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Abstract: The paper provides a commentary on the theme of “Current and Future Trends in Tribo-
logical Research: Fundamentals and Applications”, which is a special feature issue commemorating
the 10th anniversary of the journal, Lubricants. A historical discourse is provided regarding various
aspects of tribology as a multi-disciplinary subject that interacts in an inter-disciplinary manner with
many other subjects: multi-body dynamics, thermofluids and heat transfer, contact mechanics, surface
science, chemistry, rheology, data science, and biology, to name but a few. Such interactions lead to
many important topics including propulsion with different sources of energy, mitigating emissions,
palliation of friction, enhancing durability and sustainability, optimization through detailed analysis,
and the use of artificial intelligence. Additionally, issues concerning kinetics at various physical scales
(from macroscale to microscale onto mesoscale and nanoscale) affecting the kinematics of contacts
are discussed. The broad range of considered applications includes vehicular powertrains, rotor bear-
ings, electrical machines, mammalian endo-articular joints, nanobiological attachment/detachment,
and locomotion. Current state-of-the-art tribological research is highlighted within a multi-physics,
multi-scale framework, an approach not hitherto reported in the open literature.

Keywords: tribology; contact mechanics; tribodynamics; electrotribodynamics; textured surfaces;
coated surfaces; biotribology; nanotribology; biomimetics; artificial intelligence

1. Introduction

With the increasing emphasis on product sustainability, reducing emissions, and using
alternative sources of energy to hydrocarbons, tribology, like many other disciplines, is
set to undergo significant and rapid changes. In the realm of vehicle propulsion power,
there is already a shift away from pure hydrocarbon fuels to hybrid or fully electric systems
for all modes of transport [1–7]. These trends have been supplemented by the growing
interest in harnessing the power of natural gas and, more recently, hydrogen as cleaner
sources of energy [8–12]. In the area of electrical power generation, there have already been
developments in off-shore and on-shore wind turbine farms [13–16] and the acquisition
of solar power from nationally as well as domestically installed solar panels [17–19]. Of
course, there are other alternative sources of energy such as nuclear and wave power, but
the arguments for some are shrouded in political and societal controversaries. Impending
and ongoing changes have brought opportunities to combat some critical issues such as
harmful emissions and global warming. However, the uptake of some of these technologies
introduces a state of transience through the lack of necessary support infrastructure. There
are new and unexplored issues in tribological research, where established methods fail
to address the emerging problems. Nevertheless, much research will remain the same,
firmly supported by long-established fundamentals and principles [20–24]. Tribology has a
broad spectrum of applications, interacting closely with other major disciplines, such as
dynamics, contact mechanics, surface engineering, combustion, chemistry, and rheology,
in a multi-scale manner [25,26]. As a multi-disciplinary subject with inter-disciplinary
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interactions, tribology encompasses a broad area of research. This paper aims to advance,
propose, and focus on some of the important aspects of tribology.

2. Tribodynamics

The manifestation of friction and wear in real applications, particularly in machinery,
is mainly due to the existence of motion between contiguous surfaces. Hence, the dynamics
of the components to which the surfaces belong is an important issue in determining the
tribological state of their contacts. However, there is a reciprocal relationship as well,
where the tribological state and behavior of contacts can affect their dynamics, for example,
by inducing noise, vibration, and harshness (NVH) issues. Within the realm of vehicle
engineering, there have been many tribodynamic (integrated tribology and dynamics)
studies of internal combustion (IC) engines, including NVH issues [27–32]. Some of these
studies have focused on various IC engine sub-systems, mainly on the palliation of friction
(aiming to improve fuel efficiency and durability, and to reduce emissions) and NVH
refinement. These are two aspects that often conflict because increased friction reduces
NVH at the expense of decreased energy efficiency. The tribodynamic studies of IC engine
sub-systems have included piston–cylinder conjunctions [33–40] owing to their lion’s
share of frictional power losses. In an attempt to improve fuel efficiency and thus reduce
fuel consumption and emissions of hydrocarbons, various fuel additives have become
commonplace, including a percentage of ethanol as a fuel additive. However, tribological
issues of concern, such as wear of surfaces/coatings and removal of protective tribofilms as
the result of combustion by-products, have emerged [41,42]. The same issues are likely to
present themselves with dual-fuel hydrogen or pure hydrogen combustion engines, which
normally run at higher surface temperatures [43]. An increased lubricant temperature
can reduce its viscosity and thus its load carrying capacity, promoting direct boundary
interactions [44]. Thermal damage to contacting surfaces can also occur, as well as lubricant
dilution with water as a by-product of hydrogen combustion. These will be important
considerations in future research into alternative/mixed fuel IC engines [9,45,46].

