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Abstract: Particle acceleration is a fundamental process arising in many astrophysical objects, includ-
ing active galactic nuclei, black holes, neutron stars, gamma-ray bursts, accretion disks, solar and
stellar coronae, and planetary magnetospheres. Its ubiquity means energetic particles permeate the
Universe and influence the conditions for the emergence and continuation of life. In our solar system,
the Sun is the most energetic particle accelerator, and its proximity makes it a unique laboratory in
which to explore astrophysical particle acceleration. However, despite its importance, the physics
underlying solar particle acceleration remain poorly understood. The SPARK mission will reveal new
discoveries about particle acceleration through a uniquely powerful and complete combination of
γ-ray, X-ray, and EUV imaging and spectroscopy at high spectral, spatial, and temporal resolutions.
SPARK’s instruments will provide a step change in observational capability, enabling fundamental
breakthroughs in our understanding of solar particle acceleration and the phenomena associated
with it, such as the evolution of solar eruptive events. By providing essential diagnostics of the
processes that drive the onset and evolution of solar flares and coronal mass ejections, SPARK will
elucidate the underlying physics of space weather events that can damage satellites and power grids,
disrupt telecommunications and GPS navigation, and endanger astronauts in space. The prediction
of such events and the mitigation of their potential impacts are crucial in protecting our terrestrial
and space-based infrastructure.

Keywords: particle acceleration; magnetic reconnection; instrumentation; corona; coronal mass
ejections (CMEs); flares; extreme ultraviolet; X-rays; gamma rays

1. Scientific Objectives

The SPARK mission concept aims to investigate solar particle acceleration and the mag-
netic energy release that powers it by observing solar eruptive events, the most energetic
and geo-effective drivers of space weather.

In the standard model of solar eruptive events (Figure 1; see also [1]), highly stressed
magnetic fields reconnect in the low corona, thereby impulsively releasing vast amounts of
energy. Depending on the magnetic configuration, plasma, magnetic field, and accelerated
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particles may escape into the heliosphere as coronal mass ejections (CMEs), “jets”, or solar
energetic particles (SEPs), which directly contribute to space weather. Accelerated particles
also spiral downward around magnetic field lines (“loops”) towards the chromospheric
“footpoints”, depositing their energy as they propagate. This heats and ionises the plasma
in the chromosphere, transition region (TR), and lower corona, producing the intense
broadband radiation known as a solar flare. The rapid heating creates a high-pressure
region that ablates material back up along the loops in a process known as chromospheric
“evaporation”, which causes the loops to radiate in extreme ultraviolet (EUV) and soft
X-rays. Additionally, plasma in and above the loops can be directly heated by the energy
release and/or acceleration process.

Figure 1. SPARK captures all elements of a solar eruptive event (the combination of a flare and a CME)
identified in this cartoon. FOXSI images the HXR signatures of accelerated electrons and hot plasma
at all locations. LISSAN captures the γ-ray signatures of accelerated ions and the most energetic
electrons, and SISA reveals the lower atmospheric response and EUV structure in the corona. Figure
courtesy of the FIERCE proposal team and the FOXSI SMEX proposal team.

The particles in solar eruptive events can be divided into three populations: hot
plasmas, accelerated electrons, and accelerated ions. One of the most useful diagnostics for
characterising thermalised and accelerated electrons is the X-ray bremsstrahlung emission
they produce as they scatter in the ambient medium. The bremsstrahlung spectrum reflects
the velocity distribution of the particles that produced it and can be inverted to reconstruct
the spectrum of the emitting electrons [2,3]. This means hot plasma and accelerated
electrons can be distinguished by their Maxwellian (thermal) and power-law (non-thermal)
shaped spectra, e.g., [4–6]. Thermal emission tends to dominate in the soft X-ray (SXR;
typically below 20 keV) regime, while non-thermal emission tends to dominate in the hard
X-ray (HXR; typically higher than 20 keV) regime. X-rays can provide straightforward
measurements of the numbers and energies of accelerated electrons not available from
other wavelengths or requiring non-trivial assumptions when observed in microwaves.
Hence, X-rays can provide a deeper understanding of the underlying acceleration process.
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Accelerated ions are even less well understood than electrons due to the difficul-
ties encountered in observing their γ-ray emission. Accelerated ions in the range of
1–100 MeV/nucleon can be detected via various γ-ray lines in the range of 1–10 MeV
due to nuclear de-excitation, neutron capture, and positron annihilation [7–14]. Acceler-
ated ions with energies greater than 100 MeV/nucleon can be detected via the decay of
secondary pions via nuclear reactions with the ambient medium. As the pions decay, the
decay products produce a broadband continuum at photon energies above 10 MeV, with a
broad peak around 70 MeV from neutral pion radiation [15,16].

