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Abstract
Background/Aims: Sample size determination for cluster randomised trials (CRTs) is challenging
because it requires robust estimation of the intra-cluster correlation coefficient (ICC). Typically, the
sample size is chosen to provide a certain level of power to reject the null hypothesis in a two sample
hypothesis test. This relies on the minimal clinically important difference (MCID) and estimates for the
overall standard deviation, the ICC and, if cluster sizes are assumed to be unequal, the coefficient
of variation of the cluster size. Varying any of these parameters can have a strong effect on the
required sample size. In particular, it is very sensitive to small differences in the ICC. A relevant ICC
estimate is often not available, or the available estimate is imprecise due to being based on studies
with low numbers of clusters. If the ICC value used in the power calculation is far from the unknown
true value, this could lead to trials which are substantially over- or under-powered.
Methods: In this paper, we propose a hybrid approach using Bayesian assurance to determine the
sample size for a CRT in combination with a frequentist analysis. Assurance is an alternative to
traditional power, which incorporates the uncertainty on key parameters through a prior distribution.
We suggest specifying prior distributions for the overall standard deviation, ICC and coefficient of
variation of the cluster size, while still utilising the MCID. We illustrate the approach through the
design of a CRT in post-stroke incontinence and compare the results to those obtained from a
standard power calculation.
Results: We show that assurance can be used to calculate a sample size based on an elicited prior
distribution for the ICC, whereas a power calculation discards all of the information in the prior except
for a single point estimate. Results show that this approach can avoid misspecifying sample sizes
when the prior medians for the ICC are very similar, but the underlying prior distributions exhibit
quite different behaviour. Incorporating uncertainty on all three of the nuisance parameters, rather
than only on the ICC, does not notably increase the required sample size.
Conclusion: Assurance provides a better understanding of the probability of success of a trial given
a particular MCID and can be used instead of power to produce sample sizes which are more robust
to parameter uncertainty. This is especially useful when there is difficulty obtaining reliable parameter
estimates.
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Background
Cluster randomised trials (CRTs) are a type of randomised controlled trial (RCT) in which randomisation
is at the cluster-level, rather than the individual-level as in standard RCTs. This means that groups
of individuals (e.g. general practices, schools or communities) are randomly allocated to different
interventions (e.g. vaccination programmes or behavioural interventions). A common reason for
implementing this design is to mitigate the risk of contamination or where individual randomisation
is not feasible. Other justifications are detailed in Eldridge et al (2012)1.

Individuals within a cluster are likely to share similar characteristics (e.g. demographics), as well as
be exposed to extraneous factors unique to the cluster (e.g. delivery of the intervention by the same
healthcare professional). Consequently, outcomes from members of the same cluster are often correlated,
which can be quantified by the intra-cluster correlation coefficient (ICC). This lack of independence
reduces the statistical power compared to a standard RCT of the same size, meaning that the sample size
needs to be inflated to allow for the clustering effect.

Various methods for sample size determination in CRTs exist2,3, which all rely on estimation of the
ICC. In practice, ICC estimates are typically based on pilot studies, but these are often too small to
provide precise and reliable estimates4. An alternative simple approach is to use a conservative estimate
of the ICC (e.g. the upper confidence interval limit) in the sample size calculation5. However, this
can lead to over-powered and unnecessarily large trials. A more reliable method is to combine ICC
estimates from multiple sources, such as previous trials or databases listing ICC estimates6, and use
information on patterns in ICCs7. This raises further issues such as how to effectively combine the ICC
estimates, how to adequately reflect their varying degrees of relevance to the planned trial and how to
capture the uncertainty in the individual ICC estimates.8 suggest integrating over a range of possible ICC
values, determined by confidence intervals obtained using methods in Ukoumunne (2002)9, to provide
an ‘average’ sample size with respect to the ICC. However, this does not consider the uncertainty present
in other design parameters, such as the treatment effect and variability of the outcome measures. Further,
it assumes that each value of the ICC is equally likely. Other approaches to deal with uncertainty in the
ICC include sample size re-estimation10,11 and robust designs, such as maximin designs12. For the latter
approach a range rather than a prior is used for the ICC.