Another IC engine sub-system is the valve train. Tribodynamics of cam-follower pairs
in engine applications and in many other mechanisms (e.g., in the food processing, textiles,
and knitting industries) is subject to high contact loads. In IC engines, there have been
many valve train analyses, including the use of multi-body dynamics to accurately model
the constrained mechanism motions [47–53]. The trend has been to include component
flexibility (e.g., the elastic valve stem or camshaft [50]). Contact/impact dynamics of
mating pairs (e.g., cam and follower, and valve and valve seat) have also been included
in analyses [54,55]. Therefore, integrated elasto-multi-body dynamics studies have been
carried out, including contact mechanics analysis and lubrication. Some analyses have been
extended to the case of generated sub-surface stresses [55], which are often responsible for
the inelastic deformation of surfaces [56–61] such as in fatigue spalling and pitting at highly
loaded contacts of cam–follower pairs. Generated friction and heat are other inclusions in
some valvetrain tribodynamic analyses [50,62].

The aforementioned are just a few representative areas of engine tribodynamic analysis,
for which there have been many studies. Other main areas of tribological research in IC
engines have been crankshaft support bearings, connecting rod bearing (big-end bearing)
and wrist-pin bearing (small-end bearing), all increasingly using soft tin-based or copper
overlays and thin wear-resistant protective coatings such as indium or bismuth [63–69].
Investigation into the use of polymer coatings in journal bearings with potential application
to IC engines has also been conducted [70–73].

Other conjunctions in powertrain systems include transmissions and differentials. The
non-linear rattling dynamics of lubricated meshing teeth pairs depends on the applied load.
Various forms of rattling behavior result from the dynamic transmission error (DTE) of
meshing pairs [74,75], subjected to various regimes of lubrication. These comprise lightly
loaded idle rattle (hydrodynamic conditions) [76–80] and highly loaded creep and drive
rattle categories (with elastohydrodynamic contact conjunctions) in transmissions [81–84],
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timing gears [85], and the intermittent stop–start impacting motion of chain drives [86].
Transmission rattle is a very good example of interactions between system dynamics and
contact mechanics/tribology (i.e., tribodynamics) in vehicular powertrains.

Constant velocity joints (CVJs) can play a significant role in vehicular NVH. For
instance, launch shudder, particularly encountered in electric vehicles (EVs), is linked to
half-shaft CVJ excitation and is mainly attributed to frictional characteristics [87]. However,
the tribology of CVJs is not well researched, and in many dynamic analyses, it is often
customary to use a constant friction coefficient for the CVJ contacts [88–90]. This is despite
the fact that such contacts are often lubricated with grease and are subjected to complex
kinematics, which result in variable friction. In addition, the regime of lubrication during
operation can vary from pure EHL to mixed and boundary interactions, even within a
single cycle. Recent studies have shown that the accurate prediction of the coefficient
of friction and the appropriate representation of the mechanics of contact of CVJs have
significant effects on the predicted dynamics, particularly in high-performance racing
applications [91]. The accurate analysis of kinetics of CVJ contacts has a significant effect
on predicting the observed failures in such contacts [92]. An example of the multi-physics
tribodynamics approach is the study of hot judder of automotive clutches shown in Figure 1.
The developed model combines multi-body dynamics with measured friction data by
tribometry, as well as with a thermal network contact model.

