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Abstract—Vehicle platooning is a promising and emerging
framework in intelligent transportation systems. Recent works
consider reputation-based approaches for head selection in single
platoons, in order to optimize safety and security. When a large
number of user vehicles having the same destination want to
benefit from platooning, several platoons need to be formed. To
this end, user vehicles are allocated to different platoons, with
each platoon being led by a platoon head. To ensure necessary
network bandwidth and latency, the number of user vehicles
between the newly formed platoons must be balanced. However,
an arbitrary assignment of user vehicles in platoons can bias the
future selection of the platoon heads in such reputation-based
approaches. This work considers reputation-based platooning
systems and proposes an optimal approach to balance the number
of user vehicles in platoons while at the same time ensures fairness
in the reputation score of platoon heads. A mixed-linear integer
programming formulation is proposed, which provides an optimal
allocation of the user vehicles in platoons based on the above
objectives. The approach is validated using multiple synthetically
generated datasets using 14 different input parameters. The
obtained results demonstrate the optimality of the proposed
method while achieving significant time performance speedups
(∼ 140x on average) when compared to a brute-force exhaustive
method.

Keywords–vehicle platooning, vehicle assignment, trust-
worthy systems, reputation systems, fairness

I. INTRODUCTION

With the rapid advancement in Vehicle-to-Vehicle (V2V)
and Vehicle-to-Infrastructure (V2I) communication technolo-
gies, Intelligent and Connected Vehicles (ICVs) can commu-
nicate with each other and with the road infrastructures to en-
hance road safety [1]. In intelligent transportation systems, the
benefits of ICVs can be further improved with the promising
framework of vehicle platooning [2]. In vehicle platooning,
there are two types of vehicles: a platoon head and a set of
user vehicles. The platoon head guides the user vehicles to
their destination, and it is responsible for controlling the speed
and maintaining a safe distance between the user vehicles
[3]. However, the number of user vehicles that a platoon
head can lead is limited, as user vehicles must maintain a
maximum distance (∼ 300m) from the platoon head in order
to to ensure reliable communication [4], [5]. Furthermore,
all user vehicles must communicate with the platoon head
in real-time to share important information such as speed,

road information, and live location [6]. Thus, high demand
for network bandwidth can result in communication delays [7],
which can potentially lead to fatalities. When a large number
of user vehicles with the same destination require platoon
services, multiple platoons need to be formed and guided by
distinct platoon heads.

When forming one or more platoons, reputation-based ap-
proaches can be used to select the platoon head vehicle(s) [8]–
[10]. In such frameworks, each user vehicle provides feedback
at the end of each trip to rate the performance of its platoon
head. This feedback is used to calculate the reputation score of
future candidate platoon heads, in subsequent trips. Any head
selection algorithm requires as an input a set of viable platoon
heads. Similarly, when assigning user vehicles to platoons, a
set of viable user vehicles per platoon must be available.

For the problem of user vehicle assignment in multiple
platoons, which we consider in this work, the first requirement
is to provide balanced platoons with respect to the number
of user vehicles in each platoon. Moreover, the assignment
of user vehicles in each balanced platoon is crucial in order
to maintain fairness in the reputation-based system [11].
A reputation system is called fair if every agent receiving
feedback (i.e., a score) has an equal opportunity to receive
trustworthy feedback [12]. In the considered system, these
agents correspond to the platoon heads, which receive feed-
back scores from the user vehicles. These feedback scores
are used to calculate the reputation score of platoon heads.
A random assignment of user vehicles in a platoon cannot
guarantee a fair reputation score for the platoon head, as this
is derived from the user vehicle’s cumulative feedback scores,
which may contain individual biased or untrustworthy user
vehicle scores. Therefore, balancing the trustworthiness of the
feedback of the assigned user vehicles provides fairness among
the reputation scores of the leading vehicles.

The proposed methodology provides optimal user vehicle
assignment, leading to balanced and fair platoons. To achieve
this, a mixed-linear integer programming (MILP) formulation
is proposed, which takes the user vehicle feedback scores
as an input to properly assign user vehicles under platoons
such that: (i) the number of user vehicles per platoon is as
balanced as possible, and (ii) the average faith score among
user vehicles per platoon across all platoons is also balanced.
The faith score is calculated based on the current and historical
feedback scores of a user vehicle in prior trips, and provides an



adjustment of the feedback score in terms of trustworthiness.
In this manner, the reputation score of platoon heads is
calculated appropriately, based on fair user vehicle faith scores.

