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A B S T R A C T

Colorectal cancer is one of the most common cancers in the world. While colonoscopy
is an effective screening technique, navigating an endoscope through the colon to detect
polyps is challenging. A 3D map of the observed surfaces could enhance the identi-
fication of unscreened colon tissue and serve as a training platform. However, recon-
structing the colon from video footage remains difficult. Learning-based approaches
hold promise as robust alternatives, but necessitate extensive datasets. Establishing a
benchmark dataset, the 2022 EndoVis sub-challenge SimCol3D aimed to facilitate data-
driven depth and pose prediction during colonoscopy. The challenge was hosted as part
of MICCAI 2022 in Singapore. Six teams from around the world and representatives
from academia and industry participated in the three sub-challenges: synthetic depth
prediction, synthetic pose prediction, and real pose prediction. This paper describes
the challenge, the submitted methods, and their results. We show that depth prediction
from synthetic colonoscopy images is robustly solvable, while pose estimation remains
an open research question.

© 2024 Elsevier B. V. All rights reserved.

1. Introduction

The Endoscopic Vision (EndoVis) challenges at MICCAI
have been an accelerator for surgical data science for several

∗Corresponding authors:
e-mail: arau@stanford.edu (Anita Rau), sophia.bano@ucl.ac.uk

(Sophia Bano), ymjin@nus.edu.sg (Yueming Jin)

years (Maier-Hein et al., 2017, 2020, 2022). Past challenges
have evaluated a range of tasks such as segmentation, image
generation, or action triplet detection1. Although the applica-
tions are widely different, all challenges share a profound con-
tribution to their respective research fields by improving data

1https://endovis.grand-challenge.org/
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availability and bringing attention to research gaps. In the spirit
of this tradition, the SimCol3D - 3D Reconstruction during
Colonoscopy challenge was born. SimCol3D is the first chal-
lenge to contribute both synthetic and real colonoscopy proce-
dure sequences to address depth estimation and 6D pose esti-
mation from monocular colonoscopy.

Colorectal cancer (CRC) is a leading cause of death (Araghi
et al., 2019), third only to lung and breast (for female) and
prostate (for male) cancer. Despite its prevalence, survival
rates are high among individuals undergoing screening (Kamin-
ski et al., 2010). The slow progression of CRC allows for
an extended window for detecting and treating pre-cancerous
growths. But to be treated, such growths first need to be ac-
curately detected—an exceedingly difficult task. Fortunately, a
cohort of AI-based platforms has declared missed polyps a relic
of the past (Puyal et al., 2022; Ji et al., 2021; Zhao et al., 2022;
Chadebecq et al., 2023), making it possible to assist clinicians
in identifying polyps on the colon mucosa during colonoscopy
in real-time. Yet, challenges persist, particularly in detect-
ing polyps hidden behind folds, which constitute up to three-
quarters of all missed polyps (Pickhardt et al., 2004). Addition-
ally, other lesions, such as dysplasia in Inflammatory Bowel
Disease (IBD) patients, pose an exceptional challenge, neces-
sitating meticulous screening of the entire colon mucosa. The
quality of the screening is often quantified as the time taken to
withdraw the colonoscope, a critical aspect of the procedure for
lesion detection. Withdrawal time is a key surrogate marker for
adenoma detection rate (Butterly et al., 2014), which, in turn,
is associated with post-colonoscopy CRC rate (Corley et al.,
2014). But withdrawal time as a measure of performance has
significant limitations. It measures overall time and fails to en-
sure sufficient attention to each colon segment. A 3D map could
help provide more useful quality indicators such as withdrawal
time per segment, or ratio of screened colon mucosa.

Researchers have thus proposed to generate an on-the-fly 3D
map of the colon during a colonoscopy that can flag areas of
the colon that need to be re-screened for colorectal polyps. But
providing such a map is difficult. The poor quality of real
colonoscopy videos, caused by artifacts such as specularities,
air bubbles, blur, saturated pixels, and lack of contrast Ali et al.
(2021), presents a significant hurdle to feature-based methods.
Repetitive textures and geometries, extreme deformation, and
challenging and view-dependent lighting additionally challenge
feature matching between images.

Data-driven approaches circumvent the need for robust fea-
tures and divide the task into depth prediction and pose estima-
tion. But despite the significant progress made by deep learning
in reconstructing 3D scenes [cite], the translation of such ap-
proaches to colonoscopy is limited by data availability. While
cities or rooms can be scanned using lidar or infrared sensors,
such scanners are not deployable within a spatially constrained
colonoscope. To date, there exists no dataset containing RGB
images, camera poses, and depth maps from a real colonoscopy.
Attempts to work around this limitation, such as registering pre-
viously acquired computer tomography (CT) scans of the colon
with images from the procedure, fail due to the immense defor-
mation of the colon during its inspection. Similarly, the cali-

bration of non-medical-grade structured-light sensors, electric-
magnetic tracking sensors, and standard colonoscopes is excep-
tionally difficult, often inaccurate, and only applicable to phan-
toms that deviate significantly in visual and haptic characteris-
tics from real colons. Synthetic data, though visually distinct,
offers precise and abundant annotations.

Previous work leveraging synthetic depth data mostly fo-
cused on bridging the domain gap between real and synthetic
data (Mahmood and Durr, 2018; Rau et al., 2019; Mathew et al.,
2020; Cheng et al., 2021; Itoh et al., 2021; Rodriguez-Puigvert
et al., 2022) and employed existing depth networks. In contrast,
the challenge organizers were curious to explore depth predic-
tion without accounting for the domain shift between real and
synthetic data and chose to evaluate methods directly on syn-
thetic depth. Data-driven pose prediction had yet to be explored
widely before the SimCol3D challenge, mostly due to the lack
of camera pose ground truth (Rau et al., 2022). We therefore
provided synthetic and real pose labels to differentiate between
the scenario in which pose networks can be learned in a super-
vised manner and a scenario where no ground truth is available.

We believe a mapping technology for colonoscopy to be
within reach and created the SimCol3D challenge to bringing
us one step closer to reliable 3D reconstruction of the colon.

In this paper, we

• introduce the SimCol3D challenge: the first of its kind for
depth and pose prediction in colonoscopy;

• analyze each participating group’s results, identifying
trends and best practices across three subtasks: synthetic
depth prediction, synthetic pose estimation, and real pose
estimation;

• establish a benchmark for future comparisons of depth and
pose estimation methods in colonoscopy;

• introduce synthetic data based on two additional human
CT scans, augmenting our existing dataset;

• provide COLMAP labels for real colonoscopy sequences;

• highlight avenues for future investigation.

2. Related work

To date, a profound gap exists between research efforts in
depth prediction and pose estimation, both intrinsic subtasks of
3D reconstruction. Depth prediction solves the task of regress-
ing or classifying each pixel in an image, and such tasks are
more easily learnable for neural networks if sufficient training
data exists. However, understanding camera movement and its
geometric implications through regression alone is a much more
challenging task and remains underexplored (Rau et al., 2022).
Some works have thus focused on leveraging the depth and pose
networks in a mutual framework. This section briefly reviews
essential works in the field to give context to the participants’
contributions.

