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ABSTRACT

It is well established that stellar discs are destabilized by sharp features in their phase space, driving recurrent spiral modes.
We explore the extent to which surface-density breaks in disc galaxies — which represent sharp changes in the gradient of the
disc density — drive new spiral modes. We employ linear perturbation theory to investigate how disc breaks alter the eigenmode
spectrum of an otherwise pure exponential disc. We find that the presence of a density break gives rise to a set of new, vigorously
growing, modes. For a given multiplicity, these edge modes occur in pairs, with closely separated resonances between each pair.
The growth rate of edge modes decreases when the break is weakened or moved outward to lower-density regions of the disc.
Both down- and up-bending profiles excite edge modes, whose origin can be best understood via the gravitational torques they
exert on the underlying disc. When the profile is down-bending (Type II) the faster growing mode is the inner one while in the
up-bending (Type III) case the outer mode is faster growing. In both cases, the faster growing mode has a corotation almost

coincident with the break. We show that the torques of the edge modes tend to smoothen the break.

Key words: galaxies: evolution — galaxies: formation — galaxies: structure — galaxies: spiral.

1 INTRODUCTION

In early photographic work, van der Kruit (1979, 1987) found sharp
truncations in the exponential profiles of disc galaxies. However,
later studies using CCDs revealed that the profiles of disc galaxies
are more accurately described by a double exponential, where a
break in the disc density is followed by an outer disc region with a
smaller scale length (Pohlen et al. 2002). Subsequently, Pohlen &
Trujillo (2006) and Erwin, Pohlen & Beckman (2008) showed that
disc profiles come in three types: single exponential down to the
last measured point (Type I profiles), downward-bending (truncated
or Type II profiles), and upward-bending (antitruncated or Type III
profiles). They also found that, in the local universe, disc galaxies
with broken stellar profiles are the norm rather than the exception,
with single-exponential discs comprising only ~ 10 per cent of the
population. Type II profiles apparently occur in ~ 40 — 60 per cent
of disc galaxies in the local universe (Pohlen & Trujillo 2006; Erwin
etal. 2008). Typically, in a Type II disc galaxy, the radial scale length
drops by a factor of 2-3 at the break in the I-band, whereas in a Type
IIT galaxy it increases by a factor of 1.5-2 (Laine, Laurikainen & Salo
2016). Type III breaks appear to occur further out in disc galaxies
than Type II breaks, with the typical Type II break radius around 2
inner scale lengths and the typical Type III break radius around 4
inner scale lengths, with substantial scatter (Laine et al. 2016). Type
II breaks have also been observed at high redshift (Pérez 2004; Xu &
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Yu 2024), with break radii appearing to have increased with cosmic
time (Trujillo & Pohlen 2005; Azzollini, Trujillo & Beckman 2008),
linking the evolution of breaks with the inside-out growth of discs.

Despite their ubiquity, the origin of density-profile breaks is still
somewhat uncertain. Type II breaks are generally thought to be
due to star formation thresholds (Kennicutt 1989; Schaye 2004;
Elmegreen & Hunter 2006; Martin-Navarro et al. 2012). Numerical
simulations of isolated discs support the idea that Type II profiles are
the result of a cut-off in the star formation in combination with radial
migration induced by transient spiral arms (RoSkar et al. 2008). This
mechanism predicts a positive stellar age gradient in the disc outside
the break, leading to a U-shaped age profile (Roskar et al. 2008).
Observational studies have also found evidence for U-shaped age
profiles (Yoachim, RoSkar & Debattista 2010; Radburn-Smith et al.
2012). Still other studies find that Type II breaks are not necessarily
connected with radial migration, and that disc breaks are largely
absent from the mass distribution of the disc, suggesting that the
break is caused by differences in stellar populations (e.g. Trujillo &
Pohlen 2005; Bakos, Trujillo & Pohlen 2008; Sdnchez-Bldzquez et al.
2009; Ruiz-Lara et al. 2017). Nonetheless breaks are still observed
in resolved star count studies (de Jong et al. 2007; Radburn-Smith
et al. 2012) for stellar populations of all ages, albeit weaker in old
populations. However, weaker older breaks are required to give the
‘U’-shaped age profiles.

The cause of Type III (up-bending) profiles is still poorly under-
stood. In some cases, the observed Type III profiles are the result of a
transition from the disc to the outer halo (Erwin, Beckman & Pohlen
2005), which can be recognized by a change of isophote ellipticity.

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
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Studies have proposed various internal (e.g. Minchev et al. 2012;
Herpich etal. 2017; Pfeffer et al. 2022) and external mechanisms (e.g.
Younger et al. 2007; Kazantzidis et al. 2009; Roediger et al. 2012;
Borlaff et al. 2014; Watkins et al. 2019) to account for up-bending
profiles. It is also unclear whether the environment plays a role in
producing Type III discs. Cosmological simulations have shown that
the incidence of Type III discs increases with disc mass (Pfeffer
et al. 2022), suggesting mergers are a likely driving mechanism. In
contrast, observational studies have found no clear differences in
the frequency of break types in cluster and field environments (e.g.
Maltby et al. 2012; Head, Lucey & Hudson 2015), which favours
internal processes.

