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THESIS ABSTRACT 
 

The United Kingdom faces longstanding challenges within its engineering domain with poor and 

homogenous participation with educational and career pathways contributing to skills shortages and a 

lack of diversity amongst UK engineers. These economic and social justice challenges are fundamentally 

concerned with the same root issue of how individuals can be supported to enter and traverse trajectories 

to become engineers. Despite significant attention and investment engineering inequities in access, 

participation, success and representation endure. This thesis therefore identifies a need to develop a 

more sophisticated and solution-orientated understanding of engineering inequities that can inform 

impactful interventions to address engineering inequities within the UK. 

To develop this understanding the thesis adopts the Bourdieuian capital framework to consider the 

influential resources that support some individuals to engage with the engineering domain. The 

experiences of secondary school-aged learners, as the potential next generation of engineers, are 

examined to develop understanding of engineering inequities within the UK. Data is collected from 921 

secondary school-aged learners from England and Scotland through a questionnaire methodology to 

investigate the forms of supportive resource that align to engineering inequities. The science capital 

model developed by Archer and colleagues is identified as an influential capital-based perspective on 

inequity in the science domain. This model is critically investigated and found to lack a practical relevance 

to engineering but is adopted as an influential template through which to develop a richer, engineering-

specific understanding of inequity.  

A four-stage model and instrument development process is then undertaken to create the engineering 

capital model and instrument: a tool capable of examining the engineering resources that underpin 

engineering inequities between groups. A theoretical model of engineering capital is first created through 

a critical synthesis of existing literature. This model includes forms of cultural capital, social capital and 

behaviours and practices that can support engineering educational or career aspirations. A quantitative 

instrument of engineering capital is then created through data reduction and regression analyses. The 

instrument is found to be a valid perspective on engineering inequity that aligns to current understanding, 

offers new insights and can reasonably predict the engineering aspirations of learners. This thesis offers 

a number of valuable contributions to support greater understanding and intervention with the 

engineering inequities underpinning skill shortages and diversity challenges in the UK. The theoretical 

model of engineering capital unifies distinct strands of previous study under a common, unifying 

framework and so offers a rich conceptualisation of how individuals are supported to become engineers. 

The empirical instrument is capable of measuring the engineering capital of young learners to identify the 

degree to which individuals are supported with resources that facilitate future engineering trajectories. 

This operationalisation facilitates a more nuanced understanding of engineering inequity beyond 

simplistic descriptions that rely on gender, ethnic, or social class groupings. The forms of capital identified 

as significant within this model and instrument may be drawn on to inform interventions to address 

inequity and support a larger and more diverse population of future engineers.  
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INTRODUCTION 
 

This thesis explores the topic of engineering inequity – patterns of access, participation, representation 

and success – within the UK engineering domain to better understand how young learners are supported 

to become future engineers. The thesis aims to advance current understanding of how young learners are 

supported to become engineers in a manner which may inform interventions and support greater equity 

amongst future engineering cohorts. This is addressed through two research questions: 

1. Does the science capital model, as a widely acknowledged model of science inequity, also apply to the 

engineering domain?  

2. Is it possible to draw on a domain-specific application of Bourdieuian capital to develop an engineering-

specific model of capital that will fulfil the aim of this project and increase understanding and intervention 

of engineering inequities in the United Kingdom? 

The United Kingdom faces longstanding challenges within its engineering domain with poor participation 

with educational and career pathways contributing to skills shortages and, with the homogenous nature 

of those engaging, a lack of diverse representation amongst UK engineers. Over 200,000 more 

engineering-skilled individuals are required each year to meet demand projections, whilst the profile of 

those who do enter engineering roles is highly restricted: only 16.5% of those in engineering roles are 

women and only 11.4% belong to non-white ethnic groups (EngineeringUK, 2018; EngineeringUK, 2022). 

This pattern of limited and uneven participation and representation is present throughout educational 

and career pathways for engineering highlighting a systematic problem of engineering inequity within UK 

society.  

Such inequities are understood as entrenched patterns of access, participation, success and 

representation that see some groups favoured over others, leading to varied relationships with the 

engineering domain. This can take many problematic forms such as unequal representation within 

engineering workforces or unequal levels of access to, or success in, engineering education. Gender, 

ethnic and social class inequities are well-established within the engineering domain, skewing to a 

dominant engineering profile of white males from more privileged socio-economic backgrounds 

(EngineeringUK, 2018; 2018a; 2018b). The intersectional inequities of engineering are less well 

established within the current literature but are recognised in this thesis as an important nuance 

underlying support for future engineers.  
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Engineering inequities pose a complex and significant threat to economic wellbeing and social justice 

within the UK. In 2015 engineering industries contributed over £420 billion to the UK economy, 

highlighting both the national importance of this domain and the potential economic threat caused by an 

insufficient supply of future engineers (EngineeringUK, 2018). The lack of diversity within the engineering 

domain also contributes to social injustice with many groups experiencing inequitable access to a 

respected, secure and well-paying employment domain challenging the fairness within UK society. 

Engineering inequities are therefore not only an issue within the engineering domain but represent a 

fundamental threat to the economic and social wellbeing of the nation. Given the key role of engineering 

within efforts to address climate change, global health and standards of living, the impact of engineering 

inequities may even be considered an existential threat to global resilience. 

Within the UK, challenges of engineering inequity in educational and career contexts continue despite 

significant attention and investment. These inequities are long-recognised with government reports 

examining this topic over several decades (Department for Business Innovation and Skills, 2013; House of 

Commons Committee of Public Accounts, 2018; UK Government, 1993). Successive governments have 

invested to address this problem with almost one billion pounds spent between 2007 and 2017 to support 

STEM skills and new pathways to engineering skill development introduced for school and working-age 

people (Department for Education, 2021; National Audit Office, 2018). The continuing need for greater 

participation and wider representation amongst UK engineers, despite this attention and investment, 

highlights the need for more focused contemporary study to better understand and overcome these 

longstanding challenges. In particular, there is a need to better understand how younger generations are 

supported to become the next cohort of UK engineers given the early indications of engineering inequity 

amongst young learners (Education Datalab, 2022; Hutchinson & Bentley, 2011; Institution of Mechanical 

Engineers, 2017).  

A problematic lack of understanding and effective interventions to develop greater engineering equity is 

therefore identified. This thesis addresses this challenge through a rigorous exploration of engineering 

inequity amongst secondary school-aged learners to develop a richer understanding of how these learners 

are supported to become engineers.  

To accomplish this, the capital framework of Pierre Bourdieu is adopted as a lens on the distinctions that 

underpin engineering inequities. The concept of ‘capital’ considers the possession of particular resources 

which provide advantages to the possessor and denote the distinction between social groups. An 

individual in possession of appropriate capital can reproduce their social position with Bourdieu originally 
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applying this concept to examine the cultural and social resources that perpetuate the intergenerational 

reproduction of social class. The concept of capital can thereby provide a theoretical and empirical 

structure to examine group inequities by critically considering the underlying distribution of resources. 

Within this thesis, Bourdieuian capital is adopted as an interpretative tool to investigate and develop 

understanding of the resources that underpin current engineering inequities. This adoption is practically-

orientated with the capital concept adopted as a research tool to develop greater understanding. Whilst 

Bourdieu’s framework is nuanced and sophisticated, this thesis will focus on the issue of engineering 

inequity as opposed to the deeper theoretical or philosophical nuances of the Bourdieuian perspective.  

To accomplish this the thesis is structured around two main lines of enquiry. The first explores whether 

the science capital model, as a widely acknowledged model of science inequity, also applies to the 

engineering domain. This is examined theoretically and empirically in Chapters Two and Four. The second 

line of enquiry considers whether it is possible to draw on a domain-specific application of Bourdieuian 

capital to develop an engineering-specific model of capital that will fulfil the aim of this project and 

increase understanding and intervention of engineering inequities in the United Kingdom. This is 

examined in Chapters Five to Eight. The following summaries outline the narrative of this thesis and its 

development of greater understanding of engineering inequities in the UK.  

In Chapter One: Defining an Inequitable Domain, the engineering domain of the United Kingdom is 

explored to frame current understanding of engineering inequities and the context in which they occur. 

First, a definition of engineering is formed through a synthesis of varied perspectives recognising that 

‘engineering’ is conceptualised differently by different groups. This definition frames engineering as a 

practice of creative problem solving, commonly understood as ‘making and fixing’ but that can be more 

deeply understood as activities involving established design processes with the objective of creating 

effective and efficient solutions to identified problems. Engineering is recognised as somewhat related to 

– but not the same as – other domains such as science, technology or mathematics. Next, the historic and 

contemporary role of engineering in the UK is explored to contextualise the engineering domain and its 

significant influence on UK society and culture. Engineering is positioned as culturally entrenched, 

historically and contemporarily, within UK society but undergoing a period of transition which challenges 

the cultural and social understanding of this domain. The need for a culturally sensitive perspective is 

therefore identified to better understand engineering inequities. Finally, systemic patterns of poor and 

inequitable participation and representation within engineering educational and career contexts are 

explored highlighting significant challenges to the functioning and fairness of the UK engineering domain. 
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This analysis identifies a need to better understand how individuals are supported to become engineers 

to proactively address both an insufficient number of UK engineers and the limited diversity within this 

group which skews to a white, male dominance. The need to better understand the engineering 

development of young people, as future engineers, is highlighted as particularly important given the early 

indications of engineering inequity noted in past research. The objective of this thesis is thereby identified: 

to build on limited understandings of engineering inequity to better understand how individuals can be 

supported to access and participate with engineering educational and career pathways.   

In Chapter Two: Finding Engineering in Science Capital, the ‘science capital’ model of science inequity is 

critically considered as a potential tool for adoption within this thesis to develop a stronger understanding 

of engineering inequity. This model offers a contemporary and sophisticated understanding of inequity 

within the science domain drawing on the concept of ‘capital’ developed by Pierre Bourdieu as an 

influential form of resource that delineates advantages to some groups. The definition of engineering 

developed within Chapter One notes a relationship between engineering and science raising the potential 

adoption of science-based perspectives to better understand engineering inequities. The capital 

perspective adopted within science capital is compatible with the need, also identified in Chapter One, to 

adopt a culturally sensitive perspective to understand engineering inequity. First, the science capital 

model is introduced highlighting its value as an innovative lens on inequity and its compatibility with the 

objective of this thesis to develop a more nuanced understanding of inequity in a STEM (Science, 

Technology, Engineering, Mathematics) domain. Next, the theoretical model of science capital is 

deconstructed and critically analysed in relation to wider literature to examine its scope in relation to 

engineering. This analysis explores how seven key elements of science capital may relate to patterns of 

aspiration for future engineering amongst young learners. Finally, these analyses conclude that whilst the 

underlying Bourdieuian capital approach to framing inequity may apply to engineering a measurement of 

capitals for science may lack the specificity to also represent the engineering domain. This analysis 

therefore questions the degree to which the science capital model can serve as an effective lens on 

specific patterns of engineering inequity. However, it is noted that this conclusion should be tested 

empirically to confirm this lack of relevance and explore the potential formation of an engineering-specific 

capital model of inequity.   

In Chapter Three: Methodology, the research methodology of this thesis is outlined. A conceptual 

framework first defines the interpretation of ‘engineering’, ‘inequity’ and ‘Bourdieuian capital’ adopted 

within this thesis. A pragmatic research methodology is then established to empirically investigate 
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engineering inequity in the UK through a questionnaire-based research design. This methodology involves 

the empirical investigation of science capital as a lens on engineering inequity and, should that model be 

found to be inadequate, the development of an engineering-specific model of capital. Due to the impact 

of the Covid-19 pandemic it was necessary to conduct only a single point of data collection to maintain 

safety and minimise impact of participation. Secondary school-aged (11-16 year old) participants were 

sampled due to the engineering inequities present at this age, the previous use of science capital with this 

group, and potential for early intervention to equitably support the coming generation of UK engineers. 

Aspirations to future engineering education and careers are adopted as an age-appropriate form of 

engineering inequity that indicates trajectory towards future engineering involvement. The materials, 

procedure and methodological limitations of this research methodology are also documented and 

explored.   

In Chapter Four: Testing Science Capital for Engineering Inequity, the theoretical conclusions outlined in 

Chapter Two are empirically tested to determine the relevance of science capital in understanding 

patterns of engineering aspiration amongst young learners. Science capital is empirically measured 

amongst the thesis sample utilising an existing instrument; the items of this instrument are also 

‘translated’ to focus on the engineering domain to create the ‘Archer-style engineering capital’ instrument 

as a comparable, engineering-specific measurement tool. Patterns of responses on these instruments are 

examined in relation to engineering aspirational inequity with analyses supporting the theoretical 

conclusions of Chapter Two that question the relevance of science capital as a lens on engineering 

inequity. However, these analyses also reveal that a capital-based domain-specific perspective is valuable, 

with the simplistic ‘Archer-style engineering capital’ instrument aligned more strongly with patterns of 

engineering inequity and offering novel insights as to the nature of engineering inequities in the UK. This 

chapter thereby validates the development and application of a more sophisticated engineering capital 

model to accomplish the objectives of this thesis in developing a greater understanding of engineering 

inequities.   

In Chapter Five: Forming a Theoretical Model of Engineering Capital, a four-stage instrument development 

process is introduced to create an engineering-specific capital perspective on engineering inequity. The 

methodological approach used to form the science capital model is critically reviewed in relation to 

instrument development literature and then adopted. This four-stage process included: the formation of 

a conceptual framework, the development of a theoretical model, the creation of an empirical 

measurement instrument and the validation and testing of this tool to confirm the utility of the developed 
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engineering capital model. The first two stages of this process are completed in this chapter. First, a 

conceptual framework of engineering capital is outlined before a theoretical model is formed drawing on 

past literature. This model considers how forms of capital such as engineering literacy, engineering 

attitudes, or knowledge of engineering pathways align with patterns of engineering aspirational inequity 

amongst young learners. The aggregation of past findings within a capital framework offers a 

sophisticated theoretical perspective of engineering inequity in line with the objectives of this thesis. This 

approach also supports the development of measurement tools to assess the engineering capital of young 

learners in later stages of the adopted development process.   

In Chapter Six: Creating an Engineering Capital Instrument, the third stage of the adopted instrument 

development process is undertaken to form an empirical instrument capable of measuring engineering 

capital drawing on the conceptual framework and theoretical model created in Chapter Five. An empirical 

instrument capable of measuring engineering capital facilitates both a validation of this novel perspective 

and the accomplishment of the thesis objective in developing more detailed understandings of 

engineering inequity in the UK. First, questionnaire items are developed for each form of engineering 

capital included in the theoretical model, drawing on novel items and existing research tools. Next, data 

collection is undertaken with this questionnaire to empirically measure the forms of capital included in 

the engineering capital theoretical model. Finally, statistical analyses are utilised to refine the broad data 

collection questionnaire to form a concise instrument measuring the most indicative forms of capital to 

distinguish those with greater or lesser engineering capital. This instrument represents a key output of 

the thesis and an important tool capable of meeting the thesis objective of developing greater 

understanding of engineering inequity.  

In Chapter Seven: Validating and Exploring Engineering Capital, the fourth stage of the instrument 

development process is undertaken to validate the engineering capital instrument created in Chapter Six. 

This validation is essential to confirm that the created model and instrument is aligned to engineering 

inequity and thereby represents a valuable tool. First, engineering capital scores are calculated for the 

thesis sample using the engineering capital instrument. Next, statistical tests confirm that engineering 

capital is positively associated with greater educational and career aspirations for engineering, as well as 

aligned with past understandings of engineering inequity, and can be used to significantly predict whether 

young learners wish to study or work in engineering roles in the future. These findings validate that 

engineering capital is a useful lens on engineering inequity that aligns with past understanding and can be 

used to develop greater understanding and intervention with the longstanding inequities within the UK 



15 
 

engineering domain. Finally, the characteristics and responses of those with high and low levels of 

engineering capital are reflected on to highlight the fundamental importance and wide influence of 

engineering capital as an indicator of how individuals relate to the engineering domain.   

In Chapter Eight: Further Dimensions of Engineering Capital, further forms of engineering capital are 

theoretically and empirically considered in relation to engineering inequity recognising that the model 

and instrument of engineering capital developed within this thesis is only one possible structure of 

engineering capital. Five further dimensions of engineering capital are explored including forms of capital 

not included in the initial model and learner engagement with the engineering domain. The four further 

forms of capital included in this examination are found to positively align with the developed engineering 

capital model supporting its rigour and representativeness as a capital lens on engineering inequity. The 

fifth dimension, engineering learner engagement, is also found to positively align with the model 

supporting that engineering capital can also be used to understand inequities within learning contexts 

and experiences.    

Finally, a Conclusion chapter draws together the key findings of this thesis. The objective of the thesis is 

reflected on and judged to have been met through the development of the engineering capital lens which 

offers a theoretical and empirical perspective through which engineering inequities can be better 

understood. The limitations of this thesis are explored alongside future avenues of research and 

intervention to overcome engineering inequities entrenched within the United Kingdom.    
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CHAPTER ONE: DEFINING AN INEQUITABLE DOMAIN 

Introduction 

In Chapter One the UK engineering domain will be explored to establish a foundation of knowledge and 

frame the objective of this thesis: to develop greater understanding of engineering inequities to support 

wider participation and diversity amongst future engineers. First, a definition of engineering will be 

critically synthesised recognising that varied conceptualisations of engineering are present amongst the 

population. Next, the historic and contemporary context of engineering will be examined to situate this 

body of research and recognise the complex cultural and social characteristics aligned to the engineering 

domain. Finally, this definition and contextualisation will support an exploration of the inequities that 

challenge the engineering domain, particularly highlighting the threat these pose to coming generations 

of engineers. The critical consideration of these three topics will situate the objective of this thesis by 

identifying a need for more sophisticated understanding of entrenched and complex engineering 

inequities.  

Defining Engineering 

Establishing a definition of engineering is not a simple task: no universal definition of ‘engineering’ is 

agreed upon in either popular usage or academic literature despite the wide-spread practice and impact 

of this domain in contemporary societies. The practices and cultural concepts of engineering may differ 

too greatly between local, national and international contexts for a singular global definition of 

engineering to exist. However, for this thesis to effectively examine engineering and its issues in the 

United Kingdom a working definition is required. To form this working definition a critical synthesis of 

literature was conducted unifying four distinct approaches to defining engineering.  

The ‘Common’ Understanding of Engineering in the UK Context 

First, the common conceptualisation of engineering amongst the UK population can be considered as a 

de facto, socially constructed definition of engineering. Although little literature monitors the 

conceptualisation of engineering amongst this population, a definition of ‘making and fixing things’ is 

acknowledged as particularly common (Institution of Mechanical Engineers, 2016; Institution of 

Mechanical Engineers, 2017; Lucas et al., 2014; Marshall et al., 2007). The dominance of this simplistic 

view of engineering is supported by wider explorations of the perceptions of engineers and engineering 

in the UK and overseas (Fralick et al., 2009; Hammack et al., 2015; Silver & Rushton, 2008). ‘Making and 
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fixing’ is so prevalent within public definitions of engineering that even those who report possessing a 

high level of engineering understanding will misidentify a definition of engineering that lacks these 

descriptors as instead defining ‘science’ (Marshall et al., 2007). The confusion between science and 

engineering amongst the general public is noted elsewhere with only half of UK adults in one sample 

viewing the two domains as different (Castell et al., 2014). The simplicity of the dominant, socially 

constructed definition of engineering as ‘making and fixing’ should not be surprising given the notedly 

poor public literacy for engineering expressed within the UK (Institution of Mechanical Engineers, 2016; 

Institution of Mechanical Engineers, 2017; Marshall et al., 2007). A public-led approach to defining a 

domain is inherently impacted by the scope of understanding present amongst the population. In the case 

of engineering in the United Kingdom evidence suggests that a social constructionist approach risks 

collating misunderstanding or ignorance due to poor levels of engineering literacy. This challenge 

fundamentally questions the notion that ‘making and fixing’ is an adequately rich definition for adoption 

within this thesis. The validity of this criticism is clear when examining what other practices also fit under 

the definition of ‘making and fixing’: painting, baking, or tidying a room could fit beneath this framing 

depending on how strictly it is interpreted. The socially constructed definition of engineering as ‘making 

and fixing’, whilst beneficial as common and accessible, lacks the granular scope to isolate practices that 

would be institutionally considered as engineering such as construction, manufacturing or 

telecommunications. This would suggest the need to adopt alternative strategies to supplement this 

approach and define engineering in sufficient detail.  

An Expert-Led Perspective on Defining Engineering 

In response to the limited understanding of the general public, a second approach to defining engineering 

might consider the insight of experts such as engineers or academics who are more intimately involved in 

the engineering domain. Though not rooted in ‘common’ understanding the perspective of these minority 

groups may supplement the ‘making and fixing’ definition with further distinguishing characteristics of 

engineering. A synthesis of sources supports the value of an expert-led strategy to defining the 

characteristics of engineering. One such identified characteristic is the relationship between technology 

and engineering practices. The use of technology as a defining characteristic of engineering is 

acknowledged by academics, engineers and some of the general public (Crawley et al., 2007; Davis, 1996; 

International Engineering Alliance, 2013; Marshall et al., 2007). The important presence of technology and 

its use in practices of engineering can clarify the scope of the less sophisticated ‘making and fixing’ 
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definition by rejecting forms of ‘making and fixing’ that lack this technological aspect such as ‘painting, 

baking or tidying a room’. As a result, ‘use of technology’ can assist in defining the engineering domain.  

This relationship with technology is built upon by Pleasants and Olson (2018) who frame engineers as not 

only the users, builders, or fixers of technology but as the designers of technology. This acknowledges 

making/’building’ and fixing but also introduces the vital addition of ‘design’ that is not explicitly relayed 

within the ‘making and fixing’ definition. Design within an engineering context is presented as a process 

of creation that results in successful objectives and value (Chou & Chen, 2017; Dorst & van Overveld, 

2009). Engineering design is introduced as a distinct practice of design that can further distance the 

conceptualisation of engineering from more general ‘making and fixing’ (Pleasants & Olson, 2018). Whilst 

an artist may also be a ‘designer’ the required skills, knowledge and embodied traits specific to artistic or 

engineering design distance these practices in such a way that an artist is likely unable to effortlessly 

transfer to an engineering design setting (Eder, 2012). ‘Design’ is thereby not a singular process but one 

dependent on context. Within the engineering domain design is specifically motivated: engineers possess 

utilitarian values and objectives of effectiveness and efficiency in problem solving that steer the process 

of design, making and fixing (Mitcham, 2006) whilst artists are instead motivated by artistic expression 

and conveying meaning (Carroll, 2012). The importance of design within a working definition of 

engineering is further supported by the recognition of the Engineering Design Process as a fundamental 

and prescribed practice of engineering involving creative problem solving through a formal engineering 

procedure. In this key guiding process for engineering a problem is first identified, key design principles 

to propose effective and efficient solutions are devised, prototypes and ideas explored to identify the 

strongest approach, which is then realised, tested, and iterated to from an effective actioned solution 

(Dym et al., 2005; Haik, 2015; Winarno et al., 2020). The principles and structured practice of the 

Engineering Design Process is a norm within engineering that establishes methods and expectations for 

engineering behaviour and so can be used to characterise the domain (Daly et al., 2018).  The recognition 

of these characteristics by experts assists in the framing of engineering beyond the simplistic ‘making and 

fixing’ definition.  

The traits of engineers can also be considered to form a richer conceptualisation of ‘engineering’ than the 

simplistic ‘making and fixing’. Engineers may be understood as products of experience and institutional 

processes to select and perpetuate successful engineering practice. As a result, the qualities of engineers 

such as their knowledge, skills, values, competencies and other personal characteristics may be 

considered as embodied qualities of engineering that supplement its definition. Wider literature identifies 
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engineering characteristics such as a systematic thinking (the ability to recognise interconnectedness of 

the world and elements of larger structures) or collaborative social strategies (a capacity for team working 

central to engineering processes and success) as key within engineering practices (National Academy of 

Engineering and National Research Council, 2009). Further characteristics are also acknowledged such as 

creativity (which is inherent to the creation of engineering products or proposed solutions to engineering 

problems) or innovative thinking (as a form of effective and valuable novelty) (Daly et al., 2018; Institution 

of Mechanical Engineers, 2016). This link to creativity is particularly acknowledged within the engineering 

domain, despite a preconceived notion of its ‘logical’, ‘scientific’ or ‘mathematical’ nature (Cropley, 2016; 

Thompson & Lordan, 1999). Other researchers have explored proficiencies as engineering ‘ways of 

thinking’ which may support an understanding of engineering as defined through its embodiment; 

visualising, improving, problem finding or resilient adaptability are identified as embodied within those 

who successfully complete engineering practice (Grubbs et al., 2018; Lucas et al., 2014). These embodied 

definitions of engineering can provide a rich and human-focused definition that is deeply compatible with 

the scope of this thesis and its understanding of how future engineers are supported to develop.  

The expert-informed approach to defining engineering through its practices and embodied characteristics 

can clearly provide greater nuance beyond the simplistic framing of ‘making and fixing’. As those most 

acquainted with the engineering domain the perspective of engineers and academics can be understood 

as more valid than those of the poorly informed public supporting the adoption of these characteristics 

within a working definition of engineering. However, the approach used to form these perspectives on 

engineering must be critically considered. First, the objectivity of these perspectives must be questioned: 

drawing on the views of current engineers is an exclusionary approach taking on a limited range of 

experiences. Only those who have successfully navigated the journey into engineering study or practice 

offer their insight in these perspectives thereby excluding alternative views of engineering. An expert-

informed approach can thereby be understood as lacking in dissenting views and suggests that the 

resulting perspective on engineering characteristics is a dominant definition of engineering rather than a 

broad or divergent perspective. Whilst this does not discount the use of these characteristics when 

defining engineering the homogeneity of these sources and the resulting definition must be considered 

as self-fulfilling and a perpetuation of the status quo framing of engineering. A definition drawn from such 

a small subset of individuals may also be at odds with the notably poor understanding of the wider public 

and therefore incompatible with efforts to change public literacy for this domain.  
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It must also be considered that expert-informed approaches to defining engineering are not universal – 

cultural differences in the practice and profession of engineering can vary the characteristics identified. 

Previously published comparisons of national engineering employability standards highlight both 

commonality and dissent in how engineers are benchmarked (and so how engineering is embodied in 

practice) between national contexts. Characteristics such as creativity and design-led processes are 

commonly identified across national contexts, supporting some of the characteristics identified in the 

expert-led approach outlined above. However, distinctions in the framing of engineering standards are 

also present such as a need for a ‘balanced personality’ and ‘entrepreneurial mind’ within Japan or a 

‘willingness to take risks’ and ‘service to others’ in the European Union context (Zarharim et al., 2010). 

This international variety in how engineering practices are institutionally recognised supports the social 

constructionist position that no singular definition of engineering exists for all contexts. As a result, the 

defining characteristics of engineering offered by experts must be understood as situational and so 

mindfully adopted. This inherent subjectivity is also demonstrated in the universally positive nature of 

engineering characteristics identified by experts: none of the characteristics outlined from literature 

above include negative traits of engineers. As human actors it is unreasonable to expect engineers (and 

their embodiment of engineering) to be wholly positive, suggesting that the positive characteristics of 

engineering offered by experts are an incomplete (and thereby potentially skewed) representation of the 

domain. It is possible that former engineers, as an alternative body of experienced individuals within the 

engineering domain, may characterise engineering differently. The valuable perspective of former 

engineers is previously established in past literature but not used in defining the domain (Fouad et al., 

2011). The lack of insight from these groups in such definitions further highlights the bias within expert-

framed definitions of engineering. These critiques demonstrate the need for wariness in adopting expert-

led definitions of engineering. However, given the proximity of these individuals to the engineering 

domain and the limited understanding amongst other groups these perspectives may still offer cautious 

value in framing a working definition of engineering.  

The Linguistic Perspective on Framing Engineering 

An alternative approach to defining engineering that limits this potential bias of selective sampling is the 

adoption of linguistic analysis in framing the engineering domain. Rather than forming a definition of 

engineering based on its practices (such as with the common ‘making and fixing’ definition, or in terms of 

expert framed understandings of engineering design processes) this linguistic approach instead forms a 

definition of engineering based on its use in language. A linguistic analysis may consider the content of 
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speech or written communication to understand what is meant and how this meaning is conveyed in 

linguistic expressions (Gee, 2004). For example, the root of the word ‘engineering’ can be examined to 

understand its cultural and historical context. The Latin roots of the word ‘engineering’ are ‘ingenium’ 

meaning ‘cleverness’ and ‘ingeniare’ meaning ‘to contrive or devise’ highlighting links between 

engineering and concepts of sophisticated design. Later origins in Middle English connotate ‘enginour’ 

with activities of designing and operating military equipment and practices of crafting and mechanisation 

reflecting both the common practices of engineering at the time and the cultural foundations of modern 

engineering (Lew & Kingery, 1918; Oxford Dictionaries, 2022). This linguistic approach has been applied 

to consider the contemporary synonyms and cognates of ‘engineering’: Mitcham and Mackey (2009) offer 

that associated terms such as “investigation, innovation, design, technology or science” (p55) can be used 

to understand the interconnectedness and conceptual context of engineering. Notably, several of these 

examples (innovation, design, technology, science) have been highlighted in the earlier public and expert-

led approaches to defining engineering supporting the credibility of this linguistic approach. Such a 

linguistic perspective can be understood as, like language, socially constructed and sensitive to contextual 

use so must be critically considered with questions as to the validity of this approach beyond English 

language contexts. Different languages may conceive of engineering differently in response to the cultural 

contexts of these languages, questioning how universal a definition of engineering might be if formed 

through this linguistic approach. This criticism of context dependency may also apply within English 

language settings with little consideration of regional dialects and linguistic characterisations that may 

delineate distinctions in how engineering is conceived of. This is a particular issue in the United Kingdom 

due to both its recognised regional linguistic character and its regional engineering history (Hudson & 

Hudson, 1989; Hughes et al., 2013). As a result, the linguistic definition of engineering may be criticised 

as yet another status quo or dominant cultural framing of engineering. Despite these criticisms the 

linguistic approach to defining engineering can be useful and offers further elements and nuance for 

cautious consideration beyond the simplistic ‘making and fixing’ definition. The consistency of the 

linguistic approach to the positioning of the socially constructed and expert-led framings supports the 

validity of a definition formed through this analysis. 

Finding a Further ‘Relational’ Perspective on Defining Engineering 

The synthesis of common, expert and linguistic perspectives on the definition of engineering offers a 

richer conceptualisation than any one approach might provide alone. The dominant public view of 

engineering as ‘making and fixing’ is accessible but notably lacks detail which challenges its operational 
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value for adoption in this thesis. Expert-led insights can offer greater nuance such as the importance of 

technology, specialised design processes and embodied characteristics of creativity or systems thinking in 

practices of effective and efficient problem solving. The linguistic approach aligns with these previous 

findings identifying a link between engineering and design, innovation, science, technology and 

‘cleverness’ of creation. The synthesis of common, expert and linguistic definitions provides a framing of 

engineering that bridges both the dominant socially constructed understanding of engineering with 

expert insight and historical and contemporary cultural representation of engineering. The consistency 

established between these framings of engineering supports the value of this synthesised understanding 

of engineering and its adoption within this thesis.  

This synthesis of approaches also repeatedly raises the importance of framing engineering in connection 

to other domains – particularly those of the STEM (Science, Technology, Engineering, Mathematics) 

grouping. Expert-led framings of engineering identify a nuanced connection to technology where 

engineers both design and apply technology within engineering activities (Pleasants & Olson, 2018). A 

relationship between engineering and science is identified both in the conceptualisations of the general 

public and in the linguistic approach to defining engineering (Castell et al., 2014; Mitcham & Mackey, 

2009). The insight of experts also identified a relationship between engineering and creative domains 

(Cropley, 2016; Institution of Mechanical Engineers, 2016; Thompson & Lordan, 1999). This synthesis 

thereby introduces a fourth ‘relational’ approach to defining engineering in relation to other domains. 

A critical examination of STEM domains highlights the interconnectedness of engineering to science, 

technology and mathematics. The STEM acronym can be understood as a deeply prominent linguistic 

expression which perpetuates a sense that the four domains are interconnected (Akerson et al., 2018). 

Collectively these subjects are considered to be rational and logical (Quinn et al., 2020) and at odds with 

more artistic and subjective domains such as art or the humanities (representing yet another ‘relational’ 

approach to forming a definition). The connection between engineering and STEM is not only linguistic 

but also institutionally enforced in the UK context: the study of engineering in higher education will 

frequently require qualifications in science or mathematics. This demonstrates not only a likening of 

engineering and STEM domains but an enforced dependency on this interconnectivity. This culturally and 

institutionally enforced relationship between engineering and STEM contributes to a blurring of 

distinction between these domains and supports an interconnectedness within society (Janich, 1978). The 

association between engineering and science is further supported by alignments in the embodiment and 

practices of these domains. Characteristics such as rationality, logic and sceptical questioning are applied 
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both in practices of hypothesis formation in science and ‘problem finding’ in engineering (Çalik & Coll, 

2012; Duschl & Bismack, 2016; Lucas et al., 2014). The nature of engineering and science thereby share 

commonalities that relate (and confuse the distinctiveness of) the two domains (Antink-Meyer & Brown, 

2019). This interconnectedness is arguably more obvious within the professional domain which, unlike 

the educational context, does not operate in subject area silos. Scientists and engineers may occupy the 

same contexts or cooperate in a collaborative fashion. Practices of ‘applied’ or ‘practical’ science, defined 

by Nils Roll-Hansen (2009) as “dedicated  to  the  solution  of  practical  economic,  social  and political 

problems rather than the further development of such knowledge and methods” (p3), are starkly similar 

to the objectives of engineering (creative problem solving) though it must be noted that further defining 

characteristics of engineering such as the Engineering Design Process or engineering traits are not 

essential within applied science limiting the overlap between domains. Applied science is also recognised 

as distinctly different from the more traditional ‘theoretical’ science of knowledge development 

highlighting the place of ‘applied science’ as a bridging construct between science and engineering 

domains (Roll-Hansen, 2017). These interdependences of science and engineering in real world practices 

further draws together the interconnectedness of these domains supporting a rationale of 

conceptualising engineering in terms of relational links to science, technology and mathematics.  

The interconnectedness of engineering and other STEM domains is also validated in educational contexts. 

Though present in only a limited fashion in UK classrooms, international educational literature 

acknowledges the validity and impact of removing subject area siloes in ‘STEM integrative’ pedagogies 

(English, 2016). These approaches to STEM learning draw on commonalities between STEM subjects to 

develop richer learning experiences through co-subject learning. Engineering is particularly important in 

these pedagogical approaches with the Engineering Design Process adopted as the pedagogical structure 

to integrate subject knowledge and practices of science, technology and mathematics (English, 2020; 

English, 2021). As a result, engineering is frequently present in STEM integrative pedagogies (Li et al., 

2019). The perspective of this literature offers two valid insights: that engineering shares similarities with 

STEM domains to a degree that allows effective integration in multidisciplinary learning and that 

engineering is particularly more open to integration with other domains (Quinn et al., 2020). This quality 

of ‘openness to integration’ offers a further characteristic of engineering that supports its connectedness 

to other STEM domains – but also, paradoxically, highlights a distinction in its character in comparison 

with other STEM subjects that are less commonly used as vehicles of integration. 
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This paradoxical similarity and difference demonstrates the complexity within the relational links between 

engineering and STEM. Despite the identification of many commonalities, it is also possible to distinguish 

engineering from other STEM domains. For example, the goals and motivations of engineering and science 

are clearly distinct: where engineering practice is orientated to real-world problem-solving, science 

instead focuses on robust and rigorous advancement of knowledge (Poser, 1998). The two domains can 

also be seen to differ epistemologically with science orientated to the pursuit of truth whilst engineering 

is instead focused on utility and usefulness of knowledge (Grimson & Murphy, 2015; Kant & Kerr, 2019). 

The priorities of engineering thereby focus on effectiveness and efficiency in a manner that does not apply 

to science. This is articulated by Skolimowski (1966) who argues that despite similarities engineering and 

science operate to accomplish fundamentally different effects. Although the co-occurrence of engineering 

and science was offered earlier as support for the similarities between science and engineering an 

examination of the formal processes involved in each context can also distance these domains. For 

engineering this is the Engineering Design Process, the cyclic process of identifying a problem and working 

to a solution through iterative design (Dym et al., 2005; Haik, 2015; Winarno et al., 2020). For science this 

is the Scientific Method, the process of determining a hypothesis and testing this to establish 

understanding (Carey, 2011). These processes are superficially similar in that they are structured, linear 

and organised however otherwise they are very different in the objectives they work towards, principles 

that they observe, contexts in which they occur, actors who participate, and motivations for 

accomplishment (Cross et al., 1981). This deeper lens on practices demonstrates that superficial 

similarities may betray deeper distinctions highlighting the importance of critical examination in 

understanding the definition of engineering. In real world application science and engineering are thereby 

tremendously different practices for scientists and engineers.  

The distinctiveness of engineering is also clear in explorations of how the UK population view and interact 

with STEM domains. Knowledge and interest in science is much greater than that reported for engineering 

demonstrating that these individuals do not view science and engineering as the same (Castell et al., 2014; 

EngineeringUK, 2018; Institution of Mechanical Engineers, 2016; Institution of Mechanical Engineers, 

2017; Marshall et al., 2007). These distinctions are also noted amongst younger generations with lower 

interest, value and career aspiration for engineering compared to science, technology and mathematics 

(Hutchinson & Bentley, 2011). The ability to distinguish these domains in relation to knowledge, attitude, 

engagement and aspirations demonstrates that these areas are not identical supporting the prepositions 

that they differ and that culturally the UK population is skewed to favour science. These findings further 
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demonstrate the distinctions within the STEM grouping that isolate engineering from other domains and 

question the uncritical adoption of the STEM acronym and its presumptions of similarity.  

Though at times self-conflicting the similarities and differences of engineering to other domains can aid 

in scoping a working definition of engineering within this thesis. This fourth approach to defining 

engineering introduces greater disagreement than previously congruent socially constructed, expert-led 

and linguistic approaches. However, it is possible to integrate these disparate similarities and differences 

through the adoption of a ‘positional’ perspective that accounts for the context in which these 

comparisons are made. The relationship between engineering and other STEM domains could be 

understood as a ‘family resemblance’ drawing on the work of Wittgenstein (1969) who recognised that 

commonalities can be multidimensional but not exclusive. For example, poker and football might be 

considered as within the ‘family’ of ‘games’ and share characteristics (both are games, are competitive, 

and can provide prestige and profit at expert levels) as well as differences (one is a ball sport whilst the 

other is a card game, one is played as part of a team whilst the other is played without a team, one 

depends more on physical attributes whilst the other relies on mental capacities). The concept of family 

resemblance allows comparisons to recognise shared traits (as between members of a family unit) but 

does not dictate perfect, exclusive replication of all qualities. With this perspective it is possible to move 

beyond a binary consideration of engineering and other domains as either ‘the same’ or ‘different’ and 

recognise that the comparative similarity of two domains will depend on the specific position from which 

comparisons are made (i.e. a positional relationship). In this way engineering and science may appear 

similar from a position drawing on traits of rationality or logic but will appear differently from a position 

of formal practices or core motivations. A positional interpretation also supports the integration of less 

informed general public and more informed expert definitions of engineering as originating in two distinct 

contexts with distinct levels of understanding. This perspective allows the synthesis of positions and shifts 

the burden from judgements of the engineering domain to judgements of the context in which a 

comparison with this domain is made. In this way it is possible to recognise the valid and opposing 

positions that both relate and distance engineering from other STEM domains and enforce a need within 

this thesis to clarify the position from which these subjects are compared within the definition of 

engineering. This perspective further demonstrates the socially constructed and cultural characteristics 

of defining the engineering domain. 

A Working Definition of Engineering 
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A critical synthesis of literature has demonstrated that no one singular definition of engineering exists, 

nor can any one source offer a full accounting of the engineering domain, however through a synthesis of 

literature it is possible to aggregate perspectives to assemble a working understanding of engineering for 

use in this thesis. Although not positioned as an exhaustive framing of engineering this definition is 

suitably nuanced to support the objectives of this research in understanding engineering within the UK 

context. 

This aggregated approach can define engineering as: a practice of creative problem solving, commonly 

understood as ‘making and fixing’ but that can be more deeply understood as activities involving 

established design processes with the objective of creating effective and efficient solutions to identified 

problems. Engineering professionals can be understood to embody characteristics of engineering and its 

practice, including: an ability to visualise, think critically and systematically in identifying and 

deconstructing problems and forming creative and innovative solutions. Engineering can be understood 

as sharing some characteristics with other domains such as science, technology and mathematics with the 

nature of engineering as a practice presenting the opportunity to integrate insights of science, use of tools 

and technology and mathematics within engineering experiences. However, engineering must also be 

understood as distinct from these domains and considered as a singular domain with its own relationship 

to the UK and its population. 

This synthesis of four approaches to defining engineering within the United Kingdom not only takes in 

consideration the common public and expert views of engineering but also considers the unclear 

relationship between engineering and other STEM domains. In considering the conceptualisations of 

engineering held by differing groups this definition acknowledges a socially constructed nature to 

meaning and its subjective interpretation. The cultural context of the engineering domain is also noted as 

influential in structuring a definition of engineering. Though not succinct, the developed definition offers 

a perspective that can aid in understanding the scope and nuance of the engineering domain and support 

the work of this thesis in understanding engineering within the UK context. 

Engineering in the United Kingdom 

Having defined the theoretical concept of ‘engineering’ it is next possible to explore how this domain is 

actualised within practices in the United Kingdom. A synthesis of literature drawing on historical and 

contemporary perspectives of engineering is necessary to understand the wider context in which 

engineering is perceived and interacted with in everyday lived experiences. This examination considers 
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ongoing change facing the engineering domain and the resulting cultural, economic and educational 

positioning of engineering in the UK.  

A Historical Perspective of UK Engineering 

The philosopher Michel Foucault supported the value of historic perspectives noting that a ‘history of the 

present’ is a vital tool for understanding contemporary contexts (Garland, 2014). A historic perspective 

on engineering in the United Kingdom conveys a centuries-long narrative of industrial and technical 

heritage tied to a national identity as developers and exporters of world-changing innovation (Buchanan, 

1985; Hudson & Hudson, 1989). It is notable that the practice of engineering on these shores predates 

the formation of the nation itself: historic records show the decisive impact of William the Conqueror’s 

military engineers and prefabricated fortifications during the Norman Conquest centuries before the 

unification of England, Scotland, Wales and Northern Ireland (Smithers, 1998). Engineering would remain 

largely a military practice until the later part of the 18th Century when civilian or ‘civil’ engineering grew 

in prominence with the formation of the Society of Civil Engineers in 1771 and Institution of Civil Engineers 

in 1818 (Institution of Civil Engineers, 2022; Oxford DNB, 2022). This time saw rise of the Industrial 

Revolution, a period where engineering and its innovations directly reshaped the UK and its national 

culture and identity from agrarian to industrial, from rural to urban, and from cottage industry to high-

volume manufacturing. The dramatic growth in productivity from these innovations led to a prominence 

and spread of engineering industrialisation across the globe (Griffin, 2018). This momentum of 

engineering innovations in the UK fuelled the later technological revolution in the late 19th and early 20th 

Centuries including innovations such as the steam train, television and computer that continue to shape 

the UK culture and society (Dillistone, 1956). 

This very brief historic perspective demonstrates the significant influence of engineering on the structure 

and development of culture and society in the UK context. The dynamics of power as demonstrated by 

William the Conqueror’s military engineers, the development of industry and decline of traditional social 

structures during the industrial revolution, or the value of specific innovations such as steam trains or 

early telecommunications in shaping the social landscape all demonstrate the influence of engineering on 

the development of the nation. It is notable that the UK not only adopted these innovations but was the 

place where many of these innovations were developed, rooting engineering innovation into the national 

identity of the United Kingdom. Engineering is not simply a set of occupations or practices but a deeply 

influential force acting on the UK and its population to shape identity, society and culture. This context of 

engineering must be considered: research that examines the engineering domain in a manner that 



28 
 

neglects these deep cultural roots would likely result in an incomplete conceptualisation that is at odds 

with the objective of this thesis to develop greater understanding of engineering in the United Kingdom.  

Engineering in the Modern United Kingdom 

The significant influence of engineering identified in this historic perspective supports the need to 

understand engineering and its contemporary influence in the United Kingdom. A critical examination of 

engineering within the contemporary context reveals a dramatic shift in the place of engineering within 

UK society. Engineering practices were once highly visible and interacted with by individuals but in 

contemporary times might instead be characterised as ‘hidden’ and changed resulting in lesser 

comprehension of the domain.  

Whilst engineering continued to play an influential role in the UK context throughout the first half of the 

20th Century (including the dramatic period of the First and Second World Wars) by the end of the 20th 

Century the place of engineering within the UK culture and economy had changed. Manufacturing, once 

the dominant force of engineering within the UK, had dramatically diminished. The Gross Value Added 

(GVA: a measure of the proportion of GDP contributed by a sector or industry) for manufacturing fell from 

30.1% in the 1970s to just 10% by the 2010s (EngineeringUK, 2018; Office for National Statistics, 2019). 

Where 29% of the population had been employed in manufacturing from 1948-1959 only 9% were in 

these roles by 2000-2016 (Office for National Statistics, 2019a). These rapid shifts in the dominant practice 

of engineering fundamentally challenged the place of engineering in the UK culture: engineering was now 

less visible in society with the loss of long-established practices and local identities for engineering. Vast 

proportions of the population no longer worked in manufacturing roles restricting the presence and 

visibility of manufacturing in the lives of many. This ‘post-industrial transition’ was a marked departure 

from centuries of entrenched engineering practice. Where the fifty-year window of 1770-1820 had seen 

the launch of the Industrial Revolution the fifty years of 1970-2020 saw its ebbing recession.  

Following this transition from a goods-based to service-based economy engineering now holds a very 

different position in the UK economy: the number of manufacturing roles has diminished over 60% 

between 1979 and 2013 with a noted movement from manufacturing leavers into service roles (Hardie & 

Banks, 2014). This shift has seen a growing number of engineers occupying roles in non-engineering 

sectors and a decrease in the proportion of engineers in engineering sectors (EngineeringUK, 2022). This 

ongoing change is also demonstrated in the registration of new enterprises: from 2011 to 2016 the growth 

in manufacturing (+8.9%) was dramatically outperformed by almost all other engineering industries 
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including information and communication (+40.8%), professional scientific and technical activities 

(+48.9%), administrative and support service activities (+48.9%) or electricity, gas, steam and air 

conditioning supply (+510.9%). In 2016 only 19.1% of engineering enterprises were registered as 

manufacturing compared to 29.2% in information and communications and 25.2% across multiple 

industrial categories (EngineeringUK, 2018). Manufacturing remains a significant engineering practice in 

the UK but is deeply changed with fewer individuals working in manufacturing roles and a very different 

practice than in previous decades (EngineeringUK, 2022). The future of manufacturing is predicted to 

continue this evolution with growing roles of automation, robotics, mechatronics and artificial intelligence 

further reshaping this practice (Institution of Mechanical Engineers, 2021).  

Engineering remains a vital component of the UK economy contributing £420.5 billion (a quarter of the 

national GVA) in 2015 – more than the retail and wholesale, and financial and insurance sectors combined 

(EngineeringUK, 2018). However, engineering is no longer the homogenous, manufacturing-dominant 

practice it had previously embodied for centuries. In its place is a diverse and multifaceted domain with 

engineers acting out roles in many different sectors and contexts. This has shifted engineering from a 

singular, easy to comprehend practice to one with many dimensions. Engineers are now ‘hidden’ in many 

contexts working with increasingly digital, advanced or automated (and therefore, less publicly 

recognisable or comprehendible) practices such as telecommunications, biomedical engineering, green 

engineering or space/aerospace engineering. Demand for qualifications amongst engineers is now greater 

demonstrating the more sophisticated nature of these practices: where 26% of manufacturing was 

completed by those with no qualifications in 1993 this had dropped to just 8% by 2013 (Hardie & Banks, 

2014). The idea of a labour intensive, manufacturing practice of ‘dirty’ engineering is now less valid and 

the identity and practices of modern engineers less easily comprehended. In comparison with the 

centuries-long history of largely static practices of engineering this change represents a colossal cultural 

shift in very recent memory. 

The Ongoing Impacts of Change in UK Engineering 

It is reasonable to question whether the shift from a simplistic structure of manufacturing-dominant 

engineering to a complex structure of varied and hidden engineering practices has impacted how 

engineering is perceived and experienced within UK culture and society. Little literature has studied this 

topic longitudinally necessitating a critical analysis of snapshot sources from recent decades to 

understand the impact of this change on the population and engineering domain. Examinations of public 

literacy for engineering support this assertion finding that the UK public have only a limited understanding 
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of the engineering domain as would be expected given the now ‘hidden’ nature of engineering practices 

(Marshall et al., 2007; Institution of Mechanical Engineers, 2016; Institution of Mechanical Engineers, 

2017). Critical analyses identify that the general public conceive of engineering as more blue-collar than 

white-collar, yet more ‘thinking’ than ‘manual’ suggesting a white-collar role but a blue-collar expectation 

of duties. This position is further supported by the identification that a large proportion (29%) of UK adults 

view engineering as a dying industry supporting the view that many still understand engineering in regards 

to manufacturing and its decline and are unaware of the hidden contemporary engineering domain that 

has taken its place (Castell et al., 2014; Institution of Mechanical Engineers, 2016). Collectively these 

findings suggest that a significant number of people within the UK still conceive of engineering according 

to its past structure as a goods-based practice. Worryingly, this is not only the case with older generations 

who may have first-hand experience with dated engineering practices but is also found amongst younger 

generations who are unlikely to have encountered these dated practices of engineering (Institution of 

Mechanical Engineers, 2017). Younger groups report a more ‘manual’ (as opposed to ‘thinking) 

understanding of engineering than adults (Marshall et al., 2007) and will often characterise engineering 

as a ‘dirty’, ‘too technical’ or ‘career for men’ (Bevins et al., 2005; EngineeringUK, 2019). Whilst it is difficult 

to track these characterisations over time due to differing samples and methodological approaches the 

presence of dated ideas is worrying: one study identified that a quarter of young people view engineering 

jobs as based in factories and half view these roles as taking place in dirty working environments (Ipsos 

Mori, 2001). Findings such as these imply that the dated conceptualisation of engineering as a dirty, 

manufacturing focused practice has perpetuated despite the engineering domain having evolved away 

from this practice over time.   

The less positive attitudes and uninformed conceptualisations of young people are concerning given the 

recognition that attitudes held during formative years are instrumental in shaping later interests in study 

and careers (Archer et al., 2013; Institution of Mechanical Engineers, 2010; Woodward & Woodward, 

1998). Young people report a lesser career interest in engineering (22.4% generally, but only 15.2% for 

manufacturing and production) compared to science and mathematics (33.1%), a lesser interest in 

learning about engineering (40.8%) compared to science (60.4%), technology (57.5%) or mathematics 

(53.1%) and think that engineering is generally less important (21.8%) than science (60.2%), design and 

technology (32.1%) or mathematics (55.9%) (Hutchinson & Bentley, 2011). The particularly poor career 

interest of young people for manufacturing (only 15.2% positive responses) highlights a lack of interest in 

engineering as it was previously practiced in the past. It may be that the engineering attitudes of young 

people are more positive towards a modern and accurate conceptualisation of engineering given its links 
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to topics that young people care about such as technology and fighting climate change (Natural England, 

2021). However, the conceptualisation of engineering amongst young learners is seemingly limited 

questioning the degree to which they might comprehend this connection. Regardless, the perpetuation 

of dated conceptualisations of engineering may play a role in the less positive engineering attitudes of 

young learners further demonstrating the danger of this confused, outdated or incomplete cultural 

conceptualisation of engineering. 

The lingering presence of this limited, negative and dated conceptualisation of engineering and its 

perpetuation to younger generations may be understood through a consideration of informational 

sources which inform engineering concepts. Past literature acknowledges that adults and children develop 

their conceptualisations through differing strategies with younger generations developing their 

understanding of engineering from parents, school settings and through social media to a greater degree 

than adults who access this through lived experience and contact with engineers (Marshall et al., 2007; 

EngineeringUK, 2019; EngineeringUK, 2020). The sources drawn on by younger generations may 

themselves contain dated conceptualisations perpetuated through cultural ideas and human vectors. For 

example, media sources accessed by young learners are noted to convey engineering in unrealistic 

manners that poorly fit contemporary practices (Cheryan et al., 2015; Fabian, 2012). 

The limited presence of engineering within UK school contexts likely worsens public comprehension of 

this domain. The UK features four devolved national structures to education making it difficult to 

generalise the educational experiences of learners across the UK. However, whilst engineering features 

somewhat more in the Scottish education system (and recent changes to the Welsh system may yet see 

engineering introduced to a greater degree) generally speaking the national curricula of the UK lack a 

strong, consistent and modern presence of engineering (Scottish Government, 2016; Welsh Government, 

2020). Primary and secondary school curricula often do not prominently feature engineering, instead 

prioritising other STEM subjects such as science or mathematics (Council for the Curriculum Examinations 

and Assessment, 2007; Department for Education, 2013). For this reason, the UK education systems may 

be understood as embodying a ‘science first, engineering later’ structure with a foundation of highly 

prioritised science study intended to later provide access to engineering educational pathways. This 

relationship demonstrates an institutional link between the domains of science and engineering, but as 

outlined earlier in this chapter science and engineering cannot be considered to be identical questioning 

how directly a science dominant curriculum could support later engineering learning. It might be argued 

that the subjects of Design and Technology/Technologies represent a form of engineering learning within 
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UK primary and secondary schools. This is reasonable as the focus on making, design and technology 

within these curricula does align to the definition of engineering established in this thesis (Department 

for Education, 2013a; Scottish Government, 2022). However, the curricula for these subjects also often 

contain other forms of making or design including crafting, cooking or textiles which would not align with 

a contemporary understanding of engineering. This challenges the notion that Design and 

Technology/Technologies is truly representative of engineering. However, even if these subjects were 

acknowledged as a form of proto-engineering education the low status and priority of these subjects 

would question their impact on engineering comprehension: for example, the number of Design and 

Technology GCSE students has decreased by 53% from 2016 to 2022 (Education Datalab, 2022). 

Engineering features more prominently within Further and Higher education in the UK, however this 

presence may be considered too late to meaningfully impact wide scale comprehension for engineering 

given the lack of compulsory national curricula at these stages and the recognition that young learners 

align their interests and identity to subject areas at earlier ages (Archer et al., 2013; Institution of 

Mechanical Engineers, 2010; Woodward & Woodward, 1998).  

As a result of these curricular structures most individuals experience little meaningful engineering learning 

within their education. If a national curriculum is thought of as a source of public literacy, then this goes 

some way to explain the limited and confused conceptualisations of engineering noted within literature. 

Teachers are also reportedly a prioritised source of information for young learners but are acknowledged 

to possess a low level of engineering knowledge and confidence answering engineering questions 

(EngineeringUK, 2020; Jones et al., 2021; Lewis et al., 2021). This limited knowledge and confidence is 

present even amongst STEM subject teachers. The limited engineering knowledge of teachers is 

unsurprising given the limited presence of engineering within initial teacher training, national curricula 

and limited understanding within society as a whole. It is not unreasonable to assume that in the absence 

of a full and contemporary understanding of engineering teachers may inadvertently draw from dated 

conceptualisations of engineering in their classrooms. Teachers may also draw from personal experiences 

of engineering from their own lives or youth and in so doing perpetuate dated or incomplete ideas of 

engineering. These limited concepts may be perpetuated to young learners actively (through dialogue) or 

inactively (through an inability to recognise and challenge misconceptions amongst learners) - if 

engineering is introduced in classroom settings at all (EngineeringUK, 2020). As a result, it is possible that 

an incomplete conceptualisation of engineering as a manual, dirty, male-only, factory manufacturing-

based practice is perpetuated to younger generations in spite of a more modern, yet ‘hidden’, practice of 

engineering in the UK.  
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The UK’s Engineering Problem 

In light of the outdated public understanding of engineering, low interest of young learners and limited 

presence of engineering in national curricula it is unsurprising that the United Kingdom faces entrenched 

challenges with its engineering domain. Two issues are particularly well-recognised as threats to the 

practice of engineering. First, a significant engineering skill supply issue is documented in the UK with an 

insufficient number of engineering-skilled individuals available to fill the demand for roles. Second, the 

supply of individuals who do become proficient in engineering is highly homogenous betraying an 

inequitable practice of UK engineering dominated by white, male and middle-class individuals. This second 

issue represents a social injustice and challenge to fairness within UK society. An examination of these 

issues within the UK context highlights their interconnectivity as two aspect of the same underlying 

problem and a need for greater insight to understand how young people are supported to become 

engineers given the cultural context of engineering in the UK. 

The issue of inadequate engineering skills supply is long-recognised in the UK, featuring in government 

reports such as Realising Our Potential in 1993 (UK Government, 1993), Excellence and Opportunity in 

2000 (Department of Trade and Industry, 2000), Professor John Perkin’s Review of Engineering Skills in 

2013 (Department for Business Innovation and Skills, 2013) and Delivering STEM Skills for the Economy in 

2018 (House of Commons Committee of Public Accounts, 2018). This demand is recognised by engineering 

industries: 46% of employers surveyed in one study reported recruitment issues related to poor skill 

supply whilst a quarter of employers reported skill gaps in their organisations (The Institution of 

Engineering and Technology, 2017). Interventions have attempted to address this skill gap such as 

prioritised immigration of those possessing engineering skills (Migration Advisory Committee, 2008; 2010; 

2020) or the introduction of new pathways to engineering skill development for workers and young 

learners (Department for Education, 2021; National Audit Office, 2018). However, despite these measures 

a skill gap continues to threaten the practice of engineering in the UK (The Institution of Engineering and 

Technology, 2021).   

Projections of engineering skill demand have identified that each year from 2014 to 2024 the UK will 

require 124,000 new engineers and technicians for core engineering roles (roles that are entirely 

dependent on engineering expertise) and a further 79,000 individuals in related engineering roles (roles 

that require a mix of engineering and non-engineering expertise) (EngineeringUK, 2018). Of this annual 

demand for 203,000 engineering skilled individuals, 66,000 are required to be trained/educated to Level 

3 and 137,000 to Level 4 standard in recognition that the UK workforce is expected to be increasingly 
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higher skilled – by 2024 54.1% of the workforce are expected to possess Level 4 or above qualifications 

up 10% from 2014 (EngineeringUK, 2018). Over ten years this analysis estimates a demand for 2.3 million 

further engineering skilled individuals to fill both pre-existing roles that become vacated (replacement 

demand) as well as newly created roles that develop within the economy (expansion demand). An 

exploration of expansion demand confirms the earlier characterised changes to engineering underway in 

the UK with large decreases in the overall demand for manufacturing roles (-239,855 by 2024) 

(EngineeringUK, 2018).  The characterised shift to a diverse, modern ‘hidden’ practice of engineering is 

also supported by expansion demand for roles in construction, information and communication, and 

professional scientific and technical activities. Projections identify expected shortfalls of 83,000-110,000 

Level 3+ engineering-skilled individuals per year (EngineeringUK, 2018). Demand for engineering expertise 

in the UK is therefore high, increasing and changing over time to become more diverse in evolving 

engineering practices and sectors. 

This demand for engineering skills would represent a significant challenge alone but is made more difficult 

by the further challenge of poor and inequitable participation with engineering education and careers 

which limits the supply of engineering skills. Limited and inequitable participation pervades the skill 

development pathways of engineering in the United Kingdom manifesting from the earliest opportunities 

for young learners to elect to participate in engineering education. In secondary education the number of 

learners in England, Wales and Northern Ireland who elect to study Design and Technology each year is 

low and decreasing: where 185,279 studied this programme in 2016 only 86,297 elected to study this 

subject in 2022 representing a 53% decline in six years. Not only is participation with this curricular 

representation of engineering in decline but participation is deeply inequitable with girls representing 

only 30% (N=25,589) of total students (N=86397) (Education Datalab, 2022). Whilst Design and 

Technology qualifications are not essential for later study or career access in engineering this skewed and 

limited participation with engineering learning demonstrates inequity at the first opportunity for learners 

to choose a trajectory towards or away from engineering/engineering-like education (Tuckett, 2022). 

This trend of inequitable participation and representation continues in later stages of education. In 2020 

only 1.7% of Further Education students in England studied A-Level Design and Technology and only 1.9% 

studied a Level 3 vocational engineering qualification (Tuckett, 2022). The trends of inequity are also 

noted in apprenticeship participation: of the 39,780 Intermediate, Advanced and Higher engineering 

apprenticeships started in 2018/19 by 16-18 year olds 94% (N=37,340) were started by male students 

compared to just 6% (N=2440) by females learners. Participation in these apprenticeships was also deeply 
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skewed by ethnicity with those from white ethnic backgrounds (93%, N=37,110) overly represented 

compared to those from black (1%, N=480) or British Asian (2%, N=920) backgrounds (Department for 

Education, 2019). Unsurprisingly, this trend of inequity within engineering pathways continues into Higher 

Education: of the 124,095 first degree engineering and technology enrolments in 2019/20 81% 

(N=100,905) were male whilst only 19% (N=23,105) were female. Notably, of UK domiciled enrolments 

that year those from white groups were less represented (68%, N=62,370) compared to black (7%, 

N=6835) and British Asian (16%, N=15,120) groups demonstrating nuance and intersectionality within 

engineering inequities (HESA, 2022). These findings demonstrate deeply patterned access, participation 

and representation within UK engineering education.  

The engineering inequities found within education are also, inevitably, found within patterns of 

progression from education into professional engineering contexts. In 2013/14 men found full-time 

engineering occupation employment in six months post-graduation more often (56.1%) than women 

(52.4%) (Royal Academy of Engineering, 2019). This pattern is maintained for ethnicity with white 

graduates reporting greater success (60.4%) than black (36.7%) or British Asian (40.9%) groups. These 

patterns are established across many years of graduates demonstrating entrenched patterns of inequity 

in ‘success’ following education which disproportionately benefit some groups over others (Royal 

Academy of Engineering, 2019). Unsurprisingly, the current UK engineering workforce also demonstrate 

significant patterned inequities. Only 16.5% of those in engineering occupations are female, only 11.4% 

come from non-white ethnic groups and there is a documented skew towards greater representation by 

those with more privileged backgrounds (EngineeringUK, 2022). This collation of findings demonstrates a 

deeply patterned participation with engineering in the UK originating from early education and enduring 

throughout educational pathways into engineering careers. Engineering inequities are noted to affect the 

access, participation, representation and success of individuals within the UK leading to a highly 

homogenous population of engineers.  

The pervasiveness of this pattern and its lack of context-dependency in the engineering domain imply that 

the origin of these inequities lie in the ideas, customs and social behaviour of the nation – in other words, 

the foundational culture of UK society. This assessment is supported in several ways. First, a cultural 

perpetuation of engineering inequity is consistent with the cultural perpetuation of dated 

conceptualisations of engineering to younger generations outlined earlier in this chapter. Second, 

engineering inequities are not a contemporary or context-dependent/situational issue but one that is long 

recognised and contended with throughout the UK. The enduring nature of engineering inequities implies 
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that these patterns are entrenched in a foundational characteristic of the national context that is present 

throughout time and place such as the omnipresent influence of a national culture. Finally, the resistance 

of these inequities to intervention despite decades of attention and more than one billion pounds of 

investment offers further evidence that the root origin of these inequities lies deeply within the enduring 

cultural context and identity of the UK in a manner that is difficult to change (National Audit Office, 2018).  

The significance of culture to engineering inequities is further supported by the ubiquity and diversity of 

forms these inequities take within the UK context. Gender inequities are associated with inequitable 

understanding of engineering (25% of boys in one study report knowing a lot of engineering, compared 

to 8% of girls), a greater awareness of engineering applications in the real world and the capacity to 

recognise engineering in curricula learning experiences (Institution of Mechanical Engineers, 2017). Boys 

also report a greater aspiration to engineering employment (42.9%, compared to 7.6% of girls) as well as 

slightly greater participation in engineering clubs/school activities (7.7%, compared to 5.0% of girls) 

(Hutchinson & Bentley, 2011). Despite a low representation in engineering industry and lesser post-

graduate progression rate Black and Minority Ethnic (BAME) learners report slightly greater participation 

with engineering clubs/school activities (8.4%, compared to white learners 5.6%) (Hutchinson & Bentley, 

2011), with British Asian learners possessing a greater aspiration to engineering careers and identification 

as an ‘engineering type person’ than other ethnic groups (EngineeringUK, 2022a). The identification that 

ethnicity and gender effects intersect and that home/parental influence is associated with inequities in 

engineering further demonstrate the complexity and cultural nuance within inequities in the engineering 

domain (EngineeringUK, 2022a; MacDonald, 2014). These examples demonstrate that the inequities of 

engineering are not solely related to education or career participation but are fundamental to the lived 

experience of these groups and can manifest in many group distinctions. This supports the notion that 

these inequities are entrenched within the culture of the UK society rather than relegated to a particular 

context or situational expression.  

The longstanding and pervasive role of these problems arguably represents the most important challenge 

facing the UK engineering domain. A continuation of high demand but low supply of skills that unfairly 

excludes groups of individuals is a threat to the UK and its engineering domain. Economic problems 

relating to skills supply and demand or social justice problems of fairness in access and representation 

within the desirable engineering domain can be understood as symptoms stemming from the same 

underlying issue of engineering inequities determining restricted access for some groups to the 

engineering domain. A sophisticated understanding is necessary to examine and challenge these 
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inequities. Some degree of understanding has been developed within current literature such as who is 

favoured more (white, middle class males) or less (women, BAME groups, those with less privileged 

backgrounds) or how these groups view the engineering domain.  

However, the continuing presence of engineering inequities despite this learning clearly articulates a need 

for a more sophisticated understanding and intervention. In particular, this development of 

understanding must address the fundamental roots of this inequity within the UK context. 

Conceptualisations of inequity based on group characteristics such as gender or social class may act as 

useful key performance indicators of progress but cannot by themselves indicate the deeper 

characteristics underlying these inequities. An understanding of who is represented within the 

engineering domain is not the same as understanding the mechanics through which inequity is shaped 

and perpetuated. Inequities must also be recognised as complex and intersectional: an interpretative lens 

that artificially siloes gender, social class or ethnicity cannot account for underlying nuances and 

interactions between these characteristics within engineering inequity. An understanding centred on 

these fixed or relatively fixed group characteristics of gender, social class and ethnicity is also unhelpful in 

informing interventions to challenge inequity. An understanding that girls are underrepresented in 

engineering does not directly inform effective interventions to address the underlying causes of this 

patterned access. Further research is necessary to identify deeper issues or strategies to overcome this 

issue. Therefore, a lens of inequity that is overly reductive can be argued as unlikely to offer sufficient 

insight to effectively overcome these inequities. Little research has adopted a complex, intersectional and 

practically-oriented perspective on engineering inequity within the UK context. More research has 

historically considered inequities in the science domain but this body of research has, until relatively 

recently, largely focused on gender and neglected the consideration of race or intersectionality (Cabinet 

Office, 2017; Commission on Race and Ethnic Disparity, 2021; Roberts, 2002). If little deeper consideration 

of inequity is present within the more often studied science domain then it is unsurprising that very little 

study of engineering inequities has taken place. The enduring nature of engineering inequities in the UK 

demand the development of sophisticated, novel and solution-orientated understandings of how to 

encourage a diverse and growing population of future engineers.  

Conclusions 

In this chapter the engineering domain of the United Kingdom was explored to contextualise the 

problematic engineering inequities that are central to this thesis investigation. A definition of engineering 

was established that recognised the varied and socially constructed nature of engineering 
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conceptualisations within the United Kingdom. A critical reflection on the historic and contemporary 

practices of engineering highlighted that engineering is now more hidden and less recognisable within the 

lived experience of the population. This analysis demonstrated the significance of cultural and social 

relationships with engineering and the importance of such considerations in richly contextualising the 

engineering domain. Engineering inequities were also critically explored as entrenched challenges that 

threaten the participation and diversity of coming generations of UK engineers. A critical synthesis of 

perspectives positioned skill shortages and a lack of diversity in UK engineering as two aspects of the same 

underlying problem in how people are supported to become engineers. The persistence of these 

challenges is recognised as a threat to resilience of the nation and the social justice and fairness of UK 

society. These inequities were reasoned to persist, in part, due to dated cultural concepts of engineering, 

the restricted presence of engineering in the education system, and a limited understanding of how 

engineering inequities develop and perpetuate to young learners. It was reasoned that current 

understandings of engineering inequity are limited and that greater insight into the underlying mechanics 

of inequity are necessary if interventions are to successfully address social injustice and economic 

challenges within the UK engineering domain.. The objective of this thesis is therefore established: to 

develop a more sophisticated understanding of engineering inequities in the United Kingdom with a 

particular focus on how young learners – representing the next generation of engineers - may be 

supported for greater access, participation, success and representation with engineering. 
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CHAPTER TWO: FINDING ENGINEERING IN SCIENCE 

CAPITAL 

Introduction 

The first chapter of this thesis acknowledged that the United Kingdom faces deeply entrenched inequities 

of access, participation, success and representation with its engineering domain. These inequities were 

framed as resistant to change, rooted within the social and cultural context of the nation, and a threat to 

the development of young learners as future engineers. A need to develop a more sophisticated 

understanding of these inequities was identified and adopted as the objective of this thesis to better 

support interventions to grow and diversify next generations of engineers. In Chapter Two, the adoption 

of a popular model of science inequity is critically considered to support this objective. The ‘science 

capital’ model is recognised as a deeply insightful and novel perspective of science inequity that supports 

greater understanding and intervention to promote science equity amongst young learners. The 

underpinning cultural and social framework of this model and its focus on developing sophisticated 

insights into inequity within a STEM domain align to the objective of this thesis and support the potential 

adoption of this model. However, the definition of engineering introduced within Chapter One established 

a complicated relationship between the domains of engineering and science necessitating a confirmation 

that the science capital model will apply to the engineering domain. To do this the theoretical model of 

science capital is critically explored to determine the value of this perspective to issues of engineering 

inequity. This judgement will determine the adoption of the science capital perspective within this thesis 

to better understand and address engineering inequities in the UK. 

Science Capital and STEM 

As acknowledged in Chapter One, the relationship between engineering and science can be understood 

as a positional, family resemblance with the degree to which these domains overlap dependent on the 

position from which this comparison is made (Wittgenstein, 2010). One commonality that all STEM 

subjects share to some degree is the issue of entrenched and resistant inequities which affect access, 

participation, representation or success in these domains (APPG on Diversity and Inclusion in STEM, 2021). 

It has long been recognised that some groups are much more likely than others to engage with educational 

and career pathways in STEM (Bosworth et al., 2013; Codiroli-McMaster, 2017; Smith, 2011). The social 

justice and economic health implications of these entrenched inequities have prompted a variety of novel 
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perspectives and approaches to investigate these concerns (APPG on Diversity and Inclusion in STEM, 

2021; Archer et al., 2020; National Audit Office, 2018). A growing body of research literature has provided 

insight as to the patterns of inequity found within the UK context and internationally (Dawson, 2019; Emsi, 

2018; Jones et al., 2021). Arguably the most notable and valuable body of such research in recent times is 

the model of ‘science capital’ developed by Louise Archer and colleagues to explore science participation 

and inequity in the UK context. First published in 2014, this model unified previous lines of inquiry under 

a new theoretical perspective to produce a novel understanding of how young people come to interact 

with science. This model is particularly concerned with social injustices in aspirations for science: who is 

supported to aspire to future educational and career pathways for science in recognition that such 

aspirations differ between social groups in an inequitable manner (Archer et al., 2015). Since its inception 

the science capital model has become widely adopted featuring in international research, practical 

interventions and government monitoring (Department for Business, Energy, & Industrial Strategy, 2020; 

Du & Wong, 2019; Godec et al., 2017). 

Archer and colleagues adopt the capital framework of Pierre Bourdieu: a conceptual framework of 

thinking tools developed to conceptualise social class reproduction, the nature of group differences and 

the perpetuation of identity and societal structure across generations (Bourdieu & Passeron, 1977). 

Within this perspective ‘capital’ is seen as the assets or resources which govern social reproduction, acting 

as legitimate, valuable, transferable resources that bring advantage to the possessor in certain contexts. 

The collective capital an individual possesses, Bourdieu argued, is used socially to determine an 

individual’s cultural competence - and so, their social standing/class (Bourdieu, 1984). In this way capital 

represents not only how well supported an individual is to engage within a context, but how that individual 

is socially identified. Bourdieu offers this view of capital as tool for understanding distinctions between 

groups, innovating on earlier work on the capital perspective by moving beyond an exclusively economic 

structure of capital to also include capitals that were social or cultural in nature (Bourdieu, 1986; Marx & 

Levitsky, 1965). Cultural capitals were framed by Bourdieu as ‘cultural goods’ that develop over time and 

might include tastes, knowledge, skills, credentials, or possessions. These resources may be embodied 

(internalised within the self), objectified (owned as material property), or institutional (formally certified 

and recognised qualities) in nature (Bourdieu, 1984). Social capitals were defined as the forms of capital 

available to an individual through their social network (Bourdieu, 1986). The capital an individual 

possesses, paired with their habitus (socialised development in early age leading to dispositions that guide 

action and reaction – a personal social blueprint developed through mimesis) and the field context they 

find themselves in shapes the human social environment.  
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Bourdieu’s work was broadly concerned with artistic forms of capital – with artistic taste, dispositions and 

capital framed as distinguishing social class. The value of certain capitals is positioned as arbitrary and 

decided by those with greater power in society – in this way the powerful maintain the value of their own 

assets and minimise the assets of others to maintain the status quo of social structure (Bourdieu, 1986). 

The argument that those with greater capital possess greater social standing implicitly positions aspects 

of ‘deficit thinking’ within the Bourdieuian perspective. Deficit models of thinking argue that the root 

cause of an issue is a deficit of some quality or characteristic amongst a disadvantaged group (Smit, 

2012).For example, in a classroom setting a deficit model of learning may position a lack of motivation or 

effort as the cause of poor exam performance. In contemporary times such deficit models of thinking are 

criticised as oversimplistic and neglectful of positive interpretations of individual differences. Whilst 

Bourdieu does recognise that a deficit of capital is disadvantageous his perspective also recognises that 

the valuation of capital is arbitrary and that the distribution of capital that leads to deficits amongst some 

is a consequence of power dynamics in society and not individual shortfalls. In this way Bourdieu’s 

perspective may be understood as a deficit model of thinking that does not attribute blame or 

responsibility on an individual. The capital framework also avoids deficit model criticisms of 

oversimplification through the adoption of further concepts such as habitus and field.  

Archer and colleagues adopt Bourdieu’s perspective on socially determined societal structure into their 

own conceptual framework acknowledging the influence of cultural and social capital on group 

distinctions in science. In the case of science capital, Archer et al. consider both how science capital wields 

influence in society’s power structure (arguing that in the modern world knowledge and participation with 

science is valued in the same manner that Bourdieu argued high art is valued) but also shapes individuals 

in their trajectory for science (by positioning the possession of science capital as beneficial for later 

participation with science, and so, shaping patterns of inequity) (Archer et al., 2015). In this way the capital 

lens is adopted to provide insight into the social and cultural mechanics of science inequity. 

Through this lens Archer et al. form a deep perspective on science inequity which can consider how 

resources for science are differentially distributed. This facilitates both an understanding of the ‘science 

haves’ and ‘science have nots’ of society, but also provides insight into the beneficial effects of capital in 

a manner that can support intervention. This adaption of Bourdieu is introduced by Archer et al. as a 

“useful augmentation of existing Bourdieuian conceptualisation of capital” which has been “absent or 

marginal within most Bourdieuian conceptualisations of capital” (Archer et al., 2015, p923).   
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Archer et al.’s use of the Bourdieuian framework in the development of the science capital model may be 

characterised as a practical adoption of this broad and sociological perspective motivated by a social 

justice philosophy. Archer et al.’s (2015) formation of this model is concerned with measurement and 

classification of individuals based on measurement of science capital ‘scores’ in quantitative terms. This 

purposeful approach facilitated the development of both a theoretical model and empirical instrument of 

science capital that could categorise individuals in terms of their possession of supportive resources for 

science. However, this is perhaps at odds with more popular theoretical uses of the Bourdieuian 

perspective in philosophical or sociological examinations of group differences. Further to this, whilst 

Bourdieu understood capital as more resistant to change in the ‘social reproduction’ of social class; Archer 

and colleagues instead implicitly consider the possession of capital as changeable with a more optimistic 

approach that intervention may lead to change in science trajectory (Archer et al., 2015; Bourdieu et al., 

1977; Bourdieu, 1984; King et al., 2015). This adoption also distances itself from deficit thinking: whilst 

Archer et al. acknowledge group differences in the distribution of capital these differences are not 

positioned as a failing of individuals but a consequence of the wider societal structure surrounding science 

inequity. This is consistent with the broader social justice motivations of Archer et al.’s work. For these 

reasons Archer et al.’s (2015) adoption of Bourdieuian thinking must therefore be acknowledged as a 

more contemporary, if not quite radical, framing in line with adoptions by Yosso (2005) or Prieur and 

Savage (2013). 

Archer et al.’s model of science capital includes a range of subcomponents which each, individually, are 

recognised in past research as important sources of influence for science identity or participation. These 

include subcomponents such as ‘scientific literacy’, ‘scientific-related dispositions/preferences’, ‘talking 

to others about science’, and ‘consumption of science-related media’ (Archer et al., 2012; Claussen & 

Osborne, 2013; Ho, 2010; Israel et al., 2001; Lyons, 2006). Not all subcomponents relate directly to forms 

of cultural or social capital with some instead representing activities and contexts where cultural or social 

capital for science may be obtained. For example, the inclusion of ‘out-of-school learning contexts for 

science’ is rationalised as a participation with contexts such as science museums in which science cultural 

capital such as scientific literacy may be acquired. The science capital model must therefore be 

understood as a construct: an aggregate array of ways in which proximity to the science domain is 

distinguished between groups and individuals in UK society and not strictly or simplistically a checklist for 

science resources. It should not be considered – nor does it claim to be – a total measure or complete 

framing of all science resources (Archer et al., 2015). However, in uniting past research findings into a 

single framing it does produce a novel conceptualisation of science inequity in the UK and in adopting the 
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Bourdieuian perspective can relate science participation to the wider societal structure and its social 

reproduction.  

Drawing on this theoretical model Archer et al. (2015) developed a robust, reliability and validity tested 

empirical instrument to measure science capital amongst secondary school-aged learners (Archer et al., 

2015). This development facilitated large scale investigations of science capital in the UK context that 

offered a wealth of insights demonstrating its novel value (Archer et al., 2015; DeWitt et al., 2016; Moote 

et al., 2021). Measurements of science capital amongst UK secondary school students found that only 5% 

of this population possess a ‘high’ level of science capital indicating that only a small proportion of this 

population are broadly supported with resources that support future involvement with science (Archer et 

al., 2015). Crucially, science capital scores were found to differ between social groups validating the 

relevance of this perspective as a lens for science inequity and its utility in distinguishing groups in relation 

to science trajectory. The results provided by the science capital instrument were found to align with 

existing understandings of who are or are not supported to engage with science, such as the recognition 

that boys and those from South Asian ethnic groups were better supported for science (Archer et al., 

2015; Archer et al., 2013; Direito et al., 2017; Lyons, 2006). Novel insights into science inequity were also 

provided through this instrument such as the recognition that those in high science academic sets possess 

greater science capital or the identification of intersectional dynamics within science inequities (Archer et 

al., 2015). These findings demonstrate the value of the science capital model in efforts to understand and 

address group differences in science participation and highlights the value of a capital-based perspective 

on science inequity. This capital structure is inherently proactive as it suggests the forms of resource that 

are absent and that may be supplied to address inequities thereby supporting the design of interventions 

to address science inequity.  

Science capital has been adopted by other researchers to support their investigations of science 

participation, pedagogy and equity (Canovan & Fallon, 2021; Hall et al., 2021; Ong et al., 2018; Padwick et 

al., 2015). The approach has been adopted overseas - despite its focus on the UK cultural context which 

might suggest that the specific model of science capital produced by Archer et al. is exclusively applicable 

to the UK (Cooper & Berry, 2020; Jones et al., 2021; Wilson-Lopez et al., 2017). Science capital has also 

been adopted institutionally in the UK featuring in the UK Government-led Public Attitudes to Science 

survey which explores how the UK public perceive and experience science to inform government policy 

and national decision making (Department for Business, Energy, & Industrial Strategy, 2020). The insights 

from the science capital perspective have been integrated into a pedagogical practice titled the Science 
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Capital Teaching Approach (Godec et al., 2017; King et al., 2015). This pedagogy focuses on introducing 

the concept of science capital to teachers as a tool for their thinking and supporting change to classroom 

practices to support students in a capital-conscious way. The uses of science capital can be seen as broad 

and legitimised within the UK and overseas, with a clear value for understanding and addressing inequity 

in both policy and educational contexts.  

Science Capital and Engineering 

The science capital model can therefore be understood as an innovative and nuanced perspective on 

science inequity that is sensitive to the cultural context and socially constructed meaning through its 

Bourdieuian framework, and practically oriented to developing understanding to address inequity. These 

virtues align the characterisation of engineering inequity outlined in Chapter One suggesting that the 

science capital model may offer value if adopted in this thesis to better understand engineering inequities 

in the UK. This adoption would represent a novel application of the model which has not previously been 

utilised to explore engineering inequity in great detail. However, as also noted in Chapter One, the 

domains of science and engineering are related but not identical questioning the direct relevance of 

science capital to the engineering domain. Past literature does feature such abstractions of science capital 

to STEM domains but none has first robustly validated this adoption as valid or effective (EngineeringUK, 

2020a; Institution of Mechanical Engineers, 2014). If the generalisation of science capital to the 

engineering domain is not warranted then an adoption of science capital within this thesis would hinder 

efforts to build greater understanding of engineering inequities. It is therefore first necessary to validate 

the relevance of science capital to the engineering domain. Previous study of science capital has identified 

that the model outperformed a more general cultural capital model in efforts to understand science 

inequity (DeWitt et al., 2016). These findings suggest that a subject-specific approach to inequity is more 

impactful than a subject generalising approach when utilising the Bourdieuian perspective. This finding 

further supports the need to investigate to what degree engineering fits within the science capital model 

to determine whether this tool is suitably focused to understand the engineering domain.  

An examination of science capital literature shows little explicit framing of engineering within the model: 

the term “engineering” is not used in Archer et al.’s early publications on the concept although “STEM” is 

used in wider discussions of science generally. Science capital is positioned as an evolution of Bourdieu’s 

arts-based model of capital, in this sense using science in a non-specific, ‘not-arts’ framing which it could 

be argued is generalisable to STEM and thereby inclusive of engineering. Yet in the empirical investigation 

of science capital, the framing of science is seemingly siloed to how science is seen in the UK educational 
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curricula – distinct from technology, engineering or mathematics. These other STEM subjects are not 

empirically investigated directly or indirectly in the science capital methodology (Archer et al., 2015; 

DeWitt et al., 2016). This absence would later be confirmed with empirical findings from within the science 

capital literature suggesting that secondary school-aged participants consider ‘science’ to mean biology, 

chemistry and physics (and not the STEM subjects of technology, engineering or mathematics) questioning 

the degree to which engineering is implicitly included in this research if not mentioned explicitly in the 

framing used by Archer and colleagues (Moote et al., 2021). From a social constructionist perspective, the 

‘science’ in ‘science capital’ is therefore not inclusive of engineering regardless of the intention of its 

creators. Seemingly then, science capital relates to subjects that are within the UK science curricula, 

however as outlined in Chapter One engineering is distinctly underrepresented in this context implying 

that engineering is also inherently absent from the science capital model. 

The underlying Bourdieuian conceptual framework utilised by Archer et al. (2015) would also support the 

premise that engineering cannot be effectively considered within the science capital model. As noted in 

Chapter One the domains of engineering and science are not identical and can be understood as distinct 

from certain positions. For example: engineering is not very present within the UK national curricula 

whereas science is a high priority subject area throughout compulsory education; the general public have 

a much greater level of interest and understanding of science than they do of engineering (Castell et al., 

2014; EngineeringUK, 2018; Institution of Mechanical Engineers, 2016; Institution of Mechanical 

Engineers, 2017; Marshall et al., 2007); and the exact patterns of inequity in the two domains can differ 

(WISE, 2014). These cultural distinctions are critically important under a Bourdieuian framework given its 

dependence on cultural components and sensitivity to cultural nuance (Bourdieu & Passeron, 1977; 

EngineeringUK, 2019). Differences in public literacy, presence in national curricula, and patterns of 

inequity for science and engineering would support the premise that science and engineering hold 

different relationships to capital in the UK, questioning the direct relevance of the science capital model 

to the engineering domain (EngineeringUK, 2020; MacDonald, 2014; Marshall et al., 2007). A lack of 

explicit navigation of this cultural nuance in the science capital literature suggests that science capital is 

not consciously framed to include engineering. 

Despite this, research conducted by Archer and colleagues has empirically investigated the relationship 

between science capital and STEM and concluded that the model is to some degree related to engineering. 

Moote et al.’s (2020) paper found positive correlations between science capital and attitudes to science 

(r=0.779), technology (r=0.327), engineering (r=0.423) and mathematics (r=0.414) with the authors 
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concluding that to a certain degree ‘science capital’ can be considered ‘STEM capital’ and so apply to 

engineering. However, this conclusion must be questioned noting the weak nature of these relationships 

between science capital and technology, engineering and mathematics. The relationship between science 

capital and science (r=0.779) is much greater than that between science capital and engineering (r=0.423) 

which highlights a very different relationship between science capital and these two domains. This 

challenges the notion that science capital will apply to the engineering context as effectively as it does to 

science. Further, as attitudes to science are themselves a subcomponent of science capital (scientific 

dispositions/preferences) it is unsurprising that a correlational analysis identifies a strong association 

between science capital and a measurement of science attitudes as in Moote et al.’s (2020) paper. The 

lack of a strong association between science capital and engineering attitudes in effect demonstrates that 

science attitudes and engineering attitudes are not the same – inherently validating the position that 

science capital cannot be considered as ‘STEM capital’ due to the differences within domains in this 

grouping. This further questions the wisdom of utilising science capital to understand engineering 

inequities. Clearly some degree of overlap or shared qualities are present to support a weak association 

between engineering and science capital (r=0.423) but this likely speaks more to shared similarities within 

the ‘family resemblance’ of STEM. However, as noted in Chapter One, this cannot be considered as a valid 

reason to assume equivalence between these domains (Wittgenstein, 2010). The fact that Moote et al.’s 

(2020) correlations are not all equal demonstrates that science capital relates to STEM subjects differently 

in the favour of science and detriment of technology, engineering and mathematics.  

This same paper, Moote et al. (2020), provides further insight into the distinctiveness of engineering 

amongst the STEM grouping in the context of young people in the UK. This study deployed an identically 

worded measurement of STEM attitudes to 7,013 secondary school-aged participants and found that the 

mean score for engineering attitudes (8.75 out of 15) was much lower than those for science, technology 

and mathematics (10.19, 10.15, and 10.40 out of 15 respectively). This less positive attitude towards 

engineering compared to science is validated in further literature examining UK young people (Hutchinson 

& Bentley, 2011). Given that attitudes are a central element of the science capital construct this further 

suggests that engineering may be distinct from science in terms of capital. These findings demonstrate 

the outlying nature of engineering amongst the STEM grouping for young people in the UK. This may be 

due to the lesser presence of engineering in the national curricula compared with the remaining three 

subjects, but regardless of cause demonstrates the risk of equating ‘engineering’ with ‘science’ and thus 

further shows that engineering warrants its own examination. 
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This synthesis of evidence would indicate that science capital model may not relate to the engineering 

domain in a meaningful manner. Previous studies that have considered the link between science capital 

and engineering have done so in only a superficial manner and with findings that are questionably reliable 

due to methodological limitations.  

However, as established in Chapter One, science and engineering share a complicated dynamic. This thesis 

recognises a relational aspect of defining engineering and its potential for overlap with the concept of 

science. A ‘family resemblance’ is identified with the potential for science and engineering to share 

common traits. This would add wariness to an assessment of science capital that does not appropriately 

approach this model in a granular fashion and consider its underlying characteristics. It is important to 

note that science capital is a construct of many different subcomponents: it is possible that some are 

relevant to engineering whilst others are not. For example, it may be that the forms of knowledge included 

within the ‘scientific literacy’ subcomponent align to knowledge used within the engineering domain. 

Whilst this may be true it could also be accurate to argue that ‘symbolic knowledge of the transferability 

of science qualifications’ is of lesser value to supporting future engineers due to the distinction of 

engineering professional qualifications.  

To comprehensively understand the relationship between science capital and engineering we must also 

‘deconstruct the construct’ and explore the underlying relationship between science capital and 

engineering. 

If this model is found, as suggested, to not be theoretically inclusive of engineering then this would rule 

out the adoption of science capital within this thesis to understand and address engineering inequity in 

the UK. However, in completing this critical examination a more appropriate engineering-specific 

approach may be uncovered. In the following sections of this chapter the theoretical model of science 

capital will be explored in detail. Each subcomponent will be critically analysed and related to wider 

literature to determine the degree to which this construct can relate to engineering. The product of this 

analysis will provide a novel insight into the scope of science capital and its potential use in this thesis to 

explore engineering inequity in the UK. 

Finding Engineering in Science Capital  

Very little research literature has critically examined the theoretical model of science capital however, 

this theoretical structure is of great significance to the resulting practical tools now widely applied in the 

UK to understand science inequity. As a result, to meaningfully consider the degree to which engineering 
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features within the science capital model it is necessary to deconstruct the science capital model to its 

foundational subcomponents. 

The theoretical model of science capital consists of seven subcomponents. Of these, three are forms of 

cultural capital (scientific literacy, scientific-related dispositions/preferences, symbolic knowledge about 

the transferability of science in the labour market), two are forms of social capital (knowing someone who 

works in a science job, talking to others about science) and two are aspects of behaviours and practices 

where capital may be acquired (consumption of science-related media, and participation in out-of-school 

science learning contexts) (Archer et al., 2015). Considering the science capital model in this manner, as a 

collective of subcomponents, highlights the artificial nature of science capital as a construct. Science 

capital is a tool created to ease comprehension of science inequity which may be drawn on by 

practitioners, educators and policy makers to combat inequity. These science capital subcomponents are 

vital, interconnected aspects of science capital that are established in past literature as influential towards 

science aspiration. The subcomponents can be independently examined to uncover the underlying links 

between science capital and engineering.  

 

Figure 2.01 Archer et al.’s (2015) model of science capital with seven subcomponents. 

Scientific Literacy 

The first subcomponent of Archer et al.’s theoretical model is ‘scientific literacy’ defined as “scientific 

knowledge, skills and an understanding of how science ‘works’ and the ability to use and apply these 
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capabilities for personal and social benefit” (Archer et al., 2015, p929). This form of cultural capital is 

framed as “vital” in considering cultural capitals for science, with the ways of thinking and acting, or ‘habits 

of mind’, of science positioned as central to a sense of scientific literacy (Claussen & Osborne, 2013). 

Several scientific habits of mind are explicitly identified as key to scientific literacy, including critical or 

analytical use of logic, identification of variables and numerical skills with data (Archer et al., 2015). This 

framing of scientific literacy is comprehensive, extending beyond the conceptualisation of literacy as 

simply factual knowledge to also consider the deeper embodiment of what it means to be literate in a 

topic, in this case a knowledge of scientific methods and ways of embodying the characteristics of 

someone involved with science. 

Engineering is not explicitly mentioned in this outline necessitating a critical examination of how 

engineering fits within the scientific literacy subcomponent. Given the centrality of habits of mind to 

Archer et al.’s positioning of scientific literacy it is possible to consider whether the subcomponent is 

inclusive of habits of mind for engineering. Several published models of engineering habits of mind would 

suggest this is not the case. Previous research into engineering habits of mind has identified habits such 

as ‘systems thinking, creativity, communication and collaboration’ (Katehi et al., 2009), ‘problem finding, 

visualising, improving, adaptability, and creative problem solving’ (Lucas & Hanson, 2016), and ‘systems 

thinking, creativity, communication, optimism, optimization, and iteration’ (Huffman et al., 2018). These 

differ from habits of mind for science identified by various authors such as ‘scepticism, rationality, 

objectivity and curiosity’ (Çalik & Coll, 2012), ‘understanding peer review, scientific ethics and 

acknowledging uncertainty’ (Collins & Pinch, 1993) or those explicitly referred to by Archer et al. (2015), 

from Claussen and Osborne (2013), ‘patterns in data, numerical fluency, and deductive reasoning’. 

The distinctiveness of these habits of mind for science and engineering align with the position of this 

thesis, as outlined in defining engineering in Chapter One, that the two subjects appear superficially 

similar but can be distinguished when more rigorously examined with a positional perspective. This 

supports the conclusion that engineering habits of mind – and therefore literacy in Archer et al.’s (2015) 

framing – is not included in the ‘scientific literacy’ subcomponent. Given Archer et al.’s adoption of habits 

of mind as key to literacy and the distinctiveness of habits of mind for science and engineering, we cannot 

consider the science capital literacy subcomponent to be inclusive of engineering in the framing 

established by Archer and colleagues. This conclusion is supported by wider models of engineering literacy 

by Huffman et al. (2018) and Chae et al. (2010) that recognise many dimensions of engineering literacy 

none of which are meaningfully represented within Archer et al.’s (2015) ‘scientific literacy’ 
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subcomponent. Overall, this analysis would challenge the notion that scientific literacy as framed by 

Archer et al. is inclusive of engineering – either in relation to the habits of mind central to their framing 

or in relation to wider theories of engineering literacy. If this key subcomponent is not inclusive of 

engineering, this would suggest a fundamental lack of presence of engineering within the science capital 

model.  

Scientific-Related Dispositions/Preferences 

The second subcomponent of Archer et al.’s theoretical model of science capital is ‘scientific-related 

dispositions/preferences’. No explicit definition of this subcomponent is given, though an example is 

outlined (“valuing of science in society” (Archer et al., 2015, p929)) and examination of the empirical 

instruments of science capital highlight that this subcomponent relates to attitudes of parents and young 

people, including interest in science and sense that science is important. Within the Bourdieuian 

framework, dispositions are closely linked to the concept of ‘habitus’ and play a role in propagating 

inequity across generations. For Bourdieu, habitus is an acquired and socialised set of characteristics 

which “generates perceptions, appreciations and practices” (Maton, 2014). Bourdieu reasoned that these 

dispositions are both ‘structured’ i.e., acquired through past experience, but also ‘structuring’ in that they 

shape the present and future through a developed set of “predisposition, tendency, propensity or 

inclination” (Bourdieu, 1977, p214). Parents are a key source of this habitus leading to the noted 

intergenerational endurance of group characteristics. Bennett et al.’s (2019) replicative study of 

Bourdieuian capital within the UK confirmed the continuing relevance of habitus as a tool to understand 

contemporary groups.  

It might then be inferred that the ‘scientific-related dispositions/preferences’ subcomponent refers to the 

structured and structuring influence on an individual in relation to their scientific ‘taste’ including their 

tendencies, propensities and inclinations for science. This can be seen as attitudinal in nature relating to 

the attitudes of young learners, but in acknowledging the ‘structured’ influence of past experiences and 

socialised learning also considers parental attitudes as a source of habitus. Considering the science capital 

model is interested in trajectory towards science this consideration of parental influence is validated by 

White and Harrison (2012) who identify the influence of parents on educational and career choices of 

young people.  

Having established this understanding of the subcomponent it is next possible to consider whether this 

subcomponent is inclusive of engineering. It is well established that differences can exist between interest 
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and value judgements for different scientific domains, e.g. physics, biology and chemistry (Jones et al., 

2000). This recognises that the concept of ‘science’ itself is a construct, often viewed as meaning ‘biology, 

chemistry and physics’ which might otherwise be seen as a collection of subjects much like the STEM 

grouping (Moote et al., 2021). Dispositions/preferences for science then are likely more multidimensional 

than suggested in Archer et al.’s subcomponent where science is described as a unidimensional catch-all, 

presumably meaning biology, chemistry and physics though this is not explicitly stated. This questions the 

validity of how the dispositions/preferences subcomponent is framed for science given noted variability 

in interest and valuing of biology, chemistry and physics. This also challenges the notion that science 

capital or ‘STEM capital’ could effectively bridge the differences in science and engineering and retain its 

specificity as a subcomponent.  

The distinctiveness of dispositions for science and engineering in the UK would be confirmed by data from 

the 2019 Engineering Brand Monitor which shows that young people in the UK possess dispositions that 

are more positive about science (63%) than engineering (50%) generally, and more positive about science 

jobs (49%) than engineering jobs (41%) (EngineeringUK, 2019). This distinctiveness in dispositions for 

engineering is confirmed by Hutchinson and Bentley (2011) who established that dispositions of 

enjoyability, importance, utility and personal confidence amongst secondary school-aged learners all 

differed for science and engineering, with engineering dispositions less positive than those for science. 

Critically, some of the dispositions considered within Hutchinson and Bentley’s study are also the 

dispositions considered within the science capital model (interest, utility, importance) directly questioning 

the degree to which Archer et al.’s subcomponent can be presumed to apply to engineering. To assume 

that this subcomponent is inclusive of engineering would overestimate the positivity of dispositions for 

engineering.  

The distinctiveness of dispositions for science and engineering are also noted amongst parents and adults 

in the UK, questioning the validity of the assuming that the science capital subcomponent is inclusive of 

engineering. Parents are less confident talking about engineering than science (EngineeringUK, 2019) and 

adults in the UK also find engineering to be less interesting than science (Department for Business, Energy, 

and Industrial Strategy, 2020). Given the importance of family influence on habitus, and the development 

of dispositions within young people, this would further support that dispositions for science and 

engineering differ in the UK and that the scientific dispositions subcomponent cannot reasonably be 

assumed to access engineering dispositions.  

