The Effects of Irradiation on Structure and Leaching of Pure and Doped Thin-Film Ceria SIMFUEL Models Prepared via Polymer-Templated Deposition

Holdsworth, Alistair F., Feng, Zizhen, Edge, Ruth, Waters, John P., Halman, Alice M., Collison, David, George, Kathryn, Natrajan, Louise S. and Denecke, Melissa A. (2024) The Effects of Irradiation on Structure and Leaching of Pure and Doped Thin-Film Ceria SIMFUEL Models Prepared via Polymer-Templated Deposition. Journal of Nuclear Engineering, 5 (2). pp. 150-167.

[thumbnail of VOR]
Preview
PDF (VOR) - Published Version
Available under License Creative Commons Attribution.

5MB

Official URL: https://doi.org/10.3390/jne5020011

Abstract

When studying hazardous materials such as spent nuclear fuel (SNF), minimisation of sample volumes is essential, together with the use of chemically-similar surrogates where possible. For example, the bulk behaviour of urania (UO2) can be mimicked by appropriately-engineered thin films of sufficient thickness and inactive materials such as ceria (CeO2) can be used to study effects within radioactive systems used to fuel nuclear fission. However, thin film properties are sensitive to the preparative method, many of which require the use of highly toxic precursors and specialised apparatus e.g. chemical vapour deposition. To address this, we present the development of a flexible, tuneable, scalable method for the preparation of thin-film CeO2 SIMFUEL models with a thickness of ≈ 5 μm. The effects of γ irradiation (up to 100 kGy) and dopants including trivalent lanthanides (Ln3+) and simulant ε-particles on the structure and long-term leaching of these systems under SNF storage conditions are explored, alongside the context of this within further work. It was found that the sensitivity of CeO2 films to reduction upon irradiation, particularly in the presence of simulant ε-particles results in increased leaching of Ce (as CeIII), while trivalent lanthanides (Nd3+ and Eu3+) have minimal effect on Ce leaching.


Repository Staff Only: item control page