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ABSTRACT

The presence of Gaia DR3 provides a large sample of stars with complete 6D information, offering a fertile ground for the
exploration of stellar objects that were accreted to the Milky Way through ancient merger events. In this study, we developed
a deep learning methodology to identify ex-situ stars within the Gaia DR3 catalogue. After two phases of training, our neural
network (NN) model was capable of performing binary classification of stars based on input data consisting of 3D position and
velocity, as well as actions. From the target sample of 27 085 748 stars, our NN model managed to identify 160 146 ex-sifu stars.
The metallicity distribution suggests that this ex-situ sample comprises multiple components but appears to be predominated by
the Gaia-Sausage-Enceladus (GSE). We identified member stars of the Magellanic Clouds, Sagittarius, and 20 globular clusters
throughout our examination. Furthermore, an extensive group of member stars from GSE, Thamnos, Sequoia, Helmi streams,
Wukong, and Pontus were meticulously selected, constituting an ideal sample for the comprehensive study of substructures.
Finally, we conducted a preliminary estimation to determine the proportions of ex-situ stars in the thin disc, thick disc, and
halo, which resulted in percentages of 0.1 per cent, 1.6 per cent, and 63.2 per cent, respectively. As the vertical height from the
Galactic disc and distance from the Galactic centre increased, there was a corresponding upward trend in the ex-sifu fraction of

the target sample.

Key words: Galaxy: evolution — Galaxy: general — Galaxy: kinematics and dynamics — Galaxy: structure.

1 INTRODUCTION

The hierarchical merger hypothesis (White & Rees 1978) has long
been a prominent theory in explaining the formation of galaxies.
Within the framework of the Lambda cold dark matter (ACDM)
cosmology and in light of current observations, a picture has been
constructed in which large galaxies are formed through a process of
hierarchical mergers with smaller satellite galaxies. For instance, the
ongoing merger between the Milky Way (MW) and the Sagittarius
dwarf spheroidal galaxy (Sgr; Ibata, Gilmore & Irwin 1994) provides
direct observational evidence of the anticipated accretion events.
Furthermore, remnants of ancient accretion events have also been
observed in the form of kinematic substructures and stellar streams
(e.g. Zhao, Zhao & Chen 2009; Xue et al. 2011; Zhao et al. 2015;
Helmi 2020).

Facilitated by the availability of high-quality astrometric data for a
large number of stars, the Gaia mission (Gaia Collaboration 2016a)
has initiated a new era in the investigation of Galactic formation. One
of the most notable substructures confirmed through studies based

* E-mail: gzhao@nao.cas.cn
t Visiting Fellow at UCLan.

© 2023 The Author(s).

on Gaia data (Gaia Collaboration 2016b, 2018) is the Gaia-Sausage-
Enceladus (GSE; Belokurov et al. 2018; Haywood et al. 2018; Helmi
et al. 2018; Myeong et al. 2018). It is believed to be the remnant of
the last major merger event experienced by the MW, which was
completed approximately 10 Gyr ago (Gallart et al. 2019; Helmi
2020). Kinematic studies of other substructures, including Sequoia
(Myeong et al. 2019), Thamnos (Koppelman et al. 2019b), and the
Helmi streams (Helmi et al. 1999; Koppelman et al. 2019a) were also
conducted contemporaneously.

On the other hand, spectroscopic surveys such as the RAdial
Velocity Experiment (RAVE; Steinmetz et al. 2006), Sloan Extension
for Galactic Understanding and Exploration (SEGUE; Yanny et al.
2009), LAMOST survey (Zhao et al. 2006, 2012; Deng et al. 2012;
Liu et al. 2013; Luo et al. 2015; Yan et al. 2022), Galactic Archaeol-
ogy with HERMES (GALAH; De Silva et al. 2015), Apache Point
Observatory Galactic Evolution Experiment (APOGEE; Majewski
et al. 2017), and H3 survey (Conroy et al. 2019), provide us with
insights into chemical abundances. The formation and chemical
enrichment history of dwarf galaxies (DG) differs from that of the
MW, and DGs of different masses exhibit distinct chemical evolution
patterns. Based on chemical abundance data obtained from the H3
survey (Conroy et al. 2019), Naidu et al. (2020) identified both
previously known and newly discovered structures, such as Aleph,
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Arjuna, I’itoi, and Wukong. Another chemo-dynamical study that
employed data from the APOGEE DR16 (Ahumada et al. 2020)
revealed evidence for the existence of a metal-poor stellar structure in
the inner Galaxy (Horta et al. 2021), which was previously identified
as the Kraken (Kruijssen et al. 2020) and may be a signature of the
proto-MW (Belokurov & Kravtsov 2022; Rix et al. 2022). With the
support of APOGEE DR17 (Accetta et al. 2022), Horta et al. (2023)
further conducted a comprehensive investigation into the chemical
patterns exhibited by various previously known substructures and
provided an in-depth analysis of their origins. Moreover, chemically
peculiar stars were examined in APOGEE data (e.g. Ferndndez-
Trincado et al. 2019, 2022), offering further insights into the merger
and evolutionary history of the MW.

The incorporation of chemical abundance significantly enhances
the analysis of substructures. However, there is a substantial discrep-
ancy in sample sizes between spectroscopic and astrometric surveys.
The third data release of Gaia (Gaia Collaboration 2023) provided us
with astrometric data for over 1.8 billion stars, of which more than 30
million have 6D phase space information. Concurrently, the number
of sources observed by a single high-resolution spectroscopic survey
is limited to the order of one million (Buder et al. 2021; Accetta
et al. 2022). The LAMOST survey has achieved tens of millions
of spectra, leading to numerous significant findings (e.g. Li et al.
2015; Li, Tan & Zhao 2018; Yan et al. 2018, 2021; Xing et al. 2019,
2023; Zhao & Chen 2021). However, as a median-to-low resolution
survey, the preponderance of its data is confined to information on
metal abundance and a limited number of elements. Given the current
circumstances, it would be highly beneficial for the community to
devise a data-driven methodology that solely relies on kinematic data
to attain comparable selection outcomes as those obtained through
the utilization of multi-element abundance information.

Data-driven approaches have already been utilized in researches
endeavor to detect merger debris within the MW. In the pursuit
of uncovering the aforementioned substructures, several classic ma-
chine learning algorithms have been employed, including KNN (Fix &
Hodges 1951), GMM (Dempster, Laird & Rubin 1977), and HDBSCAN
(Campello, Moulavi & Sander 2013). Recent efforts to identify
stellar streams and kinematic substructures have also incorporated
the use of machine learning algorithms. By performing clustering
using the DBSCAN algorithm (Ester et al. 1996) within a 6D phase
space, Borsato, Martell & Simpson (2020) were able to detect five
high-confidence streams, including one that had not been previously
discovered. Yuan et al. (2020) employed a self-organizing map algo-
rithm (Kohonen 2001; Yuan et al. 2018) within a 4D space of orbital
energy and angular momentum to identify 57 dynamically tagged
groups, most of which belong to previously known substructures
such as the GSE. Building upon the ANODE algorithm (Nachman &
Shih 2020), Shih et al. (2022) developed a novel methodology,
termed the VIA MACHINE, for the identification of cold stellar streams
within data acquired from the Gaia. Through the implementation of
this approach, they were able to successfully identify the presence
of the GD-1 stream (Grillmair 2006). By conducting t-Distributed
Stochastic Neighbor Embedding (t-SNE; Van der Maaten & Hinton
2008) analysis in chemical space, Ortigoza-Urdaneta et al. (2023)
identified seven structures, including the Splash, GSE, the high-«o
heated-disc population, N-C-O peculiar stars, inner disc-like stars,
and two previously unreported structures. Unsupervised learning
algorithms do not necessitate prior labeling of data. Instead, the
algorithms make decisions based on the inherent distribution of
the data. Nevertheless, the absence of a labeling process makes
it challenging to artificially control the behavior of unsupervised
algorithms and to quantify their performance. Consequently, it cannot
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be guaranteed that structures with clustering properties in phase
space are related to ancient merger events. These structures may
also originate from the disruption of local globular clusters (GCs) in
the MW. Therefore, it is important to ensure a pure ex-sifu sample
before using clustering algorithms for detailed analysis.