In particular, the main contributions of this work are:
• A new MILP formulation is proposed to maintain balance

and fairness in the reputation system when assigning
viable user vehicles to multiple platoons. The approach
is optimal and, to the best of our knowledge, unique in
reputation-based frameworks for ICVs.

• To properly evaluate the proposed framework, we created
four synthetic datasets with 14 parameterizable inputs,
keeping in mind real-world driving environments.

• Our approach is compared with a brute-force exhaustive
optimal algorithm and a non-optimal random assignment
of user vehicles. Results show that the MILP approach
always finds the optimal solution while requiring signifi-
cantly lower execution times (140x speedup on average)
than the brute-force exhaustive approach. Furthermore,
the random assignment approach is shown to be signif-
icantly inferior in terms of fairness, justifying the need
for the proposed systematic approach.

The rest of the paper is structured as follows. We discuss
the related works and system architectural model along with
a brief background on relevant reputation-based systems for
platooning in Section II and III. Section IV presents the
objectives and the proposed MILP formulation. The details
about the synthetic datasets used are explained in Section V.
The obtained experimental results are presented in Section VI.
Section VII concludes the paper.

II. RELATED WORK AND BACKGROUND

Existing works in reputation-based platooning systems only
focus on the selection of platoon heads [8]–[10]. Ying et al.
in [9] proposed an approach for platoon head election in an
opportunistic autonomous vehicle platoon (OAVP) model with
an incentive mechanism to motivate vehicles to participate
in the head election process. Hu et al. in [10] proposed an
iterative filtering algorithm to filter out malicious feedback
and select a reliable platoon head. However, all these works do
not consider cognitive biases in user vehicle’s feedback. The
work in [8] considers such biases and proposes a cognitive
bias analysis algorithm to differentiate cognitive biases from
malicious feedback before calculating the reputation score of
the platoon head candidates. However, the assignment of user
vehicles in different platoons is not considered.

Contrary to previous works, the purpose of this work is,
given a set of selected (viable) platoon heads and a set of user
vehicles that are traveling together to form balanced platoons
while maintaining the fairness of the reputation system by
appropriate assignment of user vehicles in each platoon. The
proposed approach works complementary to the reputation-
based platoon head selection algorithms of [8], [10], which
can provide the necessary input set of platoon heads. Even
though [8], [10] consider single platoon head selection, the
extension to multiple head selection is trivial, as explained in
Section III.B.

Fig. 1: Platoon System Model

III. SYSTEM MODEL

A. System Model

The proposed work considers a Vehicular Ad Hoc NETwork
(VANET) model for vehicle platooning. Our model consists
of several Road Side Units (RSUs), a central server, a Trust
Authority (TA), a set of platoon head vehicles, a set of
candidate platoon head vehicles, and a set of user vehicles as
shown in Fig. 3. To achieve high platooning performance, the
communication is relied on a number of RSUs [13]. Moreover,
to enhance seamless communication, the RSUs are typically
deployed uniformly. After completing a trip, user vehicles rate
their leading platoon head by sending feedback to the closest
RSU. The RSU forwards the feedback scores ([0, 1]) to the
central server, which stores the scores in a historical database
and computes the cumulative faith score for user vehicles over
multiple trips (based on historical and new feedback scores)
[8]. When a number of user vehicles travelling together to the
same destination need to form platoons, the RSU, with the
help of the server, selects a number of platoon heads based
on different algorithms [8], [10] from the available candidate
platoon heads. Each platoon head will lead a number of user
vehicles within the platoon and the RSUs with the help of the
central server under the trust authority must assign the viable
user vehicles under each platoon using some criteria.

In this work, we focus on the assignment of user vehicles
to the preselected platoon heads for multiple platoons at the
beginning of a trip, in such a way that the number of user
vehicles controlled by each platoon head is balanced and the
fairness of the reputation score among the platoon heads in
the reputation system is preserved. As explained in Section I,
the problem of platoon control is complementary to reputation
systems and out of scope in this work.

