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Abstract 
 
Increasingly, machines operate under harsh contact conditions with high normal contact 
loads and tangential traction. This leads to increased wear and contact fatigue. Sub-surface 
stresses are responsible for premature contact fatigue failure of rolling element bearings, 
meshing gear teeth and cam-follower pairs. Consequently, surface protection measures, 
including hard wear-resistant coatings, have become commonplace. The choice of 
protective layers, method of fabrication, geometry and contact conformity affect fatigue 
performance. Traditionally, the prediction of contact integrity has been made using 
classical Hertzian contact mechanics. However, the theory is only applicable when the 
contact of a solid pair may be considered as an ellipsoidal indenter penetrating a semi-
infinite elastic half-space, which is not the case for thin coatings.  
 
The paper provides comprehensive generic contact mechanics analysis with induced sub-
surface stresses in concentrated counterformal contacts for both semi-infinite and layered 
bonded elastic solids at high loads. 
 
 
Introduction 
 
Rolling element bearings are used in many applications. They are usually subjected to high, 
variable and often impulsive loads, for example in the meshing gear pairs of automotive 
transmissions or differentials [1, 2] or in wind turbines which are subjected to external 
variable wind and gust loading [3]. Variations in the applied and impulsive loads and in 
some cases misalignment of bearing elements can cause excessive contact stresses that 
often result in the fatigue of surfaces and failure of bearings [4, 5]. Bearing surfaces 
subjected to fatigue spalling and pitting lead to structural impairment issues and poor 
system reliability and operational performance. With ever increasing harsh operational 
conditions, such as in wind turbines’ transmissions, there are high incidences of bearing 
failure [4,6]. These require costly repair and result in inordinate system downtimes. Detailed 
contact mechanics, particularly the evaluation of induced sub-surface stresses, is therefore 
essential in design evaluation and prediction of system performance [7-10]. These stresses 
are affected by contact conformity [11, 12] as well as by surface materials. Thin elastic hard 
wear-resistant coatings, for example, should be treated as bonded layered solids [12-15]. 
Hence, accurate predictions of contact stresses and failure require the development and 
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use of appropriate predictive methodologies. This paper presents detailed contact 
mechanics for the case of finite line contacts, and sub-surface stress evaluation for both 
semi-infinite elastic solids and thin bonded layers.  
 
 
Contact Mechanics of Semi-infinite Finite Line Contacts  
 
The contact of a rolling element bearing-to-raceway is considered by Hertzian contact 
mechanics to be a rigid roller with a reduced radius, R, indenting a semi-infinite elastic half-
space with an equivalent reduced elastic modulus, E* (see figure 1):  
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The roller imprints a long, narrow rectangular strip (footprint) into the semi-infinite elastic 
half-space. This contact configuration is termed an elastic line contact with a half-width of 
𝑎଴:  
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The lateral cross-sectional pressure profile is assumed to be elliptical, with a uniform 
longitudinal pressure distribution (figure 1). The central pressure is:    
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The parabolic approximation of the cross-sectional elliptical pressure profile is: 
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Figure 1: Idealised elastic line contact of cylindrical solids of revolution  

 
The deflection anywhere within the thin contact footprint can be obtained as: 
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where: 𝐸∗ =
ா

ଵିణమ for contacting surfaces of the same material (plane strain effective 
modulus). 
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The central contact deflection becomes [16]: 
 
 𝛿଴(0,0) =

௔బ௣బ 
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Therefore, the footprint of an elastic line contact is fully described by the classical Hertzian 
contact theory [17]. However, the infinite elastic line contact is idealised. In practice, a rigid 
roller indents an elastic half-space with a dog-bone (dumbbell) shaped footprint, the 
contact extremities spreading out due to the sharp-end stress discontinuity (figure 2).  In 
this case the contact configuration is termed finite line contact, and a numerical approach 
is required to obtain the pressure distribution. A number of numerical solutions have been 
reported, including the initial solutions for the case of elastostatic contact of cylindrical 
roller bearings under assumed dry contact condition [18--20]. There have also been various 
solutions of elastohydrodynamic lubricated finite line contacts under aligned, misaligned, 
isothermal or thermal conditions in steady state or transient motions [21-29].  
 