Deep learning allows computational models that are composed
of multiple processing layers to learn representations of data with
multiple levels of abstraction (LeCun, Bengio & Hinton 2015), it
holds considerable promise as a tool in the search for ex-situ com-
ponents. Through the implementation of supervised deep learning
techniques on a known data set, an optimal model can be derived
for the purpose of classification. Ostdiek et al. (2020) implemented
an neural network (NN) trained to identify accreted stars using only
5D kinematics information and construct a catalogue comprising
767000 accreted stars. Subsequent companion works revealed the
existence of a vast prograde stellar stream in the solar vicinity,
which they named Nyx (Necib et al. 2020a, b). The methodology
presented by Ostdiek et al. (2020) provides an instructive paradigm
for the application of supervised learning to the identification of
merger debris. By pre-training the model on simulated data, it is
able to classify accreted stars labeled at truth level and capture
their major kinematic features. The employment of transfer learning
further improved the model’s ability to adapt to real data of the MW.
However, the absence of radial velocity limits the classification to
kinematic level, as the derivation of integrals of motion requires
full 6D phase space information. With the availability of Gaia DR3
data and the inclusion of photo-astrometric distances derived by the
StarHorse code (Queiroz et al. 2018; Anders et al. 2022), the
sample size of stars with accurately determined full 6D phase space
parameters is no longer a constraining factor. In addition, recent
data releases of spectroscopic surveys have facilitated the tagging
of accreted stars in a more efficient manner, thereby enabling the
improvement of the second phase of network training based on
previous research.

In this study, we present a deep learning methodology for the
identification of ex-situ stars through the utilization of 6D phase
space parameters and the actions. Following the completion of two
training phases, our NN model demonstrated the ability to effectively
identify ex-situ components comprised of DGs, GCs, and merger
debris within the target sample of Gaia DR3. We conducted a
preliminary analysis of the NN classified sample and dedicate it
to the community in the hope that it could provide novel insights
and inspiration. Further analysis, including clustering and chemical
follow-up, may be performed to fully explore the potential of this
sample and deepen our understanding of the MW’s merger history.

This paper is organized as follows: Section 2 introduces the NN
model, the training process, and the data utilized in this study.
In Section 3, we present the classification results of the NN and
provide an initial analysis of the ex-sifu sample. Section 4 discusses
particular elements involved in our algorithm and analysis. Finally,
we summarize the results of this study in Section 5.

2 METHOD

2.1 Base model

As in Ostdiek et al. (2020), we constructed an NN model that was
trained on synthetic data to learn fundamental kinematic features.
The NN model was developed and trained using the Keras (Chollet
etal. 2015) library, with TensorFlow (Abadietal. 2015) serving as
the backend framework. The input to the NN consists of 3D position
and velocity data in the Cartesian coordinate system. The model
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comprises five fully connected hidden layers, with the intermediate
three layers containing 128 nodes and the remaining two layers
containing 64 nodes. We selected the Rectified Linear Unit (ReLU;
Hahnloser et al. 2000) as the activation function, and applied batch
normalization prior to each activation. The output layer of the NN is
composed of a single node that uses a sigmoid activation function.
This function scales the output to fall within the range of 0-1,
where values closer to 1 indicate a higher probability of the star
being ex-situ. We refer to this NN model as NN_FIRE in subsequent
discussions.

2.1.1 Synthetic data

As a supervised learning algorithm, the performance of the NN
is greatly influenced by the labels of the training set. To obtain
truth level ex-situ labels, we train our NN with simulated data,
where the accretion history of each star is traceable. The state-of-
the-art cosmological hydrodynamic simulations, specifically FIRE-
2 (Hopkins et al. 2018; Wetzel et al. 2023), provide us a robust
platform for our training endeavors. Rather than directly employing
the raw data of FIRE-2 simulations, we opted to utilize a mock
Gaia catalogue constructed by Sanderson et al. (2020) to facilitate
the alignment between the patterns of the simulated data and the
observational data from Gaia satellite.

Detailed elaboration of the synthetic catalogue is presented in
Sanderson et al. (2020), and reviewed by Ostdiek et al. (2020). The
mock catalogues are derived from three MW-mass galaxies from the
Latte suite of FIRE-2 simulations, namely m121, m12f, and m12m.
Assuming each star particle of mass &~ 7000 Mg represents a single
stellar population, Sanderson et al. (2020) sampled synthetic stars
following the algorithm described in Sharma et al. (2011). Three dif-
ferent local standard of rest (LSR) were deployed in each simulated
galaxy as ‘solar viewpoints’ to construct the synthetic catalogue. The
data structure of the synthetic catalogue resembles that of the Gaia
catalogue, which supplies astrometric and photometric data. As in
Ostdiek et al. (2020), we utilized data from all three LSRs in the
ml21, encompassing a total of 47673267 synthetic stars. We only
selected stars with available error-convolved radial velocity, which
covers a distance range of 0-3 kpc. The data utilized included error-
convolved right ascension (ra), declination (dec), proper motion
in right ascension (pmra), proper motion in declination (pmdec),
and radial velocity (radial_velocity). In addition, the true
LSR-centric distance (dhel_true) was used instead of the error-
convolved parallax (parallax) to ensure compatibility with the
final model. The astrometric data were then transformed into 3D
position and velocity in the Galactocentric Cartesian coordinate
system using the astropy package (Price-Whelan et al. 2018),
as the input of the NN.

Although the synthetic catalogue is build to mock Gaia DR2,
we note that it is not necessary to reproduce the exact selection
function of the latest data release of Gaia. The primary objective of
NN_FIRE is to acquire fundamental knowledge of stellar kinematics.
The inconsistency between the distribution of training samples and
target samples will be resolved in the subsequent training process, as
described in Section 2.2.

To identify the ex-situ stars in the synthetic catalogue, we made use
of a text file named star_exsitu_flag_600.txt in the m121
directory (Wetzel et al. 2023), which provides a binary flag for each
star particle at redshift equals to 0. A flag value of 1 indicates that
the star particle is ex-situ, while a value of O indicates that it is in-
situ. Star particles are classified as ‘ex-situ’ if they originated at a
spherical distance greater than 30 kpc comoving from the centre of
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the primary galaxy (Bellardini et al. 2022). Synthetic stars generated
from the same star particle are assigned the same parent id, which
is the array index of the star particle. We labeled each star with the
binary flag corresponding to the index in the text file, resulting in a
total of 380326 ex-situ stars.

2.1.2 Training and evaluation

Our training process adheres to the standard workflow within the
Keras framework. We employed the Adam optimizer (Kingma &
Ba 2014), with an initial learning rate of 107>. A learning rate
reduction mechanism was implemented, whereby if the validation
loss failed to decrease for five consecutive epochs, the learning rate
would be automatically reduced to half of its original value. The
minimum learning rate threshold was set at 107, Furthermore, to
avoid overfitting, the training process would be terminated if the
validation loss failed to decrease for 10 epochs. However, this early
stopping mechanism was not triggered during a total of 50 epochs of
training.

