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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Global land cover and use maps are 
unsuitable for zoonotic disease studies. 

• We produced maps reflecting functional 
resource use by vectors, reservoirs and 
people. 

• Local training and multiple map itera-
tions ensured spatially stable and high 
accuracies. 

• We compared our map with ESA CCI 
land cover and Hansen Global Forest 
Change. 

• Regional maps represent the landscape 
components better than global products.  

A R T I C L E  I N F O   
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A B S T R A C T   

Satellite-based land cover mapping plays an important role in understanding changes in ecosystems and biodi-
versity. There are global land cover products available, however for region specific studies of drivers of infectious 
disease patterns, these can lack the spatial and thematic detail or accuracy required to capture key ecological 
processes. To overcome this, we produced our own Landsat derived 30 m maps for three districts in India's 
Western Ghats (Wayanad, Shivamogga and Sindhudurg). The maps locate natural vegetation types, plantation 
types, agricultural areas, water bodies and settlements in the landscape, all relevant to functional resource use of 
species involved in infectious disease dynamics. The maps represent the mode of 50 classification iterations and 
include a spatial measure of class stability derived from these iterations. Overall accuracies for Wayanad, Shi-
vamogga and Sindhudurg are 94.7 % (SE 1.2 %), 88.9 % (SE 1.2 %) and 88.8 % (SE 2 %) respectively. Class 
classification stability was high across all three districts and the individual classes that matter for defining key 
interfaces between human habitation, forests, crop, and plantation cultivation, were generally well separated. A 
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comparison with the 300 m global ESA CCI land cover map highlights lower ESA CCI class accuracies and the 
importance of increased spatial resolution when dealing with complex landscape mosaics. A comparison with the 
30 m Global Forest Change product reveals an accurate mapping of forest loss and different dynamics between 
districts (i.e., Forests lost to Built-up versus Forests lost to Plantations), demonstrating an interesting comple-
mentarity between our maps and the % tree cover Global Forest Change product. When studying infectious 
disease responses to land use change in tropical forest ecosystems, we recommend using bespoke land cover/use 
classifications reflecting functional resource use by relevant vectors, reservoirs, and people. Alternatively, global 
products should be carefully validated with ground reference points representing locally relevant habitats.   

1. Introduction 

The association of infectious diseases with land use and landscape 
structure and change has long been known (Beck et al., 2000) but has 
been the subject of more intense focus since the late 20th century 
(Vanwambeke et al., 2010), particularly for ecologically complex dis-
eases where multiple hosts and vectors are involved in transmission 
(Lambin et al., 2010). The mechanisms underpinning disease-landscape 
associations are often poorly described and involve a complex interplay 
between ecological dynamics of host, vectors and pathogens and social 
factors that determine contact rates between humans and pathogens 
within ecosystems (Reisen, 2010; Murray and Daszak, 2013; Gottdenker 
et al., 2014; Purse et al., 2020). Key tools in understanding disease- 
landscape associations have been remotely sensed Land Use Land 
Cover maps and Land Use Change products that have been widely in-
tegrated into epidemiological models of infectious disease patterns 
(Lambin et al., 2010; Vanwambeke et al., 2010, 2019). 

The use of remote sensing imagery to map the land cover, use and 
forests in landscapes is well established and there are many examples of 
operational mapping that deliver land cover products. Their coverage 
varies from global (e.g., ESA CCI land cover (Buchhorn et al., 2020), 
GlobeLand30 (Jun et al., 2014), Global Forest Change (Hansen et al., 
2013), NASA MODIS Land Cover (Friedl et al., 2002)) to national or 
regional land cover (e.g., for USA NLCD (Homer et al., 2012), China 
NLUD-C (Zhang et al., 2014) (Zhang et al., 2014), European CORINE 
(Büttner et al., 2004), Brazil LCLU Brazil (Instituto Brasileiro de Geo-
grafia e Estatística, 2022), India LCLU 2011–2012 (NRSC, 2012), and 
Australia DLCD (Lymburner et al., 2015)). 

A wide range of studies have used these operationally produced land 
cover and land use (LCLU) maps for monitoring or predicting ecologi-
cally complex infectious disease patterns. For example, using the 
Harmonized Global Land Use product Chini et al. (2014) and Redding 
et al. (2016) related area cover of cultivated land, savanna, and con-
version of savanna and grassland to croplands to the likelihood of hae-
morrhagic zoonotic disease (Lassa fever virus) outbreaks in Western 
Africa. Shah et al. (2018) used the intact forest landscapes and mangrove 
forests classes of the Global Forest Change product (Hansen et al., 2013) 
to predict the occurrence of emerging disease events linked to forests. 
The European CORINE LCLU was used to predict patterns in wide- 
ranging vector-borne diseases across Europe, including tick-borne en-
cephalitis (Vanwambeke et al., 2010) and midge-borne diseases (Cuellar 
et al., 2020; Barceló et al., 2021) while global MODIS land cover was 
used for predicting the occurrence of wide ranging diseases including 
Rift Valley fever across Africa (Redding et al., 2017). However, these 
“off the shelf” LCLU products can prove unsuitable for several reasons 
which include coarse spatial resolution, low temporal resolution, un-
known or low accuracy, and a lack of thematic detail (i.e., too few 
classes) (Kotchi et al., 2019). To model the distribution and dynamics of 
infectious diseases within ecosystems and to link future outbreak pre-
dictions to ecosystem management, underlying LCLU maps need to be 
tailored to the spatial scale at which people, wildlife, domestic animal 
reservoirs and vectors use the landscape. The maps also need to be 
tailored to the specific cover types and landscape features that act as 
functional resources for these species (Lambin et al., 2010; Hartemink 
et al., 2015). 

In response, many eco-epidemiological studies have chosen to derive 
context specific LCLU maps by classifying finer scale imagery for a study 
region (Lambin et al., 2010; Kotchi et al., 2019; Vanwambeke et al., 
2019). Ideally, the LCLU classes are defined a priori based on the 
functional resources or habitats used by the species in transmission 
(Hartemink et al., 2015). For example, Marston and Giraudoux (2018) 
derived land cover maps from Landsat OLI imagery and Sentinel-1 data 
to model spatial distributions of small mammal hosts and the related 
spread of a parasitic tapeworm among human habitation, agricultural 
and grassland habitats in Kyrgystan. Hardy et al. (2019) used Sentinel-1 
to map vegetated and non-vegetated water body breeding habitats of the 
African malaria vector (Anopheles gambiae sensu lato, Anopheles coustani, 
An. squamosus, An. ziemanni) mosquito in Barotseland, Western Zambia. 
High spatial resolution SPOT imagery (2.5 m panchromatic and 10 m in 
multispectral mode) were used to produce LCLU maps and identify the 
environmental factors (distance from the forest, areal cover of forest, 
agriculture, human settlement, forest patch density) which drive 
leptospirosis incidences among humans and rodents in northern 
Thailand (Della Rossa et al., 2016). For the Thailand provinces of Bur-
iram, Loei and Nan, SPOT imagery was used to produce high spatial 
resolution maps including the LCLU classes forest-converted agricultural 
land, reforestation areas and fallow area, potential habitats for Orientia 
tsutsugamushi (scrub typhus) transmission via rodents (Chaisiri et al., 
2017). Common practice in such eco-epidemiological studies is to pro-
vide a single LCLU map, accompanied by accuracy metrics for the 
overall map and specific classes. However, as highlighted by Kotchi et al. 
(2019), accuracy within any given Earth observation image derivatives 
can spatially be highly variable and is generally not available. Providing 
an insight into cover type specific spatial variation in accuracy and 
covariance, would better inform the consequent uncertainty in disease- 
landscape relationships and disease pattern predictions. Lyons et al. 
(2018) proposed a spectral signature resampling framework for map-
ping spatial variation in accuracy, by generating an ensemble of LCLU 
classification solutions. This approach enables the production of a 
spatially explicit confidence map. However, such maps have not yet 
been widely implemented and then used in disease modelling. 