Utilising a Bayesian approach for the trial design, in which prior distributions are assigned to the
unknown design parameters such as the ICC, could further circumvent these issues and is particularly
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Williamson, Tishkovskaya and Wilson 3

useful in settings where ICC estimates are not readily available. In the CRT literature, prior distributions
for the ICC have been proposed based on subjective beliefs13 and single or multiple ICC estimates14,
which may be weighted by relevance of outcomes and patient population15. These are used to estimate
a distribution for the power of the planned trial for a given sample size. Within the Bayesian framework,
uncertainty in other design parameters can be incorporated into the sample size calculation in a similar
way, and the relative likelihood of different parameter values is encompassed through specification of the
prior distribution. For example, Sarkodie et al (2022)16 assign a prior to the overall standard deviation,
in addition to the ICC, then describe a ‘hybrid’ approach to determine the sample size required to attain
a desired ‘expected power’, defined as a weighted average of the probability that the null hypothesis is
rejected (with weights determined by the priors).

Hybrid approaches, which combine a Bayesian design with a frequentist analysis of the final trial data,
have gained increasing popularity, particularly with respect to standard RCTs17,18. In this paper, we adopt
a hybrid approach by using the Bayesian concept of assurance to determine the sample size for a two-
arm parallel-group CRT with a Wald test for the analysis. In contrast to traditional frequentist power,
which represents a conditional probability that the trial is a success, given the values chosen for the
design parameters and the hypothesised treatment effect, assurance typically refers to the unconditional
probability that the trial will be ‘successful’19. We modify this definition by conditioning on the minimal
clinically important difference (MCID) instead of assigning a prior distribution to, and integrating over,
the treatment effect as is standard practice17,20. This is more representative of the design stage of a trial,
in which the treatment effect is typically fixed a priori by investigators. Moreover, this ensures that the
assurance will tend to one as the sample size increases so can be used analogously to traditional power,
thus aiding interpretation.

A key consideration when applying a Bayesian design is how to specify suitable prior distributions. In
contrast to Sarkodie et al (2022)16, which assumes independent priors on the ICC and standard deviation,
we suggest a joint prior distribution for these parameters, as described in the Methods section. In addition,
we account for the fact that many CRTs have unequal cluster sizes by defining a prior distribution on the
coefficient of variation of cluster size. This is often overlooked in standard sample size calculations for
CRTs21,22.

Our approach is motivated by a parallel-group CRT, Identifying Continence OptioNs after Stroke
(ICONS), outlined in the Results section. We illustrate the effects of redesigning this trial using the
entire ICC prior distribution to inform sample size determination via an assurance calculation, rather than
relying on a single point estimate from this distribution as in Tishkovskaya et al (2024)23. The impacts
of varying the ICC prior distributions on the chosen sample size are evaluated. We perform sensitivity
analyses on other design parameters in an additional simulation study provided in the Appendix.

Jones et al (2021)24 summarise the current state of play regarding the use of Bayesian methods in
CRTs. In doing so, they highlight the “need for further Bayesian methodological development in the
design and analysis of CRTs . . . in order to increase the accessibility, availability and, ultimately, use of
the approach.” This paper is therefore a timely contribution.
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Methods

Analysis for CRTs
Suppose that we are designing a two-arm, parallel-group CRT assuming 1:1 randomisation of clusters
and normally distributed outcomes. A common analysis following the trial is to use a linear mixed-effects
model. That is, if Yij is the response for individual i = 1, . . . , nj in cluster j = 1, . . . , J , then

Yij = α+Xjδ + cj + eij , (1)

where α is an intercept term; Xj is a binary variable which takes the value 1 if cluster j is allocated
to the treatment arm and 0 if it is allocated to the control arm, so that δ represents the treatment
effect; cj ∼ N(0, σ2

b ) is a random cluster effect with σ2
b denoting the between cluster variation and

eij ∼ N(0, σ2
w) is the individual-level error with σ2

w denoting the within cluster variation.
The ratio of the variability between clusters σ2

b to the total variability σ2 = σ2
b + σ2

w determines the
extent to which clustering induces correlations between outcomes for individuals in the same cluster.
This is referred to as the intra-cluster correlation coefficient (ICC), ρ = σ2

b/σ
2 25.

The superiority of the treatment is assessed via a hypothesis test of H0 : δ ≤ 0 versus H1 : δ > 0.