B. Reputation-Based Platoon Head Selection

Previous works in [8], [10] focus on the selection of a single
platoon head in a vehicle platooning system. The selection
of a platoon head is based on the analysis of historical
data collected during previous trips among all participating
user vehicles. The work in [8] in particular considers and
identifies cognitive biases in user feedback scores and adjusts
such scores accordingly in order to maintain fairness in the



reputation scores of viable platoon heads. After completing a
trip, a cognitive bias analysis algorithm analyzes the given
feedback and identifies certain biases while distinguishing
them from malicious behavior. Biased feedback is readjusted,
while feedback identified as unreliable or possibly malicious
is removed from the system. The readjustment is done based
on the collective feedback of user vehicles identified as normal
(neither biased nor malicious). Following the bias analysis and
feedback readjustment, the faith score per user vehicle across
all previous trips is recalculated. The faith score is the most
crucial parameter for user vehicles in the reputation system. It
represents the reliability and trustworthiness of the feedback
given by user vehicles. Finally, using the calculated faith
score of user vehicles, the reputation score is computed for
each potential platoon head. When forming multiple platoons,
the platoon heads are selected using the same approach. For
example, if k platoons are required to be formed, then k
viable platoon heads with the highest reputation score are
selected to lead the platoons. The reader is referred to [8]
for additional details regarding the computation of faith score
for user vehicles and the selection of platoon heads based on
the reputation score.

IV. PROPOSED METHODOLOGY AND OBJECTIVES

This section introduces the proposed formulation for user
vehicle assignment under different platoons in order to ensure
balancing and fairness between the different platoons. Let the
set of all user vehicles be denoted by N = {n1, n2, ...., nη},
with |N | = η. Also, let the set of platoon heads for different
platoons be denoted by P = {p1, p2, p3, ...., pk}, where
|P | = k is the number of platoon heads. In the case of
multiple platoons, each platoon head in P leads one platoon.
Moreover, each user vehicle in N must be assigned to exactly
one platoon. In this work, we assume that all user vehicles in
N are viable for any platoon, i.e., can be led by any platoon
head. The problem can be easily extended to distinct viable
user vehicle sets per platoon head.

A mixed-linear integer programming (MILP) formulation is
proposed, which focuses on the fair and optimal assignment
of user vehicles in N under platoon heads in P . Specifically,
if we want to form k platoons, the user vehicle set N is
partitioned and assigned to k platoon heads that lead the
platoons. Moreover, each user vehicle needs to be assigned
to a single platoon led by some platoon head pj ∈ P . Since
any user vehicle in N is a viable choice for any platoon head,
it is assigned to any platoon. However, each platoon needs to
satisfy the following conditions:

• The number of user vehicles per platoon is balanced in
order to avoid biases in reputation systems and commu-
nication delays.

• The average faith score of the user vehicles in each
platoon is as close as possible in order to maintain
fairness in the reputation system.

To better understand the considered problem, Fig. 2 illus-
trates two different scenarios (random, optimal) of user vehicle
assignment. Before the start of user vehicle assignment, we

Fig. 2: An example of (a) Random and (b) Optimal Assign-
ment of User Vehicles in each platoon

select trustworthy and secure platoon heads (P ) from the
candidate platoon head set (CP ) using a platoon head selection
algorithm [8] as shown in Fig. 2. The selection of platoon head
is based on the reputation score (r) calculation which takes
into account the faith scores (f ) and feedback given by the
participating user vehicles as defined in [8]. In this example,
the number of preselected platoon heads (k) is 2, and the
number of user vehicles (η) is 6. The task is to partition and
assign the user vehicles from N into two platoons, led by two
different platoon heads p1 and p2. As Fig. 2 (a) shows, if the
assignment is done randomly, the average faith score of user
vehicles for each platoon can deviate greatly, favoring platoon
head p1 in this case. Additionally, the random assignment
negatively impacts the reputation score of p2 and reduces the
chances of getting selected as platoon head for future trips.
Additionally, Fig. 2 (b) shows how the average faith score of
user vehicles is comparable among the two platoons (identical
in this case) when an optimal approach is used to ensure fair
user vehicle assignment.

All the parameters and variables used in the formulation
are presented in TABLE I. The inputs of the model are: the
user vehicle set N , the available platoon head set P , and the
faith score of every user vehicle, fni ∀ ni ∈ N . The first
objective is to balance the number of user vehicles in each
platoon by using ⌊η/k⌋ = q. Additionally, we use η%k = r
to indicate if the user vehicles can be equally allocated in k
platoons. If r = 0, all the platoons can be perfectly balanced
by assigning exactly q user vehicles in each platoon. On the
other hand, if r ̸= 0, then (P − r) platoons will need to
be assigned with q user vehicles each, and the remaining r