Comparing the information content provided by context specific 
LULC maps with globally available operational LULC products, would 
help develop recommendations for the use of these global products for 
biodiversity and infectious disease applications. An ecosystem context in 
which this may be particularly important is tropical forest mosaics. 
Tropical forests play a critical role in supporting the livelihoods and 
economic development of large rural poor communities (Assessment, 
2005) and provide a wide range of ecosystem services (Jenkins and 
Schaap, 2018). As the forest landscape changes, communities accessing 
forest services or living near forests may become exposed to infectious 
diseases (Campbell-Lendrum et al., 2005). Several studies have directly 
and widely linked spatial changes in forest cover and type, through 
deforestation and/or reforestation, to upsurges in human cases of in-
fectious diseases (Fornace et al., 2019; Guégan et al., 2020; Purse et al., 
2020; Morand and Lajaunie, 2021). Moreover, due to intense land use 
pressure and degradation, tropical agro-forestry landscapes present fine 
grained, spatially complex mosaics in which human habitation coincides 
with agriculture (including crops and plantations), primary natural 
forest, and mixed or regenerating secondary forests. This provides a 
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wide range of interface habitats in which interactions of people, wildlife 
and livestock hosts, vectors and pathogens can occur (Reisen, 2010; Loh 
et al., 2015; Das Neves, 2020; Purse et al., 2020). Thus, when investi-
gating disease-landscape associations within rapidly changing tropical 
forest ecosystems using LCLU maps, it is important to understand the 
variable accuracy and information content of bespoke versus global 
LCLU products. 

Here we develop context specific LCLU maps designed to capture the 
spatial distribution of the main land covers and uses in three Indian 
districts where the tick-borne viral infection Kyasanur Forest Disease 
(KFD) is present and in which plantation and paddy cultivation have 
degraded the Western Ghats tropical forests in recent decades. The work 
formed part of the OneHealth MonkeyFeverRisk project (www.monkey 
feverrisk.ceh.ac.uk), which aimed to understand links between human 
outbreaks of KFD and degraded forest landscapes and identify which 
landscape conditions increase the risk of spill-over to humans. Using our 
LCLU maps we highlighted that KFD outbreaks are linked to agro-forest 
habitat mosaics created as a result of forest degradation and that out-
breaks were more likely in areas with high coverage of evergreen forest 
and plantations and lower coverage of dry deciduous forest (Purse et al., 
2020). This required relevant context specific LULC maps, distinguish-
ing land cover and use types found within these agro-forest mosaics. In 
particular, natural vegetation types, plantation types, agricultural areas, 
water bodies and settlements, which provide different resources used by 
humans and the small mammals, birds, primates, and ticks involved in 
KFD transmission (Pattnaik, 2006). We developed our LCLU class 
nomenclature (i.e., class names and their descriptions) with this purpose 
in mind. We used the spectral signature resampling framework approach 
of Lyons et al. (2018) to generate an ensemble of LCLU classification 
solutions and produce spatially explicit confidence maps. We then 
checked overall and class accuracy of our resulting map and carried out 
a class comparison with two global land cover products that are 
commonly used to predict disease distributions, vectors and reservoir 
hosts: the 300 m ESACCI land cover product (Buchhorn et al., 2020) and 
the 30 m Global Forest Change product (Hansen et al., 2013). The 300 m 
ESA CCI land cover has a spatial resolution that cannot differentiate 
smaller fragmented forest-agriculture-plantation classes while the 30 m 
Global Forest Change product is suitable in terms of its resolution but 
only separates land cover into forest and non-forest. 

2. Methods 

2.1. Focal areas: Shivamogga, Sindhudurg, and Wayanad 

Our three focal districts, Shivamogga (Karnataka state), Sindhudurg 
(Maharashtra state) and Wayanad (Kerala state), are located in the 
central part of the Western Ghats, India (Fig. 1). Although there is a 
distinct difference in the climate and landscape between each of the 
districts, in all cases, the southwest monsoon drives their seasonal 
rainfall, with their western parts receiving more rainfall than their 
eastern parts. Shivamogga is the largest of the three districts (Table 1). It 
experiences a tropical climate. The landscape is generally flat in the east 
and has mountains in the west. The natural vegetation mainly consists of 
a gradient of Dry deciduous, Moist deciduous and Wet evergreen forest. 
Small patches of Shola grasslands are typically found at high elevations 
in the western part of the district. Sindhudurg experiences a moist and 
humid climate and has an undulating landscape that rises from the 
Arabian Sea in the west to the Western Ghats in the east (Table 1). The 
natural vegetation consists mainly of Semi-evergreen forests, Moist- 
deciduous forests, and Grasslands. Wayanad is the smallest of the 
three districts (Table 1). It has a tropical monsoon climate and is part of 
the mountainous plateau of the Western Ghats. The natural vegetation 
mainly consists of Dry deciduous, Moist deciduous, Wet evergreen forest 
and, at high elevation, Shola grassland. 

2.2. Satellite imagery 

We used Landsat 8 OLI Surface Reflectance Tier 1 imagery which are 
atmospherically corrected using LaSRC (Vermote et al., 2016). The 
correction includes a cloud, shadow, water and snow mask, produced 
using CFMASK (Foga et al., 2017), and a per-pixel saturation mask. We 
also applied an illumination correction (Tan et al., 2013) to compensate 
for shading caused by the topography. 