Using a Wald test, assuming asymptotic normality, the test statistic is Z = δ̂/

√
Var(δ̂), where δ̂ is the

estimate of δ and Var(δ̂) = 4σ2[1 + {(ν2 + 1)n̄− 1}ρ]/Jn̄ 12, where n̄ is the average sample size per
cluster and ν is the coefficient of variation of cluster size, i.e. the ratio of the standard deviation of cluster
sizes to the mean cluster size.

Choosing a sample size using assurance
The power of the one-sided Wald test for significance level α can be approximated4 by

P (n | δ,ψ) = Φ

(
δ

√
Jn̄

4σ2[1 + {(ν2 + 1)n̄− 1}ρ]
− z1−α

)
, (2)

where z1−α is the 100(1− α)% percentile of the standard normal distribution and ψ = (σ, ρ, ν) is the
vector of “nuisance” parameters, excluding the treatment effect. For a two-sided Wald test, z1−α would
be replaced by z1−α/2. For equal cluster sizes, the power function would take the same form as equation
(2), with ν = 0 and n̄ = nj = n.

In a standard power calculation, the sample size would be chosen as the smallest value which gives
80% or 90% power, based on values for θ = (δ,ψ). The treatment effect δ could be specified as the
MCID or an estimate based on a pilot study, similar historical trials or expert knowledge. The values
used for ψ are typically estimates.

Alternatively, we can use assurance to choose the sample size. Whereas the power is conditioned on
the chosen estimates for ψ and possibly δ, the assurance represents the unconditional probability that an
RCT will achieve a successful outcome26. Assurance has been used almost exclusively when the value to
be used for δ is an estimate. In this case, suppose that the CRT is a success if the null hypothesis is rejected
by the Wald test for δ. Rather than using point estimates for θ, we could assign a prior distribution π(θ)
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to it and define the assurance A(n) as the power, averaged over the uncertainty in θ:

A(n) =

∫
θ

Pr(H0 rejected | θ)π(θ)dθ,

=

∫
θ

P (n | θ)π(θ)dθ. (3)

One disadvantage of the assurance is that it tends to Pr(δ > 0) under π(δ) as the sample size increases.
That is, unlike power, there may be no sample size for which the assurance is above the typical thresholds
of 80% or 90%. Kunzmann et al (2021)17 avoid this by conditioning the prior distribution for δ on δ > 0
in the assurance calculation. In this paper, we consider the following alternative approach.

The assurance in (3) assumes that we choose δ in the sample size calculation based on a priori
considerations of the likelihood of the treatment effect. Instead, we consider the assurance in conjunction
with a trial planned using the relevance argument, that is, using the MCID for δ, δM . In this case, there
is no need to define a prior distribution for δ, and the assurance reduces to

A(n | δM ) =

∫
ψ

P (n | δM ,ψ)π(ψ)dψ.

The advantage of this is that the assurance will now tend to one as the sample size increases.
To evaluate the assurance in practice, we sample values of (ψj)j=1,...,S from the prior distribution

π(ψ) for some large number of samples S, and use Monte Carlo simulation to approximate the assurance
as

Ã(n | δM ) =
1

S

S∑
j=1

P (n | δM ,ψj),

≈ 1

S

S∑
j=1

Φ

(
δM

√
Jn̄

4σ2
j [1 + {(ν2j + 1)n̄− 1}ρj ]

− z1−α

)
. (4)

Specification of priors
To evaluate the assurance, we are required to specify a prior distribution for ψ. This simplifies to
specifying marginal prior distributions for each parameter if they can be assumed independent. Given
that σ2 and ρ are both functions of σ2

w and σ2
b , it is unlikely that σ and ρ can be assumed independent.

Therefore, we consider a joint prior distribution for (σ, ρ) and a marginal prior distribution for ν. In order
for the assurance to be a meaningful representation of the probability that the null hypothesis is rejected,
these prior distributions should be informative, representing the current state of knowledge about the
possible parameter values. This is an elicitation problem, and information to specify the priors can be
obtained from relevant past data, expert knowledge or a combination (an example of this is given in the
Results section).