The future trend toward alternative sources of vehicular propulsion is expected to
deviate from the current IC engine systems. However, predicting the early demise of IC
engines is rather presumptuous and mostly politically driven rather than scientifically
based. The reasons are manifold, including the high power density of hydrocarbon-based
fuels, which cannot be easily matched by other alternative sources of energy, and the already
established and inexpensive methods of processing and distribution for hydrocarbon fuels
compared with the alternatives. Other issues concern hybrid technologies that still use IC
engines, mainly in the form of down-sized range extenders (i.e., small engines with few
cylinders). These are used as supplementary power for electric powertrains due to the
range limitations imposed by battery capacity. Dual-fuel hydrogen–diesel, hydrogen–CNG
(compressed natural gas), and pure hydrogen-fueled engine configurations are likely to
be the future source of vehicular propulsion for long-haul trucks and lorries, as well as
for some marine, mining, agricultural, and construction applications. Therefore, putting
aside political expediency, IC engine-based powertrains should be around for many years
to come, with the ever-improving take-up of optimized new technologies, which include
cylinder deactivation (CDA), variable valve timing (VVT), stop–start, turbo- or super-
charging or both, and gearshift monitor. All these technologies are employed to reduce fuel
consumption and emissions. Their tribological impacts have been ascertained by in-depth
analyses [93–96]. Therefore, improvements in IC technologies have already been made
and are increasingly implemented. These trends bode well for the future development of
combustion engines that use alternative fuels, as well as for hybrid powertrains.

Although tribodynamics has been explored to a good extent in the context of propul-
sion and, in particular, vehicular powertrains [97,98], there are other equally important
areas where it can play a significant role. These include the tribodynamics of space mecha-
nisms [99,100], biological joints [101,102], and robotics [103], as a few examples. In addition,
any non-linear dynamic behavior of a system where the origin of the non-linearity either
partially or fully relies on the existing tribological contact(s) can only be ascertained by
appropriate tribodynamics models [104–106]. Future advances are expected in these areas
of tribodynamic research.
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Figure 1. Elements of a multi-physics tribodynamics model of automotive clutch systems [97,98].

3. Electro-Tribodynamics of Modern Propulsion Systems

In the quest to decarbonize energy sources for the purpose of propulsion, electrification
has been proposed as the primary candidate. Indeed, there are already many modes
of transport that rely on electric power. Variable frequency electrical generators and
motors have been developed with the main aim of reducing greenhouse gas emissions
in the transport sector, which currently contributes to nearly a quarter of all harmful UK
emissions [107,108]. Manufacturing industries also increasingly rely on variable high-
frequency drive electric motors. It is estimated that in the UK’s commercial and industrial
sectors, electric motors account for 30% and 70% of energy consumption, respectively [109].

Popular permanent-magnet synchronous traction motors with variable frequency
drive control systems provide high power density, efficiency, and low-cost operation. How-
ever, these drives can cause electric currents to pass through the contacts of mating surfaces.
These currents cause various forms of surface damage, sometimes manifested as small
craters, resembling those created by the electro-discharge machining (EDM) process. Other
forms of damage include frosting, fluting, and pitting of bearing races. They can all lead to
premature failure of tribological contacts [110–117]. Detailed electrotribodynamics of bear-
ings has shown the interplay between bearing mechanical vibration frequencies and those
of electrical power supply (Figure 2), leading to the fluting and frosting patterns on bearing
races [118]. The reduction in fatigue life is through microstructural degradation [119].
It is thought that electrically accelerated fatigue is the result of localized electroplastic-
ity [120,121]. Therefore, understanding the root cause of electrically induced bearing
damage is an important first step in failure diagnosis and monitoring, which reduces
critical failures and machine downtimes. Combined electro-tribodynamics investigations
should be carried out as a form of multi-physics multi-scale analysis [122–125].
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4. Tribology of Engineered Surfaces

Contacting surfaces are progressively engineered to suit specific applications. This
is in order to reduce friction, wear, or fatigue, in line with the intended application. A
large area of research and development includes controlling the surface topography and
surface texturing and the introduction of coatings. More detailed methods of analysis have
been developed to deal with rough surfaces under hydrodynamic, elastohydrodynamic,
mixed, and boundary regimes of lubrication. In the case of vehicular powertrain sub-
systems, studies of hydrodynamics of rough surfaces have been mostly directed to the
piston–cylinder system because of its dominant share of the frictional losses of IC engines.