Although the principal points of the standard model are established, many questions
remain regarding the fundamental processes of particle acceleration, impulsive energy
release, and energy transport. However, the key scientific measurements required to answer
these questions have not been possible with previous instruments. Solar γ-ray line emission
has been imaged in one flare [17] and only localised through centroids in an additional
four [14]. Consequently, the spatiotemporal evolution of accelerated ions has never been
revealed. The role of ion acceleration in solar eruptive events therefore remains largely
unknown, despite evidence that ions accelerated in flares may carry an energy comparable
to that of accelerated electrons, e.g., [18–20]. Previous HXR spectroscopic imaging observa-
tions (e.g., RHESSI [21] and Solar Orbiter/STIX [22]) have not provided sufficient sensitivity
to reliably observe accelerated electrons and direct plasma heating in the corona, where
the acceleration is believed to take place. This is because the intensity of bremsstrahlung
depends on the ambient density, which is typically very low in the corona, preventing ob-
servational tests of different acceleration models. Additionally, previous instruments have
not provided a sufficient dynamic range (≥100) to simultaneously observe the emission
from the corona and the chromosphere, where the density (and, hence, emission), is much
greater. This has limited our understanding of how transport effects alter the distribution
of accelerated particles. Moreover, past and current X-ray images like RHESSI and STIX
are limited by the use of an indirect Fourier imaging technique, which causes source areas
and shapes to be only approximate. Additionally, imaging on second and subsecond time
scales relevant to particle acceleration has not yet been achieved. Finally, current EUV
imaging spectrographs (e.g., Hinode/EIS [23] and Solar Orbiter/SPICE [24]) have provided
intriguing images of the complex structures associated with solar eruptive events, but they
have not been optimised for solar eruptive events. Their typical single-slit design and
operational priorities have led EUV spectra to rarely be available on the right timescales, at
the right times, and in the right locations to compare with X-ray and γ-ray observations.
The Solar-C Extreme-UV High-throughput Solar Telescope (EUVST; [25]) and the Multi-Slit
Solar Explorer (MUSE; [26–28]) are highly complementary upcoming EUV missions that
will be transformative for flare science [28]. MUSE will provide high-cadence active region-
scale imaging spectroscopy, sampling select key EUV lines by rastering its 35 slits. EUVST,
with its single slit, will provide much broader temperature coverage, with rich plasma
diagnostics from a large number of lines. Both instruments are scheduled to launch within
one year of each other and promise cospatial observations of plasma in the solar atmo-
sphere. An instrument that would build upon their science legacy—one that co-observes
with X-ray and g-ray instruments—should be the aim of a next-generation flare mission,
that is, an instrument that combines rich plasma diagnostics with very high-cadence 2D
spectral imaging.

SPARK will overcome all these challenges with its unique combination of high-
sensitivity, fast spectroscopic imaging in γ-ray, X-ray, and EUV, optimised for solar eruptive
events. It will address four specific fundamental science questions:

1. How does impulsive energy release accelerate particles in the solar atmosphere?
2. How is impulsively released energy transported and dissipated in the solar atmosphere?
3. What are the physical low-corona origins of space weather events?
4. How is the corona above active regions heated?
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By addressing these questions, SPARK will elucidate fundamental physical processes
that are ubiquitous throughout our Universe and drive space weather events that have
direct consequences for our technologies and way of life.

1.1. How Does Impulsive Energy Release Accelerate Particles in the Solar Atmosphere?

Accelerated charged particles constitute a significant fraction (up to tens of percent)
of the magnetic energy released in the most energetic space weather events, e.g., [19,29].
Observationally distinguishing between acceleration models requires the number, loca-
tion, and evolution of multiple faint thermal and non-thermal sources near the coronal
acceleration region to be characterized in the presence of much more intense chromo-
spheric footpoint emission. SPARK’s unique combination of high dynamic range and
high-sensitivity imaging spectroscopy in the γ-ray, X-ray, and EUV regimes at timescales
relevant to the underlying physical processes will make this possible for the first time.

1.1.1. Where and When Do Particle Acceleration and Local Plasma Heating Occur?

The two most likely models to explain the high acceleration efficiency of electrons
are the Fermi acceleration process through the evolution and merging of “magnetic is-
lands” [30,31] created by the reconnection, as well as a second-order Fermi acceleration
process in the turbulent plasma of the reconnection outflow jets with or without termination
shocks [32–35]. The magnetic-island model predicts that both electron acceleration and
direct plasma heating occur near the reconnection site(s) in the current sheet and that
direct plasma heating precedes electron acceleration [30]. Conversely, the stochastic model
predicts that acceleration and direct heating occur simultaneously but significantly sepa-
rated from the reconnection site in both upward and downward outflow jets (see Figure 2).
Concerning ion acceleration, a detailed study of individual large events showed differences
between ion and electron time evolution during the course of a flare [36]. The one flare
imaged in the γ-ray line with RHESSI and the four for which emission centroid locations
were calculated showed significant displacements between HXR and γ-ray line sources, in-
dicating spatial displacements between electron and ion energy release sites [14,17]. SPARK
will reveal, for the first time, where electron acceleration and direct heating occur with
respect to the reconnection site, as well as under what scenarios the different acceleration
models dominate, and reveal the relationship between electron and ion acceleration. This
will be achieved with subsecond X-ray spectral imaging with sufficient spatial resolution to
separate the various sources. SPARK will compare γ-ray and X-ray signatures of energetic
electrons and ions in combination with the EUV non-Gaussian line profiles that are a
signature of non-Maxwellian ion velocity distributions. Using increased X-ray sensitivity
and dynamic range, SPARK will characterize the spectrum of the accelerated electrons
in the corona, even in the presence of much brighter chromospheric emission. SPARK
will provide complementary measurements of the coronal magnetic field from Fe X lines
emitted around 1 MK. In addition, it will chart the plasma response to heating via the
hot Fe XXIII and Fe XXIV (15–20 MK) spectral lines and determine the relative plasma
abundances to differentiate between coronal and ablated chromospheric plasma.

1.1.2. What Are the Efficiency and Energy Content of Electron and Ion Acceleration?

The fraction of particles accelerated out of the ambient Maxwellian velocity distri-
bution and the total energy they contain are essential constraints on acceleration models.
Acceleration by magnetic islands [30] and super-Dreicer electric fields in a reconnecting cur-
rent sheet [37] can accelerate a large fraction of the available electrons, while mechanisms
relying on large-scale sub-Dreicer electric fields cannot [38]. SPARK will determine the
number and energy of accelerated particles with an accuracy not previously possible. With
a significantly enhanced X-ray dynamic range, SPARK will measure the non-thermal spec-
tra of coronal and footpoint sources down to lower energies whilst constraining the relative
number of accelerated particles of different ion species (e.g., alpha/proton ratio [36]).
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Figure 2. SPARK will distinguish between different models of flare particle acceleration. In these 2D
flare cartoons, the locations and chronological order of various X-ray- and EUV-producing processes
differ between the two most likely models of electron acceleration in eruptive flares: magnetic island-
merging acceleration (left) and stochastic (second-order Fermi) acceleration (right). Simulated FOXSI
detector response images of non-thermal electrons (blue) and thermal plasma (orange) are shown as
insets. Figure courtesy of the FIERCE proposal team.

