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A B S T R A C T   

The marine economy has historically been highly diversified and prolific due to the fact that the Earth's oceans 
comprise two-thirds of its total surface area. As technology advances, leading enterprises and ecological orga
nisations are building and mobilising new devices supported by cutting-edge marine mechatronics solutions to 
explore and harness this challenging environment. Automated tracking of these types of industries and the 
marine life around them can help us figure out what's causing the current changes in species numbers, predict 
what could happen in the future, and create the right policies to help reduce the environmental impact and make 
the planet more sustainable. The objective of this study is to create a new platform for the automated detection of 
irregularly shaped man-made marine objects (ISMMMOs) in large datasets derived from marine aerial survey 
imagery. In this context, a novel nonparametric methodology, which harbours several hybrid statistical Machine 
Learning (ML) methods, was developed to automatically segment ISMMMOs on the sea surface in large surveys. 
This methodology was validated on a wide range of marine domains, providing robust empirical proof of 
concept. This approach enables the detection of ISMMMOs automatically, without any prior training, with ac
curacy (ACC), Matthews correlation coefficient (MCC), negative predictive value (NPV), positive predictive value 
(PPV), specificity (Sp) and sensitivity(Se) over 0.95. The outlined methodology can be utilised for a variety of 
purposes, but it's especially useful for researchers and policymakers who want to keep an eye on how the 
maritime industry is deploying and make sure the right policies are in place to meet regulatory and legal re
quirements to promote maritime tech innovation and shape what the future looks like for the marine ecosystem. 
For the first time in the literature, a method, the so-called ISMMMOD, has been developed to automate the 
detection of all types of ISMMMOs by statistical ML techniques that require no prior training, which will pioneer 
the monitoring of human footprint in the marine ecosystem.   

1. Introduction 

The process of marine spatial planning is highly contentious due to 
the presence of multiple stakeholders, often with conflicting objectives 
and values (Elrick-Barr et al., 2022). The maritime economy has his
torically been highly diversified and prolific due to the fact that the 
Earth's oceans comprise two-thirds of its total surface area. As technol
ogy advances, leading enterprises and ecological organisations are 
building and mobilising new devices supported by cutting-edge marine 
mechatronics solutions (Shi et al., 2017) within the framework of 
Automation of Everything (AoE) (Kuru and Yetgin, 2019) to explore and 

harness this challenging environment. More specifically, robotic vehi
cles, autonomous vehicles, and surface vessels have been deployed for 
the offshore industries and deep-sea archaeology, ocean engineering 
projects, rescue operations and environmental measurements for the last 
several decades. For instance, the Argo program, an international 
collaboration, has deployed approximately 3900 instruments in the 
world's oceans to facilitate the collection of data for climatological and 
oceanographic studies. (Riser et al., 2016). Besides, artificial structures 
such as gas, oil and deep seabed mining platforms, offshore renewable 
energy harvesting technologies such as oil and gas installations, wind 
farms and wave energy converters, fish farms, ships, boats and yachts for 
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transportation, autonomous marine vehicles from unmanned ships to 
smaller vessels are becoming inevitable components of the offshore 
environment. For instance, in recent years, the offshore wind industry 
has seen a remarkable expansion, with an annual rate of growth of 25%, 
for constructing offshore energy islands to meet the reduction of gas 
emission targets (Zhang et al., 2021). These may conflict with nature 
conservation objectives, such as habitat loss or species endangerment. In 
other words, this rapidly expanding industry, which allows for exten
sive, ongoing human influence in the marine domain, has the potential 
to have a significant impact on the marine environment, particularly on 
the marine floor, on turtles, fish, and birds. For instance, the population 
of monitored seabirds, which account for about 19% of the all seabird 
populations, declined by almost 70% from 1950 to 2010 (Paleczny et al., 
2015), resulting in a net loss of almost 3 billion (%29) birds since 1970 
(Rosenberg et al., 2019). The decline of bird populations serves as a stark 
reminder of the need for immediate action to mitigate threats to the 
eventual decline of avifauna and the resulting degradation of ecosystem 
health, functionality, and services (Rosenberg et al., 2019). Intervention 
into nature is a natural consequence of human activities, however, when 
managed effectively, these interventions can be beneficial not only to 
the environment, but also to the ongoing development of civilisation 
(Sànchez-Marrè et al., 2004). To better understand the planet and to 
ensure effective conservation planning, it is essential to have a 
comprehensive understanding of the species, habitats, and sites that 
require protection. Unfortunately, for the majority of species and re
gions, comprehensive quantitative knowledge is not yet available (Bibby 
et al., 1998). One of the key objectives of the development and uti
lisation of ecological models and applications is to influence the 
ecological policy practices, outputs and results in a beneficial manner 
(McIntosh et al., 2011). There is an urgent need to monitor the envi
ronmental upheavals, impacts and possible trends with environmental 
time series analysis, models and tools as the footprint of human activities 
increases with the rapid development of the industry. In this manner, 
modelling, automated detection, location and real-time monitoring of 
industrial sites and ecosystems around them can help uncover the cur
rent and potential future effects on nature. Furthermore, the insights 
observed and models developed based on these insights may help re
searchers and policymakers to monitor this diverse ecosystem along 
with the associated maritime industries and thereby help to determine 
the legal and regulatory requirements for reducing the ecological foot
print concerning immediate foreseeable environmental problems. 

There are numerous studies in the literature to detect underwater 
man-made objects (MMOs) within a limited region of interest (RoI) 
using underwater imagery, robots or sonography. For instance, Abu 
et al. (Abu and Diamant, 2022) proposes a contour-based features 
analysis method to discern underwater MMOs from natural environment 
considering that contours of MMOs' are supposed to be smoother than 
natural objects. There are a limited number of studies in the literature to 
detect specific types of surface marine MMOs using supervised Machine 
Learning (ML) and Deep Learning (DL) approaches that require prior 
training in the marine ecosystem. For instance, Han et al. (Han et al., 
2022) proposed a DL technique titled LCSE-ResNet to detect, classify and 
locate vessels and oil platforms based on remote optical imagery, by 
which all other MMOs are excluded. There are no studies in the litera
ture that investigates the detection of all types of surface marine MMOs, 
which makes this research the first study of its kind. Most irregularly 
shaped man-made marine objects (ISMMMOs) are made of materials 
such as metal, treated wood, fibreglass, PVC plastic, glass, or concrete 
and they have different types of irregular shapes and colours. Hence, it is 
infeasible to apply: i) a template matching technique based on a specific 
object to input as a template, and ii) a supervised ML approach based on 
a prior knowledge/similar datasets to train similar objects and then 
detect these objects automatically. Moreover, the current clustering al
gorithms used to group visual datasets are not capable of accomplishing 
this task with a high degree of precision (Kuru et al., 2013; Kuru and 
Khan, 2018), particularly for objects with indefinite shapes. Therefore, a 

new method is needed to realise this objective. On one hand, automatic 
detection of ISMMMOs is not easy based on two main reasons which 
pose a considerable challenge: i) the rapidly changing background 
depending on the camera, water turbidity, weather, wind, wave speed 
and period, sun glint and density of clouds, and ii) various non-definitive 
morphologies of MMOs. On the other hand, the characteristics of 
ISMMMOs differ from the natural environment and other natural objects 
within this ecosystem regarding the composition, features of the surface, 
saturation of light and colourfulness relative to the brightness to which 
an area radiate a varying amount of light. 