TABLE I: Description of Parameters used in MILP

Parameters Description
N (input) Set of user vehicles
P (input) Set of platoon heads
fni (input) Faith score of user vehicle ni ∈ N
η Total number of user vehicles in N
k Total number of platoon heads in P

xij
Binary variable; 1 if user vehicle ni ∈ N
is led by a platoon head pj ∈ P , 0 otherwise.

yj
Number of user vehicles in a platoon led by
platoon head pj ∈ P

ymin
Minimum number of user vehicles among
all platoons

ymax
Maximum number of user vehicles among
all platoons

tfpj
Total faith score of a user vehicle partition
in a platoon led by head pj ∈ P

Afpj

Average faith score of a user vehicle partition
in a platoon led by head pj ∈ P

Afmin

Minimum average faith score among all
platoons

Afmax

Minimum average faith score among all
platoons

platoons will be assigned with (q + 1) user vehicles each.
The number of user vehicles in a platoon led by platoon head
pj ∈ P is denoted as yj . Moreover, variables ymax and ymin

are used to calculate the maximum and minimum number of
user vehicles among all k platoons. Hence, we achieve the first
objective of balancing the number of user vehicles among the
platoons by minimizing the difference between the number of
user vehicles (ymax − ymin) in all platoons.

The second objective is to maintain the average faith score
of user vehicles per platoon as close as possible. Each user
vehicle ni ∈ N has its own faith score denoted by fni

.
Furthermore, we denote the total faith score of user vehicles
in a platoon led by a platoon head pj by tfpj

. Variable Afpj
computes the average faith score of user vehicles assigned
to a platoon led by platoon head pj . Finally, the minimum
and maximum average faith score among all user vehicle
partitions assigned to different platoons are denoted as Afmin

and Afmax
, respectively. In order to achieve the second

objective, we minimize the differences between the average
faith scores of user vehicle partitions in different platoons
(Afmax −Afmin).

Hence, combining both objectives, the proposed MILP
formulation minimizes the sum of the differences between the
cardinality and the average faith score among user vehicles in
different platoons:

Minimize {(ymax − ymin) + (Afmax −Afmin)}

Subject to the following constraints (3) - (8):∑
pj ∈ P

xij = 1, ∀ ni ∈ N (1)

The binary variable xij denotes if a user vehicle is already
assigned to a platoon or not. Thus, if xij = 1, the user vehicle
ni ∈ N is assigned to a platoon led by platoon head pj ∈ P .
Otherwise, it is equal to 0. By setting the binary variable xij

to 1, we ensure that each user vehicle belongs to exactly one
platoon.

The following ensures that the number of user vehicle in

each platoon is balanced:∑
ni ∈ N

xij = yj , ∀ pj ∈ P, q ≤ yj ≤ (q + 1) (2)

ymin ≤ yj ≤ ymax, ∀ pj ∈ P, q ≤ yj ≤ (q + 1) (3)

Variable yj counts the number of user vehicles in each
platoon. The maximum and minimum number of user vehicles
among all user vehicle partitions is computed using ymax and
ymin and the number of user vehicles yj needs to be within
this range. Due to (4) and (5), the number of vehicles in each
platoon always remains between q and (q + 1).

We calculate the total faith score tfpj of a platoon led
by a platoon head pj by summing the faith scores of user
vehicles belonging to that platoon. This needs to be done for
all platoons, hence:

∑
ni ∈ N

fni
∗ xij = tfpj

, ∀ pj ∈ P (4)

The average faith score, Afpj
, is computed by dividing the

total faith score (tfpj ) with the total number of user vehicles
in a platoon led by a platoon head pj (yi). We calculate the
average faith score for all the platoons by:

tfpj

yj
= Afpj

,∀ pj ∈ P, q ≤ yj ≤ (q + 1) (5)

Finally, the maximum and minimum average faith score
among platoon heads in P is calculated using Afmax

and
Afmin :

Afmin
≤ Afpj

≤ Afmax
, ∀ pj ∈ P (6)

V. SYNTHETIC DATASET GENERATION

In order to evaluate the proposed approach, we generated
four different datasets by enhancing the in-house automated
dataset generator of [8]. Each new dataset contains 14 parame-
terizable inputs, as shown in TABLE II. The values of the input
parameters were based on currently acceptable platooning
models.