Most works on depth prediction during colonoscopy have
two things in common: they are borrowed from general com-
puter vision approaches, and they incorporate synthetic data in
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some way. Some notable virtually generated or phantom-based
public datasets were proposed by Rau et al. (2019), Zhang et al.
(2020), Ozyoruk et al. (2021), Bobrow et al. (2022), and (Rau
et al., 2022). While they were an important addition to the re-
search community, they all consist of one anatomy only, and
cannot be used to evaluate accuracy on an unseen patient. Mah-
mood and Durr (2018) proposed one of the first depth networks
for colonoscopy and is based mainly on convolutional neural
fields proposed in (Liu et al., 2015). The authors trained one
network for depth prediction on synthetic data and used a sec-
ond, independently optimized network to translate between the
appearance of real and synthetic images. Rau et al. (2019) use
the well-known pix2pix network (Isola et al., 2017) to inte-
grate the depth and domain translations networks into a sin-
gle framework trained on both synthetic and real data. Cheng
et al. (2021) propose to train a well-known GAN (Wang et al.,
2018) on synthetic data with supervision and, in a second, inde-
pendent step, train the initialized network on real images with
self-supervision. Mathew et al. (2020) base their method on
the well-known CycleGAN network that maps virtual images
to real images and vice versa. Itoh et al. (2021) also bor-
row the cycle-consistency losses from CycleGAN and decom-
pose images based on a Lambertian-reflection model to train
their network on synthetic and real data. Rodriguez-Puigvert
et al. (2022) based their method on MonoDepth2 (Godard et al.,
2019) and trained an ensemble method with a teacher trained on
synthetic data. Though these methods help progress the field,
all of these method primarily focus on bridging the domain gap
between synthetic and real images, not on improving the ar-
chitectures of the respecitve depth networks. Accordingly, the
evaluation protocols focused on real colonoscopy frames that
are oftentime borrowed from in-house datasets. A common
benchmark allowing a systematic comparison of these methods
is missing.

While methods that predict depth only largely rely on syn-
thetic data, approaches combining depth and pose networks
can directly learn from real data. Bae et al. (2020) use sparse
SfM pseudo ground truth to supervise their colon reconstruc-
tion pipeline. They reconstruct small colon sections from eight
consecutive frames using the derived poses and sparse depth su-
pervision to guide the initial U-Net based (Ronneberger et al.,
2015) depth estimation. Ma et al. (2019) propose a SLAM
pipeline that integrates a well-known recurrent neural net for
depth and pose estimation Wang et al. (2019). Freedman et al.
(2020) and Ozyoruk et al. (2021) propose self-supervised net-
works based on the popular depth and pose networks (Gordon
et al., 2019) and (Bian et al., 2019), respectively. All these ap-
proaches do not require synthetic data; however, they can only
be as accurate as the underlying feature-based SfM reconstruc-
tion. Additionally, these works use in-house datasets and do not
provide a sufficient comparison between each other.

3. Tasks and datasets

3.1. Challenge Tasks
The SimCol3D challenge aims to facilitate depth and camera

pose prediction during colonoscopy by providing a new pub-
lic dataset with ground truth depths and poses for training and

Fig. 1: Overview of the real images (top), synthetic images (center), and syn-
thetic depth maps (bottom) used in the challenge.

Sub-dataset # Train traj. # Test traj. # Images
Synthetic colon I (Public mesh) 12 3 18k
Synthetic colon II (Patient A) 12 3 18k
Synthetic colon III (Patient B) 0 3 1.8k
Real Sequences 59 7 -

Table 1: Overview of the datasets in the SimCol3D challenge, indicating the
number of trajectories (traj.) and images per scene. The real sequences provide
videos only.

testing. The challenge comprises three tasks: Task 1 invited
participants to train networks to predict depth from simulated
colonoscopy images. Task 2 evaluates predicted camera poses
from simulated colonoscopy. Task 3 extends the challenge into
the realm of real-world clinical practice, tasking participants
with predicting poses from real colonoscopy procedures.

3.2. Data

The SimCol3D challenge encompasses both synthetic and
real colonoscopy sequences. Table 1 provides an overview of
the data used in the challenge, and Figure 1 shows illustrates
qualitative examples.

3.2.1. Simulated colonoscopy data for Tasks 1 and 2
The synthetic data for Tasks 1 and 2 builds upon the dataset

introduced in (Rau et al., 2022), but expands its scope from one
anatomy (Synthetic Colon I) to encompass three distinct hu-
man colons (Synthetic Colons I, II, and III). Two of the three
subsets (namely I and II) contain 15 trajectories of which 12
were randomly assigned for training and three for testing. Syn-
thetic Colon III only contains 3 trajectories for testing and no
training data. This setup allows to evaluate generalizability
to new anatomies. Each training trajectory contains 1201 im-
ages, ground truth depth maps, and ground truth camera poses.
Each test trajectory contains either 1201 or 601 frames and
their labels. The simulated colon meshes were extracted from
computer tomography scans of human colons, and the images
were rendered using a Unity simulation environment (Rau et al.,
2019). The CT scan for Synthetic Colon I is publicly available
(Ozyoruk et al., 2021), while the CT scans for Colons II and III
were acquired at University College London Hospital. In the
simulation environment, a virtual colonoscope followed a path
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Fig. 2: Synthetic Colons I, II, and III in Unity environment with camera paths
along the center of the mesh. Synthetic Colons I and II include training and test
trajectories. Synthetic Colon III provides test trajectories only.

through the center of the meshes recording rendered RGB im-
ages, depth maps, and camera poses. This path was randomly
manipulated each time a new trajectory was recorded resulting
in different, random trajectories within the same anatomy. In
total, the training data for Task 1 and Task 2 contains 14,412
frames, and the test set contains 9,009. For each frame the chal-
lenge organizers provided the corresponding:

• 3 × 3 camera intrinsics matrix saved as txt file.

• Depth map in png format, including the depth value for
each pixel in the corresponding RGB image.

• Absolute camera pose in the Unity coordinate frame pro-
vide in a .txt file. We represent camera pose as 7D vec-
tor [tx, ty, tz, qx, qy, qz, qw], where t denotes the translation
along the x-, y-, and z-axes, and q denotes the rotation in
quaternion representation, where w denotes the scalar part,
and x, y, and z describe the imaginary parts.

More details about the data generation process and the
coordinate systems used to represent the data can be found in
the original publication (Rau et al., 2022). The full synthetic
dataset is publicly available here: https://www.ucl.ac.uk/
interventional-surgical-sciences/simcol3d-data.
Participants were allowed to use additional datasets as long as
they were publicly available.

3.2.2. Real patient data for Task 3
For Task 3, the testing data contained three patients’

anatomies with 1–3 trajectories from each and 7 in total. The
real data comes from the EndoMapper dataset (Azagra et al.,
2022), which is a collection of complete endoscopy sequences
obtained during regular medical procedures2. It includes 59 se-
quences with over 15 hours of video and is the first endoscopic
dataset to include geometric and photometric endoscope cali-
bration. The dataset also includes meta-data and annotations.
The participants were encouraged to train their models on the
EndoMapper sequences that were not in the test set. For this
task, we generated COLMAP pseudo ground truth of the 7 test-
ing sequences for method evaluation. As COLMAP is not re-
liable in colonoscopy (therefore the need for this challenge),
two challenge organizers and a gastroenterologist , qualitatively
verified each of the generated COLMAP trajectories and sparse

2https://www.synapse.org/Synapse:syn26707219/wiki/615178

point clouds and chose those that were visually coherent with
respect to the direction of the movement of the endoscope ob-
served in the corresponding video.