Many studies aim to detect marine natural objects in sea areas using 
stationary land-based fixed cameras, in particular, sea animals: detec
tion of animals in deep-sea video (Mehrnejad et al., 2013), detection of 
sharks using multispectral imaging (Lopez et al., 2014), and detection of 
killer whales using infrared spectrum (Graber, 2011). Furthermore, 
aerial surveys from a helicopter or small aircraft have been conducted 
for many years to detect, locate and monitor specific marine animals 
using human-based visual observations. Although there are several 
studies for the detection of MMOs such as ship (Saur et al., 2011), spe
cific objects (e.g., boats, humans) on the ocean surface using infrared 
cameras (Leira et al., 2015). To the best of our understanding, there is no 
study that aims to detect all kinds of ISMMMOs automatically with 
unsupervised approaches using standard advanced cameras and aerial 
surveys, in particular, from the perspective of ecology. Aerial surveys 
provide a cost-effective way to collect environmental information over 
large areas in a short amount of time; however, they may not provide 
reliable data if not conducted correctly (Davis et al., 2022). Long-term 
data using standardised and well-structured approaches are the best 
way to measure change in ecology; unfortunately, this data is not 
available for most biogeographical regions (Clements and Robinson, 
2022) due to the cost of data processing with intensive human inter
vention. In this sense, this study mainly aims to fill this gap in the sci
entific literature either by processing the collected data in an automated 
way, with no human intervention, to separate several hundreds of 
ISMMMOs from large surveys, or by processing images as they are 
streamed from the airborne camera systems to monitor ISMMMOs with 
their geospatial locations immediately with a novel approach using 
statistical ML techniques and HSV colour mode. 

In a conventional marine survey program, there may be a large 
number of images, e.g., around a million, collected over a period of one 
year to be analysed for a particular site, and it is labour-intensive to 
categorise the data into two groups: positive images containing man- 
made material and negative images without man-made material. In 
fact, many of the surveys that APEM Ltd.3 has acquired indicate that 
>95% of the aerial survey images do not accommodate any targeted 
object (Kuru et al., 2023). According to some research on visual 
perception, humans perceive only a small portion of an environment or 
scene in detail under typical viewing conditions (Noe et al., 2000), 
which may result in discarding other details that should be taken into 
account. Although the elements that influence how a scene is perceived 
are not yet known, it appears that focus is a significant factor (Noe et al., 
2000). Within this context, detection of ISMMMOs in large-scale images 
within very large surveys is a non-trivial task and labour-intensive. 
Therefore, the utilisation of automated intelligent computer systems to 
automate this work would be highly advantageous in order to facilitate 
the development of efficient environmental models with real-world 
inputs. 

To the best of our knowledge, this study, for the first time, explicitly 
investigates the automatic detection of offshore ISMMMOs to assist re
searchers, environmentalists, and policymakers in monitoring and 
managing the various applications of the maritime industry and to 
provide guidance on the necessary regulations and legal requirements. 

3 APEM Ltd. is an environmental company and proposes novel solutions for 
environmental problems (https://www.apemltd.co.uk). 
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In order to illustrate the novelty of this research, specific contributions 
are listed below.  

1. A novel methodology, the so-called ISMMMOD, that detects and 
splits ISMMMOs automatically in large-scale images in typical very 
large marine surveys is built. 

2. The ISMMMOD is developed using the HSV colour space and statis
tical analysis of histograms of the channels in this space based on the 
ROC (receiver operating characteristic) curve analysis. The tech
niques in the methodology differ man-made-built structures from 
natural maritime habitats (i.e., waves, sea animals, birds, seawater) 
in various aspects, in particular, composition, features of the surface 
and saturation of light. 

The rest of this document is structured as follows: The methodology 
is revealed in Section 2. The datasets on which the methodology is built 
and tested are explored in Section 3. A summary of the findings is pro
vided in Section 4. Discussions are outlined in Section 5. Section 6 draws 
a conclusion as well as future potential works. Finally, the limitations of 

the study are disclosed in Section 7. 

2. Methodology 

All types of mobile and stationary human activities – human foot
print – are required to be monitored on a regular basis and most of these 
activities involve the use of non-uniform, human built structures in 
multiple shapes during the exploration and exploitation of these tough 
marine ecosystem. Detecting these non-uniform structures on their 
highly dynamic background entails the development of a new technique 
that is not based on pre-trained uniform object classifiers, but based on 
the features independent from their shapes. In this respect, we would 
like to reveal the features that are different from the maritime ecosystem 
by which a new detection method is aimed to be developed. Built 
structures differ from the natural maritime habitats and their creatures 
in various aspects, in particular, composition, features of the surface and 
saturation of light. The saturation level of ISMMMOs significantly varies 
from their surroundings (i.e., waves, sea animals, birds, seawater). More 
explicitly, the saturation level of these ISMMMOs is more intense than 