Cloud cover is a major challenge for optical Earth observation in 
India and particularly in the Western Ghats, so the likelihood of finding 
images without some degree of cloud (and cloud shadow) is very low, 
even during the dry season. To deal with this, using an image compos-
iting approach, we produced a median ‘2017’ image based on layers of 
individual scenes with low cloud cover (< 2 % cloud), acquired during 
the dry season from November to February, between 2016 and 2018. 
Dry season imagery was used because of the lower cloud cover and also 
because during this period the spectral difference between deciduous 
and evergreen forests and other cover types was expected to be greater. 
Most importantly, this period coincides well with the peak season of 
human cases of KFD between December and March. We were particu-
larly interested in how landscape structure affects the disease system in 
this part of the year. A widely accepted approach for compositing images 
is to apply the maximum NDVI rule (White et al., 2014). However, this 
approach favors observations acquired when a pixel contains a higher 
density of green vegetation and is therefore unsuitable for imagery taken 
in the dry season. Instead, we choose to use the median which produces 

Fig. 1. Map showing the location of the three focal districts Sindhudurg, Shi-
vamogga and Wayanad part of the Maharashtra, Karnataka, and Kerala state 
respectively. The administrative boundary dataset used in all figures is from 
SEDAC (Meiyappan et al., 2018). The background layer is from ESRI ocean 
and terrain. 
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imagery that better represents the time period of the original images 
(Flood, 2013). 

Vegetation indices help discriminate between habitat types (Clerici 
et al., 2012; da Silva et al., 2019) and can improve image classification 
results, especially when combined with machine learning algorithms 
(Puletti et al., 2018). Therefore, EVI was calculated from the composite 
image and added as an extra information layer in the classification. 
Finally, because the natural cover types are generally associated with 
different elevations (i.e. Evergreen forests are found at the high eleva-
tion, Moist deciduous forest at middle elevation, and Dry deciduous 
forest at low elevation) and the majority of the cultivated land is found 
on flat land, we included the Shuttle Radar Topography Mission (SRTM) 
elevation data (Farr et al., 2007) as an ancillary physical band. 

2.3. Land cover and use classes: nomenclature and reference polygons 

The LCLU class nomenclature for the maps were developed with the 
purpose of capturing the spatial distribution of the main covers and uses 
in the landscape believed to be relevant to the spread of KFD Virus. The 
goal was to distinguish different natural forest types and plantation 
types, to map waterbodies and agricultural land and larger built-up 
areas such as towns. Table 2 lists the classes identified for each dis-
trict, and their definitions. 

We used the Open Data Kit (ODK), an android-based tool developed 
by Google (Hartung et al., 2010) to collect reference GPS points for the 
training and validation of our LCLU classification. Ideally, a spatially 
stratified random approach will ensure an unbiased collection of refer-
ence points, representing the relative abundance of each cover class 
(Stehman, 2009). However, in reality this was not achievable, mainly 
because of the lack of access, and difficulty in gaining permits to access 
nature reserves. Instead, similar to other large-scale mapping exercises 
(Morton et al., 2011), points were collected along roads or accessible 
paths (Fig. 2). For Shivamogga in particular, we were restricted to the 
main road arteries, because of unusual flooding during the field 
campaign (August 2018). In total, we collected 2588 reference points (i. 
e., 1038 for Shivamogga, 713 for Sindhudurg, and 837 for Wayanad). 
For each of these points, we checked the attributed cover class and 
digitized a polygon of homogeneous reflectance pixels manually (as seen 
on the 2017 composite image and matching google Earth imagery). Each 
polygon was treated as a single reference sample. 

2.4. Image classification and accuracy assessment 

We choose to use Support Vector Machine (SVM) (Burges, 1998) as 
our image classifier. The current consensus is that SVM-based image 
classifiers are very effective in achieving high class mapping accuracies 
in case of a smaller set of training sample size (Mountrakis et al., 2011). 
SVM uses a non-parametric machine learning technique to best fit the 
boundary/hyperplane, separating training samples into predefined 
classes, and as such only has one global optimum and a small number of 
tuning parameters (i.e., kernel, cost, gamma). We used visual evaluation 
of map results and overall mapping accuracies to optimize the SVM 
which involved tuning cost (C = 103) and gamma (γ = 10− 6) for the 

Radial Basis Function (RBF) kernel (Hsu et al., 2003). 
In our case, because the occurrence and spread of KFD is thought to 

be linked to spatial landscape vegetation patterns, it was also important 
to produce, in addition to overall map and class accuracy, a measure of 
the spatial mapping accuracy (i.e., how accurate a class is likely to be 
mapped in a particular location). A solution proposed by (Lyons et al., 
2018) is to create multiple classifications (i.e. iterations) by changing 
the training and validation sample set used for each classification and 
validation. The resulting majority of times a pixel is mapped into the 
same class can then be used to produce a land cover and use (LCLU) map 
that represents the mode solution (of the many iterations) for each pixel, 
with an associated measure of pixel specific classification stability. 

We ran the classification 50 times, each iteration requiring training 
and testing. We summarized maps and accuracy metrics across sets of 
10, 20, 30, 40, and 50 iterations to test the impact of iteration number on 
classification metrics and spatial patterns in accuracy (Table 3). The 
modal solution derived from each iteration set also required validation. 
So, our first step was to randomly allocate 20 % of the reference poly-
gons (weighted by the proportion of reference polygons available per 
cover class) to an “independent” validation set used to evaluate the 
mode solution (Fig. 3). The remaining 80 % of reference polygons was 
then randomly split (again weighted by the proportion of reference 
polygons available per cover class) into 50 independent sample sets 
using a 70 % training and 30 % testing ratio. The sample split was done 
using the ‘sample.split’ method of caTools version 1.18.0 (Tuszynski, 
2014) package in R (Team, 2018). For each iteration set, the mode so-
lution was calculated by taking the per-pixel mode of the iteration's 
output LCLU maps. Finally, pixel specific class stability of the mode 
solution was calculated as the percentage of times the pixel was allo-
cated the mode solution within an iteration set. 

The classification accuracy of each mode solution was evaluated 
using overall accuracy (OA) and class-specific user's and producer's ac-
curacy (Stehman, 1997) and involved a post-sampling area-weighted 
stratification (Stehman and Foody, 2019), building on the accuracy 
assessment design and analysis of Stehman and Czaplewski (1998). 
Following the advice of Foody (2011), Stehman and Foody (2019) and 
Pontius and Millones (2011), we did not include the widely used kappa 
coefficient. The accuracy measures were used to determine the optimum 
number of iterations required to achieve the highest classification ac-
curacy for the mode solution. Image classifications and subsequent ac-
curacy assessments were performed in Google Earth Engine (GEE) 
(Gorelick et al., 2017). 

2.5. Comparison with ESA CCI and Global Forest Change 

To evaluate how current global LCLU maps relate to our region- 
specific classification we compared our district maps with the 300 m 
spatial resolution global ESA CCI LCLU (Buchhorn et al., 2020) and the 
30 m Global Forest Change v1.6 (Hansen et al., 2013) products. To 
simplify the comparison and improve the thematic match between 
classification systems, we reduced the 23 ESA CCI LCLU classes to 12 
classes by combining similar classes (Supplement, Table 1) and we 
combined our LCLU map Evergreen forest and Semi-evergreen forest 

Table 1 
Description of the three focal districts.  

