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Case Report 

Spatial mapping and analysis of forest fire risk areas in Sri Lanka – 
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A B S T R A C T   

This study presents the first attempt in Sri Lanka to generate a forest fire risk map covering the entire country 
using a GIS-based forest fire index (FFI) model. The model utilized seven parameters: land use, temperature, 
slope, proximity to roads and settlements, elevation, and aspect. All these parameters were derived using GIS 
techniques with ArcGIS10.4 and QGIS3.16. Data from Remote Sensing sources, particularly the MODIS hotspot 
real-world dataset, were employed to gather fire count information for the year 2020. Validation was conducted 
through the merging hotspot technique and kernel density estimation (KDE). The research findings highlight the 
districts in the Central and Uva provinces, such as NuwaraEliya (10.3 km2), Kandy (2.74 km2), and Badulla 
(10.41 km2), as having a “very low risk" of forest fire potential. Conversely, districts like Hambanthota (0.1 km2), 
Kaluthara (0.04 km2), and Kurunegala (0.2 km2) exhibit a “very high risk" of forest fire potential, although it is 
negligible compared country’s total area. Overall, the study suggests that Sri Lanka is not currently facing a 
significant threat of forest fires and is a “medium risk" of forest fires as 49.49% of land falls under this category. 
These results are of immense value to relevant authorities, including the Ministry of Wildlife and Forest Re-
sources Conservation, in formulating effective strategies to manage and mitigate forest fire risks in the country.   

1. Introduction 

Forests are essential natural resources and critical in maintaining 
climate balance and preserving soil, water, and biodiversity [1]. Food 
and Agriculture Organization’s (FAO) report on the world’s forests 
indicated forests cover 31% of the Earth’s land surface (4.06 billion ha in 
2020). However, the area is decreasing, with 420 million ha of forest lost 
between 1990 and 2020 due to various destructive factors [2]. These 
include deforestation, climate conditions (droughts, etc.), infectious 
diseases, and unplanned urbanization. However, forest fires have been 
identified as one of the primary causes of this forest shrinkage [3,4]. 

Forest fires significantly threaten wildlife and plants and result in 

irreversible ecological damage [5–8]. The adverse consequences of 
forest fires involve changed land use, greenhouse gas emissions, and 
massive food wastage around various areas of the ecosystem [8–10]. The 
trend and occurrence of forest fires have expanded significantly in 
numerous regions worldwide, causing significant concern [11–16]. 
Additionally, society is gradually becoming more conscious of how 
human interference with the ecosystem primarily results in natural di-
sasters that endanger the health and well-being of humans [17,18]. 

Hence, it becomes paramount to raise awareness about fire hazard 
zones and educate the public so they can take necessary precautions 
proactively. Utilizing remote sensing (RS) and geographic information 
systems (GIS), forest fire risk zones can be accurately mapped and offers 
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a vital platform for effective forest fire crisis management [19–22]. 
These technologies serve multiple functions, including information 
analysis, decision-making support, and data collection and storage, 
particularly in operational contexts where spatial decisions hold critical 
importance [23–25]. 

Many researchers worldwide have developed forest fire maps in 
recent years using RS and GIS techniques [1,26–29]. Jaiswal et al., 2002 
[1] developed a forest fire risk map for the Gorna Sub watershed, located 
in Madhya Pradesh, India, by assigning subjective weights to the classes 
of all the layers according to their sensitivity to fire or their fire-inducing 
capability and found that almost 30% of the study area was predicted to 
be under very high and high-risk zones. Xu Dong. 2005 [6] used remote 
sensing and GIS in Baihe, Jilin Province, China, to create a map of 
possible wildfire zones. Moreover, Setiawan et al., 2004 [30] discovered 
and mapped peat swamp forest fire risk zones through GIS-grid-based 

and multi-criteria analysis in order to offer pertinent data for the 
Pekan District in the southern Pahang area of Malaysia. 