With improved instrumentation, the effects of surface topography, surface texturing,
and applied coatings on the tribological performances of various contact conjunctions
have been ascertained. There has been a plethora of such studies in the case of vehicular
powertrains. In particular, there have been many fundamental experimental and numeri-
cal studies of layered solids (coatings) [56,126–131], some concerning cam–follower and
gear meshing contacts with hard wear-resistant coatings to guard against contact fatigue
under highly loaded contact conditions [132–140]. Therefore, contact mechanics analysis,
specifically the evaluation of sub-surface stresses, is essential for determining the onset of
fatigue spalling [54–59]. Nevertheless, refinement of current analyses is required to deal
with muti-layered structures with graded elasticity, such as advanced coatings made of a
mix of hard and soft bonded layers.

In recent years, there has been a trend toward the integration of surface engineering
and tribology. This is mainly to enhance lubrication in various applications or under
operating conditions that promote direct boundary interactions, resulting in increased
friction and wear. In powertrain systems, any conditions leading to motion reversal
(e.g., piston reversals at the top and bottom dead centers [141,142] and inlet reversals
prior to and after the cam nose contact with the follower [143,144]) lead to a momentary
cessation of lubricant entrainment into the contact. Therefore, boundary or mixed regimes
of lubrication occur. A way of mitigating this is to create micro-reservoirs of lubricant
entrapped in the contact, for example, by creating micro-wedges by fabricating surface
textures in the form of dimples, grooves, etc. These are fabricated by a host of different
methods, including mechanical indentation [145,146], chemical etching and electrochemical
machining [147,148], and the use of laser-based techniques [149–151].

Surface texturing can be used in a wide range of tribological applications, from au-
tomotive engines [151–154] and bearings [155–157] to biomedical implants [158,159], and
nanoelectromechanical and microelectromechanical systems (NEMS/MEMS) [160–162].
The appropriate texturing of surfaces can reduce friction (Figure 3), improve wear resis-
tance, and enhance lubrication. It can also improve the surfaces’ ability to retain and
distribute lubricants, leading to improved performance and longer service life [150,163,164].
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There are still a number of challenges, such as the optimal design of texture features in-
cluding the shape, size, and distribution, and bespoke design for specific applications
and operating conditions, although some pioneering work in this regard has already
been reported [165–170]. Emerging robust developments with computationally efficient
methods for designing surface textures include artificial neural networks (ANNs) [171].
Developing manufacturing methods that can be applied to many surfaces and for complex
geometries at the industrial scale is still a major challenge. Additive manufacturing tech-
niques can be explored for this purpose. New surface texturing techniques can create more
complex and tailored surface attributes in the form of 3D hierarchical nanostructures or
microstructures. The integration of texturing with other tribological technologies, such as
advanced coatings and lubricant formulations, can lead to synergistic enhanced lubrication.
Recent research in this regard includes combining surface texturing with self-lubricating
coatings [172]. Surface texturing can also be employed in new research domains such as
wearable devices [173], soft robotics [174], and renewable energy systems.
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5. Artificial Intelligence in Tribology

Tribology will witness vast disciplinary expansion as more scientists, engineers, and
laymen encounter it. Not all will be well versed in tribological interactions or indeed have
appropriate predictive and design tools at their disposal. Therefore, the future is expected to
bring increasing utilization of expert systems and artificial intelligence tools in tribological
research. Despite the recent hype related to the development and use of artificial intelligence
(AI) and machine learning (ML), their use dates back to the late 1980s. For example, in 1989,
Li and Wu [175] proposed a pattern recognition and classification technique for the online
detection of localized defects in bearings. Integrated sensing (e.g., vision) with parameters
(e.g., moment invariants of an image) and the use of predicates (unique features to identify
certain objects or patterns), together with a knowledge-based driven expert system, can
discriminate between an assortment of objects. This approach has been commonplace in
robotics and pattern recognition [176–178]. Others have used artificial neural networks
(ANNs) for diagnosing localized defects in rolling element bearings [179–181].

AI-based techniques have been developed for automatic wear particle classifica-
tion [182] or assessment of the useful lubricant life span [183]. Some early applications
of AI in tribology can be found [184]. Later, Sinanoglu et al. [185] showed a feed forward
three-layered ANN can provide better prediction of generated pressures in journal bearings
under load disturbance than conventional modeling techniques. The development and use
of AI techniques for tribological applications have been reviewed in [186–188].