Symbolic Knowledge of the Transferability of Science in the Labour Market 
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The final cultural capital subcomponent within the science capital model is ‘symbolic knowledge of the 

transferability of science in the labour market’ which is defined as an appreciation that science 

qualifications are valuable and transfer a benefit in the context of the labour market. This subcomponent 

is therefore concerned with the knowledge of how to approach and navigate through educational 

pathways towards valuable qualifications which Archer et al. refer to as “a particular form of symbolic 

scientific cultural capital... related to differential patterns of aspiration” (Archer et al., 2015, p930) which 

capture the “distribution and possession of culturally valued forms of knowledge which can be 

strategically used” (Archer et al., 2015, p930). The subcomponent considers both the knowledge that 

science qualifications are valuable as well as the sources of this knowledge who Adamuti-Trache & Andres 

(2008), quoted by Archer and colleagues, consider to be “key in the transmissions of cultural capital from 

parents to their children” (p1576). The ASPIRES2 project has noted the inequitable distribution of such 

knowledge and support in the UK, with less than a third of one sample of secondary school students 

reporting a positive experience with careers advice, validating the inclusion of this subcomponent within 

a model of science inequity (Archer et al., 2020).  

This theoretical justification also applies to the relevance of careers knowledge to engineering: both 

science and engineering possess educational pathways and qualifications that would be advantageous to 

understand. However, as with other elements of the science capital model, it is unclear whether the 

subcomponent as framed by Archer and colleagues also equally captures engineering. Pathways for 

science and engineering are largely distinct, with a greater range of available pathways for engineering 

than science (T-levels, in addition to existing A-levels, Intermediate/Advanced/Higher Technical 

Apprenticeships, Degrees and Degree Apprenticeships). Whilst some overlap exists, such as the 

requirement of physics qualifications to enter some engineering pathways, overall, the two subjects might 

be seen as dissimilar in terms of pathways of entry. That engineering can be seen as more vocational than 

science is also a concern given previous identification that vocational progression knowledge within the 

UK is poor, in addition to the already poor level of career knowledge more generally (Hutchinson & 

Bentley, 2011; Walport, 2010).  

The distinctiveness of knowledge for science and engineering in the UK is clear in recent literature, with 

those from more privileged backgrounds significantly more likely (64%) to know the steps to become an 

engineer compared to those from less privileged backgrounds (50%) whilst no significant differences were 

found between these groups for knowledge of how to become a scientist or healthcare worker 

(EngineeringUK, 2020a). This not only demonstrates that science and engineering differ in relation to 
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symbolic knowledge, but also that this knowledge for engineering is less equitably distributed than 

science.  

This distinctiveness is also demonstrated in how young people in the UK view science and engineering 

qualifications. One longitudinal study of secondary school students in the UK identified that science 

qualifications are seen as more likely (72.0%) to lead to a good job than engineering (48.5%) or Design 

Technology (41.2%) qualifications. This study also identified that changes to this form of ‘symbolic 

knowledge’ also differed with science increasing over two years (+5.3%) whereas engineering did not (-

0.3%). These young people could be seen to have acquired institutional capital for science, but not 

engineering, demonstrating that changes to one do not necessarily affect the other and so delineating the 

two as separate (Hutchinson & Bentley, 2011). This distinctiveness is not navigated by the ‘symbolic 

knowledge’ subcomponent of science capital, questioning its relevance to engineering.  

The ability of the ‘symbolic knowledge’ subcomponent to apply to engineering can be further questioned 

by analysing the role of teachers and parents which Archer et al. position as influential within this 

subcomponent. One study identified that UK STEM teachers and parents have less confidence giving 

careers advice for engineering (parents: 32%, teachers: 45%) than for science (parents: 36%, teachers: 

58%) (EngineeringUK, 2019). These findings align with a lack of confidence amongst teachers with 

engineering more generally (Watermeyer et al., 2016). The low levels of confidence for engineering 

careers advice are salient given the importance of these relationships as outlined by Archer et al. and the 

dependency of young people on these sources, with 61% of one sample reporting they would approach a 

parent and 56% a teacher for such insight (EngineeringUK, 2020).  

These findings indicate that the 'symbolic knowledge’ subcomponent cannot effectively consider both 

science and engineering with a single measure as distinctions exist between these subjects. This questions 

the ability of the subcomponent to accurately reflect engineering – an assumption that it does so would 

overestimate the degree of capital a young person is judged to possesses for engineering.  

Talking to Others About Science 

The first of the two social capital subcomponents within Archer et al.’s science capital model is ‘talking to 

others about science’ defined as ascertaining “the frequency and number of people whom students talk 

about science in their daily lives” (Archer et al., 2015, p931). This considers how parents, teachers, family 

members, friends, extended family and scientists interact with an individual given previous recognition 

that social interactions with science support children in learning environments (Lyons, 2006). This 
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subcomponent relates to the Bourdieuian concept of social capital, which Bourdieu defines as “the sum 

of the actual or potential resources that are linked to the possession of a durable network of more or less 

institutionalised relationships of mutual acquaintance and recognition—in other words, to membership 

in a group” (Bourdieu, 1986, p248). This subcomponent is therefore attempting to discern the degree to 

which social relationships support the development of and access to science capital.  

This is validated by the work of Lyons (2006) and others who find that communication between individuals 

can benefit the development of science capital. Jackson et al. (2019) note that talking about science can 

support greater science career interest for some groups (though not all), highlighting both the value of 

this subcomponent but also the complexity of its effect in only influencing some and not others. The 

complexity of impact produced through talking to others about interests is noted elsewhere, with 

Pasupathi and Rich (2005) identifying that the attentiveness of the social audience will feed back and 

influence the interest of the speaker towards the topic of conversation: a speaker who encounters a bored 

audience will feel less interested in the topic they spoke about following the interaction. The content of 

social interactions can also determine the impact of its effect on individuals with Haden (2010) identifying 

that elaborative social interactions involving open-ended questioning produce richer learning outcomes 

for science and Crowley et al. (2001) noting that parental social interactions with children in science 

learning contexts can shape the engagement of children with learning. It is also noted that some social 

interactions can damage science aspirations, with Neblett and Cortina (2006) acknowledging that social 

influences are not always wholly positive in their impact.  

The ‘talking to others about science’ subcomponent does not take into consideration many of these 

nuances, with little recognition of the potential for differential impact on different groups, the importance 

of the recipient attentiveness, and no examination of conversation content beyond the label of ‘science’. 

Whilst the subcomponent does explore frequency of communication, which is acknowledged as an 

important characteristic (Hare & Davies, 1994), the framing of this subcomponent might be seen as 

simplistic and presumptive that talking about science will lead to advantageous outcomes as a form of 

capital, which is not guaranteed as social interaction is not the same as social support (Rook, 1984). Whilst 

a simplistic measurement may have been inevitable due to the scale of data collection necessary to 

empirically access seven subcomponents, this does have important implications for how the 

subcomponent might apply to engineering, as this would require further steps of abstraction to presume 

a relevance.  
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Learning is widely acknowledged as a social process with social interactions noted to impact engineering 

learning and later recall (Benjamin et al., 2010). However, little research has explored this topic within 

engineering learning or the impact of science talk on engineering outcomes. Given the complexity 

identified in relation to talking to others and science aspirations it is perhaps unwise to assume a simplistic 

relationship between science talk and engineering. The lack of analysis of conversational content in Archer 

et al.’s ‘talking to others about science’ subcomponent means that there is no guarantee that the 

conversations measured by this subcomponent contain any engineering content (or, in fact, science 

content). The social partners considered in this subcomponent (teachers, parents, fellow pupils) are noted 

to possess a lesser level of knowledge or confidence with engineering as a topic compared to science 

(EngineeringUK, 2018; EngineeringUK, 2019). Whilst ‘talking with scientists’ is measured within the 

empirical measurement of this subcomponent ‘talking with engineers’ is not. As a result, social 

interactions for science and engineering should not be expected to be the same within the UK context 

amongst those considered by the ‘talking to others about science’ subcomponent.  

Overall, the influence of social interactions for science must be recognised as a complex phenomenon but 

a valid one for consideration of science inequity. For engineering, there is limited evidence that science 

talk directly influences engineering and a synthesis of wider literature would suggest that talking to others 

about science and engineering in the UK is likely different. The structure of Archer et al.’s ‘talking with 

others about science’ subcomponent is simplistic and likely cannot access engineering as well as it does 

science. Further research is needed to establish the relevance of talking to others about engineering on 

engineering inequity.  

Knowing Someone Who Works in a Science Job 

The second of Archer et al.’s social capital subcomponents is ‘knowing someone who works in a science 

job’. This subcomponent is supported by research that shows that children aged 10-14 with close family 

members employed in science-related jobs are more likely to aspire to science careers themselves (Archer 

et al., 2012) and research showing that motivation and encouragement from key adults is an important 

predictor of later educational choices (Mutjaba & Reiss, 2014). The advantageous capitals within this 

subcomponent are not specified, but the rationale for its inclusion is that these relationships can provide 

potential benefit through the mechanics of Bourdieuian social capital. This lack of specificity is unhelpful 

given the recognition that familial support is complex and not simplistic or linear in all cases (Archer et al., 

2012). However, whilst not Bourdieuian in scope, the rich research literature on the influence of social 
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relationships as role models supports the validity of socialised learning and its impact on aspiration (for 

example, Cheryan et al., 2011).  

Having acknowledged the relevance of this subcomponent, despite its lack of specificity, we can next 

consider the degree to which knowing a science-employed individual might apply to engineering 

aspirations. Science and engineering careers often differ with distinct pathways, qualifications, 

accreditations, titles and working contexts. Knowing a science-employed individual cannot be seen to be 

the same as knowing an engineering-employed individual, so the direct relevance of this subcomponent 

to engineering aspiration is unlikely to be the same as its relevance to science. This would be confirmed 

by intergenerational career choice literature which explores the impact of parental occupation on later 

career of their child. This influence is relevant in the UK where a son is, generally, estimated to be 72% 

more likely to work in an occupation if their father is currently employed in that role (Bello & Morchio, 

2022). This intergenerational influence is distinctly different for scientists and engineers, with 8.6% of 

engineers in one sample stating that they had an engineer for a parent compared to only 2.2% of scientists 

having a scientist parent (Laurison & Friedman, 2016). These findings highlight that in the UK context 

engineering and science are impacted differently by the same parental occupation influence, with 

engineering much more impacted by parental occupation than science.  

The science capital subcomponent of ‘knowing someone who works in a science related job’ then can be 

seen as inadequate to examine engineering aspirations given that the influence of having an engineer 

parent is seemingly much greater than the impact of a scientist parent. Within one UK sample, engineering 

was found to have the second highest rate of intergenerational career choice, with only medical 

professionals having a higher rate of parents and child holding the same career role (Laurison & Friedman, 

2016). These findings highlight that intergenerational influence of parental occupation – something that 

is very relevant within the Bourdieuian perspective – is distinct for engineering and science. This questions 

whether assessing science-employed social contacts such as in the science capital model can fairly 

represent the benefit of knowing an engineering-employed contact given that seemingly these two fields 

are uniquely influenced by such social capital. 

Archer et al.’s framing of the ‘knowing a scientist’ subcomponent gives little recognition to the potential 

negative impact of knowing a scientist on science participation (thereby demonstrating a disadvantage 

not an advantage, and therefore not being considered a form of capital). Previous research has established 

that if children perceive their parental occupation as unpalatable the resulting effect of this occupation 

influence is more negative (Neblett & Cortina, 2006). This demonstrates that knowing a scientist is not an 
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inherently positive influence and would further question the applicability of science capital to engineering 

given that feelings towards engineering are more negative than those for science generally in the UK 

(Moote et al., 2020). Differences between science and engineering would also affect the impact of 

maternal occupation, noted as a particularly impactful influence, due to the very low rates of female 

engineers (and therefore engineer mothers) in the UK (Korupp et al., 2002; Sikora & Pokropek, 2012). This 

further outlines the difference in how science and engineering social contacts may impact on young 

people and thus limiting the relevance of ‘knowing someone who works in a science job’ to the 

engineering domain.   

Consumption of Science Media 

Archer et al.’s model of science capital also contains subcomponents relating to behaviours and practices 

around science. The inclusion of these subcomponents is rooted in Bourdieu’s view of arts-based cultural 

capital where the consumption and cultural practices of art were considered in relation to group 

distinctions. Archer and colleagues have replicated this approach to consider the cultural practices of 

science that may provide forms of capital to support science aspiration amongst some groups but not 

others. Given the lesser role of engineering within the UK education system, such behaviours and practices 

that do not relate to formal schooling may carry particular relevance to engineering inequity. The first of 

these behaviours and practices subcomponents is ‘consumption of science media’ defined by Archer et 

al. (2015) as capturing “the extent to which respondents consume science through various forms of 

media” (p930). This includes the consumption of television, books, magazines, and online sources. Given 

that media also exists for engineering it is reasonable to consider how well this subcomponent may relate 

to engineering. 

Archer et al.’s theoretical positioning of media consumption as relevant to science inequity within a 

Bourdieuian framework is validated with research highlighting that media consumption can lead to 

greater cultural capital such as scientific literacy (in the form of scientific knowledge and understanding 

of science processes) and greater social capital (in the form of more home interactions for science) (Kelly 

et al., 2016; Penuel et al., 2010). The operationalisation of this subcomponent by Archer and colleagues 

is also valid, with measurement of frequency of media consumption and digital forms of media 

engagement included within this subcomponent strengthening its approach (Bohnert et al., 2021; 

Linebarger et al., 2009; Su et al., 2015). The inclusion of the ‘consumption of science media’ 

subcomponent can be seen as a valuable addition for understanding science inequity.  
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However, we must question the degree to which this subcomponent is inclusive of engineering. Archer et 

al.’s positioning of the 'science media consumption’ subcomponent positions media consumption as 

beneficial, in line with the Bourdieuian view of capital as an advantageous resource. However, media 

consumption research recognises the complexity of consuming media and the potential for 

disadvantageous outcomes. One investigation found that whilst some media content led to social, 

prosocial, cognitive and emotional development, other content led to greater aggression and lesser social 

and prosocial behaviour (Veraksa et al., 2021). This potential for disadvantageous outcomes is not 

considered in Archer et al.’s subcomponent (or many other framings of media consumption (see Byrne et 

al., 2021)) questioning its ecological validity. This also carries implications for the degree to which 

engineering is represented within this subcomponent, as these findings suggest a complexity to the 

influence of media consumption that would question a presumption that science media must also carry 

an advantageous influence on engineering. 

As with other science capital subcomponents, and in line with the Bourdieuian perspective, it is important 

to consider the manner in which social relationships influence the development of different capitals for 

science. One study of the effect of science media consumption on the knowledge of science and inquisitive 

learning styles found little direct benefit on young children but did establish positive impacts on the 

parents who could then support their children in science (Bonus, 2021). This positive impact of media 

consumption on parents has been established elsewhere (Tabullo & Gago-Galvagno, 2021) and suggests 

that the benefits of media consumption for science may be mediated through social relationships, in 

particular those of the home environment (Watts & Bonus, 2021). The importance of social environment 

on the effect of media consumption is further validated by research that shows that whilst science media 

can build a greater interest in science (Levine et al., 2021), the frequency of engagement of young people 

with science media is influenced by parental attitude towards science. It can therefore be seen that 

parents may act as not only co-learners but as gatekeepers for science media (Sheehan et al., 2018). This 

validates the consideration of this subcomponent within a Bourdieuian view of science aspiration given 

that the benefits of media consumption – its advantages/propensity as capital – can be seen as mediated 

through the primary habitus/home environment of the young person. 

The importance and influence of parents and teachers on the effect of media consumption would suggest 

that Archer et al.’s science media consumption subcomponent cannot apply to engineering in the same 

way it does to science. Parents, teachers and fellow students, who likely play such mediating roles in 

media consumption, are noted to carry different levels of knowledge, confidence, and attitudes towards 
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science and engineering (EngineeringUK, 2018; EngineeringUK, 2019). These distinctions would suggest a 

differing level of impact on media consumption for science and engineering, highlighting the validity of 

considering engineering media in relation to engineering inequity but questioning the ability of the 

‘science media consumption’ subcomponent to apply to engineering.  

Participation in Out-Of-School Science Learning Contexts  

The second behaviours and practices subcomponent included within the theoretical model of science 

capital is ‘participation in out-of-school science learning contexts’. This is introduced as an attempt to 

understand participation with contexts in which capital for science might be acquired. This includes: 

“designed spaces (such as science museums, zoos/aquaria), community spaces (such as after-school 

science clubs), and everyday contexts (such as doing experiments/using science kits at home; 

fixing/building things at home; going on nature walks; programming computers” (Archer et al., 2015, 

p930). Such informal learning contexts and their educational benefits are well established in academic 

literature, though interchangeably referred to as ‘self-directed learning’ or ‘life-long learning’ (Johri et al., 

2016). One estimate suggests that 85% of a student’s time is spent outside of formal learning contexts, 

highlighting that ‘out of school learning’ can account for a large amount of lived experience (Gerber et al., 

2001). 

The recognition that these learning contexts are inequitably participated with validates the inclusion of 

this subcomponent within the science capital model. Out-of-school science learning contexts have been 

found to be more frequently participated in by white and middle-class groups or groups from particular 

geographic regions in the UK (Dawson, 2012; Department of Culture Media and Sport, 2011; Falk et al., 

2015). Science learning contexts are recognised as imparting a complex benefit to participants including 

support for science aspirations of young learners (Archer et al., 2022; Callanan et al., 2011; Dou et al., 

2019). Godec et al. (2022) establish that participation in informal science education is not necessarily 

governed by the interests of the child, but seemingly moderated by parental gatekeepers as with other 

subcomponents of the science capital model. Whilst acknowledging that the impact of out-of-school 

learning contexts on science participation is not a simple dynamic, these studies do highlight the relevance 

and value of considering out-of-school learning contexts within the science capital model of science 

inequity.  

Research has also identified that out-of-school and in-school learning experiences are related, with Shaby 

and Vedder-Weiss (2020) identifying that the interactivity, positioning and role adoption of individuals 
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will be the same in each context – a ‘non-science’ person in one setting will likely be a ‘non-science’ person 

in another. This might question the need to consider both in-school and out-of-school learning contexts 

within the science capital model, however, further research has shown that communication differs in 

these contexts. Parents with greater formal education communicate more scientifically than less educated 

parents within science museum settings, but they display few differences in home environments. Both 

science museums and home environments might be considered ‘out-of-school learning contexts’ 

demonstrating that under an equity lens these contexts display a complexity that necessitates a rich 

examination of differing out-of-school contexts. This supports the approach of theorisation and 

operationalisation of the subcomponent by Archer and colleagues.  

Out-of-school learning contexts are notably important for engineering in the UK context considering that 

engineering features infrequently within the UK education systems, suggesting that learning experiences 

for engineering are disproportionately dependent on informal learning compared to science. Whilst less 

studied than science learning contexts, past literature has identified that engineering out-of-school 

learning contexts can lead to the development of capital such as mathematics learning, field experience 

and the development of team working skills (Denson et al., 2015). The impacts of out-of-school learning 

context for engineering, as with science, are noted to differ between groups with some contexts impacting 

men more than women whilst others impact both groups (Godwin et al., 2016). This highlights that the 

subcomponent is a valid one for a model of engineering inequity.  

However, it is unclear to what degree out-of-school learning contexts for science are representative of 

those for engineering. Given the identification that parents play a mediating or gatekeeping role in out-

of-school context participation and that parents are known to carry lesser knowledge and confidence with 

engineering than science; it might be expected that the impact of out-of-school contexts for science and 

engineering are not the same. It might also be questioned to what degree an out-of-school learning 

context for science may or may not include engineering, questioning its relevance to engineering inequity. 

Whilst out-of-school learning contexts are clearly important for engineering it is unclear whether the 

science capital model effectively captures these as well for engineering as it does for science, with no 

explicit examination of engineering out-of-school experiences. As a result, further examination is 

required.   
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Conclusions 

This chapter has theoretically explored the relationship between the science capital model and 

engineering to determine the scope of this model and its potential application as a tool to address 

engineering inequity. By adopting a critical position that considers the distinctiveness of engineering and 

science, the science capital model was found to poorly represent engineering. Whilst an innovative and 

practically valuable model for science inequity, the relevance of science capital to engineering is 

theoretically poor with wider literature suggesting that the constituent subcomponents of science capital 

cannot apply to engineering in the same way as they apply to science. 

For some subcomponents, such as scientific literacy, scientific-related dispositions/preferences, and 

symbolic knowledge of the transferability of science in the labour market a vital element of the 

subcomponent (habits of mind, particular attitudes, and educational pathways respectively) differs for 

science and engineering questioning the ability of this model to account for both subjects. This 

demonstrates that science and engineering differ for all three of the cultural capital subcomponents in 

this capital model. For other subcomponents, such as talking to others about science or consumption of 

science media, limitations of the theoretical and empirical framings of these subcomponents within the 

model make it difficult to understand the scope of effect and way these subcomponents relate to 

engineering but further theoretical insights suggest that these subcomponents would differ for science 

and engineering. 

However, the theoretical critique outlined in this thesis does acknowledge that the capital perspective is 

valid for the engineering domain. Many of the science capital subcomponents are also acknowledged as 

potentially relevant for engineering if approached in an engineering-specific way. As a result, this analysis 

has supported the use of the Bourdieuian capital perspective to better comprehend and address the 

engineering inequities in the UK.  

It must also be acknowledged that the science capital model is not only a theoretical perspective but also 

an empirical structure rooted in real world contexts of inequity. Whilst the analysis of this chapter has 

shown a misalignment between the theoretical model of science capital and engineering it is possible that 

this distinction is less impactful in the complex context of real-world application. Functionally, science 

capital may serve as an adequately successful tool for use in this thesis even if the model performs better 

for science than engineering.  
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These two conclusions identify a need to empirically examine the relationship between science capital 

and engineering to more conclusively determine the validity of adopting science capital to understand the 

engineering domain. The identification in this chapter that many forms of capital within the science capital 

model might also be approached in an engineering-specific manner raises the possibility of instead 

adopting an alternative, engineering-focused model of capital. In coming chapters of this thesis such 

models of capital will be empirically investigated to identify the strongest tool with which to develop 

greater understanding of engineering inequity. If empirical measurements of science capital are found to 

strongly align with engineering inequities the science capital model will be adopted. If an engineering-

specific capital lens is found to outperform science capital then a novel model will instead be developed 

and applied to accomplish the objective of this thesis and develop a greater understanding of engineering 

inequities in the UK.  
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CHAPTER THREE: METHODOLOGY 

Introduction 

In previous chapters engineering inequities were identified as deeply entrenched within the United 

Kingdom, with longstanding issues of access, participation, success and representation within its 

engineering domain. It was reasoned that engineering inequities have persisted in the UK, in part, due to 

factors such as a dated cultural concept of engineering that has not evolved alongside engineering 

practices, a lack of engineering within the UK national curricula, and a shallow body of research examining 

the perpetuation of engineering inequities. It was argued that current understanding of engineering 

inequities possessed limited depth and practical value. The objective of the thesis thereby became to 

develop a greater understanding of engineering inequities within the UK context. A popular and influential 

model of science inequity, science capital, was considered for adoption to accomplish this objective. 

However, a theoretical examination of this model questioned the degree to which it might apply to the 

engineering domain necessitating further empirical study. In this Methodology chapter the investigation 

of this thesis is outlined to accomplish the objective of developing greater understanding of engineering 

inequities. First, a conceptual framework will be defined to position the understanding of engineering, 

inequity and the adopted Bourdieuian capital lens. Next, the research philosophy, design, sample and 

materials will be outlined. Finally, the research procedure and methodological limitations will be explored.  

Conceptual Framework 

The development of a conceptual framework within a body of research offers the opportunity to identify 

key concepts that are central to its objectives (Leshem & Trafford, 2007). Punch (2000) refers to the 

framing of these concepts as the ‘what’ and ‘how’ questions of research that support clarity and purpose. 

Within this thesis three key aspects are considered in relation to its objective of building greater 

understanding of engineering inequities in the UK.  

Defining Engineering in the UK Context 

The definition of engineering adopted in this thesis is critical in framing the subject matter and context of 

its enquiry. As noted in Chapter One, it is possible to define engineering in many ways. One widely 

accessible, socially constructed definition of engineering as ‘making and fixing’ is acknowledged based on 

the common public understanding of this domain (Institution of Mechanical Engineers, 2016; Institution 

of Mechanical Engineers, 2017; Marshall et al., 2007). However, this definition notably lacks a conceptual 



64 
 

depth which limits its practical value within research. An alternative approach to defining engineering can 

draw upon the views of experts to highlight the importance of design, key engineering processes, 

engineering ways of thinking and acting (Dym et al., 2005; Haik, 2015; Huffman et al., 2018; Lucas et al., 

2014; Pleasants & Olson, 2018; Winarno et al., 2020). This approach to defining the engineering domain 

offers greater nuance but is only drawn from an informed minority limiting the practical accessibility of 

its resulting definition. Adopting this definition within research would be an exclusionary practice that 

may restrict the potential pool of participants that are capable of engaging with the research. A definition 

drawn only from expert conceptualisations of engineering may also carry institutional influence that 

entrenches a certain, status quo interpretation of the domain that is at odds with the objectives of this 

thesis in facilitating change to engineering inequities. A further, relational definition of engineering 

considers the dynamic between engineering and other STEM domains, particularly science, noting the 

potential contribution of science, technology, and mathematics to engineering practices. Whilst 

engineering may be conceived of as similar to these other STEM domains such judgements are positional 

and depend on the context from which these comparisons are made. The relationship between 

engineering and other STEM subjects is considered to be a ‘family resemblance’: sharing common traits 

but not dictating perfect replication.  

A definition of engineering is adopted within this thesis through a synthesis of these perspectives. 

Engineering is defined as: a practice of creative problem solving, commonly understood as ‘making and 

fixing’ but that can be more deeply understood as activities involving established design processes with 

the objective of creating effective and efficient solutions to identified problems. Engineering professionals 

can be understood to embody characteristics of engineering and its practice, including: an ability to 

visualise, think critically and systematically in identifying and deconstructing problems and forming 

creative and innovative solutions. Engineering can be understood as sharing some characteristics with 

other domains such as science, technology and mathematics with the nature of engineering as a practice 

presenting the opportunity to integrate insights of science, use of tools and technology and mathematics 

within engineering experiences. However, engineering must also be understood as distinct from these 

domains and considered as a singular domain with its own relationship to the UK and its population.  

This definition can be seen to carry significant implications for the design of this thesis research project. 

The adopted definition recognises the need to navigate complexity in how engineering is understood and 

defined, offering a simplistic framing of ‘making and fixing’ alongside more complex understandings 

drawn from expert sources. This definition will remain accessible to the conceptualisations of the public, 
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which is vital given the inequities central to this research enquiry are rooted within the general public. As 

a result, this definition will offer greater utility in data collection contexts; the adoption of an expert-only 

definition would damage the capacity to recruit effectively from the general public or would limit the 

ability to integrate research data with the conceptual framework of this project. Given that the core 

problem addressed by this thesis is related to understanding of inequity the managing of such 

exclusionary research characteristics must be carefully navigated.  

The conceptualisation of engineering adopted within this research also carries implications for the 

philosophy and scope of the project. The research philosophy stemming from the thesis objective and this 

conceptual framework must acknowledge that ‘engineering’ is not a singular, natural aspect of the world 

but a construct developed through social consensus thereby dictating a recognition of social 

constructionist thinking. This definition also recognises the influence of cultural context on understanding, 

and therefore conceptualisations, of engineering. Such a philosophical positioning introduces further 

necessary considerations such as the potential for differing social contexts to carry distinct engineering 

definitions. This dictates the need to focus this research enquiry within the UK context and control for 

extraneous conceptualisations of engineering within international sources. The need for a UK-specific 

conceptualisation of engineering is supported by evidence, introduced in Chapter One, that shows that 

professional standards for engineering differ between international contexts (Zarharim et al., 2010) and 

that national cultural narratives of engineering likely influence contemporary conceptualisations of the 

domain. This complicates the research methodology as very little literature examines engineering inequity 

and education with a UK-specific focus; a greater body of literature is available in contexts such as 

Australia or the United States of America. However, this approach is crucial in order to preserve that 

validity of the conceptualisation of engineering and its focus on understanding and intervention with UK 

engineering inequities.  

The definition of engineering adopted within this research justifies a similarly sceptical perspective on the 

utility and relevance of insights from other STEM domains. Engineering is framed as sharing a complex 

relationship with STEM: knowledge and skills from other domains are acknowledged as important within 

engineering practice, but engineering can still be distinguished independently of these STEM domains. 

Vitally to the focus of this research project, inequities in engineering and science are distinct with 

inequities much stronger in the engineering domain. However, inequities within the science domain have 

arguably received more attention and focus in interventions, such as with the science capital model 

outlined in Chapter Two. As a result, a large body of literature on science inequity is available in the UK 
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that may be drawn upon within this research. Whilst it is necessary to adopt these insights mindfully the 

definition of engineering adopted in this research and its complex relationship with science can justify the 

use of these insights if proved to be valid for the engineering domain.  

Overall, this definition of engineering can be judged as justified within the context of this research project 

and its objective of building greater understanding of engineering inequities in the UK. The synthesis of 

perspectives adopted in its formation support the theoretical underpinning and inclusivity of this 

definition. Such a conceptualisation will be applicable to a wide assortment of individuals, is based on UK-

focused literature, and clear in its scope in relation to domains and contexts.  

Conceptualising Inequity in Engineering 

The second key concept within this research project is ‘inequity’ and its fundamental presence within the 

engineering domain. Within this thesis engineering inequity is understood as entrenched patterns of 

access, participation, success and representation which favour some groups over others leading to varied 

relationships with the engineering domain. As introduced in Chapter One, gender, ethnic and social class 

inequities are well-established within the engineering domain, skewing to a dominant profile of white 

males from more privileged socioeconomic backgrounds (EngineeringUK, 2018; 2018a; 2018b). However, 

a focus on such group differences must be acknowledged as superficial: relating to easily recognised 

categories (e.g. white, or male, or middle class) but lacking a deeper understanding of the underlying 

social mechanics which form and perpetuate these inequities over time. Conceptualisations of inequity in 

terms of fixed or relatively fixed characteristics such as social class or ethnicity are also less helpful in the 

development of interventions. For example, the knowledge that ‘girls are underrepresented in 

engineering’ does not intrinsically offer guidance on intervention strategies – further investigation is first 

necessary to better understand this patterned inequity and its underlying characteristics before strategies 

to address this inequity can be established and tested. The monitoring of representation based on such 

groupings is useful as an indicator of progress to equity but offers limited diagnostic value to inform 

change. More recent conceptualisations of inequity recognise its complex and intersectional nature but 

little such study of engineering inequities is present within current UK-based literature. Engineering 

inequities are understood to be a social injustice which see some groups unfairly underrepresented within 

the engineering domain. Engineering inequities are also recognised as a threat to economic wellbeing, 

and limiting influence on national and global resilience to challenges that require engineering solutions 

such as climate change or global pandemics. Such inequities are framed as a challenge to be overcome: 
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the objective of this thesis lies in developing a greater understanding of these inequities to facilitate 

effective intervention.  

The engineering domain carries ubiquitous inequities present throughout society. The UK engineering 

workforce is deeply inequitable: only 16.5% of those in engineering occupations are female, only 11.4% 

come from non-white ethnic groups and there is a documented skew towards greater representation by 

those with more privileged backgrounds (EngineeringUK, 2022). Participation with educational pathways 

are similarly inequitable: only 19% of first degree enrolees in 2019/20 were female, whilst in 2018/19 only 

1% of apprenticeship enrolees identified as black, and only 2% as British Asian (Department for Education, 

2019; HESA, 2022). Inequities are even noted in earliest opportunities for educational decision making: in 

2022 only 30% of Design and Technology GCSE enrolees in England were girls (Education Datalab, 2022). 

The scale and omnipresence of engineering inequities in the UK context imply a systemic presence of 

inequity that is entrenched within the national culture. As introduced in Chapter One, the culturally-

rooted nature of engineering inequities is consistent with the rich historic and contemporary context of 

engineering within the UK and the various conceptualisations of engineering present within society. This 

framing of inequity as rooted in culture and society informs the way inequities are approached within this 

research.  

The ubiquity of engineering inequities poses both challenges and opportunities for the methodology of 

this research project. It would be possible to study engineering inequities in many different contexts, 

groups or manifestations such as inequities of access or inequities of success. However, the objective of 

this thesis is concerned with the development of practical understanding that may aid in overcoming 

entrenched inequities in the UK. As a result, it is necessary to approach engineering inequities within this 

thesis in a manner that is congruent with this objective. In this thesis engineering inequities are therefore 

adopted in a manner that is relevant to secondary-school aged learners who represent the future 

generation of UK engineers. A greater understanding of inequity amongst this group may inform early 

interventions to remedy unequal patterns of access, participation, success and representation within the 

engineering domain. Engineering inequities are thereby conceptualised in relation to future orientation 

towards engineering education or careers. This adoption is supported as valid by identification of 

engineering inequities amongst secondary school-aged learners and the importance of formative 

experiences for the shaping of identities (Archer et al., 2013; Hutchinson & Bentley, 2011). Where 

engineering inequities amongst adults may be examined in relation to current occupations or educational 

qualifications these metrics are not feasible for learners early in their journey through education. As a 
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result, aspirations for engineering are considered as an age-appropriate concept of inequity. Such 

aspirations are well recognised as inequitable amongst secondary school-aged learners validating this 

conceptualisation (EngineeringUK, 2021; Hutchinson & Bentley, 2011). Aspirations for future engineering 

education or careers can therefore be adopted as a key form of engineering inequity that represents the 

alignment of a young learner to a future in the engineering domain.  

Adopting a Bourdieuian Perspective 

This thesis adopts the work of Pierre Bourdieu to explore the distinctions within social groups that 

underpin engineering inequities. Originally developed to understand the endurance and reproduction of 

social class groups, Bourdieu’s framework developed over several decades as a method of conceptualising 

power dynamics and the social mechanisms that underpin societal structure. This large body of work 

offers the concepts of habitus, field and capital as interconnected thinking tools to explore the process of 

inequity in a manner that is sensitive to social and cultural context. These tools can facilitate a deeper 

understanding of the mechanics of inequity in line with the recognised need within this thesis to move 

beyond simplistic group descriptions of gender, ethnicity or social class in understanding engineering 

inequity.  

Habitus represents one of the earliest concepts within Bourdieuian thinking (Maton, 2014). In early writing 

Bourdieu framed habitus as a set of dispositions: “[designating] a way of being, a habitual state (especially 

of the body) and, in particular, a predisposition, tendency, propensity or inclination” (Bourdieu, 1977). An 

individual’s habitus is understood to develop as a result of socialisation during childhood; individuals 

internalise the characteristics of those around them leading to a likeness that propagates group 

characteristics and social identity which is then in turn mirrored by the next generation. The habitus “acts 

within [individuals] as the organizing principle of their actions” acting to shape physical tendencies (such 

as posture or accent) as well as psychological qualities such as perception, reasoning and interpretation, 

emotional expression, and habits of thinking and behaviour (Bourdieu, 1977; Maton, 2014; Wacquant, 

2014). The concept of habitus has been adopted to examine many contexts including social class 

(Bourdieu, 1977), and later gender (McNay, 1999), race (Sallaz, 2010), education (James et al., 2015), 

agrarian lifestyles (Sutherland & Darnhofer, 2012), drug use (Parkin, 2016), and more. It is therefore 

reasonable to consider that habitus may provide insight into engineering inequities: this tool may offer a 

valuable perspective on the dispositions of groups that are, or are not, represented within the engineering 

domain and the cultural context in which these inequitable groups are entrenched and perpetuated over 
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time. As an embodied and physical practice engineering is likely compatible with the thinking tool of 

habitus and its perspective on embodied social identity.  

Bourdieu’s notion of field relates to a social context in which an individual operates. This social arena 

“contains people who dominate and people who are dominated. Constant, permanent relationships of 

inequality operate inside this space, which at the same time becomes a space in which various actors 

struggle for the transformation or preservation of the field” (Bourdieu, 1996, p40). Power dynamics are 

understood to depend on the field context, necessitating a clear understanding of the social context in 

which analyses take place. This concept can enrich the understanding of engineering inequity within this 

thesis, taking into consideration the power dynamics and social landscape within engineering relevant 

contexts that may contribute to patterns of engineering inequity. The rich cultural context of engineering 

in the United Kingdom outlined in Chapter One demonstrates the complexity within this domain 

supporting the relevance of field. The field concept (like many other developed or utilised by Bourdieu) is 

a thinking tool. In this way a field context does not need to relate specifically to a physical space but can 

instead stress the need to acknowledge the specific ‘rules’ and ‘powers’ individuals may possess in varied 

settings. This is relevant to the contexts in which power dynamics play out to shape engineering inequities. 

The concept of ‘capital’ is arguably the most popular of Bourdieu’s conceptual tools. For Bourdieu, capital 

represented particular assets (which could also be referred to as resources) that are put to productive use 

to obtain an objective. Contrary to more traditional economic views of capital, Bourdieu saw these 

resources as not only financial but cultural or social in nature. These concepts were explored and refined 

over several decades to form the now popular concepts of cultural and social capital within the 

Bourdieuian framework (Bourdieu, 1984).  

Cultural capitals were devised by Bourdieu as ‘cultural goods’ that are developed by an individual over 

time and might include tastes, knowledge, skills, credentials, or possessions. Cultural capital could be 

embodied (internalised within the self), objectified (owned as material property), or institutional (formally 

certified and recognised qualities, such as professional rank or qualifications). Bourdieu argued that these 

qualities become resources if they align with the dominant culture of a given context or ‘field’ (Bourdieu, 

1986). For example, possessing refined table manners is a resource in the context of a dinner party but 

may not be as valuable in other contexts such as a football match or whilst commuting to work. For 

Bourdieu, cultural characteristics could be valuable, transferable for other resources, and advantageous 

to possess – the characteristics that determine the power of economic capital. Bourdieu reasoned that 

capitals do not inherently carry value, but that their value is decided by powerful gatekeepers in given 
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contexts which results in the self-legitimisation of the characteristics of the powerful in a manner that 

perpetuates their influence and ensures a continuity of inequity.  

The Bourdieuian framework also considers social capital: “the sum of the actual or potential resources 

that are linked to the possession of a durable network of more or less institutionalised relationships of 

mutual acquaintance and recognition—in other words, to membership in a group” (Bourdieu, 1986, p21). 

For Bourdieu, an individual’s social position or status determines the degree to which they can access 

resources that are available to them through their social network. As social position/status is determined 

by the possession of capital and the context of field, social capital is deeply connected to cultural capital. 

Knowing someone who has access to resources is not valuable to an individual if they do not possess the 

status to be recognised as deserving access. Social capital therefore offers an insight into the creation and 

maintenance of groups, particularly groups of power. The concept of the ‘old boys’ club’ represents a keen 

example of Bourdieuian social capital in action: the group maintains their membership through exclusively 

admitting those possessing particular resources, thereby increasing the resources available to the select 

group whilst individually benefitting from potential access to these scarce resources. In this way the 

concept of Bourdieuian social capital can help to understand the structure of social groups within society 

and the distribution of valued resources.  

Cultural and social capital are deeply insightful concepts that can be brought to bear to better understand 

engineering inequities. Rather than considering inequity through a generalising lens of gender, ethnic, or 

social class identities it is instead possible to explore engineering inequities in relation to the possession 

of beneficial resources, or capital, that support individuals to enter and prosper within the engineering 

domain. Understanding who possesses capital for engineering may offer a valuable perspective on the 

mechanisms through which engineering inequities are perpetuated. Formative applications of the 

Bourdieuian perspective within classroom settings supports its validity for use with secondary school-aged 

learners. The Bourdieuian conceptual toolkit may thereby support the development of a richer 

understanding of engineering inequity and its perpetuation in entrenched patterns of access, 

participation, success and representation.  

The Bourdieuian framework was principally developed to examine the context of social class 

reproduction: the intergenerational perpetuation of stable social class characteristics and position. This 

would suggest a relatively pessimistic interpretation of inequity that is inconsistent with the objective of 

this thesis in supporting intervention to challenge engineering inequities. This criticism of determinism is 

softened, however, with the acknowledgement of what Bourdieu and Passeron framed as ‘explicit 
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pedagogy’: the capacity to overcome one’s dispositions and the subconscious influence of habitus through 

conscious intervention (Bourdieu & Passeron, 1977; Yang, 2014). This ‘soft determinism’ is arguably very 

consistent with the positions of this thesis that frame engineering inequity as deeply entrenched but 

capable of being intervened with, supporting the adoption of the Bourdieuian lens. Bourdieuian theory 

may also be criticised as dependent on ‘deficit thinking’: positioning that inequities occur due to a deficit 

of capital amongst some groups. Deficit models are criticised as overly simplistic and unfair in positioning 

blame on individual or group failings rather than contextual or systemic factors (Smit, 2012). Whilst 

Bourdieu proposes a deficit mechanism of capital – with those possessing lesser capital less capable of 

putting their resources to beneficial productive use – this perspective also acknowledges that the value 

of capital is arbitrarily determined by the self-perpetuation of the powerful as opposed to a consequence 

of individual failing. As a result, Bourdieu’s perspective may be understood as avoiding a major issue of 

deficit thinking that would limit its utility in contemporary contexts.  

A further, more valid, criticism questions the enduring relevance of the Bourdieuian framework given its 

theoretical foundations relate to now dated conceptualisations of society and its power dynamics (Prieur 

& Savage, 2013; Sullivan, 2001). These criticisms note that Bourdieu’s positioning of ‘high arts’ as the 

legitimate culture of the powerful is questionably relevant to modern society and aligns with wider 

reflections on the duality of science and arts in modern contexts (Snow, 2012). This criticism is supported 

by a growing body of literature that finds little empirical value in Bourdieu’s traditionally framed concepts 

(Stopforth & Gayle, 2022). However, it is possible to recognise this criticism - and others outlined earlier - 

and still adopt the Bourdieuian perspective in a ‘relative’ rather than ‘absolute’ manner (Prieur & Savage, 

2013). Such a position was adopted by Archer et al. (2015) with the recognition of ‘science capital’, noted 

in Chapter Two, as a more relevant ‘legitimate’ form of capital for contemporary times. This position is 

consistent with that of Savage et al. (2005) who note that contemporary adoption of capital offers a robust 

and useful approach to understanding the impact of accumulated resource and its transferability to access 

other resource. Bennett et al. (2009) similarly find an enduring value to the Bourdieuian framework, if 

approached in a more contemporary fashion. 

This thesis will adopt such a ‘pragmatic’ or ‘practical’ interpretation of the Bourdieuian framework. Noting 

the value of Bourdieu’s perspective, engineering inequities will be examined in relation to capital and 

habitus in the wider UK field. This domain-specific adoption will not subscribe to all sociological or 

philosophical implications of this significant, and at times dated, body of literature. However, as a set of 

thinking tools the Bourdieuian lens may still offer a nuanced perspective on how engineering inequities 
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continue to perpetuate within the UK – similar to the insights developed by Archer et al. (2015) in their 

science capital domain-specific application of Bourdieuian thinking.  

Methodology 

Research Philosophy 

This thesis adopts a pragmatic research philosophy to develop understanding of engineering inequities in 

the UK. A pragmatic research philosophy rejects strict interpretations of research philosophy (such as 

positivism or interpretivism) and instead recognises that research questions will at times demand a 

synthesis of strategies and perspectives to most effectively form insight and solutions (Morgan, 2014). In 

this way, pragmatic research is utilitarian or may be framed as ‘common sense’. This approach fits the 

solution-oriented focus of this thesis and its recognised issue of poor understanding of engineering 

inequities. A pragmatic approach is certainly valid for the context in which this thesis takes place with the 

Covid-19 pandemic applying a myriad of challenges which conflict with traditional approaches of doing 

research and demand novel solutions. 

 Pragmatic research also does not accept overly abstract or overly fixed ideas and similarly rejects the 

interpretation that only one ‘true’ reality exists. ‘Truth’ is recognised as changeable in response to time 

and views knowledge as a construct produced through experiences in the real world. This is compatible 

with the Bourdieuian conceptual framework adopted within this thesis and the definition of engineering, 

developed in Chapter One, which acknowledges the varied conceptualisations of the domain active within 

the UK context. Pragmatic approaches are noted to facilitate a synthesis of positions and perspectives 

which will be necessary in the development of understanding of engineering inequity (Morgan, 2014). 

Little past research has explored this topic in a sophisticated manner in the UK, and Bourdieuian capital is 

acknowledged as a deeply cross-cutting lens that recognises many differing factors. The pragmatic 

approach – less bound to the tribes of either positivism or interpretivism – is therefore more compatible 

with the necessary approach to most effectively form a greater understanding of engineering inequity 

within the adopted conceptual framework.  

Research Aim and Questions 

The aim of this thesis, as outlined in Chapter One, is to develop a greater understanding of engineering 

inequities in the United Kingdom in a manner that can inform impactful interventions and support young 

learners to become engineers. To accomplish this the thesis is structured around two main lines of 
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enquiry. The first explores whether the science capital model, as a widely acknowledged model of science 

inequity, also applies to the engineering domain. This is examined theoretically and empirically in Chapters 

Two and Four. The second line of enquiry considers whether it is possible to draw on a domain-specific 

application of Bourdieuian capital to develop an engineering-specific model of capital that will fulfil the 

aim of this project and increase understanding and intervention of engineering inequities in the United 

Kingdom. This is examined in Chapters Five to Eight. Specific hypotheses are included in empirical research 

chapters throughout the thesis. 

 Research Design 

The adoption of a pragmatic research philosophy or the Bourdieuian capital framework do not dictate a 

particular methodological design as both quantitative and qualitative methods are relevant to pragmatic 

methods or the exploration of capital (Mobley et al., 2013; Tzanakis, 2011). This is consistent with the 

recognised objective of developing greater understanding of engineering inequity, which might be 

undertaken in many differing ways. However, past science capital literature largely draws upon 

quantitative methods (DeWitt et al., 2016; Moote et al., 2021). This is particularly the case within the 

initial development of the science capital model and instrument (Archer et al., 2015). To this end a 

quantitative-dominant questionnaire-based research design was adopted within this thesis.  

A questionnaire-based research design was justified for a number of reasons. One of the most important 

justifications for the adoption of a questionnaire-based research design was the feasibility of this research 

method during the Covid-19 pandemic. Limitations on social contact limited the degree to which 

individuals could meet or interact which dramatically affected the range of research methods available 

for adoption. Case studies, interviews, focus groups or other qualitative methods were less feasible in this 

climate. Whilst adaptions could have been adopted to facilitate these methods, such as the use of online 

video messaging to conduct interviews, these efforts were judged to be too labour and time intensive and 

incompatible with the demands on the education sector. However, a questionnaire-based data collection 

could be introduced remotely with relative ease and collected through a single time-point minimising the 

pressures of participation for both researcher and participants. 

The use of this approach allowed existing resources to be drawn upon and integrated into the 

investigation of engineering inequity. The science capital instrument developed by Archer et al. (2015) is 

a key example of this, providing a valid and reliable instrument of capital within the STEM domain. Whilst 

the conceptual framework of this thesis questions the utility of using science resources in an engineering 
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domain the use of a questionnaire design allowed this uncertainty to be tested using existing tools 

including the science capital instrument. A questionnaire-based project was also justified as consistent 

with the science capital development process used by Archer et al. (2015) to form their model supporting 

the potential development of an engineering-specific model through this research methodology. For 

these reasons a questionnaire-based design was compatible with the objectives of this thesis in 

developing knowledge, providing a means to draw on existing literature and support the validity of the 

advancement of understanding aimed for within this work.  

A questionnaire-based quantitative design was determined to facilitate the largest scale data collection in 

the time available for this PhD research project. As the topic of this thesis concerns entrenched national 

patterns of inequity within engineering it was necessary to collect a large dataset to represent the sampled 

population as reliably as possible. A quantitative approach utilising a questionnaire design was justified as 

offering data collection opportunities from a greater geographic range and from a larger number of 

participants compared to more time-intensive qualitative approaches (Fraenkel et al., 2012). The offering 

of digital or physical versions of this questionnaire also contributed to a wider and more affordable 

research project.  

Quantitative data collected through a questionnaire design also offered needed opportunities to confirm 

the validity and reliability of collected data – an important aspect of the objective of this thesis in 

advancing understanding. The ability to statistically test the reliability of collected data and examine the 

dimensionality of presumed underlying relationships can support the confidence of conclusions drawn in 

the development of knowledge. The lesser role of subjectivity within quantitative data analysis similarly 

justifies the adoption of a questionnaire design. Given the limited understanding of engineering inequities 

within the UK subjective conclusions drawn through qualitative methods could not be tested in a 

sufficiently rich manner against current knowledge. This issue is lessened for quantitative analyses which 

are validated by objective statistics as opposed to subjective interpretation (Arghode, 2012). 

For these reasons, a quantitative questionnaire-based approach was deemed the most reasonable and 

pragmatic given the context in which this thesis took place.  

Participants 

Secondary school-aged young people (aged 11-16) were chosen as the target population of this research 

enquiry. As noted in the conceptual framework, engineering inequities are observable throughout UK 

society with many inequitable patterns of access, participation, success and representation amongst many 
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groups. Many populations could therefore potentially have been drawn on to support this research. 

However, it was judged that secondary school-aged young people were the most effective and relevant 

population to consider in relation to the objective of this thesis to develop greater understanding of 

engineering inequities in a manner that might address entrenched issues within the engineering domain. 

Secondary school-aged learners will not yet have begun their journey towards (or away from) engineering 

education or careers. Individuals in this group will either be about to, or have just, made the first decisions 

to shape their educational trajectory. The popular ‘pipeline theory’ envisions the journey into domains as 

a ‘leaky pipeline’ with losses at key transmission points which represent individuals abandoning their 

trajectory into the domain (Department for Business Innovation and Skills, 2013). Secondary school-aged 

learners will be very early in their potential journeys towards engineering and therefore represent a group 

that is not institutionally partitioned – or ‘lost from the pipeline’ – for engineering based on previous 

decisions. The same could be said for primary school-aged learners, however it is expected that secondary 

school-aged learners will possess a more sophisticated understanding of engineering than younger age 

groups which facilitates their inclusion in this research process. Given the early indications of engineering 

inequity noted for secondary school-aged learners this group were justified as a valid sample to explore 

the early shaping influences that affect engineering trajectory (Archer et al., 2013; Hutchinson & Bentley, 

2011). As the group positioned closest to the point in which decision making for engineering will take 

place, secondary school-aged learners represent a key target group to examine in relation to engineering 

inequities. This includes both educational and career aspirational inequities which would be examined 

within this thesis.  

A non-random, opportunity sampling technique was adopted within this thesis due to the pressures of 

the collecting data during the ongoing Covid-19 pandemic. Schools were identified through existing 

relationships to the researcher, through publicly available listings of schools and contact information or 

through third party organisations such as Primary Engineer, UniConnect regional teams, or Local 

Enterprise Partnerships. Identified schools were contacted and provided with a short summary of the 

research project, an offer to participate and full briefing document (see Appendix A). Interested schools 

were provided with a gatekeeper consent form for completion and then entered into the project. This 

opportunity, non-random sampling method is notably a weaker approach to data collection, which may 

introduce bias or a lack of representation. Care was taken when contacting schools to offer participation 

to learners from across the UK, in particular representing all areas of England, Wales, and Scotland 

(contact with Northern Irish schools was somewhat lacking due to time pressures). These efforts 

attempted to limit the impact of non-randomness within the sample but this in unavoidable without an 
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extensive, time consuming process of randomisation. Such an undertaking may have been beyond the 

scope of this PhD project in normal times, with millions of learners in secondary education in the UK, 

however the pressures on schools during and following the Covid-19 pandemic added further difficulty to 

the development of a truly random sample. As a result, the thesis sample was justified within a pragmatic 

research methodology but must be considered as non-representatively recruited.  

Data was collected from 921 secondary school-aged (11 to 16 years old) students from ten schools in 

England and Scotland. Eight schools were located in England and two in Scotland. Of the 921 participants, 

N=505 (54.8%) were female and N=388 (43.4%) were male whilst 28 (3%) gave no or a non-binary gender 

identification. Most participants came from English schools, N=832 (90.3%), with 89 (9.7%) studying at 

Scottish schools. Participants were recruited from all secondary school-age groups: ages 11-12 (N=152, 

16.5%), 12-13 (M=282, 30.6%), 13-14 (N=167, 18.1%), 14-15 (N=274, 29.8%), and 15-16 (N=41, 4.5%).  

Overwhelmingly the sample reported a white ethnic background (N=856, 92.9%) with little representation 

by British Asian (N=1, 0.1%), black (N=5, 0.5%), Chinese or East Asian (N=4, 0.4%), Middle Eastern (N=3, 

0.3%), or other/mixed (N=23, 2.5%) ethnic backgrounds, whilst a small number of participants did not 

provide their ethnic background (N=29, 3.1%). This is a challenge to the ability to examine inequities in 

the ethnicity of engineering however due to the opportunity sampling approach and impact of Covid-19 

further sampling to remedy this was not possible.  

Materials 

Project Materials 

Research materials were developed to support the recruitment of participants and data collection. 

Schools received a briefing sheet when contacted to participate with the project. If they wished to 

participate they received a gatekeeper consent form, copies of the questionnaire, and a support 

document for delivery of the questionnaire to pupils. Participating learners received a briefing sheet, 

consent form, and debrief document. These research materials are included in Appendix B. 

Data Collection Questionnaire 

A single data collection questionnaire was developed and adopted within this research project. A cross-

sectional data collection strategy was utilised within this questionnaire to collect data only once per 

participant. A single point of collection was deemed least disruptive to schools given the legacy of 

disruption from the Covid-19 pandemic school closures. This single point of collection necessitated the 
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collection of all research data at one time, leading to the development of a larger questionnaire containing 

several subcomponents. Data collected through this approach would then be used throughout the 

investigations of this thesis. The questionnaire was available as both a physical and digital resource to 

ease participation for schools.  

The questionnaire contained 170 items examining many aspects relevant to the thesis enquiry. The 

complete questionnaire is available in Appendix C; scales are outlined in sections below and expanded 

upon in Appendix D. 

Sample characteristics: Participants were asked a series of questions to characterise themselves which 

were drawn on to examine how representative the sample was in relation to the population and provide 

grouping characteristics that could later be examined within statistical data analyses.  

Gender: Participants were asked to provide a gender identity to facilitate an examination of gender 

grouping given the recognised gender inequities within UK engineering (“Are you a girl or boy? Girl, Boy, 

Other Identity”). 

School name: Participants were asked to provide the name of their school to allow school-based 

comparisons and identify the geographic region represented within the sample (“What is the name of 

your school?”).  

Year group: Participants were asked to report their current year of schooling to determine their 

progression through the education system and age (“What year group are you in?”). 

Ethnic identity: Participants were asked to provide their ethnic identity to facilitate an examination of 

ethnicity given the recognised ethnic inequities within UK engineering (“Which of the following best 

describes your ethnic origin?”). 

School sets for science, mathematics and English: Given past literature had acknowledged that 

Bourdieuian capital differed between groups within school set structures it was necessary to examine the 

relationship between inequity and academic ability. It was not possible to examine the secondary school-

aged participants in relation to academic ability for engineering as this is not a curricular subject for most 

learners in the UK. Instead, academic ability in the science, English and mathematics domains were 

examined through questioning which academic set the participant belonged to for classes in each domain 

(“Which of the following statement below is true for you now? I am in one of the top sets, middle sets, 

bottom sets, there are not sets in my school.”).  Set structure is likely a reasonable approach to assessing 
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general academic ability, within an institutional definition of ‘success’, given the propensity of UK 

secondary schools who adopt an academic ability hierarchy within their set structures (Jerrim, 2019). 

Social class: As past literature had identified that UK professional engineers skewed towards greater 

socioeconomic privilege it became necessary to consider the social class of participants (EngineeringUK, 

2018; Friedman et al., 2015; Friedman & Laurison, 2020). This was measured in two ways, recognising that 

social class is not only an economic condition but a social condition entrenched within cultural identity 

(Savage, 2015). To examine this economically, the Income Deprivation Affecting Children Index (IDACI) 

sub-index of the Indices of Multiple Deprivation (IMD) measure was adopted. This measurement examines 

the proportion of all children aged 0 – 15 within a region who are in deprived families where deprivation 

is defined in relation to out-of-work parents or those in work but with low earnings (Ministry of Housing, 

Communities and Local Government, 2019). To utilise this measurement index participants were asked to 

provide the postcode of their home address for use in accessing the IDACI score for their home 

environment. This was only possible in England as the IMD relates only to English local wards. To also 

examine the cultural identity characteristics of social class, the general cultural capital measure, outlined 

later in this section, was used to determine the class of participants from a Bourdieuian perspective. Given 

that the Bourdieuian framework was initially developed to assess social class differences this tool 

represented a convenient way of also examining social class from a non-economic perspective. Past 

literature validated the adoption of this tool to understand social class identity (Lareau, 2011; Sullivan, 

2001).   

Conceptualisation of science and engineering: A number of items were included to assess how 

participants conceptualised the engineering and science domains. This included two multiple choice items 

(“When you hear the word ‘science’/’engineering’ what comes to mind?”). Two free response items also 

asked participants to name careers that they attributed to the science or engineering domains (“Can you 

think of any science/engineering jobs that a university degree could lead into?”).  

Educational experiences with science and engineering: A number of items were included to examine the 

science and engineering educational experiences of participants. Learning experiences are acknowledged 

as inequitably experienced in the UK validating this consideration within the investigation of engineering 

inequity (Dawson, 2012; Falk et al., 2015). One multiple choice item assessed the recognition of 

engineering within participant classroom experiences (“Have you come across engineering in your 

education so far, and if so where?”). Two items examined the experience of participants with extra-

curricular learning experiences in science (“Have you participated in any science education programmes 
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or competitions? E.g. CREST Award, Project Bloodhound, Science Fairs, Olympiads, or others?”) and 

engineering (“Have you participated in any engineering education programmes or competitions? e.g. 

Secondary Engineer, Science Fairs, Ultimate STEM Challenge, or others?”). Follow up questions 

determined which programmes or competitions that had been experienced, or if no experience had been 

encountered whether the participant would wish to take part in the future.  

General cultural capital: A six-item measure of general cultural capital was adopted from previous 

literature to facilitate a comparison between newer models of capital such as science capital and the 

traditional Bourdieuian conceptualisation of cultural capital. This cultural capital measure also served as 

a Bourdieuian classification of social class. Parental education level, access to reading materials and 

participation with beaux arts learning contexts were measured, in line with past measures of Bourdieuian 

cultural capital (De Graff et al., 2000; Stopforth & Gayle, 2022). The inclusion of this instrument not only 

facilitated a direct comparison of findings with the conceptual framework of Bourdieuian capital but 

offered a further method of conceptualising social class. See Chapter Four for more information on this 

instrument.  

Science capital: The 14-item science capital instrument developed by Archer et al. (2015) was adopted to 

calculate science capital scores for participants. This instrument was adopted to facilitate a direct 

comparative measurement against previous findings in the science capital literature. Past literature has 

drawn on this instrument to examine STEM inequity (Archer et al., 2015; DeWitt et al., 2016; Moote et al., 

2020; Moote et al., 2021). See Chapter Four for more information on this instrument.  

Engineering capital: Items were adopted to examine forms of engineering capital, informed by the work 

of Archer et al. (2015) and others. This included measurement scales for: engineering literacy, 

dispositions, knowledge of pathways, social connections to engineers, engineering learning experiences 

and media consumption, linguistic and familial resources for engineering, and more. See Chapters Five, 

Six and Eight for more information on these instruments.  

Engineering aspirations: Given the focus of this thesis on developing understanding of engineering 

inequity it was necessary to effectively measure these inequities amongst secondary school-aged learners. 

Measuring access, participation, success and representation amongst this group introduces several 

challenges. First, engineering equity is more difficult to examine within a school-aged sample than, for 

example, science equity as engineering is not a curriculum subject. Participants cannot be examined in 

relation to their past participation with engineering classes, or achievement in engineering assessments, 
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or representation in elected study (beyond a GCSE for Design and Technology, which whilst valid is 

questionably aligned to engineering and engineering pathways as discussed in Chapter One). Second, the 

use of a secondary-school aged sample dictates that few opportunities will have yet presented themselves 

to participants to self-select engineering pathways resulting in little inequity in participation. Due to the 

compulsory nature of a nationally prescribed curriculum, participation with subjects is largely 

homogenous throughout secondary education in the UK. An examination of present indicators of 

trajectory for engineering would demonstrate little, necessitating the need to approach future trajectory 

inequities. To do this, participants were asked about their intention to study or work in the engineering 

domain in the future. The desire to study or work in engineering could be considered as a representation 

of alignment or trajectory to future engineering activity. Inequities in engineering education or careers 

are observed as soon as these pathways become available to young learners suggesting that inequities in 

alignment to these subjects are active before the opportunity of decision making. As a result, engineering 

inequities might be expected to already be present within a secondary school-aged sample despite the 

lack of opportunities to yet act on this in decision making. Secondary school-aged learners are a 

particularly valid population to consider in this manner given this period of education is where decision-

making for educational trajectory is first offered to learners.  

To empirically examine engineering educational and career aspiration, three items were included in the 

questionnaire. To assess engineering educational aspiration an item asked participants whether they 

wished to study engineering following their secondary education (“Although it is a long way off, which of 

the following describes your views: I would like to study engineering at university, at college/sixth form, 

after GCSE/National 5s but not A-Level/Highers, I do not want to study any engineering after 

GCSE/National 5s, None of the above or I don’t know”). To assess engineering career aspiration participant 

interest in engineering careers was established with two items (“Do you think you might like to work in 

an engineering-related job in the future?” and “I want to become an engineer”).   

Engineering identity: A four item measure of engineering identity was also included as a further 

instrument to understand the relationship between the individual and the engineering domain. This 

instrument drew on Archer et al.’s (2015) approach to conceptualising identity. See Chapter Four for more 

information on this instrument.  

Engineering engagement: A twelve-item instrument of engineering learner engagement was developed 

to examine the relationship between participants and alignment to learning in the engineering domain. 

This drew on engagement literature, in particular topics of affective and cognitive engagement (Eccles & 
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Wigfield, 2002; Fredricks et al., 2004). This instrument allowed deeper inequities in how participants 

viewed and experienced engineering to be examined. See Chapter Eight for more information on this 

instrument.   

Procedure 

This PhD project originated as a funded studentship from the University of Central Lancashire with the 

project topic developed in collaboration with the engineering educational organisation Primary Engineer 

in 2019. The topic of this research studentship was relatively open but generally concerned with 

engineering education in the UK context and the learning experiences of young people who encounter 

curricular-mapped engineering learning. The project began in October 2019.  

The first two months of this project, October to December 2019, were spent developing the topic through 

examination of past and current literature on engineering education in the UK context. The topic of 

engineering inequity was identified as deeply significant to both the educational context of engineering 

but also the wider engineering domain. A lack of equity within the engineering domain was recognised as 

fundamentally impactful to the economic topic of skills supply and sociological topic of social justice and 

diversity. Inequities were identified as systemic to the engineering domain, manifesting in various forms 

throughout educational, professional and societal contexts. This period of literature study highlighted a 

lack of engineering-specific literature on education and equity within the UK context. Whilst represented 

within STEM-based perspectives little literature delineated the specific influence of engineering inequities 

within educational or career settings. Less literature still considered engineering inequity in a 

sophisticated manner. This period of critical literature synthesis led to the focusing of this thesis topic on 

the need to develop greater understanding of engineering inequities in the UK, particularly amongst 

young learners, in a fashion that might support more effective interventions to build greater engineering 

equity. The science capital model was identified at this time as a strong theoretical and empirical 

perspective on science inequity – however, it was unclear to what degree this body of work might apply 

to the engineering domain. What little literature had examined this directly was inconclusive or judged to 

be methodologically problematic. The potential adoption of this science capital model to accomplish 

greater understanding of engineering inequities was thereby also identified.  

Following the identification of the thesis objective a methodology was designed to develop greater 

understanding of engineering inequities. This methodology would involve the empirical investigation of 

science capital to determine its relevance to the engineering domain. Should, as expected, this model be 
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found to fit poorly with the engineering domain then a novel engineering-specific model would be 

developed. A quantitative research design was identified as most compatible with the empirical 

measurement of science capital supporting the use of a questionnaire design. Qualitative methods of 

focus groups and interviews with learners and teachers would also be adopted later in this thesis to 

triangulate deeper insights concerning engineering inequities.  This proposal was submitted for Research 

Programme Approval in December 2019. 

From January to March 2020 preparation for this investigation began including further reading and the 

development of research materials in preparation for a submission for ethical research approval. 

However, in March and April 2020 the impact and expected longevity of the Covid-19 pandemic 

demanded modification to the research plan. It became clear that whilst it may have been possible to 

conduct questionnaire data collection (albeit digitally) it would be impossible to take part in face-to-face 

data interviews or focus groups due to the implementation of social distancing guidance. The 

unprecedented nature of the pandemic impact introduced significant uncertainty as to the possibility of 

completing this project as designed. From March to June efforts were instead shifted to a theoretical 

investigation of engineering inequities. It was decided that empirical data collection would be attempted, 

but that the thesis may require a greater focus on theoretical examination if the current context made 

data collection impossible. An ethics review of the project was submitted and approved in October 2020 

with the refined objective of completing remote questionnaire data collection within secondary schools. 

The thesis would continue to focus on the need to develop greater understanding of engineering inequity 

through the testing of science capital and development of a novel engineering-specific lens. However, in 

light of the pandemic restrictions, no in person data collection would take place. 

From November 2020 to June 2021 secondary schools were recruited to participate with the research 

project. Schools were recruited through existing relationships with the researcher, collaboration with 

third party organisations such as Primary Engineer and cold-calling to schools utilising publicly available 

contact details. Ten schools were recruited during this time and participated through physical or digital 

versions of the developed questionnaire. Thesis writing continued during this period focusing on the 

theoretical aspects of the project. 

From July 2021 to April 2022 the collected data was aggregated, processed and analysed using the SPSS 

statistics software to accomplish the objective of the thesis. First, the validity of the science capital 

perspective to the engineering domain was empirically examined. A science capital score was calculated 

for each participant and statistically examined to determine its relationship to engineering inequity (see 
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the Chapter Research Methods section of Chapter Four for further details on this process). A similarly 

structured but simple measure of engineering-specific capital was also examined with analyses 

determining that an engineering-specific approach was a more insightful lens on engineering inequity. 

These findings supported the development of a more sophisticated engineering-specific model of capital 

to better understand inequities in trajectories for future engineering education or careers. Next, the 

development process used to form science capital was examined and adopted to create such a model of 

engineering capital. This four-stage process was undertaken to first theoretically and then empirically 

structure and validate a measure of engineering capital (see the Chapter Research Methods sections of 

Chapters Five, Six and Seven for further details on this process). This engineering capital model was found 

to be a valid and insightful lens on engineering inequities that both aligned with past findings and offered 

novel and nuanced insights into engineering inequity. The tool produced by this process was not only valid 

for this thesis investigation but could also be utilised in further research to establish greater understanding 

of engineering inequity. Finally, acknowledging that the model and instrument of engineering capital may 

yet be further improved a final set of analyses examined the tool in relation to other forms of capital for 

engineering and the engineering learning engagement of participants (see the Chapter Research Methods 

section of Chapter Eight for further details on this process). These analyses further validated the utility 

and relevance of the engineering capital instrument aligning it with other forms of engineering capital and 

applications within educational settings.  

From May 2022 to December 2022 thesis writing continued to document these findings and outline the 

successful accomplishment of this thesis objective in the development of the engineering capital lens on 

engineering inequities in the UK.  

Methodological Limitations 

A number of limitations are present within this research methodology which impact its scope. First, the 

adoption of a questionnaire-based research design inherently introduced limitations to the collection of 

data and the depth of its insight. Questionnaires – particularly completed at a distance from researchers 

as in the case within this research – may be completed improperly leading to incomplete responses or 

dishonest/nonsense answers. A small number of such cases were present within this thesis dataset and 

were removed during data cleaning. Whilst this was mitigated through strong teacher guidance it 

nevertheless impacted the dataset and led to data loss. The questionnaire research design also carries 

inherent limitations to the depth of data it can access. This is particularly an issue with the use of closed 

questions, which prescribe the range of acceptable responses on offer to participants. This approach to 
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data collection also removes the opportunity for a researcher to probe an answer further, as in qualitative 

designs such as interviews or focus groups, limiting the dimensions of detail within responses. Whilst the 

questionnaire adopted in this thesis was designed with these challenges in mind and addressed them with 

the inclusion of nested follow up questions the relative depth of insight is less than offered through 

qualitative methods. Unfortunately, in the context of the Covid-19 pandemic it was not feasible to 

undertake such qualitative methods to triangulate greater understanding alongside the use of 

questionnaires.  

Second, the sampling method adopted through necessity within this research methodology is limited and 

likely affects how reliably the developed findings may be applied to wider audiences. The sample of 921 

was relatively small in relation to all UK secondary school-aged learners. Whilst it would be impossible to 

recruit all secondary school-aged learners a random sampling technique would have supported greater 

reliability within the findings of this thesis. This was unfortunately not possible with the limited resources 

of a PhD project completed during a period of Covid-19 interruptions. However, attempts were made to 

build a representative sample where possible through geographic recruitment. Non-white ethnic groups 

were particularly poorly represented through this non-random recruitment. The time frame of this project 

did not allow for further targeted sampling to establish greater parity of ethnic representation. Despite 

this, analysis in Chapter Four suggests that the sampling of this thesis is consistent with past ethnically 

diverse samplings suggesting a degree of relative representativeness as a dataset. However, further 

research is necessary to confirm that the findings of this thesis apply to all young people across the UK. 

This further sampling is already required as an example of best practice in instrument development and 

should take particular care to investigate a wider array of ethnic groups.  

A final limitation is the lack of triangulation within this research methodology to support greater credibility 

and validity to its conclusions. Triangulation refers to the process of drawing from multiple datasets or 

adopting multiple sources to build robust ‘triangulated’ understandings (Noble & Heale, 2013; Wilson, 

2014). The employed methodology utilised only a single point of data collection through only a single data 

collection method. Triangulation was difficult within this research context: very little existing literature 

exists in relation to engineering inequity in the United Kingdom context from which to draw on, and the 

challenges of time and post-Covid-19 era limited the capacity to conduct qualitative follow up data 

collections. Early plans for this thesis included a later stage of focus groups and interviews in schools to 

build on insights provided by the empirical questionnaire but this was not possible during the Covid-19 

pandemic. To mitigate this issue efforts were taken to develop rich conceptual and theoretical 
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understandings that drew on wider literature, such as the science capital research literature, to 

triangulate the conceptual underpinning on the thesis data collection. If not triangulation through data, 

this offered triangulation of theory and a synthesis of ideas to meet the objective of advancing 

understanding of engineering inequities (Patton, 1999).  

This methodology can therefore be seen to carry a number of limitations, that were mitigated where 

possible, but do influence the scope of this thesis and its findings. The objectives of this thesis were such 

that any development of understanding might represent success but the grander goal of supporting 

successful intervention of engineering inequities requires a larger collective effort and growing body of 

research literature. To that end, these limitations do not doom this work but offer opportunities to refine 

and build on the knowledge developed in this formative body of research.  

Conclusions 

This Methodology chapter has outlined the manner in which this thesis will accomplish its objective of 

developing greater understanding of engineering inequities in the United Kingdom. A conceptual 

framework was established to position the conceptualisation of engineering, inequity and the adopted 

Bourdieuian lens. A pragmatic research philosophy was adopted with a questionnaire-based, quantitative 

design to investigate the engineering capital of young learners. A procedure was outlined to first 

empirically test the relevance of the science capital model to engineering inequities before then 

developing a novel engineering-specific capital lens as a tool to better understand engineering inequities. 

The remaining chapters of this thesis will document this investigation and its resulting insights. 
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CHAPTER FOUR: TESTING SCIENCE CAPITAL FOR 

ENGINEERING INEQUITY 

Introduction 

Previously in this thesis, the theoretical model of science capital was critically examined to determine its 

relevance to the engineering domain. It was established that few of the constituent subcomponents of 

science capital are likely to apply to engineering in the same manner that they apply to science. This 

questioned the validity of adopting science capital within this thesis to investigate engineering inequity 

despite the noted utility of science capital. However, this theoretical analysis of science capital did 

recognise that the forms of capital contained within this model are likely relevant to engineering if 

approached in an engineering-specific manner and that an empirical analysis was necessary to confirm 

this critique. To that end, in Chapter Four the science capital model will be empirically investigated to 

determine its relevance to the engineering domain. A novel ‘translation’ of the science capital instrument 

which instead focuses on the engineering domain will also be investigated to determine the relevance of 

a similar engineering-specific approach. The science capital and ‘Archer-style engineering capital’ models 

will be comparatively applied to determine the value of these approaches to understanding engineering 

inequity. A further model of arts-based cultural capital will also be considered to frame this comparison 

in relation to the foundational capital perspective of Bourdieu. The comparison of these models will 

provide perspective on the validity of the science capital model to the engineering domain, the 

importance of adopting domain-specific models of capital in relation to inequity, and the continuing value 

offered by the Bourdieuian perspective. Drawing on the conclusions of previous chapters, it is expected 

that the Archer-style engineering capital model, as a domain-specific lens, will be better suited to 

understanding engineering inequities. 

Empirically Investigating Science Capital and Engineering 

The theoretical examination of science capital outlined in Chapter Two drew into question whether this 

innovative model could be adopted to effectively understand engineering inequities. Whilst the forms of 

Bourdieuian capital included in this model (such as literacy, attitudes and dispositions, talking to others) 

were likely to apply to the engineering domain, it was questioned whether a measurement of these 

capitals for science would be inclusive or reflective of capital held for engineering. This theoretical analysis 

concluded that science capital was unlikely to accurately reflect the engineering inequities present in the 
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UK but that an empirical analysis was necessary to confirm this hypothesis. The analysis also raised the 

possibility that an engineering-specific model of capital may outperform the science capital model 

warranting a comparative examination of the ability of science capital and a similarly structured 

engineering capital model to understand engineering inequities in the UK. 

The notion that a subject-specific model of capital may outperform a more general model of capital is not 

unprecedented.  The science capital model has previously been validated as a more effective lens on 

science inequity than a more general, high arts-based Bourdieuian cultural capital model (DeWitt et al., 

2016). This study established that the science capital lens could explain greater variance in science 

inequity data than a traditional (and less context specific) Bourdieuian conceptualisation of cultural capital 

demonstrating the importance of specificity in the application of capital. It is thereby possible that an 

engineering-specific capital model would outperform the science capital model given the theoretical 

distinctiveness of engineering and science. 

The comparisons of science capital and a general, high arts-based framing of Bourdieuian capital 

conducted by DeWitt et al. (2016) is also relevant to the investigation of engineering inequity. The arts-

based, general cultural capital perspective was framed by Bourdieu as a model of social class based on 

the conceptualisation of taste, particularly around consumption of high art (Bourdieu, 1983; Bourdieu, 

1984). Possessing the ‘correct’ tastes was understood as a social indicator that offered greater ease in 

integrating within the culture of education and social groups that hold power within society. As noted in 

Chapter One, the domain of engineering can be conceptualised as associated with the arts given the need 

for creativity in engineering problem solving, its use of design principles and physical materials which are 

also utilised in the practice of art (Cropley, 2016; Thompson & Lordan, 1999). In this way Bourdieu’s 

original conceptualisation of cultural capital may apply to the engineering domain in a manner that does 

not for the science domain as demonstrated by DeWitt et al. (2016). The greater relevance of the general 

cultural capital lens – which was designed to comprehend social class differences – to the engineering 

domain is further supported by the acknowledgement that social class differences are greater in 

engineering than science (Friedman & Laurison, 2020). For these reasons it is relevant to also consider the 

relationship between Bourdieuian arts-based cultural capital and engineering inequities. 

These analyses show that it is necessary to empirically consider the relevance of science capital, an 

engineering-specific model of capital, and arts-based cultural capital as lenses on engineering inequity. 

No such previous investigation is present within contemporary literature. In the following sections of this 

chapter three models will be compared: the science capital model, a similarly structured engineering-
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focused measure adapted from the science capital model (Archer-style engineering capital) and a 

Bourdieuian model of arts-based cultural capital. These will be empirically investigated and comparatively 

examined to establish their utility in building greater understanding of engineering inequities in the UK. 

First, building on the theoretical analysis of Chapter Two, the differences between capitals for engineering 

and science will be explored to investigate the degree to which science capital might be generalised to 

the engineering domain. The distribution of capitals for engineering and science between groups will 

examine the alignment of these models to previously acknowledged patterns of engineering inequity. It 

is predicted that young people will possess different levels of capital for engineering and science validating 

the rejection of science capital and supporting the credibility of a novel engineering-specific model of 

capital.  

Hypothesis One: Scores measured on the science capital instrument are predicted to significantly differ 

from scores on a similarly structured instrument of engineering capital. 

Second, the three models of science, Archer-style engineering and arts-based cultural capital will be 

compared to determine their value as lenses on engineering inequity. The ability of each model to 

accurately predict engineering educational and career aspirations will be examined to determine the 

validity of each model as interpretative tools for engineering inequities.  If a model of inequity cannot 

identify differences in aspirations for engineering then it is unlikely to aid the purpose of this thesis in 

developing understanding of engineering inequities within the UK. Recognising the importance of 

specificity in understanding patterns of inequity, it is predicted that the Archer-style engineering capital 

model will outperform science or general cultural capital models in identifying those young people who 

do or do not wish to engage with engineering in the future. 

Hypothesis Two: An engineering-specific model of capital is predicted to hold greater power in explaining 

and predicting patterns of inequity in engineering educational and career aspiration compared to models 

of science or arts-based cultural capital.  

Chapter Research Methods 

Methodology 

The fundamental aim of this chapter is to compare the ability of three models of capital to access and 

understand engineering inequities. Whilst not a replicative study it was essential that the models of 

science capital and art-based cultural capital were adopted as they have featured in past research, 
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necessitating the adoption of an empirical quantitative research strategy. As outlined in the earlier 

Methodology chapter, this thesis has adopted a questionnaire research design to maximise the 

recruitment of participants. Data was collected from participants via a single point of collection through 

the completion of a research questionnaire featuring measurement instruments for science capital, 

Archer-style engineering capital and arts-based general cultural capital. These instruments could then be 

processed and analysed to answer the two hypotheses. 

Participants 

Data was collected from 921 secondary school-aged (11 to 16 years old) learners from ten schools in 

England and Scotland. As noted in the Methodology chapter, a single point of data collection was adopted 

for this thesis research project due to the demands of the Covid-19 pandemic. The sample of 921 learners 

examined in this chapter is the same sample examined throughout the thesis. See Methodology chapter 

for full outline of sample characteristics and rationale for the selected participant population.  

Data Collection Instruments 

Three instruments were included in the thesis questionnaire data collection to address these research 

questions: one each for science capital, Archer-style engineering capital and arts-based general cultural 

capital. Items were also included to assess engineering inequities and socioeconomic characteristics of 

participants. These instruments and items are outlined below and included within Appendix C and 

Appendix D.  

Science capital instrument: The 14-item science capital instrument developed by Archer et al. (2015) was 

adopted to calculate science capital scores for participants. This instrument was adopted to facilitate a 

direct comparative measurement against previous findings in the science capital literature. The tool was 

initially developed through a process of data reduction and refinement from an broader set of items 

following Archer et al.’s theoretical model of science capital with items refined on the basis of their ability 

to discern young learners who did or did not aspire to science in their future (Archer et al., 2015). The 

resulting instrument is a strong measurement index that is theoretically and empirically validated for use 

in examining science inequity. The 14 items and their response scales are outlined in Table 4.01 below. 

Table 4.01: Science capital instrument items and response scales. 

Item Response Scale 

A science qualification can help you get many different types of job -2 to 2 five-point Likert scale 

 



90 
 

When you are not in school, how often do you talk about science with 

other people? 

0 to 4 five-point Likert scale 

One or both of my parents think science is very interesting -1 to 1 five-point Likert scale 

One or both of my parents has explained to me that science is useful 

for my future 

-1 to 1 five-point Likert scale 

I know how to use scientific evidence to make an argument -2 to 2 five-point Likert scale 

How often do you go to an after-school science club? 0 to 4 five-point Likert scale 

When not in school, how often do you read books/magazines about 

science? 

0 to 4 five-point Likert scale 

When not in school, how often do you go to a science centre, science 

museum, or planetarium? 

0 to 4 five-point Likert scale 

When not in school, how often do you visit a zoo or aquarium?  0 to 4 five-point Likert scale 

My teachers have specifically encouraged me to continue with 

science after GCSE/National 5s 

-2 to 2 five-point Likert scale 

My teachers have explained to me that science is useful for my future -2 to 2 five-point Likert scale 

It is useful to know about science in my daily life -1 to 1 five-point Likert scale 

Who do you talk with about science? 0 to 3.5 scale based on number 

of contacts 

Do you know anyone (family, friends, or community) that works as a 

scientist or in a job that uses science?  

0 to 7 scale based on number 

of contacts 

 

A single science capital score was calculated for each participant by totalling the scores for the 14 items 

which was then transformed to produce a score on a scale from 0 to 105 as per previous literature1. A 

Cronbach’s Alpha analysis was conducted to test the internal consistency of responses within the thesis 

dataset and confirmed the previously established reliability of this measurement instrument (N=854, 

Alpha based on standardised items= 0.851).  

Archer-style engineering capital instrument: It was essential that the engineering capital measurement 

instrument adopted for comparison with science capital was closely controlled as not to introduce 

extraneous variables that would invalidate the focal comparison between science and engineering 

domains. It was therefore necessary to measure the same forms of capital in each measurement 

instrument, utilising the same language and empirical approach. To accomplish this the 14-item science 

capital instrument was ‘translated’ to replace framings of science with framings of engineering. The 

resulting instrument was titled ‘Archer-style engineering capital’ in reference to its close alignment to 

Archer et al.’s science capital instrument (Archer et al., 2015). The Archer-style engineering capital 

 
1 This transformation was calculated with the following equation: 2(SCORE)+22.  
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measurement tool measured the same forms of capital as the science capital instrument, with the same 

response scales, and very similar item phrasing to control extraneous variables and maximise the focus of 

the study on the differing domains of science or engineering. The point of difference between the 

measurement tools of science capital and Archer-style engineering capital related only to the STEM 

domain. The outline of the source science capital items and their translations are outlined below in Table 

4.02. 

Table 4.02: Science capital instrument items and ‘translations’ to form the Archer-style engineering capital 

instrument with response scales. 

Science Capital Items Translation to Archer-Style 

Engineering Capital Item 

(changes emboldened) 

Response Scale 

A science qualification can help 

you get many different types of 

job 

An engineering qualification can 

help you to get many different 

types of job 

-2 to 2 five-point Likert scale 

When you are not in school, how 

often do you talk about science 

with other people? 

When you are not in school, how 

often do you talk about 

engineering with other people? 

0 to 4 five-point Likert scale 

One or both of my parents think 

science is very interesting 

One or both of my parents think 

engineering is very interesting 

-1 to 1 five-point Likert scale 

One or both of my parents has 

explained to me that science is 

useful for my future 

One or both of my parents has 

explained to me that 

engineering is useful for my 

future 

-1 to 1 five-point Likert scale 

I know how to use scientific 

evidence to make an argument 

I know how to design and make 

things 

-2 to 2 five-point Likert scale 

How often do you go to an after-

school science club? 

How often do you go to an after-

school club that involves 

engineering? 

0 to 4 five-point Likert scale 

When not in school, how often 

do you read books/magazines 

about science? 

When not in school, how often 

do you read books/magazines 

about engineering? 

0 to 4 five-point Likert scale 

When not in school, how often 

do you go to a science centre, 

science museum, or 

planetarium? 

When not in school, how often 

do you go to a science centre, 

science museum, or 

planetarium? 

0 to 4 five-point Likert scale 

When not in school, how often 

do you visit a zoo or aquarium?  

- 0 to 4 five-point Likert scale 
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My teachers have specifically 

encouraged me to continue with 

science after GCSE/National 5s 

My teachers have specifically 

encouraged me to consider 

studying engineering after 

GCSE/National 5s 

-2 to 2 five-point Likert scale 

My teachers have explained to 

me that science is useful for my 

future 

My teachers have explained to 

me that understanding 

engineering is useful for my 

future 

-2 to 2 five-point Likert scale 

It is useful to know about science 

in my daily life 

It is useful to know about 

engineering in my daily life 

-1 to 1 five-point Likert scale 

Who do you talk with about 

science? 

Who do you talk with about 

engineering? 

0 to 4 scale based on number of 

contacts 

Do you know anyone (family, 

friends, or community) that 

works as a scientist or in a job 

that uses science?  

Do you know anyone (family, 

friends, or community) that 

works as an engineer or in a job 

that uses engineering?  

0 to 7 scale based on number of 

contacts 

 

Most items on the science capital instrument could be translated directly with simple word replacements 

for ‘science’ or ‘scientist’ to ‘engineering’ or ‘engineer’, however some slight adjustments were necessary 

to ensure relevance of the items. The item “I know how to use scientific evidence to make an argument” 

was adjusted to “I know how to design or make things”. This item was judged to examine a key practice 

central to the activity of science from the perspective of a secondary school-aged participant, and so a 

comparable key practice of engineering was chosen as its replacement. The scale for the question “Who 

do you talk with about engineering?” was also modified adding a further potential response of ‘directly 

with engineers’ adding a further 0.5 to the scale of possible scores for this question. The item “When not 

in school, how often do you go to a science centre, science museum, or planetarium?” was not changed 

as this question was judged to already apply to engineering given the presence of engineering-based 

learning in these contexts. One science capital item, “When not in school, how often do you visit a zoo or 

aquarium?”, could not be translated as there was not determined to be a directly parallel learning context 

specific to engineering that may be encountered by young people in the manner in which they may 

encounter a zoo or aquarium. Whilst it may have been possible to find an example of such an engineering-

specific informal learning context it was judged that this would not be directly comparable to visiting zoos 

or aquaria. Instead, it was decided that the item would be removed and that the calculation to place the 

instrument score onto a comparable 0-105 scale would be adjusted to facilitate this change in instrument 

range.  
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Totalling scores from these 13 items resulted in a range from -11 to 38, which was transformed for ease 

of comprehension and comparison with the science capital instrument to a scale of 0-1052. A Cronbach’s 

Alpha analysis was conducted to test the internal consistency of responses within the thesis dataset; this 

test confirmed the internal consistency of the Archer-style engineering capital instrument (N=846, Alpha 

based on standardised items = 0.840). 

Arts-based, general cultural capital instrument: A six-item measure of general cultural capital was 

adopted from Archer et al.’s previous literature to facilitate a comparison between newer models of 

capital such as science capital and the traditional Bourdieuian conceptualisation of cultural capital. The 

forms of capital included in this measure are consistent with many past empirical applications of 

Bourdieuian cultural capital (De Graff et al., 2000; Stopforth & Gayle, 2022). Four items explored parental 

education level, which from a Bourdieuian perspective can be seen as linked to societal position and 

socialisation of next generations (Bourdieu & Passeron, 1977). Parental education level is long recognised 

as linked with intergenerational patterns of inequity beyond the Bourdieuian perspective (Lareau, 2011; 

Shavit & Blossfeld, 1993) The scale also contained items relating to access to reading materials in the 

home and participation with informal learning contexts which a Bourdieuian perspective would also 

position as societally stratified as socialised behaviour (Bourdieu, 1984). Reading materials and 

participation with informal learning are also more widely recognised in relation to inequity (Breinholt & 

Jaeger, 2020). The six-item scale is outlined in Table 4.03 below. 

Table 4.03: General cultural capital items and response scales. 

Item Response Scale 

Did your mother leave school before age 16? -1 to 1 three-point Likert scale 

Did your mother go to university? -1 to 1 three-point Likert scale 

Did your father leave school before age 16? -1 to 1 three-point Likert scale 

Did your father go to university? -1 to 1 three-point Likert scale 

Approximately how many books, including e-books, are there in your 

home? 

0 to 2 five-point Likert scale 

 
2 This transformation was calculated with the following equation: 2.1428571428571(SCORE)+23.57142857142. The 
calculation adjusted for the slight increase in range for the question “Who do you talk with about engineering?” 
and removal of the item “When not in school how often do you visit a zoo or aquarium”. This slightly decreases the 
value of each point on the 0-105 scale for Archer-style engineering capital compared to science capital but this 
decrease is negligible and unlikely to influence the comparison of measurements.  A 1 unit increase on the scale of 
0-105 is equal to: +0.5 for science capital, and +0.466666 for Archer-style engineering capital resulting in a total 
difference per unit of 0.033333. This was judged to be a reasonable measurement difference, particularly as scores 
on both measurement instruments were expected to skew to the lower end of the scale limiting the effect of an 
aggregating point difference. 
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How often do you do the following things when you are not in school: 

go to a museum? 

0 to 2 five-point Likert scale 

 

Totalling scores of these items resulted in a range from -4 to 8. A Cronbach’s Alpha analysis was conducted 

to test the internal consistency of responses within the thesis dataset; this test identified only a moderate 

internal consistency of responses to these items that questioned the reliability of this instrument (N=889, 

a=0.575 based on standardised items). Despite the lower levels of reliability indicated by this test the scale 

will be used as designed to enable comparison with previous uses of this model by Archer et al. and others 

in exploring general cultural capital and to facilitate a direct examination of the traditional Bourdieuian 

framework. The lesser relevance of traditional cultural capital to modern contexts is acknowledged in 

literature but lacks a consensus on the implications of this in application (Breinholt & Jaeger, 2020; 

Stopforth & Gayle, 2022). 

Engineering inequity:  

In order to examine how well the three models of capital relate to patterns of engineering inequity it was 

necessary to establish a dependent variable measure of engineering inequity within the sample 

population. To empirically examine engineering educational and career aspiration, two items were 

included in the questionnaire. To assess engineering educational aspiration an item asked participants 

whether they wished to study engineering following their secondary education (“Although it is a long way 

off, which of the following describes your views: I would like to study engineering at university, at 

college/sixth form, after GCSE/National 5s but not A-Level/Highers, I do not want to study any engineering 

after GCSE/National 5s, None of the above or I don’t know”). To assess engineering career aspiration 

participant interest in engineering careers was established (“Do you think you might like to work in an 

engineering-related job in the future? Yes, No”).  

Sample characteristics: Participants were asked to report their current year of schooling to determine 

their progression through the education system and age (“What year group are you in?”). Participants 

were asked to provide a gender identity to facilitate an examination of capitals for science and engineering 

by gender grouping given the recognised gender inequities within UK engineering (“Are you a girl or boy? 

Girl, Boy, Other Identity”). Respondents were also asked to provide their ethnic identity to examine 

potential distinctions in capital amongst differing ethnic groups in response to recognised inequities in 

ethnic representation in UK engineering (“What of the following best describes your ethnic origin?”).  
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Respondents were also asked to name their school allowing an examination of geographical distribution 

of the sample (“What is the name of your school?”).  

The complete questionnaire is available in Appendix C.  

As past literature had identified that UK professional engineers skewed towards greater socioeconomic 

privilege it became necessary to consider the social class of participants (EngineeringUK, 2018b; Friedman 

et al., 2015; Friedman & Laurison, 2020). This was measured in two ways, as outlined in the Methodology 

chapter, drawing on a measure of cultural capital and positioning with the Income Deprivation Affecting 

Children Index (IDACI) sub-index of the Indices of Multiple Deprivation (IMD) measure. 

It was not possible to examine the secondary school-aged participants in relation to academic ability for 

engineering as this is not a curricular subject for most learners in the UK. Instead, academic ability in the 

science domain was examined through questioning which academic set the participant belonged to for 

science classes (“Which of the following statement below is true for you now? I am in one of the top sets, 

middle sets, bottom sets, there are not sets in my school.”). This was deemed valid given the ‘science first, 

engineering later’ structure of the education system aligns the science learning of secondary school-aged 

learners with later engineering study. This question allowed capitals for science and engineering to be 

examined in relation to academic ability which is a valid consideration for science capital as established in 

previous literature which found that those with high science capital skewed to higher science academic 

ability (Archer et al., 2015). 

Procedure 

The questionnaire instrument was designed, developed, and applied for data collection as outlined in the 

Methodology chapter. Following data processing and cleaning the thesis dataset was examined to analyse 

the two hypotheses outlined in this chapter.  

For hypothesis one, this analysis involved the application of mean comparison testing to determine the 

relationship between scores on the science capital and Archer-style engineering capital instruments. A 

paired samples t-test was confirmed as appropriate through the testing of statistical assumptions. A 

paired samples t-test is acknowledged as an appropriate test to compare the means score of two 

instruments completed by the same participants (Ho, 2013). To examine the distribution of science and 

Archer-style engineering capital scores between groups (based on gender, social class, science ability and 

national context) frequency analysis, independent samples t-tests and one-way ANOVA analyses were 

adopted to examine the difference in capital scores. These tests were also confirmed as appropriate 
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through validation of test assumptions (see Appendix E). Tests such as these are appropriate for the 

comparison of distribution and means between independent groups (Ho, 2013). 

For hypothesis two, binary logistic regression analyses were adopted to examine the predictive power of 

the science capital, Archer-style engineering capital and arts-based, general cultural capital models in 

understanding engineering educational and career inequities. This test was chosen for its ability to 

examine the ability of models to correctly classify individuals in relation to their aspirations. The ability to 

clearly reduce aspirations for engineering to a binary yes/no response supported the use of binary logistic 

regression over other regression approaches (Ho, 2013). The adoption of these tests was confirmed as 

appropriate through validation of test assumptions (see Appendix E). 

Results and Discussion – Hypothesis One 

Hypothesis One: Scores measured on the science capital instrument are predicted to significantly differ 

from scores on a similarly structured instrument of engineering capital. 

Comparing Science Capital and Archer-Style Engineering Capital 

A Pearson’s correlation analysis was adopted to examine the association between scores on the science 

capital and Archer-style engineering capital instruments. A paired samples t-test was also adopted to 

investigate the degree to which participant scores on the science capital and Archer-style engineering 

capital indices differed. The correlational analysis identified a significant positive moderate association 

between scores on the two instruments (r = 0.556, N=921, p<0.001). The paired samples t-test found a 

significant difference between science capital and Archer-style engineering capital scores (t(920) = 16.848, 

p<0.001, d=0.555), with mean science capital scores (M=41.34, SD=14.04) found to be significantly higher 

than mean Archer-style engineering capital scores (M=34.13, SD=13.50). The Cohen’s d score of 0.555 

indicates a medium strength effect size of this change in the STEM domain (see Appendix E for statistical 

outputs).  

These findings confirm the prediction of hypothesis one and the theoretical critique of science capital 

outlined in Chapter Two by establishing that capitals for science and engineering are not the same 

amongst young UK learners. Whilst the correlational analysis identifies a positive relationship between 

scores on the two instruments the moderate strength of this dynamic (r=0.556) highlights that these 

scores are not wholly the same. As argued in Chapter One, science and engineering do share some 

commonalities in a ‘family resemblance’ manner which may explain this association. However as also 
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argued in Chapter One, an association between these domains does not mean that they are identical or 

operate similarly in relation to their distinct patterns of inequity. The Archer-style engineering capital 

model – which includes the same forms of capital, very similar questionnaire items, and was measured 

with the same sample at the same time – calculated a different level of capital for engineering than the 

science capital model calculated for science. This clearly validates that science capital is not the same as 

capital for engineering. The higher mean scores for the science capital model (M=41.34 compared to 

M=34.13 for the engineering capital model) demonstrate that the use of science capital to comprehend 

engineering inequity would overestimate the volume of supportive capital held by young people for 

engineering. This challenges the usage of science capital as a ‘STEM capital’ model or for efforts to 

understand engineering inequity.  

Investigating the Distributions of Science Capital and Archer-Style Engineering Capital 

Having established that capitals for science and engineering differ amongst young UK learners it is next 

possible to examine the distribution of these capitals to establish how the identified differences relate to 

socioeconomic groups. Whilst the analysis of overall mean scores for science and engineering capital 

statistically differ it may be that some socioeconomic groups possess more similar or dissimilar levels of 

engineering and science capital. As a result, it may be that science capital is representative of engineering 

inequity for some but not others. Understanding who possess science capital aligned to their capitals for 

engineering offers insight into who benefits from assumptions that science and engineering are the same. 

Examining the distributions of capital for engineering also provides the opportunity to explore the 

distribution of these supportive, advantageous resources across differing socioeconomic groups to 

illuminate patterns of engineering inequity that are only simplistically understood in the UK context.  

The Distribution of Science and Engineering Capitals 

A frequency analysis was utilised to consider the strength of capitals for science and engineering across 

the population of secondary school-aged learners. The examination of distribution of capitals for science 

and engineering can provide an overview of support for science and engineering within this population. 

Participants were classified according to their score for science and engineering capital into low (0-34), 

medium (35-69) and high (70-105) capital groups. This structure also facilitated examination against past 

science capital literature which also utilised this structure to categorise participants based on their science 

capital score (Archer et al., 2015; Moote et al., 2021).  
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The frequency analysis revealed that science capital is more broadly distributed in the secondary school-

aged population than Archer-style engineering capital. Of those sampled, 33.8% possessed a low amount 

of science capital, whereas a 62.5% majority possessed medium science capital and 3.7% possessed a high 

volume of science capital. These distributions are comparable to previously published distributions of 

science capital validating the sampling of this thesis; in particular, the science capital distribution of this 

thesis sample is similar to DeWitt et al.’s (2016) targeted sample which was designed to overrepresent 

those from non-white ethnicities suggesting that the thesis sample is representative of wider ethic groups 

despite lacking a broad ethnic diversity. Table 4.04 outlines the distribution of thesis science capital and 

Archer-style engineering capital measurement in comparison with previously published distributions of 

science capital.  

Table 4.04: The distribution of science capital and Archer-style engineering capital amongst three groups 

(low, medium, high capital scores) in past literature and this thesis sample. 

