

Central Lancashire Online Knowledge (CLoK)

Title	Diagnosis and treatment of dehydration after stroke: A synthesis of existing
	evidence
Туре	Article
URL	https://clok.uclan.ac.uk/id/eprint/49053/
DOI	10.12968/bjnn.2023.19.Sup5.S24
Date	2023
Citation	Miller, Colette, Mcloughlin, Alison Sarah rachel, Benedetto, Valerio, Christian, Danielle, Jones, Stephanie, Smith, Eleanor and Watkins, Caroline Leigh (2023) Diagnosis and treatment of dehydration after stroke: A synthesis of existing evidence. British Journal of Neuroscience Nursing, 19 (Sup5). ISSN 1747-0307
Creators	Miller, Colette, Mcloughlin, Alison Sarah rachel, Benedetto, Valerio, Christian, Danielle, Jones, Stephanie, Smith, Eleanor and Watkins, Caroline Leigh

It is advisable to refer to the publisher's version if you intend to cite from the work. 10.12968/bjnn.2023.19.Sup5.S24

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the <u>http://clok.uclan.ac.uk/policies/</u>

1 TITLE

2 Diagnosis and treatment of dehydration after stroke: A synthesis of existing evidence.

3 Commentary on:

- 4 Bahouth, M. N., Gottesman, R. F., & Szanton, S. L. (2018). Primary 'dehydration' and acute stroke: a
- 5 systematic research review. Journal of neurology, 265(10), 2167–2181.
- 6 https://doi.org/10.1007/s00415-018-8799-6

7 AUTHOR DETAILS

- 8 Colette MILLER^{1, 2, 3*}, Alison S.R. MCLOUGHLIN^{1, 3}, Valerio BENEDETTO^{4, 3}, Danielle L. CHRISTIAN^{1, 3},
- 9 Stephanie P. JONES², Eleanor SMITH³, Caroline L. WATKINS^{1, 2, 3}.

10 Corresponding author

11 Colette Miller, <u>cmiller5@uclan.ac.uk</u>, 01772 893 693

12 Institutional affiliations

- 13 ¹IMPlementation and Capacity building Team (IMPaCT), Applied Health Research Hub, University of
- 14 Central of Central Lancashire (UCLan), Preston.
- 15 ²Stroke Research Team, School of Nursing and Midwifery, UCLan, Preston.
- ³NIHR Applied Research Collaboration North West Coast (ARC NWC), UCLan, Preston.
- ⁴Methodological Innovation, Development, Adaptation & Support Theme (MIDAS), Applied Health
- 18 Research Hub, University of Central

19 ACKNOWLEDGEMENTS

20 None.

21 CONFLICT OF INTEREST STATEMENT

22 AM sits on the Editorial Board. The remaining authors do not have any conflict of interest to disclose.

23 FUNDING SUPPORT STATEMENT

- 24 VB, DC, AM, CM, ES and CLW are partly funded by the National Institute for Health and Care
- 25 Research (NIHR) Applied Research Collaboration, North West Coast. The views expressed are those
- 26 of the author(s) and not necessarily those of the NIHR, NHS or Department of Health and Social Care.
- 27
- 28

29 TITLE

30 Diagnosis and treatment of dehydration after stroke: A synthesis of existing evidence.

31 KEY POINTS

- 32 1. There is currently no gold standard of measurement of dehydration. Multiple definitions and
- diagnostic criteria have been used across a range of study designs.
- 34 2. Although there are limited studies investigating the effects of dehydration after acute stroke
- 35 there appears to be an association with poorer outcomes.
- 36 3. Best practice remains unclear and further research exploring diagnostic criteria and rehydration
- 37 therapies associated with stroke would improve the evidence base.
- 38 4. Dehydration is common at the time of stroke, often as a complication associated with
- 39 swallowing difficulties (dysphagia), and management of hydration status is a crucial element of
- 40 acute stroke care.