Datasets include parameters such as the initial number of
user vehicles (V ) before applying the cognitive bias analysis
algorithm in [8], the number of platoon heads (k) in the current
trip, the number of trips (Tk) and user vehicles (VT ) under each
platoon head for all the previous trips. The number of user
vehicles (η) is derived after the biased and malicious users
vehicles are removed from V (η ≤ V ) using the cognitive
bias analysis algorithm of [8]. Based on the average feedback
given by the normal vehicles, the trips are classified into
three categories: high, medium, and low-quality trips to denote
quality of each trip. The input parameters TH , TM , TL

represent the percentage of high, medium, and low-quality
trips. The expected average feedback for each of these three
categories is regulated by the parameters AL, AM , and
AH . Normal distributions are used to generate more realistic
datasets according to the quality of the trip based on the



TABLE II: Input Parameters for Generated Datasets

Parameters Description D1 D2 D3 D4
V Total number of initial user vehicles 20 20 30 20
k Total number of platoon heads [2, 5] [2, 5] [2, 5] [2, 5]
Tk Number of trips under each platoon head [10, 15] [10, 15] [10, 15] [10, 15]
VT Number of vehicles under each trip [10, 15] [10, 15] [10, 15] [10, 15]
TH Percentage of high quality trips 0.8 0.8 0.8 0.8
TM Percentage of medium quality trips 0.1 0.1 0.1 0.1
TL Percentage of low quality trips 0.1 0.1 0.1 0.1
AL Low quality trip average feedback [0, 0.4] [0, 0.4] [0, 0.4] [0, 0.4]
AM Medium quality trip average feedback [0.4, 0.7] [0.4, 0.7] [0.4, 0.7] [0.4, 0.7]
AH High quality trip average feedback [0.7, 1] [0.7, 1] [0.7, 1] [0.7, 1]
TSD Standard deviation for trips [0, 0.1] [0, 0.1] [0, 0.1] [0, 0.1]
VB Percentage of vehicles with biases 0.2 0.3 0.3 0.4
TU Percentage of uncertainty in vehicles feedback [0, 0.1] [0. 0.1] [0, 0.1] [0, 0.1]
VM Percentage of malicious vehicles 0.75 0.5 0.5 0

TABLE III: Output Parameters of Experimental Datasets
Parameters D1 D2 D3 D4

Total number of user vehicles (η) 5 10 15 20
Total number of trips 65 59 64 65
Total number of feedback in the dataset 789 724 775 795

average feedback. In order to provide more realistic datasets,
we included a percentage of uncertainty in the vehicle’s
feedback (TU ), which adds more deviations to the original
feedback given by the user vehicles. The values in TABLE II
are used as input to the cognitive bias analysis algorithm that
removes malicious feedback and re-adjusts feedback of biased
user vehicles. TABLE III shows the remaining number of user
vehicles (η), the total number of trips, and feedback for each
dataset that is used in the user vehicle assignment problem.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. User Vehicle Assignment Results

This section presents user vehicle assignment results along
with the CPU execution time that is needed for the assignment.
The experimental results are presented in TABLE IV for all
the datasets in TABLES II and III. Specifically, for each
dataset, we experimented with a number of platoon heads
from k = 2 to 5, resulting in a total of 16 unique dataset
instances. Depending on the value of k, we show the total
number of possible ways (combinations) the user vehicles
can be assigned to the different platoons. Out of all the
possible combinations, the objective is to find an optimal
combination. An optimal combination represents balanced
platoons with the smallest standard deviation (SD) value of
the average faith score among all possible combinations. Due
to the lack of existing comparable works, we implemented an
optimal brute-force exhaustive (BF/E) method which explores
the entire search space and all the possible combinations in
order to find the optimal combinations as well as a random
assignment method for demonstrating the effectiveness and
validating the optimality of the proposed MILP approach.
TABLE IV presents our results. Columns 1 and 2 lists the
total number of user vehicles and platoon heads considered
in each dataset instance, respectively. The number of platoon
head also represents the number of platoons need to be
formed. Column 3 reports the total number of possible user
vehicle assignment combinations per dataset instance. This
number grows exponentially very quickly when the numbers

of user vehicles and platoon heads increase, demonstrating the
complexity of the considered problem.

Column 4 reports the standard deviation of the average faith
score among all user vehicle partitions in platoons, denoted
by SD(Afpj

), pj ∈ P , which is the same in both the
BF/E approach and the proposed MILP approach and, hence,
validates the optimality of the proposed formulation. The
same metric, SD(Afpj

) is reported for the random assignment
approach. In this case, up to 1000 combinations were randomly
selected and the one with the smallest SD(Afpj

) was kept.
We repeated the random approach 20 times and report the
average among the smallest SD(Afpj

) for the 20 runs in
column 5. The random assignment is implemented in order to
show the possible results that can be achieved when restricting
the search space. It can be clearly observed that a random
approach for this problem is far from an optimal result for
realistic sizes of user vehicles (between 15-20 vehicles). We
provide further discussion on this in subsection VI.B.