Fig. 1. Overall methodology. The images as they stream are automatically placed in the queue array to be processed in an automated way.  
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that of the natural marine life, and in this study, more saturated sections 
in images considering this distinguishing feature are made distinct to 
detect these artificial objects. More specifically, the methodology is 
based on the HSV colour space (elaborated in Section 2.1) and statistical 
analysis of histograms of the channels in this space (elaborated in Sec
tion 2.2). The essential phases of the technique and its automated 
execution are depicted in Fig. 1. The dynamic thresholding in the 
implementation of the methodology is presented in Algorithm 1 and the 
automated implementation of the overall methodology is presented in 
Algorithms 2 and 3 which are placed in Appendix A. The execution of 
the methodology is exemplified for the images in Figs. 11a, 12a, 13a, 
14a, 15a. The techniques in this research was built with Matlab R2020a. 
The interface is shown in Fig. 2. Generally speaking, in the proposed 
approach, the aerial image in RGB colour space is converted into HSV 
colour space and then the converted image is split into three components 
(i.e., channels), namely H, S and V that are designed to approximate the 
human vision. The result is a 3D matrix with elements of Hue, Saturation 
and Value. In the next step, the histograms of these components are 
computed as illustrated in the first rows of Figs. 11b, 12b, 13b, 14b, 15b. 
Then, the dynamically calculated threshold value is applied to S 
component along with shifting the H channel. At the end, the morpho
logical operations, namely, masking, filter, and smoothing are carried 
out to extract the required area by suppressing the irrelevant parts 
mentioned in Section 2.3 such as glinting regions. The statistical terms 
used throughout the paper are explained regarding the scope of this 
paper in Table 3 for the readers who are not familiar with these 
commonly used terms for the statistical analysis related to the confusion 
matrix. 

Before revealing the methodology on data samples in detail, we 
would like to explore the basic concepts of the HSV colour space in 
Section 2.1 to shed light on the developed techniques. Then, the phases 
of the methodology (Fig. 1) are disclosed on the sample images acquired 
from various image surveys. The dynamic thresholding phase for S 
channel is explained in Section 2.2. The phases of the masking and 
dilation are presented in Section 2.3. 

2.1. HSV and its applications in the methodology 

The main colour models are RGB, HSV, CIELAB, CMYK, and XYZ. The 
colour models different from the RGB are employed to realise different 
objectives because several fundamental issues can not be addressed 
using the additive RGB colour mode for image segmentation such that it 
is not viable to get the luminance of the image regarding human 
perception. For instance, the CIELAB colour space that is close to the 
human visual perception is applied to H&E stained microscopical images 
to correct the Kohler illumination problem in microscopical images 

(Kuru, 2014). Likewise, HSV provides a close representation of human 
visual perception of colour in cylindrical-coordinate representations as 
illustrated in Fig. 4 whereas the RGB colour mode represents the colours 
processing in the human biological visual system (Loesdau et al., 2014). 
HSV stands for i) the hue that corresponds to the angle (from the red at 
0◦, to the green at 120◦ and the blue at 240◦, and then back to red again 
at 360◦), more explicitly, moving from red to yellow to green to cyan to 
blue to magenta and back to red, ii) the saturation that corresponds to 
the distance from the axis (i.e., radius), the brightness of the colour, and 
iii) the value indicating the luminance or intensity. 

In HSV, the component, hue, has the most control over the colour 
information compared to the other components in terms of determining 
the colour information whereas the saturation designates the colour
fulness relative to the brightness based on the amount of light it appears 
to absorb and how much light it seems to be emitting. The saturation 
characteristics of ISMMMOs are significantly different from those of the 
sea background and maritime animals, as explained earlier. Therefore, 
we process the chromatic hue and saturation components to reveal the 
artificial objects not belonging to the natural marine environment. First, 
the hue component is shifted by 180∘ to suppress the blueish background 
into reddish (Fig. 4) as shown in the examples in Figs. 11c, 12c, 13c, 14c, 
15c and in the technical reports in the supplements. Second, more 
saturated sections of the image are made more distinctive as explained 
in Section 2.2. 

2.2. Dynamic thresholding in S channel 

It is observed that the closer the values of histogram S are to the 
centre, with respect to the distribution of histograms, the likelier the 
pixels are of representing the background and natural marine life, and 
vice versa the more likelier they represent ISMMMOs wherever these 
values get away from the axis meaning that saturation is greater. 
However, there is no specific value that makes this separation distinct 
based on the different features of the images acquired in different cir
cumstances, mainly different lighting times of the day, month, season, 
and type of camera. Furthermore, the distribution of the histogram 
values plays a major role in representing the characteristics of the image 
regarding the colourfulness relative to the brightness to which to which 
an area radiate a varying amount of light as explained in Section 1. The 
objective is to separate more saturated regions from less saturated ones 
to determine if there is an unnatural object. All threshold values and 
necessary parameters need to be determined based on the distribution 
and features of datasets in many surveys without any user intervention 
due to the maritime dynamics and image capturing techniques. It is 
noteworthy to emphasise that the saturation values are almost normally 
distributed with a Gaussian function as displayed in Eq. 1. The exact 

Fig. 2. User interfaces. Left: the main platform developed for multi purpose environmental applications. Right: man-made object detection and splitting interface 
that can be opened from the main platform. 

K. Kuru et al.                                                                                                                                                                                                                                    



Ecological Informatics 78 (2023) 102285

5

Fig. 3. Use of datasets during model construction, testing, evaluation, and validation of the model.  

Fig. 4. Model of the HSV colour space. 
The left image is the courtesy of the author in (Rosebrock, 2017). 
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distribution of data points using this Gaussian function is presented in 
Fig. 5 with respect to the σ. 

P(x) =
1

σ
̅̅̅̅̅
2π

√ e− (x− μ)2/2σ2
(1) 

In the first instance, a viable threshold value that separates more 
saturated regions from less saturated ones is found using 145 images 
with ISMMMOs and 5000 images with no ISMMMOs which were ac
quired from 22 aerial surveys as shown Fig. 3 I. A ROC curve is an ideal 
figure to observe how the classification model performs at various 
classification cut-off points using TPR (True Positive Rate) and FPR 
(False Positive Rate) (1-TNR) (Table 3). Hence, a ROC curve is estab
lished using a large set of threshold values, i.e., cut-off points (i.e., 17) 
for the purpose of determining the optimal cut-off point, which is the 
point of the curve nearest to the upper left-hand corner. The results are 
shown in Table 4. The optimum cut-off point, 0.17, is found, which is 
between the cut-off points of 0.15 and 0.20 as displayed in Fig. 6, and 
this results in 0.856 (i.e., TP = 124) and 0.817 (i.e., TN = 817) and 0.80 
for sensitivity (Se), specificity (Sp) and accuracy (i.e., ACC) respectively. 
However, these outcomes are far away from our objectives in terms of 
separating images with ISMMMOs from others within large-scale sur
veys with higher accuracy rates. In other words, in order to achieve the 
desired separation (i.e., (Se) > 0.95, Sp > 0.95, and ACC > 0.95), a curve 
that is much closer to the top left-hand side of the ROC figure is required 
where the area under the ROC curve (i.e., AUC) increases, which is a 
desirable outcome for a test. 