1.1.3. How Do Electron and Ion Acceleration and Transport Differ in the Flaring Atmosphere?

Theoretical studies show that differences between the acceleration and transport of
electrons and ions can be used as a unique diagnostic tool for the processes in the magnetic
reconnection region, as well as the geometry of the magnetic field in and around it. The lack
of spatially resolved γ-ray observations of accelerated ions is therefore a significant obstacle
to constructing a comprehensive solar flare model. With significantly upgraded spatial
resolution in the γ-ray regime, SPARK will enable major advances in our understanding of
how ions are accelerated and transported in flares and how their dynamics differ from the
dynamics of energetic electrons and in using energetic ions as an important diagnostic tool
for non-thermal plasma in the flaring corona.

1.1.4. Where and How Are the Most Energetic Particles Accelerated at the Sun?

Studies of small numbers of events examining γ-ray lines (1–10 MeV) and the pion
continuum (>10 MeV) suggest that the accelerated ion spectrum is not a simple power
law extending from non-relativistic (1–100 MeV/nucleon) to relativistic (>few hundred
MeV/nucleon) regimes, e.g., [39–43]. This raises the question of whether the most energetic
particles are accelerated via a different mechanism to those at lower energies. The longevity
of some pion emission presents another major challenge to our understanding of how
the most energetic solar particles are accelerated, e.g., [44,45]. The high-sensitivity HXR
and γ-ray spectroscopy of SPARK will facilitate a comprehensive study of the timing and
spectra of electron bremsstrahlung and pion decay radiation in a significant number of
events for the first time. Such observations are essential to unravel the relative roles of
flare and interplanetary processes in the acceleration of high-energy ions, especially in
long-duration events.
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1.2. How Is Impulsively Released Energy Transported and Dissipated in the Solar Atmosphere?

SPARK will probe energy-transport processes that link impulsively released magnetic
energy to the resultant emission from the lower atmosphere, where the bulk of the flare
energy is radiated. This will be done in two ways: by measuring hitherto poorly con-
strained observational inputs to the latest state-of-the-art numerical models of solar flares,
e.g., [46–63] and by providing previously unachievable observations against which the
model predictions will be critically interrogated. Such model inputs provided by SPARK
include the non-thermal electron and ion energy distributions injected towards the lower
solar atmosphere, the ribbon/footpoint source areas, and the preflare atmospheric state
(e.g., coronal temperature, density, loop length, and coronal magnetic field).

1.2.1. How and Where Do Accelerated Particles Lose Their Energy in the Corona
and Chromosphere?

As flare-accelerated particles exit the coronal acceleration region and propagate along
loops, they lose energy through Coulomb collisions with ambient particles, wave–particle
interactions, and the generation of return currents [4]. The evolution of the particle dis-
tribution as the particles propagate along flare loops depends on (and thus reveals) the
relative importance of these mechanisms. The statistically significant separation between
HXR and γ-ray line sources in the single resolved RHESSI γ-ray flare image and two of the
four RHESSI centroid-localised γ-ray line flares [14,64] may be due to differing acceleration
mechanisms. But it may also be due to different transport effects acting on the ions and
electrons. We have sparse observations from EUV imaging spectrometers of the kernels of
chromospheric evaporation, showing large non-thermal broadenings and upflows in the
hotter lines during the impulsive phase (see, e.g., [65–67]), but a clear picture is missing.
SPARK will simultaneously observe electrons throughout the flaring structure, image ion
emission, and observe the spectral line response of flaring plasma at multiple temperatures.
Combining X-rays and EUV imaging spectroscopy, SPARK will facilitate accurate deter-
mination of the low-energy part of the electron spectrum, as well as quantifying return
current losses. SPARK will, for the first time, constrain accelerated ions transported to the
chromosphere using γrays and the hottest EUV flare lines, like Fe XXIV. Moreover, the
combination of X-rays and the multitemperature response of spectral lines will also provide
constraints on turbulence present in the solar atmosphere [68].

1.2.2. What Are the Origins of Modulations in Solar Flare Emission?

A key observational feature in flare-associated X-ray emission is the presence of
pronounced pulsations and fast-time variations. These modulations, which also appear
in many stellar flares, have been observed in thermal and non-thermal emissions across
all wavelength regimes, from radio to gamma rays, with characteristic time scales ranging
from 0.5 to tens of seconds, e.g., [69–71]. Often, these modulations appear as regular or
non-stationary oscillatory patterns, known as “quasi-periodic pulsations”, e.g., [72,73].
However, despite extensive research, the origins of these short-timescale modulations in
flare emissions remain debated. While some studies suggest they may be a direct signature
of a repetitive impulsive energy-release process, the potential role of magnetohydrodynamic
(MHD) oscillations in the flaring site or nearby, particularly in the context of longer-period
pulsations, has yet to be fully determined. Similarly, a combination of these processes
could be at play (see [71] for an overview of proposed mechanisms). Moreover, it is quite
likely that different classes of flaring pulsations (i.e., different periods, patterns, or energies)
are produced by different mechanisms. X-ray dynamic-range limitations have not yet
allowed us to identify time-varying signatures from different parts of the loop, including
the loop-top source. EUV imaging observations have also hindered our ability to locate
the modulating emission source due to both cadence constraints and pixel saturation and
bleeding during flare events. SPARK enables, for the first time, a full examination of
the temporal, spatial, and spectral properties of these pulsations and their relationships
across wavelengths, which are essential to determine the origins of the emission modulation.
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SPARK will allow us to identify the pulsations in both the thermal and non-thermal regimes
in all parts of the flaring loop. Moreover, SPARK will identify whether accelerated protons
have similarly associated time variability.