41 ABSTRACT

42 Dehydration after stroke is associated with poor health outcomes, increased mortality, and poses a 43 significant economic burden to health services. Yet research suggests that monitoring and 44 assessment of hydration status is not routinely undertaken. In this commentary, we critically 45 appraise a systematic review which aimed to synthesise the existing evidence regarding diagnosis 46 and treatment of dehydration after stroke. The review discusses common measures of dehydration, 47 describes studies evaluating rehydration treatments, and highlights the link between dehydration 48 and poorer health outcomes in both human and animal studies. The reviewers suggest, future 49 research should focus on determining a single, validated, objective measure to clinically diagnose 50 dehydration in stroke patients. Research designs should include clearly defined patient 51 characteristics, type and severity of stroke, and type and time point of dehydration measurement, to 52 enable comparison between studies. Management of hydration status is a crucial element of acute 53 stroke care which should be routinely practiced.

54 Key Words

55 Stroke; Dehydration; Diagnosis; Assessment; Management; Systematic Review.

56 Word Count (Excluding Title, Abstract, Tables and References)

57 1861

58 INTRODUCTION

59 Globally, there are around 80 million individuals who have experienced a stroke, and it is estimated 60 that over 13 million new cases of stroke occur each year (Johnson et al. 2019). It is estimated that 61 around 36% of stroke patients are dehydrated upon admission, and 62% will become dehydrated 62 during their hospital stay (Rowat et al. 2012). Dehydration after stroke is associated with increased 63 mortality, poor health outcomes, and poses a significant economic burden to health services 64 (Edmonds et al. 2021; Bhalla et al. 2000; Kelly et al. 2004). Ensuring sufficient hydration during (and 65 following) the acute phase of a stroke offers benefits in that it can mitigate complications including 66 infections, constipation, delirium, and venous thromboembolism (Kelly et al. 2004; Miller et al. 2023; 67 Stotts and Hopf 2003; Visvanathan et al. 2015). 68 Despite the importance of adequate hydration after stroke being emphasised in international clinical 69 practice guidelines (Intercollegiate Stroke Working Party 2023; Powers et al. 2018; Stroke 70 Foundation 2023), research suggests that monitoring and assessment of hydration status is not 71 routinely completed, and consequently dehydration is often recognised as a result of tests for other 72 clinical conditions and complications (Watkins et al. 2017; Mullins, 2021). The reasons for this 73 disparity between guidelines and practice are not completely understood but may be explained in

part by a lack of consensus regarding definitions, diagnosis, and treatment of dehydration (Lacey et

al. 2019). In the most recent systematic review on this specific topic, Bahouth and colleagues aimed

to identify and synthesise the existing evidence regarding diagnosis and treatment of dehydration

after stroke to inform future research and practice (Bahouth et al. 2018).

78 Aim of commentary

- 79 This commentary aims to critically appraise the methods used within the review by Bahouth et al.
- 80 (2018) and to expand on the review findings in the context of clinical practice.

81 METHODS OF BAHOUTH ET AL (2018)

82 Multiple databases were used in the review including PubMed, CINAHL, Cochrane and Scopus. Search terms included "hydration", "dehydration", "blood viscosity", "volume contraction", 83 84 "hypertonicity", "thirst" and "haemodilution". Studies were included if they were published 85 between the years 1997 and 2017. The authors chose to commence the search from 1997 as this 86 marked a significant transformation in the treatment of acute stroke (thrombolytic therapy for acute 87 stroke patients) (Bahouth et al. 2018). In addition to these, the reviewers conducted backward 88 citation searches, as well as including a pre-1997 seminal study which investigated dehydration and 89 stroke. 90 Only studies which examined hydration status in hospitalised patients with first time ischaemic 91 stroke were included. The study team only reviewed papers written in English and excluded both 92 research around dehydration linked to difficulties with swallowing, and studies focusing on 93 dehydration occurring beyond the acute phase of stroke, defined by the authors as "the immediate 94 post-stroke period". 95 The authors did not indicate how many reviewers were involved in the title/abstract and full-text

screening or in the data extraction. One reviewer used the Quality Assessment Tool for Quantitative
Studies (Bahouth et al. 2018; Ciliska et al. 1998) to investigate the potential bias of the included
studies. No indication was provided on the method of synthesis.