The saturation varies significantly, in particular, from one survey to 
another based on the changing conditions as mentioned above and 
demonstrated in the technical reports in the supplements with many 
examples.4 Therefore, the designs of various ROC curves are based on 
the several most important sections of the histogram concerning the 
distribution of the saturation, and Se and Sp values by determining the 
required number of dynamic cut-off points for increasing the Se and Sp 
values significantly. Technically speaking, i) the mean values (μ) and 
standard deviations (σ) are acquired following the histogram of the S 
components are obtained from those 145 images mentioned earlier, ii) 

they are classified based on their μ values and iii) those classes are 
analysed separately to find out the best cut-off points for each class. The 
sections on which the ROC curves are analysed are depicted in Figs. 7, 8, 
9, 10 and in Tables 5, 6, 7 and 8 based on the distribution of the his
togram using the statistical analysis of the μ and σ values where the cut- 

off points on the ROC curves are specified based on the times of σ in the 
both directions of μ (Fig. 5). 

The number of the cut-off points for each class is specified based on 
the distribution of the histogram values. This analysis is mainly carried 
out to find out i) if there is an evident saturated region in the image that 
distinctively differs from the other majority regions regarding the fea
tures of saturation and most importantly ii) what the best cut-off points 
making this distinction resulting in higher Se and Sp values are. The 
histogram values based on the obtained best cut-off points are trans
formed to the most outer side of the radius in S channel and set to 1 to 
make the most saturated sections more distinct, in other words, the 
probable ISMMMOs visible using the masking and dilation techniques 
mentioned in Section 2.3. Several examples are presented in Figs. 11, 12, 
13, 14 and 15. The observed best cut-off points regarding the analysed 
sections along with their Se and Sp values in those ROC curves are 

Fig. 5. Generation of the probability distribution using the Gaussian function 
in Eq. 1 and representation of the standard deviation (σ) of saturation values 
from μ. Areas: blue (one σ of μ): 0.6826; orange: 0.2718; magenta: 0.0428; sides 
(right of 3σ and left of -3σ): 0.0027. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

4 The reports from 1 to 7 titled as MarineObjects_Man-made_Supplement are 
for ISMMMOs and the reports from 1 to 5 titled as MarineObjects_Man-made_ 
Supplement_Blank are for blank images. 
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summarised in Table 9. The implementation of dynamic thresholding is 
presented in Algorithm 1 and exemplified in Figs. 11d, 12d, 13d, 14d, 
15d with several examples along with H shifting whose new histograms 
are presented in the second rows of Figs. 11b, 12b, 13b, 14b, 15b. 

The methodology was developed using the characteristics and dis
tribution of 22 surveys with around 3 million large-scale images that 
have been acquired in the various geographical regions, and in the 
various time zones and seasons. The images with no ISMMMOs were 
exploited to obtain the general characteristic of the background whereas 
the images with ISMMMOs were used to determine the general char
acteristics of ISMMMOs. Both features are merged in the methodology to 
distinguish the ISMMMOs from its background and consequently discern 
the positive images from the negative images for further analysis. 

2.3. Masking and dilation 

Two masks are applied on the image acquired from the dynamic 
thresholding technique on H and S channels mentioned above, one 
of which is for detecting the blueish part and the other one is for 
removing the unwanted background parts from the image. First mask 
(i.e.,((ImgR < 0.25&ImgG < 0.80&ImgB = 1)&(ImgR < (ImgB)&ImgG <

(ImgB) ) )) makes the blueish sections visible by suppressing all other 
sections, in particular, reddish parts that dominantly indicate the 
background of sea as depicted in Figs. 11e, 12e, 13e, 14e, 15e and in our 

technical reports. After applying this mask, the obtained image is dilated 
and holes are filled to make ISMMMOs coherent as shown in Figs. 11f, 
12f, 13f, 14f, 15f. This process is mainly performed to gain the complete 
white areas of objects that are not obtained with the proposed technique 
as elaborated in Sections 5 and 7. 

There might be several small unwanted dots that are not a part of the 

Fig. 6. ROC Curve for Table 4 based on TPR (y-axis) and FPR (x-axis) at 17 
classification thresholds: The best cut-off point is 0.17 that is closest to the 
upper left corner of the curve between the cut-off points 0.15 and 0.20. 

Fig. 7. ROC Curve for Table 5: The best cut-off point is μ - 2σ.  

Fig. 8. ROC Curve for Table 6: The best cut-off point is μ - σ/2.  

Fig. 9. ROC Curve for Table 7: The best cut-off point is μ.  

Fig. 10. ROC Curve for μs where <0.17 (Table 8): The best cut-off point is μ 
+ 4σ. 
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ISMMMOs after applying the first mask, usually a process of glinting 
sections after the HSV processing phase. Around 20% of the blank im
ages come up with similar small dots usually after dilation and filling 
holes in the image as depicted in Fig. 16h). Several examples for these 
types of processed images can be reached from our technical report (e.g., 
examples 4, 6, 7, 15, 17, 19, 20 in MarineObjects_Man- 
made_Technical_Blank_1.pdf) in the supplements. These small sections 
are much smaller than the ISMMMOs and are discarded by applying a 
size mask technique. In the last phase of the implementation, the images 
with detected ISMMMOs are labelled as positive images and placed in a 
separate directory by the application for further analysis. 

3. Experimental design 

Offshore digital wildlife surveys for the offshore renewables sector 

are performed by APEM, capturing high-quality images year-round in all 
light conditions and up to four different sea states. The data is recorded 
using a wide range of advanced, high-resolution photogrammetry sensor 
technologies, including 35 mm and medium format sensors from a va
riety of manufacturers, in either multiple camera or a single camera 
configurations, subject to the scope of the project. These high-tech 
cameras, enabling a very high resolution ranging from 35MP to 50MP, 
are mounted in a tiny twin-engine aircraft (e.g., Fig. 17) on a route 
where all areas of interest are monitored with geospatial data (i.e., 
latitude, longitude, and altitude). It is noteworthy to emphasise that we 
have followed the standardised way of constructing applications for 
real-world uses with the development phases of i) build the model using 
a dataset and move to the second phase if the test results are satisfactory 
ii) test/evaluate the model using another dataset completely different 
from the first dataset to observe if the test results are satisfactory without 

Fig. 11. Stationary example 1: man-made object detection.  
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overfitting, and finally iii) let field experts evaluate the model with a 
completely new dataset independent from the first and second datasets. 
The model can be deployed if it passes these three phases successfully. 
These phases are outlined in Fig. 3. The obtained results as well as their 
evaluation are provided in the following section. The experimental 
design of data utilisation and data processing phases with their targeted 
objectives are outlined in Table 3 regarding the APEM‘s database. The 
viability of the methodology was ensured in 4 phases. 