District Area 
(km2) 

Elevation 
(m) 

Rainfall 
(mm) 

Temperature 
(◦C) 

Major crop 

Shivamogga  8495 500–1340  1813 21–28 areca nut, paddy, cotton, ragi, jowar, maize, 
sugarcane, pulses, sunflower and small scale 
vegetables (Najeeb & Dhiman, 2012) 

Sindhudurg  5207 0-700  3287 17–35 paddy, ragi, cashew nut, mango, and kokum 
(Kulkarni et al., 2013) 

Wayanad  2132 700-2100  2322 18–29 coffee, tea, pepper, cardamom rubber, coconut, 
areca nut, pepper, paddy, vegetables, and tuber crops, 
(Personal communication, District Planning Officer, Wayanad, 2011)  
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Table 2 
The districts' Land Cover and Land Use classes and their description.  

Class 
no. 

Class name Class 
description 

Shivamogga Sindhudurg Wayanad 

1 Evergreen 
forest 

Wet Evergreen: 
These forests 
grow in areas 
where the 
monsoon 
period lasts for 
several 
months and 
receive high 
annual rainfall 
(> 3000 mm). 
Evergreen 
trees are 
generally tall 
and straight, 
generally grow 
above 30 m 
height with a 
buttressed 
trunk or root 
on three sides 
like a tripod. 
The vertical 
structure is 
layered with 
shrubs in the 
understorey, 
short trees in 
the middle 
storey and tall 
canopy and 
emergent trees 
in the top 
storey. 
Prevalent 
species are 
Areca catechu, 
Artocarpus 
hirsutus, 
Mangifera 
indica, 
Syzygium 
cumini, Vateria 
macrocarpa, 
Dipterocarpus 
bourdilloni, 
Dipterocarpus 
indicus, 
Myristica 
malabarica, 
Nageia 
wallichiana, 
and Palaquium 
ellipticum. 

X – X 

Evergreen & 
semi-evergreen: 
The transition 
zone between 
wet evergreen 
forest and 
moist 
deciduous 
forest. This 
forest is found 
in a region 
which receives 
annual rainfall 
between 2000 
mm and 2500 
mm. The 
canopy is less 
dense than wet 
evergreen 

– X –  

Table 2 (continued ) 

Class 
no. 

Class name Class 
description 

Shivamogga Sindhudurg Wayanad 

forests and is 
predominated 
by evergreen 
tree species 
which are 
mainly in the 
middle storey. 
Prevalent 
species are 
Antidesma 
menasu, 
Acrocarpus 
fraxinifolium, 
Artocarpus 
hirsutus, 
Carallia 
brachiata, 
Dalbergia 
sissoo, 
Dimocarpus 
longan, Ficus 
racemosa, 
Magnifera 
indica, 
Neolamarckia 
cadamba, 
Pterocarpus 
marsupium, 
and Terminalia 
paniculata. 

2 Moist 
deciduous 
forest 

Forest 
dominated by 
deciduous tree 
species 
shedding 
leaves in 
summer but 
with 
evergreen tree 
species in the 
middle and 
understoreys. 
The top storey 
canopy is 
sparse and 
uneven with 
emergent trees 
exceeding 25 
m that have 
broad and 
branching 
trunks and 
roots to hold 
them firmly to 
the ground. It 
is found in 
regions with 
annual rainfall 
between 1000 
mm and 2000 
mm. Prevalent 
species are 
Horea robusta, 
Tectona 
grandis, 
Magnifera 
indica, 
Dalbergia 
sissoo, and 
Bambusa sp. 

X X X 

3 Dry 
deciduous 
forest 

Forest 
dominated by 
deciduous 
species. 
Deciduous 

X – X 

(continued on next page) 

A. Samrat et al.                                                                                                                                                                                                                                 



Science of the Total Environment 912 (2024) 168772

6

into a single Evergreen forest class; Moist deciduous forest and Dry de-
ciduous forest into a single Deciduous forest class; the different planta-
tion classes into a single Plantation class; and Cropland and Fallow land 
into an Agricultural land class. After matching the products' projection 
system to our LCLU map, we used our map's pixel centroids to extract the 
corresponding ESA CCI cover class and GFC % tree cover values and 
produce correspondence matrices, showing the proportion of LCLU pixel 
centroids categorized as an ESA CCI class or as GFC % tree cover. In 
addition, we evaluated the ESA CCI map and the GFC using our complete 
set of LCLU in situ reference samples. We used the same combined ESA 
CCI and LCLU classes as for the ESA CCI/GFC – LCLU map comparisons. 
Here, we took the centroid location of the reference polygons to identify 
the corresponding ESA CCI cover class and GFC % tree cover. For ESA 
CCI, we calculated an area-weighted class specific accuracy (Stehman 
and Foody, 2019). For GFC, for both map and reference sample com-
parisons, we made a distinction between pixels where GFC shows tree 
cover loss any time prior to 2018, or tree cover gain any time up to 2015 
(i.e., the most recent year for which gain is identified in GFC) and where 
GFC shows no tree cover loss or gain. The continuous % tree cover values 
(provided for 2000) were split into 0–20 %, 20–40 %, 40–60 %, 60–80 
%, and 80–100 % bins. 

3. Results 

3.1. Accuracy 

The overall classification accuracy of the LCLU maps is consistent 
and high (> 85 %, SE ≤ 2.1 %) for all districts and across all realization 
sets (Table 3). There is no significant difference in overall classification 
accuracy between realization sets for all three respective districts (tested 
using ANOVA on the normally distributed overall accuracies (Girden, 
1992), see supplement Table 2a). However, the accuracy achieved for 
Wayanad is slightly higher than for Shivamogga and Sindhudurg 
(Table 3). Similarly, there is no significant difference in class specific 
user's accuracy and producer's accuracy between realization sets (tested 
using Kruskal and Wallis (1952) as user's and producer's accuracy dis-
tribution failed normality test, see Supplement Table 2b), but there is a 
clear spread in user's and producer's accuracy between classes, which 
differ between districts (supplement, Fig. 1). We decided to use 50 re-
alizations for our final LCLU classification, as a higher number of re-
alizations would give a more precise estimate of the mapping 
consistency across iterations. The resulting LCLU maps (mode of 50 
realizations set) are shown in Fig. 4, their class specific user's and pro-
ducer's accuracies in Fig. 5 and corresponding confusion matrices are 
provided in Supplement Tables 3 to 5. The map for Wayanad, the district 
with the least forest fragmentation, has the best results in terms of 
overall accuracy (94.7 %, SE 1.2 %) and class-specific accuracies (i.e., 
both user's accuracy and producer's accuracy are >85 % for all classes), 
showing minimal confusion between the forest, plantation, and cropland 
(Supplement, Table 5). The maps for Shivamogga and Sindhudurg have 
similar overall accuracies (i.e., 88.9 %, SE 1.2 %; 88.8 %, SE 2 % 
respectively). In Shivamogga, Cropland shows the lowest user's accuracy 

Table 2 (continued ) 

Class 
no. 