1.2.3. What Is the Importance of Accelerated Particles in Transporting Energy Compared
with That of Other Mechanisms?

High-frequency Alfvén waves have been proposed as a means of transporting en-
ergy from a flare’s magnetic reconnection site to the lower atmosphere and heating it,
e.g., [74–76]. In recent years, modelling has shown that this is possible [52,60,61]. However,
while Alfvén waves are undoubtedly produced during the large-scale reconfiguration of
the magnetic field during flares, it is not yet known whether they play a significant role
relative to accelerated particles in transporting flare energy and heating flare plasma nor
whether other kinds of MHD waves, such as kink and sausage modes, contribute signif-
icantly. SPARK will, for the first time, reveal the importance of MHD waves relative to
accelerated particles in transporting and dissipating energy in solar eruptive events. SPARK
will examine the coronal magnetic field strength and the broadening of certain spectral lines
from ions in the EUV passbands formed at different temperatures (see Section 2.3. SPARK
will therefore constrain the Poynting flux as the waves propagate and dissipate their energy
(see discussions in, e.g., [28]). SPARK will use variations of the chemical composition and
elemental abundances to assess the role of MHD waves in transferring energy from the
corona into flare kernels (cf. [77] and references therein).

1.3. What Are the Physical Low-Corona Origins of Space Weather Events?

An ESA-funded study estimated that the economic cost of a severe space weather
event could be as high as EUR 15 billion (https://esamultimedia.esa.int/docs/business_
with_esa/Space_Weather_Cost_Benefit_Analysis_ESA_2016.pdf, accessed on 30 October
2023). This led to the establishment of national forecasting centres across Europe and
space weather as a major theme in the ESA’s Space Safety programme. Despite this, many
questions remain regarding the origins of space weather in the low corona, which act as
an impediment to the development of timely and reliable space weather forecasts. SPARK
will greatly improve our understanding of the underlying physical processes that drive
these events in the low corona and inform the development of future space weather models
that aim to deliver timely and accurate forecasts of flares, energetic particles, and eruptions.
Knowing about the acceleration process will feed into our understanding of how active
regions reach a state whereby a flare or CME is generated. Understanding of the flare
initiation process will enable an improved view of the likelihood of a flare occurring in a
location that is well placed to impact Earth.

1.3.1. What Are the Energy Content and Spectrum of Sun-Escaping Electrons?

Sun-escaping electrons, components of SEP space weather events, have long been
studied in situ at 1 AU [78] and, more recently, closer to the Sun, e.g., [79,80]. However,
such observations alone cannot be used to characterise how the electrons are accelerated
because the electron distribution is modified by transport effects between the Sun and the
observatory. SEP electrons can be observed remotely at the Sun as type III radio bursts
(e.g., [81,82]). However, while bulk electron speeds can be inferred from the radio observa-
tions, unlike X-rays, they cannot be directly inverted to retrieve the number or energies
of accelerated electrons. Therefore, the spectra and acceleration mechanism(s) of solar
radio-emitting electrons remain unknown. How these accelerated electrons escape from
the flare site is similarly unknown. CMEs and jets offer clear open magnetic paths for
particles to escape, but confined flares do not, although interchange reconnection can pay
a role [83]. Ground-based observations above 10 MHz can be used to image type IIIs [84]
but may suffer from intrinsically limited spatial resolution, especially at low frequencies,
on account of the radio waves scattering off density inhomogeneities between the source
and observer [85,86]. SPARK will provide hitherto unachievable imaging and spectral

https://esamultimedia.esa.int/docs/business_with_esa/Space_Weather_Cost_Benefit_Analysis_ESA_2016.pdf
https://esamultimedia.esa.int/docs/business_with_esa/Space_Weather_Cost_Benefit_Analysis_ESA_2016.pdf
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observations of accelerated electrons as they escape the Sun [87], facilitated by unprece-
dented sensitivity and imaging dynamic range in the HXR regime. Such measurements will
elucidate the origins of escaping electrons and how they are modified as they propagate
towards Earth. SPARK will also test theories of the origins of the slow solar wind by
detecting the locations in active region peripheries where particles are accelerated and
escape via HXR emissions and upward flows detected in EUV-emitting plasma.

1.3.2. What Are the Dominant Initiation Mechanisms of Solar Eruptions?

Many models of the initiation of solar eruptive events involve magnetic reconnection,
which results in plasma heating [88,89] and particle acceleration [90]. However, different
models of CME initiation predict observationally differentiable locations of the erupting
flux rope in relation to where the reconnection starts and, consequently, for the associated
X-ray and EUV emissions. The internal tether-cutting model [91,92] predicts that recon-
nection occurs below the flux rope before the fast takeoff of the eruption. The breakout
model [93] predicts that the reconnection occurs above the flux rope before fast takeoff,
and the ideal MHD instability model [94] predicts that the flux rope begins to rise before
reconnection occurs in either place. It is unclear if the same mechanisms driving the large-
scale CMEs are also at play in these smaller events. Some models of jets involve breakout
reconnection, e.g., [95], similar to the breakout model for CMEs, while others involve
interchange magnetic reconnection [96–98]. SPARK will produce observations of the faint
X-ray and EUV emissions linked to particle acceleration and plasma heating during the
formation and initiation of solar eruptions for the first time. This will enable discrimination
between the many physical processes proposed for the creation of the conditions necessary
for an eruption. SPARK will also provide measurements of the plasma dynamics and
of the magnetic field of the active region and filament before and during the eruption.
Hence, SPARK will provide constraints on the configuration and evolution of the magnetic
structure leading to solar eruptions.