Phase I. Model construction (Fig. 3 I): The proposed methodology 
was established using 145 images with ISMMMOs and 5000 images with 
no ISMMMOs acquired from the 22 surveys between 2014 and 2017, 
with around 250 samples from each survey. The sub-samples of these 

surveys have around 3 million large-scale images that have been ob
tained from the various areas of the world in all seasons and numerous 
time zones. This large number of surveys enabled us to identify the 
broad features and parameters of aerial surveys and apply these pa
rameters to make our methodology robust. All the steps of the model 
construction phase are explored in the sections above in detail. Phase II 
was conducted after the successful execution of Phase I by realising the 
targeted objectives, which is elaborated as follows. 

Phase II. Test of the model (Fig. 3 II): In addition to the dataset used 
for the establishment of the methodology, a test dataset was prepared. 
This set was composed of 55 images with ISMMMOs and 5000 images 
with no ISMMMOs, The test results are displayed in Table 10 A. We 

Fig. 12. Stationary example 2: man-made object detection.  
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moved to the next phase to evaluate the system using independent 
datasets after the satisfactory results (Se, Sp, PPV, NPV, and ACC > 0.95) 
obtained in this phase. 

Phase III. Evaluation using recent surveys (Fig. 3 III): A dataset 
was prepared to evaluate the eligibility of the methodology. This set 
consists of 57 images with ISMMMOs and 5000 images with no ISMM
MOs. This set is not included in the dataset used for the establishment of 

the methodology to observe if the methodology works as desired for 
other independent datasets. The test results are displayed in Table 10 B. 
We moved to the next phase to verify the system with field experts using 
other independent datasets after the satisfactory results (Se, Sp, PPV, 
NPV, and ACC > 0.95) obtained in this phase. 

Phase IV. Validation by field experts using the most recent 
surveys (Fig. 3 IV): Furthermore, in an independent verification dataset, 

Fig. 13. Stationary example 3: man-made object detection.  
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9 more images with ISMMMOs and 50 images with no ISMMMOs in 
different surveys from the surveys on which the methodology was 
established were provided by APEM for affirming the viability of the 
system to observe if the methodology can work as desired for any aerial 
datasets. Two field experts from APEM Ltd. confirmed that the estab
lished system can meet their needs to detect ISMMMOs while perform
ing surveys. The test results are displayed in Table 10 C. The results (Se, 
Sp, PPV, NPV, and ACC > 0.95) obtained in this phase were found to be 
highly satisfactory by the field experts. 

4. Results 

The effectiveness of the proposed methodology in detecting images 
with ISMMMOs is demonstrated by several experiments performed on 
many aerial survey images as elaborated in Section 3. The results of 
these experiments are outlined in Table 10 and they are summarised in 
Table 11. The numerous tangible outcomes of these successful results are 
demonstrated in the supplementary technical reports of the paper and in 
Figs. 11f, 12f, 13f, 14f, 15f. With this approach, ISMMMOs can be 
captured with Se, Sp, PPV, NPV, and ACC values over 0.95. More spe
cifically, 140 images out of 145, 55 images out of 57 and 9 images out of 
9 in the test, evaluation and validation phases (Fig. 3)are tagged as the 

Fig. 14. Moving example 1: man-made object detection.  
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images with ISMMMOs successfully with a high Se over the targeted 
value (> 0.95) in the research, which indicates that the methodology is 
strong in separating positive images from negative ones in situations 
where it is preferable to not miss positive images. The particular results 
of these phases are averaged at the bottom column in Table 11. All the 
averages are higher than 0.95, which indicates that the required phases 
were completed successfully and the application is ready for real-world 
deployment (Fig. 3). It is noteworthy to emphasise that Precision (Pr), i. 
e., Positive Predictive Value – PPV = Pr = TP / (TP + FP) – is 0.9813 for 
the average. This high value demonstrates that the model is highly 
successful in assigning “Positive” images to the “Positive” class while the 
‘Negative” images are assigned to the “Negative” class effectively with a 

NPV of 0.9995. Most importantly, we calculated Matthews Correlation 
Coefficient (MCC) due to an unbalanced number in the classes where the 
number of negative values were high, which may yield misleading ACC 
values. The MCC, ranging from − 1 to 1, was found to be 0.971, which 
indicates that the model is very close to a perfect prediction (i.e., 1). 

During the implementation of the methodology, testing, and evalu
ation, it was observed that the ISMMMOs with completely white features 
(i.e., R = 255, G = 255, B = 255) had difficulties being detected by our 
methodology since they have the same characteristics as waves with 
respect to HSV conversion, where zero is assigned to the S component 
during the conversion from RGB to HSV mode (Table 1, Table 2). In this 
respect, it is worth noting that the images with ISMMMOs that could not 

Fig. 15. Moving example 2: man-made object detection.  
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Fig. 16. Examples for blank images with no man-made objects.  
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be detected during the design and development phases (Fig. 3) are these 
types of images. Examples of these images are presented in Appendix B 
(Fig. 18). We refer the readers to Fig. 13 to observe how the white parts 
of the wind turbine cannot be detected adequately. 

5. Discussion 

Gibert et al. (Gibert et al., 2018) defined Data Science as a multi
disciplinary field that is a combination of data analysis, data processing 
techniques, and domain knowledge that transforms data into compre
hensible and actionable insights relevant to making informed decisions. 
Within this context, the objective of this study is to create a new envi
ronmental platform for the monitoring of the maritime environment by 
combining domain knowledge and data scientists in a productive 
collaboration and perform the detection of mobile and stationary 
ISMMMOs in an automated manner with their geospatial coordinate 
system. Changes in the marine ecosystem, such as habitat loss or pop
ulation decreases in marine organisms, may not be readily foreseeable 

and it requires long-term studies to reveal the environmental changes 
and impacts on the ecosystem and consequently to determine the 
required policies accordingly. Studies in marine environments, espe
cially far offshore, are comparatively costly and require the employment 
of new automatic techniques and merge of different studies for field 
researchers. In this sense, this study intends to help authorities and re
searchers with the automatic detection of offshore ISMMMOs using an 
advanced platform to fill some of this gap. 