While a final theory of the formation of spiral density waves
structure is still missing (Lin & Shu 1964; Goldreich & Lynden-Bell
1965; Julian & Toomre 1966; Mark 1977; Toomre 1981; D’Onghia,
Vogelsberger & Hernquist 2013), both analytic arguments and N-
body simulations have shown that features such as grooves in the
phase space of a disc give rise to a recurrent cycle of spiral modes
(Sellwood & Lin 1989; Sellwood & Kahn 1991; De Rijcke & Voulis
2016), where a mode is defined as a self-sustaining, sinusoidal
disturbance of fixed frequency, and constant shape (e.g. Sellwood
et al. 2019). A groove (a narrow deficiency in the phase-space
density) destabilizes spiral modes, which grow, saturate, and then
decay, transferring angular momentum to stars at the outer Lindblad
resonance (OLR) in the process. As a result, OLR stars are scattered
in a narrow region, carving out new grooves in the disc (Sellwood
et al. 2019) and seeding a next generation of spiral-density waves.
This process repeats itself so long as star formation cools the disc
sufficiently to enable it to remain responsive (Sellwood & Carlberg
1984).

The disc breaks of Type II and III profiles act as discontinuities in
phase space and should therefore also produce spiral modes. Already
Toomre (1981), in his analysis of the cold Gaussian disc, found a
fast-growing mode (his ‘D-mode’) which he argued was seeded by
a sudden drop in the disc density. Consequently, he dubbed this D-
mode an ‘edge mode’. As with groove modes, edge modes do not
require any feedback cycles or reflecting barriers to develop. Any
infinitesimal co-orbiting distortion at the disc break will induce a
response from the surrounding shearing disc in the form of wakes
extending inwards and outwards (Goldreich & Lynden-Bell 1965;
Julian & Toomre 1966; Binney 2020). In the case of Type II profiles,
due to the sudden drop in density beyond the edge, the self-gravity
of the outer disc offers less support to the outer wake, resulting in
an imbalance between the responses of the inner and outer disc.
The net forward pull from the inner wake then transports angular
momentum outwards beyond the edge, causing the disturbance to
grow exponentially as it rotates (Sellwood & Masters 2021).

Toomre (1989) argued that two conditions are necessary for a disc
to support edge modes: first, that the disc needs to be massive and
cool enough to respond to disturbances in the phase-space density,
with Toomre-Q < 2 and X = Ap/Aie < 3, where Ay = 2 rcr/m and
the critical wavelength Aqy = 4m2GX /2. Here, rcg and m are the
disturbance’s corotation radius and multiplicity, respectively, X is the
disc’s surface density, and « the epicyclic frequency. Toomre’s second
condition is that the radial region over which the disc undergoes
its most abrupt change must be smaller than one-quarter of the
axisymmetric stability length, Acy.

Edge modes driven by Type II and Type III density profiles have
received scant attention in the past. Therefore, in this paper, we
aim to shed more light on the role of disc breaks (of both Type
II and III) in driving edge modes. We use PYSTAB (De Rijcke &
Voulis 2016), a PYTHON/C++ code which allows us to calculate the
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eigenmodes of a razor-thin disc using linear perturbation theory to
compute their properties. We present PYSTAB along with the control
model we employ in Section 2. The edge modes driven by the break
are presented in Section 3, and the results for a Type II disc are
shown in Section 4. In Section 5, we explore the effects of varying
Toomre-Q. Section 6 discusses differences in the edge mode growth
rates. We investigate the properties of edge modes occurring in Type
III discs in Section 7. Lastly, we discuss and summarize our results
in Section 8.

2 THE MODELS

The control model comprises a razor-thin, pure exponential stellar
disc with a density distribution given by

¥ = Xge /M, (1

where X is the central stellar surface density and hy is the scale
length of the disc. We take hq = 2.5 kpc (as appropriate for the Milky
Way, see Bland-Hawthorn & Gerhard 2016) and adjust X, such
that the total disc mass is My = 5 x 10'° M. We compute the in-
plane gravitational potential, Vy4(r), of the stellar disc numerically;
we use the same code to compute the potential of the disc when
a density break is introduced. We employ a Plummer sphere for
the bulge and a logarithmic potential for the halo. The in-plane
gravitational potentials of these non-responsive components are
given by equations (2) and (3), respectively

v _ G M, )

b(r) = _ﬁv 2
2

Va(r) = ”30 In (2 + ). 3)

The bulge has a mass My = My/4 and scale-length r, = 0.3h4. The
halo scale length is ry, = 5r4 and vy = 0.65/GMg/hg ~ 191 kms~!.

The equilibrium configuration of the model is characterized
completely by the global potential Vy(r) = V4(r) + Vi (r) + Vi(r) and
the distribution function (DF) of the disc. We use the DF derived by
Dehnen (1999) for a warm disc

y(re)X(re) Q(rg)[L — L(E)]
2o} (rg) oX(rg)

Jo(E, L) = ) “
where rg is the radius of the circular orbit at energy E, and y =
2 Q k!, with  the circular orbit angular frequency. L and E are the
angular momentum and binding energy, respectively, and are given
by

L = ruvy, )

E = Vo(r) — %(vf +vd), (6)

v, and vy being the radial and tangential velocity, respectively. Using
a DF of this form, we can generate disc galaxy models with any
desired surface density profile, ¥(r), and radial velocity dispersion
profile, o,(r). This allows us to introduce breaks into the surface
density of the control model; the cooler the orbital distribution, the
closer a model adheres to the target density and dispersion profiles.
Small deviations between the model’s characteristics and the target
profiles can occur if the target profiles have extremely sharp features.
This limits the sharpness of the density breaks we can introduce, but
has no further consequences for our analysis.