The synthetic stars in our data set were partitioned into training,
validation, and test sets at a ratio of 6:2:2. The 6D phase space data in
these three data sets were normalized using a StandardScaler
from the sklearn.preprocessing module (Pedregosa et al.
2011), which was fit to the training set. The partitioning process was
accomplished using the sklearn.train _test_split function,
during which we employed stratified sampling on the label to ensure
that the proportion of ex-situ stars remained consistent across all
data sets. However, ex-sifu stars comprise a very small fraction
of our synthetic sample, which presents a classification problem
with an extreme class imbalance. One common method to address
class imbalance is sample-weighted training, but determining the
appropriate weight can be challenging. If the weight is set too
high, it can skew the distribution of the prediction and result in
poor classification performance. Conversely, if the weight is set too
low, it may not effectively address the issue of imbalanced sample
size. Therefore, we aim to solve this problem by choosing a proper
loss function. The Focal Loss is a loss function introduced by
Lin et al. (2017) to mitigate the issue of class imbalance during
training in tasks such as binary classification. This function applies a
modulating term to the cross-entropy loss to focus on the samples that
are challenging to classify. The function is mathematically defined
as

_ J—= = p) log(p)
FLip) = {—py log(1 — p)

ify=1

ify=0 M

where p denotes the output of the classifier and y represents a
tunable hyper parameter. In our training process, we adopted the
default setting of y = 2. As the confidence in the correct class
increases, the scaling factor decays to zero, automatically down-
weighting the contribution of samples that are easier to classify
during training and rapidly focusing the model on more challenging
samples.

Due to the extreme class imbalance in our classification problem,
the commonly used metric of accuracy is not a suitable measure
of NN classification performance. Accuracy reflects the proportion
of samples that are correctly classified within the entire sample.
However, in our sample, less than 1 per cent of the stars are labeled
as ex-situ. As a result, a classifier that indiscriminately assigns all
stars as in-situ could easily achieve an accuracy rate exceeding 99
per cent, even in the absence of any classification activity.

In order to adopt a more appropriate metric, we initially consider
ex-situ stars as positive samples while in-situ stars the negative
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samples. With respect to the classification results, ex-situ samples
that are accurately identified by the NN are defined as true positive
samples (TP). In contrast, ex-situ samples that are erroneously
classified as in-situ by the NN are defined as false negative samples
(FN). Correspondingly, in-situ samples that are accurately identified
by the NN are regarded as true negative samples (TN), while in-
situ samples that are erroneously classified as ex-situ by the NN
are regarded as false positive samples (FP). To evaluate the purity
of ex-situ samples selected by the NN, we employed the metric of
precision,
TP

TP + FP’
Furthermore, the true positive rate (TPR), commonly referred to as

recall, illustrates the completeness of the selection

TP
TPR= —. 3)
TP + FN

Additionally, we calculated the false positive rate (FPR) to quantify
the proportion of in-situ samples that were incorrectly classified as
ex-situ,

Precision =

@

PP
" TN 4+FP’

Precision and recall are often considered to be conflicting measures,
making it challenging for a classifier to achieve high values for both
simultaneously. In the task of identifying ex-situ stars, our goal is to
ensure that the ex-situ samples selected by the NN have a high degree
of purity, which corresponds to a higher precision. Similarly, we also
strive to minimize the FPR. However, this may result in sacrificing
the completeness of the ex-sifu sample, leading to a relatively lower
recall.

The output of an NN consists of a series of continuous values.
In order to map these values to discrete labels, it is necessary to
establish a threshold. The final classification result can be expressed
as

FPR )

1 if p > threshold

0 if p < threshold (3)

Prediction = {
where p represents the raw output of the NN. The choice of threshold
can have a significant impact on the performance of the classifier,
as different thresholds will result in varying levels of TPR and FPR.
By selecting a series of thresholds, a corresponding series of TPRs
and FPRs can be obtained, allowing for the construction of a receiver
operating characteristic (ROC) curve. According to the performance
of NN_FIRE on the test set, we present the ROC curve as shown in
Fig. 1. The area under the curve (AUC) is a quantitative measure
of classifier performance, with values ranging from 0 to 1. An AUC
value closer to 1 indicates superior classifier performance. In this
case, NN_FIRE obtained an AUC value exceeding 0.98, denoting an
excellent result. As represented by the gold star, an ideal classifier
would achieve a TPR of 1 and a FPR of 0, corresponding to a
precision of 100 per cent. However, as previously discussed, this is
not achievable in practice and a trade-off must be made between the
purity and completeness of the ex-situ sample. When the threshold
was established at 0.5, NN_FIRE had a precision of 80.1 per cent and
a recall of 34.5 percent. Elevating the threshold to 0.75 yielded a
precision of 98.3 per cent, but diminished the recall to 13.4 per cent.
As NN_FIRE is not the final model, we will refrain from discussing
the threshold setting in detail at present. Based on the analysis of the
ROC curve, we consider that the initial training phase has imbued
NN_FIRE with the ability to identify ex-situ stars from a kinematic
perspective.
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Figure 1. As demonstrated by the ROC curve, the NN_FIRE achieves an
AUC of 0.98 on the test set. The performance of a perfect classifier, indicated
by a star, has a TPR of 1 and an FPR of 0. The dashed line represents the
performance of a random guess.

log Jg, log J_, Jg

XY, Z Vy, Vy, V,

‘ Concatenate layer

Dense 64
Dense 64

Probability

Figure 2. The parallel model comprises two components: the NN_FIRE
network and a sub-network that processes actions. The outputs of these two
components are concatenated and subsequently processed by a series of dense
layers. The weighted layers of the NN_FIRE network are frozen, as indicated
by their grey coloration.

2.2 Parallel model

In the context of NN regression tasks, the distribution of labels
within the training set warrants substantial attention. Predictions
outside this range or in sparse parts of the distribution are regarded
as extrapolations of the model. Unlike regression tasks where label
values are continuous, our classification task has only two categories,
corresponding to label values O and 1. In this case, caution should
still be exercised regarding extrapolation, but the focus should be
on the distribution of NN input parameters. During the training
phase of NN_FIRE, only sources with distances less than 3 kpc are
considered. However, the target sample may encompass distances
reaching tens of kiloparsecs. Moreover, even if the simulated data is
derived from a synthetic Gaia survey catalogue, it may not precisely
align with observational data. Therefore, we need to design a training
framework to improve our model’s performance on the target sample.

Instead of performing the standard workflow of transfer learning
as in Ostdiek et al. (2020), we opted for a more innovative approach.
Based on NN_FIRE, a parallel model was constructed as shown
in Fig. 2. The training methodology employed for this model
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was similar to that of the base model, but with a shorter training
period. Furthermore, the StandardScaler was supplanted by a
RobustScaler tofacilitate improved normalization of the realistic
data. All the weights of the base model are frozen during the training
process and its output is concatenated with the output of a sub-
network that takes Jg, J. and J, as input, which denotes the radial,
vertical, and azimuthal actions, respectively (e.g. Binney 2012;
Sanders & Binney 2016). To enhance the normalization process,
the logarithm of Jg and J, was taken. The concatenated output will
be further processed by the rest two dense layers, finally giving
the classification result. The inputs of the sub-network introduce
the potential of the MW into the parallel model and transform the
model from a purely kinematic-based classifier to one that is based
on dynamics. In this way, the parallel structure not only solves the
extrapolation problem to a certain extent, but also maximizes the
utilization of all available information of the 6D parameters. We
denote this model as NN_parallel in the following text.