3.3. Evaluation metrics

3.3.1. Task 1: Depth estimation
We utilize three standard evaluation metrics to assess the per-

formance of the depth prediction methods. We define the per
image errors as

L1 =
1
D

∑
d=1,...,D

||Y(d) − s · Y
′

(d)||1 (1)

Lrel = µd

(∥∥∥∥∥Y(d) − s · Y ′(d)
Y(d)

∥∥∥∥∥
1

)
(2)

LRMS E =

√
1
D

∑
d=1,...,D

(Y(d) − s · Y ′ (d))2 (3)

where Y denotes the ground truth depth map, Y
′

denotes the
predicted depth map, D is the number of pixels in Y , and µd

represents the median calculated for all valid arguments d. Let

Ȳi =
1
D

∑
d=1,...,D

Yi(d), (4)

denote the mean depth over all pixels in a depth map i, then the
scale s is calculated per trajectory as

s =
∑

i∈I Ȳi · Ȳ
′

i∑
i∈I Ȳ ′i · Ȳ

′

i

, (5)

where I denotes the number of images in a trajectory. We chose
to evaluate the scaled depths, as the task of monocular depth es-
timation is ill-posed and networks are expected to predict depth
up to scale. We compute the L1 loss as the mean of the ab-
solute differences between the ground truth depth Y(d) and the
predicted depth Y

′

(d) over all pixels in a depth map. As the
relative loss, Lrel, is sensitive to outliers, we use the median in-
stead of the mean over the per-pixel relative L1 errors. Lastly,
we measure the LRMS E as it weights outliers more heavily than
the L1 loss. The per-depth map errors are then averaged over all
depth maps in a scene.

As we found all three metrics to be equally descriptive of
performance, but due to their different scales not comparable,
we use a point system for Task 1. We report the final score,∑

1, as the sum of ranks per scene. For each of the three scenes
and each of the three metrics, the winner received six points,
the runner-up five points, etc. The task winners were the groups
with the most points.

3.3.2. Task 2: Camera pose estimation on simulated data
To evaluate the predicted camera poses, we first composite

the relative poses Ωi to produce the complete trajectory of ab-
solute poses Pi. The absolute pose of a camera τ in the world
space is P1Ω1 · · ·Ωτ−1, where each Ωi sequentially projects the
initial pose P1 to the next one. As monocular video can only

https://www.ucl.ac.uk/interventional-surgical-sciences/simcol3d-data
https://www.ucl.ac.uk/interventional-surgical-sciences/simcol3d-data
https://www.synapse.org/Synapse:syn26707219/wiki/615178
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be interpreted up to scale, the predicted trajectory needs to be
scaled using:

srel =
Στtrans(Ωτ)T · trans(Ω′τ)
Στtrans(Ω′τ)T · trans(Ω′τ)

, (6)

where trans denotes the translation of a projection matrix. We
then assess the scaled predicted trajectory’s accuracy with the
Absolute Translation Error (AT E), Relative Translation Error
(RT E), and Rotation Error (ROT ).

RT E = µτ(||trans(Ω−1
τ Ω

′

τ)||)

AT E = µτ(||trans(Pτ) − trans(P
′

τ)||)

ROT = µτ(
trace(Rot(Ω−1

τ Ω
′

τ)) − 1
2

·
180
π

)

(7)

where Rot denotes the projection rotation, Ω
′

, P
′

are the scaled
predicted relative and absolute poses, and || · || is the two-norm.
The AT E measures drift and the overall consistency of a pre-
dicted trajectory. The ROT measures the magnitude of the ro-
tation errors locally. The RT E reflects both translation and ro-
tation errors locally. To achieve a small RT E, the predicted
relative pose Ω′ must be close to the ground truth Ω, so that
Ω−1
τ Ω

′

τ is close to an identity matrix. This is achieved, when
both trans(Ω′) and Rot(Ω′) are accurate. We consider the for-
ward direction only. Evaluating these three evaluation metrics,
we obtain a comprehensive assessment of the performance of
the pose prediction models. To determine the winner of Task
2, we define the task loss

∑
2 as the weighted average of RTEs

on the three scenes, where we weight SynCol III twice to ac-
count for the increased difficulty of pose prediction on an un-
seen scene.

3.3.3. Task 3: Camera pose estimation on real-world data
We use the same evaluation metric for Task 3 as for Task 2.

In particular, we determine ATE, RTE, and ROT as defined in
Equation 7. However, we scale the entire trajectory based on
the absolute poses to reflect that we are more interested in the
global consistency in Task 3, than in local accuracy. The scaling
factor in Task 3 is defined as:

sabs =
Στtrans(Pτ)T · trans(P′τ)
Στtrans(P′τ)T · trans(P′τ)

, (8)

The task score
∑

3 for Task 3 has three components: ATE, RTE,
and ROT averaged over all seven scenes.

3.4. Challenge organization
The challenge was a one-time event with fixed submission

deadline of September 2022. In order to access the train and test
data, participants had to register participation in the challenge
on the challenge website3. The teams provided their predic-
tions for the test sets via the challenge website based on detailed
submission guidelines including docker templates and evalu-
ation scripts that participants could use for validation 4. The

3https://www.synapse.org/Synapse:syn28548633/wiki/
4https://github.com/anitarau/simcol

ground truth for the test data was published after the challenge
had ended. The participants were not required to publish their
code, but links to the code bases of the teams that chose to are
provided in Section 4. Ethics approval was not necessary for
this challenge. In total, we received and approved 51 challenge
registration requests and 13 team registration requests.

4. Methods for Task 1: Depth prediction from synthetic im-
ages

For Task 1, final submissions were received from six teams.
Table 2 summarizes the key features of the teams’ methodology
for Task 1. Team details and the methodology proposed by each
participating team are presented below.

4.1. FCBFormer adaptation by Team CVML

Team CVML are Edward Sanderson and Bogdan J. Ma-
tuszewski from the University of Central Lancashire (UK).
Team CVML proposed the FCBFormer-D (as shown in Fig. 3
(I)), which is an adaptation of the FCBFormer (Sanderson and
Matuszewski, 2022).

The overall architecture of FCBFormer-D is shown in
Fig. 3(I-a). The method consists of two branches: a
transformer-based branch (TB) (Fig. 3(I-b)) extracting global
features, and a convolutional branch (CB) (Fig. 3(I-c)) extract-
ing local features that the TB could potentially neglect. For
the Transformer branch, the Pyramid Vision Transformer v2
(PVTv2) (Wang et al., 2022) (B3 variant pre-trained on Im-
ageNet), which serves as image encoder and provides robust
multiscale features for dense prediction, is employed. PVTv2
then feeds into a lightweight decoder. The convolutional branch
is based on a UNet-style architecture inspired by (Nichol and
Dhariwal, 2021) and includes multi-head self-attention at the
lower levels to provide the model with global context for this
feature extraction. The feature maps from both branches are
then concatenated and fused using a UNet-style architecture
also inspired by (Nichol and Dhariwal, 2021) in the fusion mod-
ule (FM) Fig. 3(I-d).

Finally, the output of the fusion module is passed through the
prediction head (PH) Fig. 3(I-e). The prediction head is a 1x1
convolutional layer with sigmoid activation that outputs dense
depth map. The depths are then upsampled to the original size
of 475×475 using bilinear interpolation.