Since the coefficient of variation can only take positive values, a gamma distribution ν ∼
Gamma(aν , bν) is a sensible choice for its prior distribution. The hyperparameters aν and bν could be
chosen based on previous studies, via modelling or by eliciting expert knowledge4.
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One way to specify a joint prior distribution for (σ, ρ) is to assign independent priors to σ2
b and σ2

w,
which will induce a correlation between ρ and σ2. If we sample values of σb and σw from their priors,
we can obtain samples from the joint prior of (σ, ρ). Typical choices of prior distributions for σ2

b and σ2
w

are (inverse) gamma distributions because they provide conjugacy.
An alternative approach, relevant to our application, is to specify the joint distribution between ρ

and σ directly. For example, we can utilise a bivariate copula to encode the dependence between the
parameters. A bivariate copula is a joint distribution function on [0, 1]2 with standard uniform marginal
distributions27. It can be used to construct a joint prior for ρ and σ via

πρ,σ(ρ, σ) = πρ(ρ)πσ(σ)c(u, v),

where πρ and πσ are marginal prior distributions, c(u, v) is the bivariate copula density function evaluated
at u = Fρ(ρ) and v = Fσ(σ) for prior cumulative distribution functions (CDFs) Fρ and Fσ . One simple
choice is the Gaussian copula:

c(u, v) =
∂2

∂u∂v
Φγ(Φ

−1(u),Φ−1(v)),

where Φγ is the CDF of the bivariate standard normal distribution with correlation γ, and Φ−1 is the
inverse univariate standard normal CDF. The advantage of this structure is that it allows specification of
the marginal prior distributions for ρ and σ separately to their dependence, which is given by γ.

Results

The ICONS post-stroke incontinence CRT
The approach developed in this paper is motivated by a planned parallel-group CRT, “Identifying
Continence OptioNs after Stroke” (ICONS), which investigates the effectiveness of a systematic voiding
programme in secondary care versus usual care on post-stroke urinary incontinence for people admitted
to NHS stroke units28. The primary outcome is the severity of urinary incontinence at three months
post-randomisation, measured using the International Consultation on Incontinence Questionnaire29.
Although a feasibility trial, ICONS-I30, was conducted, the resulting ICC estimate was of low precision
and could not be used as a reliable single source to inform the planning of the proposed trial.

ICONS therefore considered a Bayesian approach to combine multiple ICC estimates from 16 previous
related trials. The opinions of eight experts regarding the relevance of the previous ICC estimates were
elicited31 and used to assign weights to each study and each outcome within a study. The elicited
study and outcome weights were combined using mathematical aggregation32 and incorporated into a
Bayesian hierarchical model following the method in Turner et al (2005)15. The resulting constructed
ICC distribution had a posterior median of ρ̂ = 0.0296 with a 95% credible interval of (0.00131, 0.330).
Details of the expert elicitation process and modelling are described in Tishkovskaya et al (2024)23.

For the ICONS CRT, the sample size was chosen to give 80% power with a 5% significance level
to detect δM = 2.52 using a two-tailed independent-samples t-test and a common standard deviation σ
of 8.32 obtained from the ICONS-I feasibility trial. The ICC was assumed to be less than or equal to
ρ̂ = 0.0296. It was assessed as realistic to recruit between 40 and 50 stroke units, which required total
sample sizes of N = 480 and N = 450, respectively, and an average sample size per cluster of n = 12
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and n = 9, respectively. The original sample size calculation assumed equally sized clusters (i.e., ν = 0).
However, if we consider unequal cluster sizes with ν = 0.49 (obtained from ICONS-I) and apply the
Wald test, the required sample sizes remain the same.

Redesigning the ICONS CRT using assurance
We consider assurance as an alternative to power to determine the sample size for the ICONS CRT.
This seems like a more natural approach given the uncertainty in the ICC and the extensive elicitation
and modelling that was conducted to construct the ICC posterior distribution (which forms the prior
distribution for the assurance-based sample size calculation). Moreover, assurance incorporates the full
ICC distribution into the sample size calculation, rather than relying on a single point estimate from it as
in the power calculation.

We consider the following two forms of assurance.

