explained variance). Grade 1-rec. stands for WHO Grade 1 samples that reoccurred. 

 

(a) (b)
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Figure B4. Sum of squared residuals (SSR) for (a) PCA-LDA and (b) PLS-DA models to 

distinguish Grade 1 vs. Grade 2 meningiomas; (c) PCA-LDA and (d) PLS-DA models to 

distinguish Grade 1 vs. Grade 1 meningiomas that reoccurred; (e) and (f) PCA-LDA and PLS-

DA models to distinguish Grade 2 vs. Grade 1 meningiomas that reoccurred. 

 

 

(a) (b)

(c) (d)

(e) (f)
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Figure B5. Cross-validation error for PCA-LDA and PLS-DA models to distinguish 

meningiomas grade 1 vs. grade 2 samples. 

 

 

Figure B6. PLS-DA coefficients to distinguish meningiomas grade 1 vs. grade 2 samples. 
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Figure B7. Cross-validation error for PCA-LDA and PLS-DA models to distinguish 

meningiomas grade 1 vs. grade 1 recurrence samples. 

 

 

Figure B8. PLS-DA coefficients to distinguish meningiomas grade 1 vs. grade 1 recurrence 

samples. 
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Figure B9. Cross-validation error for PCA-LDA and PLS-DA models to distinguish 

meningiomas grade 2 vs. grade 1 recurrence samples. 
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Table C1. Correct classification rate for distinguishing Grade 1and Grade 2 meningiomas. 

Algorithm Class Training Test 

PCA-LDA Grade 1 80.0 31.6 

 Grade 2 66.7 85.7  

PCA-QDA Grade 1 97.8 100 

 Grade 2 73.3 85.7 

PCA-SVM Grade 1 100 73.7 

 Grade 2 100 28.6 

SPA-LDA Grade 1 75.6 42.1 

 Grade 2 66.7 100 

SPA-QDA Grade 1 95.6 100 

 Grade 2 46.7 85.7 

SPA-SVM Grade 1 77.8 21.1 

 Grade 2 100 71.4 

GA-LDA Grade 1 100 63.2 

 Grade 2 93.3 57.1 

GA-QDA Grade 1 100 100 

 Grade 2 86.7 0 

GA-SVM Grade 1 91.1 42.1 

 Grade 2 100 42.9 
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Figure C1. Outliers identified by a Hotelling T2 versus Q residuals test (PCA with 8 PCs). (a) 

Meningioma Grade 1 samples (outliers: 58, 66); (b) meningioma Grade 2 samples (outliers: 

11, 18); (c) meningioma Grade 1 outlier spectra in red; (d) meningioma Grade 2 outlier spectra 

in red. 

 

 

  

a. b.

c. d.
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Figure C2. Singular value varying the number of principal components (PCs) of PCA. 
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Figure C3. Concentration distribution maps and recovered spectral profiles by MCR-ALS for 

the 1st (a), 2nd (b), 3rd (c), and 4th (d) components. Colour bar: relative concentration. 
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