In the top left panel of Fig. 1, we show the disc’s density (black)
and Toomre Q parameter (blue) profiles for the control model with no
break (Type I). The dashed-cyan line represents the desired profile,
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Figure 1. Top panel: The desired surface density distribution (dashed cyan) and the actual density profile produced by the DF (solid black) for the control
model (left) and a model with a Type II (middle, with f, = 0.5) and Type III (right, with fi,; = 2.0) break. The blue curve represents the Toomre Q-parameter.
Bottom panel: The mean-tangential velocity vy (blue curve), the tangential and radial velocity dispersions, og (red curve), and o (black curve), respectively,

for the same models.

while the solid-black line reflects the actual density profile fit by the
DF. In the control model, Q ~ 1.2 and is roughly constant throughout
the disc. In the bottom left panel of Fig. 1, we show the radial
and tangential velocity dispersions, as well as the mean-tangential
velocity curve of the control model.! Note that the velocity dispersion
profiles only reflect the contribution from the disc, causing a central
dip at r < 2 kpc. The bulge in the model — which is only included
via its potential — will result in a o, profile which decreases with r,
consistent with observations (e.g. Mogotsi & Romeo 2019).

In the top panel of Fig. 2, we show the angular velocity, 2(r),
epicyclic frequency, « (r) and m = 2 and m = 4 Lindblad frequencies,
Q(r) £ k(r)/m, of the control model. The Q(r) — «(r)/2 curve,
which determines the location of the inner Lindblad resonance, or
ILR, peaks at roughly 45 kms~'kpc™!. The bottom panel shows the
rotation curve of the control model decomposed into its bulge (red),
disc (green), and halo (blue) components.

We introduce density breaks in the control disc at radius ry, by
changing the target density profile, X (r), in the DF. The target density
declines exponentially with radius with a scale length g, ipner inside
o and with a scale length Ky outer = for/ld, inner OUtside 1. We refer to
Jor as the break strength, since fi,, = 1 corresponds to no break. A Type
II (down-bending) break corresponds to a break strength fi,, < 1 while
a Type III (up-bending) break is introduced by adopting fi,, > 1. In
Fig. 1, we show the properties for a model with a Type II break with
for = 0.5 (middle), and a Type III break with fi, = 2.0 (right). Both
models have r,, = 7.5 kpc. A density break, through its effect on the
circular velocity profile, introduces a small kink in the Q-parameter,
which also causes the velocity dispersion to be slightly higher than
the control model around r,. In the Type II model (middle), the
drop in density also results in a sharp increase in the Q-parameter at
r > ry. The Q-parameter also rises steadily atr > ry, for the Type 111
model. This is due to an increase in the stellar epicyclic frequencies
at larger radii, which mimics a more heated outer disc. Fig. 3 also
shows the epicyclic and Lindblad frequencies for the Type II (top)
and Type III models. While the frequencies are qualitatively the same

IThese profiles are computed via numerical integrals of the DF.

60
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\ A
\ L — Q)
50 — \“ ‘\;\ ——e
o \ A
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Figure 2. Top: The angular velocity, Q(r), epicyclic frequency, «(r) and
m = 2 and m = 4 Lindblad frequencies, 2(r) & «(r)/m, of the control model.
Bottom: The rotation curve of the control model decomposed into the bulge
(red), disc (green), and halo (blue).
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Figure 3. Top: The angular velocity, Q(r), epicyclic frequency, «(r) and m =
2 and m = 4 Lindblad frequencies, Q2(r) &+ «(r)/m, of the Type II (top) and
Type III (bottom) model. The bumps in the frequency profiles at the break
radius are a direct result of the abrupt change in the derivative of the density
at that radius.

as the control model, the abrupt change in density causes a kink to
appear at the break radius. This is a direct result of the abrupt change
in the derivative of the density at that radius. Note that for Type III
profiles, the density profile is also always monotonically decreasing
with radius. In the rest of this paper, we always set /14 inner = 2.5 kpc,
that is, the same as the control model.

We compute the eigenmodes of a given disc model using PYSTAB, a
fast and versatile PYTHON/C++ Code. The underlying mathematical
formalism of this code is described in Vauterin & Dejonghe (1996),
Dury et al. (2008), and De Rijcke & Voulis (2016), so we do
not include a detailed description here. Instead, a brief outline of
the formalism, including the values and numerical parameters we
employ in the models, is given in Appendix A. The bulge and halo
components defined earlier are considered to be too dynamically hot
to support any instabilities and are included only via their potentials.
Any eigenmodes which PYSTAB recovers exist entirely within the
razor-thin disc. This version of the code does not take into account
any dynamical effects due to gas.

3 THE SPECTRUM OF THE CONTROL MODEL

In order to identify the edge modes, we first perform the stability
analysis of the control model described in Section 2. This provides
us with a basis for comparison when we later analyse the eigenmode

MNRAS 529, 4879-4895 (2024)

spectra of the models after we introduce a disc break. The left-hand
column of Fig. 4 shows the spectra of the control model for different
multiplicities. The vertical axis represents the imaginary part of the
complex frequency, J(w), that is, the growth rate of the eigenmode.
On the horizontal axis, we plot the real part of the complex frequency,
which is given by R(w) = m€2p, where m is the multiplicity and €2,
is the pattern speed. The different rows show the spectra for m = 2,
3,and 4.

Asexplained in Appendix A, an eigenmode occurs at each complex
frequency @ where the model-dependent response matrix C(w) has
a unit eigenvalue. The plots of the spectra therefore show the value
of min (|A — 1]): the smallest distance between 1 and any of the
eigenvalues of C(w). In Fig. 4 and its analogues, eigenmodes can be
identified visually as the dark regions where min (|A — 1|) = 0. The
eigenmodes which are present in the control model are marked with
white triangles.

The top left panel of Fig. 4 shows that the control model supports
a sequence of growing m = 2 eigenmodes. These eigenmodes have
pattern speeds €2, 2 50km s~'kpc™! and rotate sufficiently fast to
avoid having an ILR (see Fig. 2). Therefore, these are likely to be
cavity modes which reflect between the galaxy centre and another
resonance. In order to verify this, we set up a model with an increased
bulge mass (M), = M,/1), which effectively raises the peak of the ILR
in the model. We find that the sequence of m = 2 modes is suppressed,
which is expected since cavity modes are damped by the ILR (Mark
1974).