2.2.1 Observational data

The third data release of Gaia (Gaia Collaboration 2023) provided
radial velocity measurement for over 30 million stars, thereby
presenting an ideal target sample for our study. To overcome
the limitation of parallax measurement, we employed the photo-
astrometric distance estimated by Anders et al. (2022). We adopted
stars with available radial velocity and photo-astrometric distance
within Gaia DR3, and imposed certain restrictions to ensure the
quality of the data, which include a renormalized unit weight error <
1.4 (e.g. Lindegren et al. 2021), a radial velocity error < 20 kms™!,
and a distance error < 30 per cent.

In order to derive robust dynamic parameters, we employ a
Monte Carlo methodology. For each observational parameter, we
perform 100 times of random sampling, which follows a Gaussian
distribution with the observed quantity serving as the mean and the
error of the observed quantity as the standard deviation. In this way,
each star is represented by 100 sets of Monte Carlo observations,
which are then transformed into Cartesian positions and velocities.
We apply a right-hand Galactocentric Cartesian coordinate system
(x, y, z), where the x-axis is oriented from the Sun towards the
Galactic centre, the y-axis aligns with the direction of the MW’s
rotation, and the z-axis points towards the North Galactic Pole. We
assume the circular speed at the Sun as 232.8 kms~! and the Solar
Galactocentric distance as 8.2 kpc (McMillan 2017). The distance
from the Sun to the Galactic plane is set at 20.8 pc (Bennett & Bovy
2019). For the solar peculiar motion, we adopt the value reported by
Schonrich, Binney & Dehnen (2010), yielding (U, V, W) = (11.1,
12.24, 7.25) kms~!. Subsequently, we calculate the corresponding
actions and orbital parameters using AGAMA (Vasiliev 2019), with
the assumption of McMillan (2017) potential and the application
of Stéckel approximation as described by Binney (2012). The
median values of the dynamic parameters are adopted as the final
estimation.

It is important to note that in the region behind the Galactic
centre and close to the Galactic plane, the distances of a small
number of stars may be overestimated. Since Anders et al. (2022)
utilized the extinction curve provided by Schlafly et al. (2016), whose
fitting quality for the inner Galaxy is relatively inferior (see fig.
10 in Schlafly et al. 2016), we consider that this overestimation
could potentially be attributed to extinction issues. Consequently, we
remove stars in the region defined by: x > 0 kpc, z > -3 kpc, 1
> 6 kpc, -50° < I < 50° and -10° < b < 15°. Here, r,. denotes
the Galactocentric distance, while / and b represent the Galactic
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longitude and Galactic latitude, respectively. Given the asymmetric
distribution of the stars whose distances may be overestimated, we
adopt an asymmetric criterion. Furthermore, we exclude stars with
positive total energy, leaving a target sample of 27 085748 stars,
which is comparable in magnitude to the sample size of stars with
5D phase space parameters in Ostdiek et al. (2020).

2.2.2 Chemical tagging of the training samples

For the purpose of training the NN_parallel model to be applica-
ble to the target sample, it is necessary to construct a new data set
based on observational data. The primary challenge in this process
is determining an appropriate method for labeling the observational
data. Ostdiek et al. (2020) implemented a selection criterion, referred
to as the ZM method (e.g. Herzog-Arbeitman et al. 2018), where
stars with [Fe/H] <—1.5 dex and |z| > 1.5 kpc were labeled as ex-
situ. Nevertheless, given that the input of our NN consists solely of
dynamic parameters, it is desirable to label ex-situ and in-situ stars
using a criterion that is independent of dynamics, which ensures that
the sample remains dynamically unbiased. Thus the measurement
of chemical abundance is considered to be the ideal criterion for
the tagging of ex-sifu components in observations, as it offers an
independent perspective, and serves as a reliable indicator of stellar
origin.

In pursuit of a large sample of stars with detailed chemical
abundances, we cross-matched the Gaia DR3 target sample with
APOGEE DR17 catalogue (Accetta et al. 2022). Adhering to the
online documentation of APOGEE DR17 and Holtzman et al. (2015),
we only adopted stars that satisfy the following criteria:

(i) No BAD bit in STARFLAG or ASPCAPFLAG,
(i) 3500 K < T < 6000 K,

(iii) S/N > 70,

(iv) VSCATTER < 1 kms™!,

(v) X_Fe_FLAG == 0 and X_FE_ERR < 0.15 dex.

Upon applying these selection parameters, a total of 254 046 stars
remained. Additionally, we utilized the value-added catalogue (VAC)
of LAMOST DRS presented by Li et al. (2022), which contains
abundance information for 10 elements. The elemental abundances
were estimated by an NN trained on APOGEE DR17 data and
show high consistency with APOGEE measurements. Therefore, we
further adopted 562 626 stars with X_FE_ERR < 0.10 dex in the VAC
that are in common with our target sample as a supplement to the
data set, resulting in a final sample size of 816 672 stars.

As demonstrated in Hawkins et al. (2015), the Galactic com-
ponents can be labeled using [Al/Fe] and [Mg/Mn]. Magnesium
is the first element to be affected by Type II supernovae, while
manganese is produced in higher fractions compared to iron in Type
Ia supernovae. Aluminium, on the other hand, is produced by Type
II supernovae and is sensitive to the initial abundance of carbon and
nitrogen, which originate from helium burning or asymptotic giant
branch evolution. As a result, the [Mg/Mn] and [Al/Fe] distributions
of ex-situ stars are expected to differ from those of stars formed
locally in the MW due to differences in their star formation rate and
chemical evolution history. Based on APOGEE DR14 (Abolfathi
et al. 2018), Das, Hawkins & Jofré (2020) introduced the [Mg/Mn]-
[Al/Fe] diagram and discovered a’blob’ of accreted stars located
in the region of high [Mg/Mn] and low [Al/Fe], which is distinct
from the stellar disc. Horta et al. (2023) and Ortigoza-Urdaneta et al.
(2023) also characterized numerous substructures distributed within
this region, including the GSE, Sequoia, and Heracles. Furthermore,
recent studies have attempted to extract the ex-situ components in
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Figure 3. As depicted by the red dashed line in the [Mg/Mn]-[Al/Fe] plane, our criterion divides the plane into two distinct regions. The region to the left of the
line is predominantly occupied by ex-situ stars, while the region to the right is primarily composed of in-situ stars. The middle and right subplots illustrate the
distribution of stars labeled as ex-situ in E — J¢ space and velocity space, respectively. Each subplot is colour-coded to represent the number density of stars,
with warmer colours indicating higher densities for ex-situ stars and darker colours indicating higher densities for in-situ stars.

the [Mg/Mn]-[Al/Fe] diagram (e.g. Horta et al. 2021; Carrillo et al.
2024; Feltzing & Feuillet 2023). However, most of these efforts have
focused primarily on the GSE region. As noted by Hasselquist et al.
(2021) and Fernandes et al. (2023), satellite galaxies of the MW
such as the Large Magellanic Cloud (LMC), the Small Magellanic
Cloud (SMC), and the Sgr exhibit relatively low [Mg/Mn] values.
With the aim of uniformly distinguishing between the ex-situ and
in-situ components, it may be more effective to select a region that
encompasses as many DGs and substructures as possible, rather than
focusing on a specific accretion component such as the GSE.