The dominant area of research in early applications of AI in tribological research was
online condition monitoring. This still remains a key area [189,190]. AI can be advan-
tageous where no readily available fundamental physics-based governing relationships
describing certain tribological phenomena exist. Problems become complex when all the
required input data cannot be obtained directly or when there is measurement uncertainty.
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One such area is lubricant formulation, including various additives and their individual
interactions, as well as their interactions with the bounding contacting surfaces. A lubricant–
surface combination as a bespoke system would be an ideal solution in many machines
and mechanisms but requires considerable testing and evaluation [191]. In this regard,
Bhaumik et al. [192] used ANN in combination with genetic algorithms (GA) to formulate
a new lubricant with multiple friction modifiers (FMs). Recently, Campillio et al. [193] used
AI for developing new lubricant dispersants. It is expected that AI can be used to formulate
lubricants with particular molecular dispositions and rheologies to suit given applications.
Rosenkranz et al. [194] discussed in detail how AI can be used for the design of material
composition, which is of significance in tribology.

Using AI tools, Marian et al. [195] predicted the EHL film thickness with a good degree
of accuracy. Singh et al. [196] used an ML-based surrogate model for predicting the max-
imum contact temperature in TEHL line contacts. More recently, Mousavirad et al. [171]
have used transfer learning techniques in ANNs for the geometrical design of textured
surfaces (Figure 4). These approaches have the potential of bringing AI tools to non-
expert users for complex lubricated contact predictions that otherwise would require
time-consuming and computationally intensive studies.
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6. Biotribology and Biomimetics

With the growing aging world population, particularly in developed countries, an
expanding area of research is biotribology. Tribology earnestly entered the domain of bio-
logical applications in the middle of the 20th century. The earliest research undertaken was
in endo-articular joint arthroplasty, particularly hip joints. However, the mechanism of lu-
brication of synovial joints was not well understood. Several explanations were forwarded.
Some favored boundary lubrication [197], some preferred hydrodynamics [198], and others
proposed a weeping-type mechanism [199]. A landmark symposium was organized by
Dowson and Neale on behalf of the Institution of Mechanical Engineers (IMechE) and the
surgeons Charnley and Scales for the British Orthopaedic Association (BOA). Dowson [200]
demonstrated that the main mechanism of lubrication was elastohydrodynamics with the
squeeze film effect. Shortly afterward, Dowson, who was at this point the Chairman of the
IMechE Tribology group, coined the term biotribology [201] and provided evidence of the
complementary mechanisms of lubricant entrapment and enrichment [201–203]. A major
problem was the failure of hip prostheses after a relatively short period. The femoral head
was made of steel running against a polytetrafluoroethylene (PTFE) polymer acetabular
member. The wear of PTFE was rapid, leading to the eventual need for revision surgery
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within a few years. At the time, Dowson was working on novel durable polymers for the
Ministry of Defence, one of which, ultra-high molecular weight polyethylene (UHMWPE),
was adopted by Charnley [204–206] for his new metal-on-polymer hip joint prosthesis with
the diameter of the femoral head (known as the Charnley joint) determined by Dowson
for optimum tribological performance. The Charnley joint remains the gold standard
with durability averaging more than 20 years. It probably represents one of the greatest
achievements in tribological research in the 20th century.

There have been many combinations of femoral head and acetabular cup materials
for hip replacement arthroplasty. Dowson [207] presented his definitive review of endo-
articular joint arthroplasty at the start of the new millennium. He also provided an in-depth
introduction to hip joint replacements in Chapter 14 of [21]. Arthroplasty of the hip has
been followed by the knee as well as by some other joints [208,209]. The study of hip and
knee joint lubrication has led to the development of microelastohydrodynamics theory, en-
tailing pressure perturbations and the enhanced load carrying capacity of contacts. The link
between the microelastohydrodynamics of the rough cartilage surface [210,211] and the hy-
drodynamic lift of textured surfaces is a good example of biomimetic observation [151,212].
Another important outcome from the biotribology of joints has been the advent of biomimet-
ics in tribology. This has led to many new areas of biotribological research. Dowson refers
to these in [213] and in Chapter 14 of [21]. There is no doubt that biotribology will occupy
a significant position in the future of tribological research.