Class name Class 
description 

Shivamogga Sindhudurg Wayanad 

forests are 
found in 
regions with a 
moderate 
amount of 
annual rainfall 
(< 1000 mm) 
that lasts for 
only a few 
months in a 
year. The 
deciduous 
trees shed 
their leaves 
during 
summer. 
Canopy trees 
do not 
normally 
exceed 20 m. 
Prevalent 
species are 
Shorea robusta, 
Bambusa sp., 
and Acacia sp. 

4 Grassland Area 
dominated by 
high elevation 
grassland 
(Shola Forest) 
or low 
elevation 
grassland 

X X X 

5 Mixed 
plantation 

A mixture of 
different types 
of plantations 
i.e., areca nut, 
coconut 
plantation, 
eucalyptus 
plantation, 
rubber 
plantation. 

X X X 

6 Cropland Area with 
standing non 
woody 
seasonal crop 

X X X 

7 Fallow 
land 

Area left 
fallow after 
crop 
harvesting 

X X X 

8 Waterbody Open 
waterbody 
including 
reservoirs, 
lakes, ponds, 
rivers, and 
streams 

X X X 

9 Built-up Built-up area 
including 
towns, 
villages, and 
hamlets. 

X X X 

10 Tea 
plantation 

Area 
dominated by 
tea plantations 

– – X 

11 Teak 
plantation 

Area 
dominated by 
teak 
plantations 

– – X 

12 Cashew 
plantation 

Area 
dominated by 
cashew 
plantations 

– X –  

Table 2 (continued ) 

Class 
no. 

Class name Class 
description 

Shivamogga Sindhudurg Wayanad 

13 Mango 
plantation 

Area 
dominated by 
mango 
plantations 

– X – 

14 Sand/ 
Barren 

Sandy area or 
area without 
vegetation i.e., 
rocky area, sea 
shore. 

– X – 

X: Present in the district; − : Absent in the district. 
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(76.2 %) and Built-up and Mixed plantation the lowest producer's ac-
curacy (66.3 % and 79.6 % respectively) while in Sindhudurg, the least 
accurate classes are Mango plantation and Cashew plantation (user's 
accuracy:77.3 % and 78.7 % respectively) and Built-up, Mixed planta-
tion and Moist deciduous forest (producer's accuracy: 70.4 %, 68.5 and 
69.3 % respectively) (Supplement, Tables 3 and 4). 

3.2. Land Cover Land Use patterns 

The LCLU maps show variation in landscape patterns between the 
districts (Fig. 4, Table 4). Shivamogga is dominated by forest cover (Wet 
evergreen forest - 18 %, Moist deciduous forest - 16 %, Dry deciduous 
forest - 16 %) and arable land (Cropland - 11 % and Fallow land - 21 %). 
Across the three districts, Shivamogga also has the least proportion of 
plantations, which are predominantly Mixed plantations (10 %) and the 
highest proportion of Waterbody (4 %). Wayanad and Sindhudurg have 
similar high proportions of plantation cover (50 % and 46 % respec-
tively), but the plantation types are different. Mixed plantations domi-
nate in Wayanad while Cashew plantations dominate in Sindhudurg. 
The remaining land of the Wayanad is mostly forest (41 %). However, in 
Sindhudurg, it is divided between forests (24 %) and Grasslands (11 %). 
Sindhudurg and Wayanad have smaller proportions of arable land (14 % 
and 5 % respectively). In all three districts, human settlements, such as 
small towns, villages, and hamlets (i.e., Built-up) make up <2 % of the 
land area. 

3.3. LCLU class stability 

Generally, LCLU class classification stability was high across all three 
districts (Fig. 6). For Wayanad, 77 % of map pixels were allocated the 
same class at least 80 % of the time. For Shivamogga it was 74 % of 
pixels and for Sindhudurg it was 60 % (Table 5). Some of the spatial 
variations in stability reflect mapping accuracy of individual classes (see 
supplement Fig. 1 and supplement Tables 3 to 5). For example, across all 

districts, Waterbody shows as stable and has high user's and producer's 
accuracies. Also, stable areas in Sindhudurg coincide with the Evergreen 
& semi-evergreen forest class, which has high user's and producer's ac-
curacies. In contrast, Cropland in Shivamogga and Cashew and Mango 
plantation areas in Sindhudurg show low stability and lower mapping 
accuracies. There are exceptions: for example, the Moist deciduous 
forest class, in Wayanad, has the highest commission errors (i.e., low 
user's accuracy), but shows high stability in the top left part of the map, 
suggesting that in that location the classification was likely to consis-
tently overestimate Moist deciduous forest. 

Fig. 2. Ground reference data location map for (A) Shivamogga, (B) Sindhudurg, and (C) Wayanad.  

Table 3 
For the resulting LCLU maps (mode of realizations), the area weighted mean 
(AWM) overall map accuracy (OA) and standard error (SE) for set of iterations.  

Number of iterations Shivamogga Sindhudurg Wayanad 

OA 
(%) 

OA 
(%) 

OA 
(%) 

AWM SE AWM SE AWM SE  

10  88.86  1.24  87.51  2.08  91.8  1.49  
20  89.08  1.23  88.01  2.03  94.01  1.24  
30  89.43  1.21  88.08  2.03  94.71  1.21  
40  89.23  1.22  88.35  2.01  94.98  1.16  
50  88.87  1.25  88.67  1.98  94.74  1.21  

Fig. 3. Flow chart for field reference polygon processing.  
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3.4. LCLU classification vs ESA CCI land cover 

ESA CCI has no regional specific forest and plantation classes, 
instead, designed to mainly cater for the global research communities, it 
has classes representing main plant functional types, separating woody 
from herbaceous, evergreen needle-leaved from deciduous broadleaved 
and dense from sparse woody covers. As a result, there are no clear one- 
to-one matches with LCLU (Fig. 7). Also, for LCLU Plantation and 
Grassland, there are no clear and consistent patterns of correspondence. 
The Plantation class was spread across multiple ESA CCI classes, but 
mainly the ESA CCI Crop classes (Crop/Nat Veg; Agricultural) and the 
Mixed tree & shrub with the remainder a mixture of Deciduous and 
Broadleaved Evergreen forest, and Shrubland. The LCLU forest classes 
and Agricultural land class show slightly clearer patterns. Evergreen 
forest corresponds mainly with a mixture of the ESA CCI Broadleaved 
Evergreen forest and Mixed tree & shrub, but also with Deciduous forest 
in Shivamogga and Sindhudurg, and Shrubland in Sindhudurg. Decid-
uous forest in Wayanad matches mainly with the ESA CCI Mixed tree & 
shrub class and Deciduous forest with some Evergreen forest. In Shiva-
mogga the match is mainly with ESA CCI Mixed tree & shrub, Deciduous 
forest and crop classes (Crop/Nat Veg; Agricultural) and some match 
with Evergreen forest and Shrubland. Sindhudurg shows similar pat-
terns as in Shivamogga but the spread between ESA CCI classes is more 
even. There is a good match between LCLU Agricultural land and the 
ESA CCI Crop classes (Crop/Nat Veg; Agricultural), for Shivamogga and 
Sindhudurg, while in Wayanad, where there is less Agricultural land, the 
class is mainly split between the ESA CCI Mixed tree & shrub and Crop 
classes (Crop/Nat Veg; Agricultural). In contrast, in Sindhudurg and 
Wayanad a large proportion of the ESA CCI Crop/Nat Veg corresponds 
with our LCLU Plantation class. There is a good match between the ESA 
CCI and LCLU Water class in Shivamogga but less so in Sindhudurg and 
Wayanad. 