99 RESULTS

100 There was variation between the review aims and the reported results, but this may be due to the 101 difficulties in combining the varied literature around this topic. There were several inconsistencies in 102 the reporting of the total number of studies included across the review and more details are

- 103 provided in the relevant results sections. Quality assessment was only reported for the 23 studies
- included in the data tables, of which 7 (30%) were reported as moderate, with the remaining 16
- 105 (70%) weak indicating an overall low quality of evidence (Bahouth et al. 2018).

106 Studies measuring dehydration

- 107 Nineteen studies measuring dehydration in an acute stroke population were included, however
- 108 results were discussed from 20 studies, and only 18 were included in the data tables. Most studies
- 109 used laboratory values as objective indirect diagnostic criteria, with blood urea nitrogen to
- 110 creatinine ratio (BUN/Cr) and serum osmolarity being the most common laboratory markers used;
- 111 only one study used patient weight as a measure. Within the twelve studies that used BUN/Cr there
- 112 were three different definitions of dehydration. Overall rates of dehydration in the acute stroke
- 113 population ranged from 29 to 70%.

114 Studies evaluating treatments of dehydration

- 115 Two comprehensive Cochrane reviews (Chang and Jensen, 2014; Visvanathan et al. 2015) exploring
- this research area were published shortly before this review was completed. The reviewers
- 117 therefore included only five studies published after the Cochrane papers. Although four studies (Lin
- et al. 2015; Lin et al. 2015; Lin et al. 2016; Mucke et al. 2012) suggested that treatment of
- dehydration could improve function and lower death rate, the remaining study (Dharmasaroja,
- 120 2016) suggested that high volumes of rehydration in patients with large strokes may increase
- 121 cerebral oedema.

122 Outcomes after stroke in dehydrated patients.

- 123 Outcome measures across the studies varied but included death, dependency, early neurological
- deterioration (END), stroke in evolution (SIE), hemispatial neglect, and discharge to nursing home.
- 125 The review stated that all clinical studies of dehydration measures at the time of stroke reported
- 126 worse clinical outcomes in dehydrated patients. However, not all studies included in the review
- 127 measured patient outcomes. Nevertheless, where patient outcomes were assessed, the majority
- 128 were found to be poorer in those classified as dehydrated (see Table 1).