With the exceptional performance of synovial fluids (nature’s preferred lubricant),
which is the result of millions of years of evolutionary processes, special attention has been
paid to the physics of such lubricants. Synovial fluids and bovine serum possess many
different types of molecules that are associated with each other in a complex fashion [214]. It
must be noted that these lubricants are evolved not in isolation but along with the surfaces
that they interact with and in particular the cartilage [215]. Therefore, it seems that Nature
has treated tribological contacts as lubricant–surface systems.

The focus has been on understanding surfaces that act like cartilage and can mimic
its behavior. Recent developments in hydrogels, which are essentially polymerized small
molecules with large hydrophilic groups producing cross-links when they absorb water,
have opened ap an avenue for the potential treatment of joint problems such as osteoarthri-
tis [216]. The applications of hydrogels to drug delivery and release, mesenchymal stem
cell entrapment, and cartilage regeneration have already been explored [216]. However,
the structure and tribological performance of hydrogels is not yet well understood. The
polymer network structure and absorption of water are key elements in the determination
of tribological performance and the resulting coefficient of friction [217].

There are other areas in the biomedical and healthcare arenas where tribology can play
a significant role. For instance, the materials used for dental restoration need to be resistant
to wear and corrosion along with other obvious requirements such as biocompatibility. As
highlighted in [218], ceramics have the advantage of improving wear resistance. However,
they can be quite abrasive to the opposing interacting teeth. Any further dental tribological
research and development requires consideration of practical clinical needs to establish
guidelines and cross-communication between tribologists and clinicians [219].

Finally, an aspect that has achieved growing understanding is the role of tribology
in the design and development of medical devices. The reduction in friction between
endoscopic tools and esophagus or colon tissues [220] and tribological issues associated
with cardiovascular devices [221] are a few examples.

7. Nanotribology

The trend in lightweight systems and downsized products includes the personaliza-
tion of many small devices. This has led to downsizing and, in some cases, miniaturization
as in microelectromechanical systems (MEMS) or nanoelectromechanical systems (NEMS).
The diminutive devices use bearings, gears [222–224], pistons, joints, and other forms
of contact [225,226] as also found in many traditional machines and mechanisms. Their
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contacts are minute and their separations almost in the vanishing scale. The advantages
of small devices are negligible inertial dynamics, leading to smoother running operations.
However, the kinetics of diminutive contacts deviate from those in the microscale (which
are mostly governed by viscous forces). There is dominance of inter-molecular and surface
forces, such as van der Waals, electrostatics, and a host of others. Diminutive contact
conjunctions should run dry as predicted by Feynman [227] almost half a century ahead
of nanoscale developments. This is due to the prohibitively high viscosity of any lubri-
cant/fluid in such contacts. Consequently, adhesion plays a major role. For example, with
rough-cut microgear teeth, as the speed of rotation falls below a normally high value of the
order of tens of thousands of RPM, dry adhesion occurs [224]. However, in many cases,
moisture can ingress into the vanishingly small contact conjunctions. In some cases, the tiny
contacts are supplied with a basic lubricant, such as octamethylcyclotetrasiloxane (OMCTS).
With light loads, the effects of inter-molecular forces become dominant in wet contacts.
It has been shown that for non-polar lubricants such as OMCTS the effects of structural
solvation and van der Waals forces are dominant in gaps of the order of a few to several
molecular diameters of the intervening fluid [228–230]. This does not preclude a modest
contribution to the load carrying capacity due to viscous action (hydrodynamics). When
the film thickness is ultra-thin, pressure generated by the van der Waals inter-molecular
forces and solvation should be considered.

The solvation effect was first noted by Chan and Horn [231]. They reported that for
molecularly smooth contacts of mica surfaces and with the removal of the inlet meniscus
force, the continuous supply of lubricant to the contact is drained from its outlet in a discrete
fashion. This is in contravention of the continuity of flow conditions, which is the basis of
the Navier–Stokes and Reynolds equations. Therefore, nanoscale lightly loaded contacts
do not comply with continuum mechanics theories. In particular, solvation or structural
force dominates whenever an ultra-thin film of the order of several molecular diameters
of the intervening fluid is confined by solid barriers under very light loads. This causes
layering of the fluid film and discrete molecular-level ejections at the contact outlet [232].
The key message of these findings is that the lubrication and mechanisms of friction and
adhesion differ from those at the microscale.