Assurance based on the ICC prior only In the first case, we fix (σ, ν) using the point estimates obtained
from ICONS-I (σ̂ = 8.32 and ν̂ = 0.49) and only consider the assurance with respect to the ICC. We
sample S = 10, 000 values of ρ from its distribution (see Figure 1) and approximate the assurance using
(4). To obtain an assurance of 80%, the resulting average sample sizes per cluster are n̄ = 17 for J = 40
clusters (J/2 = 20 per arm) and n̄ = 11 for J = 50 clusters (J/2 = 25 per arm), requiring total sample
sizes of N = 680 and N = 550, respectively (Table 1). Thus, the inclusion of uncertainty in the ICC
results in a larger sample size than when using the posterior median ICC, but provides a more realistic
and robust study design. Compared to the classical approach, the total sample size attained is smaller for
the smaller number of clusters.

The left-hand side plot of Figure 2 illustrates the trade-off between cluster size and assurance/power,
for J = 40 clusters (J/2 = 20 per arm). The power calculation based on the median from the elicited
prior distribution of ρ is represented by the red curve and the assurance with a prior on ρ only by the black
curve. We see that the assurance requires a larger sample size than power when the target lies above 0.5.
We also include the power curve corresponding to the commonly used approach of taking the median
of the 34 ICC estimates (blue line). For a target power of 0.8 (horizontal line), Figure 2 shows that this
method requires a larger sample size per cluster than the aforementioned methods.

We illustrate the effect of changing ν = (0, 0.1, . . . , 1) on the assurance in the right-hand side plot of
Figure 2. The red curve corresponds to ν = 0.5, the top curve to ν = 0 and the bottom curve to ν = 1.
As ν increases, the assurance decreases for a given cluster size. We see that the estimate of ν has a
relatively strong effect on the assurance, and hence the required sample size. This implies that it needs to
be estimated accurately, or its uncertainty should be taken into account in the assurance calculation.

Assurance based on the prior for ψ In the second case, we obtain the sample size required using
an assurance calculation which averages over a prior distribution on σ and ν, as well as the ICC.
Using the data from ICONS-I, we give σ and ν gamma marginal prior distributions, centred at their
estimated values of 8.32 and 0.49, respectively. The standard deviations of the prior distributions are
chosen to represent a belief that σ is very likely to be in the range [5, 11] and ν is very likely to be in
the range [0.3, 0.7]. Specifically, σ ∼ Gamma(aσ, bσ) and ν ∼ Gamma(aν , bν), where a· = m2

· /v· and
b· = m·/v·, mσ = 8.32, vσ = 12 and mν = 0.49, vν = 0.0662.

To incorporate the dependence between ρ and σ, we utilise the Gaussian copula with γ = 0.43. This
is chosen to be consistent with the correlation between ρ and σ that would result from independent
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Figure 1. Histogram of 10,000 samples of the ICC, ρ

prior distributions on the between and within group standard deviations of σb ∼ Gamma(0.6, 0.5) and
σw ∼ Gamma(83.5, 10.4), respectively. The hyperparameters of these two gamma prior distributions are
chosen to provide the correct marginal means and variances for ρ and σ. To sample values of ρ and σ
from their joint prior distribution, we repeat the following steps:

1. Sample (xi, yi), i = 1, . . . , S from N2(0, R), whereR is the prior correlation matrix with diagonal
elements 1 and off-diagonal elements γ = 0.44.

2. Calculate (ρi, σi) as
(
F−1
ρ (Φ(x)), F−1

σ (Φ(y))
)
.

The quantile function F−1
σ is that of the relevant normal distribution. The empirical quantile function

F−1
ρ is used for ρ, based on the 10,000 prior samples.
The resulting joint prior distribution for (σ, ρ) and marginal prior distribution for ν are illustrated in

Figure 3. We see that the marginal prior for ρ remains as in Figure 1, but the samples are positively
correlated with the values of σ.

The resulting average cluster sample sizes for an assurance of 80% are n̄ = 18 for J = 40 clusters
(J/2 = 20 per arm) and n̄ = 12 for J = 50 clusters (J/2 = 25 per arm), requiring total sample sizes of
N = 720 and N = 600, respectively. By incorporating uncertainty on σ and ν, as well as ρ, the sample
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Figure 2. Power and assurance curves for the ICONS CRT (left). The power using the posterior median ICC
is red, the power using the median ICC from the 34 ICC estimates is light blue, the assurance with a prior only
on the ICC is black and the assurance with a prior on all of the nuisance parameters ψ is green. The effect of
varying the coefficient of variation ν on the assurance (right). ν varies between 0 (top curve) and 1 (bottom
curve), with the red line at ν = 0.5. The horizontal line indicates the desired power/assurance. Each plot
corresponds to J = 40 (J/2 = 20 per arm).

size increases only slightly, as illustrated in the left-hand side plot of Figure 2 (green line). To achieve a
target assurance of 80% (dashed horizontal line), the average sample size required per cluster increases
from 17 to 18 when J = 40; an increase in total sample size of approximately 5%.