1.4. How Is the Corona Above Active Regions Heated?

A long-standing enigma in solar and stellar physics is how a star’s atmosphere can
be orders of magnitude hotter than its surface. This temperature difference requires some
form of non-radiative heating, but whether the dominant mechanism is the dissipation
of Alfvén waves or impulsive heating by nanoflares has not been established [99–103].
SPARK will enable breakthroughs with respect to this fundamental problem using two
approaches. First, SPARK will determine if the characteristics of energy release in the
smallest detectable events are fundamentally different from those in larger flares. Secondly,
SPARK will statistically determine ensemble properties of heating events too small to be
detected individually.

1.4.1. Is Particle Acceleration Ubiquitous among Energy-Release Events at All Size Scales?

The number of flares as a function of their thermal energy follows a power law over
several orders of magnitude [104]. This suggests that the underlying energy-release process
scales similarly. If nanoflares are part of this distribution, they, too, would be expected to ac-
celerate electrons. Indirect evidence from UV transients suggests that accelerated electrons
are indeed present [105,106]. RHESSI and STIX observations have shown that in microflares,
the X-ray spectral index is steeper than in larger flares [107–113], suggesting that they are
less efficient at accelerating electrons. This was confirmed in a few observations of fainter
microflares with NuSTAR during its limited solar campaigns [114–117]. Additional sup-
port comes from studies of the thermal–non-thermal energy partition (cf. [118]), which
shows that in weaker flares there may not be a sufficient amount of energetic electrons
to heat the thermal plasma. SPARK will determine how the energy-release process scales
across eight orders of magnitude in energy, from the largest flaresb (∼1033 ergs) down
to flares at 1025 ergs (2 orders of magnitude smaller than those observed by RHESSI and
STIX). SPARK will observe hundreds of thousands of flares below GOES C class and will
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provide a comprehensive investigation of events two orders of magnitude less energetic
than ever before.

1.4.2. How Does Small-Scale Particle Acceleration Contribute to Coronal Heating?

The presence of temperatures exceeding 5 MK in the non-flaring active regions would
provide strong evidence of impulsive, low-frequency nanoflare heating. Steady or high-
frequency wave heating cannot maintain such high temperatures without violating other
observational constraints [102,119]. Many studies have detected hot plasma, e.g., [120,121],
but the uncertainties are large because the emission is orders of magnitude fainter than that
from associated cooler plasma (cf. the review in [122]). Moreover, non-equilibrium ioniza-
tion effects [123–125] and departures from a Maxwellian distribution due to the presence
of accelerated particles [106,126–128] can limit the interpretation of EUV line-emission ob-
servations. SXR and HXR thermal bremsstrahlung emissions from the same plasma are not
susceptible to non-equilibrium ionization effects, allowing measurements to be more clearly
interpreted and the accelerated particles to be more readily detected. The FOXSI-2 sounding
rocket performed X-ray measurements of high-temperature plasma in an active region [129],
and SXR spectrometers flown on the SDO/EVE sounding rocket [121] and on the MinXSS
CubeSat [130] have performed high-temperature measurements of spatially integrated SXR
spectra. These measurements provide evidence of impulsive magnetic reconnection events
contributing to active-region heating [131]. SPARK will provide important constraints on
competing scenarios of coronal heating in active regions [132,133] and directly measure
the predicted high-temperature X-ray signature of low-frequency nanoflare heating, im-
proved by observations of multiple coronal emission lines from many ionisation states of Fe.
Some of these lines also allow for diagnostics of accelerated electrons [126,128]. Ionization
and recombination time scales will be derived through observations of the density of hot
plasma, a key measurement not provided by prior EUV observations/missions. SPARK
will also provide measurements of magnetic field strengths in active region loops, using
the magnetically induced transition at 257.3 Å(c.f. [134] and references therein).

2. Payload

SPARK utilises three scientific instruments to provide imaging spectroscopy in the
γ-ray, X-ray, and EUV regimes: LISSAN, FOXSI, and SISA, respectively. Figure 3 shows a
model of the spacecraft, highlighting the accommodation of the three scientific instruments.

Figure 3. SPARK spacecraft model illustrating the payload accommodations.
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2.1. Large Imaging Spectrometer for Solar Accelerated Nuclei (LISSAN)

LISSAN will, for the first time, reveal the dynamics of accelerated ions in solar flares
via spectroscopic imaging between 40 keV and 100 MeV on time scales of less than 10 s.
These capabilities will also allow it to observe high-energy X-ray emissions from energetic
electrons, providing diagnostics for both types of accelerated particles. This will be achieved
by using high-resolution scintillators with an energy resolution of 0.1 MeV at 6.1 MeV
and an angular resolution of 8” FWHM. At 6.1 MeV, LISSAN will achieve 40x RHESSI’s
sensitivity (5 photons/cm2) and a spectral resolution of 1.5 %dE/E. LISSAN will also
achieve 40x RHESSI’s sensitivity (50 photons/cm2) in the 2.2 MeV neutron capture line. A
summary of the predicted performance of LISSAN is presented in Table 1.

Table 1. LISSAN instrument performance.