For finite line contact, a numerical solution is required. In this case the contact footprint is 
sub-divided into a number of overlapping rectangular elements as shown in figure 2. The 
local pressure distribution is assumed to be parabolic in the lateral direction and described 
by isosceles triangles in the longitudinal direction (figure 3). This approach takes into 
account parabolic approximation of the Hertzian elliptical pressure profile in the transverse 
direction. The deflection at any point (x, y) within a computational element is obtained as: 
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Figure 2: Dog-bone shaped footprint of finite line contact with elemental discretisation  

 

 
Figure 3: Computational element 

 
The following relations are used to non-dimensionalise equation (8): 
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 𝑥 = 𝑎𝑥̅ , 𝑥ଵ = 𝑎ଵ𝑥̅ଵ, 𝑦 = 𝑐𝑦ത, 𝑦ଵ = 𝑐𝑦തଵ and 𝛿 = 𝑎ଵ𝛿̅ (9) 
Thus:   
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where 𝐼 is the integration term in the non-dimensional form of equation (8) with respect to 
𝑦തଵ, yielding [18]:   
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where: 𝑎ത =
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This yields the boundary integral equation: 
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The function in the boundary integral equation (12) is not symmetric about all the four 
quadrants of the computational element in figure 3. Therefore, to find the total deflection 
at the centre of each computational element, it is necessary to combine the contributions 
due to all four elemental quadrants in figure 3 as: 
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The total deflection at the centre of any rectangular computational element, 𝑗, becomes: 
 
 𝛿௝ = ∑ 𝑑௝௞

ସ
௞ୀଵ  (14) 

 
where 𝑗 is any element within a total of n overlapping rectangular elements used to 
discretise the contact footprint and 𝑘 = 1 → 4 are the quadrants in each rectangular 
computational element. 
 
Using equations (13) and (14) and multiplying both sides by the term గா

௔బ௣బ(ଵିణమ)
, the 

following relationship is obtained for the jth nodal point: 
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where 𝑖 = 1 → 𝑛, and 𝐼௜௝ is obtained from equation (12). 
 
In dimensionless form: 
 
 𝛿௝̅ = ∑ 𝑎పഥ 𝑝̅௠௜𝐼௜௝

௡
௜ୀଵ  (16) 

 
Hence, to evaluate the unknown pressure distribution: 
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ିଵ
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The Case of Bonded Elastic Layered Solids 
 
Increasingly, contacting surfaces are coated for a variety of reasons. Coatings include the 
use of thin hard wear-resistant coatings such as diamond like carbon (DLC), Alumina, Silicon 
Nitride, Bismuth or Indium. The contact mechanics deviate from that described above, and 
semi-infinite assumption cannot be upheld. 
   
For the case of hard layered bonded elastic solids, Johnson [12] states that for the bonded 
layer thickness 𝑏 << 𝑎 (half-width of contact footprint), plane sections remain plane, and:  
 

 𝜀௫ =
ଵିణ೗

మ

ா೗
ቄ𝜎௫ +

ణ

ଵିణ
𝑝(𝑥)ቅ = 0 (18) 

 

 𝜀௭ =
ଵିణ೗

మ

ா೗
ቄ−𝑝(𝑥) −

ణ

ଵିణ
𝜎௫ቅ (19) 

 
Eliminating 𝜎௫  and replacing 𝜀௭ from: 

 𝜀௭ = −
ଵ

௕
ቀ𝛿 −

௫మ

ଶோ
ቁ (20) 

yields: 

 𝑝(𝑥) =
ଵିణ೗

ଵିଶణ೗

ா೗

ଵାణ೗

௔మ

ଶோ௕
ቀ1 −

௫మ

௔మቁ (21) 

where: 
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The above relations hold true for compressible layers: 𝜗 < 0.5, which account for most 
coatings. However, for incompressible layers, equation (21) returns a value of infinity, which 
is clearly erroneous. Johnson [12] provides expressions for incompressible layers in line 
contact, whilst the same for circular point contacts is provided in [15, 30]. 
 
Method of Solution     
 
For any rigid cylinder indenting an elastic plane, a trial load is initially used to evaluate the 
contact conditions, 𝑎଴ and 𝑝଴. Then, an initial estimate of central contact deflection is made 
for either case of semi-infinite or bonded layered elastic solid. An initial rectangular contact 
footprint as in idealised line contact is assumed. Any misaligned contact condition can also 
be taken into account, though is not considered in the current study. All negative 
deflections are discarded as the method is only applicable to compressive conditions. 
Subsequently, the influence matrix ൣ𝑎పഥ  𝐼௜௝൧ is evaluated and the pressure distribution [𝑝௠పതതതതത] 
obtained. The following convergence criterion should be met:  
 
 ห𝑝௡௘௪ − 𝑝௢௟ௗห ≤ 𝜀௣ (23) 

 
If the criterion is not satisfied, then the procedure is repeated as shown in the flowchart of 
figure 4.  
 
To obtain the final solution, the equilibrium condition must be satisfied. This means that 
contact reaction (integrated pressure distribution) should equate to the applied contact 
load 𝑊 within a specified error tolerance:  
 
 ∬ 𝑝d𝑥d𝑦 − 𝑊 ≤ 𝜀௪ (24) 
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Figure 4: Computational flowchart 

 
Determination of sub-surface stress field 
 
Having obtained the pressure distribution, the induced sub-surface stresses which can be 
responsible for inelastic deformation of the contacting surfaces can be calculated. Fatigue 
spalling/pitting can occur when the stresses reach their elastic limit and coincide with sub-
surface material flaws such as voids or inclusions. For ductile materials, the determining 
sub-surface stresses are the orthogonal reversing shear stresses, subjecting the material 
layers to repetitive cycles of compression/tension [11, 31, 32]:  
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where, 𝑧̅ =
௭

௔
 (into the depth of the contacting solid) and 𝜏௭௫ is the sub-surface reversing 

orthogonal shear stress distribution in each cross section along the width of the contact, 𝑥.  
 
Results and Discussion  
 
Figure 5 shows a typical axial pressure profile for a straight-edged (unprofiled) roller (𝑅 =
0.0127 𝑚, 𝐿 = 0.0127 𝑚) indenting a semi-infinite elastic half-space subjected to a contact 
load of  3683.6 N, based on a total bearing reaction 𝐹 ≈ 10.8 𝐾𝑁, obtained using [20, 33] 
where N=12: 

𝑊 =
ସ.଴଼ ி

ே
      (26)  

 
This expression is for the bottom roller (the highest loaded roller) with zero clearance in a 
horizontal shaft and bearing system. The other rollers experience lower contact forces at 
any instant of time. With zero clearance, the top roller is often completely unloaded.  
 

 
Figure 5: Contact mechanics prediction of finite line contact geometry 

 
The footprint for a finite line contact is a dumbbell or dog-bone shape with end-extremities 
spreading out due to an abrupt change of profile (figure 5(b)). The lateral pressure profile 
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for the roller is elliptical at all cross-sections (profiles at sections A and B are shown in figures 
5(c) and 5(d) respectively). 
 
Figures 5(c) and 5(d) also show predicted sub-surface shear stresses which are often 
responsible for inelastic deformation. Note: 𝜏௭௫ = 0 along the footprint longitudinal axis. 
 
Owing to the progressively harsh operating conditions, bearings are often coated with 
protective hard layers. Data regarding some of these hard coatings are listed in table 1.  
Cobalt-chromium bearing steel is included in the table as it is the usual substrate material. 
All coatings have a similar modulus of elasticity to the bearing steel, but they are much 
harder. Due to this and their thinness, the contact footprint is much narrower (in the lateral 
𝑥-direction) when the bearing is subjected to the same contact load, and correspondingly 
much higher pressures are generated. This is shown in Figure 6 for the same roller 
dimensions and contact load as that in figure 5.  
 
The results in figure 6 demonstrate that whilst the semi-infinite elastic assumption (Neo-
Hertzian analysis) is appropriate for the steel roller, it clearly leads to serious erroneous 
predictions for thin coatings (large differences in pressures between semi-infinite and 
layered bonded solid analysis).              
 

Table 1: Mechanical properties of solid half space and layered solids 

Material Modulus of Elasticity, E 
(GPa) 

Poisson’s 
ratio 

Layer thickness, b 
(µm) 

Steel 206 0.30 -- 
Si3N4 250 0.20 6 
Al2O3 300 0.21 3 
DLC 220 0.21 2 

 

 
Figure 6: Comparison of generated pressure distribution for semi-infinite and layered bonded solid 
(coated) surfaces (half symmetric lateral pressure profiles at the contact centre are shown) 

  
For example, in the case of alumina and DLC coated rollers, the generated pressures are  
almost five times higher than when the coatings are considered to be semi-infinite elastic 
half-spaces. Correspondingly, the contact semi-half-width is nearly a quarter of that for a 
semi-infinite assumption. This means that contact footprint is reduced with hard coatings, 
whilst the generated pressures significantly increase (the area under the distributions 
remain the same, representing the applied contact load).   
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Failure of hard coatings are often through fracture when maximum shear stress exceeds the 
condition prescribed by the Tresca criterion: 
 

𝜏௠௔௫ = 0.3𝑝଴ ≥
ఙೊ

ଶ
       (27) 

In particular, coatings can exfoliate from the substrate if this maximum shear stress 
coincides with the interfacial layer between the coating and the substrate. Although the 
generated pressures are quite large (𝑝଴ values in figure 6), the Tresca criterion is not readily 
reached because the elastic limit, 𝜎௒, is high for these hard coatings, for example 𝜎௒ =
10 𝐺𝑃𝑎 for alumina. Thus, for alumina as a layered bonded solid in figure 6: 𝜏௠௔௫ =  0.3𝑝଴ =

2.25 𝐺𝑃𝑎 <
ఙೊ

ଶ
≈ 5 𝐺𝑃𝑎.          

 
Concluding Remarks 
 
The paper shows that it is essential to use appropriate contact mechanics analysis to 
accurately predict prevailing conditions for thin coated surfaces. The use of idealised 
infinite line contacts with semi-infinite elastic half-space analysis can lead to significant 
errors.     
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Nomenclature 
 
Roman Symbols: 
𝑎଴ Semi-half-width at the centre of the 

contact   
𝑎ଵ Semi-half-width at any contact cross-

section 
𝑏 Layer thickness 
𝑐 Half-width of rectangular computational 

element 
𝐷 Roller diameter 
𝐸 Effective Young’s modulus of elasticity 
𝐸ଵ, 𝐸ଶ Modulus of elasticity of contacting 

bodies  
𝐸௟  Modulus of elasticity of the layer 
𝐸∗ Effective elastic modulus of the contact  
𝐹 Bearing reaction 
𝐿 Length roller (Contact footprint length) 
𝑁 Number of rollers in the bearing 
𝑛 Number of computational elements 
𝑝 Pressure 
𝑝଴ Central contact pressure 

𝑝௠ Maximum pressure of any 
computational element  

𝑅 Effective contact radius 
𝑊 Contact load 
𝑥, 𝑦 Co-ordinates of a point of deflection 
𝑥ଵ, 𝑦ଵ Co-ordinates of a point of pressure 
𝑧 Co-ordinate into the depth of elastic 

solid 
 
Greek Symbols:  
𝛿 Deflection 
𝛿଴ Deflection at the centre of the contact 
𝜀௣ Limit of convergence for pressures 
𝜀௪ Limit of convergence for elastostatic 

equilibrium 
𝜗 Poisson’s ratio 
𝜗௟ Poisson’s ratio for the layer 
𝜏௭௫ Orthogonal reversing shear stress 
𝜏௠௔௫  Maximum shear stress 
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