The complex frequencies and resonances of all the m = 2
eigenmodes in the control model are listed in Table 1. In the m =
3 case of Fig. 4, we find three slowly growing cavity modes with
varying pattern speeds. The third row of Fig. 4 shows that the
control model supports a single slow-growing m = 4 eigenmode
atmS, ~ 112kms~'kpc™".

In Fig. 5, we show some characteristics of one of the intrinsic
eigenmodes of the control model. We chose the m = 2 mode with
complex frequency w = 114 + 11i kms~'kpc™! as representative of
the modes in the control model. The left panel shows the surface
density of the mode, where the solid circle represents the corotation
(CR) radius, while the dashed circles represent the ILRs and OLRs.
Positive densities are indicated in red, while negative ones are shown
in light blue. The middle panel shows the pitch angle of the spiral
as a function of radius. (The wiggles in the pitch angle profiles are
numerical artefacts due to the use of a finite set of potential-density
basis pairs, as described in Appendix A).

Lastly, the right panel of Fig. 5 shows the gravitational torque,
7,(r), exerted by the spiral pattern on an annulus with radius r and
unity width. The torque on an annulus of width dr is given by

To(r) = m Zpen (1) Ve () rdr sin(m yy(r)), @)

where X and Vi are the amplitudes of the pattern’s density and
potential spirals, respectively, y¢ is the angular offset between those
two spirals, and m is the pattern’s multiplicity (see Zhang 1996,
1998). As a sanity check, we confirmed that the total torque on the
disc, T, (o, 1S zero, and this for all modes discussed in this paper. In
other words, we numerically checked that the integral

Tz total = / mnrxpen(r)vpen(r) Sin(m)/o(r))dr (8)
0

is indeed zero, as it should be.
A negative 7,(r) means that the disc stars lose angular momentum
to the spiral mode, whereas a positive 7,(r) indicates that they
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Figure 4. The eigenmode spectra in the complex frequency space of the control model (left column) and the Type II model with r, = 7.5 kpc and fi,, = 0.5
(right column). Each row represents spectra of different multiplicities, with top, middle, and bottom rows showing the spectra for m = 2, 3, and 4, respectively.
The real part of the frequency is related to the pattern speed of the mode by €2, = Ji(w)/m, and the imaginary part quantifies the growth rate of the mode. White
triangles mark the modes present in the control model, whereas the cyan squares reflect the position of the edge modes. Comparing the two columns for each
row shows that a disc break gives rise to a set of edge modes which are absent in the control model.

gain angular momentum from the pattern. As expected, the outer
stars gain angular momentum at the expense of the inner ones.
This outward transport of angular momentum is the root cause of
spontaneously growing eigenmodes (see Lynden-Bell & Kalnajs
1972; Zhang 1998).

3.1 Highly concentrated modes

In addition to the cavity modes described earlier, we uncover a
number of highly radially concentrated modes living entirely within
their ILR. In the m = 4 case (bottom row of Fig. 4), we find such a

MNRAS 529, 4879-4895 (2024)
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Table 1. Complex frequencies, and CR and OLR radii of the m = 2 modes
of the control model (a single-exponential profile). The modes are listed in
order of decreasing growth rate.

m = 2 control disc model modes

R(w) (kms kpc™) S(w) (kms™ kpe™) CR (kpc) OLR (kpc)
233.871 24.366 1.748 3.189
193.518 24.544 2.156 3.914
161.290 21.452 2.645 4733
137.733 14.676 3210 5.625
114.903 10.562 3.801 6.508
96.771 6.77 4.893 8.073
81.531 3.694 5.41 8.81

mode around m$2, ~ 112km s~'kpc™". In Fig. 6, we show the radial
extent of this mode. The blue region in the plot is centred about
the frequency of the mode and its vertical width is proportional to
its density, which reflects the amplitude of the wave. The width of
the blue region is not linked with values on the y-axis and is only
indicative. As can be seen, the mode’s amplitude is entirely restricted
to a region within 500 pc of the centre, which is inside the ILR. This
type of mode may be similar in nature to that identified by Binney
(2020) in their study of the shearing sheet. However, given how
centrally concentrated these modes are — existing in a region smaller
than the thickness of an average disc — they are unlikely to play any
significant role in the overall evolution of the outer disc.

In addition, we find that in some of the models we explore further,
the density break also destabilizes one of the concentrated modes
described. However, it is unaffected by any changes to the break
properties. That is, its pattern speed and growth rate remain fixed.
Therefore, we shall omit these modes from further analysis.

We found that, in some cases, there are other modes in the complex
frequency being masked by this concentrated mode. Therefore,
whenever we find a concentrated mode, we carefully verify that
no extended modes are masked by this concentrated mode.

4 EDGE MODES IN TYPE II DISCS

We first consider the edge modes in Type II discs. The right column
of Fig. 4 shows the eigenmode spectra for a model with a Type II
disc break with r,, = 7.5 kpc and fi,, = 0.5. Comparing the left and
right columns of Fig. 4, it is clear that the appearance of the disc
break alters the disc’s eigenmode spectrum and gives rise to a new
set of rapidly growing modes, not present in the control model, with
different pattern speeds for all multiplicities (i.e. for all rows). These

60
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Figure 6. The important frequencies of the control model (same as Fig. 2).
The blue region at small r is centred around the frequency of a highly centrally
concentrated m = 4 mode with m€2, ~ 112 km s~'kpc™! found in the control
model. The vertical width of the region — which is proportional to its density
—reflects the amplitude of the wave. This is not connected to the values on the
y-axis, and is only indicative. We find a number of these highly concentrated
modes across our study. However, since they do not impact the evolution of
the outer disc, we omit them from further study.

new modes are marked with cyan squares in Fig. 4. Unlike the m =
2 cavity modes in the control model, we find that the growth rate
of the edge modes are not affected by an increase in bulge mass,
despite having an ILR. For all m (all rows), edge modes occur in
pairs, with both members of each pair having comparable growth
rates (see Table 2), with the slow (outer) mode having a growth rate
on average 10 percent lower than the fast (inner) member. We list
the complex frequencies of these edge modes, along with additional
parameters, in Table 2. The density break clearly has a substantial
destabilizing effect on the eigenmode spectrum, altering the number
and the frequencies of the eigenmodes.