With biomimetics making strong inroads into tribological research, the fundamental
understanding of inter-molecular forces in nanoscale will become even more important
in the future. This new area is open to further development, such as exploiting adhesion
at nanoscale. For example, the remarkable small tokay gecko of mass 0.25–0.3 Kg can
generate large adhesive forces, tens of times larger than its own weight, using more than
14,000 per mm2 setae, each with 100–1000 spatulae in contact with surfaces. The gecko
moves at speed up vertical walls or upside down and can carry loads several times its body
weight [233–235]. The nanoscale kinetics comprise van der Waals and meniscus/capillary
forces. To exploit the many mechanisms underlying the adhesion and locomotion used
by small creatures and insects, a better understanding of nanotribological conditions is
required, although progress has already been made [236–240]. Clearly, nanotribology plays
an important role in multi-physics, multi-scale analyses (from microscales to mesoscales to
nanoscales) [241,242].

Among many nanotribological studies, the use of nanoparticles in the formulation
of future lubricants creates multi-faceted working fluids for applications such as electric
vehicles, where thermal properties of the lubricant are of prime concern (Figure 5).
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8. Computational and Multi-Scale Tribology

In recent years, fluid–structure interaction (FSI) computational tools have been widely
developed. The first use of FSI in tribology was the seminal work of Dowson and Hig-
ginson [246] on providing a numerical solution to the elastohydrodynamic lubrication
problem. Their method included the effect of generated fluid pressures upon the localized
elastic deformation of contacting solid surfaces.

Tribological phenomena such as friction and wear have a multi-scale nature [191].
The rise in computational power has enabled the development of molecular dynamics
(MD) models for studying phenomena from nanoscale through to macroscale (component
level) [247]. Non-equilibrium molecular dynamics (NEMD) have been used in tribology to
study the behavior of lubricant additives [248].

MD simulations are confined to very small spatial and temporal domains: a few atoms
or molecules. Linking the findings at such scales to microscale contact behavior remains an
unresolved issue. Nevertheless, MD simulations of lubricant molecules’ interactions with
atoms of solid contacting surfaces can provide realistic boundary conditions for larger-scale
continuum mechanics.

A limitation of extensive computational models, such as those based on MD, CFD, or
FEA or their combinations, is their unsuitability for timely industrial applications, where
a plethora of contacts may exist. For industrial applications, analytical or semi-analytical
design tools are favored. Insights from multi-scale analytical models can provide guidance
for developing more detailed and targeted numerical analyses [43,106,249–251]. Multi-
scale methods also require input data from various physical scales. Enhanced appropriate
experimental approaches should be designed for this purpose (Figure 6) [252].
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9. Tribology in Space and Other Extreme Environments

There are additional tribological requirements for equipment and machinery intended
for space operation. These include provisions to encounter the extreme conditions experi-
enced in space, in orbit around other planets, or on their surfaces. The equipment must
withstand the harsh transient conditions experienced during the launch and subsequent
landing of space vehicles and also the temperature variation from cryogenic levels to hun-
dreds of degrees Celsius. The very low pressures or vacuo and electromagnetic radiation
can cause evaporation and degradation of liquid lubricants. Therefore, solid lubricants
are usually preferred whenever possible. Research into the use of solid lubricants such as
MoS2 and WS2 or polymers, as well as the characterization of their behavior under various
tribological conditions, has been carried out [254–256]. The use of novel lubricants, such as
ionic fluids, has been explored for space applications [257,258].

10. Measurements, Monitoring, and Tribo-Sensing

The monitoring and measurement of tribological contacts can provide very useful
information regarding the nature of interactions and the underlying physics. Measurements
are also critical in providing data for the validation of models. Early works on experimental
evaluation have included the measurement of lubricant film thickness, generated contact
pressures, temperature, and friction. One of the first techniques developed was the use
of optical interferometry [259,260]. A seminal paper by Gohar and Cameron [261] used
optical interferometry for the observation and measurement of film thickness in elastohy-
drodynamic lubricated point contacts. Optical interferometric studies of finite line contacts
ensued [262–264]. These studies have significantly improved the understanding of con-
centrated lubricated contacts and led to the establishment and validation of fundamental
predictive methods for all forms EHL contacts [265–270]. These methods were developed
to encompass optical spectroscopic measurements of ultra-thin films in nanotribological
contacts [271–275]. They have also been used for the validation of nanotribological con-
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tact analysis of molecular-level lubricant films under transient conditions [232]. Further
advances in nano- and molecular-level tribology are expected in the future.