LISSAN Parameter Expected Performance

Energy Range—Low 40 keV
Energy Range—High 100 MeV

Imaging Effective Area (2.2 MeV) 100 cm2

Spectro Effective Area (2.2 MeV) 440 cm2

Sensitivity (2.2 MeV) 50 photons/cm2

Sensitivity (6.1 MeV) 5 photons/cm2

Imaging Time Resolution 1 s
Angular Resolution 8′′

Field of View 12.8′ diameter
Energy Resolution (6.1 MeV) 1.5% dE/E

Largest Observable Flare >X5

LISSAN employs an indirect Fourier imaging technique [135,136]. Pairs of 1D slotted
grids (bigrids) encode spatial information into moiré patterns, each of which is measured
by a pixelated, spectroscopic, photon-counting γ-ray detector. Each bigrid samples an
angular scale along a single direction on the plane of the sky. The resulting moiré patterns
therefore represent spatial Fourier components of the field of view (visibilities), which can
be combined into images via Fourier-based image reconstruction algorithms similar to those
used in radio interferometry. This imaging concept has been successfully demonstrated
by Solar Orbiter/STIX [22,137] in the 4–150 keV spectral range. LISSAN is composed of
20 subcollimators, 15 of which contain bigrids for imaging spectroscopy. The angular
scales and directions they sample depend on the pitch (slit width) and orientation of the
bigrids. The resulting visibilities can be represented as complex numbers on the (u, v)
plane. One possible visibility configuration is displayed in the left panel of Figure 4, with
its associated point-spread function in the central panel. The right panel shows an image of
the 31 March 2022 M9.7 flare that LISSAN would have produced with this configuration in
the 50–84 keV range using the CLEAN image reconstruction algorithm. Two non-thermal
footpoint sources are clearly visible.

Of LISSAN’s five remaining gridless subcollimators, one monitors the background,
and four are used to boost sensitivity for spectroscopy. This is because the absence of
bigrids increases the photon throughput by a factor four.

The detector of each subcollimator comprises 16 “fingers” of crystal. In one direction,
this segmentation allows the moiré pattern to be measured. The other improves light
collection and, therefore, spectral resolution and provides a redundant measurement of
the moiré pattern. This guarantees the energy resolution needed to measure the Doppler
profiles of the C and O lines at 4.4 and 6.1 MeV, respectively.



Aerospace 2023, 10, 1034 12 of 23

Figure 4. Left: One possible (u, v)-coverage for LISSAN; middle: associated point-spread function
(dirty map of a point source on axis; this image contains both the X-ray source and instrumental
artefacts to be removed with adequate cleaning algorithms); right: simulation of a LISSAN image
of the 50–84 keV emission from the two hard X-ray footpoints during the M9.7 flare on 31 March
2022, which was observed by STIX on Solar Orbiter. This image was obtained by running the CLEAN
algorithm on the dirty image.

2.2. Focusing Optics X-ray Solar Imager (FOXSI)

FOXSI combines grazing-incidence hard X-ray focusing optics with small, fast, pixe-
lated detectors to produce images of the Sun at high spectral, spatial, and temporal resolu-
tion over the spectral range of 3–50 keV [138]. This strategy offers dramatic improvements
in image quality, dynamic range, and sensitivity over the indirect (Fourier-based) imaging
techniques of current and previous state-of-the-art solar X-ray spectroscopic imagers, e.g.,
RHESSI and Solar Orbiter/STIX. FOXSI will be able to reliably image faint thermal and
non-thermal sources in the solar corona, even in the presence of brighter ones, for the first
time. Such images will enable FOXSI to elucidate a ground-breaking new understanding of
particle acceleration and the evolution of solar eruptive events. FOXSI will not intrinsically
integrate images over preset time or energy intervals but instead record the energy, position,
and arrival time of individual photons, allowing images and spectra to be produced ex post
facto in accordance with specific science goals. FOXSI’s design and measurement strategies
have been proven through successful flights of several solar sounding rocket and balloon
instruments [139–144]. Moreover, FOXSI will build on the success of non-solar space-based
direct-focusing X-ray imagers (e.g., NuSTAR and Hitomi) and optimised for the resolution
requirements and high fluxes of solar observations. This is achieved via judicious design
of the optics’ effective area, fast-counting detectors, and movable attenuators that can be
deployed during the largest flares. This prevents corruption of the measured spectrum,
e.g., via pile up, which is common in observations of even small solar flares by non-solar
telescopes, e.g., NuSTAR. A summary of the predicted performance of FOXSI is presented
in Table 2.

Table 2. Expected performance of SPARK/FOXSI.

FOXSI Parameter Expected Performance

Energy Range—Low 3 keV
Energy Range—High 55 keV

Imaging Dynamic Range 1 20:1 beyond 20′′ separation
Imaging Dynamic Range 2 1000:1 beyond 45′′ separation
Effective Area (at 20 keV) 40 cm2

Sensitivity 0.2 photons/cm2

Imaging Time Resolution 0.1 s
Angular Resolution 6.3′′ FWHM

Field of View 9.8′ × 9.8′

Energy Resolution 0.8 keV FWHM
Largest Observable Flare >X10
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FOXSI also includes a soft X-ray spectrometer (FOXSI-STC) that provides spatially
integrated high-resolution spectra (0.2 keV FWHM at 1.5 keV) in the range of 0.8–15 keV.
The combination of emission lines and thermal continuum emissions in this energy range
provides additional plasma temperature and composition information averaged over all
the plasma in the FOXSI FOV that FOXSI cannot access to due to its lower energy resolution
(0.8 keV) and higher low-energy cutoff (3 keV). FOXSI-STC is composed of two identical
spectrometers with different apertures optimised for low and high flux, respectively. This
enables it to measure the X-ray fluxes of even the largest flares. FOXSI-STC will be used
to control the movable attenuators of FOXSI’s HXR focusing telescopes. This approach
enables fewer attenuator motions compared to past and current instruments, which have to
frequently remove their attenuators for short periods of time (i.e., peek) to check whether
the flux has reduced to an acceptable level. A summary of the predicted performance of
FOXSI-STC is presented in Table 3.

Table 3. Expected performance of SPARK/FOXSI-STC.