Forest fires have become increasingly frequent in Sri Lanka in recent 
years, mainly due to human activities such as agricultural expansion, 
logging, and urbanization [31]. However, only a few studies have been 
conducted to identify forest fires’ causes and impacts [32,33]. Sanda-
mali & Chathuranga, 2021 [32] conducted a study to quantify burned 
severity of forest fire using Sentinel-2 remote sensing images covering 
the Ella Rock region in Sri Lanka. Sentinel-2 images served as the pri-
mary data source in that particular study, and remote sensing methods 
were used to analyze the QGIS open-source environment via the 
semi-automatic classification plugin. (SCP). Moreover, Basnayake et al., 
2021 [33] developed a fire risk zone map covering the whole Belihuloya 
Mountain range in Sri Lanka, subjected to forest fires annually in the dry 
season. In order to facilitate that, a forest fire hazard zone mapping was 

Fig. 1. Study area (Sri Lanka) with central provinces and spatial elevation variation (in m).  
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composed using GIS and remote sensing techniques. These research 
projects had been conducted for selective areas in Sri Lanka, but no 
research study has been executed so far with a fire risk mapping 
composed, covering the entire country. 

In this study, a forest fire map was developed using remote sensing 
and GIS techniques to identify potential forest fire risk areas for 2020. 
According to the author’s knowledge, this research represents the first- 
ever comprehensive remote sensing and GIS-based forest fire mapping 
study covering the entire country. The primary objective of the study is 
to draw the attention of relevant authorities, inspiring them to design 
more advanced real-time maps using the latest information, using this 
study as a baseline for forest fire risk mapping. Additionally, the insights 
gathered from this study shed light on the contributing factors to forest 
fire risks and risk areas, providing stakeholders with invaluable 
knowledge to formulate effective forest fire prevention and management 
strategies. By disseminating this valuable data, the public can become 
more aware of forest fire risk zones, encouraging proactive measures to 
protect the environment and communities from potential fire hazards. 

2. Materials and methods 

2.1. Study area 

Sri Lanka (7.8731◦N, 80.7718◦E) (refer to Fig. 1), commonly named 
“Pearl Island" in the Indian Ocean, was selected for this study. Sri Lanka, 
an island country with an area of 65,525 km2, is home to around 21,8 
million citizens. Forest cover was about 25,600 km2 in 2000 and grad-
ually decreased to 22,490 km2 by 2020, representing 34 % of the total 
land area [34,35]. Among the area’s 2.04 million hectares of untouched 
forest, 0.7 million hectares of planted forests exist. Close canopy forests 
account for 1.58 million hectares, representing 23.9% of the total area of 
natural forests. The distribution of native forests is entirely random, with 

86% located in dry and intermediate zones. The sparse and open forests 
comprise 90% of the country, while the closed canopy forests account 
for 85% [36]. Sri Lanka is endowed with a diverse range of forest types, 
comprising nine distinct categories. These forest types are as follows: 
montane forest, submontane forest, lowland rainforest, dry monsoon 
forest, moist monsoon forest, riverine dry forest, mangroves, sparse 
forest, and forest plantations excluding rubber [36]. 

The climate of Sri Lanka comprises four seasons, including first and 
second inter monsoons, southwest monsoon, and northeast monsoon. 
The two main monsoons, including southwest and northeast monsoons, 
typically occur between May, September, and December and February, 
respectively [37]. The western slopes of the central highlands experi-
ence the most annual precipitation, which varies from around 900 to 
over 5000 mm (Fig. 2 b), whereas the average temperature ranges be-
tween 16 ◦C and 27 ◦C (Fig. 2 a) in central highlands and the coastal belt 
respectively. 