We performed a segmental analysis of our training samples, as
depicted in Fig. 3. Stars were labeled as ex-situ if they satisfy the
following selection criteria:

[Al/Fe] < 0.00 if [Mg/Mn] > 0.45
[Mg/Mn] > 1.6[Al/Fe] +0.45 if0.13 < [Mg/Mn] < 0.45
[Al/Fe] < —0.20 if [Mg/Mn] < 0.13

(6)

According to these criteria, 11478 ex-situ stars were selected in
our data set. This selection includes member stars of the MW’s
satellite galaxies and GC debris (e.g. Ferndndez-Trincado et al.
2022). Inevitably, it also encompasses a minor fraction of stars
associated with the Galactic disc. As shown in Fig. 3, there is a group
of stars with a v of approximately 230 kms~!, whose distribution
on the E — Jy plane closely resembles that of the disc. Fernandes
et al. (2023) showed that these disc stars occupy the region of low
[Al/Fe] and low [Mg/Mn], which overlaps with the ex-situ region
as defined by equation (6). However, a criterion stringent enough to
exclude these disc stars would also fail to capture the region where
the majority of DGs reside. Upon careful evaluation, we determined
that this classification method is reasonable and the pollution of
disc stars will not have a significant impact on the training of
NN_parallel.

2.2.3 Model performance

Since the weights of the base model are frozen, the chemical
criterion turns out to be sufficient and robust enough to support
the subsequent training of the NN_parallel. During the training
phase, the training samples were divided into training set, validation
set, and test set as in Section 2.1.2. On the test set, NN_parallel
achieved an AUC of 0.98, which is comparable to that of the
NN_FIRE. Employing a default threshold value of 0.5, the NN
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attained a precision of 81.0 percent and a recall of 64.6 per cent,
which already signified an equilibrium between purity and
completeness. This threshold will be utilized in subsequent analysis.
Nevertheless, it is imperative to note that the metric values should
be regarded as intuitive references only, as they are not predicated
on truth-level labels as explicated in Section 2.1.2.

Independent of metrics, we conducted a more comprehensive
analysis of the classification results given by NN_parallel. As
depicted in Fig. 4, the selection made by the parallel model does
not precisely mirror the pattern of the label. The NN_parallel
avoids selecting the disc stars that was incorrectly labeled as ex-
situ through chemical tagging. Conversely, stars selected by the NN
but labeled as in-situ through chemical tagging exhibit chemical
patterns and dynamic characteristics consistent with those of the
thick disc and the GSE. Since the catalogue in Sanderson et al.
(2020) did not contain information about [Al/Fe] or [Mn/Fe], we
were not able to reproduce the workflow of the second training phase
on the simulation. However, based on the results depicted in Fig. 4,
it appears that NN_parallel may offer an even more appropriate
classification result than chemical tagging. A similar situation arose
in Ostdiek et al. (2020), who randomly selected 200 000 synthetic
stars from m12f and labeled them using the traditional ZM selection
method. They then performed transfer learning on an NN pre-trained
on m12i using this data set. After transfer learning, the NN achieved a
precision of 41 per cent and a recall of 47 per cent when the threshold
was set at 0.75. When the threshold was raised to 0.95, the precision
increased to 59 percent while the recall decreased to 13 per cent.
In comparison, the ZM selection method only achieved a precision
of 50.9 percent and a recall of 2.4 percent. Our second training
phase, like transfer learning, is designed to retain the results of the
first training phase while adapting the model to observational data.
The training process enabled the parallel model to overcome the
limitations of both the base model and chemical tagging, resulting
in improved performance. So far, the NN_parallel model is well-
prepared for the classification task of the target sample.

3 RESULT

After two phases of training, the NN_parallel model was applied
to the target sample from Gaia DR3, resulting in the identification
of 160146 ex-situ stars. As illustrated in Fig. 5, the region of the
stellar disc was virtually eliminated, with the majority of the ex-situ
stars being diffusely distributed in the rest of the plane. Specifically,
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Figure 4. Ex-situ stars selected by the NN_parallel model in the test set. The left panel displays the distribution in the [Mg/Mn]-[Al/Fe] diagram, with the
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constituting 0.2 per cent of the samples in the test set.
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Figure 5. Spatial distribution of 160 146 ex-situ stars, as selected by the NN_parallel model, is presented within the Galactic coordinate system. Three
prominent overdensities are identified, corresponding to the Large Magellanic Cloud (LMC), Small Magellanic Cloud (SMC), and Sgr, respectively. Furthermore,
GCs can be found as smaller overdensities. A total of 20 GCs are present in our ex-situ sample.

three prominent spacial overdensities can be intuitively identified,
corresponding to the LMC, SMC, and Sgr, respectively. Although
not as conspicuous as DGs, smaller overdensities in the plot reveal
the presence of GCs, with a total of 20 being found. The further
selection for DGs and GCs is detailed in Section 3.1. Substructures,
which are considered to be disrupted DGs that merged into the MW,
cannot be directly identified in the coordinate space but are crucial
for understanding the MW’s merger history. The selected member
stars from substructures including the GSE, Thamnos, Sequoia,
Helmi streams, Wukong, and Pontus are presented in Section 3.2.
As exhibited in Table 1, we summarize the sample size of the DGs,
GCs, and substructures in the subsequent discussion.

Furthermore, we examined the metallicity distribution of the
ex-situ sample utilizing the metallicity derived from SkyMapper
Southern Survey (SMSS; Wolf et al. 2018; Onken et al. 2019; Huang
et al. 2022) and the Stellar Abundance and Galactic Evolution
Survey (SAGES; Fan et al. 2023; Huang et al. 2023). The SMSS is a
photometric survey of the southern sky, while the SAGES covers the

Table 1. Sample size of the three DGs, 20 GCs, and six substructures

included in Section 3.

Structures N stars
LMC 9822
SMC 1899
Sgr core 3319
Sgr stream 1269
GCs 831
GSE 47521
Thamnos 5291
Sequoia 1714
Helmi streams 1655
Wukong 3140
Pontus 668
Total 77129
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annotated near their corresponding positions. The background illustrates the number density of the ex-sifu sample.

northern sky. By cross-matching our ex-situ sample with these two
catalogues, we obtained 62025 and 18413 common stars, respec-
tively. As shown in the left column of Fig. 6, the ex-situ stars exhibits
a peak metal abundance around —1.4 dex. The peak metallicity of
the SAGES sample is slightly higher at approximately —1.3 dex. We
checked the agreement of metal abundance measurements for the two
samples using 1581 common stars between them, resulting in a good
consistency. However, the measurements of the SAGES samples
were slightly higher than those of the SMSS samples, possibly due
to differences in the filters utilized by the two surveys. Consequently,
the peak metallicity of the ex-situ sample is likely to lie between
—1.3 and —1.4 dex, which is consistent with the typical metallicity
of GSE (e.g. Myeong et al. 2019; Amarante, Smith & Boeche 2020;
Wau et al. 2022). Taking into account both metallicity analysis and
star counts as shown in Table 1, our ex-sifu sample appears to be
composed of multiple components but predominated by the GSE.

3.1 DGs and GCs

In our ex-situ sample, DGs and GCs are the most prominent
structures, exhibiting a distinct clustering in coordinate space. As
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shown in Table A1, we selected three DGs combining the position
and velocity. Moreover, we selected the disrupted portion of the Sgr
by cross-matching with Sgr stream catalogues compiled by Yang
et al. (2019) and Ramos et al. (2022). They are shown here as a
comparison of the Sgr core. The member stars of these four systems
are plotted on the celestial sphere in Fig. 7, where the LMC, SMC,
and Sgr core exhibit distinct spatial clustering, while the Sgr stream
displays a more extended distribution. Thereafter, we removed the
selected member stars of the DGs from our sample, which made
the overdensity regions of the GCs more prominent, facilitating the
subsequent selection.