When evaluating ESA CCI with our reference data set, we only 

focused on ESA CCI classes for which there is a matching LCLU class 
(Supplement – Tables 6 to 8). We did not calculate overall accuracy 
because there was no overall one to one match. We found that, across the 
three districts, the user's accuracy of classes is consistently higher than 
the producer's accuracy (or class commission error is consistently lower 
than omission error), except for Agricultural in Shivamogga and 
Broadleaved Evergreen forest in Wayanad. Built-up and Wetland (which 
includes waterbodies) show the highest user's accuracies (> 93 %) and 
variable low producer's accuracies. Broadleaved Evergreen forest also 
shows relative high user's accuracies (i.e., above 70 %) but variable 
producer's accuracies (96.6 %, 64.5 %, 54.3 %). Class specific producer's 
accuracy varies between districts, with higher accuracies achieved by 
Broadleaved Evergreen forest (96.6 %) in Wayanad, Grassland (72.9 %) 
and Broadleaved Evergreen forest (54.3 %) in Sindhudurg, and Cropland 
(75.5 %), Wetland (68.0 %) and Broadleaved Evergreen forest (64.5 %) 
in Shivamogga. Overall, the class specific accuracies achieved by ESA 
CCI are lower than those achieved by our LCLU map (Fig. 8 and Sup-
plement – Tables 6 to 8). Although ESA CCI does not map plantations 
separately, the reference-based correspondence matrix reveals a similar 
pattern as the map-based comparison: the Plantation class mostly 
matches with the Mixed tree & shrub class, except in Sindhudurg where 
it mainly matches with Crop/NatVeg. Where ESA CCI correctly iden-
tifies forest, the distinction between evergreen and deciduous is rela-
tively good for Shivamogga and Wayanad. 

3.5. LCLU classification vs Global Land Cover 

Comparing GFC with our reference points shows interesting patterns 
(Fig. 8, panel B). In Shivamogga and Sindhudurg, a large proportion of 
pixels classified as forest or plantation have GFC % tree covers that are 
below 60 %. While in Wayanad most forest and plantation pixels have % 
tree covers above 60 %. Across all districts, all other (non-woody) LCLU 
classes are mainly within the 0–20 % GFC tree cover range. A similar 

Fig. 4. The land cover land use map for (A) Shivamogga, (B) Sindhudurg, and (C) Wayanad districts, India.  
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pattern emerges when comparing GFC with our classification (Fig. 9, 
Panel A). There are some distinct differences when evaluating forest loss 
and forest gain pixels with our LCLU map (Fig. 9, panel A) and with our 
reference data points (Fig. 9, panel B). While the larger proportion of the 
forest loss and gain pixels are classified by the LCLU map as Plantation, 
Agricultural land, Built-up and Grassland a substantial number is also 
classified as Deciduous forest or Evergreen forest. In contrast, the forest 
loss and gain pixels that coincide with LCLU reference data points are 
nearly all labelled as non-forest LCLU classes. In Shivamogga and 
Sindhudurg most or all ‘forest loss’ pixels are identified as Plantation, 
while in Wayanad they are identified as Built-up. 

4. Discussion 

While global and national land cover products provide useful general 
land cover and use information, studying zoonotic diseases requires a 
product that provides spatially detailed information on LCLU classes 
that are unique to the local landscape and tailored to the functional 

Fig. 5. Area-weighted user's and producer's LCLU class accuracies resulting from the mode of 50 realizations for (A) Shivamogga, (B) Sindhudurg, and (C) Wayanad 
district, India. 

Table 4 
Percentage of land cover land use (LCLU) class across the districts.  

LCLU class % LCLU cover 

Shivamogga Sindhudurg Wayanad 

Evergreen forest  18  16  15 
Moist deciduous forest  16  6  15 
Dry deciduous forest  16  0  7 
Grassland  3  11  2 
Mixed plantation  10  9  46 
Cropland  11  7  2 
Fallow land  21  7  3 
Waterbody  4  1  1 
Built-up  1  1  1 
Tea plantation  0  0  3 
Teak plantation  0  0  3 
Cashew plantation  0  27  0 
Mango plantation  0  10  0 
Sand/Barren  0  4  0  
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resource use of arthropod vectors and hosts involved in transmission 
(Chaisiri et al., 2017; Della Rossa et al., 2016; Figueiredo et al., 2020; 
Marston and Giraudoux, 2018; Hartemink et al., 2015; Vanwambeke 
et al., 2019). Our regionally focused mapping approach in India 
distinguished cover and use classes that were particularly relevant to the 
vertebrate hosts and tick vectors involved in KFD transmission in India 
(Purse et al., 2020), some of which were unique to the districts (i.e., 
Semi-evergreen forest, Cashew and Mango plantation in Sindhudurg, 
and Tea and Teak plantations in Wayanad). More importantly overall 
classification accuracy was high and the individual classes that matter 
for defining important interfaces between human habitation, forests, 
crop and plantation, were generally well separated (i.e., high user's ac-
curacy / low commission error and high producer's accuracy / low 
omission error). This may be partly due to including elevation and NDVI 
in our approach which has also increased accuracies in other studies 
(White et al., 2014; Tan et al., 2013). However, some mapping confusion 
remained, particularly in districts (Shivamogga and Sindhudurg) where 
forest degradation has led to a more fine-grained forest-agriculture 

mosaic resulting in many mixed pixels. Also, broadleaved tree planta-
tions, can spectrally be very similar to natural (primary and/or sec-
ondary) forest canopies (Fagan et al., 2015) and in our case this led to 
lower class accuracies. In Sindhudurg, broadleaved evergreen Cashew 
plantations were confused with Moist deciduous forest, because unlike 
the broadleaved deciduous Mango plantations, Cashew has a heteroge-
neous vertical canopy structure similar to Moist deciduous forest, 
particularly when its tree cover is low. Also, cashew, although planted in 
large fields, are mostly located within the Moist deciduous forest matrix. 
Cashew and Moist deciduous, both found at lower elevations, were 
easily separated from semi-evergreen forest by including elevation as a 
variable. In Shivamogga, the landscape is a mosaic of small farmland 
areas, producing seasonal crops, such as rice and vegetables, mixed 
among mixed tree plantations (mainly Areca nut, Coconut, Eucalyptus, 
and spices). This led to misclassifications between Mixed plantation and 
Cropland. Finally, in Wayanad, Moist deciduous forest (the least accu-
rately mapped class) was confused with Wet evergreen forest, Mixed 
plantation, and Teak plantation. This is because, Moist deciduous forest 
is found as a transition between Wet evergreen forest and Dry deciduous 
forest, and Mixed plantations (i.e., a mixture of eucalyptus, rubber, 
black pepper, coffee, and other cash crops) are mostly found in the Wet 
evergreen - Moist deciduous transition zone, while Teak plantations are 
found in the Moist deciduous - Dry deciduous transition zone. 