Table 1 summarises the sample sizes required to attain a target power/assurance of 80% for the various
approaches applied to the ICONS trial. “Classical approach” refers to the multiple-estimate method of
taking the median of the ICC estimates without taking the relevance of the different studies into account.
Relative to the classical approach that is often used in practice, the total sample size required when using
the assurance-based method remains the same whilst incorporating uncertainty on all three parameters.
”Conservative values” refers to using conservative values for each of (σ, ρ, ν), for which we use the upper
quartile values from each of their marginal design priors. In this case, we obtain sample sizes more than
double any other approach.

We include the solutions for a smaller number of clusters, J = 30. Apart from for power using the
posterior median, which uses a relatively small ICC value, we see assurance resulting in the smallest
sample sizes for this case.
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Figure 3. The joint prior distribution between ρ and σ (left) and the marginal prior distribution for ν (right),
based on 10,000 samples.

Sensitivity analysis for the ICC prior

In the above, we consider the ICC prior distribution based on all eight reviewers and all 16 relevant
studies. In this section, we investigate the sensitivity of the assurance-based sample size (with priors on
ψ) to varying assumptions on the reviewers and relevant studies, and compare this to the sensitivity of
the sample sizes from power calculations (using the posterior median ICC).

To recognise uncertainty in the individual reviewers’ responses, and in how these responses were
pooled, the mathematical aggregation was refitted with alternative reviewer importance weights: equal
weights of 0.125 for all reviewers and using a rank sum approach23. For the rank sum approach, we use
Cronbach’s alpha score and assign ranks to each reviewer according to this score. In addition, we rerun
the Bayesian hierarchical model for only the top 4 (25%), 8 (50%) and 12 (75%) most relevant studies.
We refer to the five variations of the original ICC prior distribution as: equal weights, differentiated
weights, top 4, top 8 and top 12.
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Method Priors
Total number
of clusters, J

Mean cluster
size, n̄

Total sample
size, N

Power
(classical approach) NA

50
40
30

12
18
37

600
720
1110

Power
(based on posterior median) NA

50
40
30

9
12
19

450
480
570

Power
(conservative values) NA

50
40
30

23
57
>100

1150
2280
> 3000

Assurance ρ
50
40
30

11
17
30

550
680
900

Assurance ψ = (σ, ρ, ν)
50
40
30

12
18
35

600
720
1050

Table 1. Summary of sample sizes obtained for the ICONS CRT based on power and assurance calculations.

The differentiated weights prior (red) and equal weights prior (green) are provided alongside the
original prior (black) in the left-hand side plot of Figure 4. The top 4 prior (red), top 8 prior (green)
and top 12 prior (blue) are given alongside the original prior (black) in the right-hand side plot of Figure
4. In both plots, the prior medians are given by vertical dashed lines.

We see that the ICC prior remains similar to the original prior whether differentiated weights or equal
weights are used, although both alternative weightings assign more probability to the ICC taking larger
values. There is a larger change when using the top 4, top 8 or top 12 studies. In each case, the alternative
prior is more diffuse than the original prior. Relatively large changes in the prior can cause only small
changes in the prior median (e.g. the original prior compared to the top 12 prior). The effects of the
alternative ICC priors on the sample sizes are shown in Table 2.

J = 50 J = 40
Assurance Power Assurance Power

ICC Estimate/Prior n̄ N n̄ N n̄ N n̄ N
Original 12 600 9 450 18 720 12 480
Differentiated weights 13 650 10 500 20 800 13 520
Equal weights 13 650 9 450 19 760 13 520
Top 4 12 600 8 400 18 720 11 440
Top 8 14 700 9 450 23 920 12 480
Top 12 15 750 9 450 24 960 12 480

Table 2. The average sample size per cluster n̄ and the total sample size N required for the ICONS CRT
using assurance (with priors on ψ) and power based on the original ICC estimate/prior and five alternative
estimates/priors when J = 50 and J = 40. The power is based on the posterior median of the ICC.
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Figure 4. Left: The densities of the differentiated weights (red), equal weights (green) and original ICC prior
(black). Right: The densities of the top 4 (red), top 8 (green), top 12 (blue) and original ICC prior (black). The
prior medians are represented by vertical dashed lines.