Author, year, country	Review Ref. No.	Review Table	Inclusion reason	Measure	% Dehydrated	Patient outcomes measured	Effect of dehydration	Observations
Akimoto et al, 2011, Japan	13	1	Measures Dehydration	BUN/Cr >25	29% (28/97)	No	N/A	Dehydration on admission is associated with higher prevalence of cardioembolic stroke
Bahouth et al, 2016, USA	35	1	Measures Dehydration	BUN/Cr >15 USG > 1.010	57% (114/201)	NIHSS Hemispatial neglect	Negative	Dehydration on admission is associated with more severe hemispatial neglect
Bhalla et al, 2000, UK	14	1	Measures Dehydration	pOsm >296mOsm/kg	NR	Death or dependency	Negative	Dehydration on admission is associated with increased mortality
Bhatia et al, 2015, India	15	1	Measures Dehydration	BUN/Cr >15 USG > 1.010	39% (45/114)	NIHSS END	Negative	Dehydration on admission is associated with early neurological deterioration
Chang et al, 2014, USA	42	Not in Table	Cochrane Review	-	-	-	-	Review showed no clear evidence of benefit of haemodilution therapy for ischaemic stroke
Chang et al, 2016, Taiwan	16	1	Measures Dehydration	BUN/Cr ≥15	70% (61/87)	NIHSS Collateral development	Negative	Dehydration on admission is associated with poor collateral flow development
Crary et al, 2013, USA	36	1	Measures Dehydration	BUN/Cr ≥15	53% (36/67)	No	N/A	Dehydration on admission with dysphagia is associated with worsened hydration status at discharge
Dharmasaroja, 2016, Thailand	30	2	Hydration Therapy	-	-	-	-	Higher volume of fluid intake is associated with increased brain oedema in cerebral infarction
Dehghani Firoozabadi, et al, 2013, Iran	17	1	Measures Dehydration	Increased BUN/Cr	NR	Death	Negative	Dehydration is associated with increased mortality
Furukawa et al, 2016, Japan	18	1	Measures Dehydration	Blood viscosity	NR	No	N/A	Dehydration is associated with the onset of ischaemic stroke (small artery occlusion SAO)
Gross et al, 2005, USA	39	Not in Table	Biological Model	-	-	-	-	Animal study: Many brain regions have depressed metabolism in chronic severe dehydration
Hyodo et al, 1989, USA	40	Not in Table	Biological Model	-	-	-	-	Animal study: Cerebral blood flow is increased by haemodilution in dogs with ischaemic stroke
Kafri et al, 2013, UK	29	Not in Table	Measures Dehydration	Bioelectrical Impedance	22% (6/27)	No	N/A	Bioelectrical Impedance Assessment appears ineffective at diagnosing water-loss dehydration after stroke
Lin CJ et al, 2016, Taiwan	31	2	Hydration Therapy	-	-	-	-	BUN/Cr based hydration therapy in ischemic stroke is associated with improved discharge outcomes
Lin LC et al, 2011, Taiwan	19	1	Measures Dehydration	BUN/Cr >15	15% (30/196)	NIHSS SIE	Negative	Dehydration on admission is associated with early clinical deterioration
Lin LC et al, 2011, Taiwan	20	1	Measures Dehydration	USG >1.010	56% (177/317)	NIHSS SIE	Negative	Dehydration on admission is associated with early clinical deterioration
Lin LC et al, 2014, Taiwan	32	2	Hydration Therapy	-	-	-	-	BUN/Cr based hydration therapy in ischemic stroke is associated with reduced occurrence of SIE

129 **Table 1:** Characteristics of studies included in Bahouth et al. 2018 systematic review. (This table was amalgamated from analysis and/or narrative)