The implemented network takes a 352×352 RGB image with
pixel intensities in the range [−1, 1] as inputs. This involves
resizing the 475 × 475 8-bit RGB images using bilinear inter-
polation with anti-aliasing prior to normalization. The output
of the proposed network then provides a 475 × 475 depth map
with relative depth values in the range [0, 1]. During training
and validation, the ground truth depth values were scaled to a
range of [0, 1], corresponding to [0cm, 20cm], and the model
was optimized to minimize the mean squared error (MSE) loss.
Team CVML used AdamW optimizer with a learning rate of
1e−4, which was scheduled to halve when the MSE on the val-
idation data did not decrease over 10 epochs. The inputs were
randomly horizontally and vertically flipped with a probability
of 0.5. The model was trained for 300 epochs with a batch size

https://www.synapse.org/Synapse:syn28548633/wiki/
https://github.com/anitarau/simcol
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Fig. 3: Architecture overview for Task 1 (depth prediction) of the 6 participating teams. (I) Team CVML adapted FCBFormer (Sanderson and Matuszewski, 2022),
(II) Team EndoAI utilized GLPDepth (Kim et al., 2022) with Segformer encoder (Xie et al., 2021), (III) Team IntuitiveIL applied multiple DoG filters with varying
scales as preprocessing and used a NeW CRF network for depth prediction, (IV) Team KLIV utilized SUMNet (Nandamuri et al., 2019), (V) Team MIVA utilized
DenseDepth (Alhashim and Wonka, 2018) as an encoder-decoder network with skip connections, (VI) Team MMLab utilized Swin-UNet (Cao et al., 2023).
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Table 2: Summary of the participating teams of the SimCol Challenge – Task 1

Team name Algorithm T/C Loss function Preprocessing Data augmentation Post-processing

CVML FCBFormer adaptation
(Sanderson and Matuszewski, 2022) T&C MSE

Alpha channel removed, pixel intensity
normalization, resize, depth scaling Horizontal & vertical flips None

EndoAI GLPDepth
(Kim et al., 2022) T&C SILog Normalization, Horizontal flip Vertical cut depth

Conv2D-ReLU-Conv2D
block to adjust the resolution
of output images

IntuitiveIL
NeWCRFs
(Yuan et al., 2022) T SILog

GC, DoG,
normalization, HSV AS, FA None

KLIV SUMNet
(Nandamuri et al., 2019) C

MAE +MSE
+ SIL + BL Resizing, normalization Low-pass GB

MIVA DenseDepth
(Alhashim and Wonka, 2018) C MAE + SSIM normalization Horizontal flip None

MMLab Swin-UNet
(Cao et al., 2023) T L1 Downsampling None Upsampling

T: Transformer backbone; C: Convolutional backbone; MAE: Mean Absolute Error; MSE: Mean Squared Error; BL: Berhu Loss; GC: Gamma Correction; DoG: Difference of Gaussian
filter; AS: Average Shape; FA: Feature Augmentation; GB: Gaussian Blur; SSIM: Structural Similarity loss; SILog: Scale-Invariant Logarithmic loss; HSV: Hue Saturation Value.

of 24. The network weights with the smallest MSE on the val-
idation set were saved. Training was performed on an ASUS
ESC8000-G4 GPU server with six NVIDIA RTX A6000 48GB
GPUs.

The groups’ method is inspired by their observation that a
standard UNet performs relatively weak at inferring the edges
of the geometry, as well as the depth of far away surfaces. Their
network thus aims to capture both, global features that help un-
derstand depth at all distances, and local features that can infer
steps in depth.

4.2. GLPDepth adaptation by Team EndoAI

Team EndoAI are Jiwoon Jeon from EndoAI (Korea) and
Jae Young Lee, Dong Jae Lee and Woonghyun Ka from Korea
Advanced Institute of Science and Technology (Korea), who
participated in all three Tasks. Team EndoAI proposed to use
GLPDepth (Kim et al., 2022), a Transformer-based network for
depth prediction (as shown in Fig. 3(b), for the depth prediction
task because this method has shown higher generalization abil-
ity and robustness compared to previously developed networks.
To obtain the depth map prediction Dpred from the input IRGB,
the local and global features are fused by Selective Feature Fu-
sion (SFF) in the decoder. For the encoder, Segformer (Xie
et al., 2021) is utilized.

The last layer of the original GLPDepth network decoder is
modified to include a Conv2D-ReLU-Conv2D block to adjust
the resolution of the resulting depth map. Further, to avoid scale
adjusting, the model is directly trained to predict depth maps
in the range of [0, 1] (corresponding to [0cm, 20cm]) instead
of using median scaling. GLPDepth uses the Scale-Invariant
Logarithmic (SILog) loss (Eigen et al., 2014) given by:

L(Dpred,DGT ) =

√√√
1
T

∑
i

d2
i −

 1
T

∑
i

di

2

, (9)

where di is the pixel-wise log loss

di = log(Dpred(i)) − log(DGT (i)) (10)

and T denotes the number of pixels in the depth map. For train-
ing the GLPDepth model, the original hyperparameters from
(Kim et al., 2022) are used. The model is fine-tuned for 20
epochs using the CosineAnnealingWarmRestarts learning rate

scheduler (Loshchilov and Hutter, 2016) on the challenge met-
rics: L1 depth error, RMSE, and relative depth error. The final
model is chosen based on the performance of all metrics on the
validation set.

4.3. NewCRFs adaptation by Team IntuitiveIL

Team IntuitiveIL are Erez Posner, Netanel Frank, and Moshe
Bouhnik from the Intuitive Surgical, who proposed to adapt
Neural Window Fully-connected Conditional Random Fields
(NeW CRFs) (Yuan et al., 2022) to accomplish colonoscopy
monocular depth estimation leveraging the advantages of fully-
connected (FC) CRFs (He et al., 2004). In addition, they
employed data augmentation techniques to address the is-
sue of illumination changes, which involved creating partially
illumination-invariant images.

For depth estimation, NeW CRFs are selected because they
overcome the limitations of traditional depth estimation meth-
ods that rely on Markov Random Fields (MRFs) or CRFs (Sax-
ena et al., 2008, 2005). NeW CRFs embed a vision transformer
to capture pairwise interactions with multi-head attention as the
encoder and the neural CRFs module in a network as the de-
coder. NeW CRFs can capture the relationship between any
node in a graph, making them much stronger than neighbor
CRFs. By splitting the input into windows and performing
FC-CRFs optimization within each window, NeW CRFs reduce
computation complexity while maintaining the advantages of
FC-CRFs. Additionally, the use of multi-head attention within a
neural CRFs module further improves depth estimation perfor-
mance. As shown in Fig. 3III(b), the encoder initially extracts
features across four levels. A Pyramid Pooling Module (PPM)
combines both global and local data, generating the prelimi-
nary prediction X using the uppermost image feature F. Subse-
quently, within each level, the neural window fully-connected
CRF component constructs multi-head energy from X and F,
refining it to an improved prediction X’.

In colon augmentation, the method originally proposed in
(Ye et al., 2014) for face recognition is utilized, which con-
tains the following steps to create the grayscale illumination-
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invariant image:

Igamma = GammaCorrection(Image)
IDoG = DoG(Igamma)

Inorm =
IDoG

mean(|IDoG |
a) 1

a

Inorm =
Inorm

mean(min((τ), |Inorm|
a))

1
a

Inorm =
τ ∗ tanh(Inorm)

τ
,

(11)

where GammaCorrection involves gamma correcting all im-
ages to the same value, and DoG represents the difference of
Gaussians filter. In the augmentation process, the original DoG
image is replaced with an average of several DoG filters with
varied scales (as illustrated in Fig. 3III(a)). This augmentation
aims to improve local texture and accommodates features of
various sizes. Additionally, the input image is changed from an
RGB to an HSV representation, the value channel is swapped
for the algorithm’s output in grayscale, and the resulting im-
age is then converted back to an RGB representation. This al-
lowed stronger features even in the colon’s distant areas. Scale-
Invariant Logarithmic (SILog) loss is utilized as the loss func-
tion. SILog supervises the training by first calculating the log-
arithm difference between the predicted and the ground-truth
depth map. For K pixels with valid depth values in an image,
the scale-invariant loss is computed to measure the performance
of the depth estimation (Yuan et al., 2022).