The robustness of the platform was validated on a wide range of 
aerial maritime domains, providing a high level of empirical proof of 
concept with successful results (Table 11). Strictly speaking, the 
experimental results show that the proposed approach is efficient and 
effective for the detection and the segmentation of ISMMMOs in large 
scale aerial images. More specifically, the dynamic thresholding 
approach employed in the methodology increases Se from 0.85 to 0.97 
and Sp from 0.82 to 0.99 when compared to the static optimum 
threshold value as displayed in Table 4. This increase is statistically 
significant (p<0.01) by rejecting the null hypothesis (i.e., there is no 
significant difference between two results) using a paired-samples t-test. 
The ISMMMOs not detected by the methodology are all complete white 
objects. This issue is specified in Section 7 as a limitation of the study. 
Furthermore, the evaluation and validation results using the new data
sets (Table 10) that were not in the surveys used during the establish
ment of the methodology (Fig. 3) demonstrate that the methodology can 
work effectively on any aerial survey with high accuracy rates. In other 
words, during the evaluation phase, 55 out of 57 images with ISMMMOs 
were put into the positive folder and 4998 out of 5000 images with no 
ISMMMOs were placed into the negative folder. During the validation by 
field experts, 9 out of 9 images with ISMMMOs were put into the positive 
folder with all objects detected successfully and 50 out of 50 images with 
no ISMMMOs were placed into the negative folder successfully. It must 
be noted that the developed methodology neither classifies the detected 
ISMMMOs into groups nor determines the recognition of them, such as 
“ship”, “wind turbine” etc. Particular classification tools need to be 
developed to group the ISMMMOs that are placed in the positive 

Fig. 17. APEM aircraft during an aerial survey.  

Table 1 
Formulas for converting from RGB to HSV colour space.  

Channel Formula Condition / Output  

Rnew = Red / 255 Output: 0 < Rnew < 1 Red value mapped between 0 and 1 
Gnew = Green / 255 Output: 0 < Gnew < 1 Green value mapped between 0 and 1 
Bnew = Blue / 255 Output: 0 < Bnew < 1 Blue value mapped between 0 and 1 
MaxRGB = Max (Rnew, Gnew, Bnew) Output: maximum assigned Maximum of three components found 
MinRGB = Min (Rnew, Gnew, Bnew) Output: minimum assigned Minimum of three components found 

Hue (H) 

= 0 If Rnew = Gnew = Bnew Zero assigned 
= 60 * ((Gnew - Bnew) / (MaxRGB - MinRGB)) + 0 If max is Rnew 

Add 360 to Hue if H < 0 = 60 * ((Bnew - Rnew) / (MaxRGB - MinRGB)) + 2 If max is Gnew 
= 60 * ((Rnew - Gnew) / (MaxRGB - MinRGB)) + 4 If max is Bnew 

Saturation (S) = 0 If Rnew = Gnew = Bnew Zero assigned 
= (MaxRGB - MinRGB) / MaxRGB Else If all components different 

Value (V) = MaxRGB Output: maximum assigned Maximum of three components assigned  

Table 2 
Formulas for converting from HSV to RGB colour space.  

Channel Formula Condition / Output  

Chroma (Chr) = S * V Output: Colourfulness Intermediate colour purity calculated 
MidX value = Chr(1 − |(H/60)mod2 − 1 |) Output: Mid value Intermediate conversion value calculated 
MidM value = V - Chr Output: Mid parameter Intermediate parameter calculated 

(MidR, MidG, MidB) 

= (Chr, MidX, 0) If 0 ≤ H < 60 Intermediate red, green and blue calculated based on Hue 
= (MidX, Chr, 0) If 60 ≤ H < 120 Intermediate red, green and blue calculated based on Hue 
= (0, Chr, MidX) If 120 ≤ H < 180 Intermediate red, green and blue calculated based on Hue 
= (0, MidX, Chr) If 180 ≤ H < 240 Intermediate red, green and blue calculated based on Hue 
= (MidX, 0, Chr) If 240 ≤ H < 300 Intermediate red, green and blue calculated based on Hue 
= (Chr, 0, MidX) If 300 ≤ H < 360 Intermediate red, green and blue calculated based on Hue 

Rback = (MidR + MidM) × 255 Output: Targeted red value Red value calculated using intermediate parameter 
Gback = (MidG + MidM) × 255 Output: Targeted green value Green value calculated using intermediate parameter 
Bback = (MidX + MidM) * 255 Output: Targeted blue value Blue value calculated using intermediate parameter  
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directory by the proposed technique in this study, which is proposed as a 
future work in Section 6. Bespoke semi-supervised ML approaches (e.g., 
SelfMatch in (Xing et al., 2022a)) can be a good candidate for addressing 
this type of research question by extracting features from labelled data 
and comparing them with the features that are obtained from detected 
ISMMMOs based on the semantic information (e.g., (Xiao et al., 2022) 
and a feature/distance-based matching scheme (e.g., (Xing et al., 
2022b)) considering various pose compositions (e.g., (Çalışkan, 2023)). 

The methodology not only distinguishes ISMMMOs from the blank 
background (sea canvas with waves in many different shapes), but also 

from other objects (e.g., different types of flying birds, sitting birds, big 
mammals (e.g., whales, dolphins), sharks, turtles, rays) in images with 
various shapes and characteristics successfully for which several ex
amples can be reached in the technical report (e.g., Fig. 3 in 
MarineObjects_Man-made_Supplement_1.pdf) in the supplements. The 
results suggest that the saturation of maritime natural objects is signif
icantly different from ISMMMOs. The processing time for each image 

Table 3 
Main statistical terms and calculations used throughout the paper.  

# Abbreviation Description Detail 

1 P Positive An image with ISMMMO 
2 N Negative An image with no ISMMMO 
3 TP True Positive An image with ISMMMO is tagged as “image with ISMMMO” 
4 TN True Negative An image without ISMMMO is tagged as “image without ISMMMO” 
5 FP False Positive (False Alarm) An image without ISMMMO is tagged as “image with ISMMMO” 
6 FN False Negative An image with ISMMMO is tagged as “image without ISMMMO” 

7 Se Sensitivity 
True Positive Rate (TPR) = Se = TP / (TP + FN) 
How strong is the test in detecting images with ISMMMO correctly. 

8 Sp Specificity 
True Negative Rate (TNR) = Sp = TN / (TN + FP) 
How strong is the test in detecting images without ISMMMO correctly. 