For each GC, we primarily select its member stars using the
centre coordinate and angular size () from references listed in
Table A2. We retain stars within a projected distance (dy;) to the
GC centre of dyoj < 1.5 x 6, where 1.5 x 6 corresponds to three
times the angular radii. Subsequently, we verify whether the selected
GC candidates exhibit similar motion properties by examining their
proper motion and radial velocity. Outliers in proper motion phase
space are manually eliminated, and stars with radial velocity outside
the range of u,y £ 30, are further removed. Here, u., represents
the median radial velocity of a GC, and o, is half the difference
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Figure 8. The member stars of the six substructures, as selected using the criteria outlined in Table A3, are depicted in four distinct phase spaces. Each
substructure is represented by a unique colour. The background and the contours illustrate the number density of the remaining 143 006 ex-situ stars after the

removal of DGs and GCs.

between the corresponding value of the 84th percentile and 16th
percentile. We only selected GCs with more than 10 member stars.
This resulted in a total of 20 GCs, all of which are classified as ex-situ
in Belokurov & Kravtsov (2023).

The metric values, such as precision and recall, provide an
indication of the average classification ability of the overall sample.
While the NN demonstrates a high degree of accuracy in identifying
certain portions of the sample, its performance may be somewhat
diminished when classifying more challenging portions. As DGs
and GCs exhibit distinct spatial clustering, their identification by the
NN_parallel represents a relatively minor test of its capabilities.
The true potential of the NN is further demonstrated by its ability
to accurately identify member stars of substructures that no longer
cluster in coordinate space.

3.2 Substructures

Prior to the selection of substructures, we excluded the member stars
of DGs and GCs as identified in Section 3.1, which was necessary
to prevent any overlap with the regions where substructures reside
in the phase space. During the selection process, we adopted an
approach similar to that of Naidu et al. (2020), where each time
member stars of a substructure was selected, we removed them from
the sample to prevent their influence on the subsequent selection
of other substructures. In total, 143 006 ex-situ stars were included
in our analysis. We then selected 59989 member stars from six
substructures according to the order and criteria outlined in Table A3.

Our selection focuses on substructures including the GSE, Tham-
nos, Sequoia, Helmi streams, Wukong (also known as LMS-1), and
Pontus. Fig. 8 displays the distribution of their member stars in four
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Figure 9. Ex-situ fraction as a function of |z|. The region with |z| below
0.6 kpc is considered as the thin disc, while the region with |z| between
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below 10 kpc is occupied by the halo. Different regions are represented in
distinct colours, and the average ex-situ fraction is indicated by horizontal
dashed lines in the corresponding region. The red horizontal lines indicate
the average ex-situ fraction of the target sample.

phase spaces. The second subplot presents an action diamond, with
Jiotal defined as the sum of Jg, J,, and |Jo| (e.g. Myeong et al.
2019). In the third subplot, we characterize the semi-major axis
as (Tapo + Tperi)/2, and the eccentricity as (Fapo — Iperi)/(fapo + Tperi)s
where 1,5, and e represent the distances to the apocentre and
pericentre, respectively. The selection criteria, as listed in Table A3,
involve multidimensional linear cuts. Fig. 8 illustrates the projection
of samples with high-dimensional features in four 2D spaces. As a
result, the substructures may display clear linear boundaries in the
corresponding plane.

3.3 Ex-situ percentage

In the presence of a large sample of high purity ex-sifu stars, we
are able to conduct a statistical analysis of the ex-sifu fraction in the
MW. To ensure the robustness of our analysis, we focus exclusively
on target samples located in the region where |z| < 10 kpc. In Fig.
B1, we present a 2D ex-situ fraction map that exhibits significant
layering along the |z|-direction. Based on the layering pattern, we
divide our sample into three distinct regions, corresponding to the
thin disc (]z| < 0.6 kpc), the thick disc (0.6 kpc <|z| < 4 kpc), and
the halo (4 kpc <|z| < 10 kpc). The ex-situ samples, as identified
by the NN_parallel model, were binned according to a bin size
of |z] = 100 pc. We then plotted the ex-sifu fraction as a function
of |z| in Fig. 9, where the x-axis represents the right boundary of
each bin and the y-axis stands for the corresponding ex-situ fraction.
Fig. 9 provides a clear illustration of how the proportion of ex-situ
stars varies with the vertical height from the Galactic disc. It also
shows the proportion of ex-situ stars in the three components of
the MW. The average ex-situ percentages of the thin disc, the thick

MNRAS 527, 9767-9781 (2024)

100, - I | T |
. ——Overall
= 80 ——4 kpc = |z| =10 kpc
& | 0.6 kpc < |z| < 4 kpc
é 60 |z] < 0.6 kpc
= [
e
2 %
@
x
= 20_‘

8.0 2.5 2.0 7.5 10.0 12.5 15.0 A7 R 20.0
R (kpc)

Figure 10. Ex-situ fraction as a function of R is illustrated by the purple line,
which shows the overall trend of the sample. Distributions for the thin disc,
thick disc, and halo as defined in Fig. 9 are depicted in distinct colours. The
standard error of each bin is indicated by the shaded area.

disc, and the halo are 0.1 percent, 1.6 percent, and 63.2 per cent,!
respectively. Consistent with our previous knowledge, the thin disc
is predominantly composed of in-situ stars. In the region of the thick
disc, there is a substantial increase in the proportion of ex-situ stars,
while on average, the thick disc is still primarily composed of in-situ
stars. In contrast, the stellar halo is dominated by ex-situ stars, with
this dominance increasing with |z|.

Fig. 10 presents an alternative perspective in the Galactocentric
cylindrical coordinate system, illustrating the variation in the propor-
tion of ex-situ stars with respect to their distance from the Galactic
centre (R). The data is binned using a bin size of R = 500 pc, and
the x-axis represents the left boundary of each bin. As illustrated by
the purple line in Fig. 10, the fraction of ex-situ stars is less than 2
percent up until R ~12 kpc, and it significantly increases towards
the outskirts of the MW. A general growth in the ex-situ fraction with
increasing R can also be observed in both the thick disc and thin disc,
with the trend being more pronounced in the thick disc. The ex-situ
fraction in the thick disc is higher than that in the thin disc over the
entire coverage of R, which is also indicated by the average values in
Fig. 9. Within the halo, ex-situ stars hold a dominant position and the
curve is mainly influenced by the spatial distribution of member stars
from distinct substructures. When R is less than 5 kpc, the ex-situ
fraction is relatively stable. As R extends beyond 5 kpc, the trend of
the curve begins to be dominated by the GSE (e.g An & Beers 2021;
Wau et al. 2022), exhibiting an upward trajectory until R approximates
12 kpc. Subsequently, the curve commences its decline, aligning with
the spatial distribution trend of GSE member stars (e.g. Naidu et al.
2021).

4 DISCUSSION

4.1 Threshold setting

In Section 3, all the ex-situ stars are selected using a threshold value
of 0.5. This threshold was chosen as it maintains an optimal balance
between precision and recall, as evidenced by the results in the test
set. However, as the metrics are not based on truth-level label, our
choice can only be taken as a reference. In practice, the setting of
threshold may vary depending on the scientific goals. If the goal is to
obtain a purer ex-situ sample, the threshold can be increased. On the

The estimations for both the thin disc and the thick disc yield standard errors
less than 0.01 per cent, while for the halo, the standard error is 0.02 per cent.
All estimated values are rounded to one decimal places for consistency.
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other hand, if a purer in-situ sample is desired, stars with small raw
prediction values from the NN should be selected. Additionally, the
adjustment to threshold value can reduce the impact of samples with
inaccurate observations to a certain extent. By combining a relatively
stringent threshold with a restriction on the error of observations, the
quality of the required samples can be effectively ensured.