2.2. Forest fire influencing factors 

The occurrence and spread of forest fires can be attributed to various 
factors, such as land use type, weather conditions, and terrain charac-
teristics, among others. However, in this study, the authors have focused 
on the most common and widely used factors that influence forest fires, 
as described in previous studies [1,38,39]. Therefore, it is crucial to take 
these factors into consideration when developing a forest fire index or 
model. 

2.2.1. Topography 
Topography is an essential physiographic factor, and its character-

istics have an effect on forest survival following a wildfire [40]. In this 
study, we used a Shuttle Radar Topography Mission (SRTM) Digital 
Elevation Model (DEM) with a 30 m resolution to extract Sri Lanka’s 

Fig. 2. Spatial variation of (a) annual mean temperature (in ◦C) and (b) annual rainfall (in mm) in Sri Lanka.  

R.K. Makumbura et al.                                                                                                                                                                                                                        



Case Studies in Chemical and Environmental Engineering 9 (2024) 100680

4

Fig. 3. Topographic characteristics of Sri Lanka, including (a) elevation (in meters), (b) slope (as a percentage of rise), and (c) aspect.  
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topographic characteristics, including slope, aspect, and elevation (refer 
to Fig. 3). The points were extracted using ArcGIS 10.4. 

2.2.2. Land use land cover (LULC) 

2.2.2.1. Landsat data. The United States Geological Survey (USGS) 
Earth Explorer (available for free at https://earthexplorer.usgs.gov/) 
was used to acquire Landsat images of Sri Lanka. These Landsat images 
have a 30 m × 30 m resolution and are in raster format. Landsat 8 OLI 
remote sensing data was used to extract the images for the year 2020. 
Fig. 4 shows nine Landsat images encompassing Sri Lanka utilized in this 
study. These images were cloudless or had a cloud cover of less than 
10%. However, only a small percentage of satellite images had cloud 
coverage exceeding 10%. To ensure accuracy, Landsat images from the 

most recent years with less than 10% cloud cover were employed in 
these instances (refer to Table 1). Therefore, this can be a potential 
limitation of this study. 

2.2.2.2. Classification of LULC. High-resolution satellite imagery ob-
tained from the Google Earth simulator was utilized in this study to map 
the land use classes. The classification process encompassed six distinct 
categories, namely water bodies, forests, bare lands, settlements, agri-
culture, and cloud cover. To achieve this classification, a nonparametric 
supervised method was employed, as depicted in Fig. 5. The USGS 
classification system guidelines were followed in establishing the land 
use classes [41]. The classification process was carried out using the 
ArcGIS 10.4.1 software application. Minimum training samples and 
pixel counts as per the standards [42] were assigned to each land use 
class during the classification process. 

Accuracy assessment was conducted for land use classification, 
achieving an overall accuracy of 90% and a kappa coefficient (Eq (1)) of 
88%. To evaluate the accuracy, 300-pixel points were overlaid using 
Google Earth, surpassing the minimum requirement of 50 sample points, 
as described by C. Schmidt and A. McCullum, 2018 [43]. KAPPA anal-
ysis provides a statistic called Khat (Eq (1)), which measures the accu-
racy of a LULC classification [44]. 

K =

N
∑r

i=1
xii −

∑r

i=1
(xi+ × x+i)

N2 −
∑r

i=1
(xi+ × x+i)

(1)   

N = total observations in the matrix 
r = rows and columns in the matrix 
x+i = marginal total of column i 
xi+ = marginal total of row i 
xii = number of observations in row i and column i 

2.2.3. Land surface temperature (LST) 
Landsat 8 satellite images used for LULC classification were used for 

Land Surface Temperature (LST) analysis, and the thermal band (band 
10) was utilized to retrieve LST—first, digital number (DN) values were 
converted to absolute radiance values using Equation (2) [45]. 

Lλ =ML × Qcal + AL (2)   

Lλ = Spectral radiance (watts /(m2 × sr × μm)). 
ML = Radiance multiplicative scaling factor for the band 
Qcal = Level 1 pixel value in DN 
AL = Radiance additive scaling factor for the band 

After the conversion of DN values to the absolute radiance, radiance 
luminance to satellite brightness temperature TB(

◦C) conversion was 
performed using Equation (3). 