FOXSI-STC Parameter Expected Performance

Energy Range—Low 0.8 keV
Energy Range—High 15 keV

Effective Area 0.01 cm2

Energy Resolution 0.2 keV FWHM below 1.5 keV
Field of View 9.8′ × 9.8′

Time Resolution 0.5 s
Largest Observable Flare >X10

2.3. Spectral Imager of the Solar Atmosphere (SISA)

SISA (Spectral Imager of the Solar Atmosphere) is an integral field spectrograph
(IFS) [145], providing the simultaneous spectra of a bidimensional field of view of 100 arc-
seconds by 250 arcseconds using image slicer technology. Two spectral ranges will be
covered, centred around 18.5 nm and 25 nm, with 1 arcsecond spatial resolution and a
spectral resolving power of R∼3650–5160. A spectral ranges of 170–195 Å and 245–260 Å
are required to measure the parameters of 1 MK plasma and the hotter 15 MK plasma, re-
spectively. This wavelength range includes lines sensitive to coronal magnetic field strength
(Fe X 25.7 nm; see, e.g., [134,146,147]) that can be deduced using a ratio of magnetically
sensitive Fe X lines formed at 1 MK. The wavelength range also includes lines sensitive to
electron temperature/non-Maxwellian electron distributions [148,149]. It also has a wide
range of lines to measure electron densities from coronal (e.g., Fe IX, Fe XI, Fe XII, Fe XV,
and Ca XV) to flare temperatures (Fe XXI) and the FIP bias. It observes He II and a wide
range of lines, many at flare temperatures (e.g., Fe XVII, Fe XX, Fe XXI, Fe XXII, Fe XXIII,
and Fe XXIV).

In order to achieve the temporal resolution of 1 second required to capture the rapid
development of the plasma environment during flare energy release, the simultaneous
observation of a 2D field of view without the traditional use of slit scanning systems is a key
factor. The integral field spectroscopy technique is a novel proposal for the extreme ultravio-
let (EUV) regime and benefits from a wide heritage of integral field spectrographs operating
in ground-based and space-based telescopes. This strategy has significant advantages over
traditional EUV scanning spectroscopy (e.g., EIS, IRIS, and Solar-C/EUVST), making 2D
images over two orders of magnitude faster than before. The upcoming Multi-Slit Solar
Explorer (MUSE; [26]) spacecraft has the potential of rastering as fast as 0.5 s or less which
would provide full coverage in 5 s (without gaps). The wavelength range of SISA is both
different and wider than that of MUSE, offering a wide array of plasma diagnostics so that
2D maps of, for example, electron density (at multiple temperatures) and the magnetic field
will be obtained. We note that several SISA diagnostic, such as the measurements of coronal
magnetic fields and departures from electron Maxwellian distributions, are not available
to SOLAR-C/EUVST. A summary of the predicted performance of SISA is presented in
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Table 4. The ability to obtain diagnostics at 1 s cadence is based on estimates of the signal
in active region cores and flares and the strawman design (described in the SISA paper),
consisting of a single multilayer for the three reflecting surfaces and a 20 cm aperture of the
off-axis telescope.

SISA will be composed of two subsystems: the telescope, an off-axis parabolic mirror;
and the integral field spectrograph, an array of curved slicer mirrors and curved gratings.
The slicer mirrors are placed at the telescope focus and decompose (slice) the image of the
field of view using an array of powered rectangular mirrors, each with a different tilt angle
around the X and Y axes. These will produce a pupil image per slice reflected in different
directions towards the curved gratings, which perform three functions: (i) dispersion of the
incoming beam into its constituent wavelengths, (ii) imaging of the beams on the detector
with the required magnification, and (iii) control of the location of the exit pupil. The
orientations of the gratings are fixed. Each grating will produce the spectrum of each slice
of the field, as shown in Figure 5. The tilt of each grating will be defined to distribute
the spectra on the detectors. SISA will be the first integral field spectrograph in the EUV
spectral range.

Figure 5. Left: Sketch of the functionality of an image slicer. The image slicer acts as a field reformatter,
slicing the entrance field of view and generating one pupil per slice (Note that despite apparent
gaps in the sliced FOV in the figure, it provides a contiguous map when combined). Right: SISA
conceptual layout with a reduced number of slicers. Each curved grating produces the spectrum of
each slice of the field. The tilt angles of the gratings offer flexibility in the geometrical distribution of
the spectra on the detector.

Table 4. Instrument requirements and expected performance of SISA.

SISA Parameter Expected Performance

Spectral Window 1 178–184 Å
Spectral Window 2 221–264 Å
Spectral Resolution 0.05 Å FWHM

Spectral Resolving Power (R) 3560–5160
Field of View 100′′ × 250′′

Spatial Resolution 1′′ in 2 pixels
Temporal Resolution (high signal) 1 s
Temporal Resolution (low signal) 10 s

2.4. Mass and Power

The required resources for LISSAN, FOXSI (including FOXSI-STC), and SISA are given
in Table 5. The mass estimates include a 20% margin on each instrument, whilst the power
requirements include a 30% margin on each instrument. The operating temperatures are
the most stringent constraints for each instrument; particularly relevant are the front-end
electronics (FEE) for LISSAN and the focal-plane assembly (FPA) for both FOXSI and SISA.
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Table 5. Required resources for LISSAN, FOXSI (including FOXSI-STC), and SISA.

Resource LISSAN FOXSI SISA

Mass 370 kg 120 kg 78 kg
Volume 1.96 m3 (105 cm)3 (stowed) 0.5 m3

Power 125 W (peak) 170 W (average) 130 W (average)
Data Rate 25 Mbits/s (peak) 1 Mbits/s (peak) 50 Mbits/s (average)

Operating Temp. 0 ◦C (FEE) −20–0 ◦C (FPA) <−40 ◦C (FPA)

3. Proposed Mission Configuration and Profile

To meet its science objectives, SPARK must be launched at a time when medium-to-
large solar flares can be observed. This can be achieved at any time in the solar cycle except
solar minimum.