A successful separation between desired cover and use classes using 
single time period or “snapshot” remote sensing is not always guaran-
teed and this needs to be considered when embarking on a regional 
mapping exercise. To further improve mapping results, people often 
advocate the use of multi-temporal data to capture the seasonal vari-
ability in cover and use classes (e.g. Clerici et al., 2017; Morton et al., 

Fig. 6. Pixel specific class stability of the resulting LCLU maps (A) Shivamogga, (B) Sindhudurg, and (C) Wayanad (India). Here, stability is the percentage of times a 
pixel is allocated the pixel's mode solution within the iteration set of 50. 

Table 5 
For three districts, the % map pixels per stability range (for iteration set 50).  

Stability (%) LCLU map pixels (%) 

Shivamogga Sindhudurg Wayanad 

0–20  0  0  0 
20–40  0.35  1  0.26 
40–60  9.08  14.4  7.5 
60–80  17  25.1  14.9 
80–100  73.6  59.5  77.3  
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2011; Borges et al. 2020). This may be achieved with satellite radar since 
in many tropical or monsoon regions high and seasonal cloud cover 
limits the availability of cloud free optical data. In our case, the best 
option was to produce a cloud free mosaic from a multi-year post- 
monsoon period. 

Off the shelf global land cover products do not make a distinction 
between woody plantations and natural forest canopies (Hansen et al., 
2013; Buchhorn et al., 2020; Karra et al., 2021; Brown et al., 2022; 
Zanaga et al., 2022). These distinctions are most critical for the many 

infectious disease systems where the arthropod vectors or vertebrate 
reservoir hosts and/or the human activities that cause exposure are 
associated with specific plantation or forest types rather than forest 
overall. For example, human incidence of diverse vector-borne and 
zoonotic diseases has been linked to degradation of forests by oil palm 
and rubber plantations including malaria, hookworm, scrub typhus and 
rickettsial diseases (Shah et al., 2018). For the KFD system, outbreaks 
have been historically linked to replacement of moist evergreen forests 
by cashew plantations and landscape epidemiological analyses of recent 

Fig. 7. Correspondence matrices for the Current LCLU class vs ESA CCI LC. The cell values were the percentage of current LCLU class pixels corresponding to ESA CCI 
LC classes. Cells with values >0.1 % are highlighted. 

Fig. 8. User's and producer's accuracies of LCLU and ESA CCI classes (for which there is a matching LCLU class).  
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outbreak patterns have identified diverse mosaics of moist evergreen 
forest, plantation and paddy cultivation as being at highest risk for 
human outbreaks (Purse et al., 2020). In the case of the ESA CCI global 
land cover product (Buchhorn et al., 2020), we found that generally 
plantations and plantation types are classified across several broad 
classes representing cropland, a mosaic of tree and shrub, shrub land or 
forests, making it difficult to capture and map high risk forest-plantation 
mosaics for this disease. Designing a global landcover and use classifi-
cation system that simultaneously is appropriate for many vector-borne 
diseases and EO-based mapping will always be a challenge, as globally, 
landscapes and their uses vary substantially with biogeographical region 
and there is a limit to the number of classes that can be distinguished 
using the visible and infra-red spectrum. Only by working regionally are 
we able to understand what is possible and so achieve the best possible 
outcome. 

Defourny et al. (2016) validated the ESA CCI product (2010 epoch) 
with reference points acquired for the GlobCover 2009 product (Arino 
et al., 2012), showing an overall accuracy of 73.2 % with class specific 
user and producer accuracy ranging from 19 % to 97 % and 29 % to 95 % 
respectively. However, our LCLU, ESA CCI comparison reveals that its 
coarse spatial resolution (i.e., 300 m) does not suit the fragmented and 
complex mosaic landscapes found in parts of India. The lack of a clear 
pattern of correspondence between similar classes and in particular the 
higher omission errors (than commission) is partially caused by refer-
ence points falling within ESA CCI class pixels that represent a mixture 
of covers (e.g., tree and shrub mosaics; natural vegetation, and crop 
mosaics). Although, the 30 m pixel size of our LCLU map has helped 
resolve landscape patterns lost in the ESA CCI map, the degree of spatial 
detail may still be insufficient to resolve some forest type and land use 
classes that are key resources for hosts, vectors, and pathogens (e.g., 
small water bodies for mosquito breeding sites, or as sites of exposure to 
environmentally transmitted pathogens such as Leptospirosis). A po-
tential solution is to use imagery with higher increasing the spatial 
resolution imagery such as, 10 m to 20 m of the imagery Sentinel-2 
imagery (e.g. 20 m ESA CCI prototype: https://2016africalandcove 

r20m.esrin.esa.int/; and 10 m global land cover maps of Karra et al. 
(2021), Brown et al. (2022) and Zanaga et al. (2022), or m resolution 
imagery from one of many commercial satellites (Marston and Gir-
audoux, 2018; Hardy et al., 2019). However, only visible and near 
infrared bands are available at these resolutions and a lack of shortwave 
infrared at higher spatial resolutions is likely to impact classification 
performance in terms of the thematic detail achievable (i.e., number of 
cover/use classes) or classification accuracy (Fagan et al., 2015). 
Establishing and contrasting the relative importance of thematic detail, 
spatial detail, and mapping accuracy, within and across infectious dis-
ease systems and different ecosystem contexts, will help in establishing 
guidelines for integrating future land cover mapping into eco- 
epidemiological studies. 