9 PPV Positive Predictive Value 
Precision (Pr) = PPV = TP / (TP + FP) 
How strong is the test in assigning images with ISMMMO to Positive class. 

10 NPV Negative Predictive Value 
NPV = TN / (TN / FN) 
How strong is the test in assigning images without ISMMMO to Negative class. 

11 ACC Accuracy ACC = (TN + TP) / (FP + FN + TP + TN) Overall correct assignment rate of the test. 

12 MCC Matthews Correlation Coefficient 
MCC = (TN * TP – FN * FP)/ 

̅̅
(

√
(TP + FN)(TP + FP)(TN + FN)(TN + FP))

Quality of a test concerning the unbalance in classes 
13 μ Mean Arithmetic average of a set of observed values. 
14 σ Standard deviation Measurement of variation, dispersion from the average, within a set of observed values.  

Table 5 
Statistical analysis using 11 cut-off points: 29 images with ISMMMOs where 
μs > 0.50.  

Cut-off TP FN TN FP Se Sp 1-Sp 

μ - 5σ 29 0 432 568 1.000 0.398 0.602 
μ - 4σ 29 0 653 347 1.000 0.653 0.347 
μ - 3σ 29 0 917 83 1.000 0.917 0.083 
μ - 2σ 29 0 997 3 1.000 0.997 0.003 
μ - σ 25 4 999 1 0.862 0.999 0.001 
μ 22 7 1000 0 0.759 1.000 0.000 
μ þ σ 16 13 1000 0 0.552 1.000 0.000 
μ þ 2σ 14 15 1000 0 0.483 1.000 0.000 
μ þ 3σ 14 15 1000 0 0.483 1.000 0.000 
μ þ 4σ 12 17 1000 0 0.414 1.000 0.000 
μ - 5σ 11 18 1000 0 0.379 1.000 0.000  

Table 4 
Finding the optimum point using 17 cut-off points. 145 images with ISMMMOs.  

Cut-off TP FN TN FP Se Sp 1-Sp 

0.05 141 4 517 483 0.972 0.517 0.483 
0.10 132 13 585 415 0.910 0.585 0.415 
0.15 127 18 814 186 0.876 0.814 0.186 
0.20 101 44 821 179 0.697 0.821 0.179 
0.25 87 58 832 168 0.600 0.832 0.168 
0.30 81 64 841 159 0.559 0.841 0.159 
0.35 76 69 835 165 0.524 0.835 0.165 
0.40 73 72 877 123 0.503 0.877 0.123 
0.45 65 80 901 99 0.448 0.901 0.099 
0.50 55 90 927 73 0.379 0.927 0.073 
0.55 51 94 932 68 0.352 0.932 0.068 
0.60 51 94 936 64 0.352 0.936 0.064 
0.65 47 98 977 23 0.324 0.977 0.023 
0.70 35 110 988 12 0.241 0.988 0.012 
0.75 35 110 997 3 0.241 0.997 0.003 
0.80 32 113 1000 0 0.221 1.000 0.000 
0.85 32 113 1000 0 0.221 1.000 0.000  

Table 6 
Statistical analysis using 7 cut-off points. 55 images with ISMMMOs where μs >

0.25 and < 0.50.  

Cut-off TP FN TN FP Se Sp 1-Sp 

μ - 2σ 55 0 627 373 1.000 0.627 0.373 
μ - σ 55 0 721 279 1.000 0.721 0.279 
μ - σ/2 54 1 998 2 0.982 0.998 0.002 
μ 47 8 1000 0 0.855 1.000 0.000 
μ þ σ/2 41 14 1000 0 0.745 1.000 0.000 
μ þ σ 32 23 1000 0 0.582 1.000 0.000 
μ þ 2σ 13 42 1000 0 0.236 1.000 0.000  

Table 7 
Statistical analysis using 7 cut-off points. 21 images with ISMMMOs where μs >

0.17 and < 0.25.  

Cut-off TP FN TN FP Se Sp 1-Sp 

μ - 2σ 20 1 887 113 0.952 0.887 0.113 
μ - σ 20 1 908 92 0.952 0.908 0.092 
μ - σ/2 20 1 967 33 0.952 0.967 0.033 
μ 20 1 987 13 0.952 0.987 0.013 
μ þ σ/2 14 7 993 7 0.667 0.993 0.007 
μ þ σ 9 12 995 5 0.429 0.995 0.005 
μ þ 2σ 4 17 998 2 0.190 0.998 0.002  

Table 8 
Statistical analysis using 10 cut-off points. 40 images with ISMMMOs where 
μs < 0.17.  

Cut-off TP FN TN FP Se Sp 1-Sp 

μ - σ 40 1 587 413 0.976 0.587 0.413 
μ - σ/2 40 1 685 315 0.976 0.685 0.315 
μ 40 1 704 296 0.976 0.704 0.296 
μ þ σ/2 40 1 781 219 0.976 0.781 0.219 
μ þ σ 40 1 851 149 0.976 0.851 0.149 
μ þ 2σ 40 1 883 117 0.976 0.883 0.117 
μ þ 3σ 39 2 903 97 0.951 0.903 0.097 
μ þ 4σ 38 3 994 6 0.927 0.994 0.006 
μ þ 5σ 31 10 997 3 0.756 0.997 0.003 
μ þ 6σ 27 14 997 3 0.659 0.997 0.003  
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varies from 7 s to 16 s, depending on the image size and the number of 
objects in the image and their sizes, which is a very fast processing time 
for high-pixels-per-image (HPP) images up to 50 MB based on the 
camera system that is explained in Section 3. The overall computational 
complexity of the developed algorithms is O(n log n). It is important to 
point out that the supervised DL and ML approaches, designed by us in 
our previous work in (Kuru et al., 2023), that runs on similar images in 
the same surveys, can detect specific marine small natural objects (e.g., 
birds) in a few seconds (i.e., between 2 and 4 s). In this sense, we can 
conclude that DL and ML techniques slightly outperform the proposed 
non-supervised technique developed in this study considering the pro
cessing time. 