4.4. SUMNet adaptation by Team KLIV

Team KLIV are Varshini Elangovan from College of Engi-
neering, Guindy (India), and Sista Raviteja, Rachana Sathish,
Debdoot Sheet from the Indian Institute of Technology Kharag-
pur (India). KLIV proposed to apply a fully convolutional neu-
ral network SUMNet (Nandamuri et al., 2019) to effectively
generate colon depth maps from frame buffers while preserv-
ing conformity around small structures and preventing the loss
of critical information.

Concretely, SUMNet (Nandamuri et al., 2019) consists of an
encoder network with VGG11 architecture, activation concate-
nation, and pooling index transfer. Several loss functions are
taken into account during the training process, including Mean
Absolute Error (MAE), Mean Squared Error (MSE), scale-
invariant loss (Eigen et al., 2014), and Berhu loss (Carvalho
et al., 2018). In order to reduce the aliasing effect in the pre-
dicted depth maps, a post-processing step is used to apply a
Gaussian Blur low-pass filter with a kernel size of 7 × 7.

From the provided training data 10,309 frames are used for
training, and 3,603 frames are used for validation. To give a
more thorough summary, the frame buffers in the simulated
dataset were initially in RGBA format, but for network com-
patibility, they are converted to RGB images and resized to 448
× 448. Additionally, the images are normalized using the train-
ing dataset’s mean and standard deviation. The depth maps are
scaled to 448 × 448 and translated into grayscale images. These
preprocessed images and depth maps are then used for training

the SUMNet model for depth estimation of synthetic colono-
scopic images. The network is implemented in PyTorch and
trained for 50 epochs on an Nvidia GeForce GTX TITAN X
GPU with a batch size of 16 using the ADAM optimizer with
an initial learning rate of 0.001 and an exponential learning rate
scheduler with a decay factor of 0.98. The complete training
took 24 hours.

The effectiveness of the model and the reliability of its pre-
dictions are assessed using the L1 error, relative error, and root-
mean-square error. The model trained on MSE loss predicted
results that are more reliable and accurate, in comparison to
the models trained on the other loss functions. KLIV’s code is
available5.

4.5. DenseDepth adaptation by Team MIVA
Team MIVA are Zhengwen Li and Yichen Zhu from Zhe-

Jiang University (China), who participated in all three Tasks.
MIVA used DenseDepth (Alhashim and Wonka, 2018) which
is a fully convolutional encoder-decoder architecture with
skip connections (as shown in Fig. 3(V)). The encoder is a
DenseNet-169 (Huang et al., 2017) pre-trained on ImageNet
(Deng et al., 2009) as proposed by the original DenseDepth.
The authors also experimented with a DenseNet-201, which
performed worse in their experiments. To train the network,
MIVA used the loss L as the weighted sum between the depth
and SSIM loss:

L(Y,Y ′) = 0.1 · Ldepth(Y,Y ′) + LS S IM(Y,Y ′). (12)

The Loss term Ldepth is the point-wise L1 loss defined on the
depth values and LS S IM uses the Structural Similarity (SSIM).
The authors replace the original augmentation strategy with a
50% random horizontal flipping and image normalization only.
The synthetic data provided is split into training set(Rau et al.,
2022) and validation set in the way recommended by the Sim-
Col3D challenge organizers, and the mean and standard devia-
tion in normalization are calculated from all images in the train-
ing set. The participants trained their method on an NVIDIA
GeForce RTX 3090 GPU using a batch size of 16 and a learn-
ing rate of 10−4 with Adam optimizer for 40 epochs.

4.6. Swin-UNet adaptation by MMLAB
Team MMLAB are Seenivasan Lalithkumar, Islam Mo-

barakol and RenHongliang are from National University of Sin-
gapore (Singapore), Imperial College London (UK) and Chi-
nese University of Hong King (China), who participated in Task
1 and 2.

For the depth estimation task, a Unet-like Swin-Transformer
(Swin-UNet) (Cao et al., 2023) (Fig. 3(VI)), a medical image
segmentation model, is used. Swin-UNet forms a hierarchi-
cal Swin Transformer with shifted windows in the encoder, a
decoder with patch expanding layer to perform upsampling on
the feature maps and skip connections for local-global seman-
tic feature learning. Overall, there are three blocks of the en-
coder and corresponding decoder in Swin-UNet. The model

5https://github.com/SistaRaviteja/

Colonoscopy-Depth-Estimation

https://github.com/SistaRaviteja/Colonoscopy-Depth-Estimation
https://github.com/SistaRaviteja/Colonoscopy-Depth-Estimation
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Table 3: Summary of the participating teams of the SimCol3D Challenge –
Task 2 and Task 3

Team Task Algorithm Loss function Data augmentation

EndoAI 2 (Pose Syn.)
MonoDepth2
(Godard et al., 2019) MSE None

3 (Pose Real)
CycleGAN +
MonoDepth2 Same as Task 2

CycleGan real-to-syn
conversion

MIVA 2 (Pose Syn.)
SC-sfMLearner
(Bian et al., 2021)

SC-sfMLearner
+ Densedepth Image normalization

3 (Pose Real)
CycleGAN +
SC-sfMLearner Same as Task 2

Crop, resize, CycleGAN
real-to-syn conversion

MMLab 2 (Pose Syn.)
Curriculum learning,
linear regression MSE None

3 (Pose Real) N/A N/A N/A

was trained using L1 loss and SGD optimizer with a learning
rate of 0.01, a decay factor of 1e-4, and a momentum of 0.9. The
input images are resized to 224×224 during training and upsam-
pled to the original size at test time after the prediction. The par-
ticipants experimented with different loss functions such as L1,
mean square error (MSE), structural similarity index (SSIM),
and binary cross entropy (BCE). Ultimately, the L1 loss outper-
formed other loss functions with an MSE of 0.000115 and an
SSIM of 0.984670. The team’s code is publicly available6.

5. Methods for Task 2 and 3: Pose prediction from synthetic
and real images

In total, 3 teams (EndoAI, MIVA and MMLab) participated
in Task 2 (pose prediction from synthetic), two of which (En-
doAI and MIVA) also participated in Task 3 (pose prediction
from real images). Table 3 provides an overview of the key fea-
tures of the teams’ methodology. The remainder of this section
describes the participants’ methods in detail.

5.1. SC-SfMLearner adaptation by MIVA
For the pose estimation task, MIVA used a method based

on SC-SfMLearner as shown in Fig. 4(II), which includes two
parts: a depth estimation module and a pose estimation mod-
ule. In addition, they replaced the DispResNet depth estima-
tion module in the original SC-SfMLearner with a DenseDepth
network. As ground truth depth for synthetic data was known,
MIVA made use of this information while training the formerly
self-supervised SC-SfMLearner. To supervise the depth mod-
ule, the loss of Densedepth was added to the original loss of
SC-SfMLearner. The modified loss function is

L = LS C−s f m f ormer + ω · Ldensedepth, (13)

where the weight ω was set to 1.
The team divided the dataset according to their split for Task

1 and also normalized the input images. MIVA’s model was
trained on an NVIDIA GeForce RTX 3090 GPU with a batch
size of 8, learning rate of 10−4 and Adam optimizer. The net-
work was trained for 40 epochs.