Lin WC et al, 2015,	33	2	Hydration	-	-	-	-	BUN/Cr based hydration therapy in ischemic stroke is
Taiwan			Therapy					associated with decreased infections and LOS
Lip et al, 2002,	21	1	Measures	Blood viscosity	NR	No	N/A	Explored haemorheology alterations in acute stroke.
UK			Dehydration					Abnormalities could not be linked to hydration status
Liu et al, 2014,	22	1	Measures	BUN/Cr ≥15	48%	mRS	Negative	Dehydration on admission is associated with poor
Taiwan			Dehydration		(1229/2570)	BI		discharge outcomes
Lourbopoulos et al,	37	Not in	Biological	-	-	-	-	Animal study: Ischaemic stroke mortality in mice is
2017, Germany		Table	Model					associated with inadequate food and/or water intake
Morris et al, 1999,	38	Not in	Biological	-	-	-	-	Animal study: Results demonstrate a differential
USA		Table	Model					response to dehydration in mice lacking AT1a receptors
Mucke et al, 2012,	34	2	Hydration	-	-	-	-	Fluid intake > 2000 ml per day may prevent
Germany			Therapy					secondary stroke
Murray et al, 2015,	23	1	Measures	BUN/Cr >20	44% (35/79)	Adverse health	Unclear	Rehab patients, with and without dysphagia, with
Australia			Dehydration			outcomes		mobility issues may be at risk of dehydration
O'Neill et al, 1992,	24	1	Measures	pOsm	NR	Death or dependency	Negative	Increased AVP is associated with poor outcomes
UK			Dehydration	AVP				
Ott et al, 1974,	46	Not in	Biological	-	-	-	-	Dehydration with atherosclerotic disease associated with
Austria		Table	Model					high blood viscosity and may contribute to stroke
Rodriguez et al, 2009,	3	Not in	Measures	Calculated		No	N/A	Dehydration is a potential contributing factor to the
USA		Table	Dehydration	pOsm				onset of ischaemic stroke
Rowat et al, 2011,	25	1	Measures	U:C >60	45% (9/20)	No	N/A	Further research is needed to develop a practical tool for
UK			Dehydration	Urine Colour >4				the prevention, detection, and treatment of dehydration
Rowat et al, 2011,	26	1	Measures	U:C >80	62%	Death or dependency	Negative	Dehydration at any point during hospital stay is
UK			Dehydration		(1606/2591)		-	associated with poor discharge outcomes and death
Schrock et al, 2012,	27	1	Measures	BUN/Cr >15	43%	Death or dependency		Dehydration on admission is associated with poor
USA			Dehydration		(138/324)			discharge outcomes and death
Song et al, 2017,	28	1	Measures	Blood viscosity	NR	No	N/A	Dehydration is associated with the onset of ischaemic
Korea			Dehydration					stroke (small artery occlusion SAO)
Visvanathan et al, 2015,	41	Not in	Cochrane	-	-	-	-	no evidence to guide the best volume, duration, or mode
UK		Table	Review					of parenteral fluid delivery for people with acute stroke

130 *AVP = Arginine vasopressin; BI = Barthel Index; BUN/Cr = Blood Urea Nitrogen to Serum Creatinine ratio; END = Early Neurological Deterioration; LOS = Length of stay; mRS = Modified

131 Rankin Scale; NIHSS = NIH Stroke Scale; NR = Not reported; pOsm = plasma osmolality; SIE = Stroke in evolution; Table 1: Studies measuring dehydration in acute stroke (N=18); Table 2:

132 Studies including recommended hydration therapies for acute stroke patients (N=5); U:C = Urea creatinine ratio; USG = Urine Specific Gravity

- Biological mechanisms using animal models to investigate the relationship
- 134 between dehydration and stroke.
- 135 The review concluded, based on four animal studies which were not reported in the tables of

included studies but discussed in the narrative results section, that poor hydration status is

- 137 associated with worse outcomes. One animal study showed that supported access to food and drink
- 138 was independently associated with decreased mortality regardless of infarct size (Lourbopoulos et
- 139 al. 2017).

140 COMMENTARY

141 Critical appraisal

142 Using the Joanna Briggs Institute Critical Appraisal tool for systematic reviews (Aromataris et al.

- 143 2015), we determined that 5 of the 11 criteria were deemed satisfactory (see Table 2). The review
- 144 provides a satisfactory overview of the research to date, but this must be interpreted within the
- 145 context of the six quality criteria that were not met or lacked clarity. While the critical appraisal
- 146 criteria chosen by the review's authors were appropriate, only one reviewer appraised the eligible
- 147 studies. Best practice in conducting a systematic review requires two or more reviewers to
- 148 undertake critical appraisal, neglecting this introduces the potential for error and reduces
- 149 confidence in the review findings. No methods to minimise errors in data extraction were reported
- and the likelihood of publication bias was not discussed. Finally, while the recommendations for
- 151 research were extensive, the recommendations for practice, such as utilising hydration therapy with
- 152 isotonic fluids, were not supported by the reported data, limiting interpretability for healthcare
- 153 practitioners.
- Based on the critical appraisal, the review did not comprehensively attempt to minimise bias in the study selection, data extraction process or critical appraisal of included studies. Consequently, the validity and reliability of the synthesis may be limited in its implications for practice.