If we take one step further, it becomes apparent that the ultimate
goal of both traditional linear segmentation methods (e.g. Nissen &
Schuster 2010) and deep learning methods is to obtain an ex-situ
sample that conforms to experience and previous knowledge. The pri-
mary difference between the two methods lies in their performance.
As demonstrated in Ostdiek et al. (2020), traditional methods struggle
to balance precision and recall, with high recall often accompanied
by low precision. Although deep learning methods are not currently
capable of breaking this deadlock, they are able to achieve higher
recall under the same precision level compared with traditional meth-
ods, and vice versa. Under certain threshold values, an NN model
can even surpass traditional methods in both metrics. The dynamic
classification of stars involves many dimensions of information,
and NN excels at processing high-dimensional data. Traditional
selection methods directly restrict dynamic parameters, providing
clear physical meaning. However, this approach may overlook certain
dimensions and fail to account for potential connections between
parameters of different dimensions. The NN method, on the other
hand, directly outputs a continuous value between 0 and 1. All we
need to do is determine a threshold to divide these continuous values
into two categories. While adjusting the threshold may appear less
physically meaningful than adjusting limits on dynamic parameters,
it is important to note that the physical meaning is already reflected in
the mapping established by the NN from high-dimensional dynamic
parameters to output values. Adjusting the threshold is simply an
intuitive and efficient process to obtain the final classification result.
Moreover, the threshold is a hyperparameter that is independent of
the model structure, enabling the attainment of different classification
outcomes with out necessitating any modifications to the NN itself.
By fine-tuning the threshold, classification results can be tailored to
achieve various scientific objectives and meet specific requirements.

4.2 Result assessment

In contrast to simulations, it is extremely difficult to perfectly distin-
guish between in-situ and ex-situ stars in observations. Consequently,
validating the ex-situ sample identified by NN_parallel presents
a significant challenge, and we have refrained from quantitatively
evaluating the performance of the NN. Nevertheless, as depicted in
Fig. 5, the NN has effectively eliminated the majority of the disc
stars. This is further evidenced by Fig. 8, which clearly shows that
the area where the disc is located has been accurately deducted. In
Section 3, we present a selection of member stars from DGs, GCs,
and substructures within our ex-sifu sample. The member stars are
selected based on the criteria established in the literature, without
the use of any clustering algorithm. This approach was chosen as
a quick and convenient means to demonstrate the potential of our
algorithm and to verify the reliability of our ex-sifu samples. It
should be noted that most of the selection methods employed are
relatively conservative. As such, the selected member stars are not
exhaustive, as evidenced by the remaining overdensities in Fig. 8. In
forthcoming studies, clustering algorithms will be employed to fa-
cilitate more comprehensive investigations and detailed examination
of each substructure. Furthermore, the origin of the substructures
and potential correlations between various substructures will be
investigated through simulations (e.g. Amarante et al. 2022).
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In Section 3.3, we provided a comprehensive illustration of the
variation in the proportion of ex-situ stars with respect to the vertical
height from the Galactic disc and the distance from the Galactic
centre. However, it is important to note that our results are subject
to the selection effect of Gaia and the performance of the NN. As
such, the result we present only reflect the analysis of our current
sample. We divide our sample into three distinct parts according to the
layering pattern in Fig. B1, which do not precisely align with the three
components of the MW as defined canonically (Bland-Hawthorn &
Gerhard 2016). The estimation of the proportion of ex-situ stars in the
thin disc, thick disc, and halo should be considered as preliminary.
What we present is far from a definitive conclusion but rather a
possibility for statistical exploration of the ex-sifu components within
the MW. Despite the current limitations, we believe that our study
provides novel insights and serves as a catalyst for future research
endeavors.

5 CONCLUSION

In this work, we developed a deep learning methodology to identify
the ex-situ stars within Gaia DR3. Our base model, referred to as
NN_FIRE, was built to learn fundamental kinematic features. The
training of NN_FIRE was conducted on a synthetic Gaia catalogue
derived from a MW-mass galaxy from the Latte suite of FIRE-2
simulations, specifically the m12i. The input for NN_FIRE consists
of 3D position and velocity data, which are transformed from ra,
dec, pmra, pmdec, radial velocity, and dhel_true. The
output of the NN is a series of continuous values ranging from 0 to
1, which can be interpreted as the probability of a star being ex-situ.
According to the truth-level label, the NN_FIRE model achieved
an AUC exceeding 0.98 on the test set. At a threshold of 0.5, we
obtained a precision of 80.1 per cent and a recall of 34.5 per cent. By
increasing the threshold to 0.75, the precision escalated to as high as
98.3 per cent.

Based on NN_FIRE, a senior model noted as NN_parallel was
built, which processes dynamic data derived from real observations
of Gaia. During the training phase of NN_parallel, the weights
of the base model were frozen. The output of the base model was
concatenated with the output of a sub-network that processes Jg, J.,
and Jo. We adopted stars with available radial velocity and photo-
astrometric distance estimated by Anders et al. (2022) within Gaia
DR3 as our target sample and cross-matched it with the APOGEE
DR17 catalogue and LAMOST DRS8 VAC to build a data set with
elemental abundance information for training NN_parallel. The
stars were labeled using a chemical tagging method, as outlined
in Section 2.2.2, which performed a segmental selection in the
[Mg/Mn]-[Al/Fe] plane. Although the chemical tagging method did
mix some disc stars into the ex-situ sample, with the aid of the first
training phase, NN_parallel overcame this problem and produced
better results than selecting solely through chemical criteria.

Out of the 27085748 stars in the target sample, the
NN_parallel model successfully identified 160 146 ex-situ stars.
According to the metallicity distribution, the ex-situ sample is
composed of multiple components, with the GSE being the most
prominent. A significant number of member stars from the LMC,
SMC, Sgr, as well as 20 GCs were found in the ex-situ sample.
Additionally, member stars from substructures including the GSE,
Thamnos, Sequoia, Helmi streams, Wukong, and Pontus were also
selected. The identification of these member stars not only verifies
the reliability of our ex-situ sample and our algorithm but also
provides a substantial sample for future research on DGs, GCs,
and substructures. Moreover, we provided an intuitive illustration
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demonstrating an increase in the ex-sifu fraction as the vertical
height from the Galactic disc and the distance from the Galactic
centre increase. Finally, We conducted a preliminary estimation of
the proportion of ex-situ stars in the thin disc, thick disc, and halo,
yielding percentages of 0.1 per cent, 1.6 per cent, and 63.2 per cent,
respectively.

This study serves as a prior work, with the primary objective
of introducing our proposed algorithm and providing a reliable
large sample of ex-situ stars. The findings delineated herein are the
product of a preliminary analysis of our ex-sifu sample. While these
findings do not encompass the full scope of potential results, we
posit that they effectively underscore the viability and promise of
our proposed methodology. It is our aspiration that this research will
bring the community fresh insights and inspiration regarding the
evolution and merger history of the MW. Looking ahead, we plan
to augment our research by incorporating simulations, conducting
chemical abundance analyses, and employing clustering algorithms
to delve deeper into our findings. We eagerly anticipate unearthing
new revelations in this exciting field of study.
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Table A1. Summary of the selection criteria we adopted to select DGs and the literature we consulted.

Structures Position Criteria References
LMC o = 80°.893 860, § = —69°.756 126 dproj=12°; 160 < RV < 348 (km s7hy; (H(2)
1.2 <PM, <25 (masyr~!); —=0.7 < PM; < 1.5 (masyr~!)

SMC o = 13°.186 87, § = —72°.8286 dproj$8°; 71 £ RV £ 220 (km shy; (1))
0.2 < PM, < 1.8 (masyr~'); —1.8 < PM; < —0.8 (masyr~!)