TB(
◦C)=

k2

ln
(

k1
Lλ

+ 1
) − 273.15 (3)   

k1 = 774.8853 watts/m2 × sr× μm. 
k2 = 1321.0789 K 

Finally, emissivity-corrected LST was calculated (refer to Fig. 6) using 
the following Equation [46]. 

LST(◦C)=
TB

1 +

(

λ × TB
ρ

)

ln ε
(4) 

Fig. 4. Landsat 8 tiles arrangement for Sri Lanka (illustrated the path and row 
for each tile as per the USGS Earth Explorer). 

Table 1 
Data set information, Sensors, and Bands.  

Satellite Sensor ID Path/Row Acquisition Date Cloud Cover (%) 

Landsat 8 OLI/TIRS 142/053 07-07-2020 0.7 
142/054 07-07-2020 2.1 
142/055 07-07-2020 1.9 
141/053 04-10-2020 5 
141/054 29-03-2021 0.4 
141/055 13-07-2017 3 
141/056 09-02-2021 2.7 
140/055 03-03-2020 3.2 
140/056 03-03-2020 0.6  

R.K. Makumbura et al.                                                                                                                                                                                                                        
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Fig. 5. Supervised Land Use Land Cover (LULC) classification map for five land use classes (excluding cloud cover) in 2020.  
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Fig. 6. Spatial variation of Land Surface Temperature (LST) for Sri Lanka in 2020.  
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TB = Landsat-8 Band 10 brightness temperature 
λ = wavelength of emitted radiance (λ = 10.8 μm) 
ρ = h × c/σ (1.438 × 10− 2 mK) 
h = 6.626 × 10− 34 Js - Planck’s constant 
σ = 1.38 × 10− 23 J/K - Boltzmann constant 
c = 2.998 × 108 m/s - velocity of light 
ε = land surface emissivity (refer to Equation (5)) [47,48] 

ε=mPv + n (5)   

m = (εv − εs) − (1 − εs)Fεv. 
n = εs + (1 − εs)Fεv. 
εv = vegetation emissivity 
εs = soil emissivity 

Following equations were used to obtain the Pv value in Equation (5) 
[49]. 

NDVI =
NIR − Red
NIR + Red

(6)  

Pv =

(
NDVI − NDVImin

NDVImax − NDVImin

)2

(7)  

where NDVI is the Normalized Difference Vegetation Index. 

2.2.4. Proximity to roads and settlements 
Roads and settlements are one of the primary contributors to acci-

dental or human-caused forest fires, where most human activities, such 
as haphazardly thrown matches and cigarette ends, occur. Therefore, 
forests near roads and settlements are more prone to fire and at a greater 
risk [27]. Thus, the authors selected the main road network in Sri Lanka 
for this study, as shown in Fig. 7 a, and buffered it into six categories 
(0–200 m, 200–400 m, 400–600 m, 600–800 m, 800–1000 m, and 

greater than 1000 m) using the multiple ring tool in ArcGIS. 
Further, obtaining settlement data for Sri Lanka was also one of the 

most challenging aspects of this research. This large study area made it 
more difficult to map every homestead and nearly impossible without a 
comprehensive survey data set. Therefore, the authors have selected 
only the significant buildings (hotels, hospitals, schools, etc.) covering 
the country, as shown in Fig. 7 b. This will be a potential limitation of 
this study. Then the selected point feature was buffered into five groups 
(0–1000 m, 1000–2000 m, 2000–3000 m, 3000–4000 m, and greater 
than 4000 m) utilizing a constant distance multiple ring buffer tool in 
QGIS 3.16. 