Measuring the elastohydrodynamic pressures from minute concentrated contacts of
rolling element bearings has always been a challenge. The pioneering work of Bridg-
man [276], developing pressure-sensitive bulk manganin with low temperature sensitivity,
provided an opportunity for the development of miniature pressure transducers. These
were deposited using flash evaporation to study EHL contacts [277,278]. The initial devices
were rather crude and unable to resolve the high elastohydrodynamic pressure spikes at
the contact exit. Refined manganin microtransducers with active element dimensions of
5 × 10 µm2 and thickness between 100 and 300 Å were developed through RF sputtering
of bulk manganin powder under high vacuum at Imperial College [279]. They were used
for elastohydrodynamic line contact conditions in roller bearings or in a disc machine
and for the circular point contact of a ball and a flat glass race [280–284]. These initial
precise measurements provided excellent insight into concentrated elastohydrodynamic
contacts. They also provided a means of validating a detailed analysis under impacting
conditions [233,285]. The involved and resource-extensive deposition methods limited this
form of tribo-sensing, resulting in a dearth of further work. However, improved deposition
techniques have opened up many research opportunities in active tribology applications.

Measuring friction is an important issue because of the continuing desire to reduce
frictional power losses and harmful emissions and enhance fuel efficiency. Measurement
methods for piston–cylinder friction and film thickness have involved the use of various
sensors, including proximity and capacitive devices [286–290], laser-induced fluorescence
techniques [291–295], and ultrasonic sensors [296–300]. Floating liners (Figure 7) are flexibly
attached to stationary cylinder bores via preloaded piezoelectric load cells and dragged by
the moving piston, enabling direct in situ measurement of friction [301–306]. The data thus
obtained have been instrumental in understanding the different regimes of lubrication in
the various parts of an engine cycle (i.e., compression, power, exhaust, and intake in the
four-stroke process). The results generally show hydrodynamics/elastohydrodynamics,
depending on the engine type, apart from the transition from the compression stroke to
the power stroke, where the regime of lubrication is mixed or boundary. Floating liner
measurements have proved to be very useful for the validation and refinement of analytical
and numerical tribodynamic tools [142,307–310].

Active tribo-sensing (monitoring and intervening with contact conditions) requires
integrated monitoring and active actuation. An example of active tribo-sensing is the use
of surface charge variation for condition monitoring and wear assessment [311]. Recently,
electronic textiles (e-textiles), utilizing conductive nanotubes (CNTs) or silver (Ag) and
polytetrafluoroethylene yarn, have been developed to act as touch sensors, enabling human–
machine interactions [312,313]. Powering sensors usually requires an energy source such
as batteries, which add to the system weight and inertia and have a limited life span.
Active on-the-spot tribo-sensing generates power that can be used for localized small
embedded sensors such as triboelectric nanogenerators (TENGs). Friction generated from
the rubbing motion in some contacts can induce a triboelectric effect that can power the
TENGs themselves. These can be used as energy harvesting devices with superior power-
to-volume and power-to-weight ratios compared with traditional devices [314]. TENGS are
ideal for harvesting energy at low frequencies [315]. A number of issues to overcome with
TENGs comprise their high output impedance and the wear of their polymeric materials.
In addition, the existence of small wear particles can reduce their power output [314,316].
Controlling environmental parameters such as humidity, temperature, and atmospheric
pressure can also significantly alter their power output [316]. Modifying materials at
nanoscale to use in TENGs for better performance is an emerging area of research [317,318].
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11. Closure

The paper discusses the multi-disciplinary nature of tribology and the broad spectrum
of its applications in Nature, engineering, and physical sciences. Tribology interacts with
many other disciplines such as dynamics, vibration, thermodynamics, contact mechanics,
surface engineering, rheology, and biology, thereby extending its reach and impact to
integrate with topics such as additive manufacturing, artificial intelligence and biomimetics.

A key feature of tribology is its relevance to multi-scale applications, a point which is
emphasized in the current discourse. Tribology is critical to the palliation of friction and to
the mitigation of emissions to counter impending climate disaster. It also plays a growing
role in human health (biotribology).
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