- 157 **Table 2.** Critical appraisal of Bahouth et al. 2018 using the JBI Checklist for Systematic Reviews and
- 158 Research Syntheses.

JBI	Critical Appraisal Checklist	Appraisal response
1.	Is the review question clearly and	No, the review question was not clearly
	explicitly stated?	stated.
2.	Were the inclusion criteria	Yes, the review stated a broad inclusion
	appropriate for the review question?	criteria.
3.	Was the search strategy appropriate?	No, there was insufficient detail reported to
		assess the appropriateness of the strategy.
4.	Were the sources and resources used	Yes, a systematic literature search was
	to search for studies adequate?	conducted from three bibliographic
		databases
5.	Were the criteria for appraising	Yes, appraisal was conducted using a
	studies appropriate?	validated tool (QATQS).
6.	Was critical appraisal conducted by	No, critical appraisal of included studies was
	two or more reviewers	undertaken by only one reviewer.
	independently?	
7.	Were there methods to minimize	No, the process of data extraction was not
	errors in data extraction?	clearly stated.
8.	Were the methods used to combine	Yes, it appears a narrative synthesis was
	studies appropriate?	conducted on heterogenous literature.
9.	Was the likelihood of publication bias	No, the review did not explore publication
	assessed?	bias.
10.	Were recommendations for policy	No, the recommendations for policy and/or
	and/or practice supported by the	practice were not clear.
	reported data?	
11.	Were the specific directives for new	Yes, the review makes clear
	research appropriate?	recommendations for future research.

159

160 Implications for practice

- 161 Overall, the findings of the review highlight that dehydration may be a substantial problem
- 162 impacting 29% to 70% of stroke patients (Bahouth et al. 2018). This variation in the rates of
- dehydration reported in the included studies may be partially explained by the variety and range of
- 164 measurement techniques utilised in the study designs. The heterogenous nature of the evidence
- 165 base limits the opportunity for comparisons to be made across studies, and therefore the
- 166 development of meaningful recommendations to improve practice.

Although the review aimed to standardise terminology and identify gaps in the literature, these were not covered within the results section. This omission in reporting may be due to the limited number of studies, and the heterogeneity of those that exist, resulting in a lack of data to achieve the review aims. Despite the inconsistencies in the review overall, the findings suggest an association between dehydration and poor outcomes in acute stroke.

172 In relation to clinical practice, the review highlights the detrimental effects of dehydration on patient 173 outcomes (Bahouth et al. 2018. Although the interpretation of this evidence is limited by the 174 review's methodological limitations, the findings increase awareness of the impact of dehydration 175 among this population for healthcare practitioners. This increased awareness may allow for early 176 identification and prompt management of dehydration in these patients. That said, further research 177 is needed to recommend a specific clinical assessment given that there is a dearth of evidence in this 178 area (Oates and Price 2017). To minimise the acknowledged detrimental effects of dehydration, 179 healthcare practitioners could incorporate routine screening for dehydration into their clinical 180 assessments for patients presenting with acute stroke (Guastaferro et al. 2018; Miller et al. 2023). 181 The association between dehydration and poor outcomes in stroke may also prompt the 182 development of educational initiatives and training programs for healthcare professionals (McCotter 183 et al. 2016). Recent evidence suggests that continuing education programs, workshops, and 184 conferences should emphasise the importance of hydration in acute stroke management (McCotter 185 et al. 2016; Mullins 2021). By enhancing healthcare professionals' knowledge and skills in this area, 186 they may be better equipped to identify and address dehydration more promptly and effectively (Miller 2023; Mullins 2021). 187

While the review highlights evidence suggesting rehydration therapies may improve clinical
outcomes and functional independence (Lin et al. 2016), further robust research evidence is
required to inform best practice in this area.