In this particular model, with r,, = 7.5 kpc and fi,, = 0.5, we find
that the m = 4 mode is the fastest growing one (see Table 2) and
would therefore dominate the evolution of the galaxy. While we only
show our results for modes up to m = 4, we have also tested the model
for higher multiplicity edge modes and found similar growth rates up
till m = 8. Beyond m = 8, the growth rates steadily decline, with the
m = 16 edge modes having growth rates under 5 kms~! kpc™'. Since
we are working within the linear framework, higher multiplicity
modes are not the result of overlapping lower multiplicity modes.
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Figure 5. Left: The density distribution of an intrinsic mode of the disc, where the solid curve represents the CR radius and the dashed curves represent the
ILR and OLR radii. Middle: The pitch angle of the mode. Right: The torque per unit width dr exerted by the mode as a function of radius.

MNRAS 529, 4879-4895 (2024)

20z Iudy GO uo 3senb Aq z/22€9//6/8v/¥/62S/2101e/SeIuW/WOoD"dNo"dlWwapede//:sd)y Wolj Papeojumoq



Table 2. Complex frequencies, and CR and OLR radii of the modes of a
model with a density break with r,, = 7.5 kpc and fi,, = 0.5. The first column
lists the multiplicity m of the modes. The CR and OLR of the two members
of each mode pair which show hints of resonance overlap are highlighted in
bold-face.

Edge mode frequencies for rpy = 7.5 kpc and fi,r = 0.5

m  R() kms'kpc!)  I(w) kmskpe!)  CR(kpe) OLR (kpc)
2 57.177 7.903 7.821 11.650
2 37.709 6.756 10.909 17.827
3 91.814 8.734 7.257 9.691
3 66.478 8.202 9.591 13.023
4 124.108 9.390 7.150 9.040
4 95.147 8.419 9.076 11302

Throughout the study, we find that the characteristics we will
describe are similar for all edge modes, regardless of the multiplicity.
Therefore, for simplicity, we restrict the rest of our analysis to the
leading modes with m < 4.

In Fig. 7, we plot the surface density of the edge modes, with
their complex frequency denoted in each panel. Here, the solid-black
curve represents the CR radius, while the thick-dashed curve reflects
the break radius. The inner and outer thin-dashed lines represent the
inner and our Lindblad resonances, respectively. As can be seen in
Fig. 7, the inner fast member (top row) of each mode pair has its
CR roughly coincident with the break. In addition, it is clear that the

Driving spiral structure in disc galaxies = 4885

wave is unable to propagate through the ILR. Alternatively, the outer
slow member (bottom row) has its CR well outside the break. For all
m, the outer edge mode exists between the break and its CR.

In addition, we find that for all m, the OLR of the fast mode
almost coincides with the CR of the slow mode (see Table 2).
This suggests the two modes are resonantly coupled, which may
drive more complex non-linear behaviour (e.g. Sygnet et al. 1988;
Masset & Tagger 1997). We explore this in more detail in Section 8.4.
Parallels may be made between our results and the characteristics of
the groove modes reported in De Rijcke & Voulis (2016); their linear
stability analysis of a grooved exponential disc revealed that spiral
modes triggered by a groove also occur in pairs, and that there is the
possibility of resonant overlap. This is unsurprising since grooves
and edges are closely related (e.g. Sellwood & Masters 2021).

4.1 Dependence on break radius

We investigate the impact of varying the break radius, r,;, on the
growth rates of edge modes in a Type II disc, by varying it in the
range 5 < ry/ kpc < 9 in steps of 0.2 kpc, holding fi,, = 0.5 fixed.
‘We compute the eigenmode spectrum in each instance; the resulting
growth rates, J(w), are shown in the left panel of Fig. 8. The modes
with multiplicities m = 2, 3, and 4 are shown in red, blue, and
green markers, respectively, with the two members of each mode
pair represented by circles for the outer (slow) mode and triangles
for the inner (fast) mode. For all values of ry,, the m = 2 mode is the
slowest growing mode.
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Figure 7. Surface density of the edge modes for the model with fi,; = 0.5 and ry, = 7.5 kpc, with each column representing modes of different multiplicities,
m. Positive densities are shown in red, negative ones in blue. The disc break radius is indicated by the thick dashed circle, while the thin dashed circles indicate
the positions of the ILRs and OLRs of circular orbits. The solid line represents the CR resonance of the mode. Note the near coincidence of the OLR of the fast
mode (top row) with the CR of the slow mode (bottom row). The thin dotted line contours trace surface density levels at =10, 50, and 90 per cent of the

maximum value.
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Figure 8. Left: The growth rate, J(w), of the edge modes as a function of the break radius, ry,, for a model with fi,, = 0.5 (Type II profile). The m = 2, 3, and
4 modes are represented by red, blue, and green markers respectively, with each separate pair of modes represented by circle (slow, outer mode) and triangle
(fast, inner mode) markers. For all values of m, the growth rate of the edge modes decreases as ry, increases, until the edge modes become lost and only the
intrinsic modes of the disc remain. Right: The growth rate of the edge modes as a function of the break strength, fi, for models with r,, = 7.5 kpc. Here, fir =
1 represents the control model (no break), while fi; < 1 and fi,; > 1 represent Type II and Type III breaks, respectively. As fi, — 1 from smaller values, the
Type II break weakens, which causes the edge modes to grow less rapidly. As fi, increases past unity, the models transition to Type III profiles, which revives

the edge modes.