We see smaller changes in sample sizes for J = 50 than J = 40 using assurance. Overall, we observe
larger changes in sample size using assurance than power based on the prior median of the ICC. This
illustrates the risk with using just the median; it takes no account of the prior probability that the ICC
could be relatively large, so has the potential to systematically underestimate the required sample size. In
contrast, the assurance-based sample size is sensitive to the entire ICC prior distribution, particularly the
upper tail.

To illustrate this point, compare the original ICC prior (black) to the top 12 prior (blue) in the right
hand side of Figure 4. They have substantially different priors, resulting in large differences in sample
sizes required under assurance (600 versus 750 when J = 50, respectively). However, their prior medians
are almost identical, resulting in identical sample size requirements under power (450 when J = 50).

In the Appendix, we further evaluate the properties of the hybrid approach compared to power via a
simulation study.

Conclusion
A standard sample size calculation requires pre-specification of parameters that are unknown at the design
stage of a trial. Unique to sample size calculations for typical CRTs is the ICC, which requires robust
estimation to avoid over- or under-powering the trial. Unnecessarily high ICC values, for example, lead to
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inefficient trials, increasing the number of clusters and/or participants, and overall trial costs. In practice,
parameter uncertainty is typically not considered, which can be problematic given the sensitivity of the
sample size to small differences in the ICC.

This paper proposes an alternative approach to sample size determination for CRTs using the Bayesian
concept of assurance to incorporate parameter uncertainty into the design. The advantage of this approach
is that it yields designs that provide adequate power across the likely range of parameter values and is
therefore more robust to parameter misspecification. This is particularly important when there is difficulty
obtaining a reliable ICC estimate, such as in the ICONS post-stroke incontinence CRT used to motivate
this work. Another approach in this context is to perform an interim analysis for sample size re-estimation.
The approach proposed in this paper could be used in combination with sample size re-estimation to
provide further robustness to the deign of cluster randomised trials.

We assign prior distributions to the ICC, overall standard deviation and coefficient of variation of
the cluster size, whilst setting the treatment effect equal to the MCID in line with standard practice.
We consider a joint prior for the ICC and standard deviation to model the dependency between these
parameters. In the motivating case-study, we use the entire ICC prior distribution elicited from expert
opinion and data from previous studies to inform the sample size. Further work could consider using a
commensurate prior to synthesise multiple sources of pre-trial information on the ICC, as in33.

Sensitivity analyses of the assurance-based sample size to different ICC priors showed that different
behaviour of the prior, particularly in the upper tail, can have quite a strong effect on the required sample
size. Using a point estimate from this prior, for example the median, can miss this overall behaviour and
result in sample sizes which are systematically too small, based on current knowledge about the ICC.
Additional sensitivity analyses conducted on the overall standard deviation showed that the greater the
uncertainty expressed in the prior, the more robust the assurance-based sample size is (see Appendix).

Uncertainty in the treatment effect can also be incorporated into the assurance calculation in a similar
way. This may be appropriate for non-inferiority trials, for example, where the non-inferiority margin is
fixed in advance and the treatment difference can be considered a nuisance parameter.

In line with regulatory requirements, we have maintained a frequentist analysis to present a hybrid
framework. Further work could consider a fully Bayesian approach by using assurance when the success
criterion is based on the posterior distribution of the treatment effect13.

The hybrid approach presented in this paper can be applied to avoid incorrectly powered studies
resulting from ill-estimated model parameters, to mitigate the impact of uncertainty in the ICC and
other nuisance parameters, and to incorporate expert opinion or historical data when designing a CRT.
The approach proposed has been outlined in the case that the number of clusters is fixed and we aim
to determine the total sample size for the trial.The approach would also allow the reverse process - to
calculate the necessary number of clusters given a fixed total sample size.
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