The current rate of global environmental alteration necessitates the 
quantification of impacts in species abundance in order to evaluate the 
effects on the ecosystem. To assess the extent of the decline, effective 
long-term surveillance of populations and trends is required, which is 
rarely the case for most species (Rosenberg et al., 2019). Environmental 
models work better when they are based on the findings of more up-to- 
date data analysis on specific domains. It is essential to continuously 
monitor species and ISMMMOs in an automated manner cost-efficiently, 
which necessitates the utilisation of sophisticated equipment with 
effective intelligent surveillance methods. In this regard, WILDetect, 
which is a new non-parametric platform by utilising a combination of 
supervised ML and Reinforcement Learning (RL) methods, was built in 
our previous work in (Kuru et al., 2023) to carry out automated wildlife 
censuses in highly dynamic marine environments. With similar auto
mated platforms, one of which is proposed in this research for detecting 
ISMMMOs, existing labour-intensive and costly censuses performed over 
long periods of time can be replaced by cost-efficient and highly auto
mated computerised systems and they can be repeated automatically in 
regular, shorter periods. In this way, the environmental models, equip
ped with near-real-time outcomes for both marine wildlife and man- 
made presence, can foretell future trends with more realistic pro
jections based on human footprint, which, in turn, help mitigate the 
potential damaging effects of human footprint. 

6. Conclusions and future work 

A novel methodology, the so-called ISMMMOD, that detects and 
splits ISMMMOs automatically in large-scale images in typical large 
marine surveys is built. The ISMMMOD is developed using the HSV 
colour space and statistical analysis of histograms of the channels in this 
space based on the ROC curve analysis. The techniques in the method
ology differ man-made structures from natural maritime habitats (i.e., 
waves, sea animals, birds, seawater) in various aspects, in particular, 
composition, features of the surface and saturation of light. The large 
number of surveys, that were conducted in the various geographical 
regions and in the various time zones and seasons, on which our 
methodology was built, represent the key features of aerial surveys, 
which made our approach powerful and resilient in detecting ISMMMOs 
with very high accuracy rates. The successful results obtained in this 
research (Table 11) is an indication that using an automated computer- 
based system could be an effective alternative to labour-intensive ap
proaches. The approach built in this study can be employed for several 
reasons, in particular, will provide researchers and policymakers with 
the ability to monitor maritime industries and ensure their proper 
deployment through the implementation of a suitable legal and regu
latory framework that takes into account the changing dynamics of 
marine ecosystems. Additionally, this study will direct the researchers 
who would like to establish similar systems using unsupervised 
approaches. 

The proposed method was tested on large-scale aerial images ac
quired by aeroplanes and we would like to observe the results of our 
method on satellite images wherever datasets are available, which may 
reduce the cost significantly regarding the detection of ISMMMOs and 
may provide a real-time and quick evaluation of ISMMMOs in marine 
ecosystems. This study may direct other studies about the automatic 
classification of marine ISMMMOs. We will be developing other novel 
nonparametric approaches to detect maritime life (e.g., different types 
of flying birds, sitting birds, big mammals (e.g., whales, dolphins), 
sharks, turtles, rays) automatically in large number of images in surveys 

Table 11 
Test, evaluation and validation results in summary detailed in Table 10.  

Phase Positive Negative TP FN TN FP Se SP PPV NPV ACC Location Check 

Test 145 5000 140 5 4997 3 0.966 0.997 0.9790 0.9990 0.9984 UCLAN ✓ 
Evaluation 57 5000 55 2 4998 2 0.965 0.999 0.9649 0.9996 0.9992 UCLAN ✓✓ 
Validation 9 50 9 0 50 0 1 1 1 1 1 APEM ✓✓✓ 
Verification 211 10,050 204 7 10,045 5 0.977 0.9987 0.9813 0.9995 0.9992 Average ✓✓✓✓  

Table 9 
Dynamic threshold points for S channel based on μ and σ acquired from the statistical analysis of the images using several cut-off points as depicted in Tables 5, 6, 7, 8. 
The most closest pointi to the upper left corner of the ROC curve indicate the ideal cut-off points as shown in Figs. 7, 8, 9, 10.  

Mean of the S channel (μ) threshold objective Se Sp example 

> 0.50 μ − 2xσ Almost all values are mapped to 1 1.00 0.997 
Fig. 16b 

> 0.25 μ − σ/2 Most of the values are mapped to 1 0.982 0.987 
Fig. 12b 

> sAdjustMask (i.e, 0.17) μ Almost half of the values are mapped to 1 0.927 0.994 
Fig. 14b 

otherwise (i.e., < 0.17) μ+ 4xσ Most of the values are not mapped to 1, left as is 0.96 0.95 
Fig. 13b  

Table 10 
Detailed confusion matrix of the classifiers outlined in Table 11.    

A. Test Results (UCLAN) B. Evaluation (UCLAN) C. Validation (APEM)   

Actual Class  Actual Class  Actual Class    

Positive Negative % Positive Negative % Positive Negative % 

Pred Positive 140 (TP) 3 (FP) 0.9790 (PPV) 55 (TP) 2 (FP) 0.9649 (PPV) 9 (TP) 0 (FP) 1 (PPV) 
Negative 5 (FN) 4997 (TN) 0.9990 (NPV) 2 (FN) 4998 (TN) 0.9996 (NPV) 0 (FN) 50 (TN) 1 (NPV)  
% 0.9655 (Se) 0.9994 (Sp) 0.9984 (ACC) 0.9649 (Se) 0.9996 (Sp) 0.9992 (ACC) 1 (Se) 1 (Sp) 1 (ACC)  

K. Kuru et al.                                                                                                                                                                                                                                    



Ecological Informatics 78 (2023) 102285

17

using supervised approaches (e.g., (Kuru et al., 2023)) to help evaluate 
the maritime industry and natural ecosystem together within well- 
prepared models. We aim to incorporate the built methodology with 
camera systems used in aeroplanes and unmanned aerial vehicles 
(UAVs) and to employ it in real-time rescue missions on high seas and 
open oceans as a future work, in particular, after aeroplane crashes and 
maritime accidents to find wreckages and survivals. 

7. Limitations of the study 

Complete white ISMMMOs as displayed in Appendix B (Fig. 18) have 
the same characteristics as waves (R = 255, G = 255, B = 255) with 
respect to HSV conversion, in particular, saturation. As it can be readily 
noticed in Table 1, zero is assigned to the hue and saturation during the 
conversion from RGB to HSV colour space when the values for the RGB 

colour space is 255, 255, 255 for the three channels. Our techniques 
perform successfully where the hue and saturation values are distinctive 
(i.e., H > 0 and S > 0) and therefore, these types of objects can not be 
detected using the approach built in this study. 
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Appendix A. Pseudo codes of the methodology based on the Matlab syntax
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Appendix B. Examples for objects not detected by the proposed approach

Fig. 18. Examples for objects not detected:  

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ecoinf.2023.102285. 
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