Fig. 8 (left) reveals that all multiplicities exhibit the same trend:
As ry increases, the growth rates for the edge modes decline. At
roe 2, 9 kpe, only the intrinsic modes of the control disc (left panel
of Fig. 4) remain visible. The dependence of the growth rate on
o 18 €asy to understand in the edge mode mechanism of Toomre
(1989), in which the growth of the edge modes depends entirely on
the supporting response of the disc. The less support the surrounding
disc provides to the wakes generated by an initial perturbation on the
axisymmetric break, the weaker are the resulting torques on the disc,
which in turn lowers the growth rate of the modes. The rate at which
the growth rate of the edge modes declines is roughly equal for all
values of m.

4.2 Dependence on break strength

We further investigate the impact which the break strength, fi,, has
on the growth rates of the edge modes, by varying the scale length of
the outer disc, while holding r,, = 7.5 kpc fixed. The case of fi, =
1 represents the control model with no break (equivalent to the left
column of Fig. 4), while fi, < 1 and f;, > 1 correspond to Type II
and Type III profiles, respectively.

The right panel of Fig. 8 plots the edge mode growth rate, J(w),
as a function of fi,. The break strength has a dramatic impact on
the growth rate of the edge modes. As with varying ry,, the same
trend is present for all values of m: as the break weakens (fpr — 1)
a substantial decrease in the growth rate of the edge modes occurs,
until only the intrinsic modes of the control model remain. As f;,
increases past unity, the model transitions from a Type II to a Type
III break, with a revival of the edge modes; we defer discussion of
Type III breaks to Section 7.

The gradual weakening of the edge modes as the Type Il break is
made progressively gentler can be attributed to both the weakening
of the density contrast across the break and to the increase in the
outer disc mass. In the context of the Toomre mechanism, as the
density contrast across the break radius becomes smaller, and finally
disappears when fi,, = 1, the break becomes an ever weaker source
of initial perturbations — stunting the growth of the edge modes. In
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addition, as the outer disc gains mass, it supports a stronger outer
wake from an initial perturbation, and the relative difference in the
responses of the inner and outer discs diminishes. As a result, the
growth rates of the edge modes decrease until fi,, = 1 is reached and
only the modes intrinsic to the disc remain.

We conclude that both the strength of the break and its radial
position are important factors which contribute to the growth rates
of the edge modes. Even a weak break produces edge modes as long
as the break radius lies in a responsive part of the disc. However,
for a weak break, the edge modes will likely not be dynamically
important, and will be overwhelmed by other more dominant modes
of the disc. Alternatively, a strong break leads to vigorously growing
edge modes (especially for m = 3 and4), which may play a role in
the evolution of the galaxy.

4.3 Pitch angles and torque

Fig. 5 shows the pitch angle (middle panel) and torque (right panel)
profiles for one of the m = 2 cavity modes in the control model. The
pitch angle increases up to ~ 3 kpc, followed by a steady decrease
beyond. We find that this smooth variation in the pitch angle is similar
for all cavity modes.

However, in the case of edge modes, we find that the pitch angle
variation is unlike that of the cavity modes. In Fig. 9, we show the
pitch angle (top row) and the torque on the stars, t,(r), (bottom row)
of the fast edge modes, as a function of radius for m = 2, 3, and4
(left to right). We do this for a model with fi,, = 0.5 and r,, = 7.5 kpc.
Comparing the pitch angle profiles here with that of the control model
in Fig. 5 shows that while the pitch angle for the control model mode
varies smoothly over a wide radial range, the change in the edge
mode pitch angles is more abrupt. For example, the pitch angle for
the m = 2 (left panel of In Fig. 9) does not show significant variation
away from the break region. However, right inside the break, the
pitch angle increases rapidly (by 210°), then falls back to roughly
its original values immediately outside the break region, resulting in
a tightening of the spiral pattern beyond ry,, as can also be seen in
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Figure 9. The pitch angles (top row) and torques (bottom row) of the edge modes for the model with fi,, = 0.5 and ry,, = 7.5 kpc. We show only the fast modes,
which have their CR close to the disc break (top row in Fig. 7). The left, middle, and right columns show the results for m = 2, 3, and 4, respectively. The vertical
full line marks the location of each mode’s CR radius; the vertical-dashed line marks the break radius.

the top row of Fig. 7. The pitch angles of the m = 3 and m = 4 modes
behave similarly.

The sudden change in pitch angle for the edge modes also has an
effect on the torque the spiral produces, with more tightly wound
edge modes exerting their torque over narrower radial ranges. We
show the corresponding torque profiles in the bottom row of Fig. 9.
Generally, the torque profiles follow similar overall behaviour for
m = 2, 3, and 4. Inside the break (and CR), the torque is negative,
whereas it is positive outside the break. Typically, the region around
a Type II break lies on the rising side of the positive part of the
7,(r) profile. In other words, this part of the disc gains angular
momentum and is therefore being stretched outwards. Moreover,
the stars just inside the break gain less angular momentum than
the stars just outside the break. Hence, stars are being pulled away
from the break, spreading the mass outwards and decreasing the
sharpness of the break. Conversely, stars inside the break (and CR)
lose angular momentum due to the negative torque and are therefore
pushed inwards. This results in the inner density profile becoming
steeper over time, weakening the break further. The combined effect
of this secular evolution driven by edge modes is that the break will
become weaker and thus less effective at provoking edge modes.