 Previous Literature Thesis Dataset 

Level of 

Capital 

Archer et al. 

(2015) - Science 

Capital 

Distribution 

DeWitt et al. 

(2016) - Science 

Capital 

Distribution 

Moote et al. 

(2021) - Science 

Capital 

Distribution 

Thesis - 

Science 

Capital 

Distribution 

Thesis - Archer-

style Engineering 

Capital 

Distribution 

High 5% 4.9% 4.9% 3.7% 1% 

Medium 68% 66.9% 62.4% 62.5% 42% 

Low 27% 28.3% 32.6% 33.8% 57% 

 

The frequency analysis of Archer-style engineering capital reveals that the sample possessed less capital 

for engineering than science, with 57% in the low capital group, 42% in the medium group, and only 1% 

in the high capital group for engineering. This differs from both the distribution of science capital in 

previous studies and the science capital scores within this thesis dataset. Overwhelmingly this difference 

represents a move towards the ‘low’ capital group, with 20.5% fewer participants in the medium group 

for engineering compared to science, and 2.7% fewer in the high capital group. This distribution 

demonstrates that secondary school students possess less engineering capital than science capital and 

this deficit sees the majority of participants positioned into a ‘low’ level of engineering capital.  

These findings put into focus the relative paucity of supportive engineering capital held by secondary 

school learners. This lesser presence of capital for engineering across the population shows that young 

people are less supported with advantageous resources for engineering compared to science. This 
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contributes to our understanding of why engineering engagement in the UK context is poor and how the 

engineering skills shortages facing the UK are so longstanding. As the Archer-style engineering capital 

model is a more specific measure of capital for engineering than science capital these findings represent 

a novel insight into the degree of support for engineering amongst UK secondary school learners. The 

distinctiveness of patterns of distribution of science and engineering capital further confirms our 

hypothesis that an engineering-specific approach to engineering inequity is more appropriate than an 

approach that generalises from science. Such a generalisation, or adoption of science capital to 

understand engineering inequity, would not represent the true resources for engineering present within 

the population of young UK learners. This further validates the need for an engineering-specific approach 

to inequity in the UK. 

Gender Differences in Science Capital and Archer-Style Engineering Capital 

As noted in Chapter One, gender differences contribute greatly to the inequitable participation with 

engineering found within the UK where only 16.5% of engineers are women (EngineeringUK, 2022b). 

Whilst gender-based inequities are present throughout the STEM grouping, including science, the 

differences in participation and representation within engineering are stronger in engineering with a 

greater skew to males (WISE, 2014). As a result, it might be questioned how well science capital can 

represent engineering given the domain of engineering carries distinct patterns of gendered participation 

– both STEM domains are skewed towards male representation but skew in differing degrees. To 

investigate this two independent samples Welch’s t-tests were conducted to examine gender differences 

in science capital and Archer-style engineering capital indices.  

The first Welch’s t-test revealed no significant difference in science capital score by gender group 

(t(820.578) = -0.697, p=0.486, d=-0.0473) with the mean science capital scores of girls (M=41.59, 

SD=13.83) and boys (M=40.93, SD=14.23) not differing significantly. However, the second Welch’s t-test 

revealed a significant difference in Archer-style engineering capital score by gender group (t(754.347) = 

 
3 The Cohen’s d effect size calculation was adjusted to apply to the Welch’s t-test calculation. An unadjusted Cohen’s 
d utilises the pooled standard deviation of both groups. This is incompatible with groups that lack a homogeneity of 
variance. Alternative tests are also incompatible: a Hedges’ g calculation also requires homogeneity of variance and 
Glass’ d is only valid in control vs. experimental group comparisons. The Cohen’s d was instead adjusted to minimise 
the impact of differing variances. Rather than pooling the standard deviation of the two groups, the average of the 
combined standard deviations (i.e. square root of the average of their variances) was instead utilised to develop 
control between groups. The adjusted Cohen’s d calculation: Cohen’s d= (Mean Value Group A – Mean Value Group 
B)/ √((Variance Group A + Variance Group B)/2). This calculation is used for all Welch’s t-test Cohen’s d reports within 
this thesis.  



100 
 

4.797, p<0.001, d=0.323) with boys mean Archer-style engineering capital score (M=36.72, SD=14.55) 

significantly greater than the mean scores for girls (M=32.30, SD=12.31). The Cohen’s d effect size 

indicates a small-medium effect size of gender on discerning Archer-style engineering capital score 

highlighting the influence of gender in capitals for engineering (see Appendix E for statistical outputs).  

 

 

Figure 4.01: Mean science and Archer-style engineering capital score by gender. 

These findings are noteworthy on several counts. First, and most importantly, these findings demonstrate 

that the patterned distribution of capitals for science and engineering differ by gender group. Whereas 

the science capital model would suggest that the boys and girls in this sample do not significantly differ in 

their provision of supportive capital, the Archer-style engineering capital model does identify a statistically 

significant difference with girls possessing significantly less capital for engineering than boys. This suggests 

that the science capital model is not sensitive enough to detect these differences in resourcing for the 

engineering domain. This is critically important given the centrality of gender to issues of engineering 

inequity. If science capital was deployed to understand engineering inequity its measurement would not 

reflect the acknowledged lack of representation of women. This comparative examination validates that 

the nuance and specificity of engineering is not well represented within the science capital model and 

instrument and as a result the distinct engineering-specific approach proposed in this thesis is 

appropriate.  
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Secondly, this analysis highlights that girls possess particularly lower levels of capital for engineering than 

science. Where boys have a mean difference of 4.21 between their science and engineering capital scores 

for girls this is much greater with a mean difference of 9.29. This contributes to an understanding of how 

engineering inequity manifests, highlighting that the bridge between science and engineering is generally 

wider for girls than boys. This insight must inform pedagogical strategies to address inequities and shows 

that STEM-integrated approaches that introduce engineering into existing curricular structures for science 

may carry a differential difficulty or value favouring boys (Roehrig et al., 2021, Roehrig et al., 2021a). In 

this way, a well-intentioned intervention to address inequity may in fact deepen disparity if the differential 

levels of resource for engineering amongst gender groups are not considered. These findings demonstrate 

that an adoption of science capital to understand engineering inequity would favour boys and greatly 

miscomprehend the supportive engineering resource possessed by girls. These findings further show the 

value of an engineering-specific lens on capital given that the use of science capital would not identify this 

complex interaction between inequity in STEM domains and gender.  

Finally, this data also differs from previous measurements of science capital which did find statistically 

significant differences in science capital by gender. Where Archer et al. (2015) and Moote et al. (2021) 

find significant differences in science capital by gender, with boys possessing significantly more science 

capital, the thesis dataset does not find this. These differences are outlined in Table 4.05 below. 

Table 4.05: Gender difference analysis for science capital in past literature and thesis dataset. 

 Previous Literature Thesis Dataset 

Gender Archer et al. 

(2015) - Science 

Capital Mean 

Scores 

Moote et al. 

(2021) - Science 

Capital Mean 

Scores 

Science Capital 

Mean Scores 

Archer-style 

Engineering Capital 

Mean Scores 

Boys 43.16 42.27 40.93 36.72 

Girls 39.61 40.99 41.59 32.30 

Significant 

Differences 

by Gender 

Yes Yes No Yes 

 

No such difference was identified within this thesis dataset. The absence of this gendered difference is 

less likely to be explained by sampling given that the general distribution of science capital mirrors 

previous samples as outlined in Table 4.04 and gendered differences for engineering are identified 
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suggesting the sample is sensitive to gendered differences to some degree. The high significance level of 

the Welch’s t-test identifying no difference in science capital by gender (p=0.485) shows that this is not a 

borderline finding. This finding would therefore suggest a change from earlier statistically significant 

findings in gendered difference for science capital. Whilst further investigation is necessary it may be that 

in the UK context girls now possess greater parity in science capital compared to earlier samples reported 

in 2015 or 2019. This is plausible given the introduction and widespread adoption of the science capital 

perspective, including the Science Capital Teaching Approach, which operate with the objective of 

lessening inequities in science. The lack of significant difference in science capital scores for boys and girls 

within this sample could represent an increase by girls of the sorts of science capital included in this 

measurement (e.g. participation with informal learning contexts such as zoos, aquaria or science 

museums; consumption of science media; or teacher encouragement for science education and its value). 

With hindsight this change may be observable in past science capital literature: no effect size for the 

gendered effect was given in the formative science capital literature (Archer et al., 2015) and a later study 

only identified a small effect of gender on science capital scores (Cohen’s d = 0.16 and 0.2 in Moote et al. 

(2021)). Further examination of this finding is warranted to determine the ongoing sensitivity of science 

capital and evolving inequities within the UK science domain.  

These analyses of gender and capital further support the prediction of hypothesis one that an engineering-

specific model of capital would outperform a generalised perspective of science capital on engineering 

inequities in the UK. 

Science Academic Ability Differences in Science Capital and Archer-style Engineering Capital 

Little past research has considered the intersection of academic ability in science or engineering and 

patterns of engineering inequity; however, this consideration is relevant given the ‘science first, 

engineering later’ structure to STEM education in the UK. The relationship between science ability and 

engineering participation and representation is institutionally enforced with science qualifications often 

necessary to access engineering educational pathways. Considering this the ability to achieve and qualify 

in the science domain becomes relevant to the topic of engineering inequity. To explore the degree 

capitals for science or engineering may relate to science academic ability of young learners two one-way 

ANOVAs were deployed to explore how science capital or Archer-style engineering capital scores differed 

by low, medium, or high science academic ability sets. ‘No science sets’ were also considered in schools 

that did not adopt this hierarchy.  
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The first one-way ANOVA revealed a significant difference in science capital score by academic set for 

science (F(3,893) = 29.16, p<0.001, ETA2=0.089) with those in higher sets (M=45.84, SD=13.83) possessing 

significantly more science capital than those in medium (M=36.27, SD=12.33), lower (M=36.92, SD=14.71) 

and no science sets (M=40.56, SD=13.97) groups (see Appendix E for statistical outputs). Whilst only a 

minor effect size this does demonstrate that science capital is aggregated more in those who have an 

academic ability with science. The same finding is established in Archer et al.’s formative science capital 

work (Archer et al., 2015) and later explorations of science capital within the UK (Moote et al., 2021). This 

replication of past findings further supports the reliability of the science capital measurement within this 

thesis and highlights the importance of diversions from expected findings such as in the lack of gendered 

difference in science capital scores.  

The second one-way ANOVA explored how Archer-style engineering capital differed between the same 

four academic groups and found a significant difference (F(3,893) = 3.367, p=0.018, ETA2=0.011), however 

unlike with science capital the only significant difference between academic groups for engineering capital 

was between higher science sets (M=35.06, SD=13.61) and middle science sets (M=31.92, SD=13.89). 

Those in lower (M=35.54, SD=13.69) and no science set (M=34.98, SD=12.73) groups did not differ 

significantly from the higher sets (see Appendix E for statistical outputs).  

It should be noted that the sample for those in lower science sets was particularly small (N=48, 5.2%) and 

should therefore be considered as suggestive rather than indicative – further examination is warranted.  
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Figure 4.02: Science and Archer-style engineering capital scores by science academic ability.  

These findings further highlight that capitals for science and engineering are differentially distributed, in 

this case by the social grouping of academic science ability. If sets for science are taken as a general 

indicator of academic ability for science then this would suggest a difference in how capitals for science 

and engineering relate to academic ability and resulting school experiences. For science capital there is a 

clearer hierarchy with those in top sets demonstrating the greatest science capital, however this hierarchy 

is less clear in measurements of Archer-style engineering capital where those in higher and lower science 

sets possess remarkably similar levels of Archer-style engineering capital. This further highlights the 

distinction of capitals for science and engineering, but also challenges the conceptualisation of 

engineering as a form of science or science-like. This nuance for engineering would not be identified 

through the use of science capital, instead it would be assumed that those in high ability sets possessed 

greater resource for engineering than they do and those in low ability sets would not be recognised as 

just as supported for engineering as more science academically able peers. If the use of these models of 

inequity are concerned with identifying and supporting future engineers then the engineering capital 

model clearly outperforms science capital in its value to understanding preparedness for the study of 

engineering. Given that the examined sample are secondary school students who are poised to make 

decisions that will align them towards or away from engineering the ability of an engineering-specific lens 

to recognise these distinctions is of high value and utility.  

This difference in distribution of capitals for science and engineering also offers an interesting perspective 

on the dominant ‘science first, engineering later’ structure of UK education systems. Within these 

conventional systems it may be perceived that those in high science academic sets are best placed to 

move into subsequent stages of education for engineering, however the analysis outlined above would 

suggest that those in lower ability science sets may also possess comparable levels of supportive capital 

for engineering. These individuals may represent an untapped resource of potential future engineers – or, 

alternatively, this might be interpreted as those in high academic science sets possessing no greater 

capital for engineering than those in lower sets. This is relevant to debates around the definition of 

‘engineer’ and its relationship with ‘technician’ roles which are understood as a duality within engineering 

professions (Department for Business Innovation and Skills, 2013). These findings may also represent a 

pattern of embodiment that validates the duality of vocational or academic routes into the engineering 

domain. Given unequal sample sizes this understanding of the relationship between engineering capital 

and science ability requires further examination. As elsewhere in this analysis, these findings demonstrate 
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that presuming science capital is the same as, or representative of, engineering capital would result in an 

inaccurate perception of capitals for engineering.  

Deprivation Group Differences in Science Capital and Archer-Style Engineering Capital 

Social background and relative deprivation are also relevant considerations for engineering inequity given 

the identification that engineers in the UK are skewed to origins of greater socio-economic privilege 

(EngineeringUK, 2018b). Social class, which might be framed as degrees of relative deprivation or 

advantage, is therefore an important consideration to which a model of engineering inequity must 

respond. The impact of class/deprivation likely differs for science and engineering, recognising that within 

the UK engineering is likely more inequitable than science (Friedman & Laurison, 2020). This immediately 

draws into question the ability of science capital to represent both science and engineering with a single 

score given the strong link between social class and the underlying Bourdieuian concept of capital.   

As noted in the earlier Methodology chapter, the measurement of social class is made difficult by its 

potential framing in either economic or social terms. To ensure a suitably sophisticated examination of 

social class the distribution of science capital and Archer-style engineering capital were considered in 

relation to both a social measure (Bourdieuian cultural capital for class) and an economic measure of 

social class (the Income Deprivation Affecting Children Index, IDACI). The use of cultural capital can 

facilitate a direct comparison with Archer et al. (2015) who utilised this approach, but the IDACI can 

facilitate a more contemporary economic approach to framing deprivation. This facilitates a richer 

examination of how science capital and Archer-style engineering capital relate to deprivation as a relevant 

characteristic of engineering participation and inequity issues in the UK. 

For the cultural capital assessment of social class/deprivation, a one-way ANOVA revealed significant 

differences in science capital for groups with differing cultural capital (F(4,916) = 40.659, p<0.001, 

ETA2=0.151) with significantly greater science capital as cultural capital increased except for between the 

Very Low and Low, and Very Low and Medium levels (see Appendix E for statistical outputs). Overall, this 

finding demonstrates that individuals belonging to families with greater cultural capital (indicative of 

higher classes or lesser deprivation) also generally have more science capital. This mirrors Archer et al.’s 

(2015) findings on the distribution of science capital within different cultural capital groups, further 

validating the measurement of science capital in this thesis to previously reported measures in wider 

literature.  
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A second one-way ANOVA revealed a significant relationship between Archer-style engineering capital 

and general cultural capital (F(4,916) = 8.511, p<0.001, ETA2=0.036) with a number of significant 

distinctions in engineering capital between differing cultural capital groups . However, unlike with the first 

one-way ANOVA exploring science capital, the linearity of this relationship was less clear. No significant 

differences were found to exist between the Very Low and other levels of general cultural capital, and no 

difference was found between the Medium and High, or High and Very High levels (see Appendix E for 

statistical outputs). As a result, it may be that engineering capital is less clearly distinguished between 

cultural capital groups. The same upward trend is observed, but distinctions are less clear within this 

trend.  

These findings further demonstrate the difference between science and engineering capitals, highlighting 

that the two relate to the cultural capital measurement of social background in somewhat distinct 

patterns. Whilst both models show a positive trend to social background these patterns cannot be seen 

to be identical with differing ETA2 effect size values highlighting a differing level of importance between 

social background and the two STEM domains. This questions whether the science capital model can be 

representative of engineering. Given that Bourdieuian cultural capital is the foundational framework of 

both the science capital and Archer-style engineering capital measures the difference in relationships with 

this core concept further questions the presumption that science capital is inclusive or representative of 

engineering. These findings suggest that science is more closely aligned to social class/privilege than 

engineering. This may be interpreted as resulting from differences in parental approaches to supporting 

education. The Bourdieuian framework positions parent-child relations as deeply influential in the 

development of habitus (Bourdieu, 1984) but also the in shaping of parenting style with those  with 

greater capital able to pass down forms of capital that support learners in the institution of education, 

which itself is aligned to the capital of the powerful (Lareau, 2011). This is confirmed in further research 

with parents from more privileged backgrounds approaching child learning differently from those in lower 

class groups (Gerris et al., 1997; Kohn, 1977) – though others propose alternative interpretations beyond 

class structure for these differences (Chan & Koo, 2011). As science is in the curriculum it may be the 

recipient of this beneficial influence from privileged parents. However, as engineering is absent from this 

education system it may not be the subject of additional support. Alternatively, these patterned findings 

may be explained by an understanding of engineering as a duality, practiced both by white collar, highly 

educated professional engineers and blue collar, less educated engineering technicians. As a result, 

parents in both groups may be well placed to nurture capital amongst their children. Further research is 

required to explore these interpretations. 
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Social class can also be considered with a more economic lens by utilising the Index of Multiple Deprivation 

(IMD) sub-index of Income Deprivation Affecting Children Index (IDACI). Two one-way ANOVA analyses 

were utilised to examine the relationship between quintiles on the IDACI measure and science capital and 

Archer-style engineering capital scores. The first one-way ANOVA revealed no significant difference in the 

level of science capital by IDACI quintiles (F(4,601) = 0.176, p=0.951, ETA2=0.001). Very little variation is 

noted, with all five quintiles reporting mean science capital scores in the range 41.21 to 42.69 (range: 

1.48) (see Appendix E for statistical outputs). The second one-way ANOVA also found no significant 

difference in the level of Archer-style engineering capital by IDACI quintile (F(4,601) = 0.340, p=0.851, 

ETA2=0.002). As with science capital, Archer-style engineering capital barely differed between quintiles 

with a range of means of 33.24 to 34.99 (range: 1.75) (see Appendix E for statistical outputs). 

The lack of significant relationships between the models of science capital and Archer-style engineering 

capital and the IDACI measure of deprivation are insightful for a number of reasons. First, the lack of 

significant findings challenge the notion that these models are effective models of inequity given that 

economic disparity is a foundational characteristic of social disparity. This would also challenge the idea 

that economic capital can facilitate the development of capitals for science and engineering as noted in 

previous literature, such as the dominance of more economically privileged individuals in UK informal 

science contexts (Canovan, 2020; Kennedy et al., 2018). 

Second, these findings demonstrate that the methodological approach to measuring social class is of great 

importance and influence on resulting findings. The use of a more social, general cultural capital 

measurement of social disparity resulted in significant differences in science and Archer-style engineering 

capital scores, yet no difference in these same scores were identified when utilising a strictly economic 

framing of disparity. This suggests that the distinctions in science and engineering capitals are determined 

by social, not economic, factors. This would not be surprising given that it is cultural and social capitals, 

and not economic capitals, that make up the content of these perspectives and models. Whilst a 

relationship may exist between differing economic groups the above findings suggest that this would be 

due to the social differences. This does align to past findings examining social or economic measures of 

social class which are noted to produce distinct conceptualisations and measurements of disparity (Bukodi 

& Goldthorpe, 2013; Chevalier & Lanot, 2002). These findings should be further investigated with greater 

depth in the measurement of economic and social-based deprivation to confirm the relationship between 

engineering capital and deprivation. A qualitative investigation as well as broader quantitative 

examination of social class/economic disparity and engineering inequity is warranted. The adoption of a 
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more accurate measure of economic disparity than the IDACI, which depends on generalisations according 

to postcode, is also needed as it may be that patterns of engineering inequity are not geographically 

determined (and so cannot be examined using the postcode generalising IDACI instrument).  

National Differences in Science Capital and Archer-Style Engineering Capital 

Despite engineering inequities often being discussed as a UK-wide issue it is important to note that the 

UK features four devolved governments which influence policy in distinct manners. For example, the UK 

contains devolved approaches to education which limit degree to which educational experiences can be 

generalised for all UK learners. This diversity of educational policies, practices and structures is relevant 

to the consideration of engineering and science capital given the recognised importance of education in 

shaping inequities (Munoz & Dossett, 2001). However, the data used in the formation, measurement and 

development of science capital was sourced solely from an English context (Archer et al., 2015). This might 

be seen to limit the scope of science capital and question its ability to act as a model of science inequity 

for the whole of the UK beyond the English system.  

The relationship between national context and science or Archer-style engineering capital can be explored 

within this thesis dataset. Whilst sample sizes differed for England and Scotland in this dataset limiting 

the ability to draw deeper conclusions the analysis might be considered as a suggestive examination of 

national context and capitals for science and engineering. Two independent samples t-tests were used to 

explore how scores for science capital and Archer-style engineering capital differed by national context. 

The first t-test identified a significant difference in science capital by nation (t(919) = 2.313, p=0.021, 

d=.258), with science capital mean scores in England (M=41.69, SD=13.98) higher than in Scotland 

(M=38.08, SD=14.33). The second t-test revealed no significant difference in Archer-style engineering 

scores by nation (t(919) = -0.218, p=0.827) with national means not significantly differing for England 

(M=34.10, SD=13.44) and Scotland (M=34.43, SD=14.12) (see Appendix E for statistical outputs).  

Whilst it is important to maintain that the sampling of Scotland was limited, so deeper conclusions should 

not be drawn from this data, these findings may be considered as suggestive of the relationship between 

nation context and scores for science and engineering capitals. These analyses suggest that science and 

Archer-style engineering capital differ in their relationship to national context. In particular, the significant 

difference in science capital scores between the English and Scottish context are insightful given that 

previous study of science capital has been based in the English context. The difference identified bears 

implications for the adoption of science capital outside of England – a presumption that the distribution 
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of science capital in Scotland is the same as in England would overestimate the capitals held by young 

Scottish people. This speaks further to the scope of science capital and its potential unrecognised 

limitations in contexts other than England. However, this must be further studied with more 

representative samples. 

The lack of significant difference for Archer-style engineering capital, despite the significant findings for 

science capital, suggests further that the two are not aligned. This demands further investigation, 

particularly given the greater presence of engineering within the Scottish curricula. A more representative 

sample, perhaps with matched samples in England and Scotland would be more capable of examining this 

directly. Such an investigation would support the refinement of capital models to examine inequity within 

the UK. 

Discussion and Conclusions on Hypothesis One 

Hypothesis One: Scores measured on the science capital instrument are predicted to significantly differ 

from scores on a similarly structured instrument of engineering capital. 

The comparative measurement of capitals for science and engineering within this thesis confirms the 

prediction of hypothesis one that science and Archer-style engineering capital scores differ. This validates 

the position that science capital is not reflective of capital for engineering and that the adoption of science 

capital to understand engineering inequity will not be as valid as its adoption to understanding inequities 

in science.  

Analysis of the distribution of science and engineering capital amongst UK secondary school learners 

shows that engineering capital is less prevalent than science capital within this population and that use of 

the science capital model to investigate engineering would miscalculate the level of supportive resources 

present for engineering. Analysis of gender differences – a key element of engineering inequity – 

demonstrates that the science capital model is not sensitive to differences in resources between boys and 

girls in secondary education, further questioning the fidelity of science capital in examining engineering 

inequity. Whilst sample sizes are limited, these analyses also suggest that the relationship between 

academic ability for science and capitals for science and engineering differ questioning how well the 

science capital model can be used to understand those still in education or the inequities of educational 

pathway decision making. The same is true for the relationship between science and engineering capitals 

and national context, with questions as to the relationship between these measures of inequities in 

secondary learners in differing national settings.  
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Overall, these findings posit that science capital is a poorer measure of engineering inequity compared to 

an engineering-specific model of capital. The differences identified in the measurement of capitals for 

engineering or science demonstrate a difference in capitals for these subjects that is not accounted for 

within a model of science capital. Given the complexity of inequity it is crucial to adopt as accurate a 

model as possible in framing and measuring these issues. The identification of differences between 

science capital and an engineering capital model supports the rejection of science capital and the adoption 

of a novel model of engineering proposed in this thesis to investigate engineering inequity in the UK 

context.  

Results and Discussion – Hypothesis Two 

Hypothesis Two: A model of engineering capital is predicted to hold greater power in explaining and 

predicting patterns of inequity in engineering education and career aspiration compared to models of 

science or arts-based Bourdieuian capital. 

Whilst the analyses of hypothesis one confirm that science capital and Archer-style engineering capital 

differ, they cannot conclusively reject the adoption of science capital to investigate engineering inequities. 

It is possible that differences between these models, whilst observable, produce little impact to the 

application of these models in investigations of engineering educational or career inequities. As a result, 

before the adoption of science capital can be rejected within this thesis it is necessary to apply these 

models to engineering inequities to confirm their utility. Hypothesis two is thereby concerned with 

confirming an engineering-specific capital model is more effective in understanding inequity. 

To explore this, binary logistic regression analyses were adopted to compare the accuracy with which 

models of science capital, Archer-style engineering capital and arts-based, general cultural capital can 

understand the variance, or predict, educational and career inequities amongst secondary school-aged 

learners. The greater the accuracy of each model, the better its fit to engineering inequities.  

Engineering Educational Aspiration  

Access and participation with engineering educational trajectories is recognised as deeply inequitable 

with limited and homogenous participation observed within the very first opportunities for young learners 

to shape their educational experience. Educational aspirations were adopted within the science capital 

literature as an indicator of the alignment of young learners to a future in science (Archer et al., 2015). As 

a result, any model which proposes to investigate engineering inequity must be responsive to educational 
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inequities. Three binary logistic regression analyses were completed examining the accuracy of 

engineering educational aspiration predictions by models of: Archer-style engineering capital, science 

capital, and Bourdieuian general cultural capital.  

The first binary logistic regression was performed to determine the effects of Archer-style engineering 

capital on the likelihood of aspiring to engineering education. The logistic regression model was 

statistically significant (x2(1) = 219.683, p<0.001). The model explained 32.3% of the variance (Nagelkerke 

R2) in engineering education aspiration with an overall predictive accuracy of 80.4%. A deeper examination 

of this accuracy reveals that Archer-style engineering capital has a sensitivity (accuracy of true positives 

or, accuracy identifying those wishing to study engineering) of 43%, and a specificity (accuracy of true 

negatives or, accuracy identifying those who do not wish to study engineering) of 93.3% (see Appendix E 

for statistical outputs). 

The second binary logistic regression was performed to determine the effects of science capital on 

likelihood of aspiring to engineering education. The logistic regression model was also statistically 

significant (x2(1) = 9.938, p=0.002). The model explained only 1.6% of the variance (Nagelkerke R2) in 

engineering education aspiration with an overall predictive accuracy of 74.3%. A deeper examination of 

this accuracy reveals that science capital has a sensitivity (accuracy of true positives) of 0.0%, and a 

specificity (accuracy of true negatives) of 100.0%. This deeper examination shows that the model of 

science capital is only accurate at identifying those who do not aspire to engineering education and 

detects 0% of those that do aspire to study engineering. This clearly demonstrates the lack of value in 

science capital for purposes of understanding engineering inequity as it holds no sensitivity to identify 

those who aspire to study engineering and no ability to discern patterns in this inequity (see Appendix E 

for statistical outputs). 

The third binary logistic regression was performed to determine the effects of general cultural capital on 

likelihood of aspiring to engineering education. The logistic regression model was not statistically 

significant (x2(1) = 0.076, p=783). The model explained 0.0% of the variance (Nagelkerke R2) in engineering 

educational aspiration with an overall accuracy of 74.3%. A deeper examination of this accuracy reveals 

that general cultural capital has a sensitivity (accuracy of true positives) of 0.0%, and a specificity (accuracy 

of true negatives) of 100.0%. As with science capital, the general cultural capital model could not 

effectively predict who did aspire to future engineering education (see Appendix E for statistical outputs). 

These results are outlined on Table 4.06 below.  
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Table 4.06: Binary logistic regression analyses results for predictions of engineering educational aspiration 

by models of Archer-style engineering, science and general cultural capital. 

Model Significant 

Chi-Square 

Loglikeli. Nagelkerke

R2 

Accuracy Sensitivity 

(true pos.) 

Specificity 

(true neg.) 

Archer-Style 

Engineering 

Capital 

Yes 

(p<0.001) 

791.399 32.3% 80.4% 43.0% 93.3% 

Science 

Capital 

Yes 

(p<0.001) 

1001.144 1.6% 74.3% 0.0% 100.0% 

General 

Cultural 

Capital 

No 

(p=0.783) 

1011.006 0.0% 74.3% 0.0% 100.0% 

 

A comparison of these results reveal that the three models are not equal in their ability to explain the 

variance in engineering educational aspiration. The Archer-style engineering capital model vastly 

outperforms the models of science capital or general cultural capital, explaining 32.3% of the variance in 

engineering educational inequity compared to only 1.6% by science capital and 0.0% by general cultural 

capital. Overall accuracy of prediction is also greater for Archer-style engineering capital (80.4%) 

compared to science capital (74.3%) and general cultural capital (74.3%). At first, this would appear to 

minimise the advantage of an engineering-specific model of capital, only offering a 6.1% improvement 

over science capital, however a deeper analysis of prediction accuracy validates the greater value of the 

engineering capital model.  

Overall accuracy can be broken down into sensitivity and specificity, otherwise known as true positive and 

true negative accuracies. The sensitivity of these models - their ability to detect those who aspire to 

engineering education – is much greater for Archer-style engineering capital (43.0%) than for science 

capital (0.0%) or general cultural capital (0.0%). In other words, the models of science capital and general 

cultural capital could not accurately identify a single participant who wished to study engineering. This is 

markedly false, as 24.7% of participants indicated that they aspired to some form of engineering 

education. Whilst Archer-style engineering capital only had a sensitivity of 43.3%, which it might be argued 

leaves room for improvement, it still represents a clear improvement on science capital. Predicting a 

complex state such as desire for future engineering education, without directly asking about it, is difficult 

and the Archer-style engineering capital model does this reasonably well.  
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An uncritical analysis of the accuracy of these models in predicting engineering educational aspiration 

would at first suggest that they are vaguely similar, with Archer-style engineering capital only 6.1% more 

accurate. However, a richer analysis reveals that science capital and general cultural capital are not at all 

predictive, and only appear to be by assuming every individual does not aspire to engineering education. 

This only gives the appearance of validity as engineering educational aspiration is uncommon within this 

population, however the lack of discernment between those who do and do not aspire to engineering 

study means that these models are of no value for understanding and addressing engineering inequity. 

These findings further align to the position adopted within this thesis that engineering and science share 

a complex relationship: despite the interconnection of these domains a science capital lens is unhelpful 

for understanding engineering inequity. 

These findings also demonstrate that the arts-based general cultural capital model is a poor fit to 

engineering educational aspirations, despite the theoretical link between this arts-based view and the 

creative design processes of engineering. Given the popularity of the Bourdieuian cultural capital model 

and science capital as perspectives on inequity, the lack of statistical significance and predictive power in 

relation to engineering inequity is worrying. This further demonstrates the need for a model of inequity 

specifically focused on engineering in the UK context.  

Engineering Career Aspiration 

Career aspirations, as with educational aspirations, were also a benchmark for inequity used to examine 

science capital, representing the inequitable future trajectories of young people towards science (Archer 

et al., 2015). As with educational aspiration three binary logistic regression analyses were completed to 

examine the accuracy of engineering career aspiration prediction by the models of Archer-style 

engineering capital, science capital and Bourdieuian general cultural capital. 

The first binary logistic regression was performed to determine the effects of Archer-style engineering 

capital on the likelihood of aspiring to a future engineering career. The logistic regression model was 

statistically significant (x2(1) = 296.034, p<0.001). The model explained 38.8% of variance (Nagelkerke R2) 

in engineering career aspiration with an overall accuracy of 75.8%. A deeper examination of this accuracy 

reveals that Archer-style engineering capital has a sensitivity (accuracy of true positives or, accuracy 

identifying those wishing to work in engineering) of 54.4% and a specificity (accuracy of true negatives or, 

accuracy identifying those who do not wish to study engineering) of 87.5% (see Appendix E for statistical 

outputs). 
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The second binary logistic regression was performed to determine the effects of science capital on the 

likelihood of aspiring to a future engineering career. The logistic regression model was statistically 

significant (x2(1) = 8.990, p=0.003). The model explained 1.4% of variance (Nagelkerke R2) in engineering 

career aspiration with an overall accuracy of 64.9%. A deeper examination of this accuracy reveals that 

science capital has a sensitivity (accuracy of true positives) of 0.9% and a specificity (accuracy of true 

negatives) of 100.0%. As with the use of science capital with engineering educational aspiration the model 

of science capital does not accurately predict those who wish work in engineering roles and is thereby 

incompatible with such considerations of engineering inequity (see Appendix E for statistical outputs). 

The third binary logistic regression was performed to determine the effects of general cultural capital on 

the likelihood of aspiring to a future engineering career. The logistic regression model was not statistically 

significant (x2(1) = 1.219, p=0.270). The model explained only 0.2% of variance (Nagelkerke R2) in 

engineering career aspiration with an overall accuracy of 75.8%. A deeper examination of this accuracy 

reveals that general cultural capital has a sensitivity (accuracy of true positives) of 0.0% and a specificity 

(accuracy of true negatives) of 100.0%. The statistically insignificant predictive power of Bourdieuian 

cultural capital highlights its incompatibility in predicting engineering career aspiration. As a result, it is of 

questionable use to support efforts to address engineering inequity (see Appendix E for statistical 

outputs). These results are outlined on Table 4.07.  

Table 4.07: Binary logistic regression analyses results for predictions of engineering career aspiration by 

models of Archer-style engineering, science and general cultural capital. 

Model Significant 

Chi-Square 

Loglikeli. Nagelkerke 

R2 

Accuracy Sensitivity 

(true pos) 

Specificity 

(true neg) 

Archer-style 

Engineering 

Capital 

Yes 

(p<0.001) 

863.645 38.8% 75.8% 54.4% 87.5% 

Science 

Capital 

Yes 

(p=0.003) 

1150.689 1.4% 64.9% 0.9% 100.0% 

General 

Cultural 

Capital 

No 

(p=0.270) 

1158.459 0.2% 64.6% 0.0% 100.0% 

 

As with engineering educational aspiration, comparison of these regression analyses allows the utility of 

the three models to be determined in relation to their ability to predict engineering career aspiration. 

Given that career aspiration is a key indicator of engineering inequity, representing the trajectory of 
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individuals towards engineering practice as adults and the related entrenched patterns of inequity, the 

ability of models to accurately predict engineering career aspiration is a vital prerequisite for a model of 

engineering inequity. Whilst employment will still be a number of years away for most secondary school-

aged participants a desire to work in an engineering role can be used to indicate alignment for an 

engineering future and is a relevant consideration given the established patterns of inequity in 

engineering careers. The greater the variance of engineering career aspiration data explained by a model, 

the greater its ability to understand the phenomena. 

Comparisons reveal that only Archer-style engineering capital and science capital are significantly 

predictive of engineering career aspiration, with Archer-style engineering capital predictive to a p<0.001 

level and science capital to a p=0.003 level. Bourdieuian cultural capital, on the other hand, is not found 

to be significantly predictive with a p-value of 0.270. This is noteworthy considering that general cultural 

capital was predictive of educational aspiration for engineering but is not found to be predictive of career 

aspiration. This suggests that educational and career aspirations are not the same (which is confirmed by 

a frequency analysis revealing that whilst 24.7% of this sample aspire to engineering education 34.3% 

aspire to an engineering-related career). The significant predictive power of Archer-style engineering 

capital and science capital would appear to validate their use to consider engineering career aspirations, 

however the two models are not equal in their utility. The Archer-style engineering capital model is found 

to explain more variance in career aspirations (38.8%) than science capital (1.4%). Archer-style 

engineering capital can vastly outperform in terms of sensitivity, the identification of true positives/those 

who aspire to engineering careers with a 54.4% accuracy compared to 0.9% by science capital. This means 

that whilst Archer-style engineering capital can identify more than half of those who wish to work in 

engineering roles, science capital can only identify less than one in one hundred. This represents a vastly 

different capacity to relate to engineering inequity and demonstrates the vastly differing levels of utility 

of these models. Whereas a 54.4% accuracy is clearly limited and has room for improvements the Archer-

style engineering capital model is much more useful than the 0.9% accuracy of science capital. This is 

further supported by comparing the specificity of these models – their ability to identify true 

negatives/those who do not want to work in engineering careers. Here Archer-style engineering capital is 

outperformed, with a specificity of 87.5% compared to 100% by science capital. However, this is not a 

validation of science capital as this 100% accuracy is only established through predicting all participants 

do not wish to engage with engineering careers – which is not the case as 34.3% reportedly do. It can 

thereby be argued that the science capital model is not a predictive model of engineering career aspiration 

at all. A model might only be considered predictive if it attempts to delineate and identify distinct groups. 
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In the case of science capital, the model only appears accurate for engineering career aspiration to a 

degree because this aspiration is relatively uncommon and the science capital model predicts that no one 

will want to enter such careers. This offers zero utility in trying to understand, predict or measure 

engineering career aspirations in relation to engineering inequity as its ecological validity is nil. This further 

highlights the value of an engineering-specific model of capital and demonstrates the relative weakness 

of science capital to explain the variance in career aspirations for engineering.  

Discussion and Conclusions on Hypothesis Two 

Hypothesis Two: A model of engineering capital is predicted to hold greater power in explaining and 

predicting patterns of inequity in engineering education and career aspiration compared to models of 

science or arts-based Bourdieuian capital. 

Originating in a rationale that more specific models of capital are likely more accurate in relation to their 

specific domain, hypothesis two predicted that an engineering capital model would outperform models 

of science or general cultural capital in understanding engineering inequity. Analyses examining the ability 

of these models to explain and predict inequities in engineering validate this hypothesis and demonstrate 

the need for an engineering capital model.  

The engineering capital model is found to vastly outperform the science capital model. This contrasts with 

past claims for science capital as a potential STEM capital model by researchers involved in the ongoing 

science capital literature:  

“We suggest that the reported associations between science capital and aspirations and attitudes to 

engineering, maths, and technology indicate that the concept can, to a certain extent, be interpreted as 

representing not just science capital, but a wider, broader ‘STEM capital’. In other words, based on the 

correlations reported in this article (with significant and meaningful relationships found beyond science 

attitudes, that is, also between science capital and TEM attitudes), science capital may share enough 

similarities to ‘STEM capital’ to be used as a reasonable proxy.” (Moote et al., 2020, p1241). 

Bourdieuian general cultural capital is similarly found to lack a specificity and accuracy in understanding 

engineering inequity, despite the theoretical justification that this arts-based model may carry some 

relevance to engineering as a creative process with artistic parallels (Cropley, 2016; Silva, 2008). The 

empirical findings demonstrate a weak power or no significant relationship between this model of general 

cultural capital and engineering inequity which itself speaks to the need for specificity in the focus of a 

capital-based perspective on participation and representation. The theoretical justification that a capital 
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model based on artistic taste could represent engineering carries the same biases of generalisation and 

abstraction that face the relevance of the science capital model.  

Whilst established as a tremendously helpful perspective and model of science inequity, these findings 

show that the science capital model is a poor fit to the specific patterns of inequity found in the 

engineering domain. Science capital could not accurately distinguish secondary school students who did 

or did not aspire to engineering education or careers, and so cannot be seen to reflect patterns of 

participation or representation in engineering inequity. The lack of fit between science capital and 

engineering also questions the degree to which interventions developed from the science capital 

perspective such as the Science Capital Teaching Approach might apply to engineering. In light of these 

findings the use of the science capital model to understand engineering inequity can be seen to endanger 

the accuracy and success of efforts to understand and address engineering inequities. The limited progress 

in addressing engineering inequities in the UK, compared to progress for science, may be in part due to 

such presumed relevance of science interventions for engineering inequities. 

The greater accuracy and predictive power of the Archer-style engineering capital model demonstrates 

the usefulness of a domain specific model of capital in inequity. Whilst only able to correctly identify 43.0% 

of those who wish to study engineering and 54.4% of those who wish to work in engineering roles this 

model might be considered a proof of concept for a more sophisticated and nuanced model of capitals 

for engineering. The Archer-style engineering capital model used in these analyses was formed through 

the translation of the science capital instrument and so only considered the forms of capital identified as 

relevant to the science domain. The development of a new model of engineering capital which focuses on 

those capitals that are instead most relevant to the engineering domain will likely improve the power of 

this model to aid understanding, measurement, and predictions of engineering inequity. 

Chapter Discussion 

The empirical findings outlined in this chapter not only validate the predictions of hypotheses one and 

two but also provide a sophisticated insight into the relationship between the domains of science and 

engineering and the value of science capital as a lens for engineering inequity. These findings include many 

novel insights.  

Despite the popularity of its theoretical perspective few empirical studies of science capital have been 

conducted within research literature. It may be expected that the distribution of science capital within 

the UK will change over time, naturally or through the impact of interventions such as the Science Capital 
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Teaching Approach, which necessitates a need to revisit this perspective empirically to ensure the 

continuing relevance of established understanding. The findings of this thesis offer a more recent 

empirical perspective on science capital than past studies (Archer et al., 2015; Moote et al., 2021). 

Analyses used to test hypothesis one reiterated past findings such as the inequitable distribution of 

science capital within secondary school-aged participants, but also dissented from established findings 

such as the gendered inequities in science capital which was not established in this thesis sample (Archer 

et al., 2015). These examinations also considered science capital in new ways such as in the comparison 

of science capital scores in differing national contexts (England and Scotland) or in relation to engineering 

aspirations. Little examination has also directly investigated the relationship between science capital and 

other STEM domains. The findings of this thesis disagree with past, more simplistic empirical findings that 

suggest science capital applies to STEM inequities and instead puts forwards the case for domain-specific 

models of capital. This would suggest that the specific patterns of nuance within inequities cannot be 

generalised based on surface level similarities or abstractions between domains. These findings do 

question the use of science capital in engineering or in a generalised ‘STEM capital’ manner which is 

suggested in wider literature (EngineeringUK, 2020; Greater Manchester Combined Authority, 2019; 

Institution of Engineering and Technology, 2022). Given the continuing popularity of science capital these 

findings offer a novel insight into the continuing relevance and scope of this tool and the evolving patterns 

of science inequity found in the UK context. 

The most significant novel insight from this empirical investigation is the validation of an engineering-

specific capital perspective for understanding and addressing engineering inequities. Whilst the accuracy 

of the Archer-style engineering capital instrument in predicting patterns of engineering inequity was not 

quite high enough to warrant deployment in real settings its strong performance over the science capital 

model demonstrates that an engineering-specific approach, if iterated and improved upon, possesses 

great value. The empirical measurement of Archer-style engineering capital has also supported a more 

sophisticated understanding of engineering inequity in the UK – demonstrating patterns of aspiration for 

engineering education and careers in a fashion infrequently examined in the UK context. The value of 

these insights further motivates the development of an engineering-specific model of capital.  

Conclusions 

In this chapter the science capital model was empirically investigated to determine its relevance to 

inequities within the engineering domain. In line with the theoretical critique outlined in previous 

chapters it was determined that science capital is a weak model to adopt for the purpose of developing 
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greater understanding of engineering inequities in the United Kingdom. A simplistic model of engineering 

capital was developed through translation of the science capital instrument to support the value of an 

engineering-specific approach to engineering inequity. Two hypotheses were tested to establish this 

finding. The first determined that capitals for engineering and science differed from one another and in 

relation to characteristics central to engineering inequity in the UK. The second hypothesis showed that 

science capital could not be used to predict patterns of engineering inequity questioning the validity of its 

perspective for this application. These analyses do not support the use of science capital to investigate 

and understand patterns of engineering inequity in the UK. However, these findings do highlight the 

potential value in an engineering-specific model of capital. The effective domain-specific application of 

the Bourdieuian framework to science inequity demonstrated by Archer and colleagues supports the 

adoption of the Bourdieuian perspective to examine engineering inequity in later chapters of this thesis. 

Whilst not applicable to the engineering domain Archer et al.’s science capital model can also be drawn 

on as an exemplar of Bourdieuian-based model and instrument development in later chapters. The 

effective domain-specific application of Bourdieuian capital for science inequities does demonstrate the 

potential use of this conceptual framework to better understand inequities in the engineering domain. In 

the following chapters a model of engineering capital will be developed and tested. In Chapter Five an 

instrument development process will be adopted and theoretical model of engineering capital established 

drawing on the insights offered by the Archer-style engineering capital model.  
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CHAPTER FIVE: FORMING A THEORETICAL MODEL OF 

ENGINEERING CAPITAL 

Introduction 

In previous chapters, it was theoretically and empirically established that science capital offers a poor fit 

to engineering inequity. Despite this, the Bourdieuian capital lens was suggested to apply to the issue of 

engineering inequity if applied in an engineering-specific manner. This endorses the development of an 

engineering capital model to support the objective of this thesis and advance understanding of 

engineering inequity. In the following chapter this development begins drawing on the approach 

undertaken by Archer et al. (2015) in the formation of their successful science capital model. Recognising 

that little literature has considered the science capital approach as a replicable methodology Archer et 

al.’s approach is first critically considered in relation to instrument development literature to validate its 

adoption. Having concluded that this approach is valid, the first two stages of this four-stage process will 

be completed to create a conceptual framework and theoretical model of engineering capital. By 

aggregating and reinterpreting past literature through a Bourdieuian lens a more sophisticated theoretical 

model of engineering inequity is outlined and offered for practical application.  

Forming a Model of Engineering Capital 

The previous chapters of this thesis establish a poor theoretical and empirical fit between the science 

capital model and patterns of engineering inequity amongst young UK learners. Despite its validity as a 

science inequity perspective, the science capital model was determined to possess a limited utility within 

the engineering domain. A translated science capital instrument that instead examined capitals within the 

engineering domain demonstrated a greater usefulness in understanding patterns of educational and 

career aspiration for engineering amongst young learners. This engineering-specific approach offered 

greater nuance in understanding the distribution of supportive resources amongst this population, and 

thereby provided a proof-of-concept for the use of this capital perspective within the engineering domain. 

These findings demonstrate the value of adopting the Bourdieuian framework in a contemporary, domain-

specific fashion to support examinations of inequity and the utility of Archer et al.’s approach to 

Bourdieuian-based model and instrument development. However, it must be noted that the translated 

‘Archer-style engineering capital’ model developed in Chapter Four, as a product derived from the science 

capital development process, only examines the forms of capital most influential for the science domain. 
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As established in the Chapter One and Chapter Three, this thesis adopts the position that engineering and 

science are significantly distinct. Therefore, we must consider whether the forms of capital most 

influential for engineering differ from those for science and so included in the science capital and ‘Archer-

style engineering capital’ instruments. The logical next step is to develop an engineering-specific model 

of capital with an engineering-specific focus, rather than translating the product of a science-specific 

approach.  

Although the product of Archer and colleagues’ work is argued to not fit closely with engineering, the 

process through which it was developed may be suitable for adoption as a domain-specific capital model 

development procedure. The utility of the science capital model to the science domain demonstrates the 

potential for this procedure to produce a significant and useful model of domain-specific capital. Little or 

no research has seemingly considered the potential for the science capital formative literature to act as a 

guide to capital instrument development. The science capital literature does not explicitly refer to 

instrument development literature, instead focusing on the Bourdieuian underpinning of the model. It is 

therefore necessary to critique this process to determine its rigour and suitability for use in developing an 

engineering capital model.  

An examination of instrument development literature can provide a perspective on Archer et al.’s capital 

instrument development procedure. Instrument development processes are often framed as linear 

progressions involving multiple stages that are sequentially completed to form a robust instrument. 

Benson and Clark (1982) offer a well-cited four stage process of instrument development involving 

planning, construction, evaluation and validation. These stages are outlined in Table 5.01 below. 

Table 5.01: Benson and Clark’s (1982) four stage instrument development process. 

Development Process Stage Stage Tasks/Objectives 

Planning Instrument developers set their purpose and domain of focus, 

conduct literature reviews around the instrument topic, develop 

objectives and select the format for the instrument questions. 

Construction Developers generate items, refine these through content 

validation, and revise items. 

Evaluation Developers pilot test items, check reliability and internal 

consistency of scales, revise items and collect data.  

Validation Multiple applications of the instrument are completed to confirm 

its validity and success. 
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The Benson and Clark (1982) procedure offers a useful roadmap of the process through which an 

instrument can not only be formed but refined to maximise the validity and reliability of its measurement. 

Alternative procedures, such as the ‘MEASURE’ process proposed by Kalkbrenner (2021) follow a similar 

overarching process. The MEASURE process (Make the purpose clear, Establish empirical framework, 

Articulate theoretical blueprint, Synthesise content and scale development, Use expert reviewers, Recruit 

participants, and Evaluate validity and reliability) overlaps with the stages of Benson and Clark’s process, 

supporting the validity of this approach.  

Archer et al.’s (2015) methodology for forming the science capital model can be framed in similar terms.  

The science capital development methodology, as with Benson and Clark’s (1982) instrument 

development methodology, also breaks down into four stages:  

• The development of a conceptual framework,  

• The formation of a theoretical model of capital,  

• The empirical examination and formation of the instrument, and 

• The applications of the resulting capital model to inequity.  

This is visualised in Table 5.02 below.  

Table 5.02: Overlaid stages of instrument development in Benson and Clark (1982), Kalkbrenner (2021) 

and Archer et al.’s (2015) science capital methodology. 

Stages of Instrument Development in Three Approaches 

Archer et al.’s (2015) Science 

Capital Development 

Methodology 

Benson and Clark (1982) 

Instrument Development 

Methodology 

Kalkbrenner (2021) ‘MEASURE’ 

Instrument Development 

Methodology 

The development of a 

conceptual framework 

Planning Make the purpose clear 

Establish empirical framework 

The formation of a theoretical 

model of science capital 

Articulate theoretical blueprint  

Construction  Synthesise content and scale 

development 

Use expert reviewers 

The empirical examination and 

formation of the instrument 

Quantitative evaluation Recruit participants 
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Applications of the resulting 

science capital model to science 

inequity.  

 

Validation Evaluate validity and reliability 

 

Each of Archer et al.’s four stages can be explored in greater detail to determine the efficacy and potential 

application of this instrument development process to form a model of engineering capital. The linearity 

of this process is key as earlier stages will influence the shaping and contents of subsequent stages leading 

to the final product of engineering capital. In this manner each stage is vitally important and must be 

established as compatible with the objective of forming a capital model for engineering. This analysis will 

determine the adoption of Archer et al.’s approach to forming a domain-specific capital model in this 

thesis. 

The development of a conceptual framework 

The first stage of Archer et al.’s instrument development procedure involves the formation of a conceptual 

framework: a series of interconnected concepts that set out the foundation of its relationship with the 

subject matter (Leshem & Trafford, 2007). This stage relates to what Benson and Clark (1982) would refer 

to as the planning stage and what Kalkbrenner (2021) would call the ‘make the purpose clear’ and 

‘establish empirical framework’ stages of instrument development. The conceptual framework is, as 

Bordage (2009, p318) describes, a “[way] of thinking about a problem or study, or [way] of representing 

how complex things work”. Within the context of the instrument development process, this acts as a 

bearing for the later stages and carries through to the design, implementation and examination of the 

newly created model (Jabreen, 2009; McGaghie et al., 2001). A clearly articulated conceptual framework 

is a key step in developing a focused and purposeful instrument.  

The conceptual framework within Archer and colleagues’ application of their procedure focuses on the 

concepts of ‘science’, ‘equity’ and ‘Bourdieuian capital’ but notably not all three concepts are framed in 

explicit detail. The concept of ‘science’ is poorly articulated in the formative literature of science capital, 

leading to uncertainty as to its scope and necessitating further examinations such as in Chapters Two and 

Four of this thesis (see Archer et al., 2015). This demonstrates the importance of clarity in conceptual 

framing and the resulting impact on later stages of the process as unclear conceptual framings continue 

to impact the application and utility of the science capital model. The conceptual framing of equity 

(focusing on post-16 science aspirations) and Bourdieuian capital (that capitals for science may offer a 
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valid perspective on inequity) in Archer et al.’s (2015) application of the development process are more 

clearly articulated.  

The inclusion of a distinct conceptual framework stage within the instrument development process 

ensures that the ‘ways of thinking about a problem’ are clearly focused to the purpose of instrument 

development. A conceptual framework is a necessity for effective model or instrument development and 

in this way Archer et al.’s approach can been judged as following good practice (Antonenko, 2015; Benson 

& Clark, 1982). This first stage collates and manages the abstractions of the instrument development 

process and focuses these to the purpose of this procedure (Weaver-Hart, 1988). By framing both the 

focus of the instrument (science inequity) and the lens used to examine this focus (Bourdieuian capital) 

the conceptual framework stage of the instrument development process addresses what Punch (2000) 

refers to as the ‘what’ and ‘how’ questions of research, supporting the clarity of the development process.  

The first stage of Archer et al.’s capital instrument development process must be acknowledged as 

compatible with further instrument development procedures (Benson and Clark, 1982; Kalkbrenner, 

2021). This stage provides a rigorous and clear foundation to the process of capital model development 

that is compatible with the need recognised in this thesis to develop detailed, engineering-specific 

examinations of inequity to address a scarcity of understanding. The development of a clear conceptual 

framework is arguably more necessary in the development of an engineering capital model than a science 

capital model due to the ambiguity of ‘engineering’ and the inconsistency with which is it aligned or 

distinguished from ‘science’ or ‘STEM’ in past literature and wider culture (Lyons, 2018; Peters‐Burton, 

2014). The presence of science within national curricula contributes to a shared societal notion of what 

‘science’ is, which is not the case for engineering as demonstrated by examinations of public 

understanding outlined in Chapter One (Marshall et al., 2007). A clear conceptual framework is therefore 

crucial in approaching engineering inequity to ensure a clarity of what engineering is and how it is 

examined within an instrument. This first stage of Archer and colleagues’ capital model development 

process is therefore appropriate for use in developing an engineering capital model, though the contents 

of this conceptual framework must focus solely on engineering. 

The formation of a theoretical model of capital 

The second stage of Archer et al.’s domain specific capital instrument development process involves the 

literature-led formation of a theoretical model drawing on the conceptual framework established in the 

first stage. Benson and Clark (1982) might still consider this a planning stage, whilst Kalkbrenner (2021) 
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would frame this as ‘articulating the theoretical blueprint’. This literature-led approach involves the 

examination of domain-specific inequity through the Bourdieuian lens. Archer et al.’s (2015) adoption 

identified seven ‘subcomponents’ of science capital from past literature. The utilisation of wider literature 

in the instrument development process supports the content validity of its resulting product and 

entrenches this novel development within the context of current understanding (Sireci, 1998). The clarity 

of the earlier conceptual framework provides clear guidelines for the inclusion of elements into the 

theoretical model that are consistent with the intention of the instrument development process. The 

theoretical model produced through this process can be understood as a synthesising aggregate of wider 

findings within a singular model.  

Though beneficial to the content validity of the instrument development process, this aggregating 

structure to model development also introduces distinct risks. Complex systems theory acknowledges that 

an interconnected structure of elements can result chaotically to change in any one element through a 

cascading impact on connected elements. Therefore, whilst an aggregating approach to theoretical model 

development is more complex and perhaps reflective of real-world conditions, such approaches may 

produce models and instruments that are vulnerable to change over time (Koopmans, 2020; Lemke & 

Sabelli, 2008). This is demonstrated for the science capital model in Chapter Four of this thesis where 

questions are raised as to the continuing validity of patterns of science capital results identified almost a 

decade ago. However, this itself may be framed as an ecologically valid approach to model and instrument 

development given the Bourdieuian lens is centred on the socially stratified nature of culture – and so is 

inherently concerned with elements that have the potential to change over time. As a result, despite its 

vulnerability to change over time, Archer et al.’s approach to theoretical modelling in the instrument 

development process is capable of producing ecologically valid products if ongoing validation is 

maintained.  

This stage of Archer et al.’s instrument development approach is compatible with the objectives of this 

thesis in developing a model and measure of engineering inequity. The synthesis of wider literature under 

a common way of thinking, in this case Bourdieuian capital (even if this literature is not itself concerned 

with capital), offers value to the study of engineering inequity and contributes to a cross-cutting 

enrichment of contemporary understanding. Whilst Archer and colleagues’ use of this process benefitted 

from the rich body of science equity literature, using this approach for engineering may be challenged by 

the comparatively lesser available literature on UK engineering inequity. This does not discount the use 

of this approach to instrument development, but it must be acknowledged that a lesser volume of raw 
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materials is available. However, regardless, this approach will contribute to the sum of understanding 

around engineering and it may be that other domain specific utilisations of Bourdieuian capital could be 

critically considered as potentially relevant to engineering. On balance, the complexity of engineering 

inequity dictates the need for a multi-faceted approach to theoretically modelling engineering capital such 

as that offered by Archer and colleagues’ instrument development process supporting the adoption of 

this approach.  

The empirical examination and formation of the instrument 

Where stages one and two of Archer et al.’s domain-specific capital instrument development process are 

concerned with theoretical aspects, stage three sees the shift to empirical development. This stage sees 

the creation of an empirical questionnaire drawing on the theoretical model, data collection from relevant 

audiences and data processing to identify the most effective empirical instrument possible. Benson and 

Clark (1982) would view this process as ‘quantitative evaluation’, whilst Kalkbrenner (2021) would identify 

this as ‘synthesise content and scale development’ and ‘recruit participants’. In Archer et al.’s own use of 

this instrument development process a questionnaire was formed drawing on existing, validated, non-

Bourdieuian instruments such as the Public Attitudes to Science (IPSOS Mori, 2011) and ASPIRES data 

collection surveys (Archer et al., 2013) as well as through novel items created for the questionnaire. This 

adoption and synthesis of existing items both connects the questionnaire to wider literature and supports 

the potential criterion validity of the resulting data collection tool (McDonald, 2005). This questionnaire 

was utilised to collect data from secondary school-aged participants. Following data collection, responses 

were analysed using Principal Components Analysis, Logistic Regression Analysis and Cronbach’s Alpha 

analyses to refine this questionnaire to form a smaller instrument to measure capitals for science.  

This approach to instrument development is robust, utilising a statistical method of formation that limits 

subjective judgement and relies on objective measurements to determine the structure of the resulting 

instrument. Such a data-led approach is valid and ensures that influences not included in the theoretical 

model, but active within real world settings, can influence the collected data and therefore the resulting 

instrument. This process would also be suitable for the development of a model of engineering capital. As 

with the lesser volume of literature there are also fewer existing instruments that measure engineering 

inequity from which to draw from in comparison with the domain of science. However, as demonstrated 

by the ‘Archer-style engineering capital’ model in Chapter Four, it is possible to adapt questionnaire items 

from non-engineering contexts to produce a viable instrument. Some adjustments to this data collection 

strategy would be necessary, such as the expansion of data collection beyond Archer and colleagues’ 
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England-only sample to also include wider UK contexts and thereby support the robustness of the 

engineering capital model produced through this process, yet the overarching methodological approach 

is valid. 

Applications of the resulting capital model to inequity 

The final stage of Archer et al.’s instrument development process involves the application of the 

instrument to test its reliability, validity and utility for its designed purpose of understanding domain-

specific inequity. Benson and Clark (1982) would view this process as the validation stage whilst 

Kalkbrenner (2021) would frame this as ‘evaluation of validity and reliability’. Benson and Clark (1982) 

view such testing as something that must occur beyond the scope of initial instrument development 

through continued application: “The validation of a newly developed instrument is almost never 

accomplished through one study or by one researcher. Instead, it requires numerous research efforts and, 

for this reason, must be considered an ongoing process.” (Benson and Clark, 1982, p798). This sentiment 

is echoed by Streiner and Kottner (2014) who note that no one study, in this case the formative process 

of developing an instrument, can ‘prove’ the reliability of an instrument, as this only comes from repeated 

use and testing. Repetitive applications are necessary to confirm the value of even a robustly constructed 

tool given the complexity of practical settings.  

Within Archer et al.’s instrument development process, validation is developed throughout the procedure 

with face validity developed in the clearly structured conceptual framework, content validity developed 

through aggregation of past literature in the theoretical model, and reliability and criterion validity 

developed in the empirical examination of engineering capital in stage three. Archer et al.’s continued use 

of the science capital instrument in subsequent publications aligns to the view of Streiner and Kottner 

that validation is an ongoing process (Moote et al., 2020; Moote et al., 2021; Streiner and Kottner, 2014). 

In particular, DeWitt et al.’s (2016) examination tested the validity of the resulting domain specific capital 

model in relation to a sample of underrepresented individuals testing the scope of the instrument.  

This final stage of the domain-specific capital instrument development process is also appropriate for use 

in this thesis to examine engineering inequity. A final stage of ongoing testing is appropriate and reflective 

of the objective of this thesis in developing greater understanding of engineering inequity in the UK 

context. An engineering capital model and instrument, as a tool of understanding and measurement, can 

be seen as only holding value whilst holding utility to its designed purpose. An ongoing agenda of 

application and testing is not only methodologically necessary but also aligned to the need to expand on 
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understanding and interventions with engineering inequity in the UK. It must be acknowledged, however, 

that the bounds of this thesis project may limit the degree to which validation could take place over time 

but a foundation of application can be established and, if the model is effective, further testing 

encouraged. 

Adoption of Archer et al.’s (2015) Instrument Development Approach 

The four-stage instrument development process utilised by Archer and colleagues to create the domain-

specific model and instrument of science capital aligns with wider literature on instrument development. 

The process is robust utilising validity and reliability testing to confirm the theoretical and empirical 

significance of its contents. An instrument developed through this process is not only theoretically 

grounded in wider literature but informed by empirical data collected from within practical settings. 

Although not introduced in science capital literature as a methodology for domain-specific capital model 

development, this critique suggests that the process is not only relevant to the science domain but can 

inform future models of domain-specific capital. Whilst Chapters Two and Four of this thesis demonstrate 

that the direct adoption of science capital is inappropriate for examining the engineering domain, this 

analysis suggests the work of Archer and colleagues can be indirectly adopted as a methodology to create 

a model of engineering capital. The instrument development process is compatible with the needs of this 

thesis in developing an engineering-specific, theoretically informed, empirically guided structure of 

engineering inequity in the UK to bolster understanding and aid intervention.  

In the remainder of this chapter the first two stages of this instrument development process, representing 

the theoretical stages of the procedure, will be completed. First, a conceptual framework of engineering 

capital will be outlined. Next, a theoretical model will be developed drawing on wider literature 

interpreted through the lens of the conceptual framework of engineering-specific, Bourdieuian capital. 

Finally, the final two stages of the instrument development process (empirical testing and validation of 

the model and instrument of engineering capital) will be introduced as the next chapter of this thesis.  

Forming a Conceptual Framework of Engineering Capital 

The first stage of the instrument development process requires the development of a conceptual 

framework to outline the relationship between key concepts in the model of engineering capital. Bordage 

(2009, p313) refers to this as an exploration of the “ways of thinking about a problem or study, or ways 

of representing how complex things work”. A model of engineering capital is fundamentally a Bourdieuian 

perspective on inequity in engineering. This can be seen to include three key concepts: the framing of 
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‘engineering’ as the scope of the model, the framing of ‘inequity’ as the purpose of the model, and the 

underlying Bourdieuian framework as the unifying lens of the model. The ‘ways of thinking’ for these three 

concepts within this thesis are outlined in greater detail in the Methodology chapter but will be briefly 

introduced below.  

The definition of ‘engineering’ is the first key element of the conceptual model and relates to the scope 

of the model and the breadth of its contents. As outlined in Chapters One and Three, ‘engineering’ in this 

thesis is defined as a domain including specific knowledge, skills, and practices that are related to 

designing and making, and related to the application of science, technology or mathematics to creatively 

solve problems. Engineering is understood to share a ‘family resemblance’ with the domain of science: 

sharing some but not all characteristics and containing distinctive qualities that distinguish the two 

domains when examined in greater detail (Wittgenstein, 2010). Given the focus of this thesis on secondary 

school-aged learners, it is necessary to frame ‘engineering’ in an age-appropriate manner. Past literature 

demonstrates that young learners in the UK conceive of engineering in a notably limited fashion 

associated with making and fixing (Institution of Mechanical Engineers, 2016; Institution of Mechanical 

Engineers, 2017; Marshall et al., 2007). However, the profession is seen as well paying (EngineeringUK, 

2019; Tindle and Garnett, 2015). Given that the engineering capital model resulting from this conceptual 

framework will focus on young learners it is necessary for a simplistic definition of engineering as 

‘designing, making and fixing’ be included within the definition of engineering in this framework. Although 

this will be less sophisticated than framings of engineering within higher education or professional 

contexts it is appropriate for the target population the model addresses. Some secondary school-aged 

individuals may possess a more sophisticated understanding of engineering – which itself demonstrates 

an inequity in engineering – however to depend on such a definition would alienate a significant portion 

of the population and render an exploration of inequity impossible. The conceptualisation of engineering 

must therefore be sufficiently flexible to acknowledge the distinctions in understanding for this concept. 

This conceptual ‘way of thinking’ about engineering is central to the development and interpretation of 

the engineering capital model development process.  

The second element of the conceptual framework relates to ‘inequity’ and is the way of thinking about 

the ‘purpose’ of an engineering capital model. Within this thesis inequity is understood as entrenched 

patterns of access, participation, success and representation within the engineering domain. This is 

considered to be a social injustice, facilitating ease for some and difficulty for others that, over time, acts 

as a selective influence determining entrenched and reproduced patterns of inequity in engineering. 
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Economic ramifications are also noted resulting from an insufficient number and restricted demographic 

profile of engineers (EngineeringUK, 2018). Engineering inequities in the UK are recognised to affect 

gender, ethnic, and social class representation, skewing to a dominant profile of white males from more 

privileged economic backgrounds (EngineeringUK, 2018; 2018a; 2018b). These inequities are established 

as multifaceted and intersectional. However, this framing of inequity is also acknowledged as superficial: 

relating to group categorisation (e.g. white, or male, or middle class) but lacking a deeper understanding 

of the ‘social mechanics’ underlying these group differences. From an intersectional perspective, inequity 

is recognised as a nuanced and sophisticated phenomenon. It is also acknowledged that inequity is context 

dependent: given the empirical focus on secondary school-aged young people in this thesis it is 

acknowledged that the context of engineering inequity for this group will differ from the context for 

adults. Engineering inequity amongst adults may relate to the number of engineering employed 

individuals or frequency of advanced qualifications for engineering amongst the adult population. These 

ways of contextualising engineering inequity would not be compatible for younger individuals. Instead, 

within this thesis, engineering inequity is contextualised in relation to future orientation towards 

engineering education or careers. These aspirations for engineering offer an age-appropriate perspective 

on inequitable trajectory for engineering that ties to both a social justice and economic view of inequity 

covering both fair access to and uptake of education and careers in engineering. Aspirations for 

engineering, representing orientation towards engineering trajectories, can be considered to be an early 

stage of the engineering pipeline through which inequities can manifest. Such aspirations for engineering 

are acknowledged to be inequitable, validating this positioning (EngineeringUK, 2021; Hutchinson & 

Bentley, 2011). These considerations on engineering inequity collectively shape the design, objectives, 

and implementations of the engineering capital model.  

The final key concept within the conceptual framework relates to the Bourdieuian perspective adopted 

to serve as an investigative lens on engineering inequity. As noted earlier, contemporary understanding 

of engineering inequity can be criticised as dominated by shallow group descriptions (e.g. gender, 

ethnicity, class) that are limited in their insight. Bourdieu’s perspective offers the concepts of habitus, 

capital and field as a more sophisticated lens on inequity that accesses greater nuance of the ‘social 

mechanics’ underlying these shallow group descriptions. In this way the Bourdieuian perspective is 

adopted in this thesis as an understanding of the process of inequity and not simply a description of the 

resulting patterns of observable access, participation, success and representation within engineering. 

Capital is adopted in particular from this toolkit and defined as a resource that is valuable, can be 

accumulated, and can be used to access other forms of value (Bourdieu, 1983; Bourdieu, 1986). It is 
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understood to be socially stratified and tied to patterns of power in a manner that results in the powerful 

dictating the value of capital, and through a process of self-validation, perpetuating the value of their own 

resources and diminishing the value of the resources of others. This acknowledges that the value of capital 

is socially determined but will follow existing patterns in an inequitable fashion. The concept of capital 

thereby extends beyond the individual to also relate to wider societal structure – bridging an objective 

societal structure with a subjective individual experience within that society.  

Many forms of capital can be considered in this manner including varied forms of cultural and social capital 

as introduced in formative Bourdieuian literature. However, the adoption within this thesis acknowledges 

criticisms of the traditional Bourdieuian framework as outdated (developed decades ago in a now changed 

social and cultural context) and focused on artistic dispositions and social class (which are reductive and 

lack an intersectional consideration) (Bennett et al., 2009; Prieur & Savage, 2013). Therefore, within this 

thesis the capital concept will be recognised as ‘relative’ and not ‘absolute’ in its relationship to 

Bourdieuian source materials (Prieur & Savage, 2013). It is adopted in a contemporary manner, validated 

by usage by Archer et al. (2015) and others (Bennett et al., 2009). This understanding of Bourdieuian 

capital will recognise that cultural capital can change (whereas the traditional Bourdieuian view implies a 

more robust relationship in line with the social reproduction of society), and that capital can be considered 

in specific contexts such as science or engineering (whereas the traditional Bourdieuian view was focused 

on generalised social class reproduction and general educational advantages). In these ways, Bourdieuian 

thinking is adopted not as a distinct dictation of how society is but rather as a perspective on how 

distinctions in society might be investigated and framed.  

These understandings of engineering, inequity and Bourdieuian capital provide a framing to guide the 

development of the engineering capital model. Each subsequent stage of the development process will 

involve navigating these concepts and will influence the final product of an engineering capital model. 

Having framed these concepts, it is next necessary to move to the second stage of Archer et al.’s (2015) 

instrument development process and formulate a theoretical model of engineering capital.  

A Theoretical Model of Engineering Capital 

The next stage of Archer et al.’s capital instrument development process involves the development of a 

theoretical model of capital. Wider literature is synthesised using the conceptual framework as a guide to 

interpreting and integrating forms of Bourdieuian capital in relation to engineering inequity. This is a 

critical stage where the general notion of a domain-specific model of capital becomes a specific, 
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articulated model of capitals for engineering. However, it is important to recognise that the model formed 

through this process is only one example of a domain-specific model of capital: whilst Archer et al.’s (2015) 

science capital model is now well known it would be possible to form a different model of science capital 

if other forms of capital for science were collated. The precise forms of capital chosen to include within 

the model of engineering capital are highly deterministic to the subsequent model formed in the next 

stages of the instrument development process. 

Noting the lack of previous Bourdieuian examinations of engineering inequity this first model of 

engineering capital will draw on the forms of capital included within Archer et al.’s science capital model. 

These forms of capital will be examined in relation to engineering to determine their relevance and utility 

to an engineering capital perspective. This decision is supported by the previous indications, outlined in 

Chapters Two and Four, that the forms of capital within the science capital model (such as literacy, 

dispositions, or social contacts) should apply to engineering. These forms of capital can also be seen as 

fundamental and natural choices for inclusion in a model of capital for younger learners. Adopting this 

approach to forming the first theoretical model of engineering capital would also allow a more direct 

comparison between the product of this development process and science capital to further identify 

distinctions between capitals and inequity in these domains. Further forms of capital that may relate to 

the engineering domain will be examined later in this thesis as a further iteration of engineering capital; 

thus, acknowledging that this first model and instrument is only one possible iteration of engineering 

capital.  

In the following sections, past literature is examined through the conceptual lens of Bourdieuian capital 

to identify forms of engineering capital. These forms of capital are aggregated to develop a theoretical 

model of ‘engineering capital’. Three forms of cultural capital will be examined (engineering literacy, 

engineering attitudes, knowledge of engineering pathways), followed by two forms of social capital 

(knowing an engineer, talking with others about engineering) and finally two forms of practice through 

which capital may be acquired (consumption of engineering media, participation in out-of-school learning 

contexts).   

Engineering Literacy 

The contemporary study of literacy acknowledges that knowledge and capability can be examined in many 

specific contexts representing ‘multiple’ or ‘disciplinary’ literacies tailored to given domains (Shananhan 

et al., 2016). This expands beyond traditional linguistic framings of literacy addressing knowledge 
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exchange in reading and writing (Indrisano & Chall, 1995). Achievement, qualification or success are 

important aspects of literacy, determining an individual as ‘literate’ or ‘illiterate’. The expansion of the 

concept of literacy beyond reading and writing necessitates a widening of the standards of ‘literacy’ given 

that a ‘literate’ judgement is dictated by the nature of competency in a domain. In some domains a 

‘literate’ judgement may go beyond knowledge to include practices, processes, and ways of knowing or 

doing. A more contemporary and domain-specific definition of literacy would therefore be: the possession 

of knowledge, skills or understandings determining capacity for competent performance within a domain.  

Wider literature acknowledges differing literacies for science, technology, engineering and mathematics. 

Science literacy is defined by Archer et al. (2015, p929) as “scientific knowledge, skills, and an 

understanding of how science ’works’ and the ability to use and apply these capabilities in daily life for 

personal and social benefit”. Technology literacy is argued to relate not only to a developed knowledge 

or skilful use of technology but also a critical understanding of the shaping influence of technology in the 

world (Dakers, 2006). Mathematics literacy is defined as a “knowledge to know and apply basic 

mathematics in our everyday living” and a “broad understanding and appreciation of what mathematics 

is capable of achieving” (Ojose, 2011, p89). Each of these domain-specific definitions of literacy identify 

the importance of knowledge, skills and, to some degree, a standard of ability in the domain. An 

awareness of the lived experience or the role a domain plays within society is also common in such 

contemporary framings of literacy demonstrating that the concept of literacy goes beyond individual 

ability to also relate to wider societal context. 

Although noted to be lesser considered than other STEM literacies, attempts to define engineering literacy 

are present within the literature (Krupczak et al., 2012). Both Krupczak et al. (2012) and Chae et al. (2010) 

approach a definition of engineering literacy through comparison with other STEM domains – Krupczak et 

al. focusing on distinctions, whilst Chae et al. focus on similarities between literacies. Krupczak et al. (2012) 

define engineering literacy in contrast to technological literacy, arguing that literacy in engineering is more 

focused on the process of creation or transformation and is more concerned with ‘making’ than wider 

societal implications of these made products. Despite adopting a differing approach, Chae et al (2010) 

also define engineering literacy as a process involving knowledge and skills and in terms of societal impact. 

This further aligns with the definition of Daugherty et al., (2021) who also acknowledges the ability to 

succeed in knowledge, skills and societal understanding of engineering. Arguably the most sophisticated 

and detailed conceptualisation of engineering literacy within contemporary literature is that of Grubbs et 

al. (2018). Grubbs et al. identify three aspects to engineering literacy: knowledge of engineering (both 
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fundamental sub-domains of engineering such as electrical or chemical engineering and technical 

knowledge of engineering processes), engineering skills (such as ‘designing under constraint’ and ‘using 

tools and materials’), and engineering habits of mind (such as ‘systems thinking’ and ‘creativity’) as the 

ways of thinking and doing as an engineer. Grubbs et al. explore each of these three elements in depth 

identifying a range of examples of how an engineering literacy can be determined.  

Each of these approaches to engineering literacy acknowledge the importance of competence in 

knowledge, skills and ways of doing and being an engineer in the real world. Unsurprisingly these 

conceptualisations of engineering literacy do focus more on the skills and practices compared to other, 

more theoretical/less practical domains of STEM. Within this thesis the definition of engineering literacy 

is: a sufficient possession of engineering knowledge, skills and ways of ‘thinking’ and ‘doing’ engineering 

– with a particular focus on the processes and practices of engineering and their resulting societal impact. 

This defined concept of engineering literacy is consistent with our conceptual framework in relation to 

‘engineering’, ‘inequity’ and ‘Bourdieuian capital’. First, this engineering-specific perspective on literacy 

meets the framing of engineering within this model as a distinct domain. Second, engineering literacy is 

established as inequitable within past literature favouring those who are male, from Asian ethnic groups, 

and from more privileged socioeconomic backgrounds (EngineeringUK, 2022; Hutchinson & Bentley, 

2011). Inequities in engineering literacy are also acknowledged to differ from inequities in more 

knowledge-based, theoretical STEM subjects resulting in greater equity in engineering literacy amongst 

those who are less academically gifted or those with additional educational needs due to the more active, 

practice, material qualities of engineering learning (Roth, 2017). Finally, engineering literacy is compatible 

with the Bourdieuian perspective as a form of embodied cultural capital. Cook-Gumperz (2006) drew on 

the Bourdieuian perspective to highlight that literacy is socially determined as a subjective judgement of 

what constitutes a standard of ‘literate’ within a domain and what constitutes value within the 

development of literacy. This is compatible with the definition of engineering literacy adopted in this 

thesis if the determination of competence and particular contents (knowledge, skills, and practices) are 

recognised as socially determined rather than objectively true. The inclusion of the ‘ways of thinking and 

doing engineering’ reflect Bourdieu’s position on embodied cultural capital as relating to both thinking 

and embodying, or: “long-lasting dispositions of the mind and body” (Bourdieu, 1986, p17). The 

knowledge and skills of engineering within engineering literacy can be framed as forms of embodied 

capital as resources that may benefit a young people in their consideration of and trajectory towards the 

engineering domain. A young person possessing an understanding of the language of engineering or a 
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practiced skill at designing or making will possess a resource that eases their access to and performance 

within an engineering context. The benefits of this resource and its socially determined worth determine 

its value. Contemporary examinations of cultural capital validate this relationship between cultural capital 

and skill development (Breinholt, 2020). We can thereby acknowledge that engineering literacy is 

consistent with the conceptual framework and a valid addition to the theoretical model of engineering 

capital.  

Engineering Attitudes 

From a psychological perspective, attitudes can be understood as affective-cognitive positions developed 

over time representing how an individual values an ‘attitude object’: any abstract concept, physical object, 

experience, individual or group (Eagly & Chaiken, 2007). Attitudes are fundamental to cognition and can 

be examined in any context or for any attitude object. Attitudinal considerations might include interest, 

curiosity, enjoyment, anxiety, or disgust (Fredricks & McColskey, 2012; Izard, 2011). Attitudes for STEM 

domains in the UK are acknowledged to be widely influenced through systematic, school, individual and 

external factors (Bennett et al., 2013). Attitudes endure in a relatively stable manner but are subject to 

change over time and apply in response to contexts – and thereby shape interpretation of future 

experiences and responses (Schwartz & Bohner, 2001). 

A wealth of attitudinal positions on engineering are acknowledged in contemporary UK-based literature. 

Secondary school-aged learners are noted to find engineering less important to adult life (73% positive 

response) than science (86%) or mathematics (97%) (Hutchinson & Bentley, 2011). Only 22.4% of a sample 

of Year 10 students were interested in engineering industries (Hutchinson & Bentley, 2011). Further 

samples confirm this greater positivity towards science, technology and mathematics (EngineeringUK, 

2019). The attitudes of parents and teachers are also established with 90% of STEM secondary teachers 

and 69% of parents holding positive views of engineering, though some negative attitudes are also noted 

with 31% of teachers viewing STEM careers as insecure and 28% viewing the domain as difficult 

(EngineeringUK, 2019; EngineeringUK, 2021a).  

Engineering attitudes are consistent with the conceptual framework of engineering capital. First, attitudes 

can relate to specific domains and therefore can be examined in relation to engineering as defined in this 

thesis. Second, engineering attitudes are recognised as inequitable within the UK with boys, those from 

non-white ethnicities and those with more educated parents holding more positive attitudes towards 

engineering (EngineeringUK, 2021). Finally, attitudes are a relevant element of the Bourdieuian 
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perspective and a form of embodied cultural capital. This psychological framing of attitudes (affective-

cognitive positions developed over time and in response to experience and which shape interpretation of 

future experience) is consistent with the Bourdieuian concept of habitus: “lasting dispositions, or trained 

capacities and structured propensities to think, feel and act in determinant ways” (Wacquant, 2005, p316) 

that are “not fixed or permanent, and can be changed under unexpected situations or over a long 

historical period” (Navarro, 2006, p16). The active and enduring influence of attitudes/dispositions is 

positioned by Bourdieu as shaped by past experience and society; and in turn shapes subjective 

experiences to perpetuate the dispositions found within society (Bourdieu, 1984). It is reasonable to 

consider that the acquisition of positive attitudes towards engineering would support young learners in 

aspiring to engineering trajectories in education or employment. Engineering attitudes/dispositions are 

thereby a valid element to include within the theoretical model of engineering capital.  

Knowledge of Engineering Pathways 

Knowledge of a professional domain, its value, and the utility of qualifications for this domain are 

acknowledged to influence the decision making of young learners who are deciding their future (Julien, 

2004; Super et al., 1973). Examinations of career knowledge have identified that less than half (48.5%) of 

young learners recognise the potential for engineering qualifications to lead to good jobs (Hutchinson & 

Bentley, 2011). Parents and teachers are acknowledged as key sources of careers guidance in the UK, yet 

the confidence of these groups is poor with only 32% of parents and 45% of teachers confident in their 

ability to give careers guidance for engineering roles (EngineeringUK, 2019; EngineeringUK, 2020). An 

‘informational distance’ is acknowledged by UK secondary school STEM teachers which contributes to this 

lack of confidence (Watermeyer et al., 2016). Access to such guidance or understanding of the value and 

pathways of engineering careers can thereby be understood to be inequitably distributed.  

Knowledge of engineering qualifications and their value is consistent with the conceptual framework of 

engineering capital. The existence of engineering-specific qualifications enables an engineering-specific 

focus. Such knowledge and value is also recognised as inequitable with those in higher social grades in the 

UK significantly more likely to know the steps to become an engineer (64%) compared to those in lower 

grades (50%) (EngineeringUK, 2020a). This knowledge and valuing of engineering qualifications can also 

be considered a form of institutionalised cultural capital, and therefore is compatible with the Bourdieuian 

perspective. Knowledge and valuing of engineering qualifications can be considered to be an age-

appropriate framing of institutional capital for young learners who will not yet possess advanced forms of 

institutional capital such as degree-level qualifications. This is consistent with formative Bourdieuian 
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literature which acknowledges that knowledge of qualifications and educational trajectories differs by 

social class (Bourdieu and Passeron, 1979). An understanding and valuing of engineering qualifications is 

therefore a valid addition to the theoretical model of engineering capital and its purpose of understanding 

engineering aspirations.  

Knowing an Engineer 

Social forms of capital can also be considered within the Bourdieuian perspective and in relation to 

engineering inequities in the UK context. Bourdieu framed social capital as “the sum of the resources, 

actual or virtual, that accrue to an individual or a group by virtue of possessing a durable network of more 

or less institutionalized relationships of mutual acquaintance and recognition” (Bourdieu & Wacquant, 

1992, p119).  It is possible to consider the benefit of possessing access to an engineer within an individual’s 

social network and the value that knowing an engineer might bring. Past literature demonstrates the 

impact of social relationships on socialised learning and learner aspirations (Cheryan et al., 2011). 

Examinations of international datasets reinforces the benefits to STEM learning mediated through 

knowing science-role employed individuals (Zhang, 2021). Career decision making literature reveals that 

in the UK a son is 72% more likely to work in an occupation if their father is currently employed in that 

role (Bello & Morchio, 2022). This influence is acknowledged as multifaceted, involving comparative 

advantage to the child, social contacts and changed preferences (Bello & Morchio, 2022). In the UK 

context, this is valid for knowing an engineer with 8.6% of engineers in one sample stating that they had 

an engineer for a parent – a higher rate of influence than many other careers examined in the study 

(Laurison & Friedman, 2016). Further research has acknowledged the importance of knowing an engineer 

to patterns of engineering study in the UK (Takruri-Rizk, et al., 2008). The positive effect of possessing an 

engineer parent is acknowledged beyond the UK with research in US settings suggesting a fundamental 

benefit to such a social relationship (Plasman et al., 2021). A social connection with an engineer can 

therefore be seen to correlate with a positive influence on trajectory towards engineering, though 

understanding of the precise mechanics of this influence is limited.  

The social influence of knowing an engineer is compatible with the conceptual framework of engineering 

capital. It is, firstly, compatible with the engineering-specific structure of engineering capital, relating 

directly to the engineering domain through knowing an engineer. Knowing an engineer is also compatible 

with engineering inequity given that participation with engineering, and therefore the distribution of 

engineers throughout social networks, favours certain groups (male, white, socioeconomically privileged). 

It is therefore reasonable to expect that the resource of knowing an engineer is stratified in the UK. Within 
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parental occupation literature it is acknowledged that maternal occupation is impactful, however in the 

context of knowing an engineer this must be acknowledged as a particularly uncommon (and therefore 

inequitable) resource given the low rates of female engineers in the UK (Korupp et al., 2002; Sikora & 

Pokropek, 2012). Finally, knowing an engineer clearly aligns with the Bourdieuian perspective as a form 

of social capital. Within this thesis social capital is understood to be “the sum of the resources, actual or 

virtual, that accrue to an individual or a group by virtue of possessing a durable network of more or less 

institutionalized relationships of mutual acquaintance and recognition” (Bourdieu & Wacquant, 1992, 

p119). Knowing an engineer represents a social relationship through which an individual may be able to 

access the resources of that engineer, for example providing knowledge of how to act like as engineer 

(embodied cultural capital), providing guidance on how to navigate the trajectory to become an engineer 

(institutional cultural capital) or providing access to further individuals who are active within engineering 

(social capital). These resources do not need to be explicitly outlined or identified, rather the potential for 

access to these resources is sufficient for the resource to be acknowledged as a form of capital for 

engineering. The influence of knowing an engineer is not well established in the UK context, however 

theoretically this can still be considered a valid addition to a theoretical model of engineering capital.  

Talking with Others About Engineering 

‘Talking with others about engineering’ can be considered a further form of social capital for engineering. 

This form of social capital considers how an individual engages in communication with others around the 

subject of engineering. Social interactions are recognised as related not only to the development of 

knowledge but as a vital element of learning as a process (Daniels, 2008). The direct impact of social 

interaction to learning is recognised such that distinct pedagogical practices have been developed around 

this integral process such as peer learning or reciprocal learning practices (Boud et al., 1999; Kayi-Aydar 

& Miller, 2018). Whilst integral, the benefits of social interactions on learning are recognised to be 

complex, with factors such as attentiveness of the conversational partner influential in shaping the 

resulting benefit of social interaction (Pasupathi & Rich, 2005). The consideration of social interaction for 

engineering is valid given past identification that such interactions support engineering learning and 

greater recall following social interactions in learning contexts (Benjamin et al., 2010). Past research 

conducted in the US has recognised the positive impact of STEM-focused social interactions for STEM 

career aspirations supporting the potential impact of engineering social interactions on engineering 

trajectories in the UK (Dou et al., 2019).  
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The influence of social interactions concerning engineering can be acknowledged as compatible with the 

conceptual model of engineering capital. First, the engineering-specific content of these social 

interactions meet the conceptualisation of engineering as a distinct subject area. Second, the differing 

levels of knowledge and attitudes for engineering acknowledged in the engineering literacy and 

engineering attitudes subcomponents outlined above suggest that the contents of social interactions will 

differ between groups. This is also suggested by differing levels of knowledge of engineering pathways 

and confidence in providing careers guidance amongst parents and teachers. Whilst no substantial body 

of literature has examined the contents of engineering social interactions amongst young learners in the 

UK it is logical to expect that the underlying differences in knowledge, attitudes, and confidence in 

communication would result in unequal distributions of this form of capital. Finally, the inclusion of social 

interactions for engineering is also compatible with the underlying Bourdieuian lens within the conceptual 

framework of engineering capital as a form of social capital. Social interactions represent a fundamental 

method for young learners to access the capital within their social networks, aligning with Bourdieuian 

social capital (Siisiainen, 2003). Talking with others about engineering may thereby represent both a social 

capital and method for acquiring cultural capital for engineering.  

Consumption of Engineering Media 

The ways in which capital are developed, including contexts that act as sources of engineering capital or 

represent inequitable practices tied to engineering aspiration, can also be considered within a 

Bourdieuian perspective on engineering inequity. These behaviours and practices may not be forms of 

capital but can be acknowledged as related to the acquisition of capitals for engineering. The inclusion of 

such behaviours and practices by Archer et al. within the science capital model was valid and bridged the 

complicated concept of Bourdieuian capital to tangible lived experiences in real world contexts to support 

the relevance of the capital perspective.  

Media consumption is such a practice that may be considered a source of capital for engineering. The 

consumption of media is acknowledged to produce positive impacts on young learners including the 

development of interest and knowledge (Levine et al., 2021; Maier et al., 2014). This consumption is 

recognised as a social phenomena with parents acting as both gatekeepers and co-learners with their 

children, with some past findings suggesting that the benefits of media consumption are a two-stage 

process involving mediation through parental figures (Bonus, 2021; Sheehan et al., 2018). However, little 

literature has examined the impact of engineering media consumption on young UK learners. Wider 

literature from overseas and for those in tertiary education demonstrate that consumption of STEM media 
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is predictive of later STEM career intention (Dou et al., 2019) and that the use of engineering games 

supports engineering learning (Coller & Shernoff, 2014). Despite relating to wider contexts beyond 

secondary school learners in the UK such findings do suggest that the benefits of media consumption 

outlined in general literature are relevant to the context of engineering and therefore may also be relevant 

to UK samples. Examinations of media consumption habits within the UK highlight the high rate of access 

to media amongst secondary school aged learners with 99% of one sample possessing internet access in 

the home and 50% of participants using this access to learn new skills demonstrating the potential for 

engineering capital development (Ofcom, 2022). This same examination noted that patterns of 

participation are varied between social groups demonstrating the potential for inequitable interaction 

with engineering media (Ofcom, 2022).  

Despite the relative paucity of research examining engineering media in the UK context, the relevance of 

engineering media consumption can be considered in relation to the conceptual framework of 

engineering capital. The engineering media consumption subcomponent is both engineering-specific and 

aligned to inequity given recognition that media consumption is an inequitable practice (Lindell, 2020; 

Ofcom, 2022; Yates et al., 2015). Media consumption can also be understood as a dominant form of 

cultural consumption and is therefore highly relevant to the Bourdieuian perspective which considers 

cultural practices and a socially determined judgement of ‘taste’ which guides stratified patterns of 

consumption. Not only might we consider the consumption of media influenced by these socially stratified 

tastes, which are established as inequitable in the case of media consumption (Yates et al., 2015), but 

media consumption can also be considered as a vehicle for access to cultural capital. It is reasonable to 

expect that the consumption of engineering media may both be supported by and further develop 

embodied cultural capitals for engineering such as engineering knowledge or engineering attitudes 

amongst participants. It is logical to expect that an engineering television programme will provide 

knowledge or that an engineering game is designed to provide opportunities for design thinking and skill 

development. The relevance of media consumption to the Bourdieuian perspective is further supported 

by the recognition that social relationships can mediate the consumption of media and its influence, such 

as parents acting as a gatekeeper or co-learner/interpreter of media for their children. This is consistent 

with the Bourdieuian understanding of the primary habitus and the influence of close social links to the 

reproduction of inequity within society. In these ways the consumption of engineering media is relevant 

to a Bourdieuian examination of engineering inequity and a valid element for inclusion within the 

engineering capital model.  
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Engineering Out-of-School Learning Contexts 

Out-of-school engineering learning contexts represent a further set of practices in which capitals for 

engineering may be acquired. Such contexts may include interaction with formal learning spaces such as 

museums or maker spaces, extracurricular or curricular-mapped experiences such as after school 

engineering/STEM clubs or visits from engineering engagement and outreach teams, or personal 

experiences within an individual’s home life such as hobbies or interests. Out-of-school learning contexts 

may have a greater significance to the domain of engineering given the relative lack of engineering within 

the UK national curricula and the science-dominated focus of ‘STEM learning’ (Tomei et al., 2013). For the 

domain of science out-of-school contexts can be seen as an additional resource, but for engineering these 

represent a dominant context in which learning for engineering can take place. Engineering out-of-school 

learning contexts are supported, developed and delivered by many stakeholders in the UK, including 

specialised organisations such as Primary Engineer (Primary Engineer, 2022) who deliver engineering 

curricular-mapped experiences to primary and secondary-aged learners.  

Engineering out-of-school contexts are acknowledged to benefit participants, with ‘making’ focused out-

of-school experiences developing knowledge, skills, and ways of being an engineer (or, in other words, 

engineering literacy) (Petrich et al., 2013; Shanahan et al., 2016). Engineering out-of-school activities are 

also noted to support the development of identity for engineering (McVee et al., 2017) as well as wider 

skills such as mathematicss learning, field experience and the development of team working skills (Denson 

et al., 2015). These developments might be understood as the acquisition of forms of embodied capital 

supporting participation within the engineering context.  

Engineering out-of-school learning experiences are a valid addition to the engineering capital model, 

consistent with the outlined conceptual framework.  An examination of engineering-specific contexts 

meets the criterion of ‘engineering’ within the framework, and wider literature on out-of-school learning 

contexts recognises that such experiences can be inequitably participated with favouring those of certain 

ethnic, socioeconomic or geographic location (Dawson, 2012; Department of Culture Media and Sport, 

2011; Falk et al., 2015). The consideration of out-of-school learning contexts can also be seen to align with 

the Bourdieuian capital perspective, which recognises the socially stratified nature of practices that result 

in inequitable access and participation. The same social dynamics that see classroom contexts 

institutionally favour those with greater capital may also apply to informal learning contexts. The work of 

Gathings and Peterman (2021) demonstrated that the development of science capital through science 

festival contexts was inequitable with STEM minority groups (women/girls, BAME groups) gaining more 
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science capital than others. Participation with out-of-school learning contexts may in this way be seen as 

a practice that provides access to valuable capital for engineering but in an inequitable manner. Little 

consideration of engineering out-of-school UK learning contexts is present within the literature, 

highlighting a need to further examine this topic from a Bourdieuian perspective. Theoretically, however, 

it would be a valid addition to the engineering capital model.  

The Theoretical Model of Engineering Capital 

Each of the seven subcomponents of engineering capital identified above can be understood as either 

forms of capital or contexts through which capital can be acquired in the engineering domain. The 

collection of these subcomponents into a singular model of engineering capital represents a cross-cutting 

synthesis of elements relevant to engineering inequity. In particular, the subcomponents represent an 

array of forms of Bourdieuian capital for engineering including three forms of cultural capital (engineering 

literacy, engineering attitudes, and knowledge of engineering pathways), two forms of social capital 

(knowing an engineer, talking with others about engineering) and two collections of behaviours and 

practices through which capital may be developed (consumption of engineering media, engineering out-

of-school learning contexts). The inclusion of varied forms of capital, including both cultural and social 

capital, offers a strong link between the model and its Bourdieuian underpinning of inequity whilst the 

inclusion of varied behaviours and practices for engineering ensures a relevance between the contents of 

the model and the lived experience of the individuals it attempts to understand.  
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Figure 5.01: The engineering capital model and its seven underlying subcomponents. 

As noted in this theoretical examination little literature has examined the engineering domain from a 

Bourdieuian capital perspective for the UK and its young learners. However, the strong conceptual 

framework developed in this chapter facilitates the adoption and integration of non-Bourdieuian sources 

through a rigorous examination. The seven subcomponents of engineering capital outlined above are 

theoretically sound forms of Bourdieuian capital for engineering despite the background literature of 

these subcomponents not always examining these factors from a Bourdieuian perspective. Drawing on 

this literature it is reasonable to expect that these seven subcomponents are inequitably experienced in 

the UK and are relevant to understanding how engineering trajectories are formed resulting in the 

acknowledged patterns of engineering education and career inequity.  

The decision to examine these seven subcomponents was informed by the structure of the science capital 

model which had established these forms of capital as relevant to domain-specific understandings within 

specific capital contexts. As established in Chapter Two the examination of these subcomponents for 

science may not relate to the engineering domain, but the theoretical model outlined above establishes 

the theoretical relevance of these subcomponents if approached in an engineering-specific manner. 

Empirical examination of the theoretical model is necessary to establish its ecological validity as a 

perspective on engineering inequity. The seven subcomponents included in this theoretical model are not 

an exhaustive list of forms of capital for engineering. Other forms of capital could also be considered in 

relation to engineering, such as linguistic capital (examining the linguistic competence of the individual in 
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relation to the engineering context), familial capital (examining how engineering fits within the local 

community and family context of an individual), or navigational capital (understanding how to navigate 

the sorts of engineering contexts a secondary school-aged learner may encounter). Past literature 

indicates the relevance of such forms of capital to the Bourdieuian context and may also be valid for the 

engineering context (Yosso, 2005). These subcomponents were not included in this initial theoretical 

model as, pragmatically, this would have overly complicated the development of the model.  Though not 

considered in this first formation of the engineering capital model they may represent valid additions in 

subsequent models explored in this thesis in recognition that the theoretical model outlined for 

engineering capital in this chapter is only one possible model and that ongoing testing and improvement 

is an established stage within the instrument development process adopted in this thesis. The seven 

subcomponents included in this first model of engineering capital are sufficient to provide a rich 

perspective on engineering inequities and examine the potential for a valid theoretical and empirical 

model of capitals for engineering.   

The theoretical model outlined in this chapter offers a deep perspective on engineering inequity. Drawing 

on wider literature, reinterpreting this through a Bourdieuian lens and unifying these considerations 

within an aggregated structure offers a nuanced perspective on engineering inequity. This approach 

contains greater detail and ecological validity than existing framings of engineering inequity that are often 

simplistic descriptions of frequencies and representation by socioeconomic groups (e.g. gender, ethnic, 

or class groups). The theoretical model of engineering capital considers the underlying social mechanics 

of influence that push or pull individuals in relation to engineering. This deeper examination of 

engineering inequity offers greater complexity in understanding the underlying capital structure of 

engineering access, participation, representation and success. The theoretical model offers a structure to 

then examine engineering capital in empirical terms to validate this approach and form instruments to 

maximise the utility and benefit from this work.  

Conclusions 

Having disproved the value of utilising science capital to understand engineering inequities in previous 

chapters it was next considered whether Archer et al.’s instrument development process may represent 

a valid approach to developing a novel engineering capital perspective. Little or no previous literature has 

examined science capital as an instrument development process. A critical analysis of this process 

identified it as valid for adoption within this thesis to create a domain-specific model of capital for 
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engineering. This contributes an understanding of how Bourdieuian capital may be rigorously applied to 

understand patterns of inequity in novel contexts.  

The first two stages of this four-stage instrument development process were then completed to produce 

a conceptual framework and theoretical model of engineering capital. This model aggregated a wealth of 

past literature under a Bourdieuian interpretation to develop a perspective of capitals for engineering in 

the UK. This development supported the validity of applying a Bourdieuian lens to the challenges of 

engineering inequity. The resulting theoretical model of engineering capital represents an advancement 

in understanding that unifies distinct bodies of literature to better understand the nuances of engineering 

inequity amongst young learners.  

In the next chapter the third stage of the instrument development process will be completed. The 

theoretical model of engineering capital will be transformed into a concise, validated quantitative 

instrument capable of measuring the engineering capital of young learners. An empirical structure of 

engineering capital will facilitate measurement and investigation of engineering inequity in an empirical 

methodology to better understand the engineering inequities amongst young UK learners. This 

development will support greater understanding of engineering inequity and see the novel theoretical 

perspective developed in this chapter applied within a real-world context. 
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CHAPTER SIX: CREATING AN ENGINEERING CAPITAL 

INSTRUMENT 

Introduction 

In previous chapters a novel theoretical model of engineering capital was developed through a 

reinterpretation of past literature under a Bourdieuian framework. Whilst theoretically useful this model 

possesses a limited practical utility in efforts to build greater understanding of engineering inequity in real 

world contexts. In the following chapter the third stage of the adopted instrument development process 

will be undertaken to create a robust, concise empirical instrument capable of measuring the engineering 

capital of young learners to support the practical investigation of engineering inequity in the UK. First, 

seven subcomponent instruments will be developed to empirically measure the engineering capital 

model. Second, data collected with these instruments will be analysed to confirm the reliability and 

validity of these measurement tools. Finally, statistical analyses will aggregate and refine the seven 

instruments to form a shorter, more powerful diagnostic instrument to measure engineering capital. 

Creating an Instrument of Engineering Capital 

In Chapter Five the first two stages of Archer et al.’s (2015) instrument development process were 

completed to create a conceptual framework and theoretical model of engineering capital. Through the 

adoption of a Bourdieuian perspective and the synthesis of past literature a contemporary and novel 

theorisation of engineering capital was developed. Whilst useful as a theoretical exploration of the forms 

of capital for engineering that young learners in the UK may possess, this model requires further validation 

through empirical investigation. In particular, to achieve the objectives of this thesis to better understand 

and intervene with engineering inequities it is necessary to create an empirical instrument capable of 

assessing engineering capital.  

In this current chapter, the third stage of the instrument development process is undertaken to develop 

an empirical instrument capable of measuring engineering capital. This stage involves the creation of a 

quantitative questionnaire drawing on the newly created theoretical model. The questionnaire developed 

during Archer et al.’s (2015) use of this process drew on existing instruments in addition to the creation 

of novel items (Archer et al., 2015; Archer et al., 2013; IPSOS Mori, 2011). Drawing on existing items 

supports the potential criterion validity of the questionnaire developed through this process (McDonald, 

2005). Following the questionnaire development data is next collected from the target sample. Finally, 
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participant responses are analysed using Principal Components Analysis, Binary Logistic Regression 

Analysis and Cronbach’s Alpha analysis to refine this larger questionnaire into a concise and effective 

capital instrument. Benson and Clark (1982) would view this stage as ‘quantitative evaluation’, whilst 

Kalkbrenner (2021) would identify this as ‘synthesise content and scale development’ and ‘recruit 

participants’ within their instrument development procedures.   

This approach to instrument development is robust, utilising a statistical method of formation that limits 

subjective judgement and relies on objective measurements to determine the structure of the resulting 

instrument. Such a data-led approach is valid and ensures that influences not included in the theoretical 

model, but active within real world settings, can influence the collected data and therefore shape the 

resulting instrument. This process is suitable for the development of a model of engineering capital. 

Comparative to the science domain, there are fewer existing instruments of engineering inequity from 

which to draw on during the formation of this new tool. However, as demonstrated by the ‘Archer-style 

engineering capital’ model in Chapter Four, it is possible to adapt questionnaire items from non-

engineering contexts to produce a viable instrument for the engineering domain. This process will 

therefore be adopted to generate an empirical instrument of engineering capital. The development of this 

instrument would enable a quantitative investigation of engineering capital and achieve the objective of 

this thesis in building more sophisticated understandings of engineering inequity in the UK. 

Chapter Research Methods  

Methodology 

The methodological approach adopted within this chapter is dictated by the instrument development 

procedure undertaken in the overall thesis. An empirical approach is adopted in the formation of the 

quantitative engineering capital instrument. The procedure undertaken by Archer et al. (2015) is utilised 

to first form an empirical questionnaire based on the theoretical model of engineering capital which is 

then refined through statistical analyses (Cronbach’s Alpha, Principal Components Analyses, and Logistic 

Regression) to form a final engineering capital instrument. This draws on the conceptual framework and 

theoretical model outlined in Chapter Five and the philosophical positioning of the thesis project outlined 

in the Methodology chapter.  

Participants  
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Data was collected from 921 secondary school-aged (11 to 16 years old) learners from ten schools in 

England and Scotland. As noted in the Methodology chapter, a single point of data collection was adopted 

for this thesis research project due to the demands of the Covid-19 pandemic. The sample of 921 learners 

examined in this chapter is the same sample examined throughout the thesis. See Methodology chapter 

for full outline of sample characteristics and rationale for the selected participant population.  

Data Collection Instruments 

Seven instruments were developed to empirically examine the seven theoretical subcomponents of 

engineering capital. These instruments were informed by theoretical literature outlined in Chapter Five 

and the domain-specific capital measurement instruments developed by Archer et al. (2015). These 

instruments are outlined below.  

Engineering literacy: The engineering literacy theoretical subcomponent relates to the knowledge, skills 

and ways of ‘thinking’ and ‘doing’ present within the engineering domain. This form of cultural capital is 

understood as deeply important and a key feature of a domain-specific model of capital (Archer et al., 

2015). A quantitative instrument was developed to measure this subcomponent drawing on Archer et al.’s 

instrumentation and informed by wider theoretical literature on engineering literacy (Chae et al., 2010; 

Huffman et al., 2018; Krupczak et al., 2012). These items are outlined in Table 6.01 below.  

Table 6.01: Engineering literacy items and response scales. 

Item Response Scale 

One or both of my parents know a lot about engineering -2 to 2 five-point Likert scale 

I have learnt a lot about engineering from museums -2 to 2 five-point Likert scale 

Anyone can become an engineer -2 to 2 five-point Likert scale 

I know how to design and make things -2 to 2 five-point Likert scale 

I know quite a lot about engineering -2 to 2 five-point Likert scale 

Engineers need to be imaginative in their work -2 to 2 five-point Likert scale 

I would be confident talking about engineering in lessons -2 to 2 five-point Likert scale 

 

Engineering attitudes: The engineering attitudes theoretical subcomponent represents an embodied 

form of cultural capital that shapes how individuals (and their parental figures) perceive and value the 

engineering domain. A measurement instrument of engineering attitudes was developed drawing on 

Archer et al.’s science capital instrument and past literature on engineering attitudes in the UK context 
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(EngineeringUK, 2021; EngineeringUK, 2021a; Hutchinson & Bentley, 2011). These items are outlined in 

Table 6.02 below.  

Table 6.02: Engineering attitudes items and response scales. 

Item Response Scale 

One or both of my parents think that engineering 

is very interesting 

-2 to 2 five-point Likert scale 

One or both of my parents think it is important for 

me to learn about engineering 

-2 to 2 five-point Likert scale 

My family like going to museums -2 to 2 five-point Likert scale 

I like going to museums -2 to 2 five-point Likert scale 

Engineering creates new jobs so more people can 

have work 

-2 to 2 five-point Likert scale 

It is useful to know about engineering in my daily 

life 

-2 to 2 five-point Likert scale 

Getting young people to understand engineering 

is important for our society 

-2 to 2 five-point Likert scale 

 

Knowledge of engineering pathways: The knowledge of engineering pathways subcomponent relates to 

the understanding that engineering qualifications hold value and offer utility to their possessor. A 

measurement instrument of this institutional cultural capital subcomponent was developed informed by 

literature (EngineeringUK, 2020; EngineeringUK, 2020a; Hutchinson & Bentley, 2011; Watermeyer et al., 

2016) and the science capital measurement instrument (Archer et al., 2015). These items are outlined in 

Table 6.03 below.  

Table 6.03: Knowledge of engineering pathways items and response scales. 

Item Response Scale 

It is important to understand engineering even if 

you don’t want an engineering job in the future 

-2 to 2 five-point Likert scale 

An engineering qualification can help you to get 

many different types of job 

-2 to 2 five-point Likert scale 

One or both of my parents have explained to me 

that understanding engineering is useful for my 

future 

-2 to 2 five-point Likert scale 

My teachers explain how engineering 

qualifications can lead to different jobs 

-2 to 2 five-point Likert scale 



150 
 

My teachers have explained to me that 

understanding engineering is useful for my future 

-2 to 2 five-point Likert scale 

 

Knowing an engineer: The knowing an engineer social capital subcomponent relates the potential 

benefits offered through a social connection to an engineer. A measurement instrument for this 

subcomponent was developed informed by literature (Bello & Morchio, 2022; Cheryan et al., 2011; 

Laurison & Friedman, 2020; Takruri-Rizk, et al., 2008) and Archer et al.’s (2015) domain-specific capital 

measurement instrument. These items are outlined in Table 6.04 below.  

Table 6.04: Knowing an engineer items and response scales. 

Item Response Scale 

Do you know anyone (family, friends or 

community) who works as an engineer or in a job 

that uses engineering? 

0 to 1 binary yes/no response 

If yes: You said you know someone amongst your 

family, friends or community who works as an 

engineering or in a job that uses engineering, can 

you tell us who they are? 

0 to 7 scale: 2 points added for parental figure, 1 

point added for each of the following multiple 

choice options selected: Siblings (brothers or 

sisters), Extended family members (grandparents, 

aunts, uncles, cousins), Friends, People I know 

from my community, and other. 

 

Talking with others about engineering: The talking with others about engineering subcomponent 

represents the social capital offered through social interaction concerning the engineering domain. The 

measurement of this subcomponent was informed by wider literature (Benjamin et al., 2010; Dou et al., 

2019) and Archer et al.’s (2015) empirical instrument. These items are outlined in Table 6.05 below.  

Table 6.05: Talking with others about engineering items and response scales. 

Item Response Scale 

When you are not in school how often do you talk 

about engineering with other people? 

0 to 4 five-point Likert scale 

Who do you talk with about engineering? 0 to 4 scale: 0.5 points added for each multiple 

choice option selected: Friends, Directly from 

scientists, Directly from engineers, Siblings 

(brother or sisters), Teachers, Parents or 

guardians, Extended family members 
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(grandparents, aunts, uncles, cousins), People I 

know from my community, No one. 

 

Consumption of engineering media: The consumption of engineering media subcomponent refers to a 

behaviour or practice that may support the development of engineering capital. A measurement 

instrument was developed drawing on wider literature (Dou et al., 2019; Lindell, 2020; Yates et al., 2015) 

and the Archer et al. (2015) science capital instrument. These items relate specifically to available 

examples of engineering media within the United Kingdom: as noted in earlier chapters the focus of this 

thesis lies within the cultural and social context of the UK. This may limit the degree to which the 

instrument can be applied internationally without amendment, however such an international application 

would first require a testing to validate the relevance of this instrument to non-UK settings. International 

applications may benefit from utilising media examples from local settings. These items are outlined in 

Table 6.06 below.  

Table 6.06: Consumption of engineering media items and response scales. 

Item Response Scale 

How often do you do the following things outside 

of school: watch engineering TV programmes, e.g. 

Mythbusters, Scrapheap Challenge, Robot Wars, 

etc.? 

0 to 4 five-point Likert scale 

How often do you do the following things outside 

of school: watch TV programmes with some 

engineering in them, e.g. Blue Peter, The Big Bang 

Theory, Top Gear, The Great British Bake Off, etc.? 

0 to 4 five-point Likert scale 

How often do you do the following things outside 

of school: read books or magazines about 

engineering? 

0 to 4 five-point Likert scale 

How often do you do the following things outside 

of school: go online to find out about engineering 

(e.g. YouTube, engineering websites, play 

engineering games)? 

0 to 4 five-point Likert scale 

 

Engineering out-of-school learning contexts: The engineering out-of-school learning contexts 

subcomponents explores further contexts through which engineering capital may be developed. This 

measurement instrument was informed by past literature (McVee et al., 2017; Petrich et al., 2013; 
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Shanahan et al., 2016) and the Archer et al. (2015) science capital instrument. These items are outlined in 

Table 6.07 below.  

Table 6.07: Engineering out-of-school learning contexts items and response scales. 

Item Response Scale 

One or both of my parents sign me up to activities 

outside of school time (e.g. dance, music, clubs) 

-2 to 2 five-point Likert scale 

How often do you do the following things when 

you are not in school: go to a museum? 

0 to 4 five-point Likert scale 

How often do you do the following things when 

you are not in school: go to a science centre, 

science museum, or planetarium? 

0 to 4 five-point Likert scale 

How often do you do the following things when 

you are not in school: do DIY or help to fix things 

at home? 

0 to 4 five-point Likert scale 

How often do you do the following things when 

you are not in school: get shown how to use tools? 

0 to 4 five-point Likert scale 

How often do you do the following things when 

you are not in school: make models (e.g. playing 

with Lego, painting miniatures)? 

0 to 4 five-point Likert scale 

How often do you do the following things when 

you are not in school: do crafts (e.g. knitting, 

woodwork)? 

0 to 4 five-point Likert scale 

How often do you do the following things when 

you are not in school: play video games about 

designing and/or building (e.g. The Sims, 

Minecraft)? 

0 to 4 five-point Likert scale 

How often do you do the following things when 

you are not in school: program computers (e.g. 

writing apps, building websites)? 

0 to 4 five-point Likert scale 

How often do you do the following things when 

you are in school: go to an after school club that 

involves engineering? 

0 to 4 five-point Likert scale 

How often do you do the following things when 

you are in school: had people visit you in school to 

teach you about engineering? 

0 to 4 five-point Likert scale 

How often do you do the following things when 

you are in school: take an engineering-related 

school trip? 

0 to 4 five-point Likert scale 
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How often do you do the following things when 

you are in school: take part in a competition where 

you design or make something? 

0 to 4 five-point Likert scale 

How often do you do the following things when 

you are in school: do school activities where you 

design or build something (e.g. designing a bridge, 

making and testing paper airplanes)? 

0 to 4 five-point Likert scale 

How often do you do the following things when 

you are in school: take a school trip to a museum? 

0 to 4 five-point Likert scale 

 

Engineering aspirations: Engineering aspirations were measured as a dependent variable (DV) for use 

within later analyses. This instrument also drew on Archer et al.’s approach to contextualising the 

aspirations of secondary school-aged learners and was informed by further literature (EngineeringUK, 

2022; EngineeringUK, 2022a; Hutchinson & Bentley, 2011). These items are outlined in Table 6.08 below.  

Table 6.08: Engineering aspirations items and response scales. 

Item Response Scale 

I would like to have a job that uses engineering -2 to 2 five-point Likert scale 

I want to become an engineer -2 to 2 five-point Likert scale 

Do you think you might like to work in an 

engineering-related job in the future? 

0 to 1 binary yes/no response 

Although it is a long way off, which of the following 

describes your views? 

I would like to study engineering at university, at 

college/sixth form, after GCSE/National 5s but not 

A-Level/Highers, I do not want to study any 

engineering after GCSE/National 5s, None of the 

above or I don’t know 

 

Engineering identity: Engineering identity was also measured as a further dependent variable for use 

within later analyses. This instrument drew on Archer et al.’s (2015) approach to conceptualising learner 

identity. These items are outlined in Table 6.09 below.  

Table 6.09: Engineering identity items and response scales. 

Item Response Scale 

People who are like me work in engineering -2 to 2 five-point Likert scale 

Other people think of me as an engineering-type 

person 

-2 to 2 five-point Likert scale 
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My teachers have specifically encouraged me to 

consider studying engineering after 

GCSE/National 5s 

-2 to 2 five-point Likert scale 

I don’t think I am clever enough to study 

engineering after GCSE/National 5s 

-2 to 2 five-point Likert scale 

 

Procedure 

First, an empirical questionnaire was formed to examine the seven subcomponents within the theoretical 

model of engineering capital. Adopting pre-validated items from existing instruments was an important 

element of Archer et al.’s (2015) instrument development process. However, few pre-validated 

instruments were available to measure engineering inequity generally or specifically through a 

Bourdieuian lens. Instead, the science capital instrument was adopted and repurposed to instead examine 

the engineering domain. This approach had previously been successful in the creation of the ‘Archer-style 

engineering capital’ model in Chapter Four. Many of Archer et al.’s (2015) items had themselves been 

drawn from previous literature supporting the wider validity of these items. The theoretical model of 

engineering capital was utilised to support the theoretical validity of these translated empirical items.  

Second, building on this theoretical validation statistical analyses were conducted to examine the validity 

and reliability of the newly created instruments. Principal Components Analyses (PCA) were adopted to 

examine the simplified structure of instruments and to determine whether this structure aligned with 

theoretical expectations outlined in the model of engineering capital (Ho, 2013). As noted in the 

Methodology chapter, Bourdieuian capital is adopted within this thesis as an interpretative tool: the forms 

of capital examined in these instruments are not positioned as objectively ‘true’ latent variables that exist 

in society but as theoretically structured interpretations of complex real-world conditions. The use of 

these instruments is therefore not concerned with identifying an underlying factor structure but instead 

is concerned with examining how instrument items relate to the created notion ‘engineering literacy’ or 

‘engineering media consumption’ positioned by the robust theoretical model. This rules out the adoption 

of other factor analysis approaches that are concerned with causal structure. Whilst Principal Components 

Analyses are not sufficiently robust to identify causality in latent factors this method can be used to 

examine whether items load onto simple singular component structures as a test of dimensionality in 

relation to Bourdieuian capital interpretations. This adoption is consistent with that of Archer et al. (2015) 

in the science capital development process. PCA results can be reflected on to confirm the 

interconnectivity of items and to identify redundancy in instrument structures. Whilst a less robust test 
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of validity than a factor analysis this approach can still support the development of instruments that 

measure what they intend to measure. Cronbach’s Alpha analyses were deployed as an acknowledged 

statistical method to confirm the internal consistency of the developed instruments (Ho, 2013). Statistical 

test assumptions were met supporting the use of these tests in all applications.  

Next, it was possible to begin the process of aggregation and refinement to create a singular measurement 

instrument of engineering capital. To do this a further Principal Components Analysis was applied to the 

items from all seven instruments to examine the dimensionality of the overall instrument and its 

relationship with engineering inequity. This additional PCA was necessary to examine the 

interconnectedness of the seven empirical subcomponent instruments and identify redundancy. The PCA 

procedure utilised a Direct Oblimin rotation to clarify the structure of the resulting model. An oblique 

rotation, such as the Direct Oblimin, was chosen as this rotation acknowledges that resulting components 

can be correlated (Ho, 2013). This is expected for the components within this model as they share a 

common capital underpinning. The resulting components drawn from this PCA were unweighted, treating 

all components and items equally. This was determined as more appropriate given that patterns of 

weightings differ in differing samples, representing individual differences.  As this PCA was being utilised 

to form an instrument it was necessary to avoid entrenching the characteristics of this first sample on all 

later samples using the resulting engineering capital instrument. As per common practice, weaker 

coefficients identified by the PCA were removed to sharpen the scope of the resulting output. Differing 

standards exist within the literature with some considering a cut off of 0.3 (Comrey & Lee, 2013; 

Tabachnick et al., 2007) and others 0.4 (Stevens, 2012). A cut off of 0.4 was chosen for this analysis to be 

more discerning and selective in including items with the intention of forming a stronger instrument. 

Statistical test assumptions were met supporting the use of these tests. 

Finally, having identified which items were valid for consideration within an engineering capital lens the 

items used to measure the seven theoretical subcomponents of engineering capital were analysed with a 

binary logistic regression to identify which items were most influential in determining those with greater 

or lesser aspirations for engineering. Statistical test assumptions were met supporting the use of these 

tests. Aspirations were chosen as a proxy indicator of engineering capital given the underlying premise 

that those with greater engineering capital will be better supported to aspire to engineering trajectories. 

The premise is supported by the positive association between Archer-style engineering capital and 

engineering aspirations outlined in Chapter Four. The binary logistic regression identified 11 items which 

were collated to form an engineering capital measurement instrument. Through this procedure a broad 
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theoretical framework of seven engineering capital subcomponents was empirically structured, 

examined, and refined to form a compact measurement tool for engineering capital.  

Results and Discussion 

Confirming the Reliability and Validity of Subcomponent Instruments 

It was necessary to confirm that the empirical items developed or adopted to address the seven 

subcomponents of engineering capital were valid and reliable instruments. This is necessary to ensure 

that the resulting engineering capital instrument is valid and reliable following the aggregation of its items. 

To ensure each subcomponent was a strong addition to the overall model it was necessary to run a PCA 

to examine its dimensionality and utilise Cronbach’s Alpha analysis to test its reliability. The results of 

these tests are outlined for the subcomponents below. See Appendix F for full statistical outputs.  

Engineering literacy: PCA analyses examined the dimensionality of the measurement index for this 

subcomponent and concluded that the item ‘Anyone can become an engineer’ should be removed from 

the measure, but that the remaining items form a unidimensional structure that follows the theoretical 

framing of the subcomponent. A Cronbach’s Alpha analysis confirmed that the six-item instrument 

possessed adequate internal consistency (N=865, a=0.761).  

Engineering attitudes: PCA analyses identified a two-component solution focusing on attitudes towards 

engineering generally or positive enjoyment of engineering learning activities with family specifically, 

correlated to a R2=0.303 level. Although not unidimensional these components do follow the theoretical 

framing of the subcomponent and are a valid addition to the empirical measure of engineering capital. A 

Cronbach’s Alpha analysis confirmed that the seven-item instrument possessed adequate internal 

consistency (N=867, a=0.802). 

Knowledge of engineering pathways: PCA analyses identified a two-component solution focusing on 

understanding of the participant and understanding of those around the participant, correlated to a 

R2=0.371 level. Although not unidimensional these components do follow the theoretical framing of the 

subcomponent aligning with acknowledged differences in the engineering knowledge of teachers, parents 

and young people in the UK (EngineeringUK, 2020; Hutchinson & Bentley, 2011; Watermeyer et al., 2016). 

This instrument is therefore a valid addition to the empirical measure of engineering capital. A Cronbach’s 

Alpha analysis confirmed that the five-item instrument possessed adequate internal consistency (N=863, 

a=0.762). 
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Consumption of engineering media: PCA analyses identified a single component including all four items 

aligning with the theoretical justification of the subcomponent which generalises such media together. A 

Cronbach’s Alpha analysis confirmed that the four-item instrument possessed adequate internal 

consistency (N=890, a=0.796). 

Engineering out-of-school learning experiences: PCA analyses examined the dimensionality of the 

measurement instrument for this large subcomponent and identified a four-component solution relating 

to: designing and making experiences, school-related informal learning, home and family-based learning, 

and digital/computer-based experiences. Whilst not a simple structure this does follow the structure of 

the theoretical subcomponent which, it should be acknowledged, is broad and unlikely to exist as a 

unidimensional construct. A Cronbach’s Alpha analysis (based on standardised items) confirmed that the 

15-item instrument possessed adequate internal consistency (N=852, a=0.810). 

The distribution of responses for these items was found to be acceptably normal, with acceptable skew 

and kurtosis indicating a normal distribution within participant scale responses. This was to be expected 

as per Central Limit Theorem which states that sample means will be normally distributed if drawn from 

a sufficiently large sample. The size of this sample (N=921) is sufficiently large to support the normality of 

distribution of smaller sub-samples such as gender groups within the analyses of this thesis. 

Two of the seven subcomponents, ‘talking with others about engineering’ and ‘knowing an engineer’, 

were not able to be reliability and validity tested due to the small number of items used to assess these 

forms of capital. As more simplistic measures they can be supported with a theoretical rationale for their 

inclusion in the model – later analyses to form the instrument will remove these items if they are not 

warranted. The five subcomponents that were examined with reliability and validity tests were all 

confirmed as justified additions to the engineering capital instrument development process. Only one 

item (‘Anyone can become an engineer’) was removed. All five subcomponents were found to be reliable, 

with Cronbach’s Alpha scores between 0.761 and 0.810, and valid with dimensionality of empirical data 

fitting to the expectations of the theoretical model. Despite many of these items being drawn from the 

science domain these analyses confirm that the items follow the theoretical structure of engineering 

capital and are therefore justified as elements of the empirical instrument developed in this chapter. This 

validates the conclusions of Chapter Two which noted that many of the forms of capital included within 

science capital were likely relevant for engineering if specifically considered for the engineering-domain.  

Principal Components Analyses – Examination of All Aggregated Items 
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Having confirmed the reliability and validity of the empirical instruments designed to individually measure 

the subcomponents of engineering capital it was next necessary to aggregate and refine these items to 

produce a focused instrument of engineering capital. The first step of this process required a further 

Principal Components Analysis of the collected engineering capital instruments to examine the 

dimensionality of the overall empirical structure of engineering capital. Interpretation of components 

generated by this analysis can provide insight on the interaction of subcomponent measures and patterns 

within the item structure of engineering capital. This analysis included 47 items from the subcomponent 

and DV instruments. Given the large number of items used within this PCA a Direct Oblimin rotation was 

adopted to ease interpretation of results.  

The PCA resolved to 10 components above an eigenvalue of 1.0, explaining 63.112% of the total variance 

within the data. Only 773 participants were included within the analysis as a casewise removal of 

participants (the removal of a participant if any single data point was missing from their entry) was 

required to ensure all items could be fairly examined. This sample was still sufficiently large to meet the 

demand for 5 to 10 participants per item (Bandalos & Boehm-Kaufman, 2010). The PCA passed both the 

Kaiser-Meyer-Olkin test of sampling adequacy (KMO=0.928) and the Bartlett’s test of sphericity (x2(1081) 

= 19134.532, p<0.001) indicating that the use of PCA was valid. The ten components were reviewed to 

form an understanding of what each component grouping of items represented and were then labelled 

accordingly. These components and their constituent items are outlined in Appendix F. It was, however, 

necessary to complete further PCA procedures to refine the resulting component structure by removing 

items that did not load clearly to a component at a 0.4 coefficient level. Eight items were removed 

following this first PCA, outlined in Table 6.10.  

Table 6.10: Items removed within the first all-item PCA. 

Item 

I know how to design and make things 

I know quite a lot about engineering 

I would be confident talking about engineering in lessons 

When you are not in school how often do you talk about engineering with other people? 

Who do you talk with about engineering? 

How often do you do the following things when you are in school: do school activities where you 

design or build something (e.g. designing a bridge, making an testing paper airplanes)? 

I don’t think I am clever enough to study engineering after GCSEs/National 5s 

One or both of my parents sign me up to activities outside of school time (e.g. dance, music, clubs) 
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Following the removal of these items a second PCA was performed to examine the component structure 

of the engineering capital instrument. This second PCA again resolved to 10 components explaining 

67.388% of data variance, with little difference to the overall structure of the component matrix – though 

some coefficient values did change. The sample increased to 779 participants as fewer items led to fewer 

instances of casewise removal of participants. The PCA passed the KMO test of sampling adequacy 

(KMO=0.913) as well as the Bartlett’s test of sphericity (x2(741) = 15421.453, p<0.001). The ten 

components maintained the same structure and labels as within the first PCA though with very minor 

changes to variances explained by each component. The second PCA results are also found in Appendix F. 

A third PCA was necessary to remove components that contained fewer than three items as these 

components are difficult to interpret and most likely to change in meaning in the addition or subtraction 

of items. This led to the removal of components nine and ten: tentatively titled ‘Designing and Making 

with Technology’ and ‘Wider Utility of Engineering’, including a number of items outlined in Table 6.11 

below. A third PCA was needed to account for the change in component structure resulting from these 

removals.  

Table 6.11: Items removed within the second all-item PCA. 

Item 

How often do you do the following things when you are not in school: play video games about 

designing and/or building (e.g. The Sims, Minecraft)? 

How often do you do the following things when you are not in school: program computers (e.g. writing 

apps, building websites)? 

It is important to understand engineering even if you don’t want an engineering job in the future 

An engineering qualification can help you to get many different types of job 

 

The third PCA resolved to eight components above an Eigenvalue of 1.000 explaining 66.213% of data 

variance. The sample size again increased to 786 participants due to fewer casewise removals. The PCA 

passed both the KMO test (KMO=0.910) and Bartlett’s test (x2(595) = 14496.568, p<0.001). The eight 

components remained stable from the first and second PCAs and are outlined in Table 6.12 below. No 

further PCA was needed following this test as no remaining items needed to be removed. The third PCA 

therefore represents the final stage of the PCA investigation and the ‘simple structure’ of engineering 

capital items.   

Table 6.12: Simple structure of eight components produced by the third all-item PCA. 
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Component 

Number 

Component 

Label 

Variance 

Explained 

Items and  Component Coefficients  

1 Engineering 

Career 

Aspiration 

28.758% Six items:  

I would like to work in an engineering-related job, but not 

in an engineering industry (0.771) 

I would like to have a job that uses engineering (0.761) 

I would like to have a job that involves designing and 

making things (0.715) 

I want to become an engineer (0.695) 

People who are like me work in engineering (0.685) 

Other people think of me as an engineering-type person 

(0.429) 

2 Museum 

Visits 

9.505% Five items:  

My family like going to museums (0.878) 

I like going to museums (0.841) 

Go to museum? (0.804) 

Go to a science centre, science museum, or planetarium? 

(0.719) 

I have learnt a lot about engineering from museums 

(0.558) 

3 Engineering 

Utility 

6.103% Four items:  

Engineers need to be imaginative in their work (0.0.854) 

Engineering creates new jobs so more people can have 

work (0.849) 

Getting young people to understand engineering is 

important for our society (0.735) 

It is useful to know about engineering in my daily life 

(0.610) 

4 Engineering 

Curricular-

Mapped 

Experiences 

5.713% Five items:  

Take an engineering-related school trip? (0.795) 

Had people visit you in a school to teach you about 

engineering? (0.643) 

Go to an after school club that involves engineering? 

(0.629) 

Take a school trip to museum? (0.598) 

Take part in a competition where you design or make 

something? (0.499) 

5 Making and 

Fixing 

4.838% Four items:  

Do DIY, or help fix things around the home (0.794) 

Get shown how to use tools? (0.688) 

Do crafts, e.g. knitting, woodwork? (0.677)  
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Make models, e.g. playing with Lego, painting miniatures? 

(0.533) 

6 Parental 

Engineering 

Attitudes 

4.173% Four items: 

…know a lot about engineering (0.806) 

…Think it is important for me to learn about engineering 

(0.764) 

…Think that engineering is very interesting (0.757) 

…Has explained to me that understanding engineering is 

useful for my future (0.751) 

7 Teacher 

Support for 

Engineering 

3.813% Three items: 

My teachers have explained to me that understanding 

engineering is useful for my future (0.894) 

My teachers explain how engineering qualifications can 

lead to different jobs (0.873) 

My teachers have specifically encouraged me to consider 

studying engineering after GCSEs/National 5s (0.847) 

8 Engineering 

Media 

Consumption 

3.311% Four items:  

Watch engineering TV programmes, e.g. Mythbusters, 

Scrapheap Challenge, Robot Wars, etc. (0.756) 

Watch TV programmes with some engineering in them, 

e.g. Blue Peter, The Big Bang Theory, Top Gear, The Great 

British Bake Off, etc (0.696) 

Read books or magazines about engineering? (0.690) 

Go online to find out about engineering, e.g. YouTube, 

engineering websites, play engineering games? (0.675) 

 

Notably, the component structure generated by this series of Principal Component Analyses differs from 

the seven theoretical subcomponents identified in Chapter Five. This is not surprising, as the theoretical 

model is structured according to classifications of capital within the Bourdieuian framework. This is an 

artificial interpretation of the world, and one that is unlikely to be replicated within real-world data. In 

reality, these theoretical distinctions are less clear. Some theoretical subcomponents remain intact, such 

as the theoretical subcomponent of ‘consumption of engineering media’ which is established as 

component eight. However, others such as ‘engineering attitudes’ are distributed across several PCA 

components. This does not invalidate the theoretical lens as a tool to structure these influential resources: 

the PCA components can be used to reflect further on the contents of the theoretical model and the 

interconnectedness of its subcomponents.  
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For example, components six and seven are structured around teachers and parents as key influencers 

within the life of the young person. The Principal Components Analysis identified patterns within the 

responses of participants which associate these items together. This aligns with past literature that 

recognises these influencers and, in line with the Bourdieuian framework, supports the underlying 

influence of parents and teachers within the engineering capital model (EngineeringUK, 2018; 

EngineeringUK, 2022). This structure supports an interconnectedness of theoretical subcomponents 

‘engineering attitudes’ and ‘knowledge of engineering pathways’ through the common influence of 

parents. Component four was titled ‘engineering curricular-mapped experiences’ due to the school-based 

focus of its items. This highlights a pattern of consistency within responses to items concerning schools 

which suggest that school-based characteristics may play a role in shaping the engineering capital of young 

learners. All of these influences are active within the theoretical model of engineering capital but become 

clear when the structure of the model is reorganised and simplified according to patterns within response 

data.  

It is also notable that the DV measures included within the PCA aligned to form a single component of 

engineering aspirations and identity items (component one). This is helpful, as later stages of the 

instrument development process require a dependent variable and this analysis offers component one as 

a synthesised unidimensional DV for engineering aspirations and identity.  

However, it must be recognised that 12 items were removed from this series of analyses. Examinations 

show that these items were removed as they did not conform with best practices of data reduction: they 

did not form components with at least three items or they possessed item coefficient values of less than 

0.4 indicating a weak fit to the ten established components.  However, vitally, this does not discredit these 

items as valid considerations of Bourdieuian capital for engineering. These items may have reached the 

threshold of three connected items and formed components if a small number of further items were 

introduced, or if items in other components are removed leading to a restructuring of the model. In this 

way it must be recognised that the PCA is simplifying a structure, not dictating the objective reality of 

relevance for these items. As a result, these items may still be considered as representative of valid 

aspects of engineering capital – but not neatly packaged with other items within the questionnaire. These 

items will therefore still be drawn on in the final instrument of engineering capital. 

Overall, this analysis demonstrates that the theoretical model of engineering capital is not the only way 

in which these forms of capital for engineering can be aggregated and structured. This aligns with the 

underlying Bourdieuian framework and its positioning in this thesis as a ‘thinking tool’. Through its 
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simplification the PCA process identifies key influences that group item responses within the collected 

data: teachers, parents, school settings, making and fixing activities, and school contexts are just some of 

the key components recognised within this measurement of engineering capital. Despite its simplified 

structure differing from the theoretical model these findings support the interconnectedness and 

perspective of the engineering capital model contents. This further supports the synthesis of these 

subcomponent scales to develop a singular measurement instrument of engineering capital. 

Binary Logistic Regression Analysis 

Having investigated the relevance of items within the engineering capital questionnaire it was next 

necessary to perform a binary logistic regression analysis to identify which items were most influential in 

determining high or low levels of engineering capital. This identification would allow the formation of an 

engineering capital instrument drawing on only the most influential questions to produce a concise and 

impactful measurement tool. This statistical process was utilised by Archer et al. (2015) in the successful 

formation of the science capital instrument. A singular instrument for engineering capital is consistent 

with the aggregating theoretical structure of engineering capital in Chapter Five. Whilst it is possible to 

distinguish distinct species of capital, such as engineering literacy as a form of cultural capital or knowing 

an engineer as a form of social capital, these subcomponents must each be recognised as aspects of the 

larger concept of ‘engineering capital’. A singular instrument of engineering capital that can be used to 

distinguish those with greater or lesser engineering capital is more compatible with this holistic 

conceptualisation of engineering capital than a multitude of subcomponent-specific instruments. A 

regression analysis on items from all subcomponent instruments can identify the most influential items 

within these scales and support an aggregation of influential items into a ‘single factor’ framing of 

engineering capital.   

A binary logistic regression analysis was utilised to examine 41 items from the seven engineering capital 

subcomponent instruments. The decision was made to include the items that were removed from the first 

and second all-subcomponent PCAs as their exclusion was due to not fitting relatively arbitrary maxims 

for the PCA procedure and not due to a lack of theoretical validity. As noted earlier, PCAs can simplify the 

structure of examined data but cannot dictate the objective relevance of included items. The items 

removed from the earlier PCAs can still be understood as theoretically valid additions to an instrument of 

engineering capital: the item ‘I know quite a lot about engineering’, for example, is highly relevant to the 

‘engineering literacy’ subcomponent but was removed from the first all-item PCA. Including all removed 



164 
 

items within the regression analysis ensures that no relevant item is inadvertently rejected from the 

resulting instrument created to distinguish those with higher or lower levels of engineering capital.  

Binary logistic regression analyses require a dependent variable to which other items can be compared. 

As no engineering capital instrument yet existed to act as this DV a proxy was required. The PCA 

component ‘Engineering Career Aspiration’ was chosen to act as the dependent variable of the regression 

analysis. The use of ‘Engineering Career Aspiration’ was justified in several ways. Firstly, as outlined in 

earlier chapters, aspirations are framed within this thesis as an age-appropriate indicator of engineering 

inequity for secondary school-aged learners. As the aim of this process is to create an instrument to 

distinguish patterns of inequity amongst these learners an aspirational dependent variable is theoretically 

valid and consistent with the framing of this thesis investigation. Secondly, the choice of this dependant 

variable is also consistent with the underlying Bourdieuian conceptual framework of capital applied in 

these instrument items. Bourdieuian capital is a valid perspective on issues of social reproduction, 

including access to careers and occupational characteristics of social groups. This justifies the choice of a 

career aspiration dependent variable as a proxy for engineering capital. The use of ‘Engineering Career 

Aspiration’ could be criticised, however, as lacking a consideration of educational aspirations for 

engineering which are also recognised throughout this thesis as valid for the consideration of engineering 

inequity amongst secondary school-aged learners. This is addressed with the addition of a further item 

(“Although it is a long way off, which of the following describes your views? - I would like to study 

engineering at university, at college/sixth form, after GCSE/National 5s but not A-Level/Highers, I do not 

want to study any engineering after GCSE/National 5s, None of the above or I don’t know”) to this DV to 

represent educational aspiration given the theoretical importance of this for secondary school-aged 

participants. This addition was validated with a further Cronbach’s analysis of the DV items (N=865, Alpha, 

based on standardised items = 0.875). Participant scores on this DV measure (ranging from -13 to 15) were 

divided into low (scale: -13 to -4:, N=342), medium (scale: -3 to 5, N=476), and high (scale: 6 to 15, N=103) 

thirds on the DV scale. The logistic regression analysis compared two groups – given the low number of 

‘high’ category participants the ‘low’ group was compared with the combined ‘medium’ and ‘high’ groups 

on this DV scale. In this way the LR analysis could examine those who had lower or higher levels of capital 

to determine what forms of capital distinguish these groups. Statistical test assumptions were met 

supporting the use of binary logistic regression analysis (see Appendix F).  

This binary logistic regression analysis was conducted on data from 648 participants comparing groups of 

participants with ‘lower’ (N=295) and ‘higher’ (N=353) engineering aspiration scores. Statistical 
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assumptions were tested and confirmed the linearity of the relationship between IVs and DV logit (Box-

Tidwell test), a lack of significant multicollinearity (collinearity VIF <5) and a lack of influential outliers 

supporting the adoption of this procedure (casewise diagnostics). The regression analysis was statistically 

significant (X2(41) = 400.798, p<0.001) and revealed that 11 items significantly predicted engineering 

aspiration, outlined in Table 6.13 below. The model explained 61.7% of variance within engineering 

aspiration score data (Nagelkerke R2) with an overall accuracy of prediction of 81.3% (the accuracy 

identifying those with lower scores was 79.7%, and the accuracy identifying those with higher scores was 

82.7%) (see Appendix F for statistical outputs).  

Table 6.13: Significant predictor items of higher or lower engineering aspiration scores based on Logistic 

Regression analysis. 

Item Response Scale Positive or Negative 

Classification Direction (ExpB) 

I have learnt a lot about 

engineering from museums 

-2 to 2 five-point Likert scale Positive (1.508) 

I know how to design and make 

things 

-2 to 2 five-point Likert scale Positive (1.360) 

I know quite a lot about 

engineering 

-2 to 2 five-point Likert scale Positive (1.606) 

I would be confident talking 

about engineering in lessons 

-2 to 2 five-point Likert scale Positive (1.405) 

An engineering qualification can 

help you get many different 

types of job 

-2 to 2 five-point Likert scale Positive (1.657) 

When you are not in school, how 

often do you talk about 

engineering with other people? 

0 to 4 five-point Likert scale Positive (1.439) 

How often do you do the 

following things outside of 

school: Read books or 

magazines about engineering? 

0 to 4 five-point Likert scale Positive (1.691) 

How often do you do the 

following things outside of 

school: Go online to gind out 

about engineering, e.g. 

YouTube, engineering websites, 

play engineering games? 

0 to 4 five-point Likert scale Positive (1.508) 
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How often do you do the 

following things when you are 

not in school: Do DIY, or help fix 

things around the home? 

0 to 4 five-point Likert scale Positive (1.316) 

How often do you do the 

following things when you are 

not in school: Do crafts, e.g. 

knitting, woodworking? 

0 to 4 five-point Likert scale 

(Reverse code) 

Negative (0.731) 

How often do you do the 

following things when you are in 

school: Take an engineering-

related school trip? 

0 to 4 five-point Likert scale 

(Reverse code) 

Negative (0.585) 

 

These items were collated to form an engineering capital instrument. Scores on these items were tallied, 

with two items reverse coded, to produce a score from -10 to 34. This was transformed to lie on a scale 

from 0-1054 to align with the science capital and Archer-style engineering capital instruments.  

This instrument represents the final product of the engineering capital instrument development process. 

Starting with the large theoretical model of engineering capital the outlined process of statistical analysis 

facilitated the refinement of a concise and focused empirical tool capable of measuring the engineering 

capital of participants. The items included within this instrument are those that are most influential in 

distinguishing young learners with lesser or greater engineering capital (as conceived of in this thesis in 

relation to engineering aspirations). With only 11 items it is possible to efficiently generate a 

representation of the engineering capital possessed by young learners. This is a unique tool developed 

through a robust statistical methodology that can be applied within real world contexts to develop a 

greater understanding of engineering inequities. The objectives of this thesis identify the need to develop 

a richer and solution-orientated understanding of engineering inequities in the UK. This instrument can 

be widely and efficiently applied to better understand how young learners are supported to become 

future engineers. In this way the engineering capital instrument represents a key output of this thesis.  

Conclusions 

Following the formation of the engineering capital theoretical model in Chapter Six it was next necessary 

to develop an empirical instrument capable of examining engineering capital within real-world contexts. 

 
4 This transformation was calculated with the following equation: 2.38636(SCORE)+23.8636. 



167 
 

The creation of this instrument is consistent with the objectives of this thesis in developing greater 

understanding of engineering inequity so as to address challenges facing the UK engineering domain. In 

the current chapter a process of questionnaire development, data collection and statistical refinement 

transformed a large questionnaire empirically measuring many forms of capital to a concise 11-item 

engineering capital instrument. This instrument represents the first domain-specific instrument of 

Bourdieuian capital for the engineering domain within current literature. Drawing on data from over 900 

young learners this instrument is designed to identify the deeper underlying capital distinctions relevant 

to engineering inequities. With this novel development it is possible to apply the rich theoretical 

perspective of engineering capital to the population of young learners in the UK to better understand who 

are supported with the resources to become engineers. In the next chapter this instrument will be tested 

to confirm its validity and then applied to the thesis dataset to explore the insights on engineering inequity 

offered by the novel lens of engineering capital.  
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CHAPTER SEVEN: VALIDATING AND EXPLORING 

ENGINEERING CAPITAL 

Introduction 

In previous chapters the first three stages of an instrument development process were completed to form 

a conceptual framework, theoretical model and empirical instrument of engineering capital. In the current 

chapter the fourth and final stage of this development process is undertaken to confirm the validity and 

utility of the developed engineering capital instrument. The ability of the engineering capital lens to meet 

the objective of this thesis and support greater understanding of engineering inequities in the United 

Kingdom is theoretically and empirically investigated. First, three hypotheses will be outlined to structure 

an examination of validity. Next, empirical analyses will test these hypotheses to confirm that engineering 

capital is: related to patterns of engineering inequity, aligns with current understandings of such 

inequities, and is sufficiently powerful to support predictions of engineering educational and career 

aspiration. Finally, having investigated these hypotheses the value of engineering capital as a lens on 

engineering inequity will be explored within the thesis dataset.  

Validating the Engineering Capital Instrument 

Having formed an instrument to measure engineering capital it is next possible to enact the final stage of 

the adopted instrument development process and apply the instrument to confirm its validity and utility. 

Benson and Clark (1982) and Streiner and Kottner (2014) acknowledge that such confirmations of 

instrument efficacy are ongoing, requiring repeated use and testing. Although sustained application is not 

possible within the confines of this thesis, it is possible to begin this process and explore engineering 

inequities amongst secondary school learners using the engineering capital instrument.  

Any judgement of validity or efficacy must stem from the intended objective for which engineering capital 

was designed. Within this thesis the engineering capital model and instrument have been developed to 

provide a more sophisticated and insightful perspective on engineering inequities within the UK context 

with the intention of enabling intervention to support greater skills supply and social justice within the 

engineering domain. This objective can be deconstructed to form three hypotheses to test and confirm 

the validity of engineering capital. 
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First, it must be confirmed that engineering capital is related to inequities within the engineering domain. 

Whilst intended to access forms of capital that are theoretically relevant to engineering inequities it is 

necessary to empirically confirm that the instrument resulting from this theoretical model does relate to 

such inequities in the UK context. For young UK learners, it is expected that engineering capital is positively 

associated with greater engineering educational and career aspirations as an age-appropriate indicator of 

engineering trajectory and inequity. 

Hypothesis One: ‘Engineering capital scores will be positively associated with greater educational and 

career aspirations for engineering’.  

Second, it must be confirmed that measurements taken with the engineering capital instrument are 

consistent with current understandings of engineering inequity. Contemporary framings of engineering 

inequity in the UK can be criticised as overly descriptive and passive, acting simplistically as a key 

performance indicator of progress to equity: for example, as of 2021 16.5% of those in UK engineering 

roles are women (EngineeringUK, 2022b). These framings of inequity arguably provide little insight into 

the process through which inequities are formed and sustained. However, despite this criticism these 

framings of engineering inequity can be used as a benchmark to confirm the ‘concurrent validity’ of 

engineering capital: the alignment of novel measurements to pre-existing findings (Stain & Bjornestag, 

2020). The engineering capital of groups based on gender or social class can be compared to test the 

consistency between the distribution of engineering capital and acknowledged group inequities within 

the engineering domain. Examination of differences between further groups, based on theoretically 

recognised but rarely empirically examined characteristics such as academic ability or national context, 

may provide novel insights into engineering inequity within the UK. These tests will mirror the critique of 

science capital in Chapter Four and can confirm the concurrent validity of engineering capital as a tool to 

understand engineering inequities.  

Hypothesis Two: ‘Engineering capital scores will align with previously acknowledged patterns of inequity 

within the UK engineering domain’.  

Finally, it must be confirmed that the association between engineering capital and engineering inequity is 

strong enough to warrant application of the model and instrument to address these inequities in the UK 

context. Even very small effects within a sample can be found to be statistically significant if that sample 

is sufficiently large (Faber & Fonseca, 2014). To confirm that the findings of the first two hypotheses relate 

to a strong and practically useful perspective on engineering inequity, the engineering capital instrument 
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will be further tested to confirm its ‘predictive validity’ (Schuler, 2001). These tests will examine the 

degree to which engineering capital can be used to accurately predict aspirations in engineering inequity 

amongst the collected sample. If the engineering capital instrument cannot be used to predict whether 

participants wish to study or work in engineering roles, then the relevance or practical value of this novel 

tool must be questioned.  

Hypothesis Three: ‘Engineering capital scores will be capable of predicting aspirations for engineering 

education or careers amongst young learners’.  

The three hypotheses will, collectively, determine the degree to which engineering capital can be 

acknowledged as a valid and effective instrument for the understanding and exploration of engineering 

inequity in the UK. If these hypotheses are confirmed then the engineering capital model and instrument 

can be judged as valid and can next be confidently applied to explore the insights and value of engineering 

capital as a lens on UK engineering inequities. The failure to confirm any of these three hypotheses would 

question the validity of the engineering capital instrument and identify the need for further investigation 

and development to effectively examine engineering inequity in the UK.  

Chapter Research Methods 

Methodology 

The aim of the investigation of this chapter was to confirm that engineering capital applies to engineering 

inequity as intended. A quantitative strategy was adopted due to the quantitative nature of the developed 

instrument. The three hypotheses were designed to test the fundamental dynamic between the 

instrument and engineering inequity to confirm its relevance to inequity, past findings, and understanding 

of inequity amongst the target audience of young learners. This draws on the conceptual framework 

outlined in Chapter Five and the philosophical positioning outlined in the Methodology chapter.  

Participants 

Data was collected from 921 secondary school-aged (11 to 16 years old) learners from ten schools in 

England and Scotland. As noted in the Methodology chapter, a single point of data collection was adopted 

for this thesis research project due to the demands of the Covid-19 pandemic. The sample of 921 learners 

examined in this chapter is the same sample examined throughout the thesis. See Methodology chapter 

for full outline of sample characteristics and rationale for the selected participant population. 

Instruments 
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A number of instruments and items were drawn upon from the thesis questionnaire to examine the 

validity of the engineering capital instrument. These are outlined below.  

Engineering capital instrument: The 11-item engineering capital instrument created and outlined in 

Chapter Six was adopted to calculate the engineering capital scores of participants. Item responses were 

tallied to form a single engineering capital score for each participant on a scale of 0-105. Engineering 

capital scores were used to code participants as possessing low (0-34), medium (35-69) or high (70-105) 

levels of engineering capital. This division of the response scale into thirds was adopted from Archer et 

al.’s (2015) science capital development process and the definition of science capital groups within the 

science capital literature. A direct adoption of this approach would support comparison with science 

capital scores and was justified as an efficient and objective approach to distinguishing those with greater 

or less engineering capital. See Chapter Six for further details on this instrument.  

Engineering inequity: Three items were used to establish the engineering educational and career 

inequities of participants. As outlined in the Methodology chapter, aspirations are an age-appropriate 

indicator of engineering inequity for secondary school-aged learners. One item examined educational 

aspiration (“Although it is a long way off, which of the following describes your views: I would like to study 

engineering at university, at college/sixth form, after GCSE/National 5s but not A-Level/Highers, I do not 

want to study any engineering after GCSE/National 5s, None of the above or I don’t know”). To assess 

engineering career aspiration participant general interest in engineering careers was established (“Do you 

think you might like to work in an engineering-related job in the future? Yes, No”) alongside a further 

question concerning a future in the role of ‘engineer’ specifically (“How much do you agree with the 

following statements: I want to become an engineer: strongly disagree, disagree, neither agree nor 

disagree, agree, strongly agree”). 

Sample characteristics: Participants were asked to report their current year of schooling to determine 

their progression through the education system and age (“What year group are you in?”). Participants 

were asked to provide a gender identity to facilitate an examination of capitals for engineering by gender 

group (“Are you a girl or boy? Girl, Boy, Other Identity”). Respondents were also asked to provide their 

ethnic identity to examine potential distinctions in capital amongst differing ethnic groups in response to 

recognised inequities in ethnic representation in UK engineering (What of the following best describes 

your ethnic origin?”).  Respondents were also asked to name their school allowing an examination of 

geographical distribution of the sample (“What is the name of your school?”). Social class of participants 

was accessed through two measures drawing on a measure of cultural capital and positioning with the 
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Income Deprivation Affecting Children Index (IDACI) sub-index of the Indices of Multiple Deprivation (IMD) 

measure (see Methodology chapter for further details).  It was not possible to examine the secondary 

school-aged participants in relation to academic ability for engineering as this is not a curricular subject 

for most learners in the UK. Instead, academic ability in the science and mathematics domains were 

examined through questioning which academic set the participant belonged to for science and 

mathematics classes (“Which of the following statement below is true for you now? I am in one of the top 

sets, middle sets, bottom sets, there are not sets in my school.”).  

Relationship with engineering: Items were also included to explore the wider relationship between the 

participant and the domain of engineering. These characteristics could later be examined in relation to 

inequities to better understand how individuals with greater or lesser engineering capital differed – should 

the three hypotheses be confirmed. These items are outlined in Table 7.01 below.  

Table 7.01: Items adopted to explore the relationship between participants and the engineering domain. 

Purpose Item Response Scale 

Examination of social contact 

with professional engineers 

Do you know anyone (family, 

friends, or community) who 

works as an engineer or in a job 

that uses engineering? 

0 to 1 binary yes/no response  

Recognition of engineering 

amongst school experiences 

Have you come across 

engineering in your education so 

far, and if so where? 

In a science class, in a design and 

technology class, in a maths 

class, in an engineering class, I 

have not come across 

engineering in my education 

Participation in curricular-

mapped experiences 

Have you participated in any 

engineering education 

programmes or competition? – 

Secondary Engineer, Science 

Fairs, Ultimate STEM Challenge, 

or other challenges? 

0 to 1 binary yes/no response  

Engineering self-belief People who are like me work in 

engineering 

-2 to 2 five-point Likert scale  

Perception of the openness of 

engineering trajectories 

Anyone can become an engineer -2 to 2 five-point Likert scale  

Perceived utility of engineering It is useful to know about 

engineering 

-2 to 2 five-point Likert scale  

Participant interest in 

engineering learning 

I think learning about 

engineering is boring 

-2 to 2 five-point Likert scale – 

reverse coded 
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Perceived value of engineering 

to participant future 

It would be good for my future 

to know about engineering 

-2 to 2 five-point Likert scale  

Expectation of personal success 

in engineering 

I believe I could be successful at 

engineering in the future’ 

-2 to 2 five-point Likert scale  

 

The complete questionnaire is available in Appendix C.    

Procedure 

The questionnaire instrument was designed, developed, and applied for data collection as outlined in the 

Methodology chapter. Following data processing and cleaning the thesis dataset was examined to analyse 

the three hypotheses outlined in this chapter.   

For hypothesis one, this analysis involved the adoption of mean comparison testing to determine the 

relationship between engineering capital and engineering aspirations. Independent samples t-tests and 

one-way ANOVA analyses were used to compare the engineering capital scores of those who do or do not 

report aspirations for engineering education or careers. The adoption of these tests was confirmed as 

appropriate through testing of statistical assumptions. Such means testing is acknowledged as 

appropriate for the comparison of different groups on an empirical scale (Ho, 2013). 

For hypothesis two, descriptive statistics and further mean comparison testing was adopted to examine 

the distribution of engineering capital between groups. Frequency analysis, independent samples t-tests 

and one-way ANOVA analyses were deployed to examine the distribution of engineering capital between 

groups that had previously been acknowledged as inequitably represented within UK engineering 

including: gender, social class, national context (England and Scotland) and academic ability sets for 

mathematics and science. The adoption of these tests was also confirmed as appropriate through testing 

of statistical assumptions; these tests were supported as appropriate for examinations of group 

differences (Ho, 2013). 

For hypothesis three, binary logistic regression analyses were adopted to examine the predictive power 

of the engineering capital model for understanding engineering educational and career inequities. This 

statistical test can determine the ability of models to correctly classify individuals as belonging to certain 

groups – in this case, the ability of engineering capital to correctly classify individuals as aspiring to 

engineering trajectories or not. The ability to clearly reduce aspirations for engineering to a binary yes/no 
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response supported the use of binary logistic regression over other regression approaches (Ho, 2013). The 

adoption of these tests was confirmed as appropriate through validation of test assumptions.  

Following the testing of these hypotheses, an assessment of the engineering capital model and its 

implications was outlined in relation to past literature. Further descriptive statistics were adopted within 

this examination to articulate the differences between those with lesser or greater engineering capital.  

Results and Discussion 

Three hypotheses were statistically tested to confirm the validity of the engineering capital instrument as 

a lens on engineering inequity.  

Hypothesis One: ‘Engineering capital scores will be positively associated with greater educational and 

career aspirations for engineering’.  

Educational Aspiration for Engineering 

Participants were asked if they wished to study engineering in the future with positive answers coded as 

‘Yes’ and those unsure or negative coded as a ‘No’ group. A Welch's independent samples t-test revealed 

significant differences in engineering capital score (t(348.950) = 17.301, p<0.001, d=1.379) with those 

aspiring to engineering education scoring higher on engineering capital (N=228, M=60.95, SD=13.55) than 

those who did not (N=659, M=43.58, SD=11.60) (see Appendix G for statistical outputs). The Cohen’s d 

effect size statistic (d=1.379) indicated a very strong effect demonstrating that engineering capital is a 

deeply significant delineating characteristic between those who do or do not aspire to engineering 

education. These results are outlined in Figure 7.01 below.  
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Figure 7.01: A bar graph of the mean engineering capital score of groups who do or do not wish to study 

engineering in some form following secondary education.  

This can be further examined beyond binary responses by comparing the engineering capital of those who 

aspire to differing pathways for engineering education such as academic study at further education, other 

study after secondary education such as vocational training, or higher education for engineering. The 

underlying presumption of engineering capital – that those who possess greater engineering capital are 

better supported for engineering trajectories – would imply that those who wish to proceed into higher 

levels of education will possess greater engineering capital. A further one-way Welch’s ANOVA was 

adopted to compare the engineering capital scores of those who aspired to engineering education (No 

desire to study engineering, unsure, further education (other/vocational), further education (college/sixth 

form), higher education (university)). This test revealed a significant relationship between engineering 

capital and the level of engineering education aspired to (F(4,211.885) = 88.236, p<0.001, ETA2=0.32) with 

those wishing to study engineering at higher levels possessing significantly greater levels of engineering 

capital (see Appendix G for statistical outputs). The results of this analysis are outlined in Figure 7.02 

below.  
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Figure 7.02: A line graph to show the mean engineering capital score of groups who do or do not wish to 

study engineering: no, unsure, in academic further education, in other further education, in higher 

education. 

However, post-hoc testing questioned how well engineering capital could distinguish those aspiring to 

differing educational pathways. Engineering capital scores significantly differed between those who did 

or did not wish to study engineering, and between those who wished to study non-academic routes in 

further education and those who wished to study engineering at university. A linear positive relationship 

is noted, but post-hoc analyses suggest that those who wish to study engineering on academic routes 

(college/sixth form and university) are difficult to delineate. This is logical, however, as those studying on 

academic routes in college may also wish to later study at university. Further investigation with a larger 

dataset is warranted to examine this dynamic in greater detail including the differences in engineering 

capital of those wishing to study vocational or academic routes in college/sixth form settings.  

The ETA2 effect size of this analysis (ETA2=0.32) indicates a very large effect (an ETA2 score of 0.14 or higher 

is considered to be large) further demonstrating the strength of the relationship between engineering 

capital and educational trajectories for engineering (Richardson, 2011). It may not be surprising that the 

engineering capital instrument is so effective in this regard given that educational aspirations were 

included within the formative logistic regression used to create the instrument (see Chapter Six). 

Regardless, however, this effect size does confirm that this instrument is successful at distinguishing those 
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who do or do not wish to study engineering in the future demonstrating the sensitivity of engineering 

capital to inequities within engineering and highlighting its value as an empirical indicator of future 

engineers.  

Career Aspiration for Engineering 

A Welch’s independent samples t-test was adopted to examine the relationship between engineering 

capital and desire to work in an engineering-related role in the future (“Do you think you might like to 

work in an engineering-related job in the future?”). The t-test revealed significant differences (t(541.201) 

= 20.937, p<0.001, d=1.515) in engineering capital score between those who did (N=316, M=59.54, 

SD=13.15) and did not (N=576, M=41.51, SD=10.58) wish to work in an engineering-related role  (see 

Appendix G for statistical outputs).  

A second Welch’s independent samples t-test was adopted to examine the relationship between 

engineering capital and desire to become an engineer specifically (“I want to become an engineer”). The 

t-test also revealed significant differences (t(152.400) = 16.624, p<0.001, d=1.776), with those wishing to 

become an engineer (N=119, M=64.80, SD=13.76) possessing greater engineering capital than those who 

did not (N=581, M=42.42, SD=11.32) (see Appendix G for statistical outputs). 

The results of these two tests are outlined in Figure 7.03 below. 
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Figure 7.03: A bar graph to show the mean engineering capital score of groups who do or do not wish to 

work in an engineering-related role or to become an engineer.  

The Cohen’s d effect sizes of these findings (desire for an engineering-related role: d=1.515, desire to 

become an engineer: d=1.776) demonstrate engineering capital is a very relevant indicator distinguishing 

those who do or do not wish to work in engineering roles. This highlights the importance of these forms 

of resource and validate the use of engineering capital as a lens on inequity.  

Hypothesis One Discussion 

Educational and career inequities are fundamental, well documented and well commented on aspects of 

the engineering inequities present within the UK. Both the study of engineering and the uptake of 

engineering employment are acknowledged to be inequitable with patterned access, participation, 

representation and success noted for UK engineering study and careers (EngineeringUK, 2018; 

EngineeringUK, 2020).  As an empirical instrument designed to understand engineering inequities, the 

engineering capital model must, therefore, be responsive to such educational and career inequities. This 

necessitated the first hypothesis of this validation of engineering capital: ‘Engineering capital scores will 

be positively associated with greater educational and career aspirations for engineering.’ 

The findings outlined above confirm this hypothesis, validating that the engineering capital instrument is 

responsive to educational and career inequities in engineering. Those that wish to study (M=60.95) or 

work (M=59.54) in the engineering domain possess greater engineering capital than those who do not 

wish to study (M=43.58) or work (M=41.51) in engineering roles. The Cohen’s d effect sizes of these 

comparisons identified very strong effects demonstrating that engineering capital scores strongly 

differentiate those who do or do not aspire to future engineering trajectories. The success with which 

engineering capital can distinguish these groups speaks to the validity, sensitivity and utility of a capital-

based perspective on engineering inequity and would confirm the underlying presumption that those with 

greater capital are better supported for engineering trajectories. As a result, we might consider 

engineering capital as a valid, valuable and relevant theoretical tool and empirical measurement 

instrument to understand and address inequities within the UK context. 

Hypothesis Two: ‘Engineering capital scores will align with previously acknowledged patterned inequities 

within the UK engineering domain’.  

It was next possible to explore the distribution of engineering capital to confirm that engineering capital 

aligns as expected with understood patterns of inequity. To test this, the engineering capital scores of 
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groups previously acknowledged as inequitably represented within engineering were compared, including 

gender and social class group differences (EngineeringUK, 2018a; EngineeringUK, 2018b). Further 

theoretically valid but infrequently measured group distinctions were also explored, including national 

context within the UK and school academic set as a proxy for academic ability (Chapman & Vivian, 2017; 

Marginson et al., 2013; Wai et al., 2010; Wang et al., 2017). For engineering capital to be validated as a 

useful and valid lens on engineering inequity, the distribution of engineering capital must align to these 

acknowledged patterns of representation within engineering. 

Gender Differences in Engineering Capital 

Gender differences are perhaps the most commonly acknowledged inequity within the engineering 

domain. As of 2021, only 16.5% of UK engineering roles are held by women (EngineeringUK, 2022b) and 

only 20.2% of university undergraduate engineering and technology enrolments in 2020/21 were by 

women (HESA, 2022). This is noted within the thesis dataset where only 16.5% of girls would consider 

studying engineering in some form in the future, compared to 40% of boys. The engineering capital 

instrument must be responsive to such entrenched patterns if it is to be acknowledged as a valid lens on 

engineering inequity. A Welch’s independent samples t-test was utilised to examine the differences in 

engineering capital score by gender group and found a statistically significant difference in scores  

(t(706.293) = 7.816, p<0.001, d=0.536) with boys possessing greater levels of engineering capital (N=388, 

M=52.07, SD=15.98) than girls (N=505, M=44.43, SD=12.28) (see Appendix G for statistical outputs). The 

Cohen’s d effect size (d=0.536) established a medium strength effect of gender group on engineering 

capital score. These findings align to previously acknowledged engineering inequities supporting that 

engineering capital is a valid lens on inequity within the UK context. The results of this analysis are outlined 

in Figure 7.04 below.  
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Figure 7.04: A bar graph to show the mean engineering capital score of gender groups: boys and girls. 

Social Class Differences in Engineering Capital 

Engineering inequities within the UK context are also acknowledged to be patterned by social class in such 

a way that those from more privileged socioeconomic backgrounds are overrepresented within 

engineering roles (EngineeringUK, 2018b). The measurement of engineering capital must therefore detect 

such social class differences in its measurements to be considered valid. To test this a one-way ANOVA 

examined the differences in engineering capital scores of class groups defined in terms of cultural capital 

and found significant differences (F(4,916) = 8.167, p<0.001, ETA2=0.034) with those of higher social group 

possessing significantly greater engineering capital. Post-hoc testing revealed significant differences 

between almost all groups – though the limited representation in the ‘very low’ category (N=10) skewed 

accuracy of findings for this group (see Appendix G for statistical outputs). The ETA2 effect size 

(ETA2=0.034) of this analysis indicates a small-medium effect size of social class differences on engineering 

capital score. This effect size demonstrates that social class (measured with the sociocultural lens of 

cultural capital) does impact engineering inequities as expected. The strength of this effect can be deemed 

as reasonably accurate given the acknowledged skew to privileged groups is moderate – this effect is, as 

expected, less than that of gender differences. The linearity of this relationship between social class and 

engineering capital is consistent with the underlying premise of greater capital relating to greater 

advantage. These results support the validity of engineering capital as a lens on engineering inequity in 
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relation to social class. The results of this analysis demonstrating its linearity is outlined in Figure 7.05 

below. 

 

Figure 7.05: A line graph to show the mean engineering capital score of social class groups defined in 

relation to cultural capital.  

As noted in the chapter research methods section, it is also possible to examine social class in strictly 

economic terms using the IDACI instrument, though such economic framings of social class are noted to 

be of lesser sensitivity in past literature. A one-way ANOVA analysis examined the relationship between 

engineering capital and social class groups based on IDACI quintiles but found no significant differences 

(F(4,601) = 1.182, p=0.318, ETA2=0.008) (see Appendix G for statistical outputs). This suggests that 

economic deprivation, as framed within the IDACI measure, is not related to engineering capital. Given 

the limitations of this approach to operationalising social class and the strong positive results in the first, 

sociocultural framing of social class, we might infer that the economic approach used here with IDACI 

quintiles is not effective. Past uses of this approach in Chapter Four would offer support to this 

assessment.  

Science/Mathematics Academic School Set Differences in Engineering Capital 

Academic ability in science or mathematics is a less commonly considered characteristic of engineering 

inequity in the UK despite the institutionally enforced relationship between performance in these 
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domains and entry requirements to higher levels of engineering study. Within this educational structure 

it would be expected that those with the ‘higher’ academic abilities (as defined by the standards of the 

institution controlling these groupings) would possess greater engineering capital. This was tested with 

two one-way ANOVA analyses.  

The first ANOVA found statistically significant differences (F(3,893) = 5.043, p=0.002, ETA2=0.017) in the 

engineering capital of school science sets. Post-hoc testing revealed significant differences between the 

‘middle’ and ‘higher’ sets, and the ‘middle’ and ‘lower’ sets but no difference between the ‘higher’ and 

‘lower’ sets (see Appendix G for statistical outputs). The ETA2 effect size (ETA2= 0.017) indicates a small 

effect of academic set for science on engineering capital scores. These results are outlined in Figure 7.06 

below.  

 

Figure 7.06: Bar graph to show mean engineering capital by academic set for science. 

A second one-way ANOVA found statistically significant differences (F(3,897) = 4.272, p=0.005, 

ETA2=0.014) in engineering capital of differing school mathematics sets. Post-hoc testing revealed 

significant differences between the ‘middle’ and ‘higher sets, and the ‘middle’ and ‘lower sets but no 

difference between the ‘higher’ and ‘lower sets (see Appendix G for statistical outputs). The ETA2 statistic 

(ETA2=0.014) indicates a small effect size.  These findings are generally consistent with the assessment of 

science academic sets. These results are outlined in Figure 7.07 below. 
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Figure 7.07: Bar graph to show mean engineering capital by academic set for mathematics. 

It must be noted that the sample size for the ‘lower sets’ group was disproportionately small (Science: 

N=48, 5.2% of total sample; Maths: N=48, 5.3% of total sample) which may compromise the accuracy of 

measurement for this group. However, this concern is diminished with examination of the remaining 

groups: it would be expected that the ‘no set structure at school’ group mean score would equal the 

average of lower, middle, and higher set means given the natural mix of students within a school without 

a set structure to academic classes. The mean score of lower, middle and higher sets for science is similar 

to the no set structure at school for science (mean difference= 1.10), as is the case for mathematics sets 

(mean difference= 0.98) suggesting that the lower sets class may be accurate regardless of the limited 

sampling – but further data collection is warranted.  

These findings outline a relationship within the engineering capital of academic sets but departs from the 

expectation of a linear relationship with notedly higher engineering capital amongst ‘lower sets’ groups. 

These findings would still support the nuance with which engineering capital can examine engineering 

inequities amongst differing groups but challenges the notion that those ‘high ability’ individuals must be 

the only ones to possess high levels of engineering capital. The novelty of these findings is discussed later 

in this chapter.   
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Whilst often generalised to a UK-wide perspective it must be acknowledged that the UK contains four 

devolved administrations resulting in distinct institutional practices and policies which may influence 

engineering inequities. This is particularly salient in educational research given distinctions in educational 

institutions between the four nations. However, underlying these institutional differences are remarkably 

similar societies and cultural contexts suggesting a homogeneity that may limit the degree to which 

engineering capital differs between these contexts given the sociocultural underpinning of engineering 

capital. Participants within this thesis were recruited from both Scotland (N=89) and England (N=832) 

allowing a comparison of engineering capital within these populations 

An independent samples t-test was used to examine the difference in engineering capital scores by 

national context, comparing England and Scotland, and found no significant differences between the two 

nations (t(919) = 0.155, p=0.877, d=0.017) with no differences between the scores of England (M=47.70, 

SD=14.41) and Scotland (M=47.45, SD=14.61) (see Appendix G for statistical outputs). This suggests that 

the two populations possess similar volumes of engineering capital and that the two devolved approaches 

to engineering education may not produce a notable difference in engineering capital – but this would 

need to be examined with a larger and representative sample to confirm.  This result could also be 

interpreted as supportive of the validity of engineering capital instrument given that engineering 

inequities are noted in both national contexts (APPG on Diversity and Inclusion in STEM, 2021; Scottish 

Government, 2020).  

Hypothesis Two Discussion 

Engineering inequities within the UK context are long acknowledged with distinct patterns of access, 

participation, success and representation amongst certain groups leading to an overrepresentation of 

white males from more privileged socioeconomic backgrounds and underrepresentation of woman, 

people from non-white ethnicities, and those from less privileged backgrounds (EngineeringUK, 2018a; 

EngineeringUK, 2018b; EngineeringUK, 2020). In Chapter One such framings of inequity are compared to 

key performance indicators of the journey to equity but criticised as lacking deeper utility in 

comprehending the underlying mechanics which shape these patterns. The engineering capital model and 

instrument is offered as a richer lens on engineering inequities but to be accepted must align with these 

longstanding patterns of inequity. This test of ‘concurrent validity’ determines the value of engineering 

capital in its consistency with past findings which in turn supports the validity of its further insights (Elia 

& Stratton, 2011). Examinations of gender, social class, academic set and national differences each 

confirm the concurrent validity of engineering capital and align its insights to past literature. 
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The engineering capital instrument is sensitive to long-recognised engineering gender inequities finding 

that, as expected, boys possess greater engineering capital (M=52.07) than girls (M=44.43). This is 

consistent with a wealth of past literature that demonstrates findings such as a greater interest in 

engineering roles, self-identification with engineering as a domain and participation with engineering 

trajectories amongst boys (EngineeringUK, 2018a; Hutchinson & Bentley, 2011). The finding also indicates 

that even relatively small differences in scores (mean difference 7.64 on a scale from 0 to 105) can 

represent profound differences in real world settings – such as the significant gendered inequity present 

within the engineering domain represented by 7.64 points of difference. This speaks to the additive effect 

of capital and would support the potential impact of interventions that address specific aspects of 

engineering capital. 

The engineering capital instrument also displays concurrent validity with social class inequities for 

engineering. When social class is measured with the sociocultural lens of cultural capital those of greater 

social advantage are found to possess greater engineering capital. These findings are also consistent with 

acknowledged social class inequities within engineering which skew participation to those of greater social 

advantage (EngineeringUK, 2018b). However, this investigation of social class also finds no significant 

difference in engineering capital when social class is examined in strictly economic terms through the 

IDACI index of economic deprivation.  

Furthermore, critique of these inconsistent findings would seemingly support the positive association 

identified with social class and confirm the validity of engineering capital as a lens on social class 

inequities. First, past literature acknowledges that sociocultural framings of social class, such as the 

cultural capital perspective utilised in this thesis, are often more sensitive and insightful than strictly 

economic structures of social class differences (Davis-Keane, 2005; McMaster, 2017). This would support 

the validity of the sociocultural finding and limit support for the insignificant economic differences 

identified in the two tests. It is possible that the social class group distinctions in engineering are weak as 

to only be detectable by the more sensitive sociocultural perspective. The ETA2 of this analysis (ETA2 

=0.034) would support this as only a small-moderate effect is present suggesting the more sensitive 

framing of social class is warranted. Second, it must be acknowledged that sociocultural elements of social 

class, such as parental occupation or participation with cultural contexts, are acknowledged as relevant 

to engineering inequities. Within one sample of UK engineers, 8.6% of individuals reported an engineering 

employed or formerly employed parent (Laurison & Friedman, 2016). Participation with STEM cultural 

contexts such as science museums are acknowledged as mediated through familial influences in an 
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inequitable manner (Godec et al., 2022). These findings thereby demonstrate that sociocultural 

characteristics of class are relevant to the engineering domain validating the value of the engineering 

capital model which can detect differences in these forms of social class indicators. Finally, it must be 

noted that the contents of the engineering capital instrument itself are sociocultural, rather than 

economic, in nature. The model and instrument contain sociocultural characteristics such as ‘engineering 

literacy’ or ‘engineering dispositions’ but does not contain the factors central to economic framings of 

inequity such as household income. It must therefore be acknowledged that the instrument of 

engineering capital is itself inherently better aligned to a sociocultural lens of social class. These points, 

collectively, speak to the validity of the sociocultural social class findings within this thesis and thereby 

establish the sensitivity of engineering capital to social class differences. This supports the concurrent 

validity of engineering capital as a novel lens on engineering inequity. Further examination is warranted, 

perhaps making use of multiple sophisticated measures of social class and a large quantitative sample to 

further articulate the nuance in social class differences and the engineering domain.  

The confirmation that engineering capital follows the expected patterns of engineering inequity in gender 

and social class support the concurrent validity of engineering capital as a model and instrument exploring 

engineering inequity. This support is further built on through examinations of less commonly measured, 

but theoretically valid, group differences in the engineering domain. The engineering capital of academic 

sets for science and mathematics, which might be understood as an indicator of how schools view their 

most ‘able’ students, are found to be patterned demonstrating inequities within academic ability. A 

patterned relationship between capital and academic ability or achievement is consistent with the 

traditional Bourdieuian perspective that positions the education system as an institutional extension of 

the dominant culture that better serves those possessing greater cultural capital (Bourdieu & Passeron, 

1977; Bourdieu, 2002; Nash, 1990). This produces greater ease for those with cultural capital providing an 

educational advantage. Given this, we might expect that those in higher academic sets for science or 

mathematics would possess the greatest levels of engineering capital. However, wider literature would 

also suggest that those in lower academic sets may possess greater engineering capital. Engineering as a 

domain can be acknowledged as more ‘body-orientated’ involving key skills and practices such as 

visualisation and spatial reasoning (Hsi et al., 1997).  This thereby represents a more ‘embodied cognition’ 

than other more mind-orientated subjects such as science or mathematics (Pleasants and Olson, 2019; 

Sullivan, 2018). A more embodied domain such as engineering may challenge the convention of the ‘able’ 

learner institutionalised through an academic set structure organised around mind-orientated subjects 

such as science or mathematics. As a result, there is a reasonable expectation that those in lower academic 
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sets for subjects such as science or mathematics may be in possession of greater capital within the 

engineering domain. The findings within this thesis confirm both expectations. The difference in 

engineering and science capital scores for those in differing ability sets for mathematics – a subject used 

in both science and engineering – differ. Where science capital mean scores are largely the same between 

those in lower (36.42) and middle ability sets (37.07) (mean difference = 0.65), these groups possess 

differing levels of engineering capital with those in lower sets possessing greater engineering capital 

(52.29) than those in middle sets (45.77) (mean difference = 6.52). This is visualised in Figure 7.08 below. 

A similar but weaker pattern of results are found for science academic sets with the mean difference 

between those in lower and middle sets for engineering capital (mean difference = 2.52) compared to 

science capital (mean difference = 0.65). These findings further demonstrate the novel insight of 

engineering capital and the distinction of the engineering domain in comparison to science. This finding 

suggests that those in lower ability mathematics groups are more readily provisioned with resources that 

will support their aspirations in engineering than they are with resources in support of science aspirations. 

The pattern of data highlights yet another distinction between science and engineering in real world 

contexts and further challenges the notion that a ‘science first’ structure to the education system is 

compatible with supporting engineering, as discussed in Chapter One. These findings also suggest that 

mathematics and science may offer distinct value in supporting future engineers. This may inform 

interventions to combat inequities in the engineering domain: mathematics may offer novel strategies, 

including curricular designs or pedagogical approaches, to combat inequity and widen participation with 

engineering. The relationship between capitals for science and engineering and academic ability should 

be further investigated to explore how the greater embodiment of engineering interacts with the 

supportive capital possessed by differing cohorts. 
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Figure 7.08: Science and engineering capital scores for middle and lower ability mathematics sets.  

The confirmation of both literature-led expectations of academic sets and their possession of engineering 

capital is insightful and a powerful validation of the engineering capital lens on engineering inequity. The 

confirmation of both literature-led findings supports the validity and sensitivity of the engineering capital 

instrument but also acknowledges its capacity to support novel knowledge development and synthesis. 

Given the limited examination of academic set structure and engineering trajectories within past 

literature these findings demonstrate a meaningful and novel development in the understanding of who 

is supported to become an engineer within UK educational institutions. This finding has implications for 

how trajectories towards engineering are structured: the finding that those in lower science and 

mathematics may possess the resources to support individuals to become engineers is at odds with the 

institutional pipeline to higher education which frequently requires achievement in mathematics or 

physics qualifications. In this way, the engineering capital instrument can provide novel insights into not 

only participation with engineering but also the impact of the institutional structures which shape the 

engineering population. These insights would align with patterned outcomes from engineering 

trajectories that allow some to become ‘professional engineers’ through accredited higher education 

pathways and those ‘engineering technicians’ who train through vocational routes. The engineering 

capital examination within this thesis suggests that the distinction of these two groups, itself a form of 

inequity given unequal standards of employment and benefits, may be rooted in how young learners are 
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stratified by schools according to assessments of ‘ability’. This further demonstrates the significance of 

examining secondary school-aged samples despite the general focus on later stages of education within 

engineering educational research. These novel insights not only demonstrate that the engineering capital 

model and instrument align to patterns of inequity but highlight its value as a deeply insightful, critical 

lens on the place, participation, and structure of engineering within UK society.  

The concurrent validity of the novel engineering capital instrument to established patterns of engineering 

inequity confirm the prediction of hypothesis two and support the utility and relevance of engineering 

capital as a lens on engineering inequities. This supports the value of this novel development in relation 

to the economic and social justice considerations of engineering access, participation, success 

representation in the UK context.  

Hypothesis Three: ‘Engineering capital scores will be capable of predicting aspirations for engineering 

education or careers amongst young learners’.  

Having established engineering capital as relevant to group distinctions for engineering, it is next possible 

to investigate the relative importance of engineering capital to engineering inequities. As even small 

effects can appear significant within large samples, it is necessary to test the relative importance of 

engineering capital to patterns of inequity. Though not designed as a predictive model, the ability of 

engineering capital to predict educational or career aspirations of young learners is a useful test to gauge 

the impact of engineering capital on these patterned inequities. This ‘predictive validity’ can determine 

the value of engineering capital as a meaningful, succinct lens on the complex and widely shaped patterns 

of aspiration. If the engineering capital instrument can be used to correctly predict aspirations for 

engineering, then this would indicate that the engineering capital an individual possesses is deeply 

influential in determining patterns of aspirational inequity.  

To test this binary logistic regression analyses were adopted to examine the degree to which engineering 

capital scores could accurately classify engineering inequities.  

The first binary logistic regression examined the relationship between engineering capital and educational 

aspirations. A statistically significant regression model was established (x2(1) = 271.705, p<0.001) that 

explained 38.8% of the (Nagelkerke R2) variance in educational aspiration data. The engineering capital 

model correctly identified 80.6% of participants as aspiring or not aspiring to engineering educational 

trajectories – a 91.8% accuracy at identifying those that did not aspire, and a 48.2% accuracy for those 

that did wish to study engineering (see Appendix G for statistical outputs).  
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A second binary logistic regression examined the relationship between engineering capital and career 

aspirations for engineering-related roles. A statistically significant regression model was also established 

(x2(1) = 374.683, p<0.001) that explained 47.1% of the (Nagelkerke R2) variance in career aspiration data. 

The engineering capital model correctly identified 80.0% of participants as aspiring or not aspiring to 

engineering-related careers – an 87.0% accuracy for those that did not aspire, and a 67.4% accuracy for 

those wishing to work in an engineering-related job (see Appendix G for statistical outputs).  

Hypothesis Three Discussion 

These regression analyses demonstrate the significant ability of engineering capital to predict engineering 

aspirations. The instrument can be used to correctly discern the educational aspirations of 80.6% of young 

learners and can also correctly discern the career aspirations of 80.0% of this group.  This confirms the 

third hypothesis (‘Engineering capital scores will be capable of predicting aspirations for engineering 

education or careers amongst young learners’) and thereby indicates that engineering capital is an 

influential indicator associated with engineering aspirations. This supports the predictive validity of the 

novel engineering capital model and instrument. It must be noted that those who do aspire to engineering 

trajectories are more difficult to predict than those who do not – engineering capital can predict 48.2% of 

those who wish to study engineering and 67.4% of those who wish to work in an engineering-related role. 

As expected, these predictive accuracies are lower than those for the overall model. This is unsurprising 

given the complexity and scarcity of aspirations to engineering and the relative abundance of young 

learners who do not aspire to engineering roles. This results in a greater degree of discernment for those 

who do aspire to engineering trajectories. However, the high level of accuracy for those who do not wish 

to study (91.8%) or work (87.0%) in engineering roles is also informative in the pursuit of understanding 

engineering inequities and developing interventions to address them. The judgement of what constitutes 

an ‘acceptable’ predictive power is subjective: a test accuracy of 80% may be unacceptable for a medical 

diagnostic test but would be very strong for a complex sociological phenomenon. The complexity, nuance 

and consequence of inaccurate measurement should contribute to a subjective judgement of 

acceptability. 

Subjectively the performance of engineering capital to correctly predict almost half of engineering 

educational aspirations and more than half of career aspirations can be positively interpreted. With only 

11 items the engineering capital instrument is capable of distinguishing a large proportion of participants 

and their engineering trajectories. This demonstrates that capitals for engineering are influential in 

relating to, or shaping, patterns of engineering inequity. Engineering capital can be judged as significant 
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in relation to educational and career aspirations given this predictive power. The accuracies with which 

engineering capital can predict engineering aspirations is an improvement on the predictive power of 

science capital which can only identify 0.0% of those wishing to study engineering and 0.1% of those 

wishing to work in engineering roles as outlined in Chapter Four. The engineering capital model, as a first 

iteration of an engineering-specific model of capital, can be understood to possess significant predictive 

validity supporting its value and novelty to approaching engineering inequities in the UK context. Future 

work may improve upon this model and its predictive power. 

The Insights of Engineering Capital 

The confirmation of these three hypotheses reinforce the validity of engineering capital as a lens on 

engineering inequities within the UK context. Engineering capital is associated with engineering inequity, 

follows acknowledged patterns of this inequity and can be utilised with decent predictive power to 

understand the educational and career aspirations of young learners.  

Having confirmed that engineering capital is a valid tool it is next possible to explore the insights offered 

by this newly developed model and instrument.  

The Distribution and Distinctions of Engineering Capital Groups 

The degree to which young learners in the UK possess supportive capital for engineering can be examined 

through distribution analysis to better understand the scarcity of supportive resources for engineering in 

the UK. Engineering capital scores were used to code participants as possessing low (0-34), medium (35-

69) or high (70-105) levels of engineering capital. Frequency of membership in each category provides the 

distribution of scores for engineering capital within this sample. These scores are outlined in Table 7.02 

below. 

Table 7.02: Frequency of low, medium, and high engineering capital scores.  

Level of Engineering Capital N Percentage of Total Sample 

Low 175 19.0% 

Medium 656 71.2% 

High 90 9.8% 

 

Only a small proportion of young learners possess a ‘high’ level of engineering capital, which suggests that 

under 10% of this group are strongly provisioned with the social and cultural resources for participation 
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and success in engineering. The frequency of ‘medium’ scores, totalling 71.2% of this secondary school-

aged sample, may appear surprising given the relatively poor presence of engineering within national 

curricula. However, it is important to note that the engineering capital instrument was intentionally 

designed to access resources beyond the classroom setting that may be experienced through lived 

experience given, as introduced in Chapter One, engineering holds a significant historical and 

contemporary role within the UK culture and society. If the engineering capital model and instrument only 

included those forms of capital provided through classroom experiences, then the distribution and 

predictive impact of this instrument would likely differ. The further identification that 20% possess a low 

level of engineering capital does demonstrate that support for engineering is inequitable and that a large 

proportion of young people in the UK are poorly supported with resources for engineering.  

The classification of individuals into groups based on their supportive engineering capital facilitates a 

deeper study of those who are more or less supported for participation with engineering trajectories. 

Engineering capital groups can be compared to not only illuminate who are most supported to become 

engineers but also to identify further distinctions associated with the possession of engineering capital 

such as how engineering is conceived of, valued, previously encountered and aligned to learning.  

‘High Engineering Capital Group’  

Those with a ‘high’ engineering capital scored from 70 to 105 on the 0-105 scale of engineering capital. 

This group represented only 9.8% of the 921 participant sample and can be understood as those who 

possess the greatest supply of resources for engineering and thereby are most supported to become 

engineers. In terms of personal characteristics those with ‘high’ engineering capital are disproportionately 

male (76.4% male, compared to a sample average of 43.4%) and more likely to come from more privileged 

social backgrounds (62.2% come from ‘high’ or ‘very high’ cultural capital groups, compared to a sample 

average of 50.0%).  

Those with ‘high’ engineering capital scores are more likely to have encountered engineering experiences 

in their life so far. They are: 

• More likely to know an engineer (70.5%, compared to a sample average of 49.5%), 

• More likely to have experienced an engineering-related educational programme (22.2% 

compared to the sample average of 10.9%) such as a Big Bang Science Fair or Primary Engineer 

programme, 
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• And more readily recognise engineering within their curricular educational experiences to date 

(86.7%, compared to an average of 68.4%).  

As expected, those with ‘high’ engineering capital scores aspire to engineering roles more frequently. 

They are: 

• More likely to want to study engineering (77.5%, compared to the average 25.7%),  

• More likely to desire to work in engineering-related roles (91.0%, compared to the average 

35.4%).  

The ‘high’ engineering capital young learners are also more positive about the openness of engineering 

trajectories. They: 

• Possess a higher rate of self-belief that people like them work in engineering (60.0%, compared 

to an average 15.0%), 

• Are slightly more likely to think that anyone can become an engineer (65.5%, compared to an 

average 62.7%).   

Those with ‘high’ engineering capital not only possessed these more positive images of engineering but 

also hold more positive attitudes towards themselves and engineering. This group: 

• Express a greater belief that engineering is useful to know about (87.7%, compared to the average 

48.4%), 

• Are less likely to see engineering learning as boring (2.2%, compared to the average of 21.8%), 

• Are more likely to believe that engineering learning is good for their own future (88.7%, compared 

to the average of 38.4%), 

• Are more likely to believe they could be successful in engineering in the future (82.3%, compared 

to the average 29.4%). 

These individuals with higher levels of engineering capital are overwhelmingly more positive about 

engineering, their own abilities and attitudes towards engineering, and their future regarding the 

engineering domain. Although many of these considerations are not included within the engineering 

capital instrument, we can see that the possession of engineering capital is associated with an array of 

positions and characteristics that can support a future engineer. This supports that the engineering capital 
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perspective is indicative of the differences in lived experience in engineering and therefore a valuable lens 

on engineering inequity.  

‘Low Engineering Capital Group’ 

Those with a ‘low’ engineering capital scored from 0 to 34 on the 0-105 scale of engineering capital. This 

group represented 19.0% of the 921 participant sample and can be viewed as those who possessed the 

least resources for engineering and thereby could be understood as the individuals least supported to 

become an engineer.  

This group are disproportionately female (69.0%, compared to the average 56.6%) and from less privileged 

social backgrounds (22.3% came from ‘very low’ or ‘low’ cultural capital groups, compared to the average 

of 12.7%).  

This group are less likely to have experienced engineering in their lives. They are:  

• Less likely to know an engineer (31.2%, compared to the average 48.5%),  

• Less likely to have experienced an engineering-related school programme (6.9%, compared to the 

average 10.5%), 

• And are more likely to report having experienced no engineering in their past curricular learning 

experiences (49.1%, compared to the average 31.6%).  

This group are much less likely to align themselves to engineering trajectories. They are: 

• Less likely to aspire to engineering education (3.1%, compared to an average of 25.7%), 

• Or engineering-related employment (4.8%, compare to an average 35.4%).  

Individuals with low engineering capital were less positive about themselves in relation to engineering 

and less positive about the openness of engineering futures. They report:  

• More frequently that people like them are not involved in engineering (70.5%, compared to the 

average 44.1%),  

• A lower belief that they could be successful in engineering in the future (0.6%, compared to the 

average 31.6%) 
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• And are less likely to believe that anyone can become an engineer (22.8%, compared to the 

average 62.7%).  

Those with low levels of engineering capital also report more negative learning interest and expectations 

for engineering. This group are: 

• Less likely to think that engineering is useful to know about (13.6%, compared to an average 

48.4%),  

• More likely to think that learning about engineering is boring (44.1%, compared to an average 

21.8%),  

• Less likely to think that engineering is a good thing to learn about for their future (10.5%, 

compared to an average of 38.4%). 

The Broader Insights of Engineering Capital 

The distinctions identified between the ‘high’ and ‘low’ groups demonstrate the wider inequities with 

which engineering capital is associated. As expected, those in the ‘high’ engineering capital group possess 

much greater aspirations for engineering than those in the low group in line with the now proved 

underlying premise that capital positively aligns to trajectories for engineering. But the distinctions 

between the ‘high’ and ‘low’ groups extend beyond aspirations: differences are also noted in how these 

groups conceive of, experience and identify with engineering. The ability of engineering capital to discern 

these differences, without directly examining these topics, demonstrates the central importance and 

fundamental nature of capital to patterns of inequity. The multifaceted capacity of engineering capital 

reinforces its value as a model and instrument capable of reflecting deeper characteristics between 

individuals and groups.   

Those in the ‘high’ engineering capital group more frequently report a recognition of engineering within 

their curricular learning and greater participation in curricular-mapped engineering experiences. These 

findings demonstrate that the engineering capital perspective is aligned with formal educational 

experiences – this is particularly salient given that formal learning experiences were not included within 

the engineering capital model or instrument due to the limited presence of engineering within UK 

curricula. This finding has two potential explanations that are not mutually exclusive. First, it is possible 

that the possession of engineering capital supports learners to recognise engineering within the curricula 

despite engineering not existing as a distinct curricular subject. Such ‘re-cognition’ is dependent on ‘prior 
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cognition’ which can later be recollected or found to be familiar (Diana et al., 2006). In this case, the 

possession of engineering capital implies a grounding of prior cognition that supports recognition of 

engineering within learning experiences. This explanation would be supported by literature on 

metacognitive processes which highlight the importance of conscious ‘recognition’ or ‘clarity’ in learning. 

The capacity to ‘think about thinking’ and find engineering in learning may therefore be influenced by the 

possession of engineering capital (Dunning et al., 2003). This is consistent with the theoretical structure 

of engineering capital which includes forms of capital such as consumption of engineering media, talking 

with others about engineering or the development of engineering literacy which may facilitate learning 

outside of the classroom which in turn shapes the interpretation of classroom experiences. Given the 

recognised importance of metacognitive processes to learning this finding suggests that those with 

engineering capital are capable of more profound and meaningful learning which may subsequently 

influence learning experiences and achievement for engineering perpetuating patterns of inequity in a 

Bourdieuian ‘social reproductive’ fashion.  

A second potential interpretation of this greater recognition of engineering amongst those with ‘high’ 

engineering capital is that these individuals have experienced a different learning experience within 

formal education than those with lesser engineering capital. Learning experiences can be shaped by 

school-based factors such as pedagogical approach or curricular design. Pedagogies involving greater 

signposting or scaffolding, which may be understood in terms of Vygotsky’s ‘zone of proximal 

development’, are understood to support a productive learning environment (Shabani et al., 2010). 

Similarly, discursive peer-led pedagogies introduce the ability for learners to shape the content of formal 

education. Peer-led discourse or curricular structures may allow engineering to be brought into learning 

experiences despite its absence within curricula which may explain the greater recognition of engineering 

amongst those with high engineering capital (Keerthirathne, 2020). This fluidity of curriculum 

interpretation and provision would be supported by past literature acknowledging the situational factors 

which shape curriculum delivery (Wang et al., 1990).  

This second interpretation is consistent with the confidence and professional qualifications of UK 

teachers. Only 35.2% of one sample of UK STEM teachers reported they knew a lot about engineering, 

with only 45.4% feeling confident talking to their students about engineering careers (EngineeringUK, 

2020). This lack of engineering confidence amongst teachers is noted elsewhere (Jones et al., 2021; Lewis 

et al., 2021).  As a result, a scarce minority of teachers may be more confident with engineering and 

capable of integrating engineering learning alongside science, technology, or mathematics curricular 
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experiences leading to greater engineering capital amongst a minority of learners. The greater recognition 

of engineering within learning experiences by those in the ‘high’ engineering capital group may in fact be 

reflecting some deeper nuances in school-based experiences leading to greater engineering capital 

development. This warrants further investigation with a larger sample to establish if patterns of 

engineering capital relate to individual teachers or schools to determine the influence of school or teacher 

factors in the development of engineering capital.  

Those in the ‘high’ engineering capital groups also report a greater participation with engineering 

curricular-mapped experiences. Such experiences are perhaps the most common form of structured 

engineering learning offered within UK schools given the lack a distinct curricular subject of engineering 

but are acknowledged as inequitably offered to learners (Morgan et al., 2016). This association further 

demonstrates the sensitivity of engineering capital to distinct experiences for engineering learning. As the 

engineering capital model largely focuses on informal learning contexts further investigation is warranted 

to examine the distinctions of engineering inequity related to school-based factors such as recognition of 

engineering or participation with curricular-mapped experiences. Yet the distinction identified between 

those in ‘high’ and ‘low’ groups does demonstrate the sensitivity of the engineering capital instrument to 

differing classroom experiences highlighting its reach and value.  

The comparison of those with ‘high’ and ‘low’ engineering capital also identified distinctions in learning 

related factors demonstrating that the engineering capital instrument is responsive to characteristics 

relevant to learner dispositions. Engineering capital is found to be positively associated with learning 

indicators: those in the ‘high’ engineering capital group possess greater self-identity, self-efficacy, and 

affective-cognitive engagement with engineering. Self-identity, as an individual’s self-appraisal or self-

concept, is associated with motivation, academic performance, and academic decision making (Freund & 

Kasten, 2012; Guay et al., 2004; Hardy, 2014). Self-efficacy, as an individual’s belief in their likelihood of 

future success, is also associated with academic success and academic decision making (Bandura, 1997; 

Hackett et al., 1992; Honicke & Broadbent, 2016; Pampaka et al., 2011). Affective-cognitive engagement, 

including value and interest judgements for engineering, are recognised as influential in academic decision 

making, learning processes and outcomes (Wigfield & Eccles, 2000). The positive association between 

engineering capital and these learning and success indicators demonstrates the nuance with which the 

model and instrument relate to the general alignment of an individual with the engineering domain. This 

further supports the value of engineering capital and supports the importance of these forms of capital in 

distinguishing the educational experience of young learners.  
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These wider distinctions identified between those with higher or lower levels of engineering capital 

demonstrate the broader insights offered by the engineering capital lens. The understanding offered by 

engineering capital scores is not limited to aspirations but can be used to more broadly comprehend and 

empirically examine how engineering is experienced by young people in the UK. This further highlights 

the fundamental character of capital and its significant influence on an individual in line with the work of 

Bourdieu and Bourdieusian scholars. Further applications are necessary to determine the strength and 

significance of these further associations, but the strength of differences identified here, in this first 

application of engineering capital, suggest a meaningful relationship is present. These findings would 

support that engineering capital offers a more insightful perspective on the nuance and underlying 

elements of engineering inequities than the often used ‘key performance indicators’ of engineering 

inequities quoted in contemporary commentary. Engineering capital thereby represents an effective tool 

to aid the study and intervention of skills shortages and social injustices within the engineering domain 

supporting the accomplishment of the objective of this thesis.  

 

A confirmation of domain-specific capital model development 

The successful formation of a valid engineering capital instrument also legitimises the development 

methodology adopted to create this novel tool. This process of forming a domain-specific capital model 

was developed and first applied by Archer et al. (2015) in the creation of the science capital instrument. 

The successful formation of a second domain-specific capital model using this procedure supports its 

utility and effectiveness. Little literature, by Archer and colleagues or others, has explicitly outlined and 

critiqued this instrument development process. The lack of past examination necessitated a critical 

examination of the process within this thesis. A four-stage process of Bourdieuian conceptual framing, 

theoretical modelling, empirical instrument formation and validation is outlined and offers a guided 

insight to the methodology through which the capital perspective can be applied in novel domains. The 

creation of a successful engineering capital model and instrument in Chapters Four, Five and Six of this 

thesis thereby represent a unique guidance to the creation of new capital models as a contemporary and 

practical application of Bourdieuian theory. The detailed adoption and critique of this instrument 

development process within this thesis offers valuable guidance on the contemporary application of 

Bourdieuian thinking. Given the ambiguity of the STEM acronym identified within Chapter One and the 

success of this procedure in forming the science and engineering capital models further applications for 

the technology and mathematics domains may be valued as further perspectives on STEM inequity. 
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Conclusions 

In this chapter the validity of the engineering model and instrument have been confirmed establishing 

that the novel development within this thesis is associated with engineering inequities, is consistent with 

past findings and wields a considerable predictive power on aspirations for engineering trajectories. This 

approves the developed engineering capital perspective as a lens on engineering inequities and supports 

the use of the engineering capital instrument to investigate how young learners are supported to become 

future engineers. Wider reflections on the differences between those with higher or lower levels of 

engineering capital highlight the broad reach of this perspective, identifying distinctions in how 

engineering is conceived of, experienced, and related to by young learners. The successful formation of 

the engineering capital model confirms the integrity of the instrument development model utilised to 

form this domain-specific Bourdieuian tool. The findings outlined in this chapter articulate the value, 

novelty and implications of engineering capital as a new tool to understand and address inequitable 

patterns of access, participation, success and representation within the engineering domain.  
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CHAPTER EIGHT: FURTHER DIMENSIONS OF 

ENGINEERING CAPITAL 

Introduction 

In previous chapters of this thesis a novel model and instrument of engineering capital was developed 

and validated as a useful lens on engineering inequity. In this chapter this affirmation will continue in 

recognition that validation is an ongoing process. It is considered that the developed engineering capital 

model is only the first domain-specific model of capital for the UK engineering domain and that future 

iterations of the model and instrument may further improve on its scope and application. Five further 

dimensions of engineering capital will be theoretically and empirically examined as future aspects of 

engineering capital models. First, two current subcomponents of engineering capital (‘engineering 

literacy’ and ‘knowing an engineer’) will be revisited to outline the value offered by investigating and 

improving existing elements of engineering capital. Second, two new subcomponents of engineering 

(‘familial capital’ and ‘linguistic capital’) will be explored as further aspects of engineering capital. Finally, 

a novel application of engineering capital will be explored to determine the usefulness of applying 

engineering capital to learning experience in classroom settings. Commentary on empirical findings will 

outline future avenues of iteration and research enquiry to strengthen understanding of engineering 

inequities in the UK. 

Iterating Engineering Capital 

Although the engineering capital model developed within this thesis has been validated as a useful lens 

on engineering inequity it is important to recognise that this model is only one possible Bourdieuian model 

of capital in the engineering domain. If the four stage instrument development process adopted in this 

thesis was completed using other forms of capital, or if a distinct development approach was adopted, 

then it is likely that the resulting tool would differ from the exact model of engineering capital created in 

this thesis. Whilst it would be expected that any model of Bourdieuian capital would follow the same 

underlying premise - that those with greater capital are better supported to succeed – it is possible that 

the accuracy and value of these distinct models may differ. As a result, we must accept the possibility that 

this first engineering capital model is not optimal and that future iterations of engineering capital must 

be investigated to ensure maximum utility in understanding and addressing engineering inequities.   
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Such a strategy of ongoing iteration is consistent with the practices of instrument development outlined 

in published literature that recognise validation as an ongoing process to confirm lasting validity in a 

changing world (Benson & Clark, 1982; Streiner & Kottner, 2014). A need to iterate and adapt to changing 

contexts is also consistent with the interpretation of the Bourdieuian framework adopted in this thesis 

(outlined in the Methodology chapter) which acknowledges the need to apply Bourdieuian thinking in a 

contemporary fashion: to challenge the primacy of ‘high arts’ in understanding ‘legitimate’ culture, to 

apply the lens in a granular fashion to specific domains, and to acknowledge the malleability of capital 

over time (Archer et al., 2015; Prieur & Savage, 2013; Sullivan, 2001). This interpretation fundamentally 

acknowledges the changeability of capital which rationalises an iterative strategy of deployment that can 

be responsive to change over time. An iterative approach to supporting engineering capital is thereby 

consistent with both the best practices of instrument development and the core framework of this model.  

Multiple approaches of iteration could be adopted to ensure the ongoing validity and maximum utility of 

engineering capital. These approaches may include revisiting the existing subcomponents of engineering 

capital, the introduction of new elements into this model or the application of engineering capital to novel 

contexts to widen its span of application. Each approach would represent a re-examination of capital 

within the engineering domain that would support the value of engineering capital and its use to 

understanding inequity. In the following chapter each of these three strategies will be adopted to identify 

future avenues of investigation and iteration of engineering capital.  

First, to test the iteration of improving existing elements of engineering capital two current 

subcomponents (‘engineering literacy’ and ‘knowing an engineer’) will be revisited. Second, to test the 

iteration of introducing new elements of engineering capital two new forms of capital (‘familial capital’ 

and ‘linguistic capital’) will be explored in relation to the engineering domain. Finally, to test a further 

application of engineering capital beyond its focus on future engineering trajectories the association 

between engineering capital and learner engagement will be examined to determine the relevance of this 

model to classroom settings. Each of these five considerations will be theoretically and empirically 

explored to identify avenues of iteration to improve upon the engineering capital model and instrument 

developed in this thesis.  

Revisiting Existing Subcomponents of Engineering Capital 

The seven subcomponents of engineering capital (outlined in Chapter Five) represent the sum of inputs 

that are considered as aspects of capital in this model and instrument. These three forms of cultural 
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capital, two forms of social capital and two forms of behaviours and practices were theoretically 

supported by past literature as compatible with a domain-specific application of Bourdieuian capital and 

supported by wider literature as relevant to the engineering domain (Archer et al., 2015). Future iterations 

of engineering capital may seek to improve upon the framing of these seven subcomponents through re-

examination of the scope, structure or operationalisation of these forms of capital.  

‘Engineering Literacy’ and ‘Engineering Habits of Mind’  

Within this thesis ‘engineering literacy’ is understood as a sufficient possession of engineering knowledge, 

skills and ways of ‘thinking’ and ‘doing’ in the engineering domain. The ‘ways of thinking and doing’ within 

this conceptualisation refer to habits of mind: the ways in which engineering is embodied within the 

individual, their thought processes and actions. An individual in possession of engineering habits of mind 

will think and act in a manner that is characteristic of an engineer. Habits of mind have been used to not 

only understand literacy and intelligence (Costa & Kallick, 2000) but also as an approach to structuring 

learning and its outcomes (Campbell, 2006; Costa & Kallick, 2008). Though models of engineering literacy 

are rare several acknowledge the importance of habits of mind to a conceptualisation of the ‘literate 

engineer’ (Chae et al., 2010; Huffman et al., 2018). Within the engineering capital subcomponent of 

‘engineering literacy’ this is operationalised with items examining engineering qualities such as 

imagination or understanding of how to design and make, but the substantial span of this initial theoretical 

model of engineering capital limited the degree to which engineering habits of mind could be explored.  

Given the theoretical recognition of habits of mind within models of engineering literacy future iterations 

of engineering capital may wish to further examine the association between this model and engineering 

habits of mind. One significant body of literature from the UK context that may be drawn on to inform 

this further examination is that of Lucas and Hanson who identified six engineering habits of mind: 

creative problem solving, improving, problem finding, adapting, visualising, and systems thinking (Lucas 

& Hanson, 2014; Lucas & Hanson, 2018; Lucas et al., 2014). These habits of mind are outlined in Table 

8.01 below.  

Table 8.01: Lucas and Hanson’s Engineering Habits of Mind and summarised definitions. 

Habit of Mind Summarised Definition 

Creative Problem Solving The generation of ideas and solutions through cross-cutting, 

critiquing, and working as a collective. 

Improving The enhancement of things through experimentation, design 

processes, experimenting and testing. 
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Problem Finding The development of questions and hypotheses, testing of existing 

solutions, and strategic verification of results. 

Adapting The reworking of existing things to novel contexts or purposes 

through modification or change. 

Visualising The imagining of abstractions, conceptualisations, and processes 

through which these may be operationalised.  

Systems Thinking The cross-cutting structuring of connections and interrelations 

between things, identification of patterns, and elemental interactions 

within holistic structures.  

 

Though such habits of mind are recognised within the theoretical model of engineering capital the six 

habits identified by Lucas and Hanson could not be operationalised in the formation of engineering capital 

due to the risk of skewing the ‘engineering literacy’ measurement with six items addressing habits of mind. 

This omission was further supported given the limited replication of this model of engineering habits of 

mind amongst secondary school learners - it was necessary to only generalise habits of mind within the 

formative model and relegate a further investigation to post-formation where the relationship between 

these habits of mind could be better established in relation to a structured model of engineering capital. 

Now that a complete model of engineering capital has been formed it is possible to investigate how 

engineering habits of mind relate to this model to determine the relevance of these six attributes to 

patterns of engineering inequity. Given the significant role of engineering literacy within the now 

validated measure of engineering capital it would be expected that engineering habits of mind are also 

positively associated with greater engineering capital and trajectories for future engineering. This 

examination would represent an elaboration of the engineering literacy subcomponent within the 

engineering capital perspective. 

‘Knowing an Engineer’ and ‘Knowing a Hobbyist Engineer’ 

The ‘knowing an engineer’ subcomponent of engineering capital is identified as a form of social capital 

relevant to the engineering domain. This relationship is argued to potentially benefit a young learner 

through access to resources that positively impact learning and aspirations (Cheryan et al., 2011) with this 

benefit identified in both national and international study of the engineering domain (Plasman et al., 2021; 

Takruri-Rizk, et al., 2008; Zhang, 2021). Within the model of engineering capital ‘knowing an engineer’ is 

framed in relation to employment; parental employment is identified as particularly salient, with 8.6% of 

one UK sample of engineers possessing an engineer parental figure (Laurison & Friedman, 2016). 

However, the opportunity to iterate the engineering capital model presents the opportunity to reflect 
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further and expand our understanding of how social relationships may influence engineering inequities. 

It should be recognised that engineering is not only an occupational practice but can be embodied and 

actioned in non-professional contexts. It may therefore be relevant to consider a subcomponent of 

‘knowing a hobbyist engineer’: someone who participates in non-employment practices of engineering 

within their lives in a more recreational fashion. 

Little contemporary literature has examined the benefits of access to engineering hobbyists in the UK 

context but the underlying premise of social capital in the engineering capital model (that close social 

connections to engineering provide a potential resource to young learners) is theoretically applicable to 

hobby activity. ‘Play activity’ has long been recognised in literature examining the patterned participation 

of young learners with engineering (Cooper & Robinson, 1989). A wider body of literature has explored 

‘making’ as non-occupational practices of engineering (Graham & Crawley, 2010; Vossoughi & Bevan, 

2014). These ‘civilian engineers’ frequently possess engineering educational or career backgrounds, which 

suggests a degree of interconnectivity between ‘knowing an engineer’ and ‘knowing a hobbyist engineer’ 

(Foster et al., 2018). However, making is acknowledged as also inclusive of artistic backgrounds 

demonstrating a distinctiveness to ‘knowing a hobbyist engineer’ (Foster et al., 2018). This is relevant to 

the scope of engineering capital and its consideration of social capital influences as it widens the social 

network that is recognised to be of influence. ‘Knowing a hobbyist engineer’ was omitted from the 

formative model of engineering capital due to the relative lack of past examination of social connections 

to hobbyist engineers within capital-based models. Where other subcomponents of engineering capital 

had been applied to specific domains within the work of Archer et al. (2015) ‘knowing a hobbyist scientist’ 

was not explicitly included lowering the threshold of certainty that this form of capital was appropriate 

for domain-specific examination. This subcomponent also highlights the risk of generalising across 

domains and the value of developing distinct domain-specific models of capital: as a more practice-led 

domain it is likely that engineering features more within hobbyist activities than the more theoretical or 

intellectual domain of science. This would suggest a greater relevance of ‘knowing a hobbyist’ to the 

engineering domain that would support its inclusion in an engineering capital model. This thereby 

supports the investigation of ‘knowing a hobbyist engineer’ as a feature in future iterations of engineering 

capital.  

Investigating New Subcomponents of Engineering Capital  

Future iterations of engineering capital may look beyond the seven subcomponents of the formative 

model to consider further forms of capital within the engineering domain. The seven subcomponents of 
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the engineering capital model were chosen, in part, due to the support of past literature which validated 

their application in domain-specific models of capital (Archer et al., 2015). Further forms of capital would 

not require this support as their relevance could be established directly in relation to the now formed 

engineering capital model. Wider applications of Bourdieuian thinking within past literature can be drawn 

upon to inform these next subcomponents of engineering capital. The work of Yosso (2005) is a strong 

example of how the Bourdieuian framework can be drawn upon, critiqued and adapted to novel 

applications. Yosso’s ‘Community Cultural Wealth’ model questions the underlying narrative of white, 

male, middle class dominance within the Bourdieuian perspective and introduces the consideration of 

forms of capital held by those Bourdieuian social reproduction would characterise as ‘non-dominant’. This 

interpretation acknowledges that particular groups may possess their own bodies of capital in response 

to their social position. This alternative take on Bourdieuian capital is consistent with the position adopted 

in this thesis that considers the capitals found within particular domains. The ‘Community Cultural Wealth’ 

model identifies many forms of capital including: aspirational capital, familial capital, navigational capital, 

resistant capital, and linguistic capital. Two of these (familial capital and linguistic capital) will be 

considered as potential forms of capital for future iterations of engineering capital.  

Familial Capital 

Familial capital is framed by Yosso (2005) as the “cultural knowledges nurtured among familia (kin) that 

carry a sense of community history, memory and cultural intuition” (p79). This form of capital is noted to 

relate beyond immediate family contexts to wider kinship and community and the history and collective 

experience which binds them. In this way familial capital may be understood as somewhat related to the 

concept of habitus as a system of dispositions, or way of being, that is developed through mimesis from 

early social environments and shapes ways of thinking, interpreting and acting (Wacquant, 2005). 

However, familial capital also extends beyond habitus and its role as a structuring ‘lens’ to consider the 

oppositional distinctiveness of community culture (in relation to a dominant other culture) and the 

resources that can be drawn from this community identity and experience. Whilst it is likely that habitus 

and familial capital interact the forms of capital offered through a community and its historical context 

are theoretically distinct. The concept of familial capital is also relevant to the concept of social capital: 

both are concerned with wider group connections and their influence on access to capital. However, 

where social capital is concerned with “the sum of resources, actual or virtual” within a network familial 

capital relates to the forms of capital inherent to a particular community that develop in relation to the 

dominance of another culture (Bourdieu & Wacquant, 1992, p119). Familial capital can thereby be 
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possessed by an individual and does not depend on the potential access facilitated by another highlighting 

its conceptual distinctiveness. Familial capital then is offered as a conceptual perspective on local 

community and culture that is distinguished from the dominant and prevalent status quo. 

Familial capital may hold a relevance to the engineering domain and its relationship to community. 

Engineering can be understood as possessing a limited presence within the contemporary culture of UK 

society. Whilst engineering contributes greatly to the UK economy public literacy and identity with 

engineering is limited (EngineeringUK, 2018; Institution of Mechanical Engineers, 2016; Institution of 

Mechanical Engineers, 2017; Marshall et al., 2007). However, familial capital provides the opportunity to 

move beyond a national generalisation to focus on both a local and historical framing of engineering and 

the impact of belonging to a community with an engineering connection. The local and historical 

perspective on engineering is highly relevant to the UK and its past as a goods-based, engineering industry 

active nation (Buchanan, 1985; Hudson & Hudson, 1989). It seems relevant to consider that particular 

regions, perhaps dominated by engineering industry in the present or past, may carry some ‘community 

history, memory and cultural intuition’ which interacts with engineering inequities. Communities such as 

Sheffield (once and presently connected with the steel industry), Leyland (once dominated by the 

automotive industry) or the Black Country (once dominated by mining) may carry familial capital for 

engineering which distinguishes these regions from others that lack this connection to the domain. 

Engineering familial capital may represent an important dimension of engineering inequity that is largely 

absent from contemporary study. An understanding of these ‘pockets’ of familial capital may offer a 

perspective on inequity and may offer a perspective on the national engineering inequities in the UK 

through a historical or geographic lens. 

The initial thesis sample was insufficient to infer familial capital through regional comparisons but 

following the creation of the engineering capital instrument it is now possible to examine the association 

between familial capital and engineering capital scores with a less geographically represented sample. It 

is expected that familial capital for engineering will be positively associated with engineering capital – if 

this is proved through further analysis then this would support the inclusion of familial capital in future 

research and iterations of engineering capital.   

Linguistic Capital 

Linguistic capital is framed by Yosso (2005) as “the intellectual and social skills attained through 

communication experiences in more than one language and/or style” (p78). This form of capital supports 
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the generalisable benefit of proficiencies that develop through the use and engagement with multiple 

languages or styles. This is not a radical adoption of Bourdieuian capital with Bourdieu noting the 

importance of language and its relationship with capital (Bourdieu, 1991). Language use may be 

understood as a deeply complex: language use not only requires a knowledge of words and their meaning 

but an understanding of the rules of grammar, socialised practices of use, and coded representation of 

the self to others. Yosso explores this in relation to communities of colour noting that bilingual or 

multilingual groups will carry distinct linguistic experiences with “memorization, attention to detail, 

dramatic pauses, comedic timing, facial affect, vocal tone, volume, rhythm and rhyme” (p79) or artistic 

expression through art, music or poetry. Whilst the engineering domain does not involve a distinct 

language it may be recognised that engineering carries its own vocabulary and style that distinguishes it 

from common use of language. The benefit of general linguistic capital may therefore extend to the 

engineering domain in such a way that those with greater capital are more comfortable and capable of 

engaging in engineering culture. Alternatively, engineering-specific linguistic capital may be examined in 

relation to linguistic ability in relation to the engineering domain. As noted earlier, the development of 

the engineering capital model now facilitates the examination of wider forms of capital that have 

previously not been examined in relation to specific domains. Further investigation is required to establish 

the relevance of linguistic capital to the engineering domain and the role of this form of capital in future 

iterations of engineering capital.  

Further Applications of Engineering Capital 

The iteration of engineering capital also provides the opportunity to consider broader applications of this 

model. The possibility that engineering capital may possess wider utility beyond its specific application in 

this thesis is supported by the foundational importance and influence of capital within the Bourdieuian 

framework (Bourdieu, 1986).  Although developed to better understand engineering inequities amongst 

young learners, particularly in relation to aspiration for future engineering education or careers, the 

validation analyses in Chapter Seven also identify strong associations between the model and learning 

indicators such as identity or engagement. This suggests that engineering capital is relevant not only for 

‘future-orientated’ inequities such as engineering aspirations/trajectories but might also support 

understanding of ‘presently-active’ inequities currently acting on young learners within classroom 

settings. The findings outlined in Chapter Seven demonstrate that those with greater levels of engineering 

capital reported lesser boredom with engineering learning, higher self-belief for engineering, and higher 

outcome expectations for future engineering.  
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Each of these characteristics can be understood as aspects of learner engagement: the alignment and 

investment of a learner to a learning experience that bridges an array of psychological characteristics. 

Definitions of engagement are notably varied with Fredricks et al. (2004) identifying characteristics such 

as learner commitment, participation, or involvement in learning. The engagement concept is explored in 

three strands of research considering the affective, behavioural and cognitive aspects of engagement. 

Affective engagement considers the emotional characteristics of learner alignment to learning including 

attitudes, interests and values such as interest, enjoyment, boredom, anxiety or happiness (Kahu et al., 

2017; Pekrun & Linnenbrink-Garcia, 2012; Wigfield & Eccles, 2000).  Behavioural engagement is concerned 

with observable qualities of learner alignment to learning which may include behaviours expressed in the 

classroom such as task attention, participation with discourse, or wider participation in informal learning 

(Finn & Zimmer, 2012; Hospel et al., 2016). Cognitive engagement explores the investment of learners to 

the process of learning and the deployment of attention and effort to accomplish learning outcomes, 

including motivations, metacognitive processes or learning strategies (Blumenfeld et al., 2012; Lawson & 

Lawson, 2013). These perspectives on engagement are not exclusive, with engagement recognised as a 

‘meta-construct’ (Lam et al., 2012). Engagement is positively associated with participation, persistence 

and achievement in education (Appleton et al., 2008; Dotterer & Lowe, 2011; Northey et al., 2018). A lack 

of engagement, at times referred to as ‘disaffection’, is associated with learners who express a lack of 

persistence, interest or enjoyment with learning that subsequently impacts achievement (Skinner et al., 

2008; Skinner et al., 2009). Though noted as carrying some degree of ‘conceptual haziness’ (Appleton et 

al., 2008) the meta-construct of engagement is a powerful tool within the study of learners, pedagogy, 

curricular design and learning experiences. Its recognised malleability ties the concept not only to a status 

quo but to intervention and change leading to many intervention evaluations utilising aspects of 

engagement (Fredricks et al., 2004; Virtanen et al., 2015).   

Engineering engagement can therefore be understood as the alignment and investment of young people 

to learning in the engineering domain. Whilst a relationship between engineering capital and engineering 

engagement is suggested in the analyses of Chapter Seven further examination is required to confirm the 

association and support the wider application of engineering capital to understanding patterns of learner 

engagement. The confirmation of the expected positive association would support the use of engineering 

capital to understand inequities within current learning experiences and the application of this model 

within school settings.  
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Having theoretically identified five further aspects of engineering capital that may hold value to future 

iterations of this model next these aspects will be empirically examined to determine their statistical 

relevance to the engineering capital model.  

Chapter Research Methods 

Methodology 

The research enquiry of this chapter is concerned with the relationship between engineering capital, as a 

validated lens on inequity, and the investigation of five further dimensions of engineering capital which 

may feature in future iterations of this model. To investigate this a theoretical and empirical approach 

was adopted to explore the five further dimensions and their association with engineering capital. This 

approach dictates a quantitative empirical methodology to statistically examine the relationship with the 

quantitative engineering capital instrument and further dimensions of engineering capital measured in a 

similarly quantitative manner and recorded in the thesis dataset. As noted within the Methodology 

chapter, the lingering impact of the Covid-19 pandemic dictated only a single point of contact with 

participants necessitating the collection of data on these five speculative dimensions of engineering 

capital within the initial dataset. Drawing on the same sample for both the formation and further 

investigation of engineering capital limits extraneous sampling effects and supports the validity of these 

further insights. 

Participants 

Data was collected from 921 secondary school-aged (11 to 16 years old) learners from ten schools in 

England and Scotland. As noted in the Methodology chapter, a single point of data collection was adopted 

for this thesis research project due to the demands of the Covid-19 pandemic. The sample of 921 learners 

examined in this chapter is the same sample examined throughout the thesis. See Methodology chapter 

for full outline of sample characteristics and rationale for the selected participant population.  

Instruments 

Instruments were developed or adopted to empirically measure the following amongst participants: 

engineering capital, engineering habits of mind, knowing a hobbyist engineer, familial capital, linguistic 

capital, and engineering engagement. These instruments are outlined below.  

Engineering capital: The 11-item engineering capital instrument created and outlined in Chapter Six was 

adopted to calculate the engineering capital of participants. Item responses are tallied to form a single 
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engineering capital score for each participant on a scale of 0-105. Engineering capital scores were used to 

code participants as possessing low (0-34), medium (35-69) or high (70-105) levels of engineering capital. 

This division of the response scale into thirds was adopted from Archer et al.’s (2015) science capital 

development process and the definition of science capital groups within the science capital literature. A 

direct adoption of this approach would support comparison with science capital scores and was justified 

as an efficient and objective approach to distinguishing those with greater or less engineering capital.  The 

use of this approach in Chapter Four within the Archer-style engineering capital instrument also provides 

the opportunity to cross-compare Bourdieuian capital models. See Chapter Six for further details on this 

instrument.   

Engineering habits of mind: A six-item instrument of engineering habits of mind was developed drawing 

on the work of Lucas and Hanson (2016). Six items were developed, one item for each of Lucas and 

Hanson’s model of engineering habits of mind, and analysed for reliability and validity.  A Cronbach’s 

Alpha analysis confirmed the internal consistency of items (N=897, a=0.850). An unrotated Principal 

Components Analysis supported that the instrument was structured as expected supporting the validity 

of this instrument (see Appendix H for statistical outputs). The Likert scale responses of each item were 

converted to a score of -2 to 2 and tallied to calculate a total engineering habits of mind score on a scale 

of -12 to 12.  

Table 8.02: Engineering Habits of Mind instrument items and response scales. 

Item Response Scale 

I am good at finding patterns and seeing how 

things fit together 

-2 to 2 five-point Likert scale 

I am good at looking for problems and checking 

things are right 

-2 to 2 five-point Likert scale 

I am good at imagining and picturing what things 

might look like 

-2 to 2 five-point Likert scale 

I am good at trying ways to make things better -2 to 2 five-point Likert scale 

I am good at fixing problems and finding solutions -2 to 2 five-point Likert scale 

I am good at trying things, testing ideas and 

changing my plans if necessary 

-2 to 2 five-point Likert scale 

 

Knowing a hobbyist engineer: Three items were developed to examine the degree to which an individual 

knew hobbyist engineers. Participants were asked if they knew such a hobbyist, their relationship to this 

individual or individuals, and the hobby these social contacts participated in. Responses were scored with 
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parental connections weighted more heavily (scored as two) whilst other social contacts were scored as 

one. Three possible responses were recorded and tallied to calculate a knowing a hobbyist engineer score 

of 0-6. Following free response data collection hobbies were thematically analysed and coded as: arts, 

automotive, beauty/hair, crafts (general), culinary, design (general), digital/electronic, garden, 

home/repair, mechanical, metalworking, occupational, textiles, woodworking. 

Table 8.03: Knowing a hobbyist engineer instrument items and response scales. 

Item  Response Scale  

Do you know someone (friend, family, someone from your 

community) who has a hobby that involves engineering? 

Yes, No, Don’t know 

You said you know someone among your friends, family, or 

community who has a hobby that involves engineering, can you tell 

us who they are? 

Free response. Later coded as 

‘parent or guardian’ (scored as 

two) or otherwise scored as one.   

And what hobby do they do? Free response. Later coded as 

outlined above.  

 

Engineering familial capital: Two items were developed to examine the engineering domain-specific 

familial capital of young learners. These items drew on Yosso’s (2005) community cultural wealth model 

and wider reading on familial capital (Sablan, 2019) to examine kin (family and community) historic ties 

to engineering. The Likert scale responses of each item were converted to a score of -2 to 2 and tallied to 

calculate a total engineering familial capital score on a scale of -4 to 4.  

Table 8.04: Engineering familial capital items and response scales. 

Item  Response Scale  

There is a history of engineering within my local community -2 to 2 five-point Likert scale 

There is a history of engineering within my family tree -2 to 2 five-point Likert scale 

 

Linguistic capital Four items were developed to examine the both the general and engineering-specific 

linguistic capital of young learners drawing on Yosso’s (2005) positioning of linguistic capital and wider 

application of this concept (Gerhards, 2014; Sablan, 2019). Two items were used to calculate a general 

linguistic capital score. Participant proficiency with languages other than English were queried and 

responses scored on a scale of zero to three. Three possible responses were noted and scores tallied to 

produce a general linguistic capital score of 0-9. Two items were used to calculate an engineering-specific 
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linguistic capital score. Likert-scale responses for these two items were converted to a score of -2 to 2 and 

tallied to calculate a total engineering-specific linguistic capital score of -4 to 4.  

Table 8.05: Linguistic capital items and response scales. 

Item  Response Scale  

General Linguistic Capital  

Can you speak or read a foreign language other than English? Yes/no 

If yes, what language and how well? Free response, and multiple 

choice: I know a little, I know a 

lot, I am fluent 

  

Engineering-Specific Linguistic Capital  

I know how to talk about engineering using technical words and 

language 

-2 to 2 five-point Likert scale 

I am comfortable having conversations about engineering -2 to 2 five-point Likert scale 

 

Engineering engagement: A twelve-item instrument of engineering engagement was developed drawing 

on wider engagement literature (Eccles & Wigfield, 2002; Fredricks et al., 2004; Kosovich et al., 2015; Lent 

et al., 2002). These items explored affective and cognitive dimensions of learner engagement identified 

in past literature. A Cronbach’s Alpha analysis confirmed the internal consistency of this novel 

engagement instrument (N=851, a=0.922). An unrotated Principal Components Analysis was utilised to 

examine the dimensionality of this novel measurement instrument. This analysis resolved to two 

components: one that included almost all items and a second that related only to the three reverse-coded 

items. This suggests that engagement and disengagement/disaffection are not bidirectional but two 

distinct but related characteristics (see Appendix H for statistical outputs). Whilst theoretically interesting 

this is consistent with the conceptualisation of engagement within this thesis and wider literature (Skinner 

et al., 2009) supporting the use of this instrument as a broad measure of cognitive and affective 

engagement/disengagement with the engineering domain. Likert-scale responses for these twelve items 

were converted to a score of -2 to 2 and tallied to calculate a total engineering engagement score of -24 

to 24. 

Table 8.06: Engineering engagement items, the dimensions of learning engagement they represent, and 

response scales. 
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Item Dimension of Learner 

Engagement 

Response Scale 

I believe I could be successful at 

engineering in the future. 

Self-efficacy -2 to 2 five-point Likert scale 

I know quite a lot about 

engineering. 

Self-concept -2 to 2 five-point Likert scale 

I think understanding 

engineering is important. 

Attainment value -2 to 2 five-point Likert scale 

I enjoy learning about 

engineering. 

Intrinsic value – enjoyment -2 to 2 five-point Likert scale 

I think learning about 

engineering is interesting. 

Intrinsic value – interest -2 to 2 five-point Likert scale 

I think it is useful to know about 

engineering. 

Utility value -2 to 2 five-point Likert scale 

Learning about engineering 

takes too much effort (reverse 

coded). 

Cost value -2 to 2 five-point Likert scale 

I think learning about 

engineering is boring (reverse 

coded).  

Negative affect – boredom -2 to 2 five-point Likert scale 

I worry I am not good at 

engineering (reverse coded). 

Negative affect – anxiety -2 to 2 five-point Likert scale 

I want to learn more about 

engineering. 

Curiosity -2 to 2 five-point Likert scale 

I want to learn more about 

engineering even if it is hard. 

Persistence -2 to 2 five-point Likert scale 

It would be good for my future 

to learn about engineering. 

Outcome expectations -2 to 2 five-point Likert scale 

 

Procedure 

The questionnaire instrument was designed, developed, and applied for data collection as outlined in the 

Methodology chapter. Following data processing and cleaning the thesis dataset was examined to analyse 

the relationship between engineering capital and the five further concepts outlined above.  

Descriptive statistics and one way ANOVA analyses were adopted to examine the relationship between 

the independent variable of engineering capital groups (low, medium, high) and scores on the engineering 

habits of mind, knowing a hobbyist engineer, familial capital, linguistic capital and engineering 
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engagement instruments. The adoption of these tests is appropriate for group-based comparisons (Ho, 

2013). Statistical assumptions were met supporting the use of these methods.  

Results and Discussion 

Engineering Habits of Mind 

A Welch’s one-way ANOVA analysis examined the difference in engineering habits of mind scores between 

engineering capital groups (low, medium, high engineering capital scores). This analysis identified 

significant differences between groups (F(2, 214.224) = 89.394, p<0.001, ETA2=0.154) with Games-Howell 

post-hoc testing confirming differences between group mean habits of mind scores at all levels (Low: 

M=0.83, SD=4.26; Medium: M=3.79, SD=3.55; High: M=6.67, SD=2.80) (see Appendix H for statistical 

outputs). 

 

Figure 8.01: Mean engineering habits of mind scores of high, medium and low engineering capital groups. 

These results confirm the expected positive association between engineering capital and the engineering 

habits of mind subcomponent: those with greater engineering capital self-report a greater possession of 

engineering habits of mind. This was expected given that engineering habits of mind were already, in 

limited terms, included within the ‘engineering literacy’ subcomponent of the engineering capital model. 

The analysis outlined above demonstrates that the engineering capital instrument is representative of 
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engineering habits of mind despite its limited measurement of these habits within its instrument. This 

supports the potential addition of engineering habits of mind within future engineering capital models 

and instruments. These results also offer a further validation of Lucas and Hanson’s (2016) engineering 

habits of mind model that was operationalised in this analysis. The significant relationship between 

engineering capital and engineering habits of mind demonstrates a link between Lucas and Hanson’s 

model and engineering inequities. Further research may investigate how engineering habits of mind are 

distributed amongst young learners in relation to engineering inequity and the impact of these habits on 

trajectories to engineering education or careers.   

The positive association between engineering capital and Lucas and Hanson’s engineering habits of mind 

further supports the position adopted in this thesis that engineering capital is a malleable concept that is 

capable of being intervened with to address inequity. As noted in the Methodology chapter, this thesis 

recognises the dynamic nature of Bourdieuian capital and the capacity for individuals to develop forms of 

capital through intervention. This is compatible with the work of Lucas and Hanson who similarly saw 

engineering habits of mind as malleable. These researchers put forward potential pedagogical structures 

that can support the development of engineering habits of mind, such as: adjustments in how teachers 

communicate, the presentation of opportunities for discourse, the use of graphic representations or 

problem-based learning (Lucas et al., 2014). This is consistent with wider literature that acknowledges the 

relevance of habits of mind to learning and teaching strategy (Campbell, 2006). This conceptual 

compatibility supports the position that engineering capital is capable of change given its alignment to 

changeable qualities. Engineering habits of mind, as an aspect of engineering literacy, represent cultural 

capital for engineering that are capable of being developed over time. Not only does this compatibility 

further support the inclusion of engineering habits of mind within future iterations of the engineering 

capital model but also suggests strategies through which engineering inequities may be addressed. The 

interventions proposed by Lucas and Hanson (2016) may also support the development of engineering 

capital: increases in engineering habits of mind would represent improvements in the engineering cultural 

capital of engineering literacy. 

However, deeper reflection on the development of Lucas and Hanson’s (2016) model also introduces an 

issue that must be contended with before these habits of mind can be iterated into the engineering capital 

model. Lucas and Hanson’s (2016) model of six engineering habits of mind was developed though mixed 

methods (interviews, focus groups, and questionnaires) with engineering educators and engineering 

experts. Bourdieu notes that institutions, and those in service of institutions, will carry a conceptualisation 
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of the ‘legitimate’ culture within that institution. This issue is contended with in Chapter One of this thesis 

when framing a definition of engineering. Given that the habits of mind identified by Lucas and Hanson 

were generated by those within engineering institutions it may be that these habits of mind are the ones 

recognised as ‘legitimate’ and thereby are an exclusionary conceptualisation that neglect more diverse 

‘ways of thinking and doing’ that exist in the engineering domain. This would suggest that the inclusion of 

these habits of mind within future iterations of engineering capital may perpetuate inequity rather than 

address it.  This warrants further examination to determine whether these habits of mind represent a way 

of thinking and doing engineering that is accessible and not in service of perpetuating the same types of 

groups dominating the engineering domain. Further study with larger samples drawn from more diverse 

backgrounds may aid in this analysis. The inclusion of engineering habits of mind within future iterations 

of engineering capital should be cautious or seek to answer this question in its formation. 

Knowing a Hobbyist Engineer 

Cross-tabulation calculations were applied to compare responses to the question “Do you know someone 

(friend, family, someone from your community) who has a hobby that involves engineering?” against low, 

medium, and high engineering capital groups. These results are outlined in Table 8.07 below.  

Table 8.07: Cross-tabulated results to knowing a hobbyist engineer for overall sample and categorised by 

engineering capital groups.  

Engineering Capital 

Group 

Responses 

 ‘Yes’ ‘Don’t Know’ ‘No’ 

Low 38.3% 21.1% 40.6% 

Medium 56.7% 20.3% 23.0% 

High 68.9% 10% 21.1% 

Overall Total 54.4% 19.4% 26.2% 

 

These cross-tabulations show that those with ‘high’ engineering capital possess an above average rate of 

‘yes’ responses and below average rate of ‘don’t know’ and ‘no’ responses with the reverse true for those 

with ‘low’ engineering capital. A chi-square test was applied to test the association between engineering 

capital groups and knowing a hobbyist engineer. The test revealed a significant association (X2(4) = 34.084, 

p<0.001, Cramer’s V=0.137) with Cramer’s V effect size statistic indicating a substantive relationship 

between variables. These findings confirm the expected positive association between engineering capital 
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and knowing a hobbyist engineer consistent with other identified social capitals within the engineering 

domain (see Appendix H for statistical outputs). 

Given the limited body of literature examining the impact of social connections to hobbyist engineers in 

the UK context two further chi-squared tests were deployed to further examine the associations between 

these social connections and social characteristics of gender and social class. Both tests revealed no 

significant association between knowing a hobbyist engineer and gender (X2(2) = 1.819, p=0.403, V=0.046) 

or social class (X2(8) = 7.501, p=0.484, V=0.64) – it should be noted that the social class test did not meet 

all test assumptions questioning the validity of its conclusion and should be re-examined with a further 

sample. See Table 8.08 for cross-tabulations (see Appendix H for statistical outputs). 

Table 8.08: Cross-tabulated results to knowing a hobbyist engineer for gender and social class groups.  

Grouping Responses 

 ‘Yes’ ‘Don’t Know’ ‘No’ 

Gender    

Boy 52.9% 21.8% 25.3% 

Girl 56.9% 18.5% 24.6% 

    

Social Class 

(cultural capital group) 

   

Very low 50.0% 20.0% 30.0% 

Low 50.5% 22.9% 26.7% 

Medium 51.3% 21.5% 27.2% 

High 58.8% 18.7% 22.5% 

Very high 61.6% 16.5% 22.0% 

Overall Total 54.4% 19.4% 26.2% 

 

Cross-tabulated responses to the question “And what hobby do they do?” were also examined. No trend 

emerged within coded responses with little variation in the types of hobbies engaged in by the hobbyists 

known by low, medium and high engineering capital groups. However, the sample of this thesis is notably 

small to examine trends in such a widely coded set of responses (14 possible forms of hobby are noted) 

supporting the need for future study with a more representative sample to more confidently report the 

consistency of hobbies engaged in by social contacts of differing groups.  

The confirmation that those with greater engineering capital also possess significantly greater social 

connections to hobbyist engineers is consistent with the underlying Bourdieuian framework of 



218 
 

engineering capital. This supports the inclusion of knowing a hobbyist engineer as a further dimension of 

engineering capital and topic for further study in future iterations of the model and instrument. Those 

with greater social connection to a hobbyist engineer will, according to Bourdieuian social capital, possess 

greater potential access to resources offered through that social relationship (Bourdieu & Wacquant, 

1992). A hobbyist engineer may provide young learners with access to formative experiences with 

engineering that are beneficial given the scarcity of engineering within national curricula. Early 

experiences are recognised as deeply influential for the development of interest and aptitude supporting 

the significance of knowing a hobbyist engineer in formative years (Katz, 2010). Knowing a hobbyist may 

also offer an early role model to support the development of an engineering identity or engineering 

characteristics within a young learner (Lucas et al., 2014; Sonnert, 2009). Given the recognition by Foster 

et al. (2018) that “makers”, frequently possess some degree of educational or career experience with 

engineering it is possible that hobbyists may act as a source of guidance to young learners in how to 

navigate trajectories towards future engineering education or careers. Further research is warranted to 

examine the deeper nuances and potential benefits on offer through a social connection to a hobbyist 

engineer but the results outlined here indicate support for the inclusion of this form of capital in future 

iterations of engineering capital.   

It is notable that despite the positive association identified between knowing a hobbyist and the 

possession of engineering capital there are no significant associations identified between knowing a 

hobbyist and either gender or social class groupings. This is at odds with the expected pattern of inequities 

within the engineering domain which might predict that social connections to hobbyists differ for these 

groups. The lack of gender difference is particularly surprising given the strong differences in engineering 

capital identified for gender groups in earlier chapters. However, this finding can also be acknowledged 

as consistent with the underlying perspective of Bourdieuian social capital which notes that an individual 

must possess both a resource within their social network and the means to access that resource in order 

to benefit from this form of capital. It may be that many groups possess a social connection to engineering-

related hobbies, but not the means to benefit from that resource. A certain volume of engineering capital 

may be required in order to benefit from, or access, further forms of capital. This is a reasonable assertion: 

a somewhat strong understanding of engineering (engineering literacy) may be required in order to 

meaningfully engage with an engineering club (engineering out-of-school learning) or understand the 

engineering aspects of a parent’s occupation (knowing an engineer).  
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These findings highlight both the complexity of ‘knowing a hobbyist’ but also further supports the validity 

of the engineering capital model and instrument developed in Chapters Five to Seven which was found to 

be associated with knowing an engineering hobbyist. A significant association with engineering capital 

does, despite this complexity, demonstrate that knowing a hobbyist engineer is relevant to inequities in 

the engineering domain. This demonstrates the value of engineering capital as a more sophisticated, 

intersectional and multifaceted conceptualisation of how young people are supported to aspire to 

engineering trajectories. Further research is warranted to examine patterns of social connection to 

hobbyist engineers and its relative impact.  

This first exploration of knowing a hobbyist engineer also reveals no trends in the hobbies that social 

connections to young learners engage in. Crosstabulations suggest that those in low, medium and high 

engineering capital groups report knowing roughly the same distribution of hobbyists who participate in 

activities relating to areas such as automotive, digital/electronic or woodworking. This suggests that there 

are limited distinctions of ‘taste’ of hobby and that engineering hobbyists of all types are present 

throughout society, but it is acknowledged that a larger sample is required to confirm this. Further study 

should also explore the range of activities that are identified with engineering hobbies: a range of ‘making 

and fixing’ hobbies were identified suggesting that young learners recognise engineering within various 

activities (such as culinary applications or textiles).   

Whilst a significant positive association is identified between engineering capital and knowing a hobbyist 

engineer - supporting the inclusion of this subcomponent in future iterations of engineering capital -  there 

is also a clear need for further study to understand this relationship in greater detail. The analysis outlined 

above should encourage future investigation of hobbyist engineers and the impact of knowing these 

individuals. Further study may consider the potentially dynamic impact of social proximity to hobbyist 

engineers. 

Familial Capital 

A Welch’s one-way ANOVA analysis examined the difference in engineering familial capital scores 

between engineering capital groups (low, medium, high engineering capital scores). This analysis 

identified significant differences between groups (F(2, 200.623) = 94.038, p<0.001, ETA2 = 0.174 with 

Games-Howell post-hoc testing confirming differences between group mean familial capital scores at all 

levels (Low: M=-2.08, SD=2.03; Medium: M=-0.50, SD=1.71; High: M=0.98, SD=1.43) (see Appendix H for 

statistical outputs). 
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Figure 8.02: Mean engineering familial capital scores of low, medium and high engineering capital groups. 

These results demonstrate the expected positive relationship between engineering capital and familial 

capital for engineering. This supports the relevance of familial capital within an engineering-specific 

consideration of Bourdieuian capital and the potential use of familial capital in future iterations of 

engineering capital. The relevance of Yosso’s (2005) framing of familial capital suggests that other forms 

of Bourdieuian capital reimagined within the community cultural wealth framework (such as aspirational 

capital, navigational capital, or resistant capital) may also offer valuable insight on engineering inequity. 

The relationship established between familial capital and the engineering capital model further validates 

the interpretation of the Bourdieuian framework adopted within this thesis as both Yosso and this work 

challenge the traditional interpretation of Bourdieuian capital with success.  

It is noteworthy that this form of engineering capital is relatively scarce: only those in the high engineering 

capital group report a positive mean familial capital score. This would imply that recognition of 

engineering within local communities or family histories is poor for the majority of young people. This 

could be caused by multiple factors. Firstly, it may be that this scarcity is due to the limited geographic 

sampling of engineering capital within this thesis. Schools from only ten regions were included within this 

sample which may be insufficient to access geographic regions with a notable engineering community or 

history. It may be that subsequent samples identify a greater range of engineering familial capital, 

however the present sample does identify a range of responses which suggest that geographic location is 
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not the only factor in discerning familial capital – as is expected given this subcomponent relates not only 

to local geographic community but individual family history which is not geographically bound. Second, it 

may be that this scarcity accurately reflects the scarce supply of familial capital for engineering in the UK 

context. It may be that relative to the national context only a minority possess a historic communal or 

familial link to engineering. If this is the case then this scarcity would support its relevance given the 

importance of scarcity to capital-based models (Bourdieu, 2018). Finally, it may be that the possession of 

higher rates of engineering capital support the recognition of familial connections to engineering. It may 

be that those with low or medium levels of engineering capital possess historic family or community 

connections to engineering, but that the possession of greater levels of engineering capital facilitates 

greater recognition of their familial link to the engineering domain. This would be consistent with the 

relationship between capital and causality with the Bourdieuian perspective accounting for both the 

structured and structuring influence of capital: the capital acts as both effect and cause of inequity 

(Bourdieu, 2020). If this is the case then interventions to build greater engineering literacy may support 

greater recognition and access to forms of engineering capital on offer, but unacknowledged, by young 

learners. These three potential interpretations are not mutually exclusive but support the need to build 

greater understanding of the concept of familial capital. Future research may adopt a more targeted 

methodology to compare regions with or without a historic link to engineering or may wish to explore the 

impact of interventions that reinforce historic links between young learners and their contexts. The 

statistical significance of engineering familial capital identified within his thesis supports its consideration 

within future iterations of engineering capital.  

Linguistic Capital 

Both general linguistic capital (proficiency with languages other than English) and engineering-specific 

linguistic capital (proficiency with engineering-specific language and communication) were examined in 

relation to engineering capital groups. Cross-tabulation calculations were applied to compare the general 

linguistic capital scores of those in low, medium, and high engineering capital groups but found little 

difference in the general linguistic capital of young learners in these groups. The median responses on the 

0-7 general linguistic capital scale were 0 for the low group, and 1 for both the medium and high 

engineering capital groups. Overall, very little difference was noted between these groups in relation to 

general linguistic capital which did not warrant further analysis. 

However, further analysis of these groups in relation to engineering-specific linguistic capital did identify 

significant differences. A one-way Welch's ANOVA analysis revealed significant differences in engineering 
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linguistic capital scores (F(2,218.842) = 484.613, p<0.001, ETA2=0.422). Games-Howell post-hoc tests 

highlighted significant differences at all levels between high (M=1.60, SD= 1.27), medium (M=-0.97, SD= 

1.55) and low (M=-3.22, SD= 1.10) engineering capital groups (see Appendix H for statistical outputs). 

 

Figure 8.03: Mean engineering linguistic capital scores of high, medium and low engineering capital 

groups. 

The lack of significant differences between engineering capital groups and general linguistic capital is 

unsurprising given that the domain of engineering does not require a proficiency with a second language. 

Whilst it may have been relevant to consider the relationship with general linguistic proficiency and ability 

to engage in the specific linguistic style of the engineering domain these results suggest that this is not 

the case. These findings would support the approach taken within this thesis to adopt the Bourdieuian 

framework in a domain-specific, rather than general, manner as results indicate that general linguistic 

capital is not applicable to the engineering domain. However, a further statistical analysis does identify a 

significant relationship between engineering capital groups and engineering-specific linguistic capital. 

Those who possess greater levels of engineering capital report more positive levels of comfort talking 

about engineering and using technical engineering language. This supports the relevance of this linguistic 

capital to engineering inequities and the potential inclusion of engineering-specific linguistic capital within 

future iterations of the engineering capital model. As with familial capital those with a positive linguistic 

capital for engineering are relatively scarce with only weak positive responses reported by those in high 
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engineering capital groups (M=1.6 of a possible 4). Those with low engineering capital scores on the other 

hand report very negative mean responses indicating a scarcity to comfort and self-reported ability 

utilising engineering language (M=-3.22 of a possible -4). This should be expected given the limited 

presence of engineering within the lives of young learners in the United Kingdom – linguistic capital likely 

requires an informed source of knowledge or social partner with which a young learner can acquire 

engineering-specific linguistic capital over time. Engineering linguistic capital is unlikely to be supported 

in school contexts with a curriculum that features little engineering and low levels of confidence in 

communicating about engineering amongst UK teachers (EngineeringUK, 2020). It might therefore be 

expected that those who possess engineering linguistic capital also consume engineering media or know 

an engineering individual - both of which are indicated by a possession of engineering capital.  This 

warrants further investigation to comprehend the cross-cutting relationship between engineering 

linguistic capital, its acquisition and other forms of engineering capital. This first examination of 

engineering-specific linguistic capital would support its relevance to future iterations of engineering 

capital.  

Engineering Engagement 

A one-way ANOVA analysis examined the engineering engagement scores of engineering capital groups 

(low, medium, high engineering capital). This analysis identified statistically significant differences in 

engineering engagement scores (F(2,918) = 298.204, p<0.001, ETA2=0.394). Tukey post-hoc testing 

revealed significant differences at all levels between the mean engagement scores of low (M=-9.31, SD= 

7.17), medium (M=0.81, SD=7.58), and high engineering capital groups (M=13.88, SD=6.80). The ETA2 

effect size indicates a very large effect of engineering capital in distinguishing engineering engagement 

scores (see Appendix H for statistical outputs). 
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Figure 8.04: Mean engineering engagement scores of high, medium and low engineering capital groups. 

This test was adopted to determine whether engineering capital possessed a wider utility beyond 

understanding engineering aspirational inequities, in particular in its potential relationship to learner 

engagement and therefore learning and classroom experiences. The results of this analysis indicate that 

engineering capital is very strongly associated with engineering engagement with statistically significant 

differences between the engineering engagement scores of engineering capital groups. Those who 

possess greater engineering capital also possessed greater engineering engagement scores indicating the 

expected positive association between the possession of capital and affective and cognitive engagement 

within a domain. These findings support that an aggregated measurement of engagement factors such as 

self-efficacy, self-concept, valuing of engineering, persistence, curiosity and outcome expectations are 

positively associated with the possession of engineering capital. These aspects of engagement are 

recognised in past literature as deeply significant to learning, including achievement, classroom behaviour 

and academic decision making (Appleton et al., 2008; Dotterer & Lowe, 2011; Finn & Zimmer, 2012; 

Hospel et al., 2016; Northey et al., 2018). The positive association between engineering capital and 

engineering engagement therefore supports the relevance of utilising engineering capital to understand 

learners and classroom experiences extending the potential applications of engineering capital beyond 

understanding of aspirations.  
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The relationship between engineering capital and learning contexts further supports the value of 

engineering capital as a tool to address inequity. Engineering inequities are noted to occur in pre-tertiary 

education with those in secondary school settings reporting inequitable interest and aspiration in 

engineering (Hutchinson & Bentley, 2011) and some indications of inequity in primary school settings 

(Silver & Rushton, 2008). These findings reinforce not only how dominant engineering inequities are 

throughout UK culture but also the necessity for perspectives on engineering inequity to be compatible 

with younger audiences and their learning experiences. Engineering capital is supported as relevant to 

these contexts by the significant association with learner engagement with engineering. Whilst the focus 

of this thesis has explored the future trajectories of young learners these findings demonstrate the 

relevance of engineering capital as a lens on present learning experiences. Further study should explore 

the relationship between engineering capital and classroom experiences including behaviour, 

achievement and decision making. 

The significant association between engineering capital and engineering learning engagement supports 

the use of engineering capital to understand patterns of decision making for engineering beyond the 

educational and career decision making established in earlier chapters. Learner engagement is recognised 

as influential in decision making, persistence and interest for educational experiences. Engagement is not 

only relevant in relation to formal learning but may also apply to informal or home environment decision 

making. In this way these findings support the application of engineering capital beyond formal 

educational and career trajectories to less consequential everyday decision making and alignment to 

engineering. Engineering capital may therefore assist in understanding how young learners develop over 

time and in every day circumstances – this would support that engineering capital can be applied at any 

time as a measure of development towards engineering and not strictly in relation to tertiary educational 

trajectories or career paths.  

The relationship between engineering capital and learner engagement would also support the 

implementation of engineering capital in an evaluative capacity to frame the impact of interventions that 

target inequities. Interventions are by nature concerned with change and are designed with objectives 

and indicators to judge their success. The characteristics included in the engineering learning engagement 

measure such as self-efficacy, attitudes, and curiosity can feature as objectives of interventions. The 

significant association between engineering capital and these evaluative indicators support the use of 

engineering capital to better understand samples and the conditions in which interventions operate. The 

malleability of these indictors is consistent with the view of Bourdieuian capital taken within this thesis 
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supporting the compatibility of these considerations. Some interpretations of Bourdieuian capital would 

question the malleability with which engineering capital may change, however within this thesis 

Bourdieuian capital is acknowledged as an evolving and changeable characteristic that can be developed 

over time (Bourdieu & Passeron, 1977). The changeability of engineering capital and its significant positive 

association with engineering engagement would suggest that interventions to address engineering capital 

are possible. Whilst gender or social class conditions are fixed or resistant to change engineering capital 

may represent a framing of inequity that is compatible with targeted support for meaningful change in 

engineering inequities. Further study is warranted to examine the degree to which engineering capital can 

be supported to develop through intervention strategies.  

The positive relationship between engineering capital and engineering engagement supports that 

engineering capital holds value in applications beyond that of understanding aspirations to future 

engineering trajectories. The strong positive link between learning engagement and engineering capital 

indicates that engineering capital may apply to understanding learners and learning experiences. Future 

iterations of engineering capital should explore this further to establish the wider utility of engineering 

capital in classroom and wider learning contexts.  

Conclusions 

The engineering capital model developed within this thesis has been validated as an effective lens on 

engineering inequity but should be recognised as only one possible interpretation of Bourdieuian capital 

within the engineering domain. Though novel and more sophisticated than previous approaches to 

understanding capital in the engineering domain future research and development may iterate this model 

to ensure its continuing relevance or improve on its effectiveness. In this chapter this process of iteration 

was supported by the examination of four further potential subcomponents of engineering capital and 

one further application of this model to widen its scope of utility. All four further subcomponents – two 

revisited and two new forms of capital – examined within this chapter are found to be significantly aligned 

to engineering capital. Those who possess greater values of engineering capital also possess greater levels 

of these further forms of engineering-specific resource. The four further subcomponents demonstrate an 

evolution in the forms of capital considered within the engineering capital model developed in Chapters 

Five, Six and Seven. The re-examination of existing subcomponents (‘engineering literacy’ and ‘knowing 

an engineer’) provides an opportunity to challenge the interpretation of cultural and social capitals 

included within the model: this recognises the complexity of the Bourdieuian framework and its 

application but supports the validity of the developed model. The introduction of new subcomponents 
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(‘familial capital’ and ‘linguistic capital’) incorporates wider interpretations of Bourdieuian thinking, such 

as Yosso’s Community Cultural Wealth model, to develop the rigour and scope of the underlying 

conceptual framework of the engineering capital model. 

The significant alignment of these four further subcomponents with the engineering capital model 

demonstrates two key findings. First, it demonstrates that the engineering capital model developed in this 

thesis is only one possible model of capital for engineering. Alternative interpretations of Bourdieuian 

capital may be relevant and other researchers may draw on this framework differently to examine 

engineering inequities. And second, despite the first point, these findings support that the engineering 

capital model developed in this thesis is generally representative of engineering capital overall with 

possession of all four further forms of capital found to be consistent with the possession of engineering 

capital as framed within the developed model. This validates the engineering capital model developed in 

this thesis and supports its utility in investigating and understanding engineering inequity. 

 

Figure 8.05: Further dimensions considered in relation to the engineering capital model of inequity. 

The examination of these further forms of capital also identify differing levels of scarcity and possession 

of capitals for engineering that warrants further investigation. Whilst the engineering capital model is an 

aggregate structure the examinations within this chapter also recognise the importance of investigating 

individual forms of capital to better understand their specific prevalence and impact on engineering 

inequities. The iterative examination of engineering capital in this thesis also recognised a significant 
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relationship between the possession of engineering capital and affective and cognitive learning 

engagement with the engineering domain. These findings highlight the usefulness of applying engineering 

capital to a further purpose of understanding engineering learner readiness and experiences. This widens 

the scope of application of this model beyond aspirational inequity to also consider current experiences 

of future engineers. Overall, the association qualifies the application of engineering capital within school 

settings to inform learner readiness for engineering and support evaluative efforts in addressing inequity.  

These further dimensions of engineering capital not only offer insight as to how future iterations of 

engineering capital may be improved upon, but also highlight avenues of further research to explore 

engineering inequities in the UK context. If the formative engineering capital model is understood as a 

synthesis of past literature through a novel Bourdieuian framework then these five dimensions might be 

understood as new lines of enquiry that may offer insight to the challenges of engineering inequity in the 

UK. Iteration must be approached carefully as modifications to models or instruments may lower the 

effectiveness of these tools, however such iterations may still offer novel insights to guide greater 

understanding. In this way the iterative process is also a call for further knowledge development and novel 

application and therefore should be strongly supported.  

Overall, these findings are optimistic for the domain of engineering capital and reinforce the benefits on 

offer by this perspective. These findings highlight future avenues of research to examine engineering 

inequities in the UK and wider application of the engineering capital model to understand learners and 

learning behaviour alongside support for the next generation of UK engineers.  
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CONCLUSIONS 

Thesis Objective 

This thesis set out to develop a greater understanding of the long-standing engineering inequities present 

within the United Kingdom. These entrenched patterns of access, participation, success and 

representation within the engineering domain were positioned as damaging to the social justice and 

economic prosperity of the nation. Current understanding of these inequities was criticised as lacking 

depth, an engineering-specific focus, and practical value to inform successful intervention strategies. A 

particular need to better understand the experiences of young people was identified to better support 

future generations of engineers. The objective of this thesis set out to address this issue by developing a 

more sophisticated understanding of engineering inequities amongst young learners in the UK.  

Key Findings 

A novel perspective on engineering inequity challenges in the United Kingdom 

A detailed review of past literature produced a cross-cutting examination of engineering inequities in the 

UK context, synthesising historic, economic, cultural and educational perspectives. Engineering inequities 

were found to be ubiquitous, manifesting in many forms and contexts. A complex relationship was 

acknowledged between contemporary society and the engineering domain with dated conceptualisations 

of engineering still present within the public consciousness. This analysis thereby offered a cultural 

hypothesis to explain the lingering inequities of engineering, positioning inequities as ubiquitous and 

deeply rooted within the UK context. This further supported the need for a novel approach to 

understanding engineering inequities that moved beyond immediate or imminent challenges to 

acknowledge the enduring cultural and social influences that shape (and will continue to shape) the 

engineering domain. This framing of engineering offers a novel interpretation of engineering skill shortage 

and social justice challenges currently active within the UK context.  

Science capital was not found to apply to the engineering domain 

Science capital, Archer et al.’s (2015) innovative science inequity model, was adopted within this thesis as 

a potentially valid lens to develop greater understanding of engineering inequities. Despite its popularity 

relatively little past research has critically examined this body of literature. A novel theoretical critique of 

science capital supported its validity as a perspective on science inequity but challenged the notion – 



230 
 

adopted by some stakeholders – that science capital may apply to other STEM domains. The forms of 

cultural and social capital included in this model were found to theoretically differ in their relation to 

science or engineering. A further empirical application with 921 secondary school-aged learners 

confirmed this, finding that the science capital instrument could not accurately identify more than 1% of 

young learners who wished to study or work in engineering in the future. Though not a predictive model, 

this lack of utility for understanding the future aspirations of young people highlights the limited value of 

applying science capital to the engineering domain. This further supports the position adopted within this 

thesis that engineering inequities require engineering-specific solutions. These findings offer unique 

insights as to the utility and scope of the science capital model as a dominant body of thought within the 

study and intervention of STEM inequities.  

An engineering-specific model of capital was found to be valuable 

Whilst the science capital model and instrument were found to lack a relevance to the engineering domain 

this analysis did validate the underlying domain-specific Bourdieuian capital framework as of value to the 

study of engineering inequity. An ‘Archer-style engineering capital’ instrument was developed through 

the translation of the science capital empirical tool to measure the capitals for engineering possessed by 

young learners. This engineering-specific instrument outperformed the science capital model in 

examinations of engineering inequity empirically establishing the relevance of the Bourdieuian framework 

to the engineering domain. Very little past research has explored engineering inequity from a Bourdieuian 

perspective highlighting the novelty of this approach. The ‘Archer-style engineering capital’ instrument 

was recognised as focusing on the forms of capital most relevant for science, not engineering, supporting 

the need to develop a ‘true’ engineering-specific capital model. This investigation demonstrated the value 

offered by the Bourdieuian perspective and validated the adoption of this framework to develop a greater 

understanding of the engineering inequities facing the UK. The scope of this Bourdieuian perspective was 

consistent with the acknowledged culturally rooted nature of engineering inequity supporting the use of 

this theoretical perspective to develop a richer comprehension of the engineering domain. 

New domain-specific models of capital can be developed from Archer et al.’s approach 

The instrument development methodology adopted by Archer et al. (2015) to develop the domain-specific 

model of science capital was critically considered in relation to wider instrument development 

approaches. This outlined the process through which a domain-specific model of capital could be 

developed in line with best practices of instrument development – something that was not explicitly 
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focused on in formative science capital literature. Little or no literature had considered the science capital 

publications as a guide to domain-specific capital model development or replicated this process to validate 

its utility. The analysis of this process and the outlining of its second successful adoption within this thesis 

represents a novel output as a guide to the creation of domain-specific models of Bourdieuian capital. 

Given the success of science capital, and that of the engineering capital model offered by this thesis, this 

outline may support future researchers to develop their own domain-specific applications of Bourdieuian 

capital to better understand and combat inequities.  

An engineering capital model offers a valuable lens on engineering inequity 

The engineering capital model developed within this thesis, drawing on the methodology first applied by 

Archer et al. (2015), has been found to be a valid perspective on engineering inequity. Young learners who 

aspire to engineering pathways possess significantly greater engineering capital than peers who do not, 

the distribution of engineering capital is found to align with widely acknowledged gender and social class 

inequities in engineering, and the model is found to be significantly predictive of aspirations to 

engineering education and careers. This model has been validated as a useful lens on engineering inequity 

and offers both a theoretical and empirical utility in understanding and addressing inequity. The 

engineering capital lens not only aligns with past understandings of inequity but offers novel insights 

acknowledging intersectionality and the currently limited understanding of how young learners are 

supported to become engineers. With this tool it is possible to better understand groups and individuals 

and their trajectories towards future engineering roles. Current approaches to framing inequity, such as 

descriptive percentage reports of how many engineering roles are filled by certain groups, are criticised 

in this thesis as lacking utility and depth. The engineering capital perspective can address this lack of 

understanding by developing more sophisticated understandings of support for future engineers beyond 

characteristics such as gender or social class that are not capable of being directly intervened with. 

Cultural capital, social capital and behaviours and practices for engineering, on the other hand, can be 

intervened with to support future engineers. In this way the model of engineering capital is a proactive 

perspective on inequity that can accomplish the objective of this thesis to develop deeper and more 

practical understanding of access, participation, success and representations in the engineering domain 

to support greater social justice and economic resilience within the engineering domain.  

The developed engineering capital instrument has wide applications 
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The engineering capital model was also found to positively align with other subsequently examined forms 

of engineering capital not included within this first iteration of the engineering capital model. This 

suggests that the developed model of engineering capital is representative of wider resources not 

considered within its structure, supporting its scope as a broadly useful lens on inequities. This further 

analysis of engineering capital also identified a strong significant relationship between engineering capital 

and engineering learner engagement: those who possessed greater capital also possessed affective and 

cognitive engagement characteristics that are indicative of meaningful learning. The positive association 

demonstrates a wider application of engineering capital as a perspective on learners and learning 

experiences. Although designed to understand inequities within engineering trajectories these findings 

demonstrate wider applications of the developed model and instrument. Engineering capital could be 

adopted to better understand pupils and their relationship with learning for engineering. This widens the 

scope of application to schools and classrooms and supports the use of this model to build greater 

comprehension of the relationship between learning experience and future trajectories. These findings 

also suggest that engineering capital may be applied in an evaluative function to directly intervene with 

inequity and support learning.  

Meeting the Thesis Objective 

The objective of this thesis set out to develop a greater understanding of engineering inequities to inform 

practical change to better support the next generations of UK engineers. This objective has been met 

through the development of the engineering capital theoretical model and empirical instrument. The 

theoretical model of engineering capital allows inequities to be conceptualised in a more nuanced manner 

that goes beyond simplistic group differences based on gender, ethnicity or social class. This approach 

recognises the intersectionality of inequity and the multitude of factors that can shape patterns of access, 

participation, success and representation in the engineering domain. The engineering capital instrument 

similarly supports the development of understanding and intervention. With this concise instrument it is 

possible to rapidly assess an individual’s relationship to resources for engineering that are strongly 

associated with current learning and future trajectories for engineering. This offers the ability to better 

understand individuals and groups in a comparable, validated, data-led fashion. Through the use of this 

tool engineering inequities can be better understood throughout the UK. The forms of capital included in 

the model and instrument of engineering capital are theorised to be malleable and responsive to 

intervention. This perspective therefore supports the development of interventions to challenge 

entrenched engineering inequities.  
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The development and validation of the engineering capital perspective therefore represents the 

successful accomplishment of the thesis objectives to develop greater understanding of engineering 

inequities in the United Kingdom.  

Research Limitations 

Whilst the thesis was successful in its objective the project was not without its limitations. The sample 

recruited to explore engineering inequities was limited (N=921) in relation to the overall population of 

young learners and so cannot be considered to be representative. The underlying conceptual framework 

of Bourdieuian capital adopted within this thesis recognises the key influence of cultural and societal 

context – aspects shared across many settings within a nation – that would support the validity of a non-

representative sample. However, this thesis also recognises that engineering inequities are nuanced and 

as a result it should be expected that individual differences are present within the population in relation 

to patterns of engineering inequity. Whilst the sample featured in this thesis is of considerable size a larger 

sample is necessary to further reinforce the validity of the findings for the wider UK context. The sample 

also lacked representation for some groups, with a particular issue around the representation of 

individuals from black and minority ethnic (BAME) groups. These limitations were in part due to the 

challenge of collecting data during a period of Covid-19 interruption. Further sampling and investigation 

with the engineering capital instrument is warranted to continue its process of validation – these efforts 

should take care to include a more representative sample to confirm the wider utility of the developed 

model and instrument.  

The Covid-19 pandemic also impacted the ability to conduct in-person data collection in schools, which 

limited the range of research methods available within this project. The quantitative-dominant 

questionnaire methodology applied within this thesis provided the opportunity to collect a larger volume 

of data but also introduced limitations to the depth of data it was possible to collect as well as the capacity 

to follow emerging lines of enquiry within educational contexts. Qualitative approaches such as focus 

groups or interviews with teachers, parents and learners would have provided a deeper dataset from 

which to reflect on engineering inequities. Targeted interviews with those who possessed higher or lower 

levels of engineering capital would have been particularly insightful and may have guided future avenues 

of research that could not emerge within the confines of a quantitative methodology. This lack of 

triangulation limits the dimensions of insight offered by this thesis and should be approached in future 

study. 
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Future Research 

Having developed the engineering capital model and instrument within this thesis project it is next 

necessary to apply this perspective widely to robustly understand engineering inequities within the United 

Kingdom. The initial formation and application of the engineering capital lens outlined in this thesis is 

suggestive and informative but requires further investigation with larger samples of young learners. The 

concise nature of the engineering capital instrument supports the ease of its application to new samples. 

The collection of data from secondary schools across the UK would develop a sample of thousands of 

young learners with relatively little investment of time and effort on the part of schools. Such an approach 

could further validate the relevance of the engineering capital instrument – particularly with groups that 

were under-represented within this thesis sample – whilst also developing a richer understanding of how 

young people in the UK are supported to become engineers. Such an application would provide the 

opportunity to develop the engineering capital model through iteration and exploration of novel forms of 

resource.  

Future research would also benefit from the adoption of qualitative methods to triangulate and advance 

understanding of engineering inequities amongst young learners. Aspirations and trajectories are 

acknowledged as deeply complex constructs and, whilst the engineering capital model can comprehend 

and predict these reasonably well, qualitative methods may unearth nuances that quantitative methods 

cannot access. This would also serve to develop richer contacts with schools and support the introduction 

of the engineering capital instrument to new samples whilst supporting the further development of the 

engineering capital perspective. Whilst the engineering capital instrument was designed to be an efficient 

quantitative tool further qualitative research concerning the possession of and nuance within engineering 

capital may inform improvements to future iterations of the instrument.  

Although this thesis data collection focused on secondary school-aged learners the Bourdieuian 

perspective notably applies to any age group, implying that the engineering capital perspective may 

support greater understanding of a range of engineering inequities. Engineering capital may offer a valid 

lens on the experiences of those in vocational and academic further education pathways or assist in 

understanding the performance of engineering university students. A simplified engineering capital 

perspective may also function as a valid lens on the formative engineering experiences of primary school-

aged learners. Applying the engineering capital lens to primary school-aged samples would require the 

underlying Bourdieuian framework of this model to be revisited. For example, primary-aged learners are 

likely still developing their ‘primary habitus’ and so may be more flexible to intervention in shaping 
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engineering trajectory. Bourdieuian theory would also recognise the significant influence of parental 

gatekeepers on young learners which may support the investigation of engineering capital within home 

contexts or family units rather than the capital of individual learners. Future research should explore the 

potential for such wider applications of the engineering capital perspective.  

A further line of enquiry may revisit the ‘deficit’ thinking inherent to a Bourdieuian perspective on inequity 

and explore forms of capital that may support engineering aspirations but are distinct from those 

possessed by the dominant social group recognised as ‘engineers’. This may involve exploring forms of 

resistant capital that develop amongst non-engineering groups to combat engineering inequities and 

support aspirations, in line with the work of Yosso and others who have considered the advantageous 

capital of ‘non-dominant’ groups. In an engineering context this may involve exploring the engineering 

capital of those who approached engineering careers through non-typical pathways or come from 

marginalised groups. It may also involve an exploration of the forms of capital held by those in 

engineering-related or adjacent roles. 

Acknowledging the practical need to address inequities, future research may also adopt an experimental 

paradigm drawing on the contents of the theoretical model of engineering capital to design interventions 

to address inequities. Each aspect of the model is theoretically malleable to change – pedagogical 

structures, novel experiences or curricular redesign may offer the opportunity to develop engineering 

capital to support young learners to place themselves on engineering trajectories. For example, the 

engineering capital perspective may inform STEM outreach programmes that support the development 

of particular forms of cultural or social capital for engineering. Experimental research methodologies may 

collect data at multiple time points during this outreach programme to track changes in aspiration over 

time as engineering capital is developed to provide a greater understanding of the process through which 

capital is accumulated by learners. Another intervention may utilise the engineering capital lens to inform 

teacher training for engineering or support the provision of guidance and curricular-mapped engineering 

learning experiences that could be adopted to combat engineering inequity. As a tool focused on 

improving understanding it would be possible to draw on and apply the engineering capital perspective 

in many contexts to support a greater comprehension of engineering inequities and support meaningful 

intervention against social injustices and national economic challenges in the engineering context.  

At its core, the issue of engineering inequity and its resulting challenges (such as social injustice or 

insufficient skills supply) stem from a need for change to support the engineering domain. This thesis has 

successfully supported this drive for change through the development of more detailed and useful insights 
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into engineering inequities in the United Kingdom. Future efforts may be informed by the engineering 

capital lens to build greater resilience and equity within the UK engineering domain.  
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V1.0, Date: 30/07/2020  
Your pupils are invited to participate in a research study. Before you decide if you wish for your pupils to 
take part in this study it is important that you understand why the research is being done and what it 
will involve. Please read the following and decide whether you want to continue.  
  

Study title: Exploring Science and Engineering among UK School-Age Young People   
 
What is the purpose of the study?  
This research project is exploring what attitudes young people in UK have about science and 
engineering. We want to learn what sort of opinions your pupils have about these subjects and also 
explore some characteristics they have that might affect their attitudes about science and engineering. 
This includes questions about things like who they might talk to about science or engineering, what sort 
of hobbies and interests they have, what sort of job would they be interested in having in the future. 
Answering these questions allows us to better understand how young people think about and 
experience science and engineering in their lives which in turn helps us understand how to teach these 
subjects.   
 
Why have I/they been invited to take part?   
You have been chosen to participate in this study because you are an education provider teaching 
secondary school aged pupils in the UK. We will be asking hundreds of Year 7 – 11 pupils from across the 
UK to take part in this project.   
 
Do I/they have to take part?   
Please note: you or your pupils do not have to participate unless you want to. This study is completely 
voluntary. They can decide they do not wish to complete the questionnaire at any point and stop, or 
they can choose not to submit their data at the end of the questionnaire.   
The questionnaire data will be examined anonymously. Pupils will be asked to describe their gender, 
ethnicity, postcode, year group and name your school but we will not attempt to identify them from this 
information. As the data will be collected anonymously and not attached to an individual pupil’s name it 
will be impossible to identify and remove their data after they have chosen to submit it.  
 
What will happen if I/they take part?   
If you and your pupils agree to take part in the research study they will be asked to complete a 
questionnaire answering questions about their opinions and experiences with science and engineering 
and some questions about their life and family background. Once they are finished they will be asked if 
they wish to submit this data to us. Preferably this would be online via our digital questionnaire, but 
physical copies can be sourced if necessary in which case postage would be provided to return send 
these to the University. Each pupil only needs to fill in the questionnaire once. The teacher will decide 
when the pupil will be asked to do this task – preferably in class time however it can also be completed 
as a homework activity. A questionnaire will be provided to you for your information.  
How will their data be used?  
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Pupil questionnaire answers will be combined with the answers from all our participants from across the 
UK and then analysed as a whole so that we can better understand how young people in the UK think 
about and experience science and engineering in their lives. This may feed into further examinations in 
future research.   
 
The University processes personal data as part of its research and teaching activities in accordance with 
the lawful basis of ‘public task’, and in accordance with the University’s purpose of “advancing 
education, learning and research for the public benefit”.   
Under UK data protection legislation, the University acts as the Data Controller for personal data 
collected as part of the University’s research. The University privacy notice for research participants can 
be found on the attached link https://www.uclan.ac.uk/data_protection/privacy-notice-research-
participants.php   
Further information on how your data will be used can be found in the table below.  
  

How will data be collected?  By questionnaire  

How will data be stored?  

Data will be collected via an online survey tool. 
Digital data will be moved and stored on a 
password protected account and password 
protected file for analysis. Physical data will be 
returned anonymously and stored in a locked 
drawer until digitised.   

How long will data be stored for?  
Data will be stored for the duration of the 
development and refinement of this work.   

What measures are in place to protect the 
security and confidentiality of data?  

Digital data will be collected via a password 
protected questionnaire tool, stored in a 
password protected file on a password 
protected account.   
  
Physical data will be returned via post.   

Will data be anonymised?  
Yes, all data is anonymous from the point of 
collection.   
  

How will data be used?  

  
Pupils will be asked questions that describe 
them including year group, school name, 
ethnicity, home post code. They will be asked 
questions about their attitudes and 
experiences with science and engineering. 
They will also be asked to describe themselves 
and their family background.   
  
Collecting this data allows us to understand 
what their attitudes and experiences with 
science and engineering are, and then examine 
patterns in these for people from different 
backgrounds. This will allow us to better create 
more effective ways of examining how science 
and engineering are considered and taught.   

https://www.uclan.ac.uk/data_protection/privacy-notice-research-participants.php
https://www.uclan.ac.uk/data_protection/privacy-notice-research-participants.php
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Who will have access to data?  

The only people with access to pupil data will 
be the research team – consisting of three 
researchers. One researcher will be 
responsible for anonymising all data.   
  

Will data be archived for use in other research 
projects in the future?  

Yes, this will be archived for further 
development and refinement of the research 
work and outputs.  

How will data be destroyed?  
Once of no use this data will be destroyed 
through secure deletion, shredding.   

  
Are there any risks to taking part?   
There are no risks involved in participating with this study. Questions are not provocative or 
controversial. Should pupils feel uncomfortable with participating at any point they are free to cease 
participation and withdraw from the study.   
 
Are there any benefits to taking part?  
There are no likely benefits to participating in this study; no financial incentive is offered. However, 
participation will assist in the development of knowledge and allow science and engineering education 
to be approached with greater confidence.   
 
What will happen to the results of the study?   
The results of this study will be published in academic publications and disseminated at conferences and 
other professional events. The results will primarily feature in a thesis dissertation exploring science and 
engineering attitudes in the UK. Schools and pupils will not be identifiable in any published results of the 
study.   
 
What will happen if they want to stop taking part?  
Pupil data will only be included within the study if you consent their participation and they wish to 
participate and submit their data at the end of the questionnaire. This means they are free to withdraw 
and stop participating in the study at any time, for any reason, and do not need to explain why.   
As this data will be anonymous at point of collection we will not be able to identify their individual data 
once it has been submitted. This means that we will not be able to remove their data from the study 
after they have submitted it to us.  
 
What if they are unhappy or if there is a problem?  
If you or they are unhappy, or if there is a problem, please feel free to let us know by contacting Richard 
Davies (RDavies15@uclan.ac.uk) and we will try to help. If you remain unhappy, or have a complaint 
which you feel you cannot come to us with, then please contact the Research Governance Unit at 
OfficerForEthics@uclan.ac.uk.    
The University strives to maintain the highest standards of rigour in the processing of your data. 
However, if you have any concerns about the way in which the University processes your personal data, 
it is important that you are aware of your right to lodge a complaint with the Information 
Commissioner's Office by calling 0303 123 1113.  
 
Who can I contact with further questions?   
Rory McDonald, University of Central Lancashire, RAMcDonald5@uclan.ac.uk  
Dr Richard Davies, University of Central Lancashire, RDavies15@uclan.ac.uk  

mailto:RDavies15@uclan.ac.uk
mailto:OfficerForEthics@uclan.ac.uk
mailto:RAMcDonald5@uclan.ac.uk
mailto:RDavies15@uclan.ac.uk
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SCHOOL GATEKEEPER CONSENT FORM  
Version number and date: V1.0, 30/07/20  
Research ethics approval number:  

Exploring Science and Engineering among UK School-Age Young People  
Name of researchers: Dr Richard Davies, Dr Liz Granger, Rory McDonald  
Please initial in each box if you agree with the statement. Participation will only proceed if all boxes are 
initialed.   

  Initial  

I confirm that I have read and have understood the information sheet dated 30/07/20 for 
the above study, or it has been read to me. I have had the opportunity to consider the 
information, ask questions and have had these answered satisfactorily.  

  

I understand that my pupils taking part in the study involves them filling in a 
questionnaire.  

  

I understand that each pupil's participation is voluntary and that they are free to stop 
taking part and can withdraw from the study at any time without giving any reason and 
without their rights being affected up until submission of data. However, after they have 
submitted their anonymous data it will be impossible to later identify them to remove it. 
In addition, I understand that they are free to decline to answer any particular question or 
questions.   

  

I understand that I am consenting to the participation of my pupils ‘in loco parentis’ and 

that this complies with local approval processes  

  

I understand that the information my pupils provide will be held securely and in line with 
data protection requirements at the University of Central Lancashire  

  

I understand that confidentiality and anonymity will be maintained and it will not be 
possible to identify either the educational institution or any individual student in any 
reports, presentations or publications arising from the research.  

  

  

Your name:    

Your school name:    

Your school role:    

Date:    

Signed:    
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V1.0, Date: 30/07/2020  
You are invited to take part in a research study. Before you decide if you want to take part there are a 
few important things for you to know.  
 
Study title: Exploring Science and Engineering Among UK School-Age Young People  
 
What is the purpose of the study?  
We want to learn about what young people in the UK think about science and engineering and things 
about you that might shape your science and engineering ideas. This means asking you about things like 
who you might talk to about science or engineering, what sort of hobbies and interests you have, what 
sort of job you would like to have in the future. You answering these questions helps us to understand 
how young people think about science and engineering and helps us to teach these subjects.   
 
Why have I been invited to take part?  
We are asking you to take part because you are a secondary school student in the UK. We are asking 
hundreds of pupils like you from across the UK to take part.  
 
Do I have to take part?  
You do not have to take part unless you want to. This study is completely voluntary. You can decide you 
do not want to complete the questionnaire at any time and stop, or you can decide not to submit your 
answers after you have finished.   
The answers you give will be examined anonymously. This means your name will not be attached to any 
of your data. You will not be identified in any analysis or publication. If you submit your data at the end 
we will have no way of knowing who sent it to us, so you will not be identified from it.   
 
What will happen if I take part?  
If you want to take part you will be asked to fill in a questionnaire. Your teacher will decide when this 
will happen. You only need to fill it in once. You will be asked about your life, your thoughts and 
experiences with science, and interest in exploring these subjects in the future. This should take roughly 
30 minutes to complete.   
 
How will my data be used?  
Your answers will be combined with answers from students across the UK then examined as a whole for 
patterns in how people see and experience science and engineering. This might feed into further 
research studies in the future.   
Your teacher will not see your answers – they will only be seen by the researchers conducting this 
research and this information will be anonymous and not attached to your name.   
This research is being run by staff at the University of Central Lancashire. The University 
processes personal data as part of its research and teaching activities in accordance with the 
lawful basis of ‘public task’, and in accordance with the University’s purpose of “advancing 
education, learning and research for the public benefit”.   
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Any data you provide will be treated in line with data protection laws, and you can read more 
about this at the following link: https://www.uclan.ac.uk/data_protection/privacy-notice-
research-participants.php   
 
Are there any risks to taking part?   
There are no risks involved in taking part, but if you feel uncomfortable at any point you can stop.   
 
Are there any benefits to taking part?  
There are no likely benefits to taking part but taking part will help us to development knowledge and 
understanding about science and engineering.   
 
What will happen to the results of the study?   
The results of this study will be written up and published, but you will not be identified in these.   
 
What will happen if I want to stop taking part?  
Your answers will only be included in the study if you agree to submit them at the end of the 
questionnaire.   
After you have submitted your answers we cannot go back and remove them later if you decide you do 
not want to be involved because we aren’t attaching your name to your answers.   
 
What if I am unhappy or if there is a problem?  
If you are unhappy or if there is a problem please feel free to let us know by contacting Richard Davies 
(RDavies15@uclan.ac.uk) and we will try to help. You could also speak to your teacher about this.  If you 
remain unhappy or have a complaint which you feel you cannot come to us with, then please contact 
the Research Governance Unit at OfficerForEthics@uclan.ac.uk.    
The University strives to maintain the highest standards of rigour in the processing of your data. 
However, if you have any concerns about the way in which the University processes your personal data, 
it is important that you are aware of your right to lodge a complaint with the Information 
Commissioner's Office by calling 0303 123 1113.  
 
Who can I contact with further questions?   
Rory McDonald, University of Central Lancashire, RAMcDonald5@uclan.ac.uk  
Dr Richard Davies, University of Central Lancashire, RDavies15@uclan.ac.uk  
 

DEBRIEF 
Thank you for taking part in this study. Taking part will help us to better understand how young people 
in the UK see and experience science and engineering and help us understand how to teach these 
subjects. Your answers will be combined with all the answers we collect from students like you in the UK 
and then looked at to find patterns. We will talk about what we have learned in reports and share our 
findings with others but you will not be identified. Because your name is not attached to your data we 
cannot remove it now that it has been submitted.  
 

If you have any questions please contact:  
Rory McDonald, University of Central Lancashire, RAMcDonald5@uclan.ac.uk  
Dr Richard Davies, University of Central Lancashire, RDavies15@uclan.ac.uk

https://www.uclan.ac.uk/data_protection/privacy-notice-research-participants.php
https://www.uclan.ac.uk/data_protection/privacy-notice-research-participants.php
mailto:RDavies15@uclan.ac.uk
mailto:OfficerForEthics@uclan.ac.uk
mailto:RAMcDonald5@uclan.ac.uk
mailto:RDavies15@uclan.ac.uk
mailto:RAMcDonald5@uclan.ac.uk
mailto:RDavies15@uclan.ac.uk
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IF YOU AGREE TO TAKING PART IN THIS STUDY PLEASE TICK THE BOX: 

“I consent to taking part in this questionnaire”   

AND BEGIN THE QUESTIONNAIRE.  

About you 

Are you a girl or a boy? Please tick the relevant box below.  

Girl 

Boy 

Other (Please state): _______________ 

 

What year group are you in? Please tick the relevant box below. 

Year 7 

Year 8 

Year 9 

Year 10 

Year 11 

 

What is the name of your school?  

Write your answer here: ________________________________________ 

 

What is the postcode of your home address? E.g. SW1 2LW 

Write your answer here: _________________________________________ 

 

Can you speak or read a language other than English? Please tick the relevant box below. 

Yes 

No 

 

If you can speak or read a language other than English, what language and how well? Write down the name of the 

language and tick the appropriate box.  

What language? How well can you speak or read it? 

 
      I know a little I know a lot I am fluent 

 
      I know a little  I know a lot I am fluent 

 
       I know a little   I know a lot I am fluent 



   Appendix C – Data Collection Questionnaire 

 

Which of the following best describes your ethnic origin?  

Please tick the box for your ethnic 
background: 

If you know your ethnic background more specifically, please also 
tick the relevant box: 

           
           Asian 

 
 
 
 
 

 
Indian 
 
Pakistani 
 
Bangladeshi 
 
Other (Please specify): __________________ 
 

 
           White 
 

 
          British (English, Scottish, Welsh, and/or Northern Irish) 
 
          Other (Please specify): __________________ 
 

 
           Black 

 
          Caribbean 
 
           African 
 
          Other (Please specify): __________________ 
 

 
          Chinese or East Asian 

 
          Chinese 
 
          Japanese 
 
          Korean 
 
          Other (Please specify): __________________ 
 

 
           Middle Eastern 

 
          Arabic 
 
          Persian 
 
          Jewish 
 
          Turkish 
 
          Kurdish 
 
          Other (Please specify): __________________ 
 

 
 Other (including Mixed and 
multiple ethnic groups) 

 
          Asian and Black 
 
          Black and White 
 
          Asian and White 
 
          Other (Please specify): __________________ 

Prefer not to say 
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About your family and home 

Did your mother leave school before age 16? 

Yes 

No 

Don’t know 

 

Did your mother go to university? 

Yes 

No  

Don’t know 

 

Did your father leave school before age 16?  

Yes 

No 

Don’t know 

 

Did your father go to university? 

Yes 

No 

Don’t know 

 

Approximately how many books, including e-books, are there in your home? 

None 

A few (less than 20) 

Many (more than 20, less than 50) 

Very many (more than 50, less than 100) 

A lot (more than 100) 
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What do science and engineering mean to you? 

When you hear the word “science” what comes to mind? You can select multiple options by ticking boxes below. 

Advancement, the future, a better world 

Biology, chemistry, physics 

Economic benefits, jobs in the sciences 

Engineering 

Environment, nature, plants, animals 

Experiment, inquisitive, understanding 

Explosions 

Health, drugs, cures for diseases, doctors 

Ideas, invention, discover, research 

School, exams, lessons, teachers 

Social sciences, economics, psychology 

Working together 

Space, rockets, astronomy 

None of these come to mind 

 

Can you think of any science jobs that a university science degree could lead into? List any that quickly come to 

mind in the box below, but do not spend long on this task. 

 

 

 

 

 

 

 

When you hear the word "engineering" what comes to mind?  You can select multiple options by ticking boxes 

below. 

Advancement, the future, a better world 

Biology, chemistry, physics 

Economic benefits, jobs in engineering 

Science 

Experiment, inquisitive, understanding 

Explosions 

Ideas, invention, discover, research 

School, exams, lessons, teachers 

Working together 

Space, rockets, astronomy 

Electricity 

Mechanics, cars 

  

Airplanes 

Bridges, roads, buildings 

Building things 

Fixing things 

Designing things 

Solving problems 

Using maths in the real world 

Computers, programming 

Messy work 

Using tools 

Beings hands on 

None of these come to mind 
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Can you think of any engineering jobs that a university engineering degree could lead into? List any that quickly 

come to mind in the box below, but do not spend long on this task. 

 

 

 

 

 

 

 

 

 

Have you come across engineering in your education so far, and if so where?  You can select multiple options 

below. 

In a science class 

In a design and technology class 

In a maths class 

In an engineering class 

I have not come across engineering in my education 

Other. Please state where: _______________________ 

 

You in school 

What would you say was your overall grade for the following subjects in your Standard Attainment Tests (SATs) at 

the end of Year 6? If you were told this score it would have been between 80 and 120. If you cannot remember 

these or were never told select "Don't know or remember". Please tick the box for the relevant answer below.  

    Grade brackets  

 
80 to 90 91 to 100 101 to 110 111 to 120 

Don’t know or 
remember 

Science 
     

Maths 
     

English 
     

 

Which of the following statements below is true for you now in each of the following subjects? 

 
I am in one of the 

top sets 
I am in one of the 

middle sets 
I am in one of the 

bottom sets 
There are no sets in 

my school 

Science 
    

Maths 
    

English 
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You and your future career 

What job would you like to have in the future? 

Write your answer here: ______________________________________________ 

 

How much do you agree with the following statements? Please tick the relevant box for each statement below. 

 
Strongly 
disagree 

Disagree 
Neither 

Agree nor 
Disagree 

Agree 
Strongly 

agree 

I would like to have a job that uses 
science 

     

People who are like me work in science      

When I grow up I would like to be a 
doctor or work in medicine 

     

I want to become a scientist      

I would like to have a job that uses 
engineering 

     

People who are like me work in 
engineering 

     

I want to become an engineer      

Anyone can become an engineer      

I would like to have a job that involves 
designing and making things 

     

I would like to work in an engineering 
related job, but not in an engineering 
industry 

     

People who are like me work in jobs 
designing and making things 
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How much do you agree with the following statements? Please tick the relevant box for each statement below. 

 
Strongly 
disagree 

Disagree 
Neither 

Agree nor 
Disagree 

Agree 
Strongly 

agree 

A science qualification can help you to 
get many different types of job 

     

It is important to understand 
engineering even if you don't want an 
engineering job in the future 

     

An engineering qualification can help 
you get many different types of job 

     

 

Talking to people about science and engineering 

When you are not in school how often do you talk about science with other people? 

Never or rarely (once a year) 

A few times a year 

About once a month 

 About once a week 

 Almost every day 

 

Who do you talk with about science? You can select multiple options below.

Friends 

Directly from scientists 

Siblings (brothers or sisters) 

Teachers 

Parents or guardians 

Extended family members (grandparents, 

aunts, uncles, cousins) 

People I know from my community 

No one 

Other (please state): ___________________

 

When you are not in school how often do you talk about engineering with other people? 

Never or rarely (once a year) 

A few times a year 

About once a month 

About once a week 

 Almost every day 

 

Who do you talk with about engineering? You can select multiple options below.

Friends 

Directly from scientists 

Directly from engineers 

Siblings (brothers or sisters) 

Teachers 

Parents or guardians 

Extended family members (grandparents, 

aunts, uncles, cousins) 

People I know from my community 

No one 

Other (please state):___________________ 
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Knowing someone who works in science 

Do you know anyone (family, friends, or community) who works as a scientist or in a job that uses science?

Yes No Don’t know 

 

If you said yes you know someone among your family, friends, or community who works as a scientist or in a job 

that uses science can you tell us who they are and what job they do? 

Who is this person to you? e.g. your sister And what is their job? 

  

  

  

 

Knowing someone who works in engineering 

Do you know anyone (family, friends, or community) who works as an engineer or in a job that uses engineering?

Yes No Don’t know 

 

If you said yes you know someone among your family, friends, or community who works as an engineer or in a job 

that uses engineering can you tell us who they are and what job they do? 

Who is this person to you? e.g. your sister And what is their job? 

  

  

  

 

Knowing someone with a designing and making things hobby 

Do you know anyone (family, friends, or community) who has a hobby that involves engineering, e.g. designing 

and making things, woodworking, crafts, DIY?

Yes No Don’t know 

 

If you said yes you know someone among your family, friends, or community who has a hobby that involves 

engineering can you tell us who they are and what hobby they do? 

Who is this person to you? e.g. your sister And what is their hobby? 
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More about your family 

How much do you agree with the following statements about your parents? Please tick the relevant box for each 

statement below. 

“One or both of my parents… 
Strongly 
disagree 

Disagree 
Neither 

Agree nor 
Disagree 

Agree 
Strongly 

agree 

...Sign me up to activities outside of 
school time (e.g. dance, music, clubs)"      

...Expect me to go to university" 
      

...Think science is very interesting" 
     

...Has explained to me that science is 
useful for my future"      

...Think that engineering is very 
interesting"      

...Think it is important for me to learn 
about engineering"      

...Has explained to me that 
understanding engineering is useful for 
my future" 

     

...Know a lot about engineering" 
     

...Expect me to study science after my 
GCSEs"      

...Expect me to study maths after my 
GCSEs"      

...Expect me to study engineering after 
my GCSEs"      
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Your understanding of science and engineering 

How much do you agree with the following statements? Please tick the relevant box for each statement below. 

 

Strongly 
disagree 

Disagree 
Neither 

Agree nor 
Disagree 

Agree 
Strongly 

agree 

Other people think of me as a science 
person      

I know how to use scientific evidence to 
make an argument      

I know quite a lot about science 
     

I am confident about giving answers in 
science lessons      

Other people think of me as an 
engineering-type person      

I know how to design and make things 
     

I know quite a lot about engineering 
     

I would be confident talking about 
engineering in lessons      

 

How much do you agree with the following statements? Please tick the relevant box for each statement below. 

 

Strongly 
disagree 

Disagree 
Neither 

Agree nor 
Disagree 

Agree 
Strongly 

agree 

I am good at finding patterns and 
seeing how things fit together      

I am good at looking for problems and 
checking things are right      

I am good at imagining and picturing 
what things might look like      

I am good at trying different ways to 
make things better      

I am good at fixing problems and finding 
solutions      

I am good at trying things, testing ideas, 
and changing my plans if necessary      
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Engineering in your life and community 

How much do you agree with the following statements? Please tick the relevant box for each statement below. 

 

Strongly 
disagree 

Disagree 
Neither 

Agree nor 
Disagree 

Agree 
Strongly 

agree 

Being interested in engineering is an 
important part of who I am      

I think of myself as an engineering-type 
person      

It is important people think of me as an 
engineering-type person      

It is important to me that I have other 
engineering-type people to talk about 
engineering with 

     

I know how to talk about engineering 
using technical words and language      

I am comfortable having conversations 
about engineering      

There is a history of engineering within 
my local community      

There is a history of engineering within 
my family tree      

There is a history of making and fixing 
things within my local community      

There is a history of making and fixing 
things within my family tree      
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Science, engineering and the media 

How often do you do the following things outside of school? Tick the appropriate box below. 

 

Never or 
rarely (once 

in a year) 

Occasionally 
(few times a 

year) 

Sometimes 
(once every 

month) 

Regularly 
(once every 

week) 

Always 
(every day 
or every 

other day) 

Read books or magazines about 
science?      

Watch engineering TV programmes, e.g. 
Mythbusters, Scrapheap Challenge, 
Robot Wars, etc.? 

     

Watch TV programmes with some 
engineering in them, e.g. Blue Peter, 
The Big Bang Theory, Top Gear, The 
Great British Bake Off, etc.? 

     

Read books or magazines about 
engineering?      

Go online to find out about engineering, 
e.g. YouTube, engineering websites, 
play engineering games? 
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More about you 

How often do you do the following things when you are not in school? Please tick the relevant box for each 

statement below. 

 Never 

At least 
once, but 

more than a 
year ago 

At least 
once a year 

At least 
once a term 

At least 
once a 
month 

Go to a museum? 
     

Go to a science centre, science 
museum, or planetarium?      

Visit a zoo or aquarium? 
     

Do DIY, or help fix things around the 
home?      

Get shown how to use tools? 
     

Make models, e.g. playing with Lego, 
painting miniatures?      

Do crafts, e.g. knitting, woodwork? 
     

Play videogames about designing or 
building, e.g. The Sims, Minecraft?      

Program computers, e.g. writing apps, 
building websites?      
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How often do you do the following things when you are in school? Please tick the relevant box for each statement 

below. 

 Never 

At least 
once, but 

more than a 
year ago 

At least 
once a year 

At least 
once a term 

At least 
once a 
month 

Go to an after school science club? 
     

Go to an after school club that involves 
engineering?      

Had people visit you in school to teach 
you about engineering?      

Take an engineering related school trip? 
     

Take a school trip to a museum? 
     

Do school activities where you design or 
build something, e.g. designing a 
bridge, making and testing paper 
airplanes? 

     

Take part in a competition where you 
design or make something?      

Go to a club where you make things? 
     

 

 

Going to the museum 

How much do you agree with the following statements? Please tick the relevant box for each statement below. 

 
Strongly 
disagree Disagree 

Neither 
Agree nor 
Disagree Agree 

Strongly 
agree 

My family like going to museums 
     

I like going to museums 
     

I have learnt a lot about engineering 
from museums      
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Participation in science 

Have you participated in any science education programmes or competitions? e.g. CREST Award, Project 

Bloodhound, Science Fairs, Olympiads, or other challenges. 

Yes No 

If you have participated and answered yes, please name the competitions or programmes in the box below. 

 

 

 

 

If you have not participated and answered no, which of the statements below best describes why not? 

  I intend to do them next year 

  I am interested but my school is not involved 

in any 

  I heard about them but I am not interested 

  I don’t know anything about them but I might 

be interested 

 I don’t know anything about them and I am 

not interested 

 

 

Participation in engineering 

Have you participated in any engineering education programmes or competitions?  E.g. Secondary Engineer, 

Science Fairs, Ultimate STEM Challenge, or other challenges. 

  Yes   No 

 

If you have participated and answered yes, please name the competitions or programmes in the box below. 

 

 

 

 

If you have not participated and answered no, which of the statements below best describes why not? 

I intend to do them next year 

I am interested but my school is not involved 

in any 

I heard about them but I am not interested 

I don’t know anything about them but I might 

be interested 

I don’t know anything about them and I am 

not interested 
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Science and engineering in schools 

How much do you agree with the following statements? Please tick the relevant box for each statement below. 

 

Strongly 
disagree 

Disagree 
Neither 

Agree nor 
Disagree 

Agree 
Strongly 

agree 

My teachers have specifically 
encouraged me to continue with 
science after GCSEs 

     

My teachers have explained to me that 
science is useful for my future      

I don't think I am clever enough to 
study any science at A-Level after my 
GCSEs 

     

My teachers explain how engineering 
qualifications can lead to different jobs      

My teachers have specifically 
encouraged me to consider studying 
engineering after GCSEs 

     

My teachers have explained to me that 
understanding engineering is useful for 
my future 

     

I don't think I am clever enough to 
study any engineering after GCSE      

 

Science and engineering in everyday life 

How much do you agree with the following statements? Please tick the relevant box for each statement below. 

 

Strongly 
disagree 

Disagree 
Neither 

Agree nor 
Disagree 

Agree 
Strongly 

agree 

It is useful to know about science in my 
daily life      

Engineers need to be imaginative in 
their work      

Engineering creates new jobs so more 
people can have work      

It is useful to know about engineering in 
my daily life      

Getting young people to understand 
engineering is important for our society      
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Understanding the school setting 

How much do you agree with the following statements? Please tick the relevant box for each statement below. 

 

Strongly 
disagree 

Disagree 
Neither 

Agree nor 
Disagree 

Agree 
Strongly 

agree 

I know what the rules of my classrooms 
are      

I always follow the rules of my 
classrooms      

I know the safety rules for using tools 
and materials in my classrooms      

I always follow the safety rules for using 
tools and materials in my classrooms      

I know about what engineering 
qualifications I could study after my 
GCSEs 
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Working in a science job 

Do you think you might like to work in a science-related job in the future?

 Yes  No 

 

If you said yes you think you might like to work in a science-related job in the future can you tell us why? You can 

select multiple answers below. 

Opportunity to help others 

Well paid 

Secure 

Well respected/high status 

Good work-life balance 

Personally satisfying 

Lots of different types of job available 

Interesting 

Opportunities to make exciting new 

discoveries 

Opportunities to fix real world problems 

Don’t know 

Other (please specify): ________________ 

 

If you said no you do not think you would like to have a science-related job in the future can you tell us why not? 

You can select multiple answers below. 

Long hours 

Poorly paid 

Too competitive 

Hard to get into 

No real chance of making a difference 

Uncool 

Boring 

Need too many qualifications 

Difficult area for people of my background to 

get into 

Just want to do something else 

Bad image 

Limited range of job opportunities available 

Don’t understand what the jobs would involve 

Messy work 

The work would be too difficult 

Don’t know 

Other (please specify): __________________ 
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Working in an engineering job 

Do you think you might like to work in an engineering-related job in the future? 

 Yes  No 

 

If you said yes you think you might like to work in an engineering-related job in the future can you tell us why? 

You can select multiple answers below. 

Opportunity to help others 

Well paid 

Secure 

Well respected/high status 

Good work-life balance 

Personally satisfying 

Lots of different types of job available 

Interesting 

Opportunities to make things 

Opportunity to fix real world problems 

Don’t know 

Other (please specify): _____________ 

 

If you said no you do not think you would like to have an engineering-related job in the future can you tell us why 

not? You can select multiple answers below. 

 Long hours 

 Poorly paid 

 Too competitive 

 Hard to get into 

 No real chance of making a difference 

 Uncool 

 Boring 

 Need too many qualifications 

Difficult area for people of my background to 

get into 

 Just want to do something else 

 Bad image 

 Limited range of job opportunities available 

 Don’t understand what the jobs would involve 

 Messy work 

 The work would be too difficult 

 Don’t know 

 Other (please specify): ___________________ 

 

How likely is it that you would tell the following people about your interest or lack of interest in engineering? 

 

I would not 
talk to them 

about it 

I would 
think about 
mentioning 

it 
I might 

mention it 

I would 
probably 

mention it 

I would 
definitely 
mention it 

A family member      

A teacher 
     

A friend 
     

A new classmate      
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Future for science and engineering 

Although it is a long way off which of the following describes your views: 

I would like to study science at university 

I would like to study one or more sciences at A-level (E.g. biology, chemistry, physics) 

I would like to study some science after GCSE but not A-level biology, chemistry, physics 

I do not want to study any science after GCSE 

None of the above or I don't know 

 

 

Although it is a long way off which of the following describes your views: 

I would like to study engineering at university 

I would like to study engineering at college/sixth form 

I would like to study engineering after GCSE but not A-level 

I do not want to study any engineering after GCSE 

 None of the above or I don't know 
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Science and engineering engagement 

How much do you agree with the following statements? Please tick the relevant box for each statement below. 

 
Strongly 
disagree Disagree 

Neither 
Agree nor 
Disagree Agree 

Strongly 
agree 

I believe I could be successful at science 
in the future      

I think understanding science is 
important      

I enjoy learning about science 
     

I think learning about science is 
interesting      

I think it is useful to know about science 
     

Learning about science takes too much 
effort      

I think learning about science is boring 
     

I worry I am not good at science 
     

I want to learn more about science 
     

I want to learn more about science, 
even if it is hard      

It would be good for my future to learn 
about science      
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How much do you agree with the following statements? Please tick the relevant box for each statement below. 

 
Strongly 
disagree Disagree 

Neither 
Agree nor 
Disagree Agree 

Strongly 
agree 

I believe I could be successful at 
engineering in the future      

I think understanding engineering is 
important      

I enjoy learning about engineering 
     

I think learning about engineering is 
interesting      

I think it is useful to know about 
engineering      

Learning about engineering takes too 
much effort      

I think learning about engineering is 
boring      

I worry I am not good at engineering 
     

I want to learn more about engineering 
     

I want to learn more about engineering, 
even if it is hard      

It would be good for my future to learn 
about engineering      

 

 

Thank you for answering these questions. Would you like to submit your answers to our study?  

If you submit these we will not be able to remove them later if you change your mind as your name will not 

be attached to your answers.  

Tick yes to submit your answers for our study and finish the task.  

Tick no and your answers will not be used in the study. 

Would you like to submit your answers to this study? 

Yes      No 
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Thank you for taking part in this study 

Thank you for taking part in this study. Taking part will help us to better understand how young people in 

the UK see and experience science and engineering and help us understand how to teach these subjects.  

If you chose to submit your answers they will be combined with all the answers we collect from students 

like you in the UK and then looked at to find patterns. We will talk about what we have learned in reports 

and share our findings with others but you will not be identified. Because your name is not attached to 

your data we cannot remove it now that it has been submitted.  

 

If you have any questions please contact:  

Rory McDonald, University of Central Lancashire, RAMcDonald5@uclan.ac.uk   

Dr Richard Davies, University of Central Lancashire, RDavies15@uclan.ac.uk 

 

 

mailto:RAMcDonald5@uclan.ac.uk
mailto:RDavies15@uclan.ac.uk
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General Cultural Capital Instrument 

Item Response Scale 

Did your mother leave school before age 16? -1 to 1 three-point Likert scale 

Did your mother go to university? -1 to 1 three-point Likert scale 

Did your father leave school before age 16? -1 to 1 three-point Likert scale 

Did your father go to university? -1 to 1 three-point Likert scale 

Approximately how many books, including e-books, are there in 

your home? 

0 to 2 five-point Likert scale 

How often do you do the following things when you are not in 

school: go to a museum? 

0 to 2 five-point Likert scale 

 

Science Capital Instrument 

Item Response Scale 

A science qualification can help you get many different types of job -2 to 2 five-point Likert scale 

 

When you are not in school, how often do you talk about science 

with other people? 

0 to 4 five-point Likert scale 

One or both of my parents think science is very interesting -1 to 1 five-point Likert scale 

One or both of my parents has explained to me that science is 

useful for my future 

-1 to 1 five-point Likert scale 

I know how to use scientific evidence to make an argument -2 to 2 five-point Likert scale 

How often do you go to an after-school science club? 0 to 4 five-point Likert scale 

When not in school, how often do you read books/magazines 

about science? 

0 to 4 five-point Likert scale 

When not in school, how often do you go to a science centre, 

science museum, or planetarium? 

0 to 4 five-point Likert scale 

When not in school, how often do you visit a zoo or aquarium?  0 to 4 five-point Likert scale 

My teachers have specifically encouraged me to continue with 

science after GCSE/National 5s 

-2 to 2 five-point Likert scale 

My teachers have explained to me that science is useful for my 

future 

-2 to 2 five-point Likert scale 

It is useful to know about science in my daily life -1 to 1 five-point Likert scale 

Who do you talk with about science? 0 to 3.5 scale based on 

number of contacts 

Do you know anyone (family, friends, or community) that works as 

a scientist or in a job that uses science?  

0 to 7 scale based on number 

of contacts 
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Archer-Style Engineering Capital Instrument 

Item Response Scale 

An engineering qualification can help you to get 

many different types of job 

-2 to 2 five-point Likert scale 

When you are not in school, how often do you 

talk about engineering with other people? 

0 to 4 five-point Likert scale 

One or both of my parents think engineering is 

very interesting 

-1 to 1 five-point Likert scale 

One or both of my parents has explained to me 

that engineering is useful for my future 

-1 to 1 five-point Likert scale 

I know how to design and make things -2 to 2 five-point Likert scale 

How often do you go to an after-school club that 

involves engineering? 

0 to 4 five-point Likert scale 

When not in school, how often do you read 

books/magazines about engineering? 

0 to 4 five-point Likert scale 

When not in school, how often do you go to a 

science centre, science museum, or 

planetarium? 

0 to 4 five-point Likert scale 

My teachers have specifically encouraged me to 

consider studying engineering after 

GCSE/National 5s 

-2 to 2 five-point Likert scale 

My teachers have explained to me that 

understanding engineering is useful for my 

future 

-2 to 2 five-point Likert scale 

It is useful to know about engineering in my daily 

life 

-1 to 1 five-point Likert scale 

Who do you talk with about engineering? 0 to 4 scale based on number of contacts 

Do you know anyone (family, friends, or 

community) that works as an engineer or in a job 

that uses engineering?  

0 to 7 scale based on number of contacts 
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Engineering Capital Instrument 

Item Response Scale 

I have learnt a lot about engineering from 

museums 

-2 to 2 five-point Likert scale 

I know how to design and make things -2 to 2 five-point Likert scale 

I know quite a lot about engineering -2 to 2 five-point Likert scale 

I would be confident talking about engineering in 

lessons 

-2 to 2 five-point Likert scale 

An engineering qualification can help you get 

many different types of job 

-2 to 2 five-point Likert scale 

When you are not in school, how often do you 

talk about engineering with other people? 

0 to 4 five-point Likert scale 

How often do you do the following things 

outside of school: Read books or magazines 

about engineering? 

0 to 4 five-point Likert scale 

How often do you do the following things 

outside of school: Go online to gind out about 

engineering, e.g. YouTube, engineering 

websites, play engineering games? 

0 to 4 five-point Likert scale 

How often do you do the following things when 

you are not in school: Do DIY, or help fix things 

around the home? 

0 to 4 five-point Likert scale 

How often do you do the following things when 

you are not in school: Do crafts, e.g. knitting, 

woodworking? 

0 to 4 five-point Likert scale (Reverse code) 

How often do you do the following things when 

you are in school: Take an engineering-related 

school trip? 

0 to 4 five-point Likert scale (Reverse code) 

 

Engineering Identity Instrument 

Item Response Scale 

People who are like me work in engineering -2 to 2 five-point Likert scale 

Other people think of me as an engineering-type 

person 

-2 to 2 five-point Likert scale 

My teachers have specifically encouraged me to 

consider studying engineering after 

GCSE/National 5s 

-2 to 2 five-point Likert scale 

I don’t think I am clever enough to study 

engineering after GCSE/National 5s 

-2 to 2 five-point Likert scale 
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Engineering Engagement Instrument 

Item Response Scale 

I believe I could be successful at engineering in 

the future. 

-2 to 2 five-point Likert scale 

I know quite a lot about engineering. -2 to 2 five-point Likert scale 

I think understanding engineering is important. -2 to 2 five-point Likert scale 

I enjoy learning about engineering. -2 to 2 five-point Likert scale 

I think learning about engineering is interesting. -2 to 2 five-point Likert scale 

I think it is useful to know about engineering. -2 to 2 five-point Likert scale 

Learning about engineering takes too much 

effort (reverse coded). 

-2 to 2 five-point Likert scale 

I think learning about engineering is boring 

(reverse coded).  

-2 to 2 five-point Likert scale 

I worry I am not good at engineering (reverse 

coded). 

-2 to 2 five-point Likert scale 

I want to learn more about engineering. -2 to 2 five-point Likert scale 

I want to learn more about engineering even if it 

is hard. 

-2 to 2 five-point Likert scale 

It would be good for my future to learn about 

engineering. 

-2 to 2 five-point Likert scale 
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Cronbach’s Alpha: Science Capital Instrument 

A Cronbach’s Alpha analysis was utilised to examine the internal consistency (reliability) of responses 

on the science capital instrument scale. Fourteen items were examined and determined to possess a 

high level of internal consistency (N=854, a=0.851 based on standardised items) supporting the use of 

this scale. This result was not meaningfully improved by the removal of any of the items.  

 

Case Processing Summary 

 N % 

Cases Valid 854 92.7 

Excludeda 67 7.3 

Total 921 100.0 

a. Listwise deletion based on all variables in the procedure. 

 

Reliability Statistics 

Cronbach's Alpha 

Cronbach's Alpha Based on 

Standardized Items N of Items 

.833 .851 14 

 

Item-Total Statistics 

 

Scale Mean if 

Item Deleted 

Scale 

Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Squared 

Multiple 

Correlation 

Cronbach's 

Alpha if Item 

Deleted 

28.1. A science 

qualification can help 

you to get many 

different types of job 

8.888 45.678 .374 .222 .828 

29. When you are not in 

school how often do 

you talk about science 

with other people? 

8.235 38.064 .620 .493 .812 

39.3. ...Think science is 

very interesting" 

9.691 45.904 .612 .496 .820 

39.4. ...Has explained 

to me that science is 

useful for my future" 

9.706 45.888 .567 .456 .821 

40.2. I know how to use 

scientific evidence to 

make an argument 

9.701 41.844 .540 .326 .817 

45.1. Go to an after 

school science club? 

9.535 44.975 .371 .167 .829 
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43.1. Read books or 

magazines about 

science? 

9.005 41.697 .528 .322 .818 

44.2. Go to a science 

centre, science 

museum, or 

planetarium? 

8.821 43.291 .541 .418 .818 

44.3. Visit a zoo or 

aquarium? 

8.317 46.627 .266 .243 .835 

51.1. My teachers have 

specifically encouraged 

me to continue with 

science after GCSEs 

10.042 42.665 .501 .350 .820 

51.2. My teachers have 

explained to me that 

science is useful for my 

future 

9.346 43.659 .442 .351 .824 

Science Capital Talk 

With Science Score 

8.960 44.494 .591 .410 .817 

TOTAL KNOWING 

SOMEONE 

9.222 44.932 .346 .145 .831 

52.1. It is useful to know 

about science in my 

daily life 

9.641 46.279 .575 .389 .822 
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Cronbach’s Alpha: Archer-Style Engineering Capital Instrument 

A Cronbach’s Alpha analysis was utilised to examine the internal consistency (reliability) of responses 

on the Archer-style engineering capital scale instrument. Thirteen items were examined and 

determined to possess a high level of internal consistency (N=846, a=0.840 based on standardized 

items) supporting the use of this scale. This result was not meaningfully improved by the removal of 

any of the items.  

Case Processing Summary 

 N % 

Cases Valid 846 91.9 

Excludeda 75 8.1 

Total 921 100.0 

a. Listwise deletion based on all variables in the procedure. 

 

Reliability Statistics 

Cronbach's Alpha 

Cronbach's Alpha Based on 

Standardized Items N of Items 

.818 .840 13 

 

Item-Total Statistics 

 

Scale Mean if 

Item Deleted 

Scale 

Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Squared 

Multiple 

Correlation 

Cronbach's 

Alpha if Item 

Deleted 

28.3. An engineering 

qualification can help 

you get many different 

types of job 

4.371 36.325 .380 .216 .812 

AS Eng Cap Talk with 

Engineering 

4.439 35.770 .619 .489 .797 

31. When you are not in 

school how often do 

you talk about 

engineering with other 

people? 

3.933 30.515 .622 .548 .791 

COPY FOR AS ENG 

CALC 39.7. ...Has 

explained to me that 

understanding 

engineering is useful for 

my future" 

5.031 37.048 .582 .534 .803 
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COPY FOR AS ENG 

39.5. ...Think that 

engineering is very 

interesting" 

4.881 37.146 .584 .550 .803 

40.6. I know how to 

design and make things 

4.683 35.153 .387 .171 .813 

45.2. Go to an after 

school club that 

involves engineering? 

4.797 37.486 .358 .185 .813 

43.4. Read books or 

magazines about 

engineering? 

4.439 34.836 .504 .319 .802 

44.2. Go to a science 

centre, science 

museum, or 

planetarium? 

3.954 36.840 .322 .166 .816 

51.5. My teachers have 

specifically encouraged 

me to consider studying 

engineering after 

GCSEs 

5.696 34.175 .520 .531 .800 

51.6. My teachers have 

explained to me that 

understanding 

engineering is useful for 

my future 

5.349 32.940 .564 .569 .796 

TOTAL KNOWING 

SOMEONE 

ENGINEERING 

4.217 36.458 .292 .132 .821 

COPY FOR AS ENG 

CAP SCORE 52.4. It is 

useful to know about 

engineering in my daily 

life 

4.920 37.344 .567 .377 .804 
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Cronbach’s Alpha: General Cultural Capital Instrument 

A Cronbach’s Alpha analysis was utilised to examine the internal consistency (reliability) of responses 

on the general cultural capital scale instrument. Six items were examined and determined to possess 

a medium level of internal consistency (N=889, a=0.575) supporting the use of this scale. This result 

was not meaningfully improved by the removal of any of the items.  

Case Processing Summary 

 N % 

Cases Valid 889 96.5 

Excludeda 32 3.5 

Total 921 100.0 

a. Listwise deletion based on all variables in the procedure. 

 

Reliability Statistics 

Cronbach's Alpha 

Cronbach's Alpha Based on 

Standardized Items N of Items 

.559 .575 6 

 

Item-Total Statistics 

 

Scale Mean if 

Item Deleted 

Scale 

Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Squared 

Multiple 

Correlation 

Cronbach's 

Alpha if Item 

Deleted 

14. Did your mother 

leave school before age 

16? 

2.633 4.356 .240 .160 .539 

15. Did your mother go 

to university? 

3.367 3.219 .337 .175 .503 

16. Did your father 

leave school before age 

16? 

2.769 3.973 .296 .186 .515 

17. Did your father go to 

university? 

3.566 3.261 .357 .191 .487 

18. Approximately how 

many books, including 

e-books, are there in 

your home? 

1.948 4.018 .350 .151 .497 

44.1. Go to a museum? 

(Weighted for general 

cultural capital) 

2.719 4.398 .275 .106 .530 
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Paired Samples T-Test: Science Capital and Archer-Style Engineering Capital Scores 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. A difference score was calculated and examined the determine the influence of outliers and 

skew/kurtosis within this data. A number of small outliers were identified, however examination of 

the 5% trimmed means (means calculated without the highest and lowest 5% of scores) highlighted 

very little change in means demonstrating a minimal impact of these small outliers. The data was also 

deemed to be normally distributed with a robust Normal Q-Q plot and skewness and kurtosis values 

within the acceptable range of -1 to 1. The assumptions underpinning this test were met approving its 

use.  

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

Difference_SciCap_ASEngCap 921 100.0% 0 0.0% 921 100.0% 

 

Descriptives 

 Statistic Std. Error 

Difference_SciCap_ASEngCap Mean 7.2109 .42800 

95% Confidence Interval for 

Mean 
Lower Bound 6.3709  

Upper Bound 8.0509  

5% Trimmed Mean 7.1645  

Median 5.7143  

Variance 168.716  

Std. Deviation 12.98905  

Minimum -41.71  

Maximum 63.93  

Range 105.64  

Interquartile Range 16.57  

Skewness .126 .081 

Kurtosis .990 .161 
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A paired samples t-test revealed that participants possessed significantly greater scores for science 

capital (M=41.34, SD=14.04) than Archer-style engineering capital (M=34.13, SD=13.50) 

(t(920)=16.848, p<0.001, d=0.555). The Cohen’s d effect size indicates a medium size effect of 

changing the STEM domain. 

Paired Samples Statistics 

 Mean N Std. Deviation Std. Error Mean 

Pair 1 Science Capital Total on 0-

105 Scale 

41.34 921 14.044 .463 

AS Engineering Capital Total 

on 0-105 Scale to 0dp 

34.13 921 13.501 .445 

 

Paired Samples Correlations 

 N Correlation 

Significance 

One-Sided p Two-Sided p 

Pair 1 Science Capital Total on 0-105 

Scale & AS Engineering Capital 

Total on 0-105 Scale to 0dp 

921 .556 <.001 <.001 

 

Paired Samples Test 

 

Paired Differences 

t df 

Significance 

Mean 

Std. 

Deviation 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 
One-

Sided 

p 

Two-

Sided 

p Lower Upper 

Pair 

1 

Science Capital 

Total on 0-105 

Scale - AS 

Engineering 

Capital Total 

on 0-105 Scale 

to 0dp 

7.211 12.989 .428 6.371 8.051 16.848 920 <.001 <.001 

 

Paired Samples Effect Sizes 

 Standardizera 
Point 

Estimate 

95% Confidence 

Interval 

Lower Upper 

Pair 1 Science Capital Total 

on 0-105 Scale - AS 

Engineering Capital 

Total on 0-105 Scale to 

0dp 

Cohen's d 12.989 .555 .486 .624 

Hedges' 

correction 
13.000 .555 .485 .624 

a. The denominator used in estimating the effect sizes. 

Cohen's d uses the sample standard deviation of the mean difference. 

Hedges' correction uses the sample standard deviation of the mean difference, plus a correction 

factor. 
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Frequency Analysis: Science Capital and Archer-Style Engineering Capital Groups (Low, 

Medium, High) 

A frequency analysis was utilised to examine the distribution of science and Archer-style engineering 

capital scores between low (0-34), medium (35-69) and high (70-105) capital groups.  

Science Capital Groups 

 Frequency Percent 

Valid Low 311 33.8 

Medium 576 62.5 

High 34 3.7 

Total 921 100.0 

 

AS Engineering Capital Groups 

 Frequency Percent 

Valid Low 525 57.0 

Medium 387 42.0 

High 9 1.0 

Total 921 100.0 
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Welch’s Independent Samples T-Test: Gender Differences and Science Capital Scores 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be normally distributed with a robust Normal Q-Q plot and 

skewness and kurtosis values within the acceptable range of -1 to 1. The assumptions underpinning 

this test were met approving its use.  

Case Processing Summary 

 

2. Are you a girl or 

a boy? 

Cases 

 
Valid Missing Total 

 
N Percent N Percent N Percent 

Science Capital Total 

on 0-105 Scale 

Boy 388 100.0% 0 0.0% 388 100.0% 

Girl 505 100.0% 0 0.0% 505 100.0% 

 

Descriptives 

 

2. Are you a girl or a boy? 

Boy Girl 

Statistic Std. Error Statistic Std. Error 

S
c
ie

n
c
e

 C
a

p
it
a
l 
T

o
ta

l 
o
n

 0
-1

0
5
 S

c
a
le

 

Mean 40.93 .722 41.59 .615 

95% Confidence Interval for 

Mean 

Lower Bound 39.51  40.39  

Upper Bound 42.35  42.80  

5% Trimmed Mean 40.49  41.30  

Median 39.00  41.00  

Variance 202.450  191.162  

Std. Deviation 14.229  13.826  

Minimum 6  9  

Maximum 92  81  

Range 86  72  

Interquartile Range 19  20  

Skewness .462 .124 .273 .109 

Kurtosis .386 .247 -.149 .217 
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A Welch’s independent samples t-test identified no significant difference in the science capital scores 

of boys (M=40.93, SD=14.229) and girls (M=41.59, SD=13.83) (t(820.579)=-0.697, p=0.486, d=-0.047). 

Group Statistics 

 2. Are you a girl or a 

boy? N Mean Std. Deviation 
Std. Error 

Mean 

Science Capital Total on 

0-105 Scale 
Boy 388 40.93 14.229 .722 

Girl 505 41.59 13.826 .615 

 

Independent Samples Test 

 

Levene's Test 

for Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Significance 

Mean 

Difference 
Std. Error 

Difference 

95% 

Confidence 

Interval of 

the 

Difference 

One-

Sided 

p 

Two-

Sided 

p Lower Upper 

Science 

Capital 

Total on 0-

105 Scale 

Equal 

variances 

assumed 

.124 .725 -

.699 
891 .242 .485 -.661 .945 -2.516 1.194 

Equal 

variances 

not 

assumed 

  -

.697 

820.579 .243 .486 -.661 .949 -2.524 1.201 
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Welch’s Independent Samples T-Test: Gender Differences and Archer-Style Engineering 

Capital Scores 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be normally distributed with a robust Normal Q-Q plot and 

skewness and kurtosis values within the acceptable range of -1 to 1. The assumptions underpinning 

this test were met approving its use.  

Case Processing Summary 

 

2. Are you a girl or 

a boy? 

Cases 

 
Valid Missing Total 

 
N Percent N Percent N Percent 

AS Engineering 

Capital Total on 0-

105 Scale to 0dp 

Boy 388 100.0% 0 0.0% 388 100.0% 

Girl 505 100.0% 0 0.0% 505 100.0% 

 

Descriptives 

 

2. Are you a girl or a boy? 

Boy Girl 

Statistic 
Std. 

Error Statistic 
Std. 

Error 

A
S

 E
n

g
in

e
e
ri

n
g
 C

a
p

it
a

l 
T

o
ta

l 
o

n
 0

-1
0
5
 S

c
a
le

 t
o
 0

d
p

 

Mean 36.72 .739 32.30 .548 

95% Confidence 

Interval for Mean 
Lower 

Bound 
35.26  31.23  

Upper 

Bound 
38.17  33.38  

5% Trimmed Mean 36.33  31.95  

Median 35.89  31.07  

Variance 211.794  151.514  

Std. Deviation 14.553  12.309  

Minimum 2  2  

Maximum 93  77  

Range 91  75  

Interquartile Range 19  15  

Skewness .448 .124 .475 .109 

Kurtosis .366 .247 .439 .217 
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A Welch's independent samples t-test identified a significant difference in the Archer-style 

engineering capital scores of boys (M=36.72, SD=14.55) and girls (M=32.30, SD=12.31) 

(t(754.347)=4.797, p<0.001, d=0.323). The Cohen’s d effect size highlights a weak-moderate effect of 

gender on Archer-style engineering capital scores.  

Group Statistics 

 2. Are you a girl or a 

boy? N Mean Std. Deviation 
Std. Error 

Mean 

AS Engineering Capital 

Total on 0-105 Scale to 

0dp 

Boy 388 36.72 14.553 .739 

Girl 505 32.30 12.309 .548 

 

Independent Samples Test 

 

Levene's 

Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Significance 

Mean 

Difference 
Std. Error 

Difference 

95% 

Confidence 

Interval of 

the 

Difference 

One-

Sided 

p 

Two-

Sided 

p Lower Upper 

AS 

Engineering 

Capital 

Total on 0-

105 Scale 

to 0dp 

Equal 

variances 

assumed 

13.092 <.001 4.902 891 <.001 <.001 4.412 .900 2.645 6.178 

Equal 

variances 

not 

assumed 

  4.797 754.347 <.001 <.001 4.412 .920 2.606 6.217 

 

Independent Samples Effect Sizes 

 Standardizera Point Estimate 

95% Confidence 

Interval 

Lower Upper 

AS Engineering Capital 

Total on 0-105 Scale to 

0dp 

Cohen's d 13.330 .331 .198 .464 

Hedges' 

correction 
13.342 .331 .197 .464 

Glass's delta 12.309 .358 .224 .492 

a. The denominator used in estimating the effect sizes. 

Cohen's d uses the pooled standard deviation. 

Hedges' correction uses the pooled standard deviation, plus a correction factor. 

Glass's delta uses the sample standard deviation of the control group. 
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One-Way ANOVA: Science Academic Set Differences and Science Capital Scores 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be normally distributed with a robust Normal Q-Q plot and 

skewness and kurtosis values within the acceptable range of -1 to 1 – the Very Low group did express 

slightly greater kurtosis however this was deemed within an acceptable margin given the robustness 

of the ANOVA procedure. The assumptions underpinning this test were met approving its use. 

Descriptives 

 

General Cultural Capital Category 

Very low Low Medium High Very high 

Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error 

S
c
ie

n
c
e

 C
a

p
it
a
l 
T

o
ta

l 
o
n

 0
-1

0
5
 S

c
a
le

 

Mean 28.20 2.598 32.80 1.151 38.47 .703 43.05 .749 50.60 1.080 

95% 

Confidence 

Interval for 

Mean 

Lower 

Bound 

22.32  30.52  37.09  41.57  48.47  

Upper 

Bound 

34.08  35.09  39.85  44.52  52.73  

5% Trimmed Mean 27.72  32.87  38.12  42.65  50.61  

Median 25.00  32.00  37.00  42.00  50.00  

Variance 67.511  141.706  169.320  166.160  192.388  

Std. Deviation 8.217  11.904  13.012  12.890  13.870  

Minimum 20  6  8  13  16  

Maximum 45  58  92  88  80  

Range 25  52  84  75  64  

Interquartile Range 9  16  20  18  20  

Skewness 1.469 .687 .068 .234 .464 .132 .459 .142 -.028 .189 

Kurtosis 1.072 1.334 -.497 .463 .669 .263 .404 .282 -.476 .376 

  

Case Processing Summary 

 

25.1.a. Science 

Cases 

 
Valid Missing Total 

 
N Percent N Percent N Percent 

Science Capital Total 

on 0-105 Scale 
There are not sets at 

this school/for this 

subject 

183 100.0% 0 0.0% 183 100.0% 

Top 407 100.0% 0 0.0% 407 100.0% 

Middle 259 100.0% 0 0.0% 259 100.0% 

Bottom 48 100.0% 0 0.0% 48 100.0% 
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Descriptives 

 

25.1.a. Science 

There are not 

sets at this 

school/for this 

subject Top Middle Bottom 

Statistic 
Std. 

Error Statistic 
Std. 

Error Statistic 
Std. 

Error Statistic 
Std. 

Error 

S
c
ie

n
c
e

 C
a

p
it
a
l 
T

o
ta

l 
o
n

 0
-1

0
5
 S

c
a
le

 

Mean 40.56 1.033 45.84 .685 36.27 .766 36.92 2.123 

95% 

Confidence 

Interval for 

Mean 

Lower 

Bound 
38.52  44.49  34.76  32.65  

Upper 

Bound 
42.59  47.19  37.78  41.19  

5% Trimmed Mean 40.39  45.51  36.01  36.63  

Median 41.00  45.00  35.00  36.50  

Variance 195.138  191.203  152.004  216.291  

Std. Deviation 13.969  13.828  12.329  14.707  

Minimum 11  12  6  8  

Maximum 78  92  80  75  

Range 67  80  74  67  

Interquartile Range 20  18  17  16  

Skewness .148 .180 .374 .121 .415 .151 .266 .343 

Kurtosis -.472 .357 .140 .241 .233 .302 .242 .674 
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A one-way ANOVA was adopted to determine whether science capital scores differed between groups 

based on school science academic sets. A total of 897 participants were classified into four groups: 

Top Sets (N=407), Middle Sets (N=259), Bottom Sets (N=48) and No Sets for This Subject (N=183). 

Science capital scores were found to statistically differ (F(3,893) = 29.160, p<0.001, ETA2=0.089). Tukey 

post-hoc testing revealed significant differences in between all groups except No Sets & Bottom Sets 

and Middle Sets and Bottom Sets. The ETA2 size of 0.089 indicates a medium-large effect of academic 

set in shaping science capital scores.  

Descriptives 

Science Capital Total on 0-105 Scale 

 N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 

Minimum Maximum 

Lower 

Bound 

Upper 

Bound 

There are not sets 

at this school/for 

this subject 

183 40.56 13.969 1.033 38.52 42.59 11 78 

Top 407 45.84 13.828 .685 44.49 47.19 12 92 

Middle 259 36.27 12.329 .766 34.76 37.78 6 80 

Bottom 48 36.92 14.707 2.123 32.65 41.19 8 75 

Total 897 41.52 14.112 .471 40.60 42.45 6 92 

 

Tests of Homogeneity of Variances 

 
Levene 

Statistic df1 df2 Sig. 

Science Capital Total on 

0-105 Scale 

Based on Mean 1.664 3 893 .173 

Based on Median 1.853 3 893 .136 

Based on Median and 

with adjusted df 

1.853 3 882.620 .136 

Based on trimmed mean 1.723 3 893 .161 

 

ANOVA 

Science Capital Total on 0-105 Scale 

 Sum of Squares df Mean Square F Sig. 

Between Groups 15921.312 3 5307.104 29.160 <.001 

Within Groups 162526.514 893 182.001   

Total 178447.826 896    

 

ANOVA Effect Sizesa 

 Point Estimate 

95% Confidence Interval 

Lower Upper 

Science Capital Total on 0-

105 Scale 

Eta-squared .089 .055 .124 

Epsilon-squared .086 .052 .121 

Omega-squared Fixed-

effect 

.086 .052 .121 

Omega-squared Random-

effect 

.030 .018 .044 
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Multiple Comparisons 

Dependent Variable: Science Capital Total on 0-105 Scale 

 

(I) 25.1.a. Science (J) 25.1.a. Science 

Mean 

Difference 

(I-J) 

Std. 

Error Sig. 

95% Confidence 

Interval 

 Lower 

Bound 

Upper 

Bound 

Tukey 

HSD 

There are not sets 

at this school/for 

this subject 

Top -5.283* 1.201 <.001 -8.37 -2.19 

Middle 4.287* 1.303 .006 .93 7.64 

Bottom 3.641 2.188 .343 -1.99 9.27 

Top There are not sets 

at this school/for 

this subject 

5.283* 1.201 <.001 2.19 8.37 

Middle 9.570* 1.072 .000 6.81 12.33 

Bottom 8.924* 2.059 <.001 3.62 14.22 

Middle There are not sets 

at this school/for 

this subject 

-4.287* 1.303 .006 -7.64 -.93 

Top -9.570* 1.072 .000 -12.33 -6.81 

Bottom -.646 2.120 .990 -6.10 4.81 

Bottom There are not sets 

at this school/for 

this subject 

-3.641 2.188 .343 -9.27 1.99 

Top -8.924* 2.059 <.001 -14.22 -3.62 

Middle .646 2.120 .990 -4.81 6.10 

*. The mean difference is significant at the 0.05 level. 
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One-Way ANOVA: Science Academic Set Differences and Archer-Style Engineering Capital 

Scores 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be largely normally distributed with a robust Normal Q-Q plot 

and skewness and kurtosis values within the acceptable range of -1 to 1 – the Bottom Sets group did 

express slightly greater kurtosis however this was deemed within an acceptable margin given the 

robustness of the ANOVA procedure. The assumptions underpinning this test were met approving its 

use.  

Case Processing Summary 

 

25.1.a. Science 

Cases 

 
Valid Missing Total 

 
N Percent N Percent N Percent 

AS Engineering 

Capital Total on 0-

105 Scale to 0dp 

There are not sets at 

this school/for this 

subject 

183 100.0% 0 0.0% 183 100.0% 

Top 407 100.0% 0 0.0% 407 100.0% 

Middle 259 100.0% 0 0.0% 259 100.0% 

Bottom 48 100.0% 0 0.0% 48 100.0% 
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Descriptives 

 

25.1.a. Science 

There are not 

sets at this 

school/for this 

subject Top Middle Bottom 

Statistic 
Std. 

Error Statistic 
Std. 

Error Statistic 
Std. 

Error Statistic 
Std. 

Error 

A
S

 E
n

g
in

e
e
ri

n
g
 C

a
p

it
a

l 
T

o
ta

l 
o

n
 0

-1
0
5
 S

c
a
le

 t
o
 0

d
p

 

Mean 34.98 .941 35.06 .674 31.92 .863 35.54 1.976 

95% 

Confidence 

Interval for 

Mean 

Lower 

Bound 
33.12  33.74  30.22  31.56  

Upper 

Bound 
36.83  36.39  33.62  39.51  

5% Trimmed Mean 34.90  34.59  31.45  34.64  

Median 34.29  33.21  30.00  33.75  

Variance 162.076  185.140  192.807  187.500  

Std. Deviation 12.731  13.607  13.885  13.693  

Minimum 2  4  2  12  

Maximum 67  93  73  77  

Range 65  89  71  65  

Interquartile Range 18  17  18  18  

Skewness .125 .180 .652 .121 .537 .151 .966 .343 

Kurtosis -.087 .357 .962 .241 .020 .302 1.549 .674 
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A one-way ANOVA was adopted to determine whether Archer-style engineering capital scores differed 

between groups based on school science academic sets. A total of 897 participants were classified into 

four groups: Top Sets (N=407), Middle Sets (N=259), Bottom Sets (N=48) and No Sets for this Subject 

(N=183). Archer-style engineering capital scores were found to statistically differ (F(3, 893) = 3.367, 

p=0.018, ETA2=0.011). Tukey post-hoc testing revealed only a single significant difference between 

the Top Sets and Middle Sets groups. The ETA2 size of 0.011 indicates only a small effect of academic 

set in shaping Archer-style engineering capital scores.  

 

Descriptives 

AS Engineering Capital Total on 0-105 Scale 

 N Mean 
Std. 

Deviation 
Std. 

Error 

95% Confidence 

Interval for Mean 

Minimum Maximum 
Lower 

Bound 
Upper 

Bound 

There are not sets 

at this school/for 

this subject 

183 34.98 12.731 .941 33.12 36.83 2 67 

Top 407 35.06 13.607 .674 33.74 36.39 4 93 

Middle 259 31.92 13.885 .863 30.22 33.62 2 73 

Bottom 48 35.54 13.693 1.976 31.56 39.51 12 77 

Total 897 34.16 13.573 .453 33.27 35.05 2 93 

 

Tests of Homogeneity of Variances 

 
Levene 

Statistic df1 df2 Sig. 

AS Engineering Capital 

Total on 0-105 Scale 
Based on Mean .439 3 893 .725 

Based on Median .321 3 893 .810 

Based on Median and 

with adjusted df 

.321 3 883.956 .810 

Based on trimmed mean .395 3 893 .757 

 

ANOVA 

AS Engineering Capital Total on 0-105 Scale   

 Sum of Squares df Mean Square F Sig. 

Between Groups 1846.324 3 615.441 3.367 .018 

Within Groups 163221.483 893 182.779   

Total 165067.808 896    

 
ANOVA Effect Sizesa,b 

 Point Estimate 

95% Confidence Interval 

Lower Upper 

AS Engineering Capital 

Total on 0-105 Scale 

Eta-squared .011 .000 .026 

Epsilon-squared .008 -.003 .023 

Omega-squared Fixed-

effect 
.008 -.003 .023 

Omega-squared Random-

effect 
.003 -.001 .008 
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Multiple Comparisons 

Dependent Variable: AS Engineering Capital Total on 0-105 Scale 

 

(I) 25.1.a. Science (J) 25.1.a. Science 

Mean 

Difference 

(I-J) 

Std. 

Error Sig. 

95% Confidence 

Interval 

 Lower 

Bound 

Upper 

Bound 

Tukey 

HSD 

There are not sets 

at this school/for 

this subject 

Top -.088 1.203 1.000 -3.19 3.01 

Middle 3.057 1.306 .090 -.30 6.42 

Bottom -.559 2.192 .994 -6.20 5.08 

Top There are not sets 

at this school/for 

this subject 

.088 1.203 1.000 -3.01 3.19 

Middle 3.145* 1.075 .018 .38 5.91 

Bottom -.471 2.063 .996 -5.78 4.84 

Middle There are not sets 

at this school/for 

this subject 

-3.057 1.306 .090 -6.42 .30 

Top -3.145* 1.075 .018 -5.91 -.38 

Bottom -3.616 2.125 .323 -9.08 1.85 

Bottom There are not sets 

at this school/for 

this subject 

.559 2.192 .994 -5.08 6.20 

Top .471 2.063 .996 -4.84 5.78 

Middle 3.616 2.125 .323 -1.85 9.08 

*. The mean difference is significant at the 0.05 level. 

 

 

 

 

 

 

 

 

 

  



Appendix E – Chapter Four Statistical Analyses Outputs 

325 
 

One-Way ANOVA: Deprivation (Cultural Capital) Differences and Science Capital Scores 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be largely normally distributed with a robust Normal Q-Q plot 

and Skewness and Kurtosis values within the acceptable range of -1 to 1 – the Very Low group did 

express slightly greater kurtosis however this was deemed within an acceptable margin given the 

robustness of the ANOVA procedure. The assumptions underpinning this test were met approving its 

use.  

Case Processing Summary 

 

General Cultural 

Capital Category 

Cases 

 
Valid Missing Total 

 
N Percent N Percent N Percent 

Science Capital Total 

on 0-105 Scale 
Very low 10 100.0% 0 0.0% 10 100.0% 

Low 107 100.0% 0 0.0% 107 100.0% 

Medium 343 100.0% 0 0.0% 343 100.0% 

High 296 100.0% 0 0.0% 296 100.0% 

Very high 165 100.0% 0 0.0% 165 100.0% 

 

Descriptives 

 

General Cultural Capital Category 

Very low Low Medium High Very high 

Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error 

S
c
ie

n
c
e

 C
a

p
it
a
l 
T

o
ta

l 
o
n

 0
-1

0
5
 S

c
a
le

 

Mean 28.20 2.598 32.80 1.151 38.47 .703 43.05 .749 50.60 1.080 

95% 

Confidence 

Interval for 

Mean 

Lower 

Bound 
22.32  30.52  37.09  41.57  48.47  

Upper 

Bound 

34.08  35.09  39.85  44.52  52.73  

5% Trimmed Mean 27.72  32.87  38.12  42.65  50.61  

Median 25.00  32.00  37.00  42.00  50.00  

Variance 67.511  141.706  169.320  166.160  192.388  

Std. Deviation 8.217  11.904  13.012  12.890  13.870  

Minimum 20  6  8  13  16  

Maximum 45  58  92  88  80  

Range 25  52  84  75  64  

Interquartile Range 9  16  20  18  20  

Skewness 1.469 .687 .068 .234 .464 .132 .459 .142 -.028 .189 

Kurtosis 1.072 1.334 -.497 .463 .669 .263 .404 .282 -.476 .376 
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A one-way ANOVA was adopted to determine whether science capital scores differed between groups 

based on general cultural capital. A total of 921 participants were classified into five groups based on 

cultural capital scores: Very Low (N=10), Low (N=107), Medium (N=343), High (N=296) and Very High 

(N=165). Science capital scores were found to statistically differ (F(4, 916) = 40.659, p<0.001, 

ETA2=0.151). Tukey post-hoc testing revealed significant differences at all levels, except for those 

within the Very Low group (which was not strongly representative). The ETA2 size of 0.151 indicates a 

strong effect of cultural capital in shaping science capital scores.  

Descriptives 

Science Capital Total on 0-105 Scale 

 N Mean 
Std. 

Deviation 
Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum Maximum Lower Bound Upper Bound 

Very 

low 
10 28.20 8.217 2.598 22.32 34.08 20 45 

Low 107 32.80 11.904 1.151 30.52 35.09 6 58 

Medium 343 38.47 13.012 .703 37.09 39.85 8 92 

High 296 43.05 12.890 .749 41.57 44.52 13 88 

Very 

high 

165 50.60 13.870 1.080 48.47 52.73 16 80 

Total 921 41.34 14.044 .463 40.44 42.25 6 92 

 

Tests of Homogeneity of Variances 

 
Levene 

Statistic df1 df2 Sig. 

Science Capital Total on 

0-105 Scale 

Based on Mean 1.565 4 916 .182 

Based on Median 1.807 4 916 .125 

Based on Median and 

with adjusted df 
1.807 4 911.040 .125 

Based on trimmed mean 1.624 4 916 .166 

 

ANOVA 

Science Capital Total on 0-105 Scale 

 Sum of Squares df Mean Square F Sig. 

Between Groups 27361.047 4 6840.262 40.659 <.001 

Within Groups 154104.845 916 168.237   

Total 181465.891 920    

 

ANOVA Effect Sizesa 

 Point Estimate 

95% Confidence Interval 

Lower Upper 

Science Capital Total on 0-

105 Scale 

Eta-squared .151 .108 .190 

Epsilon-squared .147 .104 .186 

Omega-squared Fixed-

effect 
.147 .104 .186 

Omega-squared Random-

effect 
.041 .028 .054 
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Multiple Comparisons 

Dependent Variable: Science Capital Total on 0-105 Scale 

 

(I) General 

Cultural Capital 

Category 

(J) General 

Cultural Capital 

Category 

Mean 

Difference 

(I-J) 

Std. 

Error Sig. 

95% Confidence 

Interval 

 Lower 

Bound 

Upper 

Bound 

Tukey 

HSD 

Very low Low -4.604 4.289 .820 -16.33 7.12 

Medium -10.269 4.161 .099 -21.64 1.10 

High -14.847* 4.170 .004 -26.25 -3.45 

Very high -22.400* 4.224 <.001 -33.95 -10.85 

Low Very low 4.604 4.289 .820 -7.12 16.33 

Medium -5.666* 1.436 <.001 -9.59 -1.74 

High -10.244* 1.463 <.001 -14.24 -6.24 

Very high -17.796* 1.610 <.001 -22.20 -13.40 

Medium Very low 10.269 4.161 .099 -1.10 21.64 

Low 5.666* 1.436 <.001 1.74 9.59 

High -4.578* 1.029 <.001 -7.39 -1.77 

Very high -12.131* 1.229 <.001 -15.49 -8.77 

High Very low 14.847* 4.170 .004 3.45 26.25 

Low 10.244* 1.463 <.001 6.24 14.24 

Medium 4.578* 1.029 <.001 1.77 7.39 

Very high -7.553* 1.260 <.001 -11.00 -4.11 

Very high Very low 22.400* 4.224 <.001 10.85 33.95 

Low 17.796* 1.610 <.001 13.40 22.20 

Medium 12.131* 1.229 <.001 8.77 15.49 

High 7.553* 1.260 <.001 4.11 11.00 

*. The mean difference is significant at the 0.05 level. 
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One-Way ANOVA: Deprivation (Cultural Capital) Differences and Archer-Style Engineering 

Capital Scores 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be largely normally distributed with a robust Normal Q-Q plot 

and skewness and kurtosis values within the acceptable range of -1 to 1 – the Medium group did 

exhibit a minor kurtosis but this was judged to be relatively minor.  The assumptions underpinning this 

test were met approving its use.  

Case Processing Summary 

 

General Cultural 

Capital Category 

Cases 

 
Valid Missing Total 

 
N Percent N Percent N Percent 

AS Engineering 

Capital Total on 0-

105 Scale to 0dp 

Very low 10 100.0% 0 0.0% 10 100.0% 

Low 107 100.0% 0 0.0% 107 100.0% 

Medium 343 100.0% 0 0.0% 343 100.0% 

High 296 100.0% 0 0.0% 296 100.0% 

Very high 165 100.0% 0 0.0% 165 100.0% 

 

Descriptives 

 

General Cultural Capital Category 
Very low Low Medium High Very high 

Statistic 
Std. 

Error Statistic 
Std. 

Error Statistic 
Std. 

Error Statistic 
Std. 

Error Statistic 
Std. 

Error 

AS 

Engineering 

Capital 

Total on 0-

105 Scale 

to 0dp 

Mean 30.11 3.442 28.80 1.233 33.30 .741 35.09 .750 37.86 1.049 

95% 

Confidence 

Interval for 

Mean 

Lower 

Bound 
22.32  26.35  31.84  33.62  35.79  

Upper 

Bound 
37.89  31.24  34.75  36.57  39.93  

5% Trimmed Mean 30.24  28.52  32.66  34.78  37.65  

Median 28.39  27.86  32.14  33.21  35.36  

Variance 118.482  162.679  188.440  166.688  181.410  

Std. Deviation 10.885  12.755  13.727  12.911  13.469  

Minimum 11  2  2  4  6  

Maximum 47  60  93  79  73  

Range 36  58  91  75  66  

Interquartile Range 15  17  18  18  19  

Skewness -.025 .687 .285 .234 .754 .132 .456 .142 .358 .189 

Kurtosis -.131 1.334 -.217 .463 1.194 .263 .365 .282 -.135 .376 
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A one-way ANOVA was adopted to determine whether Archer-style engineering capital scores differed 

between groups based on general cultural capital. A total of 921 participants were classified into five 

groups based on cultural capital scores: Very Low (N=10), Low (N=107), Medium (N=343), High 

(N=296) and Very High (N=165). Archer-style engineering capital scores were found to statistically 

differ (F(4, 916) = 8.511, p<0.001, ETA2=0.036). Tukey post-hoc testing revealed significant differences 

between the Low & Medium groups, Low & High groups, Low & Very High groups, and Medium & Very 

High groups. The ETA2 size of 0.036 indicates a weak-moderate effect of cultural capital group in 

shaping Archer-style engineering capital scores.  

Descriptives 

AS Engineering Capital Total on 0-105 Scale to 0dp 

 N Mean 
Std. 

Deviation 
Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum Maximum Lower Bound Upper Bound 

Very 

low 
10 30.11 10.885 3.442 22.32 37.89 11 47 

Low 107 28.80 12.755 1.233 26.35 31.24 2 60 

Medium 343 33.30 13.727 .741 31.84 34.75 2 93 

High 296 35.09 12.911 .750 33.62 36.57 4 79 

Very 

high 
165 37.86 13.469 1.049 35.79 39.93 6 73 

Total 921 34.13 13.501 .445 33.26 35.01 2 93 

 

Tests of Homogeneity of Variances 

 
Levene 

Statistic df1 df2 Sig. 

AS Engineering Capital 

Total on 0-105 Scale to 

0dp 

Based on Mean .372 4 916 .829 

Based on Median .317 4 916 .867 

Based on Median and 

with adjusted df 

.317 4 908.263 .867 

Based on trimmed mean .346 4 916 .847 

 

ANOVA 

AS Engineering Capital Total on 0-105 Scale to 0dp 

 Sum of Squares df Mean Square F Sig. 

Between Groups 6008.825 4 1502.206 8.511 <.001 

Within Groups 161680.882 916 176.508   

Total 167689.707 920    
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ANOVA Effect Sizesa 

 Point Estimate 

95% Confidence Interval 

Lower Upper 

AS Engineering Capital 

Total on 0-105 Scale to 0dp 
Eta-squared .036 .013 .059 

Epsilon-squared .032 .009 .055 

Omega-squared Fixed-

effect 

.032 .009 .055 

Omega-squared Random-

effect 

.008 .002 .014 

a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model. 

 

Multiple Comparisons 

Dependent Variable: AS Engineering Capital Total on 0-105 Scale to 0dp 

 

(I) General 

Cultural Capital 

Category 

(J) General 

Cultural Capital 

Category 

Mean 

Difference 

(I-J) 
Std. 

Error Sig. 

95% Confidence 

Interval 

 Lower 

Bound 
Upper 

Bound 

Tukey 

HSD 

Very low Low 1.309 4.393 .998 -10.70 13.32 

Medium -3.188 4.262 .945 -14.84 8.46 

High -4.986 4.272 .770 -16.66 6.69 

Very high -7.750 4.327 .379 -19.58 4.08 

Low Very low -1.309 4.393 .998 -13.32 10.70 

Medium -4.497* 1.471 .019 -8.52 -.48 

High -6.295* 1.499 <.001 -10.39 -2.20 

Very high -9.059* 1.649 <.001 -13.57 -4.55 

Medium Very low 3.188 4.262 .945 -8.46 14.84 

Low 4.497* 1.471 .019 .48 8.52 

High -1.797 1.054 .431 -4.68 1.08 

Very high -4.562* 1.259 .003 -8.00 -1.12 

High Very low 4.986 4.272 .770 -6.69 16.66 

Low 6.295* 1.499 <.001 2.20 10.39 

Medium 1.797 1.054 .431 -1.08 4.68 

Very high -2.764 1.291 .203 -6.29 .76 

Very high Very low 7.750 4.327 .379 -4.08 19.58 

Low 9.059* 1.649 <.001 4.55 13.57 

Medium 4.562* 1.259 .003 1.12 8.00 

High 2.764 1.291 .203 -.76 6.29 

*. The mean difference is significant at the 0.05 level. 
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One-Way ANOVA: Deprivation (IDACI) Differences and Science Capital Scores 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be largely normally distributed with a robust Normal Q-Q plot 

and skewness and kurtosis values within the acceptable range of -1 to 1.  The assumptions 

underpinning this test were met approving its use.  

Case Processing Summary 

 

IDACI 

Decile 

Cases 

 
Valid Missing Total 

 
N Percent N Percent N Percent 

Science Capital Total on 

0-105 Scale 

1&2 38 100.0% 0 0.0% 38 100.0% 

3&4 76 100.0% 0 0.0% 76 100.0% 

5&6 123 100.0% 0 0.0% 123 100.0% 

7&8 219 100.0% 0 0.0% 219 100.0% 

9&10 150 100.0% 0 0.0% 150 100.0% 

 

Descriptives 

 

IDACI Decile 
1&2 3&4 5&6 7&8 9&10 

Statistic 
Std. 

Error Statistic 
Std. 

Error Statistic 
Std. 

Error Statistic 
Std. 

Error Statistic 
Std. 

Error 

S
c
ie

n
c
e

 C
a
p

it
a

l 
T

o
ta

l 
o

n
 0

-1
0
5

 S
c
a
le

 

Mean 41.21 2.311 41.67 1.502 42.69 1.277 41.55 .925 42.23 1.233 

95% 

Confidence 

Interval for 

Mean 

Lower 

Bound 
36.53  38.68  40.16  39.73  39.79  

Upper 

Bound 
45.89  44.66  45.22  43.38  44.66  

5% Trimmed Mean 40.59  41.71  42.66  40.98  41.95  

Median 40.50  41.00  42.00  40.00  41.00  

Variance 202.873  171.424  200.461  187.340  228.096  

Std. Deviation 14.243  13.093  14.158  13.687  15.103  

Minimum 16  8  6  11  10  

Maximum 80  70  81  92  79  

Range 64  62  75  81  69  

Interquartile Range 20  21  17  19  22  

Skewness .728 .383 -.071 .276 .011 .218 .629 .164 .256 .198 

Kurtosis .597 .750 -.381 .545 .228 .433 .596 .327 -.324 .394 
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A one-way ANOVA was adopted to determine whether science capital scores differed between groups 

based on IDACI quintile. A total of 606 participants were classified into five groups based on IDACI 

quintiles: 1&2 (N=38), 3&4 (N=76), 5&6 (N=123), 7&8 (N=219), and 9&10 (N=150). Science capital 

scores were found to not significantly statistically differ (F(4, 601) = 0.176, p=0.951, ETA2=0.001).  

Descriptives 

Science Capital Total on 0-105 Scale 

 N Mean 
Std. 

Deviation 
Std. 

Error 

95% Confidence Interval for 

Mean 

Minimum Maximum Lower Bound Upper Bound 

12 38 41.21 14.243 2.311 36.53 45.89 16 80 

34 76 41.67 13.093 1.502 38.68 44.66 8 70 

56 123 42.69 14.158 1.277 40.16 45.22 6 81 

78 219 41.55 13.687 .925 39.73 43.38 11 92 

910 150 42.23 15.103 1.233 39.79 44.66 10 79 

Total 606 41.94 14.071 .572 40.82 43.07 6 92 

 

Tests of Homogeneity of Variances 

 
Levene 

Statistic df1 df2 Sig. 

Science Capital Total on 

0-105 Scale 

Based on Mean .731 4 601 .571 

Based on Median .685 4 601 .602 

Based on Median and 

with adjusted df 
.685 4 594.737 .602 

Based on trimmed mean .725 4 601 .575 

 

ANOVA 

Science Capital Total on 0-105 Scale 

 Sum of Squares df Mean Square F Sig. 

Between Groups 140.301 4 35.075 .176 .951 

Within Groups 119645.792 601 199.078   

Total 119786.092 605    
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One-Way ANOVA: Deprivation (IDACI) Differences and Archer-Style Engineering Capital 

Scores 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A small number of outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be largely normally distributed with a robust Normal Q-Q plot 

and skewness and kurtosis values within the acceptable range of -1 to 1 – the 7&8 group did exhibit a 

kurtosis, however all other groups were acceptable.  The assumptions underpinning this test were 

met approving its use.  

Case Processing Summary 

 

IDACI 

Decile 

Cases 

 
Valid Missing Total 

 
N Percent N Percent N Percent 

AS Engineering Capital 

Total on 0-105 Scale to 

0dp 

12 38 100.0% 0 0.0% 38 100.0% 

34 76 100.0% 0 0.0% 76 100.0% 

56 123 100.0% 0 0.0% 123 100.0% 

78 219 100.0% 0 0.0% 219 100.0% 

910 150 100.0% 0 0.0% 150 100.0% 

 

Descriptives 

 

IDACI Decile 
1&2 3&4 5&6 7&8 9&10 

Statistic 
Std. 

Error Statistic 
Std. 

Error Statistic 
Std. 

Error Statistic 
Std. 

Error Statistic 
Std. 

Error 

A
S

 E
n

g
in

e
e

ri
n
g

 C
a

p
it
a

l 
T

o
ta

l 
o

n
 0

-1
0

5
 S

c
a

le
 t

o
 0

d
p

 

Mean 33.24 2.237 33.34 1.524 33.72 1.143 33.54 .918 34.99 1.156 

95% 

Confidence 

Interval for 

Mean 

Lower 

Bound 
28.71  30.31  31.46  31.73  32.70  

Upper 

Bound 
37.78  36.38  35.98  35.35  37.27  

5% Trimmed Mean 33.25  32.92  33.47  32.93  34.63  

Median 34.29  31.07  33.21  32.14  33.21  

Variance 190.219  176.417  160.702  184.371  200.561  

Std. Deviation 13.792  13.282  12.677  13.578  14.162  

Minimum 6  9  2  2  4  

Maximum 60  67  69  93  73  

Range 54  59  66  91  69  

Interquartile Range 21  20  15  16  21  

Skewness -.060 .383 .464 .276 .247 .218 .902 .164 .381 .198 

Kurtosis -.647 .750 -.332 .545 -.027 .433 2.064 .327 -.316 .394 
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A one-way ANOVA was adopted to determine whether Archer-style engineering capital scores differed 

between groups based on IDACI quintile. A total of 606 participants were classified into five groups 

based on IDACI quintiles:1&2 (N=38), 3&4 (N=76), 5&6 (N=123), 7&8 (N=219), and 9&10 (N=150). 

Archer-style engineering capital scores were found to not statistically differ (F(4,601) = 0.340, p=0.851, 

ETA2=0.002).  

Descriptives 

AS Engineering Capital Total on 0-105 Scale to 0dp 

 N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for 

Mean 

Minimum Maximum Lower Bound Upper Bound 

12 38 33.24 13.792 2.237 28.71 37.78 6 60 

34 76 33.34 13.282 1.524 30.31 36.38 9 67 

56 123 33.72 12.677 1.143 31.46 35.98 2 69 

78 219 33.54 13.578 .918 31.73 35.35 2 93 

910 150 34.99 14.162 1.156 32.70 37.27 4 73 

Total 606 33.89 13.496 .548 32.81 34.97 2 93 

 

Tests of Homogeneity of Variances 

 
Levene 

Statistic df1 df2 Sig. 

AS Engineering Capital 

Total on 0-105 Scale to 

0dp 

Based on Mean .771 4 601 .544 

Based on Median .672 4 601 .612 

Based on Median and 

with adjusted df 

.672 4 593.816 .612 

Based on trimmed mean .774 4 601 .543 

 

ANOVA 

AS Engineering Capital Total on 0-105 Scale to 0dp 

 Sum of Squares df Mean Square F Sig. 

Between Groups 248.998 4 62.250 .340 .851 

Within Groups 109951.570 601 182.948   

Total 110200.568 605    
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Independent Samples T-Test: Nation and Science Capital Scores 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be normally distributed with a robust Normal Q-Q plot and 

skewness and kurtosis values within the acceptable range of -1 to 1. The assumptions underpinning 

this test were met approving its use.  

Case Processing Summary 

 

Nation 

Cases 

 
Valid Missing Total 

 
N Percent N Percent N Percent 

Science Capital Total on 

0-105 Scale 

England 832 100.0% 0 0.0% 832 100.0% 

Scotland 89 100.0% 0 0.0% 89 100.0% 

 

Descriptives 

 

Nation 
England Scotland 

Statistic 
Std. 

Error Statistic 
Std. 

Error 
Science Capital Total 

on 0-105 Scale 
Mean 41.69 .485 38.08 1.519 
95% Confidence 

Interval for Mean 
Lower 

Bound 
40.74  35.06  

Upper 

Bound 
42.64  41.10  

5% Trimmed Mean 41.33  37.78  

Median 41.00  35.00  

Variance 195.361  205.346  

Std. Deviation 13.977  14.330  

Minimum 6  11  

Maximum 92  73  

Range 86  62  

Interquartile Range 19  23  

Skewness .365 .085 .311 .255 
Kurtosis .143 .169 -.571 .506 
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A Student’s independent samples t-test identified a significant difference in the science capital scores 

of young people in England (M=41.69, SD=13.98) and Scotland (M=38.08, SD=14.33) (t(919)=2.313, 

p=0.021, d=0.258).The Cohen’s d effect size highlights a weak effect of national setting on science 

capital scores.  

Group Statistics 

 
Nation N Mean Std. Deviation Std. Error Mean 

Science Capital Total on 0-

105 Scale 

England 832 41.69 13.977 .485 

Scotland 89 38.08 14.330 1.519 

 

Independent Samples Test 

 

Levene's Test 

for Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Significance 

Mean 

Difference 
Std. Error 

Difference 

95% 

Confidence 

Interval of the 

Difference 

One-

Sided 

p 

Two-

Sided 

p Lower Upper 

Science 

Capital Total 

on 0-105 

Scale 

Equal 

variances 

assumed 

1.102 .294 2.313 919 .010 .021 3.615 1.563 .548 6.682 

Equal 

variances 

not assumed 

  2.267 106.706 .013 .025 3.615 1.594 .454 6.776 

 

Independent Samples Effect Sizes 

 Standardizera Point Estimate 

95% Confidence 

Interval 

Lower Upper 

Science Capital Total on 

0-105 Scale 

Cohen's d 14.011 .258 .039 .477 

Hedges' 

correction 

14.023 .258 .039 .476 

Glass's delta 14.330 .252 .030 .473 

a. The denominator used in estimating the effect sizes. 

Cohen's d uses the pooled standard deviation. 

Hedges' correction uses the pooled standard deviation, plus a correction factor. 

Glass's delta uses the sample standard deviation of the control group. 
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Independent Samples T-Test: Nation and Archer-Style Engineering Capital Scores 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be normally distributed with a robust Normal Q-Q plot and 

skewness and kurtosis values within the acceptable range of -1 to 1. The assumptions underpinning 

this test were met approving its use.  

Case Processing Summary 
 

Nation 

Cases 
 Valid Missing Total 
 N Percent N Percent N Percent 

AS Engineering Capital 

Total on 0-105 Scale to 

0dp 

England 832 100.0% 0 0.0% 832 100.0% 

Scotland 89 100.0% 0 0.0% 89 100.0% 

 

Descriptives 

 

Nation 

England Scotland 

Statistic 

Std. 

Error Statistic 

Std. 

Error 

AS Engineering 

Capital Total on 0-105 

Scale to 0dp 

Mean 34.10 .466 34.43 1.497 

95% Confidence 

Interval for Mean 

Lower 

Bound 

33.19 
 

31.46 
 

Upper 

Bound 

35.02 
 

37.40 
 

5% Trimmed Mean 33.70  34.00  

Median 33.21  33.21  

Variance 180.671  199.359  

Std. Deviation 13.441  14.119  

Minimum 2  6  

Maximum 93  73  

Range 91  66  

Interquartile Range 18  19  

Skewness .519 .085 .504 .255 

Kurtosis .554 .169 .125 .506 
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A Student’s independent samples t-test identified no significant difference in the Archer-style 

engineering capital scores of young people in England (M=34.10, SD=13.44) and Scotland (M=34.43, 

SD=14.12) (t(919)=-0.218, p=0.827, d=-0.024). 

Group Statistics 
 Nation N Mean Std. Deviation Std. Error Mean 

AS Engineering Capital Total 

on 0-105 Scale to 0dp 

England 832 34.10 13.441 .466 

Scotland 89 34.43 14.119 1.497 

 

Independent Samples Test 

 

Levene's 

Test for 

Equality 

of 

Variances t-test for Equality of Means 

F Sig. t df 

Significance 

Mean 

Difference 

Std. Error 

Difference 

95% 

Confidence 

Interval of the 

Difference 

One-

Sided 

p 

Two-

Sided 

p Lower Upper 

A
S

 E
n

g
in

e
e
ri

n
g
 C

a
p

it
a

l 

T
o
ta

l 
o
n
 0

-1
0
5

 S
c
a

le
 t

o
 

0
d
p

 

Equal 

variances 

assumed 

.336 .562 -

.218 

919 .414 .827 -.329 1.506 -3.285 2.628 

Equal 

variances 

not 

assumed 

  

-

.210 

105.784 .417 .834 -.329 1.568 -3.436 2.779 

 

Independent Samples Effect Sizes 

 Standardizera 

Point 

Estimate 

95% Confidence 

Interval 

Lower Upper 

AS Engineering Capital 

Total on 0-105 Scale to 

0dp 

Cohen's d 13.508 -.024 -.243 .194 

Hedges' 

correction 

13.519 -.024 -.243 .194 

Glass's delta 14.119 -.023 -.242 .195 

a. The denominator used in estimating the effect sizes.  

Cohen's d uses the pooled standard deviation.  

Hedges' correction uses the pooled standard deviation, plus a correction factor.  

Glass's delta uses the sample standard deviation of the control group. 
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Binary Logistic Regression: Engineering Educational Aspiration and Archer-Style Engineering 

Capital 

A binary logistic regression was adopted to determine the effect of Archer-style engineering capital 

score on the likelihood of aspiring to engineering education. Statistical assumptions were tested and 

confirmed the linearity of the relationship between the IV and DV logit, a lack of significant 

multicollinearity and lack of influential outliers supporting the use of this procedure. The logistic 

regression model was statistically significant, χ2(1) = 219.683, p<0.001. The model explained 32.3% 

(Nagelkerke R2) of the variance in educational aspiration and correctly classified 80.4% of cases. 

Sensitivity was 43.0%, specificity was 93.3%. Increasing Archer-style engineering capital score was 

associated with a greater likelihood of aspiring to engineering educational pathways.  

Case Processing Summary 

Unweighted Casesa N Percent 

Selected Cases Included in Analysis 887 96.3 

Missing Cases 34 3.7 

Total 921 100.0 

Unselected Cases 0 .0 

Total 921 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 

Dependent Variable Encoding 

Original Value Internal Value 

No 0 

Yes 1 

 

Classification Tablea,b 
 

Observed 

Predicted 

 Binary Coded: Yes at University 

or A-level or after GCSE, No at 

unsure and no Percentage 

Correct  No Yes 

Step 0 Binary Coded: Yes at 

University or A-level or after 

GCSE, No at unsure and no 

No 659 0 100.0 

Yes 228 0 .0 

Overall Percentage   74.3 

a. Constant is included in the model. 

b. The cut value is .500 
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Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant -1.061 .077 190.826 1 <.001 .346 

 

Variables not in the Equation 

 Score df Sig. 

Step 0 Variables AS Engineering Capital Total on 

0-105 Scale to 0dp 

205.019 1 <.001 

Overall Statistics 205.019 1 <.001 

 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step 219.683 1 <.001 

Block 219.683 1 <.001 

Model 219.683 1 <.001 

 

Model Summary 

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 791.399a .219 .323 

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than 

.001. 

 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 6.798 8 .559 

 

Classification Tablea 
 

Observed 

Predicted 
 Binary Coded: Yes at University 

or A-level or after GCSE, No at 

unsure and no Percentage 

Correct  No Yes 

Step 1 Binary Coded: Yes at 

University or A-level or after 

GCSE, No at unsure and no 

No 615 44 93.3 

Yes 130 98 43.0 

Overall Percentage   80.4 

a. The cut value is .500 
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Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower Upper 

Step 

1a 

AS Engineering 

Capital Total on 0-

105 Scale to 0dp 

.098 .008 151.308 1 <.001 1.103 1.086 1.121 

Constant -4.736 .327 209.936 1 <.001 .009   

a. Variable(s) entered on step 1: AS Engineering Capital Total on 0-105 Scale to 0dp. 
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Binary Logistic Regression: Engineering Educational Aspiration and Science Capital 

A binary logistic regression was adopted to determine the effect of science capital score on the 

likelihood of aspiring to engineering education. Statistical assumptions were tested and confirmed the 

linearity of the relationship between the IV and DV logit, a lack of significant multicollinearity and lack 

of influential outliers supporting the use of this procedure. The logistic regression model was 

statistically significant, χ2(1) = 9.938, p=0.002. The model explained 1.6% (Nagelkerke R2) of the 

variance in educational aspiration and correctly classified 74.3% of cases. Sensitivity was 0.0%, 

specificity was 100.0%. Increasing science capital score was associated with a greater likelihood of 

aspiring to engineering educational pathways – however, notably this performance was poor for those 

who aspired to engineering education.  

 

Case Processing Summary 

Unweighted Casesa N Percent 

Selected Cases Included in Analysis 887 96.3 

Missing Cases 34 3.7 

Total 921 100.0 

Unselected Cases 0 .0 

Total 921 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 

Dependent Variable Encoding 

Original Value Internal Value 

No 0 

Yes 1 

 

Classification Tablea,b 
 

Observed 

Predicted 
 Binary Coded: Yes at University 

or A-level or after GCSE, No at 

unsure and no Percentage 

Correct  No Yes 

Step 0 Binary Coded: Yes at 

University or A-level or after 

GCSE, No at unsure and no 

No 659 0 100.0 

Yes 228 0 .0 

Overall Percentage   74.3 

a. Constant is included in the model. 

b. The cut value is .500 
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Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant -1.061 .077 190.826 1 <.001 .346 

 

Variables not in the Equation 

 Score df Sig. 

Step 0 Variables Science Capital Total on 0-105 

Scale 

10.009 1 .002 

Overall Statistics 10.009 1 .002 

 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step 9.938 1 .002 

Block 9.938 1 .002 

Model 9.938 1 .002 

 

Model Summary 

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 1001.144a .011 .016 

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than 

.001. 

 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 8.788 8 .360 

 

Classification Tablea 
 

Observed 

Predicted 
 Binary Coded: Yes at University 

or A-level or after GCSE, No at 

unsure and no Percentage 

Correct  No Yes 

Step 1 Binary Coded: Yes at 

University or A-level or after 

GCSE, No at unsure and no 

No 659 0 100.0 

Yes 228 0 .0 

Overall Percentage   74.3 

a. The cut value is .500 
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Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower Upper 

Step 

1a 

Science Capital 

Total on 0-105 

Scale 

.017 .005 9.884 1 .002 1.017 1.006 1.028 

Constant -1.790 .248 51.927 1 <.001 .167   

a. Variable(s) entered on step 1: Science Capital Total on 0-105 Scale. 
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Binary Logistic Regression: Engineering Educational Aspiration and General Cultural Capital 

A binary logistic regression was adopted to determine the effect of general cultural capital score on 

the likelihood of aspiring to engineering education. Statistical assumptions were tested and confirmed 

the linearity of the relationship between the IV and DV logit, a lack of significant multicollinearity and 

lack of influential outliers supporting the use of this procedure. The logistic regression model was not 

statistically significant, χ2(1) = 0.076, p=0.783.  

Case Processing Summary 

Unweighted Casesa N Percent 

Selected Cases Included in Analysis 887 96.3 

Missing Cases 34 3.7 

Total 921 100.0 

Unselected Cases 0 .0 

Total 921 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 

Dependent Variable Encoding 

Original Value Internal Value 

No 0 

Yes 1 

 

Classification Tablea,b 
 

Observed 

Predicted 
 Binary Coded: Yes at University 

or A-level or after GCSE, No at 

unsure and no Percentage 

Correct  No Yes 

Step 0 Binary Coded: Yes at 

University or A-level or after 

GCSE, No at unsure and no 

No 659 0 100.0 

Yes 228 0 .0 

Overall Percentage   74.3 

a. Constant is included in the model. 

b. The cut value is .500 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant -1.061 .077 190.826 1 <.001 .346 
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Variables not in the Equation 

 Score df Sig. 

Step 0 Variables General Cultural Capital Total .076 1 .783 

Overall Statistics .076 1 .783 

 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step .076 1 .783 

Block .076 1 .783 

Model .076 1 .783 

 

Model Summary 

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 1011.006a .000 .000 

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than 

.001. 

 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 9.196 8 .326 

 

Classification Tablea 
 

Observed 

Predicted 
 Binary Coded: Yes at University 

or A-level or after GCSE, No at 

unsure and no Percentage 

Correct  No Yes 

Step 1 Binary Coded: Yes at 

University or A-level or after 

GCSE, No at unsure and no 

No 659 0 100.0 

Yes 228 0 .0 

Overall Percentage   74.3 

a. The cut value is .500 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower Upper 

Step 

1a 

General Cultural 

Capital Total 

-.009 .034 .076 1 .783 .991 .927 1.059 

Constant -1.030 .138 55.454 1 <.001 .357   

a. Variable(s) entered on step 1: General Cultural Capital Total. 



Appendix E – Chapter Four Statistical Analyses Outputs 

357 
 

Binary Logistic Regression: Engineering Career Aspiration and Archer-Style Engineering 

Capital 

A binary logistic regression was adopted to determine the effect of Archer-style engineering capital 

score on the likelihood of aspiring to an engineering career. Statistical assumptions were tested and 

confirmed the linearity of the relationship between the IV and DV logit, a lack of significant 

multicollinearity and lack of influential outliers supporting the use of this procedure. The logistic 

regression model was statistically significant, χ2(1) = 296.034, p<0.001. The model explained 38.8% 

(Nagelkerke R2) of the variance in career aspiration and correctly classified 75.8% of cases. Sensitivity 

was 54.4%, specificity was 87.5%. Increasing Archer-style engineering capital score was associated 

with a greater likelihood of aspiring to engineering career pathways.  

Case Processing Summary 

Unweighted Casesa N Percent 

Selected Cases Included in Analysis 892 96.9 

Missing Cases 29 3.1 

Total 921 100.0 

Unselected Cases 0 .0 

Total 921 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 

Dependent Variable Encoding 

Original Value Internal Value 

No 0 

Yes 1 

 

Classification Tablea,b 
 

Observed 

Predicted 
 57. Do you think you might like to 

work in an engineering-related 

job in the future? Percentage 

Correct  No Yes 

Step 0 57. Do you think you might 

like to work in an 

engineering-related job in 

the future? 

No 576 0 100.0 

Yes 316 0 .0 

Overall Percentage   64.6 

a. Constant is included in the model. 

b. The cut value is .500 
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Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant -.600 .070 73.549 1 <.001 .549 

 

Variables not in the Equation 

 Score df Sig. 

Step 0 Variables AS Engineering Capital Total on 

0-105 Scale to 0dp 

258.235 1 <.001 

Overall Statistics 258.235 1 <.001 

 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step 296.034 1 <.001 

Block 296.034 1 <.001 

Model 296.034 1 <.001 

 

Model Summary 

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 863.645a .282 .388 

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than 

.001. 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 9.894 8 .273 

 

Classification Tablea 
 

Observed 

Predicted 
 57. Do you think you might like to 

work in an engineering-related job 

in the future? Percentage 

Correct  No Yes 

Step 1 57. Do you think you might 

like to work in an 

engineering-related job in 

the future? 

No 504 72 87.5 

Yes 144 172 54.4 

Overall Percentage   75.8 

a. The cut value is .500 
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Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower Upper 

Step 

1a 

AS Engineering 

Capital Total on 0-

105 Scale to 0dp 

.114 .008 184.718 1 <.001 1.121 1.102 1.139 

Constant -4.686 .319 215.798 1 <.001 .009   

a. Variable(s) entered on step 1: AS Engineering Capital Total on 0-105 Scale to 0dp. 
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Binary Logistic Regression: Engineering Career Aspiration and Science Capital 

A binary logistic regression was adopted to determine the effect of science capital score on the 

likelihood of aspiring to engineering careers. Statistical assumptions were tested and confirmed the 

linearity of the relationship between the IV and DV logit, a lack of significant multicollinearity and lack 

of influential outliers supporting the use of this procedure. The logistic regression model was 

statistically significant, χ2(1) = 8.990, p=0.003. The model explained 1.4% (Nagelkerke R2) of the 

variance in career aspiration and correctly classified 64.9% of cases. Sensitivity was 0.9%, specificity 

was 100.0%. Increasing science capital score was associated with a greater likelihood of aspiring to 

engineering career pathways – however, notably this performance was poor for those who aspired to 

engineering careers. 

Case Processing Summary 

Unweighted Casesa N Percent 

Selected Cases Included in Analysis 892 96.9 

Missing Cases 29 3.1 

Total 921 100.0 

Unselected Cases 0 .0 

Total 921 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 

Dependent Variable Encoding 

Original Value Internal Value 

No 0 

Yes 1 

 

Classification Tablea,b 
 

Observed 

Predicted 
 57. Do you think you might like to 

work in an engineering-related 

job in the future? Percentage 

Correct  No Yes 

Step 0 57. Do you think you might 

like to work in an 

engineering-related job in 

the future? 

No 576 0 100.0 

Yes 316 0 .0 

Overall Percentage   64.6 

a. Constant is included in the model. 

b. The cut value is .500 
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Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant -.600 .070 73.549 1 <.001 .549 

 

Variables not in the Equation 

 Score df Sig. 

Step 0 Variables Science Capital Total on 0-105 

Scale 

9.005 1 .003 

Overall Statistics 9.005 1 .003 

 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step 8.990 1 .003 

Block 8.990 1 .003 

Model 8.990 1 .003 

 

Model Summary 

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 1150.689a .010 .014 

a. Estimation terminated at iteration number 3 because parameter estimates changed by 

less than .001. 

 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 7.434 8 .491 

 

Classification Tablea 
 

Observed 

Predicted 
 57. Do you think you might like to 

work in an engineering-related job 

in the future? Percentage 

Correct  No Yes 

Step 1 57. Do you think you might 

like to work in an 

engineering-related job in 

the future? 

No 576 0 100.0 

Yes 313 3 .9 

Overall Percentage   64.9 

a. The cut value is .500 
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Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower Upper 

Step 

1a 

Science Capital 

Total on 0-105 

Scale 

.015 .005 8.910 1 .003 1.015 1.005 1.025 

Constant -1.229 .224 30.116 1 <.001 .292   

a. Variable(s) entered on step 1: Science Capital Total on 0-105 Scale. 
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Binary Logistic Regression: Engineering Career Aspiration and General Cultural Capital 

A binary logistic regression was adopted to determine the effect of general cultural capital score on 

the likelihood of aspiring to engineering education. Statistical assumptions were tested and confirmed 

the linearity of the relationship between the IV and DV logit, a lack of significant multicollinearity and 

lack of influential outliers supporting the use of this procedure. The logistic regression model was not 

statistically significant, χ2(1) = 1.129, p=0.270.  

 

Case Processing Summary 

Unweighted Casesa N Percent 

Selected Cases Included in Analysis 892 96.9 

Missing Cases 29 3.1 

Total 921 100.0 

Unselected Cases 0 .0 

Total 921 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 

Dependent Variable Encoding 

Original Value Internal Value 

No 0 

Yes 1 

 

Classification Tablea,b 
 

Observed 

Predicted 
 57. Do you think you might like to 

work in an engineering-related 

job in the future? Percentage 

Correct  No Yes 

Step 0 57. Do you think you might 

like to work in an 

engineering-related job in 

the future? 

No 576 0 100.0 

Yes 316 0 .0 

Overall Percentage   64.6 

a. Constant is included in the model. 

b. The cut value is .500 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant -.600 .070 73.549 1 <.001 .549 
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Variables not in the Equation 

 Score df Sig. 

Step 0 Variables General Cultural Capital Total 1.219 1 .270 

Overall Statistics 1.219 1 .270 

 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step 1.219 1 .270 

Block 1.219 1 .270 

Model 1.219 1 .270 

 

Model Summary 

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 1158.459a .001 .002 

a. Estimation terminated at iteration number 3 because parameter estimates changed by less than 

.001. 

 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 6.744 8 .564 

 

Classification Tablea 
 

Observed 

Predicted 
 57. Do you think you might like to 

work in an engineering-related job 

in the future? Percentage 

Correct  No Yes 

Step 1 57. Do you think you might 

like to work in an 

engineering-related job in 

the future? 

No 576 0 100.0 

Yes 316 0 .0 

Overall Percentage   64.6 

a. The cut value is .500 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower Upper 

Step 

1a 

General Cultural 

Capital Total 

-.034 .031 1.218 1 .270 .966 .909 1.027 

Constant -.485 .125 15.042 1 <.001 .616   

a. Variable(s) entered on step 1: General Cultural Capital Total. 
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Cronbach’s Alpha Analysis: Engineering Literacy Instrument 

A Cronbach’s Alpha analysis was utilised to examine the internal consistency (reliability) of responses 

on the engineering literacy scale. Six items were examined and determined to possess a high level of 

internal consistency (N=865, a=0.761) supporting the use of this scale. This result was not meaningfully 

improved by the removal of any of the items.  

Case Processing Summary 

 N % 

Cases Valid 865 93.9 

Excludeda 56 6.1 

Total 921 100.0 

a. Listwise deletion based on all variables in the procedure. 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

.761 6 

 

Item-Total Statistics 

 

Scale Mean if 

Item Deleted 

Scale Variance 

if Item Deleted 

Corrected Item-

Total 

Correlation 

Cronbach's 

Alpha if Item 

Deleted 

39.8. ...Know a lot about 

engineering" 

-.60 13.492 .427 .749 

46.3. I have learnt a lot 

about engineering from 

museums 

-.04 13.545 .444 .743 

40.6. I know how to design 

and make things 

-1.03 13.635 .467 .736 

40.7. I know quite a lot 

about engineering 

-.13 11.992 .721 .666 

52.2. Engineers need to be 

imaginative in their work 

-1.37 15.672 .305 .770 

40.8. I would be confident 

talking about engineering in 

lessons 

-.05 12.003 .670 .678 
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Principal Components Analysis: Engineering Literacy Instrument 

A Principal Components Analysis (PCA) was run on a seven-item instrument measuring the engineering 

literacy of 855 participants. The suitability of PCA was confirmed with a Kaiser-Meyer-Olkin (KMO) 

measure of 0.783 and a statistically significant Bartlett’s test (p<0.001).  

The PCA resolved to two components with an eigenvalue greater than one which explained 55.04% of 

total variance. Examination of component loadings revealed a single item “Anyone can become an 

engineer” poorly loaded with the remaining six items. Whilst understanding that anyone can become 

an engineer might be considered a form of literacy for engineering supporting its theoretical value this 

item was removed for a further PCA analysis. The second PCA analysis (KMO=0.784, Bartlett’s test 

p<0.001) resolved to a single component that was robustly loaded to by all six items. This supports the 

dimensionality of the engineering literacy measure.  

PCA One: 

Descriptive Statistics 

 Mean Std. Deviation Analysis N 

39.8. ...Know a lot about engineering" -.04 1.146 855 

46.3. I have learnt a lot about 

engineering from museums 

-.60 1.111 855 

27.8. Anyone can become an engineer .67 1.131 855 

40.6. I know how to design and make 

things 

.39 1.053 855 

40.7. I know quite a lot about 

engineering 

-.51 1.059 855 

52.2. Engineers need to be imaginative 

in their work 

.73 .839 855 

40.8. I would be confident talking about 

engineering in lessons 

-.59 1.112 855 

 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .783 

Bartlett's Test of Sphericity Approx. Chi-Square 1431.223 

df 21 

Sig. .000 
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Communalities 

 Initial Extraction 

39.8. ...Know a lot about engineering" 1.000 .398 

46.3. I have learnt a lot about engineering from 

museums 

1.000 .394 

27.8. Anyone can become an engineer 1.000 .847 

40.6. I know how to design and make things 1.000 .419 

40.7. I know quite a lot about engineering 1.000 .763 

52.2. Engineers need to be imaginative in their work 1.000 .318 

40.8. I would be confident talking about engineering 

in lessons 

1.000 .715 

Extraction Method: Principal Component Analysis. 

 

Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 2.815 40.217 40.217 2.815 40.217 40.217 

2 1.038 14.824 55.040 1.038 14.824 55.040 

3 .843 12.045 67.086    

4 .760 10.851 77.936    

5 .707 10.099 88.035    

6 .605 8.645 96.680    

7 .232 3.320 100.000    

Extraction Method: Principal Component Analysis. 

 

Component Matrixa 

 

Component 

1 2 

40.7. I know quite a lot about engineering .862 -.140 

40.8. I would be confident talking about engineering in 

lessons 

.838 -.112 

40.6. I know how to design and make things .645 .052 

46.3. I have learnt a lot about engineering from 

museums 

.618 .109 

39.8. ...Know a lot about engineering" .605 -.179 

52.2. Engineers need to be imaginative in their work .448 .343 

27.8. Anyone can become an engineer .075 .917 

Extraction Method: Principal Component Analysis. 
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PCA Two:  

 

Descriptive Statistics 

 Mean Std. Deviation Analysis N 

39.8. ...Know a lot about engineering" -.04 1.146 865 

46.3. I have learnt a lot about 

engineering from museums 

-.60 1.109 865 

40.6. I know how to design and make 

things 

.38 1.058 865 

40.7. I know quite a lot about 

engineering 

-.52 1.060 865 

52.2. Engineers need to be imaginative 

in their work 

.73 .839 865 

40.8. I would be confident talking about 

engineering in lessons 

-.59 1.112 865 

 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .784 

Bartlett's Test of Sphericity Approx. Chi-Square 1419.343 

df 15 

Sig. .000 

 

Communalities 

 Initial Extraction 

39.8. ...Know a lot about engineering" 1.000 .363 

46.3. I have learnt a lot about engineering from 

museums 

1.000 .378 

40.6. I know how to design and make things 1.000 .416 

40.7. I know quite a lot about engineering 1.000 .747 

52.2. Engineers need to be imaginative in their work 1.000 .198 

40.8. I would be confident talking about engineering 

in lessons 

1.000 .698 

Extraction Method: Principal Component Analysis. 
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Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 2.801 46.688 46.688 2.801 46.688 46.688 

2 .874 14.571 61.259    

3 .771 12.853 74.112    

4 .714 11.902 86.014    

5 .602 10.039 96.053    

6 .237 3.947 100.000    

Extraction Method: Principal Component Analysis. 

 

Component Matrixa 

 

Component 

1 

40.7. I know quite a lot about engineering .864 

40.8. I would be confident talking about engineering in lessons .835 

40.6. I know how to design and make things .645 

46.3. I have learnt a lot about engineering from museums .615 

39.8. ...Know a lot about engineering" .603 

52.2. Engineers need to be imaginative in their work .445 

Extraction Method: Principal Component Analysis. 

a. 1 components extracted. 
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Cronbach’s Alpha Analysis: Engineering Attitudes Instrument 

A Cronbach’s Alpha analysis was utilised to examine the internal consistency (reliability) of responses 

on the engineering attitudes scale. Seven items were examined and determined to possess a high level 

of internal consistency (N=867, a=0.802) supporting the use of this scale. This result was not 

meaningfully improved by the removal of any of the items.  

 

Case Processing Summary 

 N % 

Cases Valid 867 94.1 

Excludeda 54 5.9 

Total 921 100.0 

a. Listwise deletion based on all variables in the procedure. 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

.802 7 

 

Item-Total Statistics 

 

Scale Mean if 

Item Deleted 

Scale Variance 

if Item Deleted 

Corrected Item-

Total 

Correlation 

Cronbach's 

Alpha if Item 

Deleted 

39.5. ...Think that 

engineering is very 

interesting" 

1.79 17.851 .566 .771 

39.6. ...Think it is important 

for me to learn about 

engineering" 

2.02 18.124 .548 .774 

46.1. My family like going to 

museums 

1.94 18.148 .456 .792 

46.2. I like going to 

museums 

2.00 17.561 .460 .795 

52.3. Engineering creates 

new jobs so more people 

can have work 

1.51 19.289 .530 .779 

52.4. It is useful to know 

about engineering in my 

daily life 

1.87 17.449 .639 .757 

52.5. Getting young people 

to understand engineering is 

important for our society 

1.72 18.309 .601 .766 
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Principal Components Analysis: Engineering Attitudes Instrument 

A Principal Components Analysis (PCA) was run on a seven-item instrument measuring the engineering 

attitudes of 867 participants. The suitability of PCA was confirmed with a Kaiser-Meyer-Olkin (KMO) 

measure of 0.733 and a statistically significant Bartlett’s test (p<0.001).  

The PCA resolved to two components with an eigenvalue greater than one which explained 67.72% of 

total variance. Examination of component loadings revealed whilst all items loaded well to component 

one (all items >0.5) component two only loaded well with two items: “My family like going to 

museums” and “I like going to museums”. These items are consistent with attitudes towards learning 

contexts in which engineering may take place and are consistent with both uses of Bourdieu and 

Archer and colleagues. For this reason, it was determined that the strong loadings of all items in 

component one was sufficient evidence to validate the seven item measure of engineering attitudes. 

However, further research may wish to consider the deeper relationship between engineering and 

museum contexts.  

 

Descriptive Statistics 

 Mean Std. Deviation Analysis N 

39.5. ...Think that engineering is very 

interesting" 

.35 1.032 867 

39.6. ...Think it is important for me to 

learn about engineering" 

.12 1.010 867 

46.1. My family like going to museums .20 1.136 867 

46.2. I like going to museums .15 1.236 867 

52.3. Engineering creates new jobs so 

more people can have work 

.63 .832 867 

52.4. It is useful to know about 

engineering in my daily life 

.27 1.009 867 

52.5. Getting young people to 

understand engineering is important for 

our society 

.42 .915 867 

 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .733 

Bartlett's Test of Sphericity Approx. Chi-Square 2654.670 

df 21 

Sig. .000 
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Communalities 

 Initial Extraction 

39.5. ...Think that engineering is very interesting" 1.000 .599 

39.6. ...Think it is important for me to learn about 

engineering" 

1.000 .607 

46.1. My family like going to museums 1.000 .852 

46.2. I like going to museums 1.000 .858 

52.3. Engineering creates new jobs so more people 

can have work 

1.000 .484 

52.4. It is useful to know about engineering in my 

daily life 

1.000 .691 

52.5. Getting young people to understand 

engineering is important for our society 

1.000 .649 

Extraction Method: Principal Component Analysis. 

 

 

Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 3.324 47.482 47.482 3.324 47.482 47.482 

2 1.417 20.240 67.721 1.417 20.240 67.721 

3 .924 13.202 80.923    

4 .510 7.283 88.206    

5 .291 4.152 92.358    

6 .273 3.895 96.252    

7 .262 3.748 100.000    

Extraction Method: Principal Component Analysis. 
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Component Matrixa 

 

Component 

1 2 

52.4. It is useful to know about engineering in my 

daily life 

.806 -.204 

52.5. Getting young people to understand engineering 

is important for our society 

.776 -.218 

39.5. ...Think that engineering is very interesting" .728 -.262 

39.6. ...Think it is important for me to learn about 

engineering" 

.717 -.306 

52.3. Engineering creates new jobs so more people 

can have work 

.691 -.081 

46.1. My family like going to museums .517 .765 

46.2. I like going to museums .533 .758 

Extraction Method: Principal Component Analysis. 

a. 2 components extracted. 
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Cronbach’s Alpha Analysis: Knowledge of Engineering Pathways Instrument 

A Cronbach’s Alpha analysis was utilised to examine the internal consistency (reliability) of responses 

on the knowledge of engineering pathways scale. Five items were examined and determined to 

possess a high level of internal consistency (N=863, a=0.762) supporting the use of this scale. This 

result was not meaningfully improved by the removal of any of the items.  

 

Case Processing Summary 

 N % 

Cases Valid 863 93.7 

Excludeda 58 6.3 

Total 921 100.0 

a. Listwise deletion based on all variables in the procedure. 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

.762 5 

 

Item-Total Statistics 

 

Scale Mean if 

Item Deleted 

Scale Variance if 

Item Deleted 

Corrected Item-

Total Correlation 

Cronbach's Alpha 

if Item Deleted 

28.2. It is important to 

understand engineering even if 

you don't want an engineering 

job in the future 

.37 9.453 .463 .742 

28.3. An engineering 

qualification can help you get 

many different types of job 

.03 9.562 .465 .741 

39.7. ...Has explained to me 

that understanding engineering 

is useful for my future" 

.67 8.449 .528 .721 

51.4. My teachers explain how 

engineering qualifications can 

lead to different jobs 

.79 8.154 .588 .698 

51.6. My teachers have 

explained to me that 

understanding engineering is 

useful for my future 

1.02 7.952 .615 .687 
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Principal Components Analysis: Knowledge of Engineering Pathways Instrument 

A Principal Components Analysis (PCA) was run on a five-item instrument measuring theknowledge of 

engineering pathways of 863 participants. The suitability of PCA was confirmed with a Kaiser-Meyer-

Olkin (KMO) measure of 0.691 and a statistically significant Bartlett’s test (p<0.001).  

The PCA resolved to two components with an eigenvalue greater than one which explained 73.08% of 

total variance. Examination of component loadings revealed whilst all items loaded well to component 

one (all items >0.6) component two only loaded well with two items: “An engineering qualification 

can help you get many different types of job” and “It is important to understand engineering even if 

you don’t want an engineering job in the future”. These two items relate to the view of the individual 

compared to the remaining three which relate to the influence of parents and teachers. It is therefore 

understandable that these two items may be distinguished as a separate component however the 

strong loading of all five items to the first component highlights the interconnectedness of these items 

and supports the use of this instrument as a measure of knowledge of engineering pathways. Further 

research may wish to study distinctions in the influence of others vs. held understandings of 

engineering pathways to expand understanding of this subcomponent.  

 

Descriptive Statistics 

 Mean Std. Deviation Analysis N 

28.3. An engineering qualification can 

help you get many different types of job 

.69 .876 863 

28.2. It is important to understand 

engineering even if you don't want an 

engineering job in the future 

.35 .906 863 

39.7. ...Has explained to me that 

understanding engineering is useful for 

my future" 

.05 1.065 863 

51.4. My teachers explain how 

engineering qualifications can lead to 

different jobs 

-.07 1.063 863 

51.6. My teachers have explained to 

me that understanding engineering is 

useful for my future 

-.30 1.078 863 

 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .691 

Bartlett's Test of Sphericity Approx. Chi-Square 1349.746 

df 10 

Sig. .000 
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Communalities 

 Initial Extraction 

28.3. An engineering qualification can help you get 

many different types of job 

1.000 .700 

28.2. It is important to understand engineering even 

if you don't want an engineering job in the future 

1.000 .742 

39.7. ...Has explained to me that understanding 

engineering is useful for my future" 

1.000 .516 

51.4. My teachers explain how engineering 

qualifications can lead to different jobs 

1.000 .851 

51.6. My teachers have explained to me that 

understanding engineering is useful for my future 

1.000 .846 

Extraction Method: Principal Component Analysis. 

 

Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 2.565 51.308 51.308 2.565 51.308 51.308 

2 1.089 21.770 73.078 1.089 21.770 73.078 

3 .617 12.335 85.413    

4 .475 9.506 94.919    

5 .254 5.081 100.000    

Extraction Method: Principal Component Analysis. 

 

Component Matrixa 

 

Component 

1 2 

51.6. My teachers have explained to me that 

understanding engineering is useful for my future 

.788 -.475 

51.4. My teachers explain how engineering 

qualifications can lead to different jobs 

.767 -.512 

39.7. ...Has explained to me that understanding 

engineering is useful for my future" 

.713 .082 

28.3. An engineering qualification can help you get 

many different types of job 

.652 .524 

28.2. It is important to understand engineering even if 

you don't want an engineering job in the future 

.650 .564 
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Cronbach’s Alpha Analysis: Consumption of Engineering Media Instrument 

A Cronbach’s Alpha analysis was utilised to examine the internal consistency (reliability) of responses 

on the consumption of engineering media scale. Four items were examined and determined to possess 

a high level of internal consistency (N=890, a=0.796) supporting the use of this scale. This result was 

not meaningfully improved by the removal of any of the items.  

 

Case Processing Summary 

 N % 

Cases Valid 890 96.6 

Excludeda 31 3.4 

Total 921 100.0 

a. Listwise deletion based on all variables in the procedure. 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

.796 4 

 

Item-Total Statistics 

 

Scale Mean if 

Item Deleted 

Scale Variance 

if Item Deleted 

Corrected Item-

Total 

Correlation 

Cronbach's 

Alpha if Item 

Deleted 

43.2. Watch engineering TV 

programmes, e.g. 