For the Task 3, MIVA used CycleGAN, which consists of
two generators and two discriminators as shown in Fig. 4(IV),
where A represents the real colonoscopy image domain, and B

6https://github.com/lalithjets/SimCol3D_challenge_2022

represents the virtual colonoscopy image domain. The input
image A generates Fake B through Generator G, and Fake B
generates Rec A through Generator F. After two transforma-
tions, Rec A is mapped back to the A domain. The model is
optimized by comparing the similarity between Input A and
Rec A. Input B is processed in the same way. The generator
in this paper adopts a ResNet backbone (He et al., 2016), and
the discriminator uses a PatchGAN structure. The EndoMap-
per (Azagra et al., 2022) dataset and the synthetic dataset (Rau
et al., 2022) provided by the SimCol3D Challenge were used
for training the CycleGAN. Since there are black areas in the
four corners of the EndoMapper dataset, MIVA cropped the
areas from (155, 0) to (1162, 1007) and reduced them to a
480× 480 square. During training, MIVA applied random hori-
zontal flipping and normalization to the data. Preliminary vali-
dation results show that CycleGAN’s generator can map multi-
ple inputs to the same output. For example, a real colonoscopy
image is converted to generate a completely different virtual
image. For this reason, MIVA experimented with identity loss,
self-regularization loss and SSIM loss to guide the generator.
Ultimately, the team used an identity loss in the final submit-
ted model. The experiments for Task 3 was carried out on an
NVIDIA GeForce RTX 2080ti.

5.2. MonoDepth2 adaptation by EndoAI

EndoAI’s camera pose estimation framework is based on
the self-supervised monocular depth estimation method called
MonoDepth2 (Godard et al., 2019) (as shown in Fig. 4(I-a)) but
is trained using supervision with the ground truth translations
and rotations. In addition to the original self-supervised loss,
the team added the supervised loss

L(Ppred, PGT ) =
∑
i, j

||Ppred − PGT ||1, (14)

where Ppred and PGT are the prediction and ground truth 4 × 4
matrices, and (i, j) represents row and column indices of the
matrices, respectively, such that (1 ≤ i ≤ 3, 1 ≤ j ≤ 4). The last
row is not used.

Further, the depth network in Monodepth2 is replaced with
GLPDepth (Kim et al., 2022) (Fig. 4(I-b)) and the pose network
employs a ResNet18 encoder and a decoder (Fig. 4(I-c)). For
Task 2, the depth network is trained from scratch (weights from
Task 1 are not used). The team used the hyperparameters pro-
posed in the original MonoDepth2. At training time, as used in
Monodepth2, both forward and backward path trajectories are
trained, simultaneously. The model is trained for 20 epochs,
but the epoch with the best performance on the validation set is
submitted. The same model is used for Task 3, where addition-
ally, a CycleGAN was used to translate real images to synthetic
images before feeding into the Monodepth2 network.

5.3. Curriculum learning with linear regression by MMLab

For Task 2, MMlab employed ResNet18 (He et al., 2016) and
a series of linear layers as shown in Fig. 4(III). Furthermore,
they employed Laplacian of Gaussian (LoG) kernel-based fil-
ters to enforce attention to contours and perform curriculum

https://github.com/lalithjets/SimCol3D_challenge_2022
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Fig. 4: Architecture overview for Task 2 (pose prediction from synthetic) and Task 3 (pose prediction from real) images of the participating teams. For Task 2,
(I) Team EndoAI utilized MonoDepthv2 (Godard et al., 2019), (II) Team MIVA utilized SC-SfMLearner (Bian et al., 2021), and (III) Team MMLab implemented
curriculum learning with linear regression. For Task 3, (IV) Team EndoAI and Team MIVA utilized the CycleGAN model for Sim2Real image generation.

learning. Initially, the ResNet module is loaded with the Py-
Torch ImageNet pre-trained weights. Then the whole model
is trained based on mean-square-error (MSE) loss using Adam
optimizer with a learning rate of 7.5× 10−6 for 45 epochs. Dur-
ing training, the values of the LOG kernel (with kernel size = 3)
are updated with a factor of 0.9 to allow more features to pass
through the model as the learning progresses and to enforce at-
tention to contours. While the relative ground truth pose has 16
values, the module regresses 12 values as the last four values
are constant [0.0, 0.0, 0.0, 1.0].

6. Results and discussions

This section summarizes and discusses the submitted results
of all participating teams on the three tasks.

6.1. Task 1: Depth estimation

All teams that participated in Task 1 delivered impressive re-
sults on the test scenes as presented in Table 4. The L1 error
ranged between 0.03 cm and 0.201 cm across teams and scenes.

Among the three best-performing methods, one method was
fully convolutional (MIVA), and the other two were a com-
bination of a convolutional model and transformer (EndoAI,
CVML). Achieving sub-millimeter errors on all scenes, team
CVML demonstrates that depth prediction from synthetic data

can be considered a robustly solvable task. CVML outper-
formed all other teams on all metrics and all scenes. Even on
SynCol III, a scene that has not been seen during training, the
average L1 error of CVML is below one millimeter. The win-
ning team used a model that combines both a transformer-based
and a CNN-based branch in a single network. To develop their
method, the team performed detailed validation of their back-
bone model, which inspired their modifications to FCBFormer.
The team reported that the addition of the 1 × 1 convolutional
layers to the convolutional branch and the inclusion of the fu-
sion module was instrumental to their method’s accuracy. Fur-
thermore, the multi-head self-attention in both the U-Net style
architecture in the convolutional branch and the fusion mod-
ule boosted performance but necessitated replacing the Trans-
former branch decoder and the prediction head with lightweight
alternatives to reduce computational complexity.

Maybe surprisingly, the runner-up method proposed by
MIVA is based on a convolutional neural network from 2018
and was applied out of the box, without further adaptations to
the method, or complex augmentations or post-processing. The
only changes the authors made was replacing the original aug-
mentations with less pronounced endoscopy-suitable augmen-
tations, namely flipping and normalizing only, which might be
a good strategy for synthetic colonoscopy frames as their ap-
pearance does not vary.

EndoAI’s method ranked third and was also a direct adapta-
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Fig. 5: Comparison of depth predictions generated by the participant teams. For Synthetic Colons I and II we show one example from one test trajectory each. For
Synthetic Colon III, we show an example for all three test trajectories. We show the average L1 error above each error map. The colorbar’s scale is in cm. Visually,
the results of CVML, EndoAI, IntuitiveIL, and MIVA are barely distinguishable from the ground truth. Though when observing the L1 error, CVML is found to be
the best performing one, closely followed by MIVA.
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Table 4: Task 1 results on the three test scenes. We report the mean over three sequences per test scene. Winners are indicated in bold, the runner-up is underlined,
and third-placed teams are shown in italics. Asterisks (*) indicate scenes that provided trajectories with groundtruth for training. All results are reported in cm.

SynCol I* SynCol II* SynCol III ∑
1 ↑L1 ↓ Rel ↓ RMSE ↓ L1 ↓ Rel ↓ RMSE ↓ L1 ↓ Rel ↓ RMSE ↓

CVML 0.030 0.012 0.045 0.030 0.009 0.044 0.099 0.025 0.141 54
EndoAI 0.040 0.015 0.067 0.039 0.011 0.063 0.111 0.028 0.168 37
IntuitiveIL 0.050 0.017 0.091 0.059 0.016 0.103 0.167 0.047 0.233 26
KLIV 0.155 0.055 0.228 0.166 0.045 0.236 0.187 0.048 0.277 12
MIVA 0.038 0.014 0.065 0.038 0.010 0.065 0.107 0.025 0.163 44
MMLAB 0.109 0.037 0.185 0.201 0.047 0.330 0.171 0.040 0.277 16

Table 5: Task 2 results on the three test scenes. We report the mean over three sequences per test scene. Winners are indicated in bold, and the runner-up is
underlined. ATE is measured in dm, RTE in cm, and ROT in degrees. Asterisks (*) indicate scenes that provided trajectories with ground truth for training.