3.1. System-Level Requirements

The overlapping fields of view (FOV) of LISSAN, FOXSI and SISA are shown in
Figure 6. A pointing accuracy of 10 arcsecs is required due to the FOV of all of SPARK’s
instruments and the need to point to a chosen active region. The performance drift error
(PDE) is driven by the spatial resolution of SISA and is 0.1 arcsec within a time interval
of one second. The requirement will be fulfilled by further attenuating the spacecraft
PDE with a tip/tilt system. Each instrument suite will carry its own aspect system to
overcome uncertainty in coalignment between the instruments, as the precise knowledge
of the positions of the γ-ray, X-ray, and EUV emissions relative to one another is key to
fulfilling the scientific objectives of the mission. Therefore, each instrument will provide
precise knowledge of the pointing.

LISSAN and the FOXSI HXR telescopes will operate in one nominal observing mode.
SISA will have two operational modes. The first mode (cadence 1) will be for observing
flaring active regions when there is an abundance of EUV radiation. The second mode
(cadence 2) is optimised for weaker signals when the Sun is less active, requiring slower
exposure times. A safe mode will be implemented for each instrument to react to instrument
or spacecraft failure.

3.2. Operations

The SPARK payload is designed to provide synchronized observations that address
specific science questions. Since the instruments will always observe the same targets, the
science operations will not require a large degree of flexibility. As instruments have a FOV
smaller than the full Sun, target selection will be required. Targets will typically be solar
active regions most likely to produce energetic flares. SPARK will allow the community to
submit observing plans for targeted observations.

Science and housekeeping data recorded in the onboard mass memory will be brought
down in raw format for processing on the ground into level 0 format. The nature of
multiple downlink stations may require that data be aggregated and sorted before this
processing. Further pipeline processing will bring data to level-2-derived products via
level-1-calibrated data. Minimal data processing will happen on board, and all the data
will be downlinked for processing on the ground.

3.3. Spacecraft Design

The primary drivers for the SPARK spacecraft design are the accommodation of the
extendable boom for FOXSI and the large mass of LISSAN. The boom will be deployed in
orbit, and alignment between the optics on the spacecraft and the detectors at the tip of the
extendable structure will be performed using the FOXSI tip/tilt mechanism.

SPARK’s payload includes imaging instruments and therefore requires a three-axis
system to minimise spatial blurring. The combination of individual instrument stability
requirements leads to an overall requirement for the PDE of 0.1′′ over 1 second. The
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spacecraft absolute performance error (APE) is 10′′ to allow a 10% error on the smaller SISA
field of view pointing at the correct target. The requirement for the relative performance
error (RPE) is 1′′ for integration times of 1 s. The attitude sensors should include a fine Sun
sensor and a star tracker in order to determine spacecraft pointing relative to the Sun. An
inertial reference unit is required to determine changes in attitude over time.

SPARK’s baseline L1 orbit provides a stable thermal environment such that the thermal
control on the instruments can maintain any required temperature. The spacecraft will have
one side constantly facing the Sun and one side facing cold space all the time. SPARK’s
thermal requirements can be met by a passive cooling system consisting of cold fingers
and radiators.

Figure 6. Fields of view of the three imaging instruments of SPARK overplotted on the EUV 171 Å Sun
from AIA.

SPARK will provide science data downlink to Earth using a K-band 26 GHz antenna.
Even with a reduced ground station contact of 4 hours to obtain 850 Gbits/day (similar
to Euclid), this would be enough to downlink the entire maximum daily data volumes
of 80 Gbit (LISSAN) and 86 Gbit (FOXSI). The SISA maximum daily data volume of
4.3 Tbits/day would be stored using onboard mass memory storage of at least 4 TB, with
synoptic data being communicated to the Earth to choose a subset of events to download
and/or periods to downlink with reduced cadence.

4. Current Status of SPARK

SPARK was initially submitted to the ESA in 2010 as an M-class mission proposal that
included a modified version of LISSAN and FOXSI with different supporting instruments.
More recently, the relevant particle acceleration and transport topical questions were
presented as an ESA Voyage 2050 white paper in 2020 and subsequently published [150].

SPARK in its current form was proposed to the ESA in 2022 as an M-class mission
and reached Phase-2. Development of the individual instruments proposed for SPARK
continues, funded by national efforts. The United Kingdom is developing EUV image
slicer technology for SISA, France is developing X-ray detectors for FOXSI, Germany is
developing grids for LISSAN, and Belgium is developing improved detectors for SISA.
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There is clear support for the goals and implementation of SPARK across the broad
European scientific community in solar physics and beyond. The implementation of SPARK
in this form presents an exciting opportunity for paradigm-shifting observations in the field
of astrophysical particle acceleration and transport, using data from our local laboratory,
the Sun.
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Abbreviations
The following abbreviations are used in this manuscript:

AIA Atmospheric imaging assembly
CME Coronal mass ejection
EIS EUV Imaging Spectrometer on board Hinode
EUV Extreme ultraviolet
EUVST Extreme Ultraviolet High-Throughput Spectroscopic Telescope
EVE EUV Variability Experiment on board SDO
FEE Front-end electronics
FIERCE Fundamentals of Impulsive Energy Release in the Corona Explorer
FPA Focal-plane assembly
FOV Field of view
FOXSI Focusing Optics X-ray Solar Imager
FOXSI-STC FOXSI’s Spectrometer for Temperature and Composition
FWHM Full-width half maximum
GOES Geostationary Operational Environmental Satellite
HXR Hard X-ray
IFS Integral field spectrograph
IRIS Interface Region Imaging Spectrograph
LISSAN Large Imaging Spectrometer for Solar Accelerated Nuclei
MHD Magnetohydrodynamic
MUSE Multi-Slit Solar Explorer
NuSTAR Nuclear Spectroscopic Telescope Array
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RHESSI Reuven Ramaty High-Energy Solar Spectroscopic Imager
SDO Solar Dynamics Observatory
SEP Solar energetic particle
SISA Spectral Imager of the Solar Atmosphere
SPARK Solar Particle Acceleration, Radiation, and Kinetics mission
STIX Spectrometer/Telescope for Imaging X-rays
SXR Soft X-ray
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