2.3. FFI model validation data 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a 
sophisticated remote sensing instrument capable of data collection 
across multiple time frames. With its near-real-time data availability, 
MODIS is a valuable tool for monitoring active fires and burnt areas, 
offering the potential to improve forest fire management during the fire 
season [50,51]. As one of the Earth Observation System’s (EOS) sensors, 
MODIS contains great potential for enhancing forest fire monitoring and 
control strategies. 

In this study, data for the year 2020 (a total of 735 fire counts) (refer 
to Fig. 8) were acquired from the Fire Information for Resources Man-
agement System (https://firms.modaps.eosdis.nasa.gov/) - a readily 
available source of fire data. The primary purpose was to validate the 
results of the FFI model at a 1 km resolution. Notably, the Detection 
confidence, which estimates the confidence level of fire detection and 
ranges from 0% to 100%, allows the assignment of fire pixels into one of 
three classes: low-confidence fire, nominal-confidence fire, or high- 
confidence fire. Previous research by Giglio et al. (2003) [52] suggests 
that a threshold above 30% yields better accuracy in this classification 
process. However, it is essential to acknowledge that this study relies 
solely on the provided data and cannot independently validate them due 

Fig. 7. Distribution of the (a) main road network and (b) settlements (spatial distribution of main buildings such as hotels, hospitals, etc) in Sri Lanka.  
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to the absence of freely available fire databases in Sri Lanka. As a result, 
this uncertainty poses a limitation on the study. Nevertheless, it is worth 
noting that numerous other studies have successfully validated MODIS 
data and achieved satisfactory accuracy [53]. 

2.4. Development of the forest fire risk (FFR) map 

The Forest Fire Risk areas were delineated using a Forest Fire Index 
(FFI) model (Equation (8)), which was developed by assigning weight 
factors to each input data. This approach was adopted to minimize po-
tential model errors and derive meaningful conclusions based on rele-
vant literature [1,27,50]. The ranking of input variables based on their 
fire hazard sensitivity, ranging from 1 (very high risk) to 5 (very low 
risk), is presented in Table 2. Subsequently, each variable’s weightage 

was determined, and all layers were superimposed using ArcGIS to 
generate the Forest Fire Risk (FFR) map. The overall procedure for 
developing the forest fire risk map is illustrated in Fig. 9. 

FFI = 40% LULC + 20% LST + 10% S + 10% DR + 10% PS + 5% A + 5% E
(8)  

Where LULC, LST, and S represent land use land cover, land surface 
temperature, and terrain slope, respectively, DR and PS indicate the 
distance to roads and proximity to settlements. The aspect is A, and the 
elevation is E. 

2.4.1. Forest fire index (FFI) model validation 
The FFI model was validated using MODIS hotspot data taken as the 

real-world dataset. After deriving the FFI model from seven selected 

Fig. 8. Spatial distribution of MODIS fire counts (locations) across Sri Lanka in 
2020 obtained from FIRMS. 

Table 2 
Classification of factors and the corresponding weight assignment to the forest 
fire risk model.  

Factor Weight 
(%) 

Category Value 
assigned 

Ranking 

Land Use Land Cover 
(LULC) 

40 Vegetation 1 Very 
High 

Settlements 3 Medium 
Agriculture 4 Low 
Bare Lands 5 Very 

Low 
Land Surface Temperature 

(LST) (◦C) 
20 >35 1 Very 

High 
30–35 2 High 
25–30 3 Medium 
20–25 4 Low 
<20 5 Very 

Low 
Slope (%) 10 <5 1 Very 

High 
5–15 2 High 
15–25 3 Medium 
25–35 4 Low 
>35 5 Very 

Low 
Distance to road (m) 10 <200 1 Very 

High 
200–400 2 High 
400–600 3 Medium 
600–800 4 Low 
800–1000 5 Very 

Low 
>1000 5 Very 

Low 
Proximity to settlements 

(m) 
10 <1000 1 Very 

High 
1000–2000 2 High 
2000–3000 3 Medium 
3000–4000 4 Low 
>4000 5 Very 

Low 
Elevation (m) 5 <500 1 Very 

High 
500–600 2 High 
600–700 3 Medium 
700–800 4 Low 
>800 5 Very 

Low 
Aspect 5 South 1 Very 

High 
South West 1 Very 

High 
South East 2 High 
West 3 Medium 
East 3 Medium 
North West 4 Low 
North East 4 Low 
North 5 Very 