Sgr core A ~0° Bx1°.5 |B] < 10°; b <0°;90 < RV < 220 (kms™'); 34
—35<PM, < —2(masyr—); =2.5 < PM; < —0.5 (masyr—!)

Sgr stream Cross-match with Sgr stream catalogues 5)(6)

(A, B) are coordinates in the right-handed coordinate system with respect to the Sgr stream as in Cunningham et al. (2023), dpo; represents the
projected distance on the celestial sphere.

References: (1) Nidever et al. (2020); (2) Fernandes et al. (2023); (3) Vasiliev, Belokurov & Erkal (2021); (4) Cunningham et al. (2023); (5) Yang
et al. (2019); (6) Ramos et al. (2022).

Table A2. The table exhibits the properties of 20 GCs we selected, and the literature we referred to during the selection.

Name N stars Centre Angular size PM, PM; RV References
(a, 8) (arcmin) (mas yrfl) (mas yr— 1y (kms™1)
NGC 3201 143 10M17m36.828, —46°24'44.9” 18.2 7.870 ~ 8.771 —2.363 ~ —1.438 468.14 ~ 506.36 (1H(2)
NGC 5904 127 15M18M33.225, 402°04'51.7" 17.4 3.786 ~ 4.483 —10.284 ~ —9.503 36.01 ~ 69.77 (1)(©2)
NGC 5272 86 13h42m11.628, +28°22/38.2" 16.2 —0.458 ~ 0.176 —2.894 ~ —2.362 —161.77 ~ —131.13 (H(2)
NGC 6341 47 17M17™07.39%, +43°08'09.4" 11.2 —5.144 ~ —4.646 —0.914 ~ —0.445 —133.81 ~ —112.20 (1))
NGC 2808 40 09"12™03.10%, —64°51'48.6" 13.8 0.787 ~ 1.271 —0.172 ~ 0.618 89.55 ~ 12543 (H(2)
NGC 7089 40 21h33m27.028, —00°49'23.7" 12.9 3.141 ~ 3.708 —2.480 ~ —1.906 —17.50 ~ 10.02 (1))
NGC 288 39 00"52M45.248 | —26°34'57.4" 19.2 4.033 ~ 4.328 —5.877 ~ —=5.592 —51.54 ~ —36.89 (H4)
NGC 362 37 01"03™14.26°%, —70°50'55.6" 12.9 6.426 ~ 6.963 —2.944 ~ —2.373 209.43 ~ 234.15 (1))
NGC 1904 35 05"24m10.59%, —24°31'27.3" 8.7 2.292 ~ 2.623 —1.704 ~ —1.473 200.14 ~ 215.42 2)(3)
NGC 6101 32 16M25m48.128, —72°12/07.9” 10.7 1.655 ~ 1.867 —0.360 ~ —0.159 358.13 ~ 373.06 (1))
NGC 1851 28 05"14m06.76°, —40°02/47.6" 11.0 2.053 ~ 2.273 —0.886 ~ —0.498 309.92 ~ 326.88 (1)(2)
NGC 6779 27 19M16™35.57¢, +30°11'00.5” 7.1 —2.174 ~ —1.854 1.431 ~ 1.759 —148.02 ~ —125.18 (1)(©2)
NGC 4590 25 12h39M27.985, —26°44/38.6" 12.0 —2.802 ~ —2.582 1.592 ~ 1.888 —100.39 ~ —87.51 (1H(2)
NGC 5024 24 13M12M55.25%, +18°1005.4" 12.6 —0.274 ~ —0.029 —1.468 ~ —1.234 —71.21 ~ =52.03 (1)(Q2)
NGC 5466 20 14h05M27.29%, +28°32/04.0" 11.0 —5.415 ~ =5.227 —0.866 ~ —0.736 104.73 ~ 112.14 (H(Q2)
NGC 5286 18 13h46m26.81%, —51°22/27.3"” 9.1 —0.074 ~ 0.520 —0.390 ~ 0.049 51.69 ~ 72.63 (1))
NGC 6934 18 20"34M11.37%, 4+07°24'16.1" 5.9 —2.743 ~ —2.547 —4.880 ~ —4.559 —419.38 ~ —399.28 (1H(2)
NGC 1261 16 03h12m16.21%, —55°12/58.4” 6.9 1.538 ~ 1.721 —2.210 ~ —2.010 60.74 ~ 81.34 (1))
NGC 2298 16 06"48™59.415, —36°00'19.1” 9.6 3.184 ~ 3.406 —2.253 ~ =2.065 141.01 ~ 158.16 (H@)
NGC 6981 13 20M53m27.708, —12°32'14.3"” 59 —1.325 ~ —1.175 —3.427 ~ —3.294 —334.19 ~ —322.34 (1)(©2)

In particular, the PM,, PM;, and RV columns respectively indicate the minimum and maximum values of the proper motion and radial velocity of the samples
obtained by the selection method introduced in Section 3.1. References: (1) Goldsbury et al. (2010); (2) Sinnott (1988); (3) Di Criscienzo et al. (2006); (4)
Shao & Li (2019).

Table A3. Summary of the selection criteria we employed to identify the substructures and the literature we utilized for reference.

Substructures Criteria References
GSE IL.| < 0.5(x10% kpckms™1); 30 < /7, < 50 (kpc!/? km'/2 s71/2); rypo < 40 (kpe) Q)
Thamnos n<—04; 1.8 < E < —1.6 (x 10° km? s72) (3)4)
Sequoia —0.65<n<—04;—1.35 < E < —1.0 (x 10° km? s72) 3)
Helmi streams? 0.75 < Jp < 1.7(x 103 kpc km s, 1.6 < Ly < 3.2(x103 kpc km s 4)(5)
Wukong? 0 < Jy < 1.0(x10% kpckms™'); —1.7 < E < —1.15 (x 10> km? s72); (4)(6)

Ly > 2.0(x10® kpckms™1);
(J; — I )it > 0.3; 90° < arccos (L,/L) < 120°
Pontus —1.72 < E < —1.56 (x 10° km? s72); =470 < Js < 5(kpckms™); (7)(@8)
245 < J, < 725(kpckms™1);
115 < J; < 545(kpckms™");390 < L < 865(kpckms™1); 0.5 <e<0.8; 1 < rperi < 3 (kpe);
8 < rapo < 13 (kpc)

“ To avoid the inclusion of Sgr, we impose a restriction that |B| > 10°.

b We further exclude the sky areas where the distance may be overestimated as mentioned in Section 2.2.1, specifically, the region where
—50° <1< 50° and —10° < b < 15°.

Circularity is represented with n, L1 = /L2 4 L2, and e stands for eccentricity.

References: (1) Feuillet et al. (2020); (2) Wu et al. (2022); (3) Koppelman et al. (2019b); (4) Naidu et al. (2020); (5) Koppelman et al.
(2019a); (6) Limberg et al. (2023); (7) Horta et al. (2023); (8) Malhan (2022).
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APPENDIX B: 2D EX-SITU FRACTION MAP
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Figure B1. We illustrate the distribution of ex-situ fraction within the Galactocentric cylindrical coordinate system. The map is binned with a step size of 100 pc
in both R and |z]| axis. The ex-situ fraction in each grid is visually represented through colour coding, which distinctly exhibits layering along the |z|-direction.
According to the layering pattern, we divide our sample into three distinct regions: (1) a region characterized by an almost negligible presence of ex-situ stars
(]z] < 0.6 kpc); (2) a region where ex-situ stars are slightly interspersed (0.6 kpc <|z| < 4 kpc); (3) a region predominantly occupied by ex-situ stars (4 kpc <|z|
< 10 kpc).
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