Global Forest Cover provides canopy cover irrespective of the forest 
type and plantation types. The dense canopy Deciduous forest of Way-
anad was in the range of 60–80 % canopy cover however in Shivamogga 
it was 0–20 % class. Most of the plantation area of the Shivamogga and 
Sindhudurg was in the 0–20 % canopy cover class. The comparison with 
GFC, using both our LCLU map and reference data points, suggests that 
in Wayanad the forests and plantations generally have a higher areal 
tree cover than in Shivamogga and Sindhudurg. Most of the Evergreen, 
semi-evergreen forests, and plantations of Shivamogga and Sindhudurg 
coincide with GCF tree covers that are <80 %, while in Wayanad they 
coincide with GCF tree cover that are >60 %. This makes sense as forests 
in Wayanad are generally denser than in Shivamogga and Sindhudurg, 
and plantations in Wayanad are dominated by old growth Teak and tea, 
both of which have high canopy covers. In Sindhudurg plantations are 
dominated by mixed Mango and Cashew plantation which generally are 
less high and sparse. The tree cover loss and gain pixel comparison with 
our reference data points reveals a high GCF mapping accuracy of loss 
and gain events. Focusing on the loss pixels, the comparison highlights 
how in Wayanad most of the lost forest was converted into built-up, 
while in the other two districts, forest was mainly replaced with crop-
land and plantation. The patterns are less clear when evaluating the 
map-to-map comparison, which is likely because of the classification 

Fig. 9. (A) Correspondence matrices for GFC vs LULC pixels for each district. Top panel in A shows the comparison for pixels identified by GFC as having lost (in 
period up to 2017) or gained (in period up to 2015) forest cover. Bottom panel in A shows the comparison for pixels where GLC did not show a loss or gain. Both are 
expressed in % of total LCLU pixels. (B) Correspondence matrices for Hansen products vs LULC reference data points. Panels show the same as A but are expressed in 
% of reference points. Light grey cells show classes/categories with no data. 
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uncertainties of our LCLU map, but also because of the significantly 
larger number of pixels included in the comparison. Nevertheless, this 
LCLU - GFC map comparison highlights the complementarity of land 
cover, tree cover and forest loss and gain information and how their 
combined use can provide further insights into the infectious disease 
dynamics. In particular for the gain information, because no distinction 
is made between natural forest and plantation (Hansen et al., 2013), the 
provision of a land cover change product which includes plantation as a 
class is critical for understanding infectious disease changes associated 
with transitions from forest to plantation (Shah et al., 2018; Morand and 
Lajaunie, 2021). We avoided evaluating the forest mapping accuracy of 
GFC with our reference data through a confusion matrix. The GCF % 
cover data is only available for year 2000 with the following years 
showing loss and gain. Reconstructing an annual forest, non-forest layer 
using the 2000 % tree cover and the loss and gain data would require the 
choice of an area cover threshold to determine what is forest and what is 
not. Moreover, this type of reconstruction is not recommended by the 
product authors. 

The class level stability (Table 5) map (Fig. 6) provides additional 
information about the landscape topography and land cover complexity. 
Regions with high landscape heterogeneity are more likely to result in 
low mapping accuracies (Herold et al., 2008). We found that landscape 
heterogeneity as well as hilly terrain also led to low local mapping 
consistency (particularly in Sindhudurg district). 

5. Conclusions 

Global EO derived LCLU products are readily and freely available 
and used for a wide variety of applications. However, for ecological 
complex infectious disease systems, such as Kyasanur Forest Disease, 
these products are not always suitable because of their limited spatial or 
thematic detail. By developing region specific LCLU maps (from Landsat 
imagery) with the right level of thematic detail, we were able to capture 
the heterogeneous and complex landscapes patterns of three districts in 
India (Shivamogga, Sindhudurg and Wayanad). Although we were not 
able to exploit multi-temporal data because of cloud cover, applying a 
Support Vector Machine classification on the median of post-monsoon 
Landsat images still delivered good results with overall accuracies 
exceeding 85 % and class specific accuracies varying between classes 
and districts but all exceeding 66 % in producer's accuracy and 76 % in 
user's accuracy. Deriving a map of land use class stability from the mode 
of many classification realizations not only delivered the most probable 
solution, but also highlighted where our maps were is less reliable. 
Comparisons with two global products (ESA CCI and GFC) highlighted 
that bespoke Land Use classifications can better capture local plantation, 
crop and forest classes and changes that may underpin changes in in-
fectious disease systems. For other researchers who study infectious 
disease responses to land use change in tropical forest ecosystems we 
recommend that:  

(1) global land use products are carefully validated with ground 
reference points representing locally relevant habitats;  

(2) where possible a bespoke land use classification is developed, 
reflecting functional resource use by relevant vectors, reservoirs 
and people;  

(3) classification stability is examined and integrated into landscape 
metrics used for epidemiological analyses, particularly where 
vectors, reservoirs and people are associated with particular 
forest and plantation types;  

(4) experience of trade-offs in thematic detail, spatial detail and 
mapping accuracy are shared between Earth observation scien-
tists, practitioners, and researchers, across infectious disease 
contexts. 
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12. Environmental drivers of adult seasonality and abundance of biting midges 
culicoides (diptera: ceratopogonidae), bluetongue vector species in Spain. J. Med. 
Entomol. 58 (1), 350–364. 

Beck, L.R., Lobitz, B.M., Wood, B.L., 2000. Remote sensing and human health: new 
sensors and new opportunities. Emerg. Infect. Dis. 6 (3), 217–227. 

Borges, J., Higginbottom, T.P., Symeonakis, E., Jones, M., 2020. Sentinel-1 and sentinel- 
2 data for savannah land cover mapping: optimising the combination of sensors and 
seasons. Remote Sens. 12 (23), 3862. 

Brown, C.F., Brumby, S.P., Guzder-Williams, B., Birch, T., Hyde, S.B., Mazzariello, J., 
et al., 2022 Dec. Dynamic world, near real-time global 10m land use land cover 
mapping. Sci. Data. 9 (1), 251. 

Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.-E., Herold, M., 
Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3: 
epoch 2019: Globe. https://doi.org/10.5281/zenodo.3939050. 

Burges, C.J., 1998. A tutorial on support vector machines for pattern recognition. Data 
Min. Knowl. Disc. 2 (2), 121–167. 

Büttner, G., Feranec, J., Jaffrain, G., Mari, L., Maucha, G., Soukup, T., 2004. The CORINE 
land cover 2000 project. EARSeL eProceedings. 3 (3), 331–346. 

Campbell-Lendrum, D., Molyneux, D., Amerasinghe, F., Davies, C., Fletcher, E., 
Schofield, C., et al., 2005. Ecosystems and vector-borne disease control. Ecosystems 
and Human well-being: PResponses 3, 353–372. 

Chaisiri, K., Cosson, J.-F., Morand, S., 2017 Oct 6. Infection of rodents by Orientia 
tsutsugamushi, the agent of scrub typhus in relation to land use in Thailand. Trop 
Med. Infect. Dis. 2 (4). 

Chini LP, Hurtt GC, Frolking S. LUH1: Harmonized Global Land Use for Years 
1500–2100, V1. ORNL Distributed Active Archive Center. 2014. 

Clerici, N., Weissteiner, C.J., Gerard, F., 2012 Jun 18. Exploring the use of MODIS NDVI- 
based phenology indicators for classifying Forest general habitat categories. Remote 
Sens. 4 (6), 1781–1803. 

Clerici, N., Valbuena Calderón, C.A., Posada, J.M., 2017 Nov 30. Fusion of sentinel-1A 
and sentinel-2A data for land cover mapping: a case study in the lower Magdalena 
region. Colombia. J. Maps. 13 (2), 718–726. 
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