Low  

R.K. Makumbura et al.                                                                                                                                                                                                                        
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Fig. 9. Methodological framework for the development of the FFR map in Sri Lanka.  
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independent variables, archive fire counts were superimposed on the FFI 
map in order to compare the actual data with the obtained results. Given 
that the MODIS detection confidence is estimated within a range of 0%– 
100%, it is utilized to categorize fire pixels into one of three classes: low- 
confidence fire, nominal-confidence fire, or high-confidence fire. 
Therefore, in this study, the authors considered the very high-risk, high- 
risk, and medium-risk areas identified in the FFI map as potential fire- 
risk locations. These areas were then compared with the data obtained 
from the MODIS hotspot. 

Then, Kernel density estimation (KDE) was conducted to compare 
the obtained values with real-world data. The primary objective of KDE 
(Kernel Density Estimation) is to create a continuous density surface of 
point events across space. This is achieved by estimating the event in-
tensity as density [54]. 

3. Results and discussion 

3.1. Forest fire index model 

The Forest Fire Index (FFI) model was developed using seven inde-
pendent parameters, and based on this model, a forest fire map was 
generated (refer to Fig. 10). Notably, the map reveals that “very high 
risk" forest fire areas are minimal compared to other risk categories, 
indicating a relatively low significant impact of very high-risk areas on 
the country, as suggested by the obtained results. A noteworthy finding 
is the gradual decrease in risk observed in the central province, which 
can be attributed to factors such as high altitude and lower 
temperatures. 

The Sinharaja forest within Sabaragamu and Southern provinces is 
particularly intriguing as it is the country’s last large, viable area of 
virgin primary tropical rainforest. This forest, encircled by three districts 
(Rathnapura, Matara, and Galle), is predominantly classified under the 

Fig. 10. The forest fire risk map of Sri Lanka created using the FFI for the year 2020.  

R.K. Makumbura et al.                                                                                                                                                                                                                        
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“medium risk" to “low-risk" categories. These three districts show a 
substantial presence of “medium risk" and “low risk" areas compared to 
other risk categories. Surprisingly, most forested areas fall into one of 
the risk categories (very high, high, and medium) in low-altitude regions 
with elevated temperatures. Curiously, the settlements and roads in 
these areas seem to have minimal impact on the likelihood of fire 

occurrence. 
Based on the data presented in Table 3, a clear pattern emerges, 

indicating that districts in the central and Uva provinces, such as 
Nuwara Eliya (10.3 km2), Kandy (2.74 km2), and Badulla (10.41 km2), 
are characterized by a very low risk of forest fires, likely due to the 
factors mentioned earlier. Additionally, these districts exhibit a higher 

Table 3 
Districts with potential risk areas under each risk category. 

R.K. Makumbura et al.                                                                                                                                                                                                                        
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proportion of “low-risk" and “medium-risk" areas compared to “very 
high-risk" and “high-risk" areas, suggesting a minimal likelihood of 
forest fires in these regions. 

On the other hand, districts like Hambanthota (0.1 km2), Kaluthara 
(0.04 km2), and Kurunegala (0.2 km2) are identified as “very high-risk" 
areas, although their total area is negligible when compared to Sri 
Lanka’s vast expanse of about 65,000 km2. It is worth noting that 
Anuradhapura, the largest district in Sri Lanka, contains a significant 
portion of risk areas, with a prevalence of “medium risk" regions, pri-
marily characterized by partial urbanization and a dry climate at low 
altitudes. 

Based on the findings of this study, the forest fire risk areas in Sri 
Lanka were categorized as follows: very high risk (0.52 km2, 0%), high 
risk (9120.44 km2, 14.13%), medium risk (31,283.29 km2, 49.49%), low 
risk (23,064.75 km2, 36.33%), and very low risk (30.81 km2, 3.73%). 
Consequently, this study classifies Sri Lanka as a country with a medium 
forest fire risk due to the predominant coverage of medium-risk areas, 
comprising approximately 49.49% of the total land area. 

3.2. FFI model validation 

A total of 735 fire counts were obtained for 2020 from the MODIS 
hotspot real-world dataset. These points were overlaid on the FFI map 
(refer to Fig. 11 a), and the results were extracted to facilitate compar-
ison. Among the 735 fire counts, 468 points (63.58%) were identified as 
locations indicative of forest fire risk compared to the FFI map generated 
using the FFI model. 

Then the KDE method was utilized to examine the forest fire areas 
that fall under each category (refer to Fig. 11 b) as it works as an 
appropriate development of a decision support system, as this method 
has been used as a tool for validation technique for forest fire risk map 
[55]. As shown in Table 4, the percentage of risk areas in the high-risk, 
medium-risk, and low-risk categories is almost identical for both the FFI 
model and KDE, suggesting that the FFI model exhibits good accuracy in 
conducting the analysis. However, there is a slight disparity in the very 
high-risk and very low-risk categories, which can be attributed to the 
uncertainties associated with the data used by the authors to develop the 
model. 

4. Conclusions 

This study’s primary objective is to map the fire risk areas for 2020 in 
Sri Lanka by employing a forest fire index model developed using seven 
independent parameters, including land use, temperature, slope, prox-
imity to roads and settlements, elevation, and aspect. All these data were 
derived using GIS techniques with ArcGIS 10.4 and QGIS 3.16, as 
illustrated in the materials and methods section. The validation of the 
results involved utilizing MODIS hotspot data through a kernel density 
model and merging hotspot data. The study’s key findings emphasize 
that the districts within the Central and Uva provinces, such as Nuwara 
Eliya, Kandy, and Badulla, are characterized by a “very low risk" forest 
fire potential. Conversely, districts like Hambanthota, Kaluthara, and 
Kurunegala exhibit a “very high risk" of forest fire potential, although 
this risk remains minimal compared to the total country’s area. An in- 
depth district-wise analysis has been conducted (refer to Table 3), pre-
senting relevant risk areas to readers and relevant authorities to guide 
further studies based on the outcomes generated in this research. 

Overall, the findings of this study suggest that Sri Lanka is not 
currently facing a significant threat of forest fires and remains in the 
“medium risk" category. As the study introduces GIS-based forest fire 
mapping to the Sri Lankan context and lays the groundwork, it opens 
avenues for further enhancement. Given the strong relationship between 
the model and forest fires with monsoon patterns and wind patterns, 
future researchers and authorities can delve into different monsoons 
(southwest and northeast) to analyze the distribution of forest fire risk 

Fig. 11. (A) Merged MODIS hotspot data with FFI map, (b) Fire risk map produced using KDE method from MODIS hotspot data.  

Table 4 
Comparison of FFI and KDE risk areas falling under different risk categories.  

Risk category Risk area from FFI (%) Risk area from KDE (%) 

Very high 0 0.93 
High 14.13 13.64 
Medium 49.49 50.38 
Low 36.33 31.32 
Very low 0.05 3.73  
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across Sri Lanka. Such investigations will help reduce uncertainties in 
the model and yield more accurate results. Hence, the Ministry of 
Wildlife and Forest Resources Conservation and other relevant author-
ities can benefit from this knowledge to formulate effective strategies for 
forest fire management and conservation efforts, safeguarding the 
country’s precious natural resources. 
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