191 Implications for future research

192	Bahouth et al. (2018) suggest that future research should focus on determining a single, validated,							
193	objective measure to clinically diagnose dehydration in stroke patients. They further recommend							
194	that the reporting of future research findings should include more detailed information about the							
195	type and severity of stroke, type and time point of dehydration measurement, and more clearly							
196	defined patient characteristics. An under researched area highlighted by the review was that of							
197	patient experience of dehydration after stroke, as no previous studies have explored this important							
198	aspect of care.							
199	Further research could also investigate the underlying mechanisms linking dehydration and poor							
200	stroke outcomes, identify specific patient populations at higher risk, and evaluate the impact of							
201	hydration interventions on clinical outcomes. This research could contribute to an expanded							
202	evidence base, further informing clinical practice guidelines and fostering continuous improvement							
203	in stroke management.							
204	CPD reflective questions							
205	1. What do you think the key take-away messages from the review are and why?							
206	2. Are you satisfied with the way the authors conducted and reported the review? Justify							
207	your answer.							
208	3. The authors concluded that a hydration therapy based on isotonic fluids could be							
209	promising. Do you agree based on the evidence presented? Justify your answer.							
210 211	Funding statement (*must be included in the published article) This research was partly funded by the National Institute for Health and Care Research Applied							
212	Research Collaboration North West Coast (NIHR ARC NWC). The views expressed are those of the							

authors and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care.

214 **REFERENCES**

- Aromataris E, Fernandez R, Godfrey CM, Holly C, Khalil H, Tungpunkom P. 2015. Summarizing systematic reviews: Methodological development, conduct and reporting of an umbrella review approach. Int J Evid Based Healthc. 13(3):132-140.
- 218 Bahouth MN, Bahrainwala Z, Hillis AE, Gottesman RF. 2016. Dehydration status is associated with 219 more severe hemispatial neglect after stroke. Neurologist. 21(6):101-105.
- Bahouth MN, Gottesman RF, Szanton SL. 2018. Primary 'dehydration' and acute stroke: A systematic
 research review. J Neurol. 265(10):2167-2181.
- Ciliska D, Miccuci S, Dobbins M, Thomas BH. 1998. Quality assessment tool for quantitative studies.Hamilton: Effective Public Health Panacea Project.
- 224 Chang TS, Jensen MB. 2014. Haemodilution for acute ischaemic stroke. Cochrane Database of 225 Systematic Reviews. (8).
- Dharmasaroja PA. 2016. Fluid intake related to brain edema inacute middle cerebral artery infarction.
 Translational Stroke Research. 7:49–53.
- 228 Edmonds CJ, Foglia E, Booth P, Fu CHY, Gardner M. 2021. Dehydration in older people: A systematic
- review of the effects of dehydration on health outcomes, healthcare costs and cognitive performance.
- Archives of Gerontology and Geriatrics. 95:104380.
- 231 Guastaferro R, Rosi IM, Milos R, Messina E, Cerra A, Bonetti L. 2018. Development of a screening tool
- to assess dehydration in hospitalized older population: A diagnostic, observational study. Prof Inferm.
 71(3):178-187.
- Intercollegiate Stroke Working Party. 2016. National clinical guideline for stroke, 6th ed. Royal Collegeof Physicians.
- 236 Johnson CO, Nguyen M, Roth GA, Nichols E, Alam T, Abate D, Abd-Allah F, Abdelalim A, Abraha HN,
- Abu-Rmeileh NME et al. 2019. Global, regional, and national burden of stroke, 1990–2016: A
- 238 systematic analysis for the global burden of disease study 2016. The Lancet Neurology. 18(5):439-458.
- Kelly J, Hunt BJ, Lewis RR, Swaminathan R, Moody A, Seed PT, Rudd A. 2004. Dehydration and venous
 thromboembolism after acute stroke. QJM: An International Journal of Medicine. 97(5):293-296.
- Lacey J, Corbett J, Forni L, Hooper L, Hughes F, Minto G, Moss C, Price S, Whyte G, Woodcock T et al.
 2019. A multidisciplinary consensus on dehydration: Definitions, diagnostic methods and clinical
 implications. Annals of Medicine. 51(3-4):232-251.
- Lin CJ, Yang JT, Huang YC, Tsai YH, Lee MH, Lee M, Hsiao CT, Hsiao KY, Lin LC. 2016. Favorable outcome
 of blood urea nitrogen/creatinine-based hydration therapy 3 months after acute ischemic stroke. The
 American Journal of Emergency Medicine. 34(12):2414-2418.
- Lin LC, Lee JD, Hung YC, Chang CH, Yang JT. 2014. BUN/ creatinine ratio-based hydration for preventing
 stroke-in-evolution after acute ischemic stroke. American Journal of Emergency Medicine 32(7):709–
 712.
- 250 Lin WC, Shih HM, Lin LC. 2015. Preliminary prospective study to assess the effect of early blood urea
- 251 Nitrogen/Creatinine ratiobased hydration therapy on post-stroke infection rate and length of stay in
- acute ischemic stroke. Journal of Stroke and Cerebrovascular Diseases. 24(12):2720–2727.

- 253 Lourbopoulos A, Mamrak U, Roth S, Balbi M, Shrouder J., Liesz A, Hellal F, Plesnila N. 2017. Inadequate
- 254 food and water intake determine mortality following stroke in mice. Journal of Cerebral Blood Flow &
- 255 Metabolism. 37(6):2084–2097.
- McCotter L, Douglas P, Laur C, Gandy J, Fitzpatrick L, Rajput-Ray M, Ray S. 2016. Hydration education:
 Developing, piloting and evaluating a hydration education package for general practitioners. BMJ
 Open. 6(12): e012004.
- Miller C, Gibson JME, Jones S, Timoroska A-M, Maley A, Romagnoli E, Chesworth BM, Watkins CL.
 2023. How is hydration assessed and managed in acute stroke? A qualitative study of healthcare staff's
 knowledge, attitudes and experiences. Journal of Clinical Nursing. 32(7-8):1089-1102.
- Mucke S, Grotemeyer KH, Stahlhut L, Husstedt IW, Evers S. 2012. The influence of fluid intake on stroke
 recurrence—a prospective study. Journal of Neurological Sciences. 315:82–85.
- 264 Mullins N. 2021. Nutrition and hydration management among stroke patients in inpatient 265 rehabilitation: A best practice implementation project. JBI Evidence Implementation. 19(1).
- 266 Oates LL, Price Cl. 2017. Clinical assessments and care interventions to promote oral hydration 267 amongst older patients: A narrative systematic review. BMC Nurs. 16(1):4.
- Powers WJ, Rabinstein AA., Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M,
 Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN,
 Southerland AM, Summers DV, Tirschwell DL. 2019. Guidelines for the early management of patients
 with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute
 ischemic stroke: a guideline for healthcare professionals from the American Heart
 Association/American Stroke Association. Stroke. 50(12):e344-e418.
- 274 Rowat A, Graham C, Dennis M. 2012. Dehydration in hospital-admitted stroke patients: Detection,
 275 frequency, and association. Stroke. 43(3):857-859.
- Stotts NA, Hopf HW. 2003. The link between tissue oxygen and hydration in nursing home residents
 with pressure ulcers: Preliminary data. Journal of Wound Ostomy & Continence Nursing. 30(4).
- Stroke Foundation. 2023. Clinical Guidelines for Stroke Management: Stroke Foundation; Available
 from: <u>https://informme.org.au/en/Guidelines/Clinical-Guidelines-for-Stroke-Management</u>.
- Visvanathan A, Dennis M, Whiteley W. 2015. Parenteral fluid regimens for improving functional
 outcome in people with acute stroke. Cochrane Database of Systematic Reviews. (9).
- 282 Watkins C, Lightbody C, Theofanidis D, Sharma A. 1997. Hydration in acute stroke: Where do we go
- 283 from here? Clinical Effectiveness in Nursing. 1:76-83.