Fig. 10 shows the pitch angle variation for one of the slow, outer
edge modes (m = 3). We find similar behaviour for all values of m.
The pitch angle for the slow edge modes differs substantially from
its fast counterpart. Rather than undergoing a sudden change around
the break radius, the pitch angle for the low frequency modes varies
more smoothly with radius, which is a behaviour similar to that of
the cavity modes of the control model. For a Type II disc, we find
that the pitch angle tends to increase with r.

5 VARYING THE Q-PARAMETER

All the models we have considered so far have identical Toomre-
Q profiles, with Q hovering around 1.2 inside r, (see Fig. 1).
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Figure 10. The pitch angle as a function of radius r for the outer (slow) m =
3 edge mode for the model with fi,, = 0.5 and ry = 7.5 kpc. For all m, the
pitch angle variation of the outer edge modes show similar behaviour, with
the pitch angle increasing steadily with radius.

Observational studies investigating disc stability have shown that
nearby galaxies exhibit a wide range of values for the stellar Q-
parameter (Q = 1.4-3.2) across different morphological types (e.g.
Romeo & Mogotsi 2017; Aditya 2023). We now investigate the
impact of varying the Q-parameter in the inner disc has on the edge
modes. We set up three models with f,, = 0.5 and r,, = 7.5 kpc and
consider models withthe 0 = 1.1, 1.5, and 1.7.2 Since we find that the
effect which varying Q has on modes of different m is comparable,
in Fig. 11, we show the resulting density distributions (top), torque

2We also tested a model with Q = 2.1, which resulted in the edge modes
being lost — as predicted by Toomre (1989).
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Figure 11. Top: Density plots for the fast m = 3 edge modes for a model with fir = 0.5 and rpr = 7.5 kpc. We test multiple versions of this model with different
Q profiles in the inner disc. From left to right Q = 1.1, 1.5and 1.7 in the inner disc. Middle: The torque profiles of the edge modes. Bottom: corresponding
pitch-angle profiles for the edge modes. A cooler disc results in a density distribution which is more localized near the break, resulting in more localized torque
profiles. The vertical full line marks the corotation radius of each mode, while the vertical-dashed line indicates ri,, = 7.5 kpc.

(middle), and pitch angle profiles (bottom) for the fast (inner) m =
3 modes only, which are representative of the general trends we
find. From left to right, we show inner-disc Q = 1.1, 1.5and 1.7.
As with the previous models, Q outside r,, is not held fixed, but
increases with r, which is a consequence of the decreased surface
density. Changing Q has only a small effect on the pattern speed but
substantially suppresses their growth rates as Q rises (the complex
frequencies for the edge modes are shown in the top row of Fig. 11).
This reduced growth rate is due to the less vigorous supporting
response to the wake produced by an initial perturbation. We list the
complex frequencies along with the resonant radii of the edge modes
in Table 3.

Fig. 11 also shows that, as Q increases, the overall density
distribution (top) of the edge mode changes substantially, with the
pattern broadening radially and developing a slight leading extension
near the CR. This change is also reflected in the torque and pitch angle
profiles of the edge modes. The slight leading extension results in an
increase in the backwards torque inside the CR which is not present
in the cooler, Q = 1.1, model. In a hotter disc, the part of the spiral
inside the CR is more open, as can be seen by the sharp increase
in the pitch angle. Like the break models in Section 4, the spiral
tightens quickly after the CR, with pitch angle values smaller than
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Table 3. Complex frequencies, and CR and OLR radii of the m = 3 edge
modes of a model with a density break with r,, = 7.5 kpc and fi,y = 0.5.
Here, we vary the Q-parameter in order to investigate the impact this has on
the edge modes. As with Table 2, the CR and OLR of the two members of
each mode pair which show hints of resonance overlap are highlighted in
bold-face.

m = 3 edge mode frequencies for rp; = 7.5 kpc and fir = 0.5

Q0 R (kms'kpe!) () kmsT'kpe!) CR(kpc) OLR (kpe)
L1 91.253 11.283 7.305 9.746
11 67.573 9.2047 9.469 12.815
15 93.264 3.494 7.138 9.573
15 64.373 5.305 9.835 13.444
17 93.487 1.393 7.1211 9.555
17 63.465 3.469 9.945 13.630

in the inner disc. Therefore, the tightening of the spiral after CR is
generic, regardless of the Q-parameter. However, high Q results in a
spiral which is more open before CR due to the leading extension.
Conversely, in a cooler disc (left), the overall pattern is less broad
in the inner disc due to the lack of a leading extension, suggesting
that the influence of the spiral becomes more localized to the break
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Figure 12. X = lg/Aqi at the break as a function of radius for the control
model (dashed) and a model with r,y = 7.5 kpe and fir = 0.5 (solid). The
horizontal dotted-black line represents Toomre’s condition for edge modes,
X <3.

itself as the disc is cooled. Since the epicyclic motions in a cooler
disc have a smaller amplitude, the small wavelength wakes are less
damped, and the overall wakes are less spread out, resulting in the
narrowing density distribution.

6 EDGE MODE MULTIPLICITIES

Throughout our analysis, we find that for the majority of the models
we explored in Section 4, the m = 2 modes are the slowest growing
of the fast m = 2—4 modes. In Fig. 8, which shows the growth rates of
the edge modes as a function of ry, (left panel), the m = 2 modes (red
markers) consistently have the lowest growth rate until r,, = 8 kpc,
after which the growth rate for all m become quite similar. The right
panel of Fig. 8, which plots the edge mode growth rates as a function
of fi, shows similar trends: at small values of f;,, the m = 2 modes
grow significantly slower than the m = 3 and 4 ones, but as the break
becomes weaker (for fy,, > 0.75), the fast edge modes of all m have
comparable growth rates.