Mythbusters, Scrapheap 

Challenge, Robot Wars, etc. 

3.81 7.227 .683 .707 

43.3. Watch TV 

programmes with some 

engineering in them, e.g. 

Blue Peter, The Big Bang 

Theory, Top Gear, The 

Great British Bake Off, etc. 

2.93 8.086 .518 .789 

43.4. Read books or 

magazines about 

engineering? 

4.38 8.493 .651 .737 

43.5. Go online to find out 

about engineering, e.g. 

YouTube, engineering 

websites, play engineering 

games? 

3.90 6.970 .616 .746 
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Principal Components Analysis: Consumption of Engineering Media Instrument 

A Principal Components Analysis (PCA) was run on a four-item instrument measuring the consumption 

of engineering media of 863 participants. The suitability of PCA was confirmed with a Kaiser-Meyer-

Olkin (KMO) measure of 0.779 and a statistically significant Bartlett’s test (p<0.001). The PCA resolved 

to a single component with an eigenvalue greater than one which explained 63.13% of total variance. 

Examination of component loadings revealed that all items loaded well to component one (>0.7) 

supporting the dimensionality of this instrument measure.  

Descriptive Statistics 

 Mean Std. Deviation Analysis N 

43.2. Watch engineering TV 

programmes, e.g. Mythbusters, 

Scrapheap Challenge, Robot Wars, 

etc. 

1.19 1.156 890 

43.3. Watch TV programmes with 

some engineering in them, e.g. Blue 

Peter, The Big Bang Theory, Top Gear, 

The Great British Bake Off, etc. 

2.08 1.152 890 

43.4. Read books or magazines about 

engineering? 

.62 .916 890 

43.5. Go online to find out about 

engineering, e.g. YouTube, 

engineering websites, play engineering 

games? 

1.11 1.286 890 

 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .779 

Bartlett's Test of Sphericity Approx. Chi-Square 1136.714 

df 6 

Sig. .000 
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Communalities 

 Initial Extraction 

43.2. Watch engineering TV programmes, e.g. 

Mythbusters, Scrapheap Challenge, Robot Wars, 

etc. 

1.000 .709 

43.3. Watch TV programmes with some engineering 

in them, e.g. Blue Peter, The Big Bang Theory, Top 

Gear, The Great British Bake Off, etc. 

1.000 .503 

43.4. Read books or magazines about engineering? 1.000 .671 

43.5. Go online to find out about engineering, e.g. 

YouTube, engineering websites, play engineering 

games? 

1.000 .642 

Extraction Method: Principal Component Analysis. 

 

Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 2.525 63.127 63.127 2.525 63.127 63.127 

2 .654 16.355 79.482    

3 .430 10.749 90.231    

4 .391 9.769 100.000    

Extraction Method: Principal Component Analysis. 

 

 

Component Matrixa 

 

Component 

1 

43.2. Watch engineering TV programmes, e.g. Mythbusters, 

Scrapheap Challenge, Robot Wars, etc. 

.842 

43.4. Read books or magazines about engineering? .819 

43.5. Go online to find out about engineering, e.g. YouTube, 

engineering websites, play engineering games? 

.801 

43.3. Watch TV programmes with some engineering in them, e.g. 

Blue Peter, The Big Bang Theory, Top Gear, The Great British 

Bake Off, etc. 

.709 

Extraction Method: Principal Component Analysis. 

a. 1 components extracted. 
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Cronbach’s Alpha Analysis: Engineering Out-Of-School Learning Contexts Instrument 

A Cronbach’s Alpha analysis was utilised to examine the internal consistency (reliability) of responses 

on the engineering out-of-school learning contexts scale. Fifteen items were examined and 

determined to possess a high level of internal consistency (N=852, a=0.810 based on standardised 

items) supporting the use of this scale. This result was not meaningfully improved by the removal of 

any of the items.  

Case Processing Summary 

 N % 

Cases Valid 852 92.5 

Excludeda 69 7.5 

Total 921 100.0 

a. Listwise deletion based on all variables in the procedure. 

 

 

Reliability Statistics 

Cronbach's Alpha 

Cronbach's Alpha Based on 

Standardized Items N of Items 

.800 .810 15 

 

Item-Total Statistics 

 

Scale 

Mean if 

Item 

Deleted 

Scale 

Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Squared 

Multiple 

Correlation 

Cronbach's 

Alpha if Item 

Deleted 

39.1. ...Sign me up to activities 

outside of school time (e.g. 

dance, music, clubs)" 

19.94 71.988 .193 .124 .805 

44.1. Go to a museum? 19.15 69.646 .455 .572 .786 

44.2. Go to a science centre, 

science museum, or 

planetarium? 

19.42 69.088 .509 .592 .783 

44.4. Do DIY, or help fix things 

around the home? 

18.13 64.947 .490 .432 .781 

44.5. Get shown how to use 

tools? 

18.26 64.869 .489 .412 .782 

44.6. Make models, e.g. 

playing with Lego, painting 

miniatures? 

18.39 62.958 .555 .412 .775 
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44.7. Do crafts, e.g. knitting, 

woodwork? 

18.63 63.583 .505 .377 .780 

44.8. Play videogames about 

designing or building, e.g. The 

Sims, Minecraft? 

17.57 68.896 .277 .190 .801 

44.9. Program computers, e.g. 

writing apps, building 

websites? 

19.32 67.196 .361 .188 .793 

45.2. Go to an after school 

club that involves 

engineering? 

20.26 72.419 .359 .275 .793 

45.3. Had people visit you in 

school to teach you about 

engineering? 

19.86 70.799 .393 .321 .790 

45.4. Take an engineering 

related school trip? 

20.13 72.050 .385 .407 .792 

45.6. Do school activities 

where you design or build 

something, e.g. designing a 

bridge, making and testing 

paper airplanes 

18.96 66.163 .469 .274 .783 

45.7. Take part in a 

competition where you design 

or make something? 

19.60 66.952 .523 .334 .780 

45.5. Take a school trip to a 

museum? 

19.71 72.862 .299 .241 .796 
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Principal Components Analysis: Engineering Out-of-School Learning Contexts Instrument 

A Principal Components Analysis (PCA) was run on a fifteen-item instrument measuring the 

engineering out-of-school learning contexts of 852 participants. The suitability of PCA was confirmed 

with a Kaiser-Meyer-Olkin (KMO) measure of 0.812 and a statistically significant Bartlett’s test 

(p<0.001). No rotation was applied.  

The PCA resolved to four components with an eigenvalue greater than one which explained 57.47% 

of total variance. It is unsurprising that four components emerged from this analysis given the variety 

of contexts included within this theoretical subcomponent. Examination of component loadings 

revealed inconsistent loadings. The first component was loaded to by all items to some degree (>0.3), 

the second loaded by items related to school contexts, the third with home contexts and finally the 

fourth with museum trips or the use of computers. Loadings between these four components was not 

entirely clear necessitating further examination. To clarify this structure a second PCA was adopted to 

examine this same data but with a Direct Oblimin rotation – this approach would allow components 

to correlate but distinguish loadings to ease interpretation of components.  

The second PCA was also found to be valid with a Kaiser-Meyer-Olkin (KMO) measure of 0.812 and a 

statistically significant Bartlett’s test (p<0.001). The PCA resolved to four components with an 

eigenvalue greater than one which explained 57.47% of total variance. The Direct Oblimin rotation 

eased interpretation of component contents. The first component now related specifically to 

designing and making things with four items: “Do DIY, or help fix things around the home?”, “Get 

shown how to use tools?”, “Do crafts, e.g. knitting, woodwork?”, and “Make models, e.g. playing with 

Lego painting miniatures?”. The second component related to school experiences with items such as 

“Do school activities where you design or build something, e.g. designing a bridge, making and testing 

paper airplanes”, “Take part in a competition where you design or make something”, “Take a school 

trip to a museum”, “Take an engineering related school trip”, “Had people visit you in school to teach 

you about engineering?”, and “Go to an after school club that involves engineering”. The third 

component related to family contexts with items such as “…Go to a science centre, science museum, 

or planetarium?”, “…Sign me up to activities outside school time (e.g. dance, music, clubs)”, and “Go 

to a museum?” . The fourth component was no longer concerned with museum visits but only included 

items related to recreational making: “Play videogames about designing or building, e.g. The Sims, 

Minecraft”, “Program computers, e.g. writing apps, building websites”, “Make models e.g. playing 

with Lego, painting miniatures”. 

Whilst not a simplistic structure these components align with the theoretical underpinning of the Out-

of-School Learning Contexts subcomponent as a diverse conceptualisation of how engineering capital 

may be sourced by young learners.  
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PCA One:  

Descriptive Statistics 

 Mean Std. Deviation Analysis N 

39.1. ...Sign me up to activities outside 

of school time (e.g. dance, music, 

clubs)" 

.58 1.189 852 

44.1. Go to a museum? 1.37 .900 852 

44.2. Go to a science centre, science 

museum, or planetarium? 

1.10 .878 852 

44.4. Do DIY, or help fix things around 

the home? 

2.39 1.337 852 

44.5. Get shown how to use tools? 2.26 1.346 852 

44.6. Make models, e.g. playing with 

Lego, painting miniatures? 

2.13 1.405 852 

44.7. Do crafts, e.g. knitting, 

woodwork? 

1.90 1.444 852 

44.8. Play videogames about designing 

or building, e.g. The Sims, Minecraft? 

2.95 1.401 852 

44.9. Program computers, e.g. writing 

apps, building websites? 

1.21 1.383 852 

45.2. Go to an after school club that 

involves engineering? 

.27 .715 852 

45.3. Had people visit you in school to 

teach you about engineering? 

.66 .869 852 

45.4. Take an engineering related 

school trip? 

.40 .722 852 

45.5. Take a school trip to a museum? .82 .756 852 

45.6. Do school activities where you 

design or build something, e.g. 

designing a bridge, making and testing 

paper airplanes 

1.56 1.252 852 

45.7. Take part in a competition where 

you design or make something? 

.92 1.073 852 

 

 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .812 

Bartlett's Test of Sphericity Approx. Chi-Square 3463.135 

df 105 

Sig. .000 
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Communalities 

 Initial Extraction 

39.1. ...Sign me up to activities outside of school 

time (e.g. dance, music, clubs)" 

1.000 .434 

44.1. Go to a museum? 1.000 .829 

44.2. Go to a science centre, science museum, or 

planetarium? 

1.000 .810 

44.4. Do DIY, or help fix things around the home? 1.000 .672 

44.5. Get shown how to use tools? 1.000 .625 

44.6. Make models, e.g. playing with Lego, painting 

miniatures? 

1.000 .605 

44.7. Do crafts, e.g. knitting, woodwork? 1.000 .570 

44.8. Play videogames about designing or building, 

e.g. The Sims, Minecraft? 

1.000 .600 

44.9. Program computers, e.g. writing apps, building 

websites? 

1.000 .495 

45.2. Go to an after school club that involves 

engineering? 

1.000 .475 

45.3. Had people visit you in school to teach you 

about engineering? 

1.000 .527 

45.4. Take an engineering related school trip? 1.000 .657 

45.5. Take a school trip to a museum? 1.000 .456 

45.6. Do school activities where you design or build 

something, e.g. designing a bridge, making and 

testing paper airplanes 

1.000 .401 

45.7. Take part in a competition where you design or 

make something? 

1.000 .464 

Extraction Method: Principal Component Analysis. 
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Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 4.230 28.197 28.197 4.230 28.197 28.197 

2 1.806 12.039 40.236 1.806 12.039 40.236 

3 1.424 9.495 49.732 1.424 9.495 49.732 

4 1.160 7.736 57.467 1.160 7.736 57.467 

5 .897 5.981 63.448    

6 .776 5.171 68.619    

7 .737 4.916 73.535    

8 .704 4.693 78.228    

9 .620 4.130 82.358    

10 .582 3.883 86.242    

11 .554 3.693 89.934    

12 .461 3.074 93.008    

13 .419 2.793 95.801    

14 .384 2.562 98.363    

15 .246 1.637 100.000    

Extraction Method: Principal Component Analysis. 
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Component Matrixa 

 

Component 

1 2 3 4 

45.7. Take part in a competition 

where you design or make 

something? 

.637 .143 -.139 -.137 

44.2. Go to a science centre, 

science museum, or planetarium? 

.636 .017 .530 .352 

44.6. Make models, e.g. playing with 

Lego, painting miniatures? 

.621 -.406 -.165 .163 

44.7. Do crafts, e.g. knitting, 

woodwork? 

.586 -.449 -.046 -.151 

45.6. Do school activities where you 

design or build something, e.g. 

designing a bridge, making and 

testing paper airplanes 

.572 .068 -.239 -.111 

44.5. Get shown how to use tools? .568 -.433 -.067 -.332 

44.4. Do DIY, or help fix things 

around the home? 

.567 -.462 -.076 -.362 

45.3. Had people visit you in school 

to teach you about engineering? 

.528 .454 -.158 -.131 

45.2. Go to an after school club that 

involves engineering? 

.490 .474 -.099 .004 

44.9. Program computers, e.g. 

writing apps, building websites? 

.447 -.056 -.320 .436 

45.4. Take an engineering related 

school trip? 

.531 .586 -.089 -.155 

45.5. Take a school trip to a 

museum? 

.430 .470 .154 -.163 

44.1. Go to a museum? .578 -.054 .605 .355 

39.1. ...Sign me up to activities 

outside of school time (e.g. dance, 

music, clubs)" 

.281 -.077 .553 -.207 

44.8. Play videogames about 

designing or building, e.g. The Sims, 

Minecraft? 

.348 -.072 -.432 .536 

Extraction Method: Principal Component Analysis. 

a. 4 components extracted. 
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PCA Two:  

Descriptive Statistics 

 Mean Std. Deviation Analysis N 

39.1. ...Sign me up to activities outside 

of school time (e.g. dance, music, 

clubs)" 

.58 1.189 852 

44.1. Go to a museum? 1.37 .900 852 

44.2. Go to a science centre, science 

museum, or planetarium? 

1.10 .878 852 

44.4. Do DIY, or help fix things around 

the home? 

2.39 1.337 852 

44.5. Get shown how to use tools? 2.26 1.346 852 

44.6. Make models, e.g. playing with 

Lego, painting miniatures? 

2.13 1.405 852 

44.7. Do crafts, e.g. knitting, 

woodwork? 

1.90 1.444 852 

44.8. Play videogames about designing 

or building, e.g. The Sims, Minecraft? 

2.95 1.401 852 

44.9. Program computers, e.g. writing 

apps, building websites? 

1.21 1.383 852 

45.2. Go to an after school club that 

involves engineering? 

.27 .715 852 

45.3. Had people visit you in school to 

teach you about engineering? 

.66 .869 852 

45.4. Take an engineering related 

school trip? 

.40 .722 852 

45.5. Take a school trip to a museum? .82 .756 852 

45.6. Do school activities where you 

design or build something, e.g. 

designing a bridge, making and testing 

paper airplanes 

1.56 1.252 852 

45.7. Take part in a competition where 

you design or make something? 

.92 1.073 852 

 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .812 

Bartlett's Test of Sphericity Approx. Chi-Square 3463.135 

df 105 

Sig. .000 
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Communalities 

 Initial Extraction 

39.1. ...Sign me up to activities outside of school 

time (e.g. dance, music, clubs)" 

1.000 .434 

44.1. Go to a museum? 1.000 .829 

44.2. Go to a science centre, science museum, or 

planetarium? 

1.000 .810 

44.4. Do DIY, or help fix things around the home? 1.000 .672 

44.5. Get shown how to use tools? 1.000 .625 

44.6. Make models, e.g. playing with Lego, painting 

miniatures? 

1.000 .605 

44.7. Do crafts, e.g. knitting, woodwork? 1.000 .570 

44.8. Play videogames about designing or building, 

e.g. The Sims, Minecraft? 

1.000 .600 

44.9. Program computers, e.g. writing apps, building 

websites? 

1.000 .495 

45.2. Go to an after school club that involves 

engineering? 

1.000 .475 

45.3. Had people visit you in school to teach you 

about engineering? 

1.000 .527 

45.4. Take an engineering related school trip? 1.000 .657 

45.5. Take a school trip to a museum? 1.000 .456 

45.6. Do school activities where you design or build 

something, e.g. designing a bridge, making and 

testing paper airplanes 

1.000 .401 

45.7. Take part in a competition where you design or 

make something? 

1.000 .464 

Extraction Method: Principal Component Analysis. 
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Total Variance Explained 

Component 

Initial Eigenvalues 

Extraction Sums of Squared 

Loadings 

Rotation 

Sums of 

Squared 

Loadingsa 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% Total 

1 4.230 28.197 28.197 4.230 28.197 28.197 3.047 

2 1.806 12.039 40.236 1.806 12.039 40.236 3.037 

3 1.424 9.495 49.732 1.424 9.495 49.732 2.456 

4 1.160 7.736 57.467 1.160 7.736 57.467 1.791 

5 .897 5.981 63.448     

6 .776 5.171 68.619     

7 .737 4.916 73.535     

8 .704 4.693 78.228     

9 .620 4.130 82.358     

10 .582 3.883 86.242     

11 .554 3.693 89.934     

12 .461 3.074 93.008     

13 .419 2.793 95.801     

14 .384 2.562 98.363     

15 .246 1.637 100.000     

Extraction Method: Principal Component Analysis. 

a. When components are correlated, sums of squared loadings cannot be added to obtain a total 

variance. 
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Component Matrixa 

 

Component 

1 2 3 4 

45.7. Take part in a competition 

where you design or make 

something? 

.637 .143 -.139 -.137 

44.2. Go to a science centre, 

science museum, or planetarium? 

.636 .017 .530 .352 

44.6. Make models, e.g. playing with 

Lego, painting miniatures? 

.621 -.406 -.165 .163 

44.7. Do crafts, e.g. knitting, 

woodwork? 

.586 -.449 -.046 -.151 

45.6. Do school activities where you 

design or build something, e.g. 

designing a bridge, making and 

testing paper airplanes 

.572 .068 -.239 -.111 

44.5. Get shown how to use tools? .568 -.433 -.067 -.332 

44.4. Do DIY, or help fix things 

around the home? 

.567 -.462 -.076 -.362 

45.3. Had people visit you in school 

to teach you about engineering? 

.528 .454 -.158 -.131 

45.2. Go to an after school club that 

involves engineering? 

.490 .474 -.099 .004 

44.9. Program computers, e.g. 

writing apps, building websites? 

.447 -.056 -.320 .436 

45.4. Take an engineering related 

school trip? 

.531 .586 -.089 -.155 

45.5. Take a school trip to a 

museum? 

.430 .470 .154 -.163 

44.1. Go to a museum? .578 -.054 .605 .355 

39.1. …Sign me up to activities 

outside of school time (e.g. dance, 

music, clubs)” 

.281 -.077 .553 -.207 

44.8. Play videogames about 

designing or building, e.g. The Sims, 

Minecraft? 

.348 -.072 -.432 .536 

Extraction Method: Principal Component Analysis. 

a. 4 components extracted. 
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Pattern Matrixa 

 

Component 

1 2 3 4 

44.4. Do DIY, or help fix things 

around the home? 

.843 .007 -.042 -.085 

44.5. Get shown how to use tools? .802 .022 -.020 -.068 

44.7. Do crafts, e.g. knitting, 

woodwork? 

.709 -.048 .103 .079 

44.6. Make models, e.g. playing with 

Lego, painting miniatures? 

.532 -.074 .181 .411 

45.4. Take an engineering related 

school trip? 

-.059 .832 -.020 -.030 

45.3. Had people visit you in school 

to teach you about engineering? 

.036 .721 -.058 .042 

45.2. Go to an after school club that 

involves engineering? 

-.090 .664 .051 .112 

45.5. Take a school trip to a 

museum? 

-.070 .637 .159 -.179 

45.7. Take part in a competition 

where you design or make 

something? 

.315 .503 .011 .086 

45.6. Do school activities where you 

design or build something, e.g. 

designing a bridge, making and 

testing paper airplanes 

.343 .418 -.078 .156 

44.1. Go to a museum? -.023 -.006 .911 .100 

44.2. Go to a science centre, 

science museum, or planetarium? 

-.029 .099 .859 .143 

39.1. ...Sign me up to activities 

outside of school time (e.g. dance, 

music, clubs)" 

.198 .028 .463 -.407 

44.8. Play videogames about 

designing or building, e.g. The Sims, 

Minecraft? 

-.010 .013 .041 .771 

44.9. Program computers, e.g. 

writing apps, building websites? 

.063 .086 .114 .646 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Oblimin with Kaiser Normalization.a 

a. Rotation converged in 8 iterations. 
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Structure Matrix 

 

Component 

1 2 3 4 

44.4. Do DIY, or help fix things 

around the home? 

.815 .177 .209 .085 

44.5. Get shown how to use tools? .788 .191 .223 .098 

44.7. Do crafts, e.g. knitting, 

woodwork? 

.745 .158 .305 .217 

44.6. Make models, e.g. playing with 

Lego, painting miniatures? 

.652 .170 .334 .512 

45.4. Take an engineering related 

school trip? 

.122 .807 .179 .105 

45.3. Had people visit you in school 

to teach you about engineering? 

.195 .722 .143 .175 

45.2. Go to an after school club that 

involves engineering? 

.103 .677 .202 .214 

45.5. Take a school trip to a 

museum? 

.089 .631 .298 -.075 

45.7. Take part in a competition 

where you design or make 

something? 

.452 .594 .240 .239 

45.6. Do school activities where you 

design or build something, e.g. 

designing a bridge, making and 

testing paper airplanes 

.449 .505 .139 .297 

44.1. Go to a museum? .267 .245 .905 .125 

44.2. Go to a science centre, 

science museum, or planetarium? 

.279 .343 .881 .184 

39.1. ...Sign me up to activities 

outside of school time (e.g. dance, 

music, clubs)" 

.260 .123 .515 -.346 

44.8. Play videogames about 

designing or building, e.g. The Sims, 

Minecraft? 

.162 .158 .068 .773 

44.9. Program computers, e.g. 

writing apps, building websites? 

.248 .245 .178 .678 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Oblimin with Kaiser Normalization. 
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Principal Components Analysis: All Engineering Capital Subcomponent Instrument Items 

A Principal Components Analysis (PCA) was run on 47 items drawn from the engineering capital 

subcomponent and engineering DV measures. Data from 733 participants was included in this analysis. 

The use of a PCA was deemed appropriate with a recorded Kaiser-Meyer-Olkin (KMO) measure of 

0.928 and a statistically significant Bartlett’s test (p<0.001). A Direct Oblimin rotation was applied to 

ease interpretation of resulting components.  

The PCA resolved to ten components with an eigenvalue greater than one which explained 63.112% 

of total variance. Examination of item loadings facilitated an understanding of what each component 

represented within this output – only items loaded above a 0.4 level were included in components. 

These components are outlined in the table below.  

 

Component 
Number 

Component Title Variance 
Explained 

Number 
of Items 

Items 

1 Engineering Career 
Aspiration 

28.148% 6 - I would like to have a job that 
uses engineering 

- I would like to work in an 
engineering related job, but 
not in an engineering 
industry 

- I would like to have a job that 
involves designing and 
making things 

- People who are like me work 
in engineering 

- I want to become an engineer 
- Other people think of me as 

an engineering-type person 

2 Museum Visits 7.578% 5 - My family like going to 
museums 

- I like going to museums 
- Go to a museum? 
- Go to a science centre, 

science museum, or 
planetarium? 

- I have learnt a lot about 
engineering from museums 

3 Engineering Utility 5.225% 4 - Engineers need to be 
imaginative in their work 

- Engineering creates new jobs 
so more people can have 
work 

- Getting young people to 
understand engineering is 
important for our society 

- It is useful to know about 
engineering in my daily life 
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4 Engineering Curricular-
Mapped Experiences 

4.369% 5 - Take an engineering related 
school trip? 

- Had people visit you in school 
to teach you about 
engineering? 

- Go to an after school club 
that involves engineering? 

- Take a school trip to a 
museum? 

- Take part in a competition 
where you design or make 
something? 

5 Making and Fixing 3.828% 4 - Do DIY, or help fix things 
around the home? 

- Get shown how to use tools? 
- Do crafts, e.g. knitting, 

woodwork? 
- Make models, e.g. playing 

with Lego, painting 
miniatures? 

6 Parental Engineering 
Attitudes 

3.531% 4 - ...Know a lot about 
engineering" 

- ...Think that engineering is 
very interesting" 

- ...Think it is important for me 
to learn about engineering" 

- ...Has explained to me that 
understanding engineering is 
useful for my future" 

7 Teacher Support for 
Engineering 

3.036% 3 - My teachers have explained 
to me that understanding 
engineering is useful for my 
future 

- My teachers have specifically 
encouraged me to consider 
studying engineering after 
GCSEs 

- My teachers explain how 
engineering qualifications 
can lead to different jobs 

8 Engineering Media 
Consumption 

2.710% 4 - Watch engineering TV 
programmes, e.g. 
Mythbusters, Scrapheap 
Challenge, Robot Wars, etc. 

- Read books or magazines 
about engineering? 

- Watch TV programmes with 
some engineering in them, 
e.g. Blue Peter, The Big Bang 
Theory, Top Gear, The Great 
British Bake Off, etc. 
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- Go online to find out about 
engineering, e.g. YouTube, 
engineering websites, play 
engineering games? 

9 Designing and Making 
with Technology 

2.484% 2 - Play videogames about 
designing or building, e.g. The 
Sims, Minecraft? 

- Program computers, e.g. 
writing apps, building 
websites? 

10 Wider Utility of 
Engineering 

2.204% 2 - An engineering qualification 
can help you get many 
different types of job 

- It is important to understand 
engineering even if you don't 
want an engineering job in 
the future 
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PCA One: 

 

Descriptive Statistics 

 Mean 

Std. 

Deviation Analysis N 

39.8. ...Know a lot about engineering" -.05 1.145 773 

46.3. I have learnt a lot about engineering from museums -.60 1.105 773 

40.6. I know how to design and make things .38 1.049 773 

40.7. I know quite a lot about engineering -.53 1.052 773 

40.8. I would be confident talking about engineering in lessons -.61 1.110 773 

52.2. Engineers need to be imaginative in their work .73 .837 773 

39.5. ...Think that engineering is very interesting" .34 1.041 773 

39.6. ...Think it is important for me to learn about engineering" .12 1.004 773 

46.1. My family like going to museums .23 1.128 773 

46.2. I like going to museums .16 1.230 773 

52.3. Engineering creates new jobs so more people can have work .64 .834 773 

52.4. It is useful to know about engineering in my daily life .29 1.009 773 

52.5. Getting young people to understand engineering is important for 

our society 

.44 .918 773 

28.2. It is important to understand engineering even if you don't want an 

engineering job in the future 

.35 .905 773 

28.3. An engineering qualification can help you get many different types 

of job 

.68 .880 773 

39.7. ...Has explained to me that understanding engineering is useful for 

my future" 

.03 1.065 773 

51.4. My teachers explain how engineering qualifications can lead to 

different jobs 

-.08 1.072 773 

51.6. My teachers have explained to me that understanding engineering 

is useful for my future 

-.31 1.085 773 

AS Eng Cap Talk with Engineering .611 .6634 773 

43.2. Watch engineering TV programmes, e.g. Mythbusters, Scrapheap 

Challenge, Robot Wars, etc. 

1.19 1.150 773 

43.3. Watch TV programmes with some engineering in them, e.g. Blue 

Peter, The Big Bang Theory, Top Gear, The Great British Bake Off, etc. 

2.06 1.141 773 

43.4. Read books or magazines about engineering? .63 .912 773 

43.5. Go online to find out about engineering, e.g. YouTube, engineering 

websites, play engineering games? 

1.10 1.273 773 

39.1. ...Sign me up to activities outside of school time (e.g. dance, music, 

clubs)" 

.60 1.174 773 

44.1. Go to a museum? 1.39 .904 773 

44.2. Go to a science centre, science museum, or planetarium? 1.10 .878 773 
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44.4. Do DIY, or help fix things around the home? 2.38 1.334 773 

44.5. Get shown how to use tools? 2.26 1.348 773 

44.6. Make models, e.g. playing with Lego, painting miniatures? 2.13 1.395 773 

44.7. Do crafts, e.g. knitting, woodwork? 1.89 1.447 773 

44.8. Play videogames about designing or building, e.g. The Sims, 

Minecraft? 

2.97 1.389 773 

44.9. Program computers, e.g. writing apps, building websites? 1.22 1.387 773 

45.2. Go to an after school club that involves engineering? .26 .705 773 

45.3. Had people visit you in school to teach you about engineering? .66 .864 773 

45.4. Take an engineering related school trip? .39 .698 773 

45.5. Take a school trip to a museum? .81 .737 773 

45.6. Do school activities where you design or build something, e.g. 

designing a bridge, making and testing paper airplanes 

1.56 1.250 773 

45.7. Take part in a competition where you design or make something? .91 1.055 773 

27.5. I would like to have a job that uses engineering -.32 1.180 773 

27.7. I want to become an engineer -.75 1.086 773 

27.6. People who are like me work in engineering -.43 .997 773 

40.5. Other people think of me as an engineering-type person -.71 1.041 773 

51.5. My teachers have specifically encouraged me to consider studying 

engineering after GCSEs 

-.66 .973 773 

51.7. I don't think I am clever enough to study any engineering after 

GCSE 

.14 1.184 773 

31. When you are not in school how often do you talk about engineering 

with other people? 

1.10 1.292 773 

27.9. I would like to have a job that involves designing and making things .13 1.157 773 

27.10. I would like to work in an engineering related job, but not in an 

engineering industry 

-.36 1.001 773 

 

 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .928 

Bartlett's Test of Sphericity Approx. Chi-Square 19134.532 

df 1081 

Sig. .000 
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Communalities 

 Initial Extraction 

39.8. ...Know a lot about engineering" 1.000 .633 

46.3. I have learnt a lot about engineering from museums 1.000 .624 

40.6. I know how to design and make things 1.000 .594 

40.7. I know quite a lot about engineering 1.000 .708 

40.8. I would be confident talking about engineering in lessons 1.000 .652 

52.2. Engineers need to be imaginative in their work 1.000 .741 

39.5. ...Think that engineering is very interesting" 1.000 .753 

39.6. ...Think it is important for me to learn about engineering" 1.000 .776 

46.1. My family like going to museums 1.000 .730 

46.2. I like going to museums 1.000 .707 

52.3. Engineering creates new jobs so more people can have work 1.000 .743 

52.4. It is useful to know about engineering in my daily life 1.000 .659 

52.5. Getting young people to understand engineering is important for our society 1.000 .685 

28.2. It is important to understand engineering even if you don't want an engineering 

job in the future 

1.000 .629 

28.3. An engineering qualification can help you get many different types of job 1.000 .675 

39.7. ...Has explained to me that understanding engineering is useful for my future" 1.000 .752 

51.4. My teachers explain how engineering qualifications can lead to different jobs 1.000 .771 

51.6. My teachers have explained to me that understanding engineering is useful for 

my future 

1.000 .834 

AS Eng Cap Talk with Engineering 1.000 .488 

43.2. Watch engineering TV programmes, e.g. Mythbusters, Scrapheap Challenge, 

Robot Wars, etc. 

1.000 .665 

43.3. Watch TV programmes with some engineering in them, e.g. Blue Peter, The Big 

Bang Theory, Top Gear, The Great British Bake Off, etc. 

1.000 .495 

43.4. Read books or magazines about engineering? 1.000 .630 

43.5. Go online to find out about engineering, e.g. YouTube, engineering websites, play 

engineering games? 

1.000 .624 

39.1. ...Sign me up to activities outside of school time (e.g. dance, music, clubs)" 1.000 .378 

44.1. Go to a museum? 1.000 .701 

44.2. Go to a science centre, science museum, or planetarium? 1.000 .674 

44.4. Do DIY, or help fix things around the home? 1.000 .669 

44.5. Get shown how to use tools? 1.000 .685 

44.6. Make models, e.g. playing with Lego, painting miniatures? 1.000 .598 

44.7. Do crafts, e.g. knitting, woodwork? 1.000 .612 

44.8. Play videogames about designing or building, e.g. The Sims, Minecraft? 1.000 .605 

44.9. Program computers, e.g. writing apps, building websites? 1.000 .424 

45.2. Go to an after school club that involves engineering? 1.000 .522 
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45.3. Had people visit you in school to teach you about engineering? 1.000 .516 

45.4. Take an engineering related school trip? 1.000 .628 

45.5. Take a school trip to a museum? 1.000 .420 

45.6. Do school activities where you design or build something, e.g. designing a bridge, 

making and testing paper airplanes 

1.000 .476 

45.7. Take part in a competition where you design or make something? 1.000 .538 

27.5. I would like to have a job that uses engineering 1.000 .796 

27.7. I want to become an engineer 1.000 .733 

27.6. People who are like me work in engineering 1.000 .628 

40.5. Other people think of me as an engineering-type person 1.000 .704 

51.5. My teachers have specifically encouraged me to consider studying engineering 

after GCSEs 

1.000 .759 

51.7. I don't think I am clever enough to study any engineering after GCSE 1.000 .225 

31. When you are not in school how often do you talk about engineering with other 

people? 

1.000 .588 

27.9. I would like to have a job that involves designing and making things 1.000 .638 

27.10. I would like to work in an engineering related job, but not in an engineering 

industry 

1.000 .580 

Extraction Method: Principal Component Analysis. 
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Total Variance Explained 

Component 

Initial Eigenvalues 

Extraction Sums of Squared 

Loadings 

Rotation 

Sums of 

Squared 

Loadingsa 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% Total 

1 13.230 28.148 28.148 13.230 28.148 28.148 7.577 

2 3.561 7.578 35.726 3.561 7.578 35.726 5.122 

3 2.456 5.225 40.950 2.456 5.225 40.950 5.577 

4 2.054 4.369 45.320 2.054 4.369 45.320 4.103 

5 1.799 3.828 49.147 1.799 3.828 49.147 4.729 

6 1.660 3.531 52.678 1.660 3.531 52.678 6.961 

7 1.427 3.036 55.715 1.427 3.036 55.715 6.312 

8 1.274 2.710 58.424 1.274 2.710 58.424 3.569 

9 1.168 2.484 60.909 1.168 2.484 60.909 2.946 

10 1.036 2.204 63.112 1.036 2.204 63.112 2.379 

11 .980 2.085 65.197     

12 .913 1.942 67.140     

13 .907 1.929 69.068     

14 .840 1.787 70.856     

15 .790 1.682 72.538     

16 .767 1.632 74.170     

17 .706 1.503 75.673     

18 .680 1.446 77.119     

19 .626 1.331 78.450     

20 .613 1.303 79.753     

21 .575 1.224 80.978     

22 .554 1.178 82.156     

23 .551 1.172 83.328     

24 .532 1.132 84.459     

25 .498 1.060 85.519     

26 .473 1.007 86.526     

27 .451 .960 87.486     

28 .433 .921 88.406     

29 .418 .889 89.295     

30 .407 .866 90.161     

31 .395 .840 91.000     

32 .387 .824 91.825     

33 .366 .779 92.604     
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34 .339 .720 93.324     

35 .327 .696 94.020     

36 .319 .680 94.700     

37 .314 .667 95.367     

38 .286 .609 95.977     

39 .281 .598 96.574     

40 .248 .529 97.103     

41 .246 .524 97.627     

42 .232 .493 98.120     

43 .204 .434 98.554     

44 .200 .425 98.979     

45 .186 .397 99.376     

46 .151 .322 99.697     

47 .142 .303 100.000     

Extraction Method: Principal Component Analysis. 

a. When components are correlated, sums of squared loadings cannot be added to obtain a total 

variance. 
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Component Matrixa 

 

Component 

1 2 3 4 5 6 7 8 9 10 

40.7. I know quite a 

lot about 

engineering 

.784 
         

40.8. I would be 

confident talking 

about engineering 

in lessons 

.744 
         

40.5. Other people 

think of me as an 

engineering-type 

person 

.735 
         

27.5. I would like to 

have a job that uses 

engineering 

.704 
         

31. When you are 

not in school how 

often do you talk 

about engineering 

with other people? 

.693 
         

52.4. It is useful to 

know about 

engineering in my 

daily life 

.673 
         

39.6. ...Think it is 

important for me to 

learn about 

engineering" 

.668 
         

39.7. ...Has 

explained to me 

that understanding 

engineering is 

useful for my future" 

.667 
         

39.5. ...Think that 

engineering is very 

interesting" 

.667 
         

27.7. I want to 

become an 

engineer 

.657 -.443 
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46.3. I have learnt a 

lot about 

engineering from 

museums 

.652 
         

AS Eng Cap Talk 

with Engineering 

.651 
         

43.5. Go online to 

find out about 

engineering, e.g. 

YouTube, 

engineering 

websites, play 

engineering 

games? 

.623 
         

43.4. Read books 

or magazines about 

engineering? 

.620 
         

27.6. People who 

are like me work in 

engineering 

.615 
         

43.2. Watch 

engineering TV 

programmes, e.g. 

Mythbusters, 

Scrapheap 

Challenge, Robot 

Wars, etc. 

.608 
         

51.6. My teachers 

have explained to 

me that 

understanding 

engineering is 

useful for my future 

.595 
  

.525 
      

52.5. Getting young 

people to 

understand 

engineering is 

important for our 

society 

.580 
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27.10. I would like 

to work in an 

engineering related 

job, but not in an 

engineering 

industry 

.564 
         

51.5. My teachers 

have specifically 

encouraged me to 

consider studying 

engineering after 

GCSEs 

.556 
  

.461 
      

51.4. My teachers 

explain how 

engineering 

qualifications can 

lead to different 

jobs 

.543 
  

.492 
      

40.6. I know how to 

design and make 

things 

.518 
         

44.5. Get shown 

how to use tools? 

.516 
         

44.6. Make models, 

e.g. playing with 

Lego, painting 

miniatures? 

.503 
         

39.8. ...Know a lot 

about engineering" 

.493 
    

-.462 
    

52.3. Engineering 

creates new jobs so 

more people can 

have work 

.477 
 

.435 
       

43.3. Watch TV 

programmes with 

some engineering 

in them, e.g. Blue 

Peter, The Big Bang 

Theory, Top Gear, 

The Great British 

Bake Off, etc. 

.457 
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27.9. I would like to 

have a job that 

involves designing 

and making things 

.429 
     

-.404 
   

45.6. Do school 

activities where you 

design or build 

something, e.g. 

designing a bridge, 

making and testing 

paper airplanes 

.423 
         

52.2. Engineers 

need to be 

imaginative in their 

work 

.411 
         

45.2. Go to an after 

school club that 

involves 

engineering? 

.400 
         

44.9. Program 

computers, e.g. 

writing apps, 

building websites? 

          

51.7. I don't think I 

am clever enough 

to study any 

engineering after 

GCSE 

          

44.2. Go to a 

science centre, 

science museum, or 

planetarium? 

.433 .578 
        

44.1. Go to a 

museum? 

 
.573 

        

46.1. My family like 

going to museums 

 
.482 .418 

       

46.2. I like going to 

museums 

 
.476 

        

45.7. Take part in a 

competition where 

you design or make 

something? 

 
.446 
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45.5. Take a school 

trip to a museum? 

 
.404 

        

45.4. Take an 

engineering related 

school trip? 

   
.494 

      

45.3. Had people 

visit you in school to 

teach you about 

engineering? 

   
.432 

      

44.4. Do DIY, or 

help fix things 

around the home? 

.444 
   

.470 
     

44.7. Do crafts, e.g. 

knitting, woodwork? 

.417 
   

.443 
     

39.1. ...Sign me up 

to activities outside 

of school time (e.g. 

dance, music, 

clubs)" 

          

44.8. Play 

videogames about 

designing or 

building, e.g. The 

Sims, Minecraft? 

        
.497 

 

28.3. An 

engineering 

qualification can 

help you get many 

different types of job 

.470 
        

.500 

28.2. It is important 

to understand 

engineering even if 

you don't want an 

engineering job in 

the future 

.475 
        

.487 

Extraction Method: Principal Component Analysis. 

a. 10 components extracted. 
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Pattern Matrixa 

 

Component 

1 2 3 4 5 6 7 8 9 10 

27.5. I would like to have 

a job that uses 

engineering 

.758 
         

27.10. I would like to 

work in an engineering 

related job, but not in an 

engineering industry 

.739 
         

27.9. I would like to have 

a job that involves 

designing and making 

things 

.700 
         

27.6. People who are 

like me work in 

engineering 

.695 
         

27.7. I want to become 

an engineer 

.692 
         

40.5. Other people think 

of me as an engineering-

type person 

.479 
         

40.8. I would be 

confident talking about 

engineering in lessons 

          

40.7. I know quite a lot 

about engineering 

          

40.6. I know how to 

design and make things 

          

AS Eng Cap Talk with 

Engineering 

          

31. When you are not in 

school how often do you 

talk about engineering 

with other people? 

          

51.7. I don't think I am 

clever enough to study 

any engineering after 

GCSE 

          

46.2. I like going to 

museums 

 
.829 

        

44.1. Go to a museum? 
 

.804 
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44.2. Go to a science 

centre, science museum, 

or planetarium? 

 
.733 

        

46.1. My family like 

going to museums 

 
.866 

        

46.3. I have learnt a lot 

about engineering from 

museums 

 
.557 

        

39.1. ...Sign me up to 

activities outside of 

school time (e.g. dance, 

music, clubs)" 

          

52.2. Engineers need to 

be imaginative in their 

work 

  
.907 

       

52.3. Engineering 

creates new jobs so 

more people can have 

work 

  
.850 

       

52.5. Getting young 

people to understand 

engineering is important 

for our society 

  
.664 

       

52.4. It is useful to know 

about engineering in my 

daily life 

  
.534 

       

45.4. Take an 

engineering related 

school trip? 

   
.777 

      

45.3. Had people visit 

you in school to teach 

you about engineering? 

   
.659 

      

45.2. Go to an after 

school club that involves 

engineering? 

   
.609 

      

45.5. Take a school trip 

to a museum? 

   
.589 

      

45.7. Take part in a 

competition where you 

design or make 

something? 

   
.517 
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45.6. Do school activities 

where you design or 

build something, e.g. 

designing a bridge, 

making and testing 

paper airplanes 

          

44.4. Do DIY, or help fix 

things around the home? 

    
.812 

     

44.5. Get shown how to 

use tools? 

    
.746 

     

44.7. Do crafts, e.g. 

knitting, woodwork? 

    
.675 

     

44.6. Make models, e.g. 

playing with Lego, 

painting miniatures? 

    
.464 

     

39.8. ...Know a lot about 

engineering" 

     
-.819 

    

39.5. ...Think that 

engineering is very 

interesting" 

     
-.766 

    

39.6. ...Think it is 

important for me to learn 

about engineering" 

     
-.757 

    

39.7. ...Has explained to 

me that understanding 

engineering is useful for 

my future" 

     
-.742 

    

51.6. My teachers have 

explained to me that 

understanding 

engineering is useful for 

my future 

      
-.887 

   

51.5. My teachers have 

specifically encouraged 

me to consider studying 

engineering after GCSEs 

      
-.862 

   

51.4. My teachers 

explain how engineering 

qualifications can lead to 

different jobs 

      
-.858 
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43.2. Watch engineering 

TV programmes, e.g. 

Mythbusters, Scrapheap 

Challenge, Robot Wars, 

etc. 

       
-.587 

  

43.4. Read books or 

magazines about 

engineering? 

       
-.554 

  

43.3. Watch TV 

programmes with some 

engineering in them, e.g. 

Blue Peter, The Big 

Bang Theory, Top Gear, 

The Great British Bake 

Off, etc. 

       
-.525 

  

43.5. Go online to find 

out about engineering, 

e.g. YouTube, 

engineering websites, 

play engineering 

games? 

       
-.488 

  

44.8. Play videogames 

about designing or 

building, e.g. The Sims, 

Minecraft? 

        
.792 

 

44.9. Program 

computers, e.g. writing 

apps, building websites? 

        
.571 

 

28.3. An engineering 

qualification can help 

you get many different 

types of job 

         
.708 

28.2. It is important to 

understand engineering 

even if you don't want an 

engineering job in the 

future 

         
.677 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Oblimin with Kaiser Normalization.a 

a. Rotation converged in 22 iterations. 
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Structure Matrix 

 

Component 

1 2 3 4 5 6 7 8 9 10 

27.5. I would like to 

have a job that uses 

engineering 

.861 
    

-.446 
    

27.7. I want to 

become an engineer 

.810 
    

-.471 
    

27.6. People who are 

like me work in 

engineering 

.754 
         

27.10. I would like to 

work in an 

engineering related 

job, but not in an 

engineering industry 

.743 
         

40.5. Other people 

think of me as an 

engineering-type 

person 

.710 
    

-.572 -.464 -.440 
  

40.7. I know quite a 

lot about engineering 

.658 
    

-.613 -.508 -.417 
  

27.9. I would like to 

have a job that 

involves designing 

and making things 

.654 
         

40.8. I would be 

confident talking 

about engineering in 

lessons 

.651 
    

-.600 -.439 -.407 
  

31. When you are not 

in school how often 

do you talk about 

engineering with 

other people? 

.549 
    

-.485 
 

-.464 
  

AS Eng Cap Talk 

with Engineering 

.521 
         

40.6. I know how to 

design and make 

things 

.474 
   

.447 
     

46.1. My family like 

going to museums 

 
.844 
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44.1. Go to a 

museum? 

 
.826 

        

46.2. I like going to 

museums 

 
.814 

        

44.2. Go to a science 

centre, science 

museum, or 

planetarium? 

 
.788 

        

46.3. I have learnt a 

lot about engineering 

from museums 

 
.664 

    
-.467 

   

39.1. ...Sign me up to 

activities outside of 

school time (e.g. 

dance, music, clubs)" 

          

52.3. Engineering 

creates new jobs so 

more people can 

have work 

  
.853 

       

52.2. Engineers need 

to be imaginative in 

their work 

  
.837 

       

52.5. Getting young 

people to understand 

engineering is 

important for our 

society 

  
.774 

      
.401 

52.4. It is useful to 

know about 

engineering in my 

daily life 

  
.717 

  
-.462 -.451 

   

45.4. Take an 

engineering related 

school trip? 

   
.784 

      

45.3. Had people 

visit you in school to 

teach you about 

engineering? 

   
.690 

      

45.2. Go to an after 

school club that 

involves 

engineering? 

   
.643 
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45.5. Take a school 

trip to a museum? 

   
.601 

      

45.7. Take part in a 

competition where 

you design or make 

something? 

   
.586 .459 

     

45.6. Do school 

activities where you 

design or build 

something, e.g. 

designing a bridge, 

making and testing 

paper airplanes 

   
.477 

      

44.4. Do DIY, or help 

fix things around the 

home? 

    
.803 

     

44.5. Get shown how 

to use tools? 

    
.752 

     

44.7. Do crafts, e.g. 

knitting, woodwork? 

    
.741 

     

44.6. Make models, 

e.g. playing with 

Lego, painting 

miniatures? 

    
.604 

   
.537 

 

39.6. ...Think it is 

important for me to 

learn about 

engineering" 

.420 
    

-.842 
    

39.5. ...Think that 

engineering is very 

interesting" 

.401 
 

.422 
  

-.840 
    

39.7. ...Has 

explained to me that 

understanding 

engineering is useful 

for my future" 

.403 
    

-.832 -.403 
   

39.8. ...Know a lot 

about engineering" 

     
-.784 
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51.7. I don't think I 

am clever enough to 

study any 

engineering after 

GCSE 

          

51.6. My teachers 

have explained to me 

that understanding 

engineering is useful 

for my future 

      
-.906 

   

51.4. My teachers 

explain how 

engineering 

qualifications can 

lead to different jobs 

      
-.869 

   

51.5. My teachers 

have specifically 

encouraged me to 

consider studying 

engineering after 

GCSEs 

      
-.854 

   

43.2. Watch 

engineering TV 

programmes, e.g. 

Mythbusters, 

Scrapheap 

Challenge, Robot 

Wars, etc. 

       
-.664 

  

43.4. Read books or 

magazines about 

engineering? 

.422 
      

-.658 
  

43.5. Go online to 

find out about 

engineering, e.g. 

YouTube, 

engineering 

websites, play 

engineering games? 

.474 
      

-.610 .442 
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43.3. Watch TV 

programmes with 

some engineering in 

them, e.g. Blue 

Peter, The Big Bang 

Theory, Top Gear, 

The Great British 

Bake Off, etc. 

    
.407 

  
-.552 

  

44.8. Play 

videogames about 

designing or building, 

e.g. The Sims, 

Minecraft? 

        
.765 

 

44.9. Program 

computers, e.g. 

writing apps, building 

websites? 

        
.609 

 

28.3. An engineering 

qualification can help 

you get many 

different types of job 

         
.741 

28.2. It is important 

to understand 

engineering even if 

you don't want an 

engineering job in the 

future 

         
.718 

Extraction Method: Principal Component Analysis. Rotation Method: Oblimin with Kaiser 

Normalization. 
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Component Correlation Matrix 

Component 1 2 3 4 5 6 7 8 9 10 

1 1.000 .140 .274 .100 .193 -.388 -.317 -.259 .186 .121 

2 .140 1.000 .219 .264 .276 -.207 -.185 -.088 .125 .036 

3 .274 .219 1.000 .127 .193 -.305 -.330 -.082 .181 .210 

4 .100 .264 .127 1.000 .205 -.165 -.270 -.140 .122 -.010 

5 .193 .276 .193 .205 1.000 -.226 -.231 -.075 .196 -.040 

6 -.388 -.207 -.305 -.165 -.226 1.000 .297 .190 -.013 -.205 

7 -.317 -.185 -.330 -.270 -.231 .297 1.000 .120 -.216 -.142 

8 -.259 -.088 -.082 -.140 -.075 .190 .120 1.000 -.102 -.115 

9 .186 .125 .181 .122 .196 -.013 -.216 -.102 1.000 -.049 

10 .121 .036 .210 -.010 -.040 -.205 -.142 -.115 -.049 1.000 

Extraction Method: Principal Component Analysis.   

 Rotation Method: Oblimin with Kaiser Normalization. 
 

A second PCA was next necessary to remove items that did not sufficiently load to the ten identified 

components. Eight items were removed and the PCA analysis was completed again. This second PCA 

was also found to be valid with a Kaiser-Meyer-Olkin (KMO) measure of 0.913 and a statistically 

significant Bartlett’s test (p<0.001). This analysis resolved the same ten components as generated in 

the first PCA, though some component loadings did change in response to removal of eight items.  
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PCA Two: 

Descriptive Statistics 

 Mean 

Std. 

Deviation Analysis N 

39.8. ...Know a lot about engineering" -.05 1.145 779 

46.3. I have learnt a lot about engineering from museums -.61 1.108 779 

52.2. Engineers need to be imaginative in their work .73 .835 779 

39.5. ...Think that engineering is very interesting" .35 1.039 779 

39.6. ...Think it is important for me to learn about engineering" .12 1.003 779 

46.1. My family like going to museums .22 1.128 779 

46.2. I like going to museums .15 1.228 779 

52.3. Engineering creates new jobs so more people can have 

work 

.64 .832 779 

52.4. It is useful to know about engineering in my daily life .28 1.012 779 

52.5. Getting young people to understand engineering is 

important for our society 

.43 .915 779 

28.2. It is important to understand engineering even if you don't 

want an engineering job in the future 

.35 .904 779 

28.3. An engineering qualification can help you get many different 

types of job 

.68 .879 779 

39.7. ...Has explained to me that understanding engineering is 

useful for my future" 

.03 1.064 779 

51.4. My teachers explain how engineering qualifications can lead 

to different jobs 

-.08 1.072 779 

51.6. My teachers have explained to me that understanding 

engineering is useful for my future 

-.31 1.084 779 

43.2. Watch engineering TV programmes, e.g. Mythbusters, 

Scrapheap Challenge, Robot Wars, etc. 

1.18 1.149 779 

43.3. Watch TV programmes with some engineering in them, e.g. 

Blue Peter, The Big Bang Theory, Top Gear, The Great British 

Bake Off, etc. 

2.06 1.142 779 

43.4. Read books or magazines about engineering? .62 .910 779 

43.5. Go online to find out about engineering, e.g. YouTube, 

engineering websites, play engineering games? 

1.10 1.271 779 

44.1. Go to a museum? 1.38 .904 779 

44.2. Go to a science centre, science museum, or planetarium? 1.10 .878 779 

44.4. Do DIY, or help fix things around the home? 2.38 1.337 779 

44.5. Get shown how to use tools? 2.25 1.344 779 

44.6. Make models, e.g. playing with Lego, painting miniatures? 2.12 1.396 779 

44.7. Do crafts, e.g. knitting, woodwork? 1.89 1.445 779 



Appendix F – Chapter Six Statistical Analyses Outputs 

419 
 

44.8. Play videogames about designing or building, e.g. The 

Sims, Minecraft? 

2.98 1.391 779 

44.9. Program computers, e.g. writing apps, building websites? 1.23 1.384 779 

45.2. Go to an after school club that involves engineering? .26 .703 779 

45.3. Had people visit you in school to teach you about 

engineering? 

.65 .862 779 

45.4. Take an engineering related school trip? .39 .696 779 

45.5. Take a school trip to a museum? .81 .737 779 

45.7. Take part in a competition where you design or make 

something? 

.90 1.054 779 

27.5. I would like to have a job that uses engineering -.31 1.183 779 

27.7. I want to become an engineer -.74 1.094 779 

27.6. People who are like me work in engineering -.42 1.000 779 

40.5. Other people think of me as an engineering-type person -.70 1.044 779 

51.5. My teachers have specifically encouraged me to consider 

studying engineering after GCSEs 

-.65 .974 779 

27.9. I would like to have a job that involves designing and 

making things 

.14 1.158 779 

27.10. I would like to work in an engineering related job, but not in 

an engineering industry 

-.36 1.002 779 

 

 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .913 

Bartlett's Test of Sphericity Approx. Chi-Square 15421.453 

df 741 

Sig. .000 
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Communalities 

 Initial Extraction 

39.8. ...Know a lot about engineering" 1.000 .659 

46.3. I have learnt a lot about engineering from museums 1.000 .620 

52.2. Engineers need to be imaginative in their work 1.000 .749 

39.5. ...Think that engineering is very interesting" 1.000 .768 

39.6. ...Think it is important for me to learn about engineering" 1.000 .788 

46.1. My family like going to museums 1.000 .742 

46.2. I like going to museums 1.000 .725 

52.3. Engineering creates new jobs so more people can have work 1.000 .747 

52.4. It is useful to know about engineering in my daily life 1.000 .657 

52.5. Getting young people to understand engineering is important for our 

society 

1.000 .688 

28.2. It is important to understand engineering even if you don't want an 

engineering job in the future 

1.000 .727 

28.3. An engineering qualification can help you get many different types of 

job 

1.000 .705 

39.7. ...Has explained to me that understanding engineering is useful for my 

future" 

1.000 .775 

51.4. My teachers explain how engineering qualifications can lead to different 

jobs 

1.000 .792 

51.6. My teachers have explained to me that understanding engineering is 

useful for my future 

1.000 .849 

43.2. Watch engineering TV programmes, e.g. Mythbusters, Scrapheap 

Challenge, Robot Wars, etc. 

1.000 .707 

43.3. Watch TV programmes with some engineering in them, e.g. Blue Peter, 

The Big Bang Theory, Top Gear, The Great British Bake Off, etc. 

1.000 .588 

43.4. Read books or magazines about engineering? 1.000 .661 

43.5. Go online to find out about engineering, e.g. YouTube, engineering 

websites, play engineering games? 

1.000 .653 

44.1. Go to a museum? 1.000 .704 

44.2. Go to a science centre, science museum, or planetarium? 1.000 .670 

44.4. Do DIY, or help fix things around the home? 1.000 .712 

44.5. Get shown how to use tools? 1.000 .695 

44.6. Make models, e.g. playing with Lego, painting miniatures? 1.000 .605 

44.7. Do crafts, e.g. knitting, woodwork? 1.000 .603 

44.8. Play videogames about designing or building, e.g. The Sims, 

Minecraft? 

1.000 .670 

44.9. Program computers, e.g. writing apps, building websites? 1.000 .487 

45.2. Go to an after school club that involves engineering? 1.000 .546 
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45.3. Had people visit you in school to teach you about engineering? 1.000 .525 

45.4. Take an engineering related school trip? 1.000 .664 

45.5. Take a school trip to a museum? 1.000 .441 

45.7. Take part in a competition where you design or make something? 1.000 .536 

27.5. I would like to have a job that uses engineering 1.000 .821 

27.7. I want to become an engineer 1.000 .764 

27.6. People who are like me work in engineering 1.000 .646 

40.5. Other people think of me as an engineering-type person 1.000 .644 

51.5. My teachers have specifically encouraged me to consider studying 

engineering after GCSEs 

1.000 .767 

27.9. I would like to have a job that involves designing and making things 1.000 .549 

27.10. I would like to work in an engineering related job, but not in an 

engineering industry 

1.000 .632 

Extraction Method: Principal Component Analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix F – Chapter Six Statistical Analyses Outputs 

422 
 

Total Variance Explained 

Component 

Initial Eigenvalues 

Extraction Sums of Squared 

Loadings 

Rotation 

Sums of 

Squared 

Loadingsa 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% Total 

1 10.725 27.500 27.500 10.725 27.500 27.500 5.654 

2 3.420 8.769 36.269 3.420 8.769 36.269 4.709 

3 2.274 5.830 42.099 2.274 5.830 42.099 4.545 

4 2.002 5.133 47.232 2.002 5.133 47.232 3.347 

5 1.702 4.364 51.596 1.702 4.364 51.596 3.430 

6 1.532 3.927 55.523 1.532 3.927 55.523 5.641 

7 1.344 3.447 58.970 1.344 3.447 58.970 5.352 

8 1.193 3.058 62.029 1.193 3.058 62.029 4.468 

9 1.067 2.737 64.766 1.067 2.737 64.766 2.613 

10 1.023 2.622 67.388 1.023 2.622 67.388 3.623 

11 .822 2.109 69.496     

12 .807 2.070 71.566     

13 .751 1.925 73.491     

14 .707 1.812 75.303     

15 .667 1.711 77.014     

16 .609 1.561 78.576     

17 .571 1.463 80.039     

18 .562 1.442 81.481     

19 .544 1.395 82.875     

20 .513 1.316 84.192     

21 .503 1.291 85.482     

22 .454 1.165 86.648     

23 .453 1.163 87.810     

24 .426 1.092 88.902     

25 .424 1.088 89.990     

26 .395 1.014 91.004     

27 .382 .979 91.983     

28 .366 .938 92.921     

29 .349 .894 93.816     

30 .329 .843 94.659     

31 .316 .811 95.470     

32 .288 .738 96.207     

33 .267 .683 96.891     

34 .251 .644 97.535     
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35 .241 .619 98.153     

36 .217 .556 98.709     

37 .192 .491 99.201     

38 .157 .403 99.603     

39 .155 .397 100.000     

Extraction Method: Principal Component Analysis. 

a. When components are correlated, sums of squared loadings cannot be added to obtain 

a total variance. 

 

Component Matrixa 

 

Component 

1 2 3 4 5 6 7 8 9 10 

40.5. Other people 

think of me as an 

engineering-type 

person 

.696          

27.5. I would like to 

have a job that uses 

engineering 

.689 -.404         

52.4. It is useful to 

know about 

engineering in my 

daily life 

.676          

39.7. ...Has explained 

to me that 

understanding 

engineering is useful 

for my future" 

.672          

39.6. ...Think it is 

important for me to 

learn about 

engineering" 

.671          

39.5. ...Think that 

engineering is very 

interesting" 

.667          

46.3. I have learnt a 

lot about engineering 

from museums 

.664          

27.7. I want to 

become an engineer 

.640 -.448         
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43.5. Go online to find 

out about engineering, 

e.g. YouTube, 

engineering websites, 

play engineering 

games? 

.616          

43.4. Read books or 

magazines about 

engineering? 

.615          

43.2. Watch 

engineering TV 

programmes, e.g. 

Mythbusters, 

Scrapheap Challenge, 

Robot Wars, etc. 

.607          

51.6. My teachers 

have explained to me 

that understanding 

engineering is useful 

for my future 

.603   .520   -.425    

27.6. People who are 

like me work in 

engineering 

.603          

52.5. Getting young 

people to understand 

engineering is 

important for our 

society 

.601          

27.10. I would like to 

work in an 

engineering related 

job, but not in an 

engineering industry 

.563          

51.5. My teachers 

have specifically 

encouraged me to 

consider studying 

engineering after 

GCSEs 

.562   .468   -.450    



Appendix F – Chapter Six Statistical Analyses Outputs 

425 
 

51.4. My teachers 

explain how 

engineering 

qualifications can lead 

to different jobs 

.559   .482   -.434    

44.5. Get shown how 

to use tools? 

.511    .467      

52.3. Engineering 

creates new jobs so 

more people can have 

work 

.510  .410   .426     

44.6. Make models, 

e.g. playing with Lego, 

painting miniatures? 

.509          

43.3. Watch TV 

programmes with 

some engineering in 

them, e.g. Blue Peter, 

The Big Bang Theory, 

Top Gear, The Great 

British Bake Off, etc. 

.465          

52.2. Engineers need 

to be imaginative in 

their work 

.427          

27.9. I would like to 

have a job that 

involves designing 

and making things 

.413          

45.2. Go to an after 

school club that 

involves engineering? 

          

44.2. Go to a science 

centre, science 

museum, or 

planetarium? 

.463 .569         

44.1. Go to a 

museum? 

.426 .560         

46.2. I like going to 

museums 

.430 .459         

46.1. My family like 

going to museums 

.403 .456 .436        
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45.7. Take part in a 

competition where you 

design or make 

something? 

 .422         

45.5. Take a school 

trip to a museum? 

          

45.4. Take an 

engineering related 

school trip? 

   .517       

45.3. Had people visit 

you in school to teach 

you about 

engineering? 

   .436       

44.4. Do DIY, or help 

fix things around the 

home? 

.431    .508      

44.7. Do crafts, e.g. 

knitting, woodwork? 

.409    .439      

39.8. ...Know a lot 

about engineering" 

.485     -.503     

44.8. Play 

videogames about 

designing or building, 

e.g. The Sims, 

Minecraft? 

        .535  

44.9. Program 

computers, e.g. 

writing apps, building 

websites? 

          

28.2. It is important to 

understand 

engineering even if 

you don't want an 

engineering job in the 

future 

.490         .568 

28.3. An engineering 

qualification can help 

you get many different 

types of job 

.486         .541 

Extraction Method: Principal Component Analysis. 

a. 10 components extracted. 
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Pattern Matrixa 

 

Component 

1 2 3 4 5 6 7 8 9 10 

27.10. I would like to 

work in an 

engineering related 

job, but not in an 

engineering industry 

.767 
         

27.5. I would like to 

have a job that uses 

engineering 

.761 
         

27.6. People who 

are like me work in 

engineering 

.701 
         

27.7. I want to 

become an engineer 

.698 
         

27.9. I would like to 

have a job that 

involves designing 

and making things 

.673 
         

40.5. Other people 

think of me as an 

engineering-type 

person 

.448 
         

46.1. My family like 

going to museums 

 
.880 

        

46.2. I like going to 

museums 

 
.842 

        

44.1. Go to a 

museum? 

 
.810 

        

44.2. Go to a 

science centre, 

science museum, or 

planetarium? 

 
.724 

        

46.3. I have learnt a 

lot about engineering 

from museums 

 
.555 

        

52.2. Engineers 

need to be 

imaginative in their 

work 

  
.897 

       



Appendix F – Chapter Six Statistical Analyses Outputs 

428 
 

52.3. Engineering 

creates new jobs so 

more people can 

have work 

  
.833 

       

52.5. Getting young 

people to understand 

engineering is 

important for our 

society 

  
.633 

       

52.4. It is useful to 

know about 

engineering in my 

daily life 

  
.513 

       

45.4. Take an 

engineering related 

school trip? 

   
.797 

      

45.3. Had people 

visit you in school to 

teach you about 

engineering? 

   
.661 

      

45.2. Go to an after 

school club that 

involves 

engineering? 

   
.619 

      

45.5. Take a school 

trip to a museum? 

   
.603 

      

45.7. Take part in a 

competition where 

you design or make 

something? 

   
.458 

      

44.4. Do DIY, or help 

fix things around the 

home? 

    
.820 

     

44.5. Get shown how 

to use tools? 

    
.720 

     

44.7. Do crafts, e.g. 

knitting, woodwork? 

    
.674 

     

44.6. Make models, 

e.g. playing with 

Lego, painting 

miniatures? 

    
.459 
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39.8. ...Know a lot 

about engineering" 

     
-.845 

    

39.5. ...Think that 

engineering is very 

interesting" 

     
-.777 

    

39.6. ...Think it is 

important for me to 

learn about 

engineering" 

     
-.759 

    

39.7. ...Has 

explained to me that 

understanding 

engineering is useful 

for my future" 

     
-.757 

    

51.6. My teachers 

have explained to 

me that 

understanding 

engineering is useful 

for my future 

      
-.898 

   

51.4. My teachers 

explain how 

engineering 

qualifications can 

lead to different jobs 

      
-.881 

   

51.5. My teachers 

have specifically 

encouraged me to 

consider studying 

engineering after 

GCSEs 

      
-.859 

   

43.2. Watch 

engineering TV 

programmes, e.g. 

Mythbusters, 

Scrapheap 

Challenge, Robot 

Wars, etc. 

       
-.705 
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43.3. Watch TV 

programmes with 

some engineering in 

them, e.g. Blue 

Peter, The Big Bang 

Theory, Top Gear, 

The Great British 

Bake Off, etc. 

       
-.692 

  

43.4. Read books or 

magazines about 

engineering? 

       
-.644 

  

43.5. Go online to 

find out about 

engineering, e.g. 

YouTube, 

engineering 

websites, play 

engineering games? 

       
-.592 

  

44.8. Play 

videogames about 

designing or 

building, e.g. The 

Sims, Minecraft? 

        
.833 

 

44.9. Program 

computers, e.g. 

writing apps, building 

websites? 

        
.622 

 

28.2. It is important 

to understand 

engineering even if 

you don't want an 

engineering job in 

the future 

         
.816 

28.3. An engineering 

qualification can help 

you get many 

different types of job 

         
.788 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Oblimin with Kaiser Normalization.a 

a. Rotation converged in 12 iterations. 
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Structure Matrix 

 

Component 

1 2 3 4 5 6 7 8 9 10 

27.5. I would like to 

have a job that uses 

engineering 

.873 
    

-.462 
 

-.400 
  

27.7. I want to become 

an engineer 

.822 
    

-.484 
 

-.401 
  

27.10. I would like to 

work in an engineering 

related job, but not in 

an engineering 

industry 

.783 
         

27.6. People who are 

like me work in 

engineering 

.769 
         

40.5. Other people 

think of me as an 

engineering-type 

person 

.660 
    

-.548 -.450 -.489 
  

27.9. I would like to 

have a job that 

involves designing and 

making things 

.657 
         

46.1. My family like 

going to museums 

 
.849 

        

46.2. I like going to 

museums 

 
.835 

        

44.1. Go to a 

museum? 

 
.827 

        

44.2. Go to a science 

centre, science 

museum, or 

planetarium? 

 
.785 

        

46.3. I have learnt a lot 

about engineering from 

museums 

 
.673 

    
-.457 

   

52.3. Engineering 

creates new jobs so 

more people can have 

work 

  
.858 
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52.2. Engineers need 

to be imaginative in 

their work 

  
.846 

       

52.5. Getting young 

people to understand 

engineering is 

important for our 

society 

  
.764 

      
.506 

52.4. It is useful to 

know about 

engineering in my daily 

life 

  
.702 

  
-.452 -.435 

  
.519 

45.4. Take an 

engineering related 

school trip? 

   
.810 

      

45.3. Had people visit 

you in school to teach 

you about 

engineering? 

   
.698 

      

45.2. Go to an after 

school club that 

involves engineering? 

   
.657 

      

45.5. Take a school 

trip to a museum? 

   
.622 

      

45.7. Take part in a 

competition where you 

design or make 

something? 

   
.539 .474 

     

44.4. Do DIY, or help 

fix things around the 

home? 

    
.827 

     

44.5. Get shown how 

to use tools? 

    
.748 

     

44.7. Do crafts, e.g. 

knitting, woodwork? 

    
.740 

     

44.6. Make models, 

e.g. playing with Lego, 

painting miniatures? 

    
.603 

   
.531 

 

39.6. ...Think it is 

important for me to 

learn about 

engineering" 

.410 
    

-.860 
   

.452 
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39.7. ...Has explained 

to me that 

understanding 

engineering is useful 

for my future" 

     
-.858 -.413 

  
.401 

39.5. ...Think that 

engineering is very 

interesting" 

     
-.855 

    

39.8. ...Know a lot 

about engineering" 

     
-.795 

    

51.6. My teachers 

have explained to me 

that understanding 

engineering is useful 

for my future 

      
-.918 

   

51.4. My teachers 

explain how 

engineering 

qualifications can lead 

to different jobs 

      
-.883 

   

51.5. My teachers 

have specifically 

encouraged me to 

consider studying 

engineering after 

GCSEs 

      
-.863 

   

43.2. Watch 

engineering TV 

programmes, e.g. 

Mythbusters, 

Scrapheap Challenge, 

Robot Wars, etc. 

       
-.799 

  

43.4. Read books or 

magazines about 

engineering? 

       
-.764 

  

43.5. Go online to find 

out about engineering, 

e.g. YouTube, 

engineering websites, 

play engineering 

games? 

.459 
      

-.721 .403 
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43.3. Watch TV 

programmes with 

some engineering in 

them, e.g. Blue Peter, 

The Big Bang Theory, 

Top Gear, The Great 

British Bake Off, etc. 

       
-.715 

  

44.8. Play videogames 

about designing or 

building, e.g. The 

Sims, Minecraft? 

        
.809 

 

44.9. Program 

computers, e.g. writing 

apps, building 

websites? 

        
.673 

 

28.2. It is important to 

understand 

engineering even if you 

don't want an 

engineering job in the 

future 

         
.843 

28.3. An engineering 

qualification can help 

you get many different 

types of job 

         
.823 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Oblimin with Kaiser Normalization. 

 

Component Correlation Matrix 

Component 1 2 3 4 5 6 7 8 9 10 

1 1.000 .113 .246 .060 .130 -.347 -.315 -.288 .201 .244 

2 .113 1.000 .228 .255 .247 -.148 -.203 -.215 .184 .131 

3 .246 .228 1.000 .101 .143 -.312 -.287 -.150 .141 .310 

4 .060 .255 .101 1.000 .157 -.120 -.271 -.200 .131 .018 

5 .130 .247 .143 .157 1.000 -.129 -.184 -.198 .201 .050 

6 -.347 -.148 -.312 -.120 -.129 1.000 .336 .255 -.048 -.335 

7 -.315 -.203 -.287 -.271 -.184 .336 1.000 .226 -.175 -.278 

8 -.288 -.215 -.150 -.200 -.198 .255 .226 1.000 -.198 -.161 

9 .201 .184 .141 .131 .201 -.048 -.175 -.198 1.000 .045 

10 .244 .131 .310 .018 .050 -.335 -.278 -.161 .045 1.000 

Extraction Method: Principal Component Analysis.   

 Rotation Method: Oblimin with Kaiser Normalization. 
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A final PCA was then necessary to remove the two components (9 and 10) that did not meet the 

threshold of three items. Components with fewer than three items are difficult to interpret due to the 

lack of diversity of items. This third PCA was also found to be valid with a Kaiser-Meyer-Olkin (KMO) 

measure of 0.913 and a statistically significant Bartlett’s test (p<0.001). This analysis resolved to eight 

components above an Eigenvalue of 1.0 that explained 66.213% of variance from a sample of 786 

participants. These components are outlined in the table below. No further PCAs were necessary 

making this structure of eight components the ‘simple structure’ of this series of analyses.  

 

Component 

Number 

Component 

Label 

Variance 

Explained 

Items and  Component Coefficients  

1 Engineering 

Career 

Aspiration 

28.758% Six items:  

I would like to work in an engineering-related job, but 

not in an engineering industry (0.771) 

I would like to have a job that uses engineering (0.761) 

I would like to have a job that involves designing and 

making things (0.715) 

I want to become an engineer (0.695) 

People who are like me work in engineering (0.685) 

Other people think of me as an engineering-type 

person (0.429) 

2 Museum 

Visits 

9.505% Five items:  

My family like going to museums (0.878) 

I like going to museums (0.841) 

Go to museum? (0.804) 

Go to a science centre, science museum, or 

planetarium? (0.719) 

I have learnt a lot about engineering from museums 

(0.558) 

3 Engineering 

Utility 

6.103% Four items:  

Engineers need to be imaginative in their work 

(0.0.854) 

Engineering creates new jobs so more people can have 

work (0.849) 

Getting young people to understand engineering is 

important for our society (0.735) 

It is useful to know about engineering in my daily life 

(0.610) 

4 Engineering 

Curricular-

Mapped 

Experiences 

5.713% Five items:  

Take an engineering-related school trip? (0.795) 

Had people visit you in a school to teach you about 

engineering? (0.643) 

Go to an after school club that involves engineering? 

(0.629) 

Take a school trip to museum? (0.598) 
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Take part in a competition where you design or make 

something? (0.499) 

5 Making and 

Fixing 

4.838% Four items:  

Do DIY, or help fix things around the home (0.794) 

Get shown how to use tools? (0.688) 

Do crafts, e.g. knitting, woodwork? (0.677)  

Make models, e.g. playing with Lego, painting 

miniatures? (0.533) 

6 Parental 

Engineering 

Attitudes 

4.173% Four items: 

…know a lot about engineering (0.806) 

…Think it is important for me to learn about 

engineering (0.764) 

…Think that engineering is very interesting (0.757) 

…Has explained to me that understanding engineering 

is useful for my future (0.751) 

7 Teacher 

Support for 

Engineering 

3.813% Three items: 

My teachers have explained to me that understanding 

engineering is useful for my future (0.894) 

My teachers explain how engineering qualifications 

can lead to different jobs (0.873) 

My teachres have specifically encouraged me to 

consider studying engineering after GCSEs/National 5s 

(0.847) 

8 Engineering 

Media 

Consumption 

3.311% Four items:  

Watch engineering TV programmes, e.g. Mythbusters, 

Scrapheap Challenge, Robot Wars, etc. (0.756) 

Watch TV programmes with some engineering in 

them, e.g. Blue Peter, The Big Bang Theory, Top Gear, 

The Great British Bake Off, etc (0.696) 

Read books or magazines about engineering? (0.690) 

Go online to find out about engineering, e.g. YouTube, 

engineering websites, play engineering games? (0.675) 
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PCA Three:  

Descriptive Statistics 

 Mean 

Std. 

Deviation Analysis N 

39.8. ...Know a lot about engineering" -.05 1.142 786 

46.3. I have learnt a lot about engineering from museums -.61 1.109 786 

52.2. Engineers need to be imaginative in their work .74 .835 786 

39.5. ...Think that engineering is very interesting" .34 1.039 786 

39.6. ...Think it is important for me to learn about engineering" .12 1.004 786 

46.1. My family like going to museums .22 1.126 786 

46.2. I like going to museums .15 1.227 786 

52.3. Engineering creates new jobs so more people can have 

work 

.64 .830 786 

52.4. It is useful to know about engineering in my daily life .28 1.010 786 

52.5. Getting young people to understand engineering is 

important for our society 

.43 .913 786 

39.7. ...Has explained to me that understanding engineering is 

useful for my future" 

.03 1.062 786 

51.4. My teachers explain how engineering qualifications can lead 

to different jobs 

-.08 1.073 786 

51.6. My teachers have explained to me that understanding 

engineering is useful for my future 

-.31 1.082 786 

43.2. Watch engineering TV programmes, e.g. Mythbusters, 

Scrapheap Challenge, Robot Wars, etc. 

1.18 1.149 786 

43.3. Watch TV programmes with some engineering in them, e.g. 

Blue Peter, The Big Bang Theory, Top Gear, The Great British 

Bake Off, etc. 

2.06 1.141 786 

43.4. Read books or magazines about engineering? .63 .913 786 

43.5. Go online to find out about engineering, e.g. YouTube, 

engineering websites, play engineering games? 

1.10 1.268 786 

44.1. Go to a museum? 1.39 .904 786 

44.2. Go to a science centre, science museum, or planetarium? 1.10 .880 786 

44.4. Do DIY, or help fix things around the home? 2.38 1.335 786 

44.5. Get shown how to use tools? 2.25 1.342 786 

44.6. Make models, e.g. playing with Lego, painting miniatures? 2.13 1.395 786 

44.7. Do crafts, e.g. knitting, woodwork? 1.89 1.449 786 

45.2. Go to an after school club that involves engineering? .25 .700 786 

45.3. Had people visit you in school to teach you about 

engineering? 

.66 .872 786 

45.4. Take an engineering related school trip? .39 .696 786 

45.5. Take a school trip to a museum? .81 .735 786 
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45.7. Take part in a competition where you design or make 

something? 

.90 1.054 786 

27.5. I would like to have a job that uses engineering -.31 1.181 786 

27.7. I want to become an engineer -.74 1.091 786 

27.6. People who are like me work in engineering -.42 .998 786 

40.5. Other people think of me as an engineering-type person -.71 1.045 786 

51.5. My teachers have specifically encouraged me to consider 

studying engineering after GCSEs 

-.66 .975 786 

27.9. I would like to have a job that involves designing and 

making things 

.14 1.156 786 

27.10. I would like to work in an engineering related job, but not in 

an engineering industry 

-.36 1.001 786 

 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .910 

Bartlett's Test of Sphericity Approx. Chi-Square 14496.568 

df 595 

Sig. .000 
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Communalities 

 Initial Extraction 

39.8. ...Know a lot about engineering" 1.000 .629 

46.3. I have learnt a lot about engineering from museums 1.000 .622 

52.2. Engineers need to be imaginative in their work 1.000 .673 

39.5. ...Think that engineering is very interesting" 1.000 .753 

39.6. ...Think it is important for me to learn about engineering" 1.000 .778 

46.1. My family like going to museums 1.000 .741 

46.2. I like going to museums 1.000 .726 

52.3. Engineering creates new jobs so more people can have work 1.000 .727 

52.4. It is useful to know about engineering in my daily life 1.000 .653 

52.5. Getting young people to understand engineering is important for our society 1.000 .680 

39.7. ...Has explained to me that understanding engineering is useful for my future" 1.000 .766 

51.4. My teachers explain how engineering qualifications can lead to different jobs 1.000 .786 

51.6. My teachers have explained to me that understanding engineering is useful for my 

future 

1.000 .847 

43.2. Watch engineering TV programmes, e.g. Mythbusters, Scrapheap Challenge, Robot 

Wars, etc. 

1.000 .706 

43.3. Watch TV programmes with some engineering in them, e.g. Blue Peter, The Big Bang 

Theory, Top Gear, The Great British Bake Off, etc. 

1.000 .552 

43.4. Read books or magazines about engineering? 1.000 .662 

43.5. Go online to find out about engineering, e.g. YouTube, engineering websites, play 

engineering games? 

1.000 .640 

44.1. Go to a museum? 1.000 .699 

44.2. Go to a science centre, science museum, or planetarium? 1.000 .668 

44.4. Do DIY, or help fix things around the home? 1.000 .682 

44.5. Get shown how to use tools? 1.000 .661 

44.6. Make models, e.g. playing with Lego, painting miniatures? 1.000 .548 

44.7. Do crafts, e.g. knitting, woodwork? 1.000 .595 

45.2. Go to an after school club that involves engineering? 1.000 .541 

45.3. Had people visit you in school to teach you about engineering? 1.000 .501 

45.4. Take an engineering related school trip? 1.000 .664 

45.5. Take a school trip to a museum? 1.000 .418 

45.7. Take part in a competition where you design or make something? 1.000 .497 

27.5. I would like to have a job that uses engineering 1.000 .819 

27.7. I want to become an engineer 1.000 .762 

27.6. People who are like me work in engineering 1.000 .624 

40.5. Other people think of me as an engineering-type person 1.000 .637 

51.5. My teachers have specifically encouraged me to consider studying engineering after GCSEs 1.000 .759 

27.9. I would like to have a job that involves designing and making things 1.000 .528 

27.10. I would like to work in an engineering related job, but not in an engineering industry 1.000 .632 
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Total Variance Explained 

Component 

Initial Eigenvalues 

Extraction Sums of Squared 

Loadings 

Rotation Sums 

of Squared 

Loadingsa 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% Total 

1 10.065 28.758 28.758 10.065 28.758 28.758 5.467 

2 3.327 9.505 38.263 3.327 9.505 38.263 4.555 

3 2.136 6.103 44.366 2.136 6.103 44.366 4.776 

4 1.999 5.713 50.079 1.999 5.713 50.079 3.312 

5 1.693 4.838 54.917 1.693 4.838 54.917 3.287 

6 1.461 4.173 59.090 1.461 4.173 59.090 5.191 

7 1.334 3.813 62.902 1.334 3.813 62.902 5.051 

8 1.159 3.311 66.213 1.159 3.311 66.213 4.998 

9 .852 2.434 68.648     

10 .753 2.152 70.800     

11 .740 2.115 72.915     

12 .714 2.040 74.954     

13 .642 1.835 76.789     

14 .618 1.765 78.554     

15 .580 1.656 80.210     

16 .569 1.627 81.837     

17 .511 1.460 83.297     

18 .506 1.447 84.743     

19 .482 1.376 86.120     

20 .444 1.268 87.388     

21 .439 1.255 88.643     

22 .404 1.155 89.798     

23 .386 1.104 90.902     

24 .375 1.071 91.973     

25 .356 1.016 92.989     

26 .341 .974 93.962     

27 .321 .918 94.880     

28 .288 .824 95.704     

29 .270 .773 96.477     

30 .256 .733 97.209     

31 .246 .702 97.912     

32 .218 .623 98.535     

33 .197 .562 99.096     

34 .162 .461 99.558     

35 .155 .442 100.000     
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Component Matrixa 

 

Component 

1 2 3 4 5 6 7 8 

40.5. Other people think 

of me as an 

engineering-type person 

.702 
       

27.5. I would like to 

have a job that uses 

engineering 

.686 -.440 
      

39.7. ...Has explained to 

me that understanding 

engineering is useful for 

my future" 

.672 
       

52.4. It is useful to know 

about engineering in my 

daily life 

.668 
       

46.3. I have learnt a lot 

about engineering from 

museums 

.667 
       

39.6. ...Think it is 

important for me to 

learn about engineering" 

.667 
       

39.5. ...Think that 

engineering is very 

interesting" 

.667 
       

27.7. I want to become 

an engineer 

.636 -.483 
      

43.4. Read books or 

magazines about 

engineering? 

.620 
       

43.5. Go online to find 

out about engineering, 

e.g. YouTube, 

engineering websites, 

play engineering 

games? 

.615 
       

43.2. Watch engineering 

TV programmes, e.g. 

Mythbusters, Scrapheap 

Challenge, Robot Wars, 

etc. 

.612 
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51.6. My teachers have 

explained to me that 

understanding 

engineering is useful for 

my future 

.607 
  

.519 
  

-.423 
 

27.6. People who are 

like me work in 

engineering 

.603 
       

52.5. Getting young 

people to understand 

engineering is important 

for our society 

.591 
       

51.5. My teachers have 

specifically encouraged 

me to consider studying 

engineering after 

GCSEs 

.568 
  

.463 
  

-.438 
 

27.10. I would like to 

work in an engineering 

related job, but not in an 

engineering industry 

.563 
       

51.4. My teachers 

explain how engineering 

qualifications can lead 

to different jobs 

.560 
  

.488 
  

-.437 
 

44.5. Get shown how to 

use tools? 

.510 
   

.498 
   

52.3. Engineering 

creates new jobs so 

more people can have 

work 

.502 
 

-.461 
  

.432 
  

44.6. Make models, e.g. 

playing with Lego, 

painting miniatures? 

.499 
       

43.3. Watch TV 

programmes with some 

engineering in them, 

e.g. Blue Peter, The Big 

Bang Theory, Top Gear, 

The Great British Bake 

Off, etc. 

.465 
      

-.416 
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52.2. Engineers need to 

be imaginative in their 

work 

.428 
    

.428 
  

27.9. I would like to 

have a job that involves 

designing and making 

things 

.410 
       

45.2. Go to an after 

school club that involves 

engineering? 

.409 
       

44.2. Go to a science 

centre, science 

museum, or 

planetarium? 

.469 .582 
      

44.1. Go to a museum? .433 .577 
      

46.1. My family like 

going to museums 

.408 .500 
      

46.2. I like going to 

museums 

.434 .493 
      

45.7. Take part in a 

competition where you 

design or make 

something? 

        

45.5. Take a school trip 

to a museum? 

        

45.4. Take an 

engineering related 

school trip? 

   
.510 

    

45.3. Had people visit 

you in school to teach 

you about engineering? 

   
.433 

    

44.4. Do DIY, or help fix 

things around the 

home? 

.433 
   

.524 
   

44.7. Do crafts, e.g. 

knitting, woodwork? 

.408 
   

.444 
   

39.8. ...Know a lot about 

engineering" 

.493 
    

-.526 
  

Extraction Method: Principal Component Analysis. 

a. 8 components extracted. 
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Pattern Matrixa 

 

Component 

1 2 3 4 5 6 7 8 

27.10. I would like to 

work in an engineering 

related job, but not in an 

engineering industry 

.771 
       

27.5. I would like to 

have a job that uses 

engineering 

.761 
       

27.9. I would like to 

have a job that involves 

designing and making 

things 

.715 
       

27.7. I want to become 

an engineer 

.695 
       

27.6. People who are 

like me work in 

engineering 

.685 
       

40.5. Other people think 

of me as an 

engineering-type person 

.429 
       

46.1. My family like 

going to museums 

 
.878 

      

46.2. I like going to 

museums 

 
.841 

      

44.1. Go to a museum? 
 

.804 
      

44.2. Go to a science 

centre, science 

museum, or 

planetarium? 

 
.719 

      

46.3. I have learnt a lot 

about engineering from 

museums 

 
.558 

      

52.2. Engineers need to 

be imaginative in their 

work 

  
-.854 

     

52.3. Engineering 

creates new jobs so 

more people can have 

work 

  
-.849 
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52.5. Getting young 

people to understand 

engineering is important 

for our society 

  
-.735 

     

52.4. It is useful to know 

about engineering in my 

daily life 

  
-.610 

     

45.4. Take an 

engineering related 

school trip? 

   
.795 

    

45.3. Had people visit 

you in school to teach 

you about engineering? 

   
.643 

    

45.2. Go to an after 

school club that involves 

engineering? 

   
.629 

    

45.5. Take a school trip 

to a museum? 

   
.598 

    

45.7. Take part in a 

competition where you 

design or make 

something? 

   
.499 .410 

   

44.4. Do DIY, or help fix 

things around the 

home? 

    
.794 

   

44.5. Get shown how to 

use tools? 

    
.688 

   

44.7. Do crafts, e.g. 

knitting, woodwork? 

    
.677 

   

44.6. Make models, e.g. 

playing with Lego, 

painting miniatures? 

    
.533 

   

39.8. ...Know a lot about 

engineering" 

     
-.806 

  

39.6. ...Think it is 

important for me to 

learn about engineering" 

     
-.764 

  

39.5. ...Think that 

engineering is very 

interesting" 

     
-.757 
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39.7. ...Has explained to 

me that understanding 

engineering is useful for 

my future" 

     
-.751 

  

51.6. My teachers have 

explained to me that 

understanding 

engineering is useful for 

my future 

      
-.894 

 

51.4. My teachers 

explain how engineering 

qualifications can lead 

to different jobs 

      
-.873 

 

51.5. My teachers have 

specifically encouraged 

me to consider studying 

engineering after 

GCSEs 

      
-.847 

 

43.2. Watch engineering 

TV programmes, e.g. 

Mythbusters, Scrapheap 

Challenge, Robot Wars, 

etc. 

       
-.756 

43.3. Watch TV 

programmes with some 

engineering in them, 

e.g. Blue Peter, The Big 

Bang Theory, Top Gear, 

The Great British Bake 

Off, etc. 

       
-.696 

43.4. Read books or 

magazines about 

engineering? 

       
-.690 

43.5. Go online to find 

out about engineering, 

e.g. YouTube, 

engineering websites, 

play engineering 

games? 

       
-.675 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Oblimin with Kaiser Normalization.a 

a. Rotation converged in 10 iterations. 
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Structure Matrix 

 

Component 

1 2 3 4 5 6 7 8 

27.5. I would like to 

have a job that uses 

engineering 

.873 
    

-.460 
 

-.442 

27.7. I want to become 

an engineer 

.819 
    

-.482 
 

-.434 

27.10. I would like to 

work in an engineering 

related job, but not in an 

engineering industry 

.786 
       

27.6. People who are 

like me work in 

engineering 

.766 
       

27.9. I would like to 

have a job that involves 

designing and making 

things 

.671 
       

40.5. Other people think 

of me as an 

engineering-type person 

.654 
    

-.544 -.449 -.512 

46.1. My family like 

going to museums 

 
.851 

      

46.2. I like going to 

museums 

 
.838 

      

44.1. Go to a museum? 
 

.823 
      

44.2. Go to a science 

centre, science 

museum, or 

planetarium? 

 
.782 

      

46.3. I have learnt a lot 

about engineering from 

museums 

 
.675 

    
-.454 -.401 

52.3. Engineering 

creates new jobs so 

more people can have 

work 

  
-.848 

     

52.2. Engineers need to 

be imaginative in their 

work 

  
-.807 
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52.5. Getting young 

people to understand 

engineering is important 

for our society 

  
-.806 

     

52.4. It is useful to know 

about engineering in my 

daily life 

  
-.753 

  
-.451 -.444 

 

45.4. Take an 

engineering related 

school trip? 

   
.810 

    

45.3. Had people visit 

you in school to teach 

you about engineering? 

   
.687 

    

45.2. Go to an after 

school club that involves 

engineering? 

   
.656 

   
-.407 

45.5. Take a school trip 

to a museum? 

   
.617 

    

45.7. Take part in a 

competition where you 

design or make 

something? 

   
.563 .488 

   

44.4. Do DIY, or help fix 

things around the 

home? 

    
.808 

   

44.7. Do crafts, e.g. 

knitting, woodwork? 

    
.738 

   

44.5. Get shown how to 

use tools? 

    
.722 -.408 

  

44.6. Make models, e.g. 

playing with Lego, 

painting miniatures? 

    
.643 

  
-.420 

39.6. ...Think it is 

important for me to 

learn about engineering" 

.415 
 

-.419 
  

-.858 
  

39.7. ...Has explained to 

me that understanding 

engineering is useful for 

my future" 

  
-.415 

  
-.849 -.413 

 

39.5. ...Think that 

engineering is very 

interesting" 

  
-.430 

  
-.842 
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39.8. ...Know a lot about 

engineering" 

     
-.781 

  

51.6. My teachers have 

explained to me that 

understanding 

engineering is useful for 

my future 

      
-.917 

 

51.4. My teachers 

explain how engineering 

qualifications can lead 

to different jobs 

      
-.881 

 

51.5. My teachers have 

specifically encouraged 

me to consider studying 

engineering after 

GCSEs 

      
-.862 

 

43.2. Watch engineering 

TV programmes, e.g. 

Mythbusters, Scrapheap 

Challenge, Robot Wars, 

etc. 

       
-.822 

43.4. Read books or 

magazines about 

engineering? 

       
-.786 

43.5. Go online to find 

out about engineering, 

e.g. YouTube, 

engineering websites, 

play engineering 

games? 

.459 
      

-.765 

43.3. Watch TV 

programmes with some 

engineering in them, 

e.g. Blue Peter, The Big 

Bang Theory, Top Gear, 

The Great British Bake 

Off, etc. 

       
-.705 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Oblimin with Kaiser Normalization. 
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Binary Logistic Regression: Formation of Engineering Capital Instrument 

A binary logistic regression was adopted to identify items that were most predictive of engineering 

aspirations as a proxy for engineering capital. Statistical assumptions were tested and confirmed the 

linearity of the relationship between IVs and DV logit (Box-Tidwell test), a lack of significant 

multicollinearity (collinearity VIF <5) and a lack of influential outliers supporting the adoption of this 

procedure (casewise diagnostics). The logistic regression model was statistically significant, χ2(41) = 

400.798, p<0.001, supporting the adoption of its predictive IVs as effective distinguishing items that 

delineate those with greater or lesser aspiration to engineering futures. These items are outlined in 

the Chapter Eight.  

Box-Tidwell test of linearity:  

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1a 39.8. ...Know a lot about engineering" .106 .302 .123 1 .726 1.111 

39.8. ...Know a lot about engineering" by STANDARD39.8 -.080 .090 .788 1 .375 .923 

46.3. I have learnt a lot about engineering from museums .401 .279 2.073 1 .150 1.494 

46.3. I have learnt a lot about engineering from museums 

by STANDARD46.3 

-.036 .111 .106 1 .745 .965 

40.6. I know how to design and make things .153 .365 .176 1 .675 1.166 

40.6. I know how to design and make things by 

STANDARD40.6 

.015 .103 .021 1 .884 1.015 

40.7. I know quite a lot about engineering .645 .352 3.364 1 .067 1.906 

40.7. I know quite a lot about engineering by 

STANDARD40.7 

-.077 .154 .248 1 .619 .926 

52.2. Engineers need to be imaginative in their work -.214 .695 .095 1 .758 .808 

52.2. Engineers need to be imaginative in their work by 

STANDARD52.2 

.056 .163 .118 1 .731 1.058 

40.8. I would be confident talking about engineering in 

lessons 

.283 .292 .939 1 .333 1.327 

40.8. I would be confident talking about engineering in 

lessons by STANDARD40.8 

.003 .126 .001 1 .980 1.003 

39.5. ...Think that engineering is very interesting" .956 .518 3.412 1 .065 2.602 

39.5. ...Think that engineering is very interesting" by 

STANDARD39.5 

-.189 .139 1.865 1 .172 .827 

39.6. ...Think it is important for me to learn about 

engineering" 

.460 .533 .746 1 .388 1.584 

39.6. ...Think it is important for me to learn about 

engineering" by STANDARD39.6 

-.075 .155 .235 1 .628 .928 

46.1. My family like going to museums -.513 .337 2.317 1 .128 .599 

46.1. My family like going to museums by STANDARD46.1 .113 .096 1.377 1 .241 1.119 

46.2. I like going to museums .112 .318 .125 1 .723 1.119 

46.2. I like going to museums by STANDARD46.2 -.071 .095 .551 1 .458 .932 
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52.3. Engineering creates new jobs so more people can 

have work 

-.184 .825 .050 1 .824 .832 

52.3. Engineering creates new jobs so more people can 

have work by STANDARD52.3 

.053 .192 .077 1 .781 1.055 

52.4. It is useful to know about engineering in my daily life .458 .496 .853 1 .356 1.581 

52.4. It is useful to know about engineering in my daily life 

by STANDARD52.4 

-.053 .140 .142 1 .707 .949 

52.5. Getting young people to understand engineering is 

important for our society 

.500 .624 .642 1 .423 1.649 

52.5. Getting young people to understand engineering is 

important for our society by STANDARD52.5 

-.082 .156 .273 1 .601 .922 

28.2. It is important to understand engineering even if you 

don't want an engineering job in the future 

-.542 .472 1.317 1 .251 .582 

28.2. It is important to understand engineering even if you 

don't want an engineering job in the future by 

STANDARD28.2 

.083 .130 .408 1 .523 1.086 

28.3. An engineering qualification can help you get many 

different types of job 

.787 .539 2.133 1 .144 2.196 

28.3. An engineering qualification can help you get many 

different types of job by STANDARD28.3 

-.073 .130 .313 1 .576 .930 

39.7. ...Has explained to me that understanding engineering 

is useful for my future" 

-.266 .451 .349 1 .555 .766 

39.7. ...Has explained to me that understanding engineering 

is useful for my future" by STANDARD39.7 

.155 .140 1.216 1 .270 1.167 

51.4. My teachers explain how engineering qualifications 

can lead to different jobs 

.101 .485 .044 1 .835 1.106 

51.4. My teachers explain how engineering qualifications 

can lead to different jobs by STANDARD51.4 

-.053 .143 .137 1 .711 .948 

51.6. My teachers have explained to me that understanding 

engineering is useful for my future 

-.075 .307 .059 1 .808 .928 

51.6. My teachers have explained to me that understanding 

engineering is useful for my future by STANDARD51.6 

.012 .111 .012 1 .913 1.012 

31. When you are not in school how often do you talk about 

engineering with other people? 

.615 .381 2.601 1 .107 1.849 

31. When you are not in school how often do you talk about 

engineering with other people? by STANDARD31 

-.065 .094 .479 1 .489 .937 

43.2. Watch engineering TV programmes, e.g. Mythbusters, 

Scrapheap Challenge, Robot Wars, etc. 

-.172 .414 .174 1 .677 .842 

43.2. Watch engineering TV programmes, e.g. Mythbusters, 

Scrapheap Challenge, Robot Wars, etc. by 

STANDARD43.2 

.079 .105 .570 1 .450 1.083 
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43.3. Watch TV programmes with some engineering in 

them, e.g. Blue Peter, The Big Bang Theory, Top Gear, The 

Great British Bake Off, etc. 

.412 .426 .933 1 .334 1.509 

43.3. Watch TV programmes with some engineering in 

them, e.g. Blue Peter, The Big Bang Theory, Top Gear, The 

Great British Bake Off, etc. by STANDARD43.3 

-.119 .086 1.937 1 .164 .888 

43.4. Read books or magazines about engineering? -.456 .682 .447 1 .504 .634 

43.4. Read books or magazines about engineering? by 

STANDARD43.4 

.301 .225 1.791 1 .181 1.351 

43.5. Go online to find out about engineering, e.g. YouTube, 

engineering websites, play engineering games? 

.759 .391 3.764 1 .052 2.136 

43.5. Go online to find out about engineering, e.g. YouTube, 

engineering websites, play engineering games? by 

STANDARD43.5 

-.108 .090 1.418 1 .234 .898 

39.1. ...Sign me up to activities outside of school time (e.g. 

dance, music, clubs)" 

.221 .302 .536 1 .464 1.248 

39.1. ...Sign me up to activities outside of school time (e.g. 

dance, music, clubs)" by STANDARD39.1 

-.088 .082 1.165 1 .280 .916 

44.1. Go to a museum? -.245 .622 .155 1 .694 .783 

44.1. Go to a museum? by STANDARD44.1 .031 .150 .042 1 .837 1.031 

44.2. Go to a science centre, science museum, or 

planetarium? 

-.240 .594 .163 1 .686 .786 

44.2. Go to a science centre, science museum, or 

planetarium? by STANDARD44.2 

.069 .164 .176 1 .675 1.071 

44.4. Do DIY, or help fix things around the home? -.075 .409 .033 1 .855 .928 

44.4. Do DIY, or help fix things around the home? by 

STANDARD44.4 

.059 .077 .588 1 .443 1.061 

44.5. Get shown how to use tools? .355 .392 .823 1 .364 1.427 

44.5. Get shown how to use tools? by STANDARD44.5 -.082 .077 1.138 1 .286 .922 

44.6. Make models, e.g. playing with Lego, painting 

miniatures? 

-.374 .391 .915 1 .339 .688 

44.6. Make models, e.g. playing with Lego, painting 

miniatures? by STANDARD44.6 

.093 .073 1.611 1 .204 1.097 

44.7. Do crafts, e.g. knitting, woodwork? -.033 .372 .008 1 .928 .967 

44.7. Do crafts, e.g. knitting, woodwork? by 

STANDARD44.7 

.001 .088 .000 1 .991 1.001 

44.8. Play videogames about designing or building, e.g. The 

Sims, Minecraft? 

-.161 .423 .145 1 .703 .851 

44.8. Play videogames about designing or building, e.g. The 

Sims, Minecraft? by STANDARD44.8 

.057 .076 .554 1 .457 1.058 

44.7. Do crafts, e.g. knitting, woodwork? by 

STANDARD44.7REAL 

-.072 .074 .938 1 .333 .931 
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44.9. Program computers, e.g. writing apps, building 

websites? 

-.337 .350 .925 1 .336 .714 

44.9. Program computers, e.g. writing apps, building 

websites? by STANDARD44.9 

.073 .075 .944 1 .331 1.076 

45.2. Go to an after school club that involves engineering? 1.714 .656 6.832 1 .009 5.550 

45.2. Go to an after school club that involves engineering? 

by STANDARD45.2 

-.371 .161 5.313 1 .021 .690 

45.3. Had people visit you in school to teach you about 

engineering? 

.436 .563 .601 1 .438 1.547 

45.3. Had people visit you in school to teach you about 

engineering? by STANDARD45.3 

-.115 .171 .448 1 .503 .892 

45.4. Take an engineering related school trip? -

1.430 

.647 4.878 1 .027 .239 

45.4. Take an engineering related school trip? by 

STANDARD45.4 

.327 .210 2.428 1 .119 1.387 

45.5. Take a school trip to a museum? .040 .525 .006 1 .940 1.040 

45.5. Take a school trip to a museum? by STANDARD45.5 -.110 .164 .453 1 .501 .896 

45.6. Do school activities where you design or build 

something, e.g. designing a bridge, making and testing 

paper airplanes 

.341 .380 .805 1 .370 1.407 

45.6. Do school activities where you design or build 

something, e.g. designing a bridge, making and testing 

paper airplanes by STANDARD45.6 

-.068 .082 .690 1 .406 .934 

45.7. Take part in a competition where you design or make 

something? 

.059 .413 .020 1 .887 1.061 

45.7. Take part in a competition where you design or make 

something? by STANDARD45.7 

-.027 .112 .057 1 .811 .974 

Constant -.013 .617 .000 1 .983 .987 
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Linear regression test of collinearity:  

Model 

Collinearity Statistics 

Tolerance VIF 

1 (Constant)   

39.8. ...Know a lot about engineering" .502 1.994 

46.3. I have learnt a lot about engineering from museums .445 2.246 

40.6. I know how to design and make things .590 1.696 

40.7. I know quite a lot about engineering .305 3.276 

52.2. Engineers need to be imaginative in their work .533 1.876 

40.8. I would be confident talking about engineering in lessons .361 2.772 

39.5. ...Think that engineering is very interesting" .328 3.053 

39.6. ...Think it is important for me to learn about engineering" .253 3.959 

46.1. My family like going to museums .358 2.793 

46.2. I like going to museums .353 2.836 

52.3. Engineering creates new jobs so more people can have work .463 2.160 

52.4. It is useful to know about engineering in my daily life .346 2.888 

52.5. Getting young people to understand engineering is important for our 

society 

.384 2.605 

28.2. It is important to understand engineering even if you don't want an 

engineering job in the future 

.634 1.577 

28.3. An engineering qualification can help you get many different types of job .627 1.596 

39.7. ...Has explained to me that understanding engineering is useful for my 

future" 

.264 3.792 

51.4. My teachers explain how engineering qualifications can lead to different 

jobs 

.407 2.458 

51.6. My teachers have explained to me that understanding engineering is 

useful for my future 

.373 2.684 

31. When you are not in school how often do you talk about engineering with 

other people? 

.398 2.513 

TOTAL KNOWING SOMEONE ENGINEERING .353 2.833 

35. Do you know anyone (family, friends, or community) who works as an 

engineer or in a job that uses engineering? 

.395 2.531 

AS Eng Cap Talk with Engineering .467 2.143 

43.2. Watch engineering TV programmes, e.g. Mythbusters, Scrapheap 

Challenge, Robot Wars, etc. 

.446 2.241 

43.3. Watch TV programmes with some engineering in them, e.g. Blue Peter, 

The Big Bang Theory, Top Gear, The Great British Bake Off, etc. 

.616 1.622 

43.4. Read books or magazines about engineering? .472 2.117 

43.5. Go online to find out about engineering, e.g. YouTube, engineering 

websites, play engineering games? 

.490 2.041 
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39.1. ...Sign me up to activities outside of school time (e.g. dance, music, 

clubs)" 

.805 1.242 

44.1. Go to a museum? .342 2.924 

44.2. Go to a science centre, science museum, or planetarium? .356 2.807 

44.4. Do DIY, or help fix things around the home? .498 2.007 

44.5. Get shown how to use tools? .458 2.185 

44.6. Make models, e.g. playing with Lego, painting miniatures? .509 1.963 

44.7. Do crafts, e.g. knitting, woodwork? .560 1.784 

44.8. Play videogames about designing or building, e.g. The Sims, Minecraft? .751 1.332 

44.9. Program computers, e.g. writing apps, building websites? .732 1.367 

45.2. Go to an after school club that involves engineering? .654 1.530 

45.3. Had people visit you in school to teach you about engineering? .616 1.624 

45.4. Take an engineering related school trip? .553 1.808 

45.5. Take a school trip to a museum? .722 1.385 

45.6. Do school activities where you design or build something, e.g. designing 

a bridge, making and testing paper airplanes 

.660 1.515 

45.7. Take part in a competition where you design or make something? .639 1.565 
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Binary Logistic Regression: 

Case Processing Summary 

Unweighted Casesa N Percent 

Selected Cases Included in Analysis 648 70.4 

Missing Cases 273 29.6 

Total 921 100.0 

Unselected Cases 0 .0 

Total 921 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 

Dependent Variable Encoding 

Original Value Internal Value 

Lower 0 

Higher 1 

 

Classification Tablea,b 
 

Observed 

Predicted 
 

EngCapDV Percentage 

Correct 
 

Lower Higher 

Step 0 EngCapDV Lower 0 295 .0 

Higher 0 353 100.0 

Overall Percentage   54.5 

a. Constant is included in the model. 

b. The cut value is .500 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant .179 .079 5.177 1 .023 1.197 

 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step 400.798 41 <.001 

Block 400.798 41 <.001 

Model 400.798 41 <.001 

 

Model Summary 

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 492.322a .461 .617 

a. Estimation terminated at iteration number 6 because parameter estimates changed by less than 

.001. 
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Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 9.324 8 .316 

 

Classification Tablea 
 

Observed 

Predicted 
 EngCapDV Percenta

ge 

Correct 

 

Lower Higher 

Ste

p 1 

EngCap

DV 

Lower 235 60 79.7 

Higher 61 292 82.7 

Overall Percentage   81.3 

a. The cut value is .500 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1a 39.8. ...Know a lot about engineering" -.048 .136 .124 1 .725 .953 

46.3. I have learnt a lot about engineering 

from museums 

.411 .158 6.768 1 .009 1.508 

40.6. I know how to design and make things .308 .142 4.692 1 .030 1.360 

40.7. I know quite a lot about engineering .473 .194 5.940 1 .015 1.606 

52.2. Engineers need to be imaginative in 

their work 

.037 .197 .035 1 .851 1.038 

40.8. I would be confident talking about 

engineering in lessons 

.340 .168 4.079 1 .043 1.405 

39.5. ...Think that engineering is very 

interesting" 

.262 .177 2.187 1 .139 1.300 

39.6. ...Think it is important for me to learn 

about engineering" 

.154 .218 .502 1 .479 1.167 

46.1. My family like going to museums .106 .175 .370 1 .543 1.112 

46.2. I like going to museums -.306 .161 3.593 1 .058 .737 

52.3. Engineering creates new jobs so more 

people can have work 

.083 .209 .159 1 .690 1.087 

52.4. It is useful to know about engineering 

in my daily life 

.352 .194 3.288 1 .070 1.422 

52.5. Getting young people to understand 

engineering is important for our society 

-.015 .199 .006 1 .938 .985 

28.2. It is important to understand 

engineering even if you don't want an 

engineering job in the future 

-.309 .161 3.698 1 .054 .734 
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28.3. An engineering qualification can help 

you get many different types of job 

.505 .168 9.079 1 .003 1.657 

39.7. ...Has explained to me that 

understanding engineering is useful for my 

future" 

.216 .196 1.214 1 .270 1.241 

51.4. My teachers explain how engineering 

qualifications can lead to different jobs 

-.181 .171 1.117 1 .291 .835 

51.6. My teachers have explained to me 

that understanding engineering is useful for 

my future 

.085 .175 .235 1 .628 1.089 

31. When you are not in school how often 

do you talk about engineering with other 

people? 

.364 .138 6.929 1 .008 1.439 

TOTAL KNOWING SOMEONE 

ENGINEERING 

-.162 .200 .654 1 .419 .851 

35. Do you know anyone (family, friends, or 

community) who works as an engineer or in 

a job that uses engineering? 

-.117 .381 .095 1 .758 .889 

AS Eng Cap Talk with Engineering .052 .265 .039 1 .844 1.054 

43.2. Watch engineering TV programmes, 

e.g. Mythbusters, Scrapheap Challenge, 

Robot Wars, etc. 

-.028 .150 .036 1 .849 .972 

43.3. Watch TV programmes with some 

engineering in them, e.g. Blue Peter, The 

Big Bang Theory, Top Gear, The Great 

British Bake Off, etc. 

-.216 .127 2.875 1 .090 .806 

43.4. Read books or magazines about 

engineering? 

.526 .215 5.989 1 .014 1.691 

43.5. Go online to find out about 

engineering, e.g. YouTube, engineering 

websites, play engineering games? 

.411 .135 9.296 1 .002 1.508 

39.1. ...Sign me up to activities outside of 

school time (e.g. dance, music, clubs)" 

-.140 .109 1.639 1 .200 .869 

44.1. Go to a museum? -.098 .236 .174 1 .677 .906 

44.2. Go to a science centre, science 

museum, or planetarium? 

.019 .225 .007 1 .932 1.019 

44.4. Do DIY, or help fix things around the 

home? 

.274 .118 5.427 1 .020 1.316 

44.5. Get shown how to use tools? -.075 .123 .379 1 .538 .927 

44.6. Make models, e.g. playing with Lego, 

painting miniatures? 

.050 .110 .203 1 .653 1.051 

44.7. Do crafts, e.g. knitting, woodwork? -.313 .107 8.579 1 .003 .731 
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44.8. Play videogames about designing or 

building, e.g. The Sims, Minecraft? 

.130 .095 1.883 1 .170 1.139 

44.9. Program computers, e.g. writing apps, 

building websites? 

-.044 .098 .199 1 .655 .957 

45.2. Go to an after school club that 

involves engineering? 

.324 .248 1.703 1 .192 1.383 

45.3. Had people visit you in school to teach 

you about engineering? 

.080 .177 .205 1 .651 1.083 

45.4. Take an engineering related school 

trip? 

-.537 .232 5.360 1 .021 .585 

45.5. Take a school trip to a museum? -.219 .177 1.533 1 .216 .803 

45.6. Do school activities where you design 

or build something, e.g. designing a bridge, 

making and testing paper airplanes 

.029 .115 .064 1 .800 1.030 

45.7. Take part in a competition where you 

design or make something? 

.007 .141 .002 1 .962 1.007 

Constant .080 .502 .026 1 .873 1.084 
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Independent Samples T-Test: Engineering Educational Aspiration and Engineering Capital 

Score 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be normally distributed with a robust Normal Q-Q plot and 

skewness and kurtosis values within the acceptable range of -1 to 1. The assumptions underpinning 

this test were met approving its use.  

 

Case Processing Summary 
 Binary Coded: Yes at 

University or A-level 

or after GCSE, No at 

unsure and no 

Cases 
 Valid Missing Total 
 

N Percent N Percent N Percent 

Engineering Capital 

Score 

No 659 100.0% 0 0.0% 659 100.0% 

Yes 228 100.0% 0 0.0% 228 100.0% 

 

Descriptives 

 

Binary Coded: Yes at University or A-level or 

after GCSE, No at unsure and no 

No Yes 

Statistic Std. Error Statistic Std. Error 

Engineering 

Capital Score 

Mean 43.5751 .45168 60.9518 .89708 

95% Confidence 

Interval for Mean 

Lower 

Bound 

42.6882 
 

59.1841 
 

Upper 

Bound 

44.4620 
 

62.7194 
 

5% Trimmed Mean 43.2870  60.9805  

Median 43.0000  60.0000  

Variance 134.448  183.482  

Std. Deviation 11.59519  13.54556  

Minimum 17.00  24.00  

Maximum 76.00  95.00  

Range 59.00  71.00  

Interquartile Range 14.00  17.00  

Skewness .338 .095 .001 .161 

Kurtosis -.213 .190 -.160 .321 
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A Welch's independent samples t-test identified a significant difference in the engineering capital 

scores of those who did (M=60.95, SD=13.55) and did not wish to study engineering (M=43.58, 

SD=11.60) (t(348.950)=17.301, p<0.001, d=1.433). The Cohen’s d effect size highlights a strong effect 

of educational aspiration on engineering capital scores.  

Group Statistics 
 Binary Coded: Yes at 

University or A-level or 

after GCSE, No at 

unsure and no N Mean 

Std. 

Deviation 

Std. Error 

Mean 

Eng. Cap. Score.  No 659 43.5751 11.59519 .45168 

Yes 228 60.9518 13.54556 .89708 

 

Independent Samples Test 

 

Levene's 

Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Significance 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

One-

Sided 

p 

Two-

Sided 

p Lower Upper 

Eng. 

Cap. 

Score. 

Equal 

variances 

assumed 

7.681 .006 -

18.652 

885 <.001 <.001 -17.37664 .93164 -

19.20512 

-

15.54816 

Equal 

variances 

not 

assumed 

  

-

17.301 

348.950 <.001 <.001 -17.37664 1.00437 -

19.35203 

-

15.40125 

 

Independent Samples Effect Sizes 

 Standardizera 

Point 

Estimate 

95% Confidence 

Interval 

Lower Upper 

Eng. Cap. Score. Cohen's d 12.12540 -1.433 -1.597 -1.268 

Hedges' 

correction 

12.13569 -1.432 -1.596 -1.267 

Glass's delta 13.54556 -1.283 -1.473 -1.091 
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One-Way ANOVA: Engineering Educational Aspiration and Engineering Capital Score 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be normally distributed with a robust Normal Q-Q plot and 

skewness and kurtosis values within the acceptable range of -1 to 1. The assumptions underpinning 

this test were met approving its use.  

Case Processing Summary 
 Engineering 

Educational 

Aspiration 

Cases 
 Valid Missing Total 
 N Percent N Percent N Percent 

Engineering Capital 

Score 

No 290 100.0% 0 0.0% 290 100.0% 

Unsure 369 100.0% 0 0.0% 369 100.0% 

Yes- FEOther 91 100.0% 0 0.0% 91 100.0% 

Yes – FEAcadem. 63 100.0% 0 0.0% 63 100.0% 

Yes - University 74 100.0% 0 0.0% 74 100.0% 

 

Descriptives 

 

Engineering Educational Aspiration 

No Unsure Yes - FEOther Yes – FEAca Yes- Univer. 

Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error 

E
n
g
in

e
e
ri
n

g
 C

a
p
it
a
l 
S

c
o
re

 

Mean 41.1828 .64825 45.4553 .60852 56.4835 1.24970 61.2540 1.56951 66.1892 1.68763 

95% 

Confidence 

Interval for 

Mean 

Lower 

Bound 

39.9069 
 

44.2587 
 

54.0008 
 

58.1166 
 

62.8258 
 

Upper 

Bound 

42.4586 
 

46.6519 
 

58.9663 
 

64.3914 
 

69.5526 
 

5% Trimmed Mean 40.8161  45.2439  56.4383  61.4180  66.6952  

Median 41.0000  45.0000  57.0000  60.0000  67.0000  

Variance 121.866  136.640  142.119  155.193  210.758  

Std. Deviation 11.03930 
 

11.68931 
 

11.92137 
 

12.45763 
 

14.51751 
 

Minimum 17.00  17.00  26.00  36.00  24.00  

Maximum 74.00  76.00  91.00  84.00  95.00  

Range 57.00  59.00  65.00  48.00  71.00  

Interquartile Range 15.00  14.00  16.00  20.00  17.50  

Skewness .469 .143 .232 .127 .025 .253 -.013 .302 -.382 .279 

Kurtosis .088 .285 -.315 .253 .131 .500 -.957 .595 .424 .552 
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A one-way Welch’s ANOVA was adopted to determine whether engineering capital scores differed 

between groups based on educational aspirations for engineering. A total of 887 participants were 

classified into five groups based on educational aspiration: No (N=290), Unsure (N=369), Yes-FE/Other 

(N=91), Yes-FE/Academic (N=63) and Yes – University (N=74). Engineering capital scores were found 

to statistically differ (F(4, 211.885) = 88.236, p<0.001, ETA2=0.320). Games-Howell post-hoc testing 

revealed significant differences between all groups except FE-Other & FE-Academic and FE-Academic 

& University. The ETA2 size of 0.320 indicates a strong effect of educational aspiration group in shaping 

engineering capital scores.  

Descriptives 

Engineering Capital Score 

 N Mean 

Std. 

Deviation Std. Error 

95% Confidence 

Interval for Mean 

Minimum Maximum 

Lower 

Bound 

Upper 

Bound 

No 290 41.1828 11.03930 .64825 39.9069 42.4586 17.00 74.00 

Unsure 369 45.4553 11.68931 .60852 44.2587 46.6519 17.00 76.00 

FE-Other 91 56.4835 11.92137 1.24970 54.0008 58.9663 26.00 91.00 

FE-

Acad. 

63 61.2540 12.45763 1.56951 58.1166 64.3914 36.00 84.00 

Univer. 74 66.1892 14.51751 1.68763 62.8258 69.5526 24.00 95.00 

Total 887 48.0417 14.30345 .48026 47.0991 48.9843 17.00 95.00 

 

 

Tests of Homogeneity of Variances 

 

Levene 

Statistic df1 df2 Sig. 

Engineering Capital 

Score 

Based on Mean 2.882 4 882 .022 

Based on Median 2.835 4 882 .024 

Based on Median and 

with adjusted df 

2.835 4 855.531 .024 

Based on trimmed mean 2.872 4 882 .022 

 

ANOVA 

Engineering Capital Score 

 Sum of Squares df Mean Square F Sig. 

Between Groups 57964.617 4 14491.154 103.659 <.001 

Within Groups 123300.839 882 139.797   

Total 181265.457 886    
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ANOVA Effect Sizesa 

 Point Estimate 

95% Confidence Interval 

Lower Upper 

Eng. Cap. Score. Eta-squared .320 .270 .363 

Epsilon-squared .317 .266 .360 

Omega-squared Fixed-

effect 

.316 .266 .360 

Omega-squared Random-

effect 

.104 .083 .123 

a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model. 

 

Robust Tests of Equality of Means 

 Statistica df1 df2 Sig. 

Welch 88.236 4 211.885 <.001 

a. Asymptotically F distributed. 

Multiple Comparisons 

Engineering Capital Score 

 

Eng. Ed. 

Aspiration 

Eng. Ed. 

Aspiration 

Mean 

Difference (I-

J) Std. Error Sig. 

95% Confidence Interval 

 Lower 

Bound 

Upper 

Bound 

Games-

Howell 

-1 0 -4.27253* .88912 <.001 -6.7048 -1.8402 

1 -15.30076* 1.40783 <.001 -19.1909 -11.4106 

2 -20.07121* 1.69812 <.001 -24.8049 -15.3375 

3 -25.00643* 1.80785 <.001 -30.0332 -19.9797 

0 -1 4.27253* .88912 <.001 1.8402 6.7048 

1 -11.02823* 1.38998 <.001 -14.8712 -7.1853 

2 -15.79868* 1.68335 <.001 -20.4946 -11.1028 

3 -20.73390* 1.79399 <.001 -25.7249 -15.7429 

1 -1 15.30076* 1.40783 <.001 11.4106 19.1909 

0 11.02823* 1.38998 <.001 7.1853 14.8712 

2 -4.77045 2.00627 .128 -10.3209 .7800 

3 -9.70567* 2.09996 <.001 -15.5089 -3.9025 

2 -1 20.07121* 1.69812 <.001 15.3375 24.8049 

0 15.79868* 1.68335 <.001 11.1028 20.4946 

1 4.77045 2.00627 .128 -.7800 10.3209 

3 -4.93522 2.30466 .209 -11.3076 1.4372 

3 -1 25.00643* 1.80785 <.001 19.9797 30.0332 

0 20.73390* 1.79399 <.001 15.7429 25.7249 

1 9.70567* 2.09996 <.001 3.9025 15.5089 

2 4.93522 2.30466 .209 -1.4372 11.3076 

*. The mean difference is significant at the 0.05 level. 
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Independent Samples T-Test: Engineering Career Aspiration (Engineer) and Engineering 

Capital Score 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be normally distributed with a robust Normal Q-Q plot and 

skewness and kurtosis values within the acceptable range of -1 to 1. The assumptions underpinning 

this test were met approving its use.  

 

Case Processing Summary 
 

I want to become an 

engineer 

Cases 
 Valid Missing Total 
 N Percent N Percent N Percent 

Engineering Capital 

Score 

.00 581 100.0% 0 0.0% 581 100.0% 

1.00 119 100.0% 0 0.0% 119 100.0% 

 

Descriptives 

 

I want to become an engineer 

.00 1.00 

Statistic 

Std. 

Error Statistic 

Std. 

Error 

Engineering Capital 

Score 

Mean 42.4234 .46972 64.7983 1.26136 

95% Confidence 

Interval for Mean 

Lower 

Bound 

41.5009 
 

62.3005 
 

Upper 

Bound 

43.3460 
 

67.2962 
 

5% Trimmed Mean 42.1010  64.9902  

Median 41.0000  64.0000  

Variance 128.189  189.332  

Std. Deviation 11.32207  13.75979  

Minimum 17.00  29.00  

Maximum 81.00  95.00  

Range 64.00  66.00  

Interquartile Range 17.00  17.00  

Skewness .415 .101 -.202 .222 

Kurtosis .198 .202 -.109 .440 
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A Welch's independent samples t-test identified a significant difference in the engineering capital 

scores of those who did (M=64.80, SD=13.76) and did not wish to become an engineer (M=42.42, 

SD=11.32) (t(152.400)=16.624, p<0.001, d=1.901). The Cohen’s d effect size highlights a strong effect 

of desire to become an engineer on engineering capital scores.  

 

Group Statistics 
 

I want to become an 

engineer N Mean Std. Deviation 

Std. Error 

Mean 

Engineering Capital Score .00 581 42.4234 11.32207 .46972 

1.00 119 64.7983 13.75979 1.26136 

 

Independent Samples Test 

 

Levene's Test 

for Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Significance 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

One-

Sided 

p 

Two-

Sided 

p Lower Upper 

E
n
g

in
e
e
ri
n

g
 C

a
p
it
a
l 

S
c
o
re

 

Equal 

variances 

assumed 

6.818 .009 -

18.893 

698 .000 .000 -22.37491 1.18428 -

24.70008 

-

20.04974 

Equal 

variances 

not 

assumed 

  

-

16.624 

152.400 .000 .000 -22.37491 1.34598 -

25.03410 

-

19.71572 

 

Independent Samples Effect Sizes 

 Standardizera Point Estimate 

95% Confidence Interval 

Lower Upper 

Engineering Capital Score Cohen's d 11.76970 -1.901 -2.121 -1.680 

Hedges' correction 11.78236 -1.899 -2.119 -1.678 

Glass's delta 13.75979 -1.626 -1.910 -1.338 

a. The denominator used in estimating the effect sizes.  

Cohen's d uses the pooled standard deviation.  

Hedges' correction uses the pooled standard deviation, plus a correction factor.  

Glass's delta uses the sample standard deviation of the control group. 

 

  



Appendix G – Chapter Seven Statistical Analyses Outputs 

472 
 

Independent Samples T-Test: Engineering Career Aspiration (Engineer-Related Role) and 

Engineering Capital Score 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be normally distributed with a robust Normal Q-Q plot and 

skewness and kurtosis values within the acceptable range of -1 to 1. The assumptions underpinning 

this test were met approving its use. 

Case Processing Summary 
 

Desire an 

engineering role 

Cases 
 Valid Missing Total 
 N Percent N Percent N Percent 

Engineering Capital 

Score 

No 576 100.0% 0 0.0% 576 100.0% 

Yes 316 100.0% 0 0.0% 316 100.0% 

 

Descriptives 

 

Desire an engineering role 

No Yes 

Statistic Std. Error Statistic Std. Error 

Engineering 

Capital Score 

Mean 41.5087 .44093 59.5380 .73969 

95% Confidence 

Interval for Mean 

Lower 

Bound 

40.6426 
 

58.0826 
 

Upper 

Bound 

42.3747 
 

60.9933 
 

5% Trimmed Mean 41.2658  59.5844  

Median 41.0000  60.0000  

Variance 111.986  172.897  

Std. Deviation 10.58234  13.14903  

Minimum 17.00  17.00  

Maximum 76.00  95.00  

Range 59.00  78.00  

Interquartile Range 15.00  17.00  

Skewness .333 .102 -.055 .137 

Kurtosis -.026 .203 .152 .273 
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A Welch's independent samples t-test identified a significant difference in the engineering capital 

scores of those who did (M=59.54, SD=13.15) and did not wish to work in an engineering-related role 

(M=41.51, SD=10.58) (t(541.201)=20.937, p<0.001, d=1.560). The Cohen’s d effect size highlights a 

strong effect of desire to work in an engineering role on engineering capital scores.  

 

Group Statistics 
 Desire for an 

engineering-related job 

in the future? N Mean 

Std. 

Deviation 

Std. Error 

Mean 

Engineering Capital 

Score 

No 576 41.5087 10.58234 .44093 

Yes 316 59.5380 13.14903 .73969 

 

Independent Samples Test 

 

Levene's Test 

for Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Significance 

Mean 

Differenc

e 

Std. Error 

Differenc

e 

95% Confidence 

Interval of the 

Difference 

One-

Side

d p 

Two-

Side

d p Lower Upper 

E
n
g

in
e

e
ri
n

g
 C

a
p
it
a
l 

S
c
o
re

 

Equal 

variances 

assumed 

15.690 .000 -

22.286 

890 .000 .000 -18.02929 .80898 -

19.61703 

-

16.44155 

Equal 

variances 

not 

assumed 

  

-

20.937 

541.201 .000 .000 -18.02929 .86114 -

19.72088 

-

16.33771 

 

Independent Samples Effect Sizes 

 Standardizera Point Estimate 

95% Confidence Interval 

Lower Upper 

Engineering Capital Score Cohen's d 11.55614 -1.560 -1.715 -1.405 

Hedges' correction 11.56589 -1.559 -1.714 -1.403 

Glass's delta 13.14903 -1.371 -1.544 -1.196 

a. The denominator used in estimating the effect sizes.  

Cohen's d uses the pooled standard deviation.  

Hedges' correction uses the pooled standard deviation, plus a correction factor.  

Glass's delta uses the sample standard deviation of the control group. 
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Independent Samples T-Test: Gender and Engineering Capital Score 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be normally distributed with a robust Normal Q-Q plot and 

skewness and kurtosis values within the acceptable range of -1 to 1. The assumptions underpinning 

this test were met approving its use. 

 

Case Processing Summary 
 

2. Are you a girl or a 

boy? 

Cases 
 

Valid Missing Total 
 

N Percent N Percent N Percent 

Engineering Capital 

Score 

Boy 388 100.0% 0 0.0% 388 100.0% 

Girl 505 100.0% 0 0.0% 505 100.0% 

 

Descriptives 

 

2. Are you a girl or a boy? 

Boy Girl 

Statistic 

Std. 

Error Statistic 

Std. 

Error 

Engineering Capital 

Score 

Mean 52.0722 .81114 44.4277 .54646 

95% Confidence 

Interval for Mean 

Lower 

Bound 

50.4774 
 

43.3541 
 

Upper 

Bound 

53.6670 
 

45.5013 
 

5% Trimmed Mean 51.8270  44.0963  

Median 51.0000  43.0000  

Variance 255.282  150.801  

Std. Deviation 15.97753  12.28010  

Minimum 17.00  17.00  

Maximum 95.00  84.00  

Range 78.00  67.00  

Interquartile Range 23.00  16.00  

Skewness .213 .124 .371 .109 

Kurtosis -.492 .247 -.190 .217 
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A Welch's independent samples t-test identified a significant difference in the engineering capital 

scores of girls (N=505, M=44.43, SD=12.28) and boys (N=388, M=52.07, SD=15.98) (t(706.293)=7.816, 

p<0.001, d=0.546). The Cohen’s d effect size highlights a medium effect of gender on engineering 

capital scores.  

 

Group Statistics 
 2. Are you a girl or a 

boy? N Mean 

Std. 

Deviation 

Std. Error 

Mean 

Engineering Capital 

Score 

Boy 388 52.0722 15.97753 .81114 

Girl 505 44.4277 12.28010 .54646 

 

Independent Samples Test 

 

Levene's Test 

for Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Significance 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

One-

Sided 

p 

Two-

Sided 

p Lower Upper 

Eng. 

Cap.  

Score 

Equal 

variances 

assumed 

32.804 .000 8.084 891 .000 .000 7.64444 .94557 5.78864 9.50024 

Equal 

variances 

not 

assumed 

  

7.816 706.293 .000 .000 7.64444 .97804 5.72423 9.56465 

 

Independent Samples Effect Sizes 

 Standardizera 

Point 

Estimate 

95% Confidence 

Interval 

Lower Upper 

Engineering Capital 

Score 

Cohen's d 14.00648 .546 .411 .680 

Hedges' 

correction 

14.01828 .545 .411 .680 

Glass's delta 12.28010 .623 .484 .760 

a. The denominator used in estimating the effect sizes.  

Cohen's d uses the pooled standard deviation.  

Hedges' correction uses the pooled standard deviation, plus a correction factor.  

Glass's delta uses the sample standard deviation of the control group. 
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One-Way ANOVA: Deprivation (Cultural Capital) and Engineering Capital Score 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be normally distributed with a robust Normal Q-Q plot and 

skewness and kurtosis values within the acceptable range of -1 to 1. The assumptions underpinning 

this test were met approving its use.  

 

Case Processing Summary 
 

General Cultural 

Capital Category 

Cases 
 Valid Missing Total 
 N Percent N Percent N Percent 

Engineering Capital 

Score 

Very low 10 100.0% 0 0.0% 10 100.0% 

Low 107 100.0% 0 0.0% 107 100.0% 

Medium 343 100.0% 0 0.0% 343 100.0% 

High 296 100.0% 0 0.0% 296 100.0% 

Very high 165 100.0% 0 0.0% 165 100.0% 
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Descriptives 

 

General Cultural Capital Category 

Very low Low Medium High Very high 

Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error 

E
n

g
. 

C
a
p

. 
S

c
o

re
 

Mean 37.5000 4.0173

2 

42.8318 1.3206

9 

47.1778 .7755

2 

48.0000 .8319

9 

51.8848 1.0947

5 

95% 

Confidenc

e Interval 

for Mean 

Lowe

r 

Boun

d 

28.412

2 
 

40.2134 

 

45.6524 

 

46.3626 

 

49.7232 

 

Uppe

r 

Boun

d 

46.587

8 
 

45.4502 

 

48.7032 

 

49.6374 

 

54.0465 

 

5% 

Trimmed 

Mean 

36.9444 

 

42.4034 

 

46.6223 

 

47.5135 

 

51.6077 

 

Median 33.5000  41.0000  45.0000  45.0000  50.0000  

Variance 161.389  186.632  206.293  204.895  197.749  

Std. 

Deviation 

12.70389 
 

13.6613

3 

 
14.3629

0 

 
14.3141

5 

 
14.0623

2 

 

Minimum 21.00  17.00  17.00  17.00  26.00  

Maximum 64.00  79.00  93.00  95.00  84.00  

Range 43.00  62.00  76.00  78.00  58.00  

Interquarti

le Range 

15.75 
 

19.00 
 

21.00 
 

19.00 
 

21.00 
 

Skewness .968 .687 .394 .234 .496 .132 .522 .142 .329 .189 

Kurtosis .780 1.334 -.464 .463 .072 .263 .170 .282 -.764 .376 
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A one-way ANOVA was adopted to determine whether engineering capital scores differed between 

groups based on deprivation measured through cultural capital scores. A total of 921 participants were 

classified into five groups based on general cultural capital scores: Very Low (N=10), Low (N=107), 

Medium (N=343), High (N=296) and Very High (N=165). Engineering capital scores were found to 

statistically differ (F(4, 916) = 8.167, p<0.001, ETA2=0.034). Tukey post-hoc testing revealed significant 

differences between all groups except Very Low & Low, Very Low & Medium, Very Low and High and 

Medium and High. The ETA2 size of 0.034 indicates a small effect of general cultural capital group in 

shaping engineering capital scores.  

 

Descriptives 

Engineering Capital Score 

 N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 

Minimum Maximum 

Between- 

Component 

Variance 

Lower 

Bound 

Upper 

Bound 

Very low 10 37.5000 12.70389 4.01732 28.4122 46.5878 21.00 64.00  

Low 107 42.8318 13.66133 1.32069 40.2134 45.4502 17.00 79.00  

Medium 343 47.1778 14.36290 .77552 45.6524 48.7032 17.00 93.00  

High 296 48.0000 14.31415 .83199 46.3626 49.6374 17.00 95.00  

Very high 165 51.8848 14.06232 1.09475 49.7232 54.0465 26.00 84.00  

Total 921 47.6754 14.41798 .47509 46.7430 48.6077 17.00 95.00  

Model Fixed 

Effects 

  
14.19847 .46786 46.7572 48.5935 

   

Random 

Effects 

   
1.65931 43.0684 52.2823 

  
8.80924 

 

Tests of Homogeneity of Variances 

 

Levene 

Statistic df1 df2 Sig. 

Eng. Cap. Score Based on Mean .107 4 916 .980 

Based on Median .136 4 916 .969 

Based on Median and 

with adjusted df 

.136 4 908.225 .969 

Based on trimmed mean .120 4 916 .975 

 

ANOVA 

Eng. Cap. Score.  

 Sum of Squares df Mean Square F Sig. 

Between Groups 6585.495 4 1646.374 8.167 .000 

Within Groups 184662.436 916 201.597   

Total 191247.931 920    
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ANOVA Effect Sizesa 

 Point Estimate 

95% Confidence Interval 

Lower Upper 

Eng. Cap. Score. Eta-squared .034 .012 .057 

Epsilon-squared .030 .008 .053 

Omega-squared Fixed-effect .030 .008 .053 

Omega-squared Random-

effect 

.008 .002 .014 

a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model. 

 

Multiple Comparisons 

Eng. Cap. Score. 
 

(I) General 

Cultural Capital 

Category 

(J) General 

Cultural Capital 

Category 

Mean 

Difference 

(I-J) Std. Error Sig. 

95% Confidence 

Interval 
 Lower 

Bound 

Upper 

Bound 

Tukey 

HSD 

Very low Low -5.33178 4.69508 .788 -18.1644 7.5009 

Medium -9.67784 4.55493 .210 -22.1275 2.7718 

High -10.50000 4.56516 .146 -22.9776 1.9776 

Very high -14.38485* 4.62401 .016 -27.0233 -1.7464 

Low Very low 5.33178 4.69508 .788 -7.5009 18.1644 

Medium -4.34607* 1.57220 .046 -8.6432 -.0489 

High -5.16822* 1.60161 .011 -9.5458 -.7907 

Very high -9.05307* 1.76235 .000 -13.8700 -4.2362 

Medium Very low 9.67784 4.55493 .210 -2.7718 22.1275 

Low 4.34607* 1.57220 .046 .0489 8.6432 

High -.82216 1.12642 .950 -3.9009 2.2566 

Very high -4.70701* 1.34519 .004 -8.3837 -1.0303 

High Very low 10.50000 4.56516 .146 -1.9776 22.9776 

Low 5.16822* 1.60161 .011 .7907 9.5458 

Medium .82216 1.12642 .950 -2.2566 3.9009 

Very high -3.88485* 1.37944 .040 -7.6552 -.1145 

Very high Very low 14.38485* 4.62401 .016 1.7464 27.0233 

Low 9.05307* 1.76235 .000 4.2362 13.8700 

Medium 4.70701* 1.34519 .004 1.0303 8.3837 

High 3.88485* 1.37944 .040 .1145 7.6552 

*. The mean difference is significant at the 0.05 level. 

 

 

 



Appendix G – Chapter Seven Statistical Analyses Outputs 

484 
 

 

One-Way ANOVA: Deprivation (IDACI) and Engineering Capital Score 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be normally distributed with a robust Normal Q-Q plot and 

skewness and kurtosis values within the acceptable range of -1 to 1 – the 1&2 group did express a 

slight degree of kurtosis however this was deemed as acceptable given its scale and the robustness of 

the ANOVA procedure. The assumptions underpinning this test were met approving its use.  

Case Processing Summary 
 

IDACI 

Decile 

Cases 
 

Valid Missing Total 
 

N Percent N Percent N Percent 

Eng. Cap. Score 12 38 100.0% 0 0.0% 38 100.0% 

34 76 100.0% 0 0.0% 76 100.0% 

56 123 100.0% 0 0.0% 123 100.0% 

78 219 100.0% 0 0.0% 219 100.0% 

910 150 100.0% 0 0.0% 150 100.0% 
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Descriptives 

 

IDACI Decile 

12 34 56 78 910 

Statisti

c 

Std. 

Error 

Statisti

c 

Std. 

Error 

Statisti

c 

Std. 

Error 

Statisti

c 

Std. 

Error 

Statisti

c 

Std. 

Error 

E
n

g
. 

C
a
p

. 
S

c
o

re
 

Mean 45.3421 2.2054

1 

49.1447 1.5449

6 

46.3333 1.2333

2 

46.8447 .9950

5 

48.9733 1.2082

1 

95% 

Confidenc

e Interval 

for Mean 

Lowe

r 

Boun

d 

40.8735 

 

46.0670 

 

43.8919 

 

44.8836 

 

46.5859 

 

Uppe

r 

Boun

d 

49.8107 

 

52.2225 

 

48.7748 

 

48.8059 

 

51.3608 

 

5% Trimmed 

Mean 

44.8626 
 

48.7222 
 

46.0050 
 

46.1695 
 

48.6000 
 

Median 44.0000  48.0000  45.0000  45.0000  45.0000  

Variance 184.826  181.405  187.093  216.838  218.966  

Std. Deviation 13.5950

6 

 
13.4686

8 

 
13.6781

9 

 
14.7254

3 

 
14.7974

9 

 

Minimum 19.00  24.00  17.00  17.00  19.00  

Maximum 86.00  86.00  81.00  93.00  86.00  

Range 67.00  62.00  64.00  76.00  67.00  

Interquartile 

Range 

16.75 
 

22.00 
 

21.00 
 

21.00 
 

22.00 
 

Skewness .617 .383 .492 .276 .278 .218 .628 .164 .453 .198 

Kurtosis 1.153 .750 -.211 .545 -.490 .433 .290 .327 -.437 .394 
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A one-way ANOVA was adopted to determine whether engineering capital scores differed between 

groups based on deprivation measured by the IDACI index. A total of 606 participants were classified 

into five groups based on IDACI quintile: 1&2 (N=38), 3&4 (N=76), 5&6 (N=123), 7&8 (N=219) and 

9&10 (N=150). Engineering capital scores were not found to statistically differ (F(4, 601) = 1.182, 

p=0.318, ETA2=0.008).  

Descriptives 

Eng. Cap. Score. 

 N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 

Minimum Maximum 

Between- 

Component 

Variance 

Lower 

Bound 

Upper 

Bound 

12 38 45.3421 13.59506 2.20541 40.8735 49.8107 19.00 86.00  

34 76 49.1447 13.46868 1.54496 46.0670 52.2225 24.00 86.00  

56 123 46.3333 13.67819 1.23332 43.8919 48.7748 17.00 81.00  

78 219 46.8447 14.72543 .99505 44.8836 48.8059 17.00 93.00  

910 150 48.9733 14.79749 1.20821 46.5859 51.3608 19.00 86.00  

Total 606 47.4620 14.32415 .58188 46.3193 48.6048 17.00 93.00  

Model Fixed 

Effects 

  
14.31555 .58153 46.3200 48.6041 

   

Random 

Effects 

   
.64909 45.6599 49.2642 

  
.32898 

 

Tests of Homogeneity of Variances 

 

Levene 

Statistic df1 df2 Sig. 

Eng. Cap. Score.  Based on Mean .711 4 601 .585 

Based on Median .505 4 601 .732 

Based on Median and 

with adjusted df 

.505 4 590.872 .732 

Based on trimmed mean .682 4 601 .604 

 

ANOVA 

Eng. Cap. Score. 

 Sum of Squares df Mean Square F Sig. 

Between Groups 968.718 4 242.180 1.182 .318 

Within Groups 123165.909 601 204.935   

Total 124134.627 605    
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ANOVA Effect Sizesa,b 

 Point Estimate 

95% Confidence Interval 

Lower Upper 

Eng. Cap. Score.  Eta-squared .008 .000 .021 

Epsilon-squared .001 -.007 .014 

Omega-squared Fixed-

effect 

.001 -.007 .014 

Omega-squared Random-

effect 

.000 -.002 .004 

a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model. 

b. Negative but less biased estimates are retained, not rounded to zero. 
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One-Way ANOVA: Science Academic Ability and Engineering Capital Score 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be normally distributed with a robust Normal Q-Q plot and 

skewness and kurtosis values within the acceptable range of -1 to 1. The assumptions underpinning 

this test were met approving its use.  

Case Processing Summary 
 

25.1.a. Science 

Cases 
 Valid Missing Total 
 N Percent N Percent N Percent 

Eng. Cap. Score. There are not sets at 

this school/for this 

subject 

183 100.0% 0 0.0% 183 100.0% 

Top 407 100.0% 0 0.0% 407 100.0% 

Middle 259 100.0% 0 0.0% 259 100.0% 

Bottom 48 100.0% 0 0.0% 48 100.0% 

 

Descriptives 

 

25.1.a. Science 

There are not sets 

at this school/for 

this subject Top Middle Bottom 

Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error 

Eng. 

Cap. 

Score. 

Mean 49.5628 1.02668 47.8280 .70572 45.3089 .93285 52.2500 1.92927 

95% 

Confidence 

Interval for 

Mean 

Lower 

Bound 

47.5371 
 

46.4407 
 

43.4719 
 

48.3688 
 

Upper 

Bound 

51.5886 
 

49.2153 
 

47.1459 
 

56.1312 
 

5% Trimmed Mean 49.2747  47.2973  44.7439  51.8565  

Median 50.0000  45.0000  43.0000  50.0000  

Variance 192.896  202.704  225.385  178.660  

Std. Deviation 13.88869  14.23743  15.01282  13.36636  

Minimum 17.00  19.00  17.00  29.00  

Maximum 91.00  95.00  88.00  86.00  

Range 74.00  76.00  71.00  57.00  

Interquartile Range 22.00  19.00  24.00  19.00  

Skewness .342 .180 .577 .121 .504 .151 .527 .343 

Kurtosis -.136 .357 .083 .241 -.226 .302 -.220 .674 
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A one-way ANOVA was adopted to determine whether engineering capital scores differed between 

groups based on school science ability set. A total of 897 participants were classified into four groups 

based on educational science ability: No Sets at This School (N=183), Bottom Sets (N=48), Middle Sets 

(N=259), and Top Sets (N=407). Engineering capital scores were found to statistically differ (F(3, 893) 

= 5.043, p=0.002, ETA2=0.017). Tukey post-hoc testing only revealed significant differences between 

the Middle & Bottom groups and Middle & No Sets groups. The ETA2 size of 0. 017 indicates a small 

effect of science ability group in shaping engineering capital scores.  

 

Descriptives 

Eng. Cap. Score.  

 N Mean 

Std. 

Deviation 

Std. 

Error 

95% 

Confidence 

Interval for 

Mean 

Minimum Maximum 

B
e
tw

e
e
n

- 

C
o
m

p
o
n
e

n
t 

V
a
ri

a
n
c
e

 

Lower 

Bound 

Upper 

Bound 

No Sets 183 49.5628 13.88869 1.02668 47.5371 51.5886 17.00 91.00  

Top 407 47.8280 14.23743 .70572 46.4407 49.2153 19.00 95.00  

Middle 259 45.3089 15.01282 .93285 43.4719 47.1459 17.00 88.00  

Bottom 48 52.2500 13.36636 1.92927 48.3688 56.1312 29.00 86.00  

Total 897 47.6912 14.44924 .48245 46.7443 48.6380 17.00 95.00  

Model Fixed 

Effects 
  

14.35244 .47921 46.7507 48.6317 
   

Random 

Effects 
   

1.27463 43.6348 51.7476 
  

4.18009 

 

Tests of Homogeneity of Variances 

 

Levene 

Statistic df1 df2 Sig. 

Eng. Cap. Score.  Based on Mean 1.062 3 893 .364 

Based on Median .920 3 893 .430 

Based on Median and 

with adjusted df 

.920 3 888.924 .430 

Based on trimmed mean .972 3 893 .405 

 

ANOVA 

Eng. Cap. Score.  

 Sum of Squares df Mean Square F Sig. 

Between Groups 3116.183 3 1038.728 5.043 .002 

Within Groups 183951.278 893 205.992   

Total 187067.460 896    
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ANOVA Effect Sizesa,b 

 Point Estimate 

95% Confidence Interval 

Lower Upper 

Eng. Cap. Score. Eta-squared .017 .003 .034 

Epsilon-squared .013 -.001 .031 

Omega-squared Fixed-

effect 

.013 -.001 .031 

Omega-squared Random-

effect 

.004 .000 .011 

a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model. 

b. Negative but less biased estimates are retained, not rounded to zero. 

 

Multiple Comparisons 

Eng. Cap. Scores.  
 

(I) 25.1.a. Science 

(J) 25.1.a. 

Science 

Mean 

Difference 

(I-J) 

Std. 

Error Sig. 

95% Confidence 

Interval 
 Lower 

Bound 

Upper 

Bound 

Tukey 

HSD 

There are not sets 

at this school/for 

this subject 

Top 1.73483 1.27741 .526 -1.5531 5.0227 

Middle 4.25396* 1.38599 .012 .6866 7.8213 

Bottom -2.68716 2.32748 .656 -8.6778 3.3035 

Top There are not sets 

at this school/for 

this subject 

-1.73483 1.27741 .526 -5.0227 1.5531 

Middle 2.51913 1.14082 .122 -.4172 5.4554 

Bottom -4.42199 2.19035 .182 -10.0597 1.2157 

Middle There are not sets 

at this school/for 

this subject 

-4.25396* 1.38599 .012 -7.8213 -.6866 

Top -2.51913 1.14082 .122 -5.4554 .4172 

Bottom -6.94112* 2.25540 .012 -12.7462 -1.1360 

Bottom There are not sets 

at this school/for 

this subject 

2.68716 2.32748 .656 -3.3035 8.6778 

Top 4.42199 2.19035 .182 -1.2157 10.0597 

Middle 6.94112* 2.25540 .012 1.1360 12.7462 

*. The mean difference is significant at the 0.05 level. 
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One-Way ANOVA: Mathematics Academic Ability and Engineering Capital Score 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be normally distributed with a robust Normal Q-Q plot and 

skewness and kurtosis values within the acceptable range of -1 to 1. The assumptions underpinning 

this test were met approving its use.  

 

Case Processing Summary 
 

25.2.a. Maths 

Cases 
 Valid Missing Total 
 N Percent N Percent N Percent 

Eng. Cap. Score There are not sets at 

this school/for this 

subject 

58 100.0% 0 0.0% 58 100.0% 

Top 465 100.0% 0 0.0% 465 100.0% 

Middle 330 100.0% 0 0.0% 330 100.0% 

Bottom 48 100.0% 0 0.0% 48 100.0% 
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Descriptives 

 

Statistic Std. Error 

25.2.a. Maths 25.2.a. Maths 

There 

are not 

sets at 

this 

school/f

or this 

subject Top Middle Bottom 

There 

are not 

sets at 

this 

school/f

or this 

subject Top 

Middl

e Bottom 

Eng. 

Cap. 

Score

.  

Mean 47.9655 48.6194 45.7667 52.2917 1.8815

4 

.6515

9 

.8211

6 

1.9277

6 

95% 

Confidenc

e Interval 

for Mean 

Lowe

r 

Boun

d 

44.1978 47.3389 44.1513 48.4135 

    

Uppe

r 

Boun

d 

51.7332 49.8998 47.3821 56.1698 

    

5% Trimmed 

Mean 

47.4138 48.2204 45.2121 51.9028 
    

Median 46.5000 48.0000 43.0000 50.0000     

Variance 205.332 197.426 222.520 178.381     

Std. Deviation 14.3294

1 

14.0508

3 

14.9171

0 

13.3559

4 
    

Minimum 24.00 17.00 17.00 29.00     

Maximum 91.00 95.00 91.00 86.00     

Range 67.00 78.00 74.00 57.00     

Interquartile 

Range 

17.50 19.00 24.00 19.00 
    

Skewness .642 .457 .521 .519 .314 .113 .134 .343 

Kurtosis .329 -.089 -.119 -.218 .618 .226 .268 .674 
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A one-way ANOVA was adopted to determine whether engineering capital scores differed between 

groups based on school mathematics sets. A total of 901 participants were classified into four groups 

based on mathematics school sets: No Sets at This School (N=58), Bottom Sets (N=48), Middle Sets 

(N=330), and Top Sets (N=465). Engineering capital scores were found to statistically differ (F(3, 897) 

= 4.272, p=0.005, ETA2=0.014). Tukey post-hoc testing revealed significant differences the Top & 

Middle and Middle & Bottom groups. The ETA2 size of 0.014 indicates a small effect of mathematics 

ability groups in shaping engineering capital scores.  

 

Descriptives 

Eng. Cap. Score. 

 N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 

Minimum Maximum 

B
e

tw
e

e
n

- 

C
o

m
p

o
n

e
n

t 

V
a

ri
a

n
c
e
 

Lower 

Bound 

Upper 

Bound 

No Sets 58 47.9655 14.32941 1.88154 44.1978 51.7332 24.00 91.00  

Top 465 48.6194 14.05083 .65159 47.3389 49.8998 17.00 95.00  

Middle 330 45.7667 14.91710 .82116 44.1513 47.3821 17.00 91.00  

Bottom 48 52.2917 13.35594 1.92776 48.4135 56.1698 29.00 86.00  

Total 901 47.7281 14.43546 .48092 46.7842 48.6719 17.00 95.00  

Model Fixed 

Effects 
  

14.35738 .47831 46.7893 48.6668 
   

Random 

Effects 
   

1.33163 43.4902 51.9659 
  

3.79026 

 

Tests of Homogeneity of Variances 

 

Levene 

Statistic df1 df2 Sig. 

Eng. Cap. Score. Based on Mean .831 3 897 .477 

Based on Median .813 3 897 .487 

Based on Median and 

with adjusted df 

.813 3 889.088 .487 

Based on trimmed mean .776 3 897 .507 

 

ANOVA 

Eng. Cap. Score. 

 Sum of Squares df Mean Square F Sig. 

Between Groups 2641.873 3 880.624 4.272 .005 

Within Groups 184902.507 897 206.134   

Total 187544.380 900    
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ANOVA Effect Sizesa,b 

 Point Estimate 

95% Confidence Interval 

Lower Upper 

Eng. Cap. Score. Eta-squared .014 .001 .030 

Epsilon-squared .011 -.002 .027 

Omega-squared Fixed-effect .011 -.002 .027 

Omega-squared Random-

effect 

.004 -.001 .009 

a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model. 

b. Negative but less biased estimates are retained, not rounded to zero. 

 

Multiple Comparisons 

Eng. Cap. Score. 
 

(I) 25.2.a. Maths (J) 25.2.a. Maths 

Mean 

Difference 

(I-J) 

Std. 

Error Sig. 

95% Confidence 

Interval 
 Lower 

Bound 

Upper 

Bound 

Tukey 

HSD 

There are not sets 

at this school/for 

this subject 

Top -.65384 1.99933 .988 -5.7998 4.4922 

Middle 2.19885 2.04418 .705 -3.0626 7.4603 

Bottom -4.32615 2.80152 .411 -11.5368 2.8845 

Top There are not sets 

at this school/for 

this subject 

.65384 1.99933 .988 -4.4922 5.7998 

Middle 2.85269* 1.03342 .030 .1928 5.5126 

Bottom -3.67231 2.17664 .331 -9.2747 1.9300 

Middle There are not sets 

at this school/for 

this subject 

-2.19885 2.04418 .705 -7.4603 3.0626 

Top -2.85269* 1.03342 .030 -5.5126 -.1928 

Bottom -6.52500* 2.21791 .018 -12.2336 -.8164 

Bottom There are not sets 

at this school/for 

this subject 

4.32615 2.80152 .411 -2.8845 11.5368 

Top 3.67231 2.17664 .331 -1.9300 9.2747 

Middle 6.52500* 2.21791 .018 .8164 12.2336 

*. The mean difference is significant at the 0.05 level. 
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Independent Samples T-Test: National Context and Engineering Capital Score 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be normally distributed with a robust Normal Q-Q plot and 

skewness and kurtosis values within the acceptable range of -1 to 1. The assumptions underpinning 

this test were met approving its use. 

Case Processing Summary 
 

Nation 

Cases 
 Valid Missing Total 
 N Percent N Percent N Percent 

Eng. Cap. Score.  England 832 100.0% 0 0.0% 832 100.0% 

Scotland 89 100.0% 0 0.0% 89 100.0% 

 

 

Descriptives 

 

Nation 

England Scotland 

Statistic 

Std. 

Error Statistic 

Std. 

Error 

Eng. Cap. Score. Mean 47.6995 .49944 47.4494 1.54867 

95% Confidence 

Interval for Mean 

Lower 

Bound 

46.7192 
 

44.3718 
 

Upper 

Bound 

48.6798 
 

50.5271 
 

5% Trimmed Mean 47.2650  46.8883  

Median 45.0000  48.0000  

Variance 207.532  213.455  

Std. Deviation 14.40596  14.61009  

Minimum 17.00  19.00  

Maximum 95.00  91.00  

Range 78.00  72.00  

Interquartile Range 19.00  17.00  

Skewness .430 .085 .634 .255 

Kurtosis -.159 .169 .304 .506 
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An independent samples t-test identified no significant difference in the engineering capital scores of 

those in England (N=832, M=47.70, SD=14.41) and Scotland (N=89, M=47.45, SD=14.61) (t(919)=0.155, 

p=0.877, d=0.017).  

Group Statistics 
 Nation N Mean Std. Deviation Std. Error Mean 

Eng. Cap. Score.  England 832 47.6995 14.40596 .49944 

Scotland 89 47.4494 14.61009 1.54867 

 

Independent Samples Test 

 

Levene's 

Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Significance 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

One-

Sided 

p 

Two-

Sided 

p Lower Upper 

Eng. Cap. 

Score 

Equal 

variances 

assumed 

.197 .657 .155 919 .438 .877 .25008 1.60882 -

2.90731 

3.40747 

Equal 

variances 

not 

assumed 

  

.154 107.134 .439 .878 .25008 1.62721 -

2.97562 

3.47579 

 

 

Independent Samples Effect Sizes 

 Standardizera 

Point 

Estimate 

95% Confidence 

Interval 

Lower Upper 

Eng. Cap. Score. Cohen's d 14.42563 .017 -.201 .236 

Hedges' 

correction 

14.43742 .017 -.201 .236 

Glass's delta 14.61009 .017 -.202 .236 

a. The denominator used in estimating the effect sizes.  

Cohen's d uses the pooled standard deviation.  

Hedges' correction uses the pooled standard deviation, plus a correction factor.  

Glass's delta uses the sample standard deviation of the control group. 
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Binary Logistic Regression: Engineering Educational Aspiration and Engineering Capital Score 

A binary logistic regression was adopted to determine the effect of engineering capital score on the 

likelihood of aspiring to engineering education. Statistical assumptions were tested and confirmed the 

linearity of the relationship between the IV and DV logit, a lack of significant multicollinearity and lack 

of influential outliers supporting the use of this procedure. The logistic regression model was 

statistically significant, χ2(1) = 271.705, p<0.001. The model explained 38.8% (Nagelkerke R2) of the 

variance in educational aspiration and correctly classified 80.6% of cases. Sensitivity was 48.2%, 

specificity was 91.8%. Increasing engineering capital score was associated with a greater likelihood of 

aspiring to engineering educational pathways.  

 

Classification Tablea,b 
 

Observed 

Predicted 
 Binary Coded: Yes at University 

or A-level or after GCSE, No at 

unsure and no Percentage 

Correct  No Yes 

Step 0 Binary Coded: Yes at 

University or A-level or 

after GCSE, No at unsure 

and no 

No 659 0 100.0 

Yes 228 0 .0 

Overall Percentage   74.3 

a. Constant is included in the model. 

b. The cut value is .500 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant -1.061 .077 190.826 1 .000 .346 

 

Variables not in the Equation 

 Score df Sig. 

Step 0 Variables Eng. Cap. Score. 250.286 1 .000 

Overall Statistics 250.286 1 .000 

 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step 271.705 1 .000 

Block 271.705 1 .000 

Model 271.705 1 .000 
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Model Summary 

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 739.377a .264 .388 

a. Estimation terminated at iteration number 5 because parameter estimates changed by 

less than .001. 

 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 6.261 7 .510 

 

Classification Tablea 
 

Observed 

Predicted 
 Binary Coded: Yes at University 

or A-level or after GCSE, No at 

unsure and no Percentage 

Correct  No Yes 

Step 1 Binary Coded: Yes at 

University or A-level or 

after GCSE, No at unsure 

and no 

No 605 54 91.8 

Yes 118 110 48.2 

Overall Percentage   80.6 

a. The cut value is .500 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1a Eng. Cap. Score. .107 .008 174.238 1 .000 1.113 

Constant -6.622 .449 217.122 1 .000 .001 

a. Variable(s) entered on step 1: ENGINEERING_CAPITAL_FINAL_MODEL_AKA_MODELSIX. 
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Binary Logistic Regression: Engineering Career Aspiration and Engineering Capital Score 

A binary logistic regression was adopted to determine the effect of engineering capital score on the 

likelihood of aspiring to engineering-related careers. Statistical assumptions were tested and 

confirmed the linearity of the relationship between the IV and DV logit, a lack of significant 

multicollinearity and lack of influential outliers supporting the use of this procedure. The logistic 

regression model was statistically significant, χ2(1) = 374.683, p<0.001. The model explained 47.1% 

(Nagelkerke R2) of the variance in career aspiration and correctly classified 80.0% of cases. Sensitivity 

was 67.4%, specificity was 87.0%. Increasing engineering capital score was associated with a greater 

likelihood of aspiring to engineering career pathways. 

 

Classification Tablea,b 
 

Observed 

Predicted 
 57. Do you think you might like 

to work in an engineering-related 

job in the future? Percentage 

Correct  No Yes 

Step 0 57. Do you think you might 

like to work in an 

engineering-related job in 

the future? 

No 576 0 100.0 

Yes 316 0 .0 

Overall Percentage   64.6 

a. Constant is included in the model. 

b. The cut value is .500 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant -.600 .070 73.549 1 .000 .549 

 

Variables not in the Equation 

 Score df Sig. 

Step 0 Variables Eng. Cap. Score. 319.496 1 .000 

Overall Statistics 319.496 1 .000 

 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 Step 374.683 1 .000 

Block 374.683 1 .000 

Model 374.683 1 .000 
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Model Summary 

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 784.996a .343 .471 

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than 

.001. 

 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 9.904 7 .194 

 

Classification Tablea 
 

Observed 

Predicted 
 57. Do you think you might like 

to work in an engineering-related 

job in the future? Percentage 

Correct  No Yes 

Step 1 57. Do you think you might 

like to work in an 

engineering-related job in 

the future? 

No 501 75 87.0 

Yes 103 213 67.4 

Overall Percentage   80.0 

a. The cut value is .500 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1a Eng. Cap. Score. .127 .009 209.405 1 .000 1.136 

Constant -6.955 .457 231.987 1 .000 .001 

a. Variable(s) entered on step 1: ENGINEERING_CAPITAL_FINAL_MODEL_AKA_MODELSIX. 
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Cronbach’s Alpha Analysis: Engineering Habits of Mind Instrument 

A Cronbach’s Alpha analysis was utilised to examine the internal consistency (reliability) of responses 

on the engineering habits of mind scale. Six items were examined and determined to possess a high 

level of internal consistency (N=897, a=0.850) supporting the use of this scale. This result was not 

meaningfully improved by the removal of any of the items.  

Case Processing Summary 

 N % 

Cases Valid 897 97.4 

Excludeda 24 2.6 

Total 921 100.0 

a. Listwise deletion based on all variables in the procedure. 

 

Reliability Statistics 

Cronbach's Alpha 

Cronbach's Alpha Based on 

Standardized Items N of Items 

.850 .852 6 

 

Item-Total Statistics 

 

Scale 

Mean if 

Item 

Deleted 

Scale 

Variance if 

Item 

Deleted 

Corrected 

Item-Total 

Correlatio

n 

Squared 

Multiple 

Correlation 

Cronbach'

s Alpha if 

Item 

Deleted 

41.1. I am good at finding patterns 

and seeing how things fit together 

3.04 11.003 .648 .464 .823 

41.2. I am good at looking for 

problems and checking things are 

right 

3.03 10.769 .705 .542 .812 

41.3. I am good at imagining and 

picturing what things might look like 

2.81 11.550 .492 .272 .853 

41.4. I am good at trying different 

ways to make things better 

3.01 10.940 .676 .475 .817 

41.5. I am good at fixing problems and 

finding solutions 

3.03 11.074 .668 .490 .819 

41.6. I am good at trying things, 

testing ideas, and changing my plans 

if necessary 

3.08 11.055 .628 .421 .826 
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Principal Components Analysis: Engineering Habits of Mind Instrument 

A Principal Components Analysis (PCA) was run on a six-item instrument measuring the engineering 

habits of mind of 897 participants. The suitability of PCA was confirmed with a Kaiser-Meyer-Olkin 

(KMO) measure of 0.861 and a statistically significant Bartlett’s test (p<0.001).  

The PCA resolved to a single component with an eigenvalue greater than one which explained 57.76% 

of total variance. No rotation was applied. This result aligns with the theoretical structure of the 

instrument supporting its validity and adoption.  

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .861 

Bartlett's Test of Sphericity Approx. Chi-Square 2112.931 

df 15 

Sig. .000 

 

Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total 

% of 

Variance Cumulative % Total 

% of 

Variance Cumulative % 

1 3.466 57.759 57.759 3.466 57.759 57.759 

2 .732 12.205 69.964    

3 .618 10.292 80.256    

4 .461 7.683 87.939    

5 .393 6.548 94.487    

6 .331 5.513 100.000    

Extraction Method: Principal Component Analysis. 

 

Component Matrixa 

 

Component 

1 

41.1. I am good at finding patterns and seeing how things fit 

together 

.768 

41.2. I am good at looking for problems and checking things 

are right 

.818 

41.3. I am good at imagining and picturing what things might 

look like 

.621 

41.4. I am good at trying different ways to make things better .789 

41.5. I am good at fixing problems and finding solutions .791 

41.6. I am good at trying things, testing ideas, and changing 

my plans if necessary 

.756 

Extraction Method: Principal Component Analysis. 

a. 1 components extracted. 
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Cronbach’s Alpha Analysis: Engineering Engagement Instrument 

A Cronbach’s Alpha analysis was utilised to examine the internal consistency (reliability) of responses 

on the engineering engagement scale. Twelve items were examined and determined to possess a high 

level of internal consistency (N=851, a=0.922) supporting the use of this scale. This result was not 

meaningfully improved by the removal of any of the items.  

 

Case Processing Summary 

 N % 

Cases Valid 851 92.4 

Excludeda 70 7.6 

Total 921 100.0 

a. Listwise deletion based on all variables in the procedure. 

 

Reliability Statistics 

Cronbach's Alpha 

Cronbach's Alpha Based on 

Standardized Items N of Items 

.922 .919 12 
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Item-Total Statistics 

 

Scale Mean if 

Item Deleted 

Scale 

Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Squared 

Multiple 

Correlation 

Cronbach's 

Alpha if Item 

Deleted 

63.a.1. I believe I could be 

successful at engineering in the 

future 

.36 78.007 .804 .681 .909 

63.a.2. I think understanding 

engineering is important 

-.09 80.646 .746 .769 .912 

63.a.3. I enjoy learning about 

engineering 

.22 77.286 .879 .870 .906 

63.a.4. I think learning about 

engineering is interesting 

.15 77.225 .871 .864 .906 

63.a.5. I think it is useful to know 

about engineering 

-.14 80.068 .757 .796 .912 

63.a.6. Learning about 

engineering takes too much effort 

-.11 89.223 .307 .437 .929 

63.a.7. I think learning about 

engineering is boring 

-.16 83.946 .536 .539 .921 

63.a.8. I worry I am not good at 

engineering 

.01 94.402 .029 .225 .939 

63.a.9. I want to learn more 

about engineering 

.15 77.405 .844 .828 .907 

63.a.10. I want to learn more 

about engineering, even if it is 

hard 

.19 77.436 .855 .846 .907 

63.a.11. It would be good for my 

future to learn about engineering 

.03 79.021 .775 .755 .911 

40.7. I know quite a lot about 

engineering 

.64 81.766 .694 .508 .914 
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Principal Components Analysis: Engineering Engagement Instrument 

A Principal Components Analysis (PCA) was run on the twelve-item instrument measuring the 

engineering engagement of 851 participants. The suitability of PCA was confirmed with a Kaiser-

Meyer-Olkin (KMO) measure of 0.920 and a statistically significant Bartlett’s test (p<0.001). The PCA 

resolved to two components with an eigenvalue greater than one which explained 73.86% of total 

variance. No rotation was applied. 

This test aligns with the theoretical structure of the instrument supporting its validity and adoption. 

Whilst the instrument did not resolve to a single component the two components align to the 

theoretical expectation of engineering engagement as discussed in Chapter Eight.   

 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .920 

Bartlett's Test of Sphericity Approx. Chi-Square 9537.519 

df 66 

Sig. .000 

 

Communalities 

 Initial Extraction 

40.7. I know quite a lot about engineering 1.000 .562 

63.a.1. I believe I could be successful at engineering 

in the future 

1.000 .721 

63.a.2. I think understanding engineering is important 1.000 .738 

63.a.3. I enjoy learning about engineering 1.000 .847 

63.a.4. I think learning about engineering is interesting 1.000 .842 

63.a.5. I think it is useful to know about engineering 1.000 .774 

63.a.6. Learning about engineering takes too much 

effort 

1.000 .698 

63.a.7. I think learning about engineering is boring 1.000 .727 

63.a.8. I worry I am not good at engineering 1.000 .528 

63.a.9. I want to learn more about engineering 1.000 .822 

63.a.10. I want to learn more about engineering, even 

if it is hard 

1.000 .825 

63.a.11. It would be good for my future to learn about 

engineering 

1.000 .778 

Extraction Method: Principal Component Analysis. 
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Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total 

% of 

Variance Cumulative % Total 

% of 

Variance Cumulative % 

1 7.101 59.175 59.175 7.101 59.175 59.175 

2 1.762 14.685 73.860 1.762 14.685 73.860 

3 .742 6.182 80.041    

4 .535 4.459 84.501    

5 .416 3.463 87.964    

6 .368 3.063 91.027    

7 .330 2.749 93.776    

8 .256 2.135 95.911    

9 .169 1.411 97.322    

10 .134 1.114 98.436    

11 .106 .883 99.320    

12 .082 .680 100.000    

Extraction Method: Principal Component Analysis. 

 

Component Matrixa 

 

Component 

1 2 

40.7. I know quite a lot about engineering .742 .106 

63.a.1. I believe I could be successful at engineering 

in the future 

.848 .039 

63.a.2. I think understanding engineering is important .831 -.218 

63.a.3. I enjoy learning about engineering .921 -.008 

63.a.4. I think learning about engineering is interesting .917 -.021 

63.a.5. I think it is useful to know about engineering .845 -.244 

63.a.6. Learning about engineering takes too much 

effort 

.285 .786 

63.a.7. I think learning about engineering is boring .525 .672 

63.a.8. I worry I am not good at engineering -.009 .727 

63.a.9. I want to learn more about engineering .904 -.073 

63.a.10. I want to learn more about engineering, even 

if it is hard 

.908 -.037 

63.a.11. It would be good for my future to learn about 

engineering 

.860 -.196 

Extraction Method: Principal Component Analysis. 

a. 2 components extracted. 
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One-Way ANOVA: Engineering Habits of Mind 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be largely normally distributed with a robust Normal Q-Q plot 

and skewness and kurtosis values within the acceptable range of -1 to 1 – the Medium group did 

express slightly greater kurtosis however this was deemed within an acceptable margin given the 

robustness of the ANOVA procedure. The assumptions underpinning this test were met approving its 

use.  

Case Processing Summary 
 

ENGINEERING_CAPITAL 

_FINAL_GROUPS 

Cases 
 Valid Missing Total 
 N Percent N Percent N Percent 

Engineering Habits 

of Mind 

Low 175 100.0% 0 0.0% 175 100.0% 

Medium 656 100.0% 0 0.0% 656 100.0% 

High 90 100.0% 0 0.0% 90 100.0% 

 

Descriptives 

 

ENGINEERING_CAPITAL_FINAL_GROUPS 

Low Medium High 

Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error 

Engineering 

Habits of Mind 

Mean .83 .322 3.79 .139 6.67 .295 

95% Confidence 

Interval for Mean 

Lower 

Bound 

.19 
 

3.52 
 

6.08 
 

Upper 

Bound 

1.46 
 

4.06 
 

7.25 
 

5% Trimmed Mean .91  3.84  6.65  

Median 1.00  4.00  6.00  

Variance 18.131  12.597  7.843  

Std. Deviation 4.258  3.549  2.800  

Minimum -12  -12  0  

Maximum 12  12  12  

Range 24  24  12  

Interquartile Range 5  4  4  

Skewness -.372 .184 -.450 .095 .266 .254 

Kurtosis .871 .365 1.680 .191 -.483 .503 
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A one-way Welch’s ANOVA was adopted to determine whether engineering habits of mind scores 

differed between groups based on engineering capital. A total of 921 participants were classified into 

three groups based on engineering capital scores: Low (N=175), Medium (N=656), and High (N=90). 

Engineering habits of mind scores were found to statistically differ (F(2, 214.224) = 89.394, p<0.001, 

ETA2=0.154). Games-Howell post-hoc testing revealed significant differences at all levels between the 

Low (M=0.83, SD=4.26), Medium (M=3.79, SD=3.55) and High (M=6.67, SD=2.80) groups. The ETA2 size 

of 0.154 indicates a strong effect of engineering capital in shaping engineering habits of mind scores.  

 

Descriptives 

Engineering Habits of Mind   

 N Mean 

Std. 

Deviation 

Std. 

Error 

95% 

Confidence 

Interval for 

Mean 

Minimum Maximum 

Between- 

Component 

Variance 

Lower 

Bound 

Upper 

Bound 

Low 175 .83 4.258 .322 .19 1.46 -12 12  

Medium 656 3.79 3.549 .139 3.52 4.06 -12 12  

High 90 6.67 2.800 .295 6.08 7.25 0 12  

Total 921 3.51 3.944 .130 3.25 3.76 -12 12  

Model Fixed 

Effects 
  

3.631 .120 3.27 3.74 
   

Random 

Effects 
   

1.715 -3.87 10.89 
  

5.295 

 

 

Tests of Homogeneity of Variances 

 

Levene 

Statistic df1 df2 Sig. 

Engineering Habits of 

Mind 

Based on Mean 4.893 2 918 .008 

Based on Median 5.351 2 918 .005 

Based on Median and 

with adjusted df 

5.351 2 871.434 .005 

Based on trimmed mean 4.859 2 918 .008 

 

ANOVA 

Engineering Habits of Mind  

 Sum of Squares df Mean Square F Sig. 

Between Groups 2206.362 2 1103.181 83.669 <.001 

Within Groups 12103.827 918 13.185   

Total 14310.189 920    
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ANOVA Effect Sizesa 

 Point Estimate 

95% Confidence Interval 

Lower Upper 

Engineering Habits of Mind Eta-squared .154 .113 .195 

Epsilon-squared .152 .111 .193 

Omega-squared Fixed-

effect 

.152 .111 .193 

Omega-squared Random-

effect 

.082 .059 .107 

a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model. 

 

Robust Tests of Equality of Means 

Engineering Habits of Mind 

 Statistica df1 df2 Sig. 

Welch 89.394 2 214.224 <.001 

Brown-Forsythe 86.909 2 353.683 <.001 

a. Asymptotically F distributed. 

 

 

Multiple Comparisons 

Dependent Variable:   Engineering Literacy Total (EngCap+)   
 

(I) ENGINEERING_ 

(II) CAPITAL_ 

(III) FINAL_ 

(IV) GROUPS 

(J) 

ENGINEERING_ 

CAPITAL_ 

FINAL_ 

GROUPS 

Mean 

Difference 

(I-J) 

Std. 

Error Sig. 

95% Confidence 

Interval 
 

Lower 

Bound 

Upper 

Bound 

Tukey 

HSD 

Low Medium -2.961* .309 <.001 -3.69 -2.24 

High -5.838* .471 <.001 -6.94 -4.73 

Medium Low 2.961* .309 <.001 2.24 3.69 

High -2.877* .408 <.001 -3.84 -1.92 

High Low 5.838* .471 <.001 4.73 6.94 

Medium 2.877* .408 <.001 1.92 3.84 

Games-

Howell 

Low Medium -2.961* .350 <.001 -3.79 -2.13 

High -5.838* .437 <.001 -6.87 -4.81 

Medium Low 2.961* .350 <.001 2.13 3.79 

High -2.877* .326 <.001 -3.65 -2.10 

High Low 5.838* .437 <.001 4.81 6.87 

Medium 2.877* .326 <.001 2.10 3.65 

*. The mean difference is significant at the 0.05 level. 
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Chi-Squared Test: Knowing a Hobbyist Engineer and Engineering Capital Groups 

A Chi-Square Test was adopted to test the association between engineering capital groups and 

knowing a hobbyist engineer. Test assumptions were met with all expected cell frequencies greater 

than five. The test revealed a significant association, (X2(4)=34.084, p<0.001, Cramer’s V=0.137) with 

the Cramer’s V score supporting a substantial relationship between categories. This supports a 

significant relationship between knowing a hobbyist engineering and engineering capital.  

 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

ENGINEERING_CAPITAL_FINAL_GROUPS 

* 37. Do you know anyone (family, friends, or 

community) who has a hobby that involves 

engineering e.g. designing or making things, 

woodworking, crafts, DIY? 

903 98.0% 18 2.0% 921 100.0% 
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ENGINEERING_CAPITAL_GROUPS * 37. Do you know anyone (family, friends, or 

community) who has a hobby that involves engineering e.g. designing or making 

things, woodworking, crafts, DIY? Crosstabulation 

 

37. Do you know anyone 

(family, friends, or community) 

… 

Total No Yes 

Don't 

Know 

ENGINEERIN

G 

CAPITAL 

GROUPS 

High Count 16 62 9 87 

% within 

ENGINEERING_CAPITAL_FINAL_GROU

PS 

18.4% 71.3% 10.3% 100.0

% 

% within 37. Do you know anyone (family, 

friends, or community) … 

7.2% 12.4% 5.0% 9.6% 

% of Total 1.8% 6.9% 1.0% 9.6% 

Low Count 66 67 37 170 

% within ENGINEERING_ 

CAPITAL_FINAL_GROUPS 

38.8% 39.4% 21.8% 100.0

% 

% within 37. Do you know anyone (family, 

friends, or community) … 

29.6% 13.4% 20.7% 18.8% 

% of Total 7.3% 7.4% 4.1% 18.8% 

Mediu

m 

Count 141 372 133 646 

% within ENGINEERING_ 

CAPITAL_FINAL_GROUPS 

21.8% 57.6% 20.6% 100.0

% 

% within 37. Do you know anyone (family, 

friends, or community) … 

63.2% 74.3% 74.3% 71.5% 

% of Total 15.6% 41.2% 14.7% 71.5% 

Total Count 223 501 179 903 

% within ENGINEERING_ 

CAPITAL_FINAL_GROUPS 

24.7% 55.5% 19.8% 100.0

% 

% within 37. Do you know anyone (family, 

friends, or community) … 

100.0

% 

100.0

% 

100.0

% 

100.0

% 

% of Total 24.7% 55.5% 19.8% 100.0

% 

 

Chi-Square Tests 

 Value df 

Asymptotic Significance 

(2-sided) 

Pearson Chi-Square 34.084a 4 <.001 

Likelihood Ratio 33.649 4 <.001 

N of Valid Cases 903   

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 17.25. 
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Chi-Squared Test: Knowing a Hobbyist Engineer and Gender 

A Chi-Square Test was adopted to test the association between gender groups and knowing a hobbyist 

engineer. Test assumptions were met with all expected cell frequencies greater than five. The test 

revealed no significant association, (X2(2)=1.819, p=0.403, Cramer’s V=0.046). 

 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

2. Are you a girl or a boy? * 

37. Do you know anyone 

(family, friends, or 

community) who has a 

hobby that involves 

engineering e.g. designing 

or making things, 

woodworking, crafts, DIY? 

876 95.1% 45 4.9% 921 100.0% 
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2. Are you a girl or a boy? * 37. Do you know anyone (family, friends, or community) 

who has a hobby that involves engineering e.g. designing or making things, 

woodworking, crafts, DIY? Crosstabulation 

 

37. Do you know anyone (family, 

friends, or community)… 

Total No Yes 

Don’t 

Know 

2. Are you a girl or 

a boy? 

Boy Count 96 201 83 380 

% within 2. Are you a girl 

or a boy? 

25.3% 52.9% 21.8% 100.0% 

% within 37. Do you know 

anyone (family, friends, or 

community) … 

44.0% 41.6% 47.4% 43.4% 

% of Total 11.0% 22.9% 9.5% 43.4% 

Girl Count 122 282 92 496 

% within 2. Are you a girl 

or a boy? 

24.6% 56.9% 18.5% 100.0% 

% within 37. Do you know 

anyone (family, friends, or 

community) … 

56.0% 58.4% 52.6% 56.6% 

% of Total 13.9% 32.2% 10.5% 56.6% 

Total Count 218 483 175 876 

% within 2. Are you a girl or a 

boy? 

24.9% 55.1% 20.0% 100.0% 

% within 37. Do you know 

anyone (family, friends, or 

community) … 

100.0% 100.0% 100.0% 100.0% 

% of Total 24.9% 55.1% 20.0% 100.0% 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-sided) 

Pearson Chi-Square 1.819a 2 .403 

Likelihood Ratio 1.814 2 .404 

Linear-by-Linear Association .332 1 .564 

N of Valid Cases 876   

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 75.91. 
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Chi-Squared Test: Knowing a Hobbyist Engineer and Deprivation (Cultural Capital) 

A Chi-Square Test was adopted to test the association between social class groups and knowing a 

hobbyist engineer. One test assumption was not met as not all cell frequencies were greater than five. 

The test revealed no significant association, (X2(8)=7.501, p=0.484, Cramer’s V=0.064) 

 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

General Cultural Capital 

Category * 37. Do you know 

anyone (family, friends, or 

community) … 

903 98.0% 18 2.0% 921 100.0% 
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General Cultural Capital Category * 37. Do you know anyone (family, friends, or 

community) who has a hobby that involves engineering e.g. designing or making 

things, woodworking, crafts, DIY? Crosstabulation 

 

37. Do you know anyone (family, friends, 

or community) … 

Total No Yes Don't Know 

General Cultural 

Capital Category 

Very 

low 

Count 3 5 2 10 

% within General 

Cultural Capital  

30.0% 50.0% 20.0% 100.0% 

% within 37. Do you 

know anyone … 

1.3% 1.0% 1.1% 1.1% 

% of Total 0.3% 0.6% 0.2% 1.1% 

Low Count 28 53 24 105 

% within General 

Cultural Capital  

26.7% 50.5% 22.9% 100.0% 

% within 37. Do you 

know anyone… 

12.6% 10.6% 13.4% 11.6% 

% of Total 3.1% 5.9% 2.7% 11.6% 

Medium Count 91 172 72 335 

% within General 

Cultural Capital  

27.2% 51.3% 21.5% 100.0% 

% within 37. Do you 

know … 

40.8% 34.3% 40.2% 37.1% 

% of Total 10.1% 19.0% 8.0% 37.1% 

High Count 65 170 54 289 

% within General 

Cultural Capital  

22.5% 58.8% 18.7% 100.0% 

% within 37. Do you 

know anyone… 

29.1% 33.9% 30.2% 32.0% 

% of Total 7.2% 18.8% 6.0% 32.0% 

Very 

high 

Count 36 101 27 164 

% within General 

Cultural Capital  

22.0% 61.6% 16.5% 100.0% 

% within 37. Do you 

know anyone … 

16.1% 20.2% 15.1% 18.2% 

% of Total 4.0% 11.2% 3.0% 18.2% 

Total Count 223 501 179 903 

% within General 

Cultural Capital  

24.7% 55.5% 19.8% 100.0% 

% within 37. Do you 

know anyone …  .. 

100.0% 100.0% 100.0% 100.0% 

% of Total 24.7% 55.5% 19.8% 100.0% 
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Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-sided) 

Pearson Chi-Square 7.501a 8 .484 

Likelihood Ratio 7.520 8 .482 

Linear-by-Linear Association .003 1 .959 

N of Valid Cases 903   

a. 2 cells (13.3%) have expected count less than 5. The minimum expected count is 1.98. 

 

Symmetric Measures 

 Value Approximate Significance 

Nominal by Nominal Phi .091 .484 

Cramer's V .064 .484 

N of Valid Cases 903  
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One-Way ANOVA: Familial Capital 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be largely normally distributed with a robust Normal Q-Q plot 

and skewness and kurtosis values within the acceptable range of -1 to 1. The assumptions 

underpinning this test were met approving its use.  

 

Case Processing Summary 
 ENGINEERING_ 

CAPITAL_ 

GROUPS 

Cases 
 Valid Missing Total 
 N Percent N Percent N Percent 

Eng. Familial Capital Low 154 88.0% 21 12.0% 175 100.0% 

Medium 638 97.3% 18 2.7% 656 100.0% 

High 90 100.0% 0 0.0% 90 100.0% 

 

Descriptives 

 

ENGINEERING_CAPITAL _GROUPS 

Low Medium High 

Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error 

Eng. Familial 

Capital 

Mean -2.0779 .16391 -.5031 .06782 .9778 .15072 

95% Confidence 

Interval for Mean 

Lower 

Bound 

-2.4018 
 

-.6363 
 

.6783 
 

Upper 

Bound 

-1.7541 
 

-.3699 
 

1.2773 
 

5% Trimmed Mean -2.2431  -.5019  .9691  

Median -2.0000  .0000  1.0000  

Variance 4.138  2.935  2.044  

Std. Deviation 2.03413  1.71314  1.42984  

Minimum -4.00  -4.00  -2.00  

Maximum 4.00  4.00  4.00  

Range 8.00  8.00  6.00  

Interquartile Range 4.00  2.00  2.00  

Skewness .777 .195 -.065 .097 .087 .254 

Kurtosis -.132 .389 -.084 .193 -.161 .503 
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A one-way Welch’s ANOVA was adopted to determine whether engineering familial capital scores 

differed between groups based on engineering capital. A total of 882 participants were classified into 

three groups based on engineering capital scores: Low (N=154), Medium (N=638), and High (N=90). 

Engineering familial capital scores were found to statistically differ (F(2, 200.623) = 94.038, p<0.001, 

ETA2=0.174). Games-Howell post-hoc testing revealed significant differences at all levels between the 

Low (M=-2.08, SD=2.04), Medium (M=-0.50, SD=1.71) and High (M=0.98, SD=1.43) groups. The ETA2 

size of 0.174 indicates a strong effect of engineering capital in shaping engineering familial capital 

scores.  

Descriptives 

 N Mean Std. Deviation Std. Error 

95% Confidence Interval 

for Mean 

Lower 

Bound 

Upper 

Bound 

Low 154 -2.0779 2.03413 .16391 -2.4018 -1.7541 

Medium 638 -.5031 1.71314 .06782 -.6363 -.3699 

High 90 .9778 1.42984 .15072 .6783 1.2773 

Total 882 -.6270 1.92076 .06468 -.7539 -.5000 

Model Fixed Effects   1.74759 .05884 -.7425 -.5115 

Random 

Effects 

   
.90816 -4.5345 3.2805 

 

Tests of Homogeneity of Variances 

 

Levene 

Statistic df1 df2 Sig. 

Eng. Familial Capital Based on Mean 11.601 2 879 <.001 

Based on Median 9.895 2 879 <.001 

Based on Median and 

with adjusted df 

9.895 2 864.638 <.001 

Based on trimmed mean 12.040 2 879 <.001 

 

ANOVA 

Eng_Familial_Capital  

 Sum of Squares df Mean Square F Sig. 

Between Groups 565.764 2 282.882 92.625 <.001 

Within Groups 2684.514 879 3.054   

Total 3250.278 881    
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ANOVA Effect Sizesa 

 Point Estimate 

95% Confidence Interval 

Lower Upper 

Eng_Familial_Capital Eta-squared .174 .131 .217 

Epsilon-squared .172 .129 .215 

Omega-squared Fixed-

effect 

.172 .128 .215 

Omega-squared Random-

effect 

.094 .069 .120 

a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model. 

 

Robust Tests of Equality of Means 

Eng_Familial_Capital  

 Statistica df1 df2 Sig. 

Welch 94.038 2 200.623 <.001 

Brown-Forsythe 93.315 2 319.268 <.001 

a. Asymptotically F distributed. 

 

Multiple Comparisons 

Dependent Variable:   Eng_Familial_Capital_Two_Eng_Items   
 

(I) ENG. 

CAPITAL 

GROUPS 

(J) ENG. 

CAPITAL 

GROUPS 

Mean 

Difference 

(I-J) 

Std. 

Error Sig. 

95% 

Confidence 

Interval 
 Lower 

Bound 

Upper 

Bound 

Games-

Howell 

Low Medium -1.57479* .17739 <.001 -

1.9935 

-

1.1560 

High -3.05570* .22267 <.001 -

3.5809 

-

2.5305 

Medium Low 1.57479* .17739 <.001 1.1560 1.9935 

High -1.48091* .16528 <.001 -

1.8728 

-

1.0890 

High Low 3.05570* .22267 <.001 2.5305 3.5809 

Medium 1.48091* .16528 <.001 1.0890 1.8728 

*. The mean difference is significant at the 0.05 level. 
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One-Way ANOVA: Linguistic Capital  

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be largely normally distributed with a robust Normal Q-Q plot 

and skewness and kurtosis values within the acceptable range of -1 to 1. The assumptions 

underpinning this test were met approving its use.  

 

Case Processing Summary 
 

ENGINEERING 

CAPITAL GROUPS 

Cases 
 Valid Missing Total 
 N Percent N Percent N Percent 

Eng. Linguistic 

Capital 

Low 156 89.1% 19 10.9% 175 100.0% 

Medium 642 97.9% 14 2.1% 656 100.0% 

High 90 100.0% 0 0.0% 90 100.0% 

 

Descriptives 

 

ENGINEERING CAPITAL GROUPS 

Low Medium High 

Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error 

Eng. Linguistic 

Capital 

Mean -3.2244 .08844 -.9657 .06132 1.6000 .13389 

95% Confidence 

Interval for Mean 

Lower 

Bound 

-3.3991 
 

-1.0861 
 

1.3340 
 

Upper 

Bound 

-3.0496 
 

-.8453 
 

1.8660 
 

5% Trimmed Mean -3.3262  -.9669  1.6235  

Median -4.0000  -1.0000  2.0000  

Variance 1.220  2.414  1.613  

Std. Deviation 1.10467  1.55364  1.27023  

Minimum -4.00  -4.00  -2.00  

Maximum .00  4.00  4.00  

Range 4.00  8.00  6.00  

Interquartile Range 2.00  2.00  1.00  

Skewness 1.067 .194 -.120 .096 -.314 .254 

Kurtosis -.082 .386 -.353 .193 .499 .503 
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A one-way Welch’s ANOVA was adopted to determine whether engineering linguistic capital scores 

differed between groups based on engineering capital. A total of 888 participants were classified into 

three groups based on engineering capital scores: Low (N=156), Medium (N=642), and High (N=90). 

Engineering linguistic capital scores were found to statistically differ (F(2, 218.842) = 484.613, p<0.001, 

ETA2=0.422). Games-Howell post-hoc testing revealed significant differences at all levels between the 

Low (M=-3.22, SD=1.10), Medium (M=-0.97, SD=1.55) and High (M=1.60, SD=1.27) groups. The ETA2 

size of 0.422 indicates a strong effect of engineering capital in shaping engineering linguistic capital 

scores.  

Descriptives 

Eng_Linguistic_Capital  

 N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 

Minimum Maximum 

Between- 

Component 

Variance 

Lower 

Bound 

Upper 

Bound 

Low 156 -

3.2244 

1.10467 .08844 -

3.3991 

-3.0496 -4.00 .00 
 

Medium 642 -.9657 1.55364 .06132 -

1.0861 

-.8453 -4.00 4.00 
 

High 90 1.6000 1.27023 .13389 1.3340 1.8660 -2.00 4.00  

Total 888 -

1.1025 

1.91466 .06425 -

1.2286 

-.9764 -4.00 4.00 
 

Model Fixed 

Effects 

  
1.45749 .04891 -

1.1985 

-1.0065 
   

Random 

Effects 

   
1.41172 -

7.1766 

4.9717 
  

3.53046 

 

Tests of Homogeneity of Variances 

 

Levene 

Statistic df1 df2 Sig. 

Eng_Linguistic_Capital Based on Mean 9.259 2 885 <.001 

Based on Median 17.546 2 885 <.001 

Based on Median and 

with adjusted df 

17.546 2 867.633 <.001 

Based on trimmed mean 10.352 2 885 <.001 

 

ANOVA 
Eng_Linguistic_Capital   

 Sum of Squares df Mean Square F Sig. 

Between Groups 1371.681 2 685.841 322.857 <.001 

Within Groups 1879.994 885 2.124   

Total 3251.675 887    
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ANOVA Effect Sizesa 

 Point Estimate 

95% Confidence Interval 

Lower Upper 

Eng_Linguistic_Capital Eta-squared .422 .375 .463 

Epsilon-squared .421 .374 .462 

Omega-squared Fixed-

effect 

.420 .374 .462 

Omega-squared Random-

effect 

.266 .230 .300 

a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model. 

 

Robust Tests of Equality of Means 

Eng_Linguistic_Capital   

 Statistica df1 df2 Sig. 

Welch 484.613 2 218.842 <.001 

Brown-Forsythe 438.998 2 316.485 <.001 

a. Asymptotically F distributed. 

 

Multiple Comparisons 

Dependent Variable:   Eng_Linguistic_Capital  
 

Eng. Cap. 

Groups. 

Eng. Cap. 

Groups. 

Mean 

Difference 

(I-J) 

Std. 

Error Sig. 

95% Confidence 

Interval 
 Lower 

Bound 

Upper 

Bound 

Games-

Howell 

Low Medium -2.25863* .10762 <.001 -2.5120 -2.0052 

High -4.82436* .16047 <.001 -5.2039 -4.4449 

Medium Low 2.25863* .10762 <.001 2.0052 2.5120 

High -2.56573* .14727 <.001 -2.9149 -2.2166 

High Low 4.82436* .16047 <.001 4.4449 5.2039 

Medium 2.56573* .14727 <.001 2.2166 2.9149 

*. The mean difference is significant at the 0.05 level. 
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One-Way ANOVA: Engineering Engagement 

An Explore function was utilised to test the statistical assumptions underpinning the adoption of this 

test. Outliers and skewness/kurtosis were examined. A number of small outliers were identified, 

however examination of the 5% trimmed means (means calculated without the highest and lowest 

5% of scores) highlighted very little change in means demonstrating a minimal impact of these small 

outliers. The data was also deemed to be largely normally distributed with a robust Normal Q-Q plot 

and skewness and kurtosis values within the acceptable range of -1 to 1. The assumptions 

underpinning this test were met approving its use.  

 

Case Processing Summary 
 

ENGINEERING 

CAPITAL GROUPS 

Cases 
 Valid Missing Total 
 N Percent N Percent N Percent 

Eng. Engagement Low 175 100.0% 0 0.0% 175 100.0% 

Medium 656 100.0% 0 0.0% 656 100.0% 

High 90 100.0% 0 0.0% 90 100.0% 

 

Descriptives 

 

ENGINEERING CAPITAL GROUPS 

Low Medium High 

Statistic 

Std. 

Error Statistic 

Std. 

Error Statistic 

Std. 

Error 

Eng. Engagement Mean -9.31 .542 .81 .296 13.88 .716 

95% Confidence 

Interval for Mean 

Lower 

Bound 

-10.38 
 

.23 
 

12.45 
 

Upper 

Bound 

-8.25 
 

1.39 
 

15.30 
 

5% Trimmed Mean -9.20  .98  14.15  

Median -10.00  .00  14.00  

Variance 51.343  57.446  46.198  

Std. Deviation 7.165  7.579  6.797  

Minimum -24  -24  -8  

Maximum 5  23  24  

Range 29  47  32  

Interquartile Range 13  10  10  

Skewness -.191 .184 -.279 .095 -.513 .254 

Kurtosis -1.035 .365 .476 .191 .028 .503 
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A one-way ANOVA was adopted to determine whether engineering engagement scores differed 

between groups based on engineering capital. A total of 921 participants were classified into three 

groups based on engineering capital scores: Low (N=175), Medium (N=656), and High (N=90). 

Engineering engagement scores were found to statistically differ (F(2, 918) = 298.204, p<0.001, 

ETA2=0.394). Tukey post-hoc testing revealed significant differences at all levels between the Low (M=-

9.31, SD=7.17), Medium (M=0.81, SD=7.58) and High (M=13.88, SD=6.80) groups. The ETA2 size of 

0.394 indicates a strong effect of engineering capital in shaping engineering engagement scores.  

 

Descriptives 

DV Engineering Engagement   

 N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum Maximum 

Lower 

Bound 

Upper 

Bound 

Low 175 -9.31 7.165 .542 -10.38 -8.25 -24 5 

Medium 656 .81 7.579 .296 .23 1.39 -24 23 

High 90 13.88 6.797 .716 12.45 15.30 -8 24 

Total 921 .16 9.532 .314 -.45 .78 -24 24 

 

 

Tests of Homogeneity of Variances 

 

Levene 

Statistic df1 df2 Sig. 

DV Engineering 

Engagement 

Based on Mean .547 2 918 .579 

Based on Median .521 2 918 .594 

Based on Median and 

with adjusted df 

.521 2 879.394 .594 

Based on trimmed mean .543 2 918 .581 

 

 

ANOVA 

DV Engineering Engagement   

 Sum of Squares df Mean Square F Sig. 

Between Groups 32921.019 2 16460.509 298.204 <.001 

Within Groups 50672.551 918 55.199   

Total 83593.570 920    
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ANOVA Effect Sizesa 

 Point Estimate 

95% Confidence Interval 

Lower Upper 

DV Engineering 

Engagement 

Eta-squared .394 .347 .435 

Epsilon-squared .393 .346 .434 

Omega-squared Fixed-

effect 

.392 .346 .434 

Omega-squared Random-

effect 

.244 .209 .277 

a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model. 

 

 

Multiple Comparisons 

Dependent Variable:   DV Engineering Engagement   

Tukey HSD   

(I) ENGINEERING 

CAPITAL GROUPS 

(J) ENGINEERING 

CAPITAL GROUPS 

Mean 

Difference 

(I-J) 

Std. 

Error Sig. 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Low Medium -10.124* .632 <.001 -11.61 -8.64 

High -23.192* .964 <.001 -25.45 -20.93 

Medium Low 10.124* .632 <.001 8.64 11.61 

High -13.068* .835 <.001 -15.03 -11.11 

High Low 23.192* .964 <.001 20.93 25.45 

Medium 13.068* .835 <.001 11.11 15.03 

*. The mean difference is significant at the 0.05 level. 

 