The CPU time required by the two optimal approaches,
BF/E and proposed MILP-based, is given in columns 6 and
7, respectively. Column 8 reports the significant performance
advantage of the proposed approach, showing the significant
speedup (x) achieved with respect to the BF/E approach. On
average, the proposed method achieves ∼ 140x speed up. All
the approaches have been developed using Python, the Gurobi
solver [14] was used to derive the MILP solutions, and all
approaches were run on an HP PC (Intel(R) Core(TM) i5-
8265U CPU @ 1.60GHz, 8 GB RAM). When utilizing a more
powerful central server (as shown in Fig. 1) execution times
of the proposed approach are expected to reduce even further.

B. Fairness Balance Score Comparison

In this section, we introduce the Fairness-Balance Score
(FBS) metric for comparison between the random assign-
ment and the proposed optimal (MILP) method. The fairness
balance score is an efficiency metric that indicates how fair
and balanced the solution is. When FBS is close to 0, the
assignment tends to be more fair and balanced. We define
FBS as the sum of the standard deviation of the number of user
vehicles among all platoons SD(yi) and the standard deviation
of the average faith scores among all platoons, SD(Afpj

):

FBS = SD(yj) + SD(Afpj
), ∀ pj ∈ P (7)



TABLE IV: Vehicle assignment results of proposed MILP approach, brute-force exhaustive (BF/E), and random approach
SD(Afpj

) among all platoons CPU time (in sec)
Datasets:

# User Vehicles
# Platoon

Heads / Platoons
#

Combinations
Optimal Assignment
(Proposed & BF/E)

Random
Assignment BF/E Proposed Speed

Up (x)

D1: η = 5
k = 2 10 0.04409500 0.04409 4.02 0.03 111.80
k = 3 15 0.11054400 0.110544 4.82 0.05 87.78
k = 4 10 0.11585900 0.11585 5.14 0.07 72.39
k = 5 1 0.25691000 0.25691 2.09 0.15 13.75

D2: η = 10

k = 2 126 0.00184430 0.00185 3.69 0.72 5.12
k = 3 2100 0.00516080 0.00622 3.93 1.12 3.50
k = 4 6300 0.00488030 0.00725 8.18 1.89 4.30
k = 5 945 0.01716640 0.01729 6.39 2.13 3.00

D3: η = 15

k = 2 6435 0.00000920 0.00001 4.50 2.27 1.98
k = 3 126126 0.00822680 0.25969 27.00 6.01 4.49
k = 4 2627625 0.01204870 0.89968 357.00 86.84 4.11
k = 5 1401400 0.02806140 0.39861 200.00 97.00 2.06

D4: η = 20

k = 2 92378 0.00000034 0.00018 15.31 1.76 8.69
k = 3 66512160 0.00153187 0.96152 8843.00 13.72 644.53
k = 4 488864376 0.00239016 1.12578 71283.00 339.00 210.27
k = 5 2546168625 0.00710542 1.59374 398496.00 374.00 1065.49

Average 0.03848960 0.36245 140.20

Fig. 3: Fairness-Balance Score (FBS) comparison between
Optimal and Random Assignment Methods

In Fig. 3, we compare the proposed MILP method with
the random assignment method for the more realistic sizes of
user vehicles (between 15-20 vehicles). Fig. 3 clearly indicates
that a random approach will not be able to provide acceptable
solutions when the problem is scaled up for larger platoons.
This is observed for all the datasets.

VII. CONCLUSION

This paper proposes a reputation-based, fairness-aware ap-
proach for the optimal assignment of user vehicles for different
platoons with the same destination. A set of platoon heads is
selected to form the platoons based on the reputation score.
The assignment of user vehicles to different platoons is a
crucial step towards a balanced and fair reputation system.
The proposed MILP-based approach provides a systematic
and elegant way to balance user vehicles and ensures similar
average faith scores in platoons. The experimental results
demonstrate the effectiveness and efficiency of the proposed
approach in obtaining optimal user vehicle assignments while
satisfying the necessary constraints of balanced and fair pla-
toons. Future work will concentrate on security threats and
mitigation approaches in reputation-based platooning systems.
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