SynCol I* SynCol II* SynCol III ∑
2ATE ↓ RTE ↓ ROT ↓ ATE ↓ RTE ↓ ROT ↓ ATE ↓ RTE ↓ ROT ↓

EndoAI 0.574 0.081 0.144 0.336 0.084 0.148 0.325 0.247 0.367 0.165
MIVA 0.860 0.124 0.141 0.325 0.158 0.180 0.422 0.226 0.275 0.183
MMLAB 0.819 0.082 2.818 1.206 0.139 1.880 0.572 0.458 1.833 0.284

EndoAI MMLAB MIVA
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II
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II
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Fig. 6: Overview of Task 2 results showing predicted and ground truth trajectories. For each test scene, we show the first of three trajectories. Qualitatively, it can
be observed that Team EndoAI performed the best.
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tion of an existing method, but, like the winner, the model is
based on a combination of a convolutional model and a Trans-
former.

Comparing all six methods, we find that all teams used dis-
tinctly different baseline methods. Perhaps surprisingly, there
was no consensus on the best method for depth prediction dur-
ing the time of the challenge. Most teams used recent works
from 2022 to build upon except for two teams, one of which
ranked second. All recent methods were transformer-based,
while the older methods are CNNs. Team IntuitiveIL was the
only team to develop new augmentation strategies tailored to-
wards colonoscopy applications. The team introducing most
changes to a baseline method is CVML which won the first task
of the challenge.

Interestingly, the winning method and the last and second-to-
last methods employed networks that were initially developed
for medical image segmentation. All other teams used networks
that were developed for depth prediction. Given the discrepancy
between the results, it appears that in this challenge, segmenta-
tion models are neither better nor worse than depth prediction
networks.

Similarly, fully convolutional networks ranked both second,
and last, so that a method’s performance cannot be attributed
to this design choice alone. Transformer-only networks ranked
fourth and fifth, suggesting, that perhaps, the transformers used
in this challenge were not equipped to capture the detailed ge-
ometry of the endoscopic scenes. Although Vision Transform-
ers have greatly impacted the broad field of computer vision,
further investigations into their ability to predict depth from
endoscopic images are required. One design, that performed
well throughout, is a combination of transformer and convolu-
tional layers. As described by Sanderson et al. (Sanderson and
Matuszewski, 2022), who also participated in this challenge as
team CVML, the combination of transformer and convolutional
layers helps leverage both global and local features in endo-
scopic images.

Comparing quantitative results in Table 4, we can observe
that three best performing methods all lead to similar errors.
For instance, on SynCol I, CVML, EndoAI, and MIVA achieve
L1 errors of 0.03−0.04 cm. The other methods perform consid-
erably worse (0.05−0.16). Further, all methods perform signif-
icantly worse on SynCol III, for which, as opposed to SynCols I
and II, there were no training sequences released. Nonetheless,
all methods achieve an L1 loss of less than 2mm. This speaks to
the ability of these methods to accurately generalize to unseen
geometries.

A qualitative comparison of all methods on a few representa-
tive images from all three scenes is provided in Figure 5 along
with the L1 error of individual predicted masks. We randomly
sampled one frame for visualization per trajectory. The results
of CVML, EndoAI, IntuitiveIL, and MIVA are barely distin-
guishable from the ground truth. Only when assessing the indi-
vidual L1 errors, we can observe that CVML performs slightly
better than MIVA, followed by EndoAI and IntuitiveIL. KLIV
and MMLab show visible checkerboard artefacts, which is con-
sistent with the quantitative results in Table 4, where KLIV and
MMLab rank fifth and sixth.

Table 6: Task 3 results. Winners are indicated in bold. The ROT error is re-
ported in degrees. The absolute scale of the ATE and RTE is unknown.

Sequence 1 2 3 4 5 6 7 ∑
3#Frames/seq 76 144 119 69 127 86 56

ATE ↓ ATE ↓
EndoAI 3.34 10.19 7.70 1.17 1.47 11.58 14.69 7.16
MIVA 0.97 4.50 3.12 2.38 3.55 4.10 6.48 3.59

RTE ↓ RTE ↓
EndoAI 0.104 0.200 0.142 0.307 0.144 0.191 0.493 0.23
MIVA 0.065 0.104 0.130 0.174 0.116 0.300 0.625 0.22

ROT ↓ ROT ↓
EndoAI 0.709 0.960 0.836 0.643 0.776 0.823 1.310 0.87
MIVA 0.264 0.634 0.551 0.453 0.622 0.478 0.804 0.54

6.2. Task 2: Camera pose estimation on simulated data

Three of the six teams participated in Task 2. The results of
these teams are summarized in Table 5. The challenge organiz-
ers were particularly interested in the teams’ results on the third
test scene, as no training trajectories of scene III were provided
to the teams. We thus weighted errors on SynCol III twice,
while errors on SynCol I and II were weighted once, to reflect
the importance of generalizability to unseen scenes. Based on
the mean ATE, Team EndoAI performs best and by a large mar-
gin on two out of three trajectories and takes first place. En-
doAI also performs best on SynCol III, which is the only unseen
scene. Based on the RTE, EndoAI performs best on SynCol I
and II, but even when weighting results on scene III twice, En-
doAI outperforms the other methods. MIVA performs best on
all measures in at least one scene, but ranks second overall, fol-
lowed by MMLAB.

Qualitative results are shown in Figure 6. We chose to show
one trajectory per scene only, as the differences between tra-
jectories on one scene are small. It can be observed that En-
doAI’s predictions most closely follow the ground truth tra-
jectories. All models show clear drift in almost all scenes,
which is consistent with the frame-wise approaches all teams
chose to follow. Especially scene SynCol III, which was not
seen during training, suffers from drift. Notably, the two more
accurate approaches are both based on warping-based depth
and pose networks (MonoDepth2 with updated backbones and
SC-SfMLearner), while the third-placed method regresses pose
from images directly. Although the warping-based approaches
are optimized for the auxiliary task novel-view synthesis, the
networks outperform the approach that minimized the pose loss
only. Moreover, the two teams employing warping-based net-
works added supervised losses based on the provided labels in
the training to the respective self-supervision methods. Interest-
ingly, MIVA employed a supervised depth loss, while EndoAI
used a supervised pose loss, and neither team used both depth
and pose labels. As all teams use different backbones, a con-
cluding comparison study remains to be conducted. We can
only speculate that EndoAI’s performance might result from
their more complex back-bone (Transformer-based depth net-
work) in comparison to MIVA who use a UNet-type depth net.
It could also result from their supervision with ground truth
poses in addition to the self-supervised losses of Monodepth2.



14 Anita Rau et al. /Medical Image Analysis (2024)
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Fig. 7: Overview of Task 3 results showing predicted and ground truth (COLMAP) trajectories. For each test trajectory, we show three sampled frames in order of
the video.
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6.3. Task 3: Camera pose estimation on real-world data

Two teams participated in Task 3. Both teams used the same
method they also used for Task 2, but also applied a CycleGAN
to translate appearance between the real and synthetic domains
before predicting the camera pose. Results are summarized in
Table 6. As methods are compared to COLMAP, and overall
scales are not known, the predicted trajectories are scaled before
the evaluation of the error metrics. For the same reason, we
are more interested in the ATE which better reflects the global
consistency than the RTE. MIVA outperforms EndoAI on five
out of seven scenes according to the ATE and is thus declared
winner. MIVA also yields the smallest RTE in five of seven
scenes.