This behaviour can be understood qualitatively from Toomre
(1989)’s conditions for a disc to support edge modes. His first
condition requires that the disc must be massive and cool enough
to respond to disturbances in the phase-space density, with Q < 2
and X = Ap/heir < 3, where Ay = 2mr/m and Aeqe = 472G X/k>.
The second condition is that the radial region over which the disc
undergoes its most abrupt change must be smaller than one-fourth
of the axisymmetric stability length, .. The models employed in
this study satisfy Q < 2 and since the breaks are abrupt, the latter
condition is also satisfied. This leaves the condition X < 3 to be
tested.

Fig. 12 shows how X changes with radius. Here, the red, blue,
and green curves reflect the value of X for m = 2, 3, and 4,
respectively. The dashed curves show the results for the control
model, while the solid lines show X for a truncated model with
for = 0.5 and r,, = 7.5 kpc. At the location of the break, the curve
for m = 2 clearly exceeds X = 3, while m = 3 is just over this value.
Alternatively, X < 3 for m = 4 for most of the disc. This suggests
that the higher multiplicities will benefit more from amplification
than waves with lower m. This could explain the trends observed
in the previous section, where the higher-m modes are more rapidly

Driving spiral structure in disc galaxies ~ 4889

growing. However, we stress that while the preferred multiplicity
is model specific — depending on disc mass — we find that the
overall characteristics of the edge modes we observe are very similar,
regardless of m.

7 EDGE MODES IN TYPE III DISCS

Thus far we have only considered modes in Type II (i.e. down-
bending, with fi, < 1) discs. Now, we extend our study to Type III
(i.e. up-bending, with fi,, > 1) discs.

In Fig. 13, we show the m = 2, 3, and 4 eigenmode spectra for
a model with ry, = 7.5kpc and fiy = 2.0. Clearly, a Type III break
also has a destabilizing effect on the disc, leading to the growth of a
number of new modes which are not present in the control model. As
for the Type II breaks, the edge modes also occur in pairs. In addition,
the overall shape and torque profiles of the modes are qualitatively
similar to the Type II case (see left and right columns of Fig. 14).

However, in the case of Type III breaks, we find that it is the
outer (slow) mode which is consistently the faster growing of the
edge mode pair, rather than the inner (fast) mode. This is opposite
to what we observed in the Type II cases. This behaviour is also
demonstrated in Fig. 8 (right panel), which shows the growth rate,
J(w), as a function of break strength, fi,: for all m, the fast (inner)
edge modes (triangles) have larger growth rates than the slow (outer)
edge modes (circles) when fi, < 1. However, the trend is reversed
when fi, > 1. Fig. 8 also shows how the growth rates of the edge
modes increase as the break gets stronger.

When compared with a Type Il mode, the Type III edge mode pair
also show opposite behaviour in terms of their pitch angle variation.
In the middle column of Fig. 14, we show the pitch angle variation
for the slow (upper panel) and fast (lower panel) edge modes. In a
Type III disc, it is the slow outer edge mode which shows an abrupt
change in the pitch angle around the break region, rather than the
fast inner mode. Conversely, the fast inner edge mode in a Type III
disc shows smoother variation in the pitch angle.

The higher growth rate for the slow outer mode is likely a result
of the larger surface mass density in the outer disc of Type III
galaxies, allowing the outer edge mode to be more supported by
the surrounding disc. However, when transitioning from a Type II
to a Type III disc, the pattern speeds of the edge modes also shift,
such that the CR of the slow outer mode is closer to the break.
Alternatively, the CR of the fast inner mode shifts away from the
break due to the increase in pattern speed. To demonstrate this, in
Fig. 15 we plot the ratio of the CR radius, rcgr, and ry, versus the
break strength, fi,. The size of the markers reflect the growth rate
of the modes. When ( f,; < 1), the fast inner mode has rcg/ro: & 1.
However, when fi,, > 1 this ratio decreases for both edge modes,
and results in the CR of the slow outer mode shifting towards the
break. This could possibly explain the change in behaviour for the
pitch angle for the edge modes. The edge mode with its CR closer
to the break develops a more abrupt change in the pitch angle, while
the other edge mode shows smoother pitch angle variation.

8 DISCUSSION

8.1 Physical origin of edge modes

In their study of discs with a number of ring-like features in
the angular momentum distribution (such as grooves and ridges),
Sellwood & Kahn (1991) describe how such abrupt features induce
sharp changes to the disc’s impedance, which is given by the ratio of
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Figure 13. The m = 2, 3, 4 complex frequency spectra for a model with a
Type III (up-bending) density profile (f,r = 2.0) and rp = 7.5. Similar to
models with Type II breaks, Type III breaks drive new modes which are not
present in the control model.

a pattern’s perturbing gravitational force to the stellar displacement
velocity it causes.

As such, the impedance is a measure of how strongly the stellar
disc resists motion when subjected to a perturbing gravitational force.
As is well known from wave theory, propagating waves are partially
reflected at locations where the impedance changes abruptly. An
abrupt change of the slope of the density profile, such as at the
breaks of Type II and Type III discs, likewise induces a sharp change
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of the disc’s impedance, and can, therefore, be expected to partially
reflect travelling density waves. The same argument applies to an
abrupt jump of the Toomre Q stability parameter. As an aside, in
Appendix B we briefly explore the impact which a sharp change in
the Q-profile has on the eigenmode spectrum of the disc. In agreement
with Sellwood & Kahn (1991), we find that introducing jumps or dips
in the Q-profile in a pure exponential disc also destabilizes modes.

Binney (2020) used linear theory to follow the evolution of the self-
gravitating response of the shