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1. Introduction

Elastic structures in solid mechanics are simulated with the use of a physics-informed multi-neural 

networks. The proposed computational approach is based on principles of artificial intelligence. A deep 

learning is performed through training the PINN model in order to fit the elasticity equations and 

associated boundary conditions at collocation points, without need of input-output data. An open source 

machine learning platform is used, based on Tensorflow, written in Python and Keras library, an 

application programming interface, intended for a deep learning.  

Artificial neural networks (ANNs) have led to revolutionary advances in the manufacturing industry. The 

main features of a neural network is an architecture which identifies the connections between layers and 

neurons, dataset which consists of training, validation and testing data, an optimization algorithm for 

minimizing the loss function and updating the weights and biases between the neurons.  

Physics-informed neural networks (PINNs) is relatively recent development. It is most promising research 

direction in computational artificial intelligence, which can simulate and solve scientific and engineering 

problems involving differential equations thanks to automatic differentiation of the neural network 

metamodel and modern open-source scientific software. PINNs have been applied in a wide range of 

scientific computing applications (Karniadakis et al. [1], Raissi et al. [2], Baydin et al. [3], Lagaris et al. 

[4], Meade and Fernadez [5], Shin et al. [6], Haghighat et al.[7], Muradova and Stavroulakis [8], Katsikis 

et al.[9], Cai et al.[10], Haghighat et al.[11], and Chen et al.[12]).  

2. Elastic Model Description

The equations of elasticity consist of equilibrium equations of stresses and loads, constitutive equations 

that relate stresses and strains (Hooke's law), and strain-displacement relations, i.e. for 2-D case: 

     (1) 

(2) 

        (3) 

where    ,     and are the components of the stress tensor,  ,  ,  , are their 

derivatives with respect to x and y,  , are the external body forces,    , and are the 

components of the strain tensor, and and are the Lamé parameters. Further, and are the 

displacements in x and y directions, respectively and their derivatives on x and y are  ,     ,     ,     . 

In the above formulas, x, y are the Cartesian coordinates and  , where is the domain of 

definition for the stresses, strains and displacements. 

3. Architecture of the Physics-informed Multi-neural Network Model

A neural network consists of input, hidden and output layers. Each layer provides neurons which are 

connected with the neurons from the previous and next layers. A training of a network is the most 

important part of machine learning since through this process a loss function (prediction error of neural 

network) is minimized and the weights and biases are updated. The training is performed through 

feedforward and backpropagation processes. The weights and biases are optimized by using the Adam’s 

optimization algorithm.  
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For the elasticity system (1)-(3) the proposed PINN model connects two types of neural networks: 

surrogate networks and a residual network. The surrogate neural networks are intended for computations 

of the components of the stress and strain tensors, and the displacement field, respectively. The surrogate 

networks take as input the collocation points where the elasticity equations and associated boundary 

conditions are fitted. The residual network takes this input and the output from each surrogate model for 

training the multi-PINN. The architecture of the multi-PINN, developed in this work, is presented in 

Figure 1.  

 

 

Figure 1. Architecture of the multi-PINN with eight surrogate NNs and one residual model.  

In Figure 1 there are two inputs   ,   ,                               and     is the mean 

square error, loss function for the problem,               , where      is the loss function for 

(1)-(3), and       is the loss error for the associated boundary conditions. If                   
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In the surrogate models 1,2,3 and 7, 8, i.e. for the stress tensor and displacements automatic 

differentiation are used as well. The     is minimized in the backpropagation algorithm by applying the 

Adam method.  

4. Numerical results 

In this section we solve (1)-(3) by the multi-PINN for a rectangular structure with boundary conditions for 

the displacement and the components of the stress tensor.  

The rectangular shape is,                , where l1,,l2 are lengths of the sides of the 

macrostructure. The structure is fixed on the x=0 side,         , under vertical loading external forces 

on the other parallel side x=l1 and the other parallel sides (y=0 and y=l2) are free (see Figure 2). Then on 

the loading edge the component of the stress tensor in x direction      . On the free edges       and 

     . Thus, the boundary conditions are                                           

 ,                                                  . 

 

 

Figure 2. Plane elasticity structure with fixed and loading edges. 
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The numerical experiments have been done with lengths                . The module of elasticity 

E=200000, the Poisson ratio       and the Lame parameters are                   ,    
        . The number of training samples is 21x21, test samples is 15x15. The number of epochs is 

2000 with the error      . In Figure 3a) the loss error with respect to epochs and in Figure 3b) the 

macrostructure, obtained after the training of the multi-PINN are shown. 

     a)                 b)  

 

Figure 3. a) Model loss with respect to epochs; b) Structure, obtained after the training the PINN. 

 

The numerical experiments have shown that the accuracy of the computations depends mostly on the 

number of collocation points, the number of epochs, the number of layers and neurons.  

The proposed technique can be extended and applied to linear and nonlinear, direct and inverse problems 

in engineering and manufacturing.  
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