The methods are compared qualitatively in Figure 7. While
both methods demonstrate extreme drift, the overall trajectories
follow the COLMAP trajectory in some scenes, such as in scene
2, where both methods predict the sharp sideways movement in
the first half of the trajectory. Similarly, both models show the
quick sideways slip of the camera in the middle of the trajec-
tory in scene 3. And in scene 5, both models follow the ”W”
shape of the trajectory. We found that none of the participating
groups used the publicly available COLMAP poses in the En-
doMapper dataset for training. The power of their methods is
based entirely on their pose models pretrained on synthetic data.
We thus posit that the synthetic data in this challenge provided
the models with some understanding of camera pose movement
in real colonoscopy. Interestingly, the ranking of both teams is
swapped in comparison to Task 2, although both teams use the
same pose networks as before, and employ the same CycleGAN
for domain adaptation.

6.4. Data limitations and future directions

While synthetic data provides a useful playground to develop
algorithms, its applicability to real procedures remains to be
elucidated. While we strongly believe that synthetic datasets
played a crucial role in enabling early research in the field
(Mahmood and Durr, 2018) and in helping push the boundaries
further (Rau et al., 2019; Mathew et al., 2020; Itoh et al., 2021;
Rodriguez-Puigvert et al., 2022), drawbacks remain. First, the
visual discrepancy between real images and our synthetically
generated frames is obvious. But visual differences alone can
usually be overcome with domain adaptation. More impor-
tantly, our synthetic data also misses some physical properties
of real colons. For instance, colonoscopists often use water to
clean the colon mucosa, resulting in puddles. Specularities and
air bubbles are also common in real colonoscopies but are not
reflected in our data. For the camera pose dataset, one impor-
tant difference is the lack of deformation in the synthetic data.
In the synthetic dataset, the movement of the colon wall is al-
ways due to a camera movement. But in real colonoscopy, the
colon walls constantly move due to the colon’s own digestive
motions, or inflation with air.

So, while synthetic data is useful, the question of how we
can move past having to choose between unrealistic synthetic
data or unlabeled real data remains unanswered. One obvious
approach is improving the fidelity of synthetic data to replicate

real colon mucosa more closely (Dowrick et al., 2023). How-
ever, a domain gap is unavoidable, especially with respect to the
behavior of the camera and the relative movement of the colon
wall and haustral folds.

A different approach is method-based and focuses on com-
bining both modalities in a useful way Rau et al. (2023). But to
evaluate such methods, a real labeled dataset is indispensable.

COLMAP provided useful ground truth poses for this chal-
lenge, but the method has serious limitations. It requires re-
liably matchable features which are extremely sparse in the
colon. The reconstruction thus fails on many subsections of the
colon. Even if it works, the resulting depth maps are too sparse
to be useful, and depths and poses are biased toward a few vis-
ible features while ignoring most of the remaining colon wall.
Due to the high failure rate, the reconstructions must be visually
verified, further biasing the resulting test set towards sub-scenes
that are visually interpretable. However, when COLMAP suc-
ceeds, it is accurate. We ran COLMAP on Synthetic Colon
I and found that it fails to reconstruct 93% of all frames but
achieves an RTE of 0.028 cm on the sections where it does not
fail. For comparison, the best submission achieved 0.081 cm on
the entire Synthetic Colon I.

An alternative route for labeled real datasets could be new
hardware. Magnetically actuated soft capsule endoscopes can
provide partial ground truth pose, but not depth (Pittiglio
et al., 2019). Some capsule colonoscopes provide stereo vi-
sion, paving the door for more accurate, but still sparse, depth
prediction (Bianchi et al., 2017). Similarly, full spectrum
colonoscopy provides two additional lateral cameras (Kurni-
awan and Keuchel, 2017). While these advances currently fo-
cus on improving the visualization of the colonoscopic scenes
for the operator in real-time, we hope that future advances in-
corporate other sensors, such as for position or depth.

A last alternative to synthetic data is colon phantoms made
of synthetic materials, such as silicone. Phantoms are, perhaps,
the most flexible approach. They can, in theory, be produced
in any size, allowing the integration of mounted depth and pose
sensors. One drawback of phantoms is their material. Phan-
toms are either rigid, preventing a colonoscope from moving
through it, especially around corners. Or they are non-rigid,
rendering electromagnetic poses invalid as the sensor can move
relative to the magnetic field while staying in place relative to
the phantom. Further, the rubber-like surface looks unrealis-
tic and prevents the camera from replicating realistic camera
movements due to friction. As they are expensive to produce, a
collection of many phantoms is unrealistic, such that data avail-
ability and diversity are limited. Lastly, hand-eye calibration
between the camera and EM tracker and temporal synchroniza-
tion introduces errors in the ground truth. Nonetheless, the cre-
ation of cheap and realistic looking and feeling phantoms could
be a promising future direction.

7. Conclusions

This paper discusses the SimCol3D 2022 EndoVis Subchal-
lenge and the methods employed by participating teams. The
primary objective of this challenge was to promote research on
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3D reconstruction during colonoscopy. Six teams from various
parts of the world participated in the challenge and achieved
impressive results. Particularly, the task of depth prediction
on synthetic data proved to be both interesting and solvable.
Achieving sub-millimeter accuracy on an unseen colon, the
winning team could predict local 3D geometry extremely ac-
curately. This robust generalization to a new scene within the
same domain is a promising step towards real-world applica-
tions. The generalizability to a new domain remains an open
research question and has not been addressed for the depth
prediction task in this challenge. To test the applicability to
real colonoscopy, new hardware facilitating datasets consisting
of real colonoscopy frames with corresponding ground truth
depth is required. While synthetic, phantom, and Structure-
from-Motion-based data sources all have their own limitations,
a thorough evaluation on all three modalities could paint a more
holistic picture of model performance in the meantime.

In comparison to depth prediction, predicting pose is a less
well-studied problem, and accordingly the task is not yet fully
solved. One main concern remains drift, which could be ad-
dressed by future work. Interestingly, both depth loss (L1) and
pose loss (RTE) increase roughly three-fold between the know
scenes (I and II) versus the unseen scene (III). Therefore, it is
crucial for future work to delve deeper into investigating the
generalizability of models across different scenes, both within
the same domain and across domains. While this challenge was
the first one to evaluate generalizability from synthetic pose pre-
diction to real procedures, the evaluation is limited by the qual-
ity of the COLMAP labels and their visual verification.

To have an impact on patient outcomes, accurate depth and
pose predictions are a first step. Future work should tackle the
challenge of achieving robust global reconstructions from local
pose and depth predictions based on which unscreened colon
mucosa can be identified and visualized. Such a framework will
have to work in real-time and should be seamlessly integrate
into clinical practice.
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and José M.M. Montiel curated the real dataset and generated
COLMAP labels. Rawen Kader and Laurence B. Lovat clin-
ically motivated and validated the project. All other authors
were participants in the challenge. All co-authors helped write
this manuscript.

References

Alhashim, I., Wonka, P., 2018. High quality monocular depth estimation via
transfer learning. arXiv preprint arXiv:1812.11941 .

Ali, S., Zhou, F., Bailey, A., Braden, B., East, J.E., Lu, X., Rittscher, J., 2021.
A deep learning framework for quality assessment and restoration in video
endoscopy. Medical image analysis 68, 101900.

Araghi, M., Soerjomataram, I., Jenkins, M., Brierley, J., Morris, E., Bray, F.,
Arnold, M., 2019. Global trends in colorectal cancer mortality: projections
to the year 2035. International journal of cancer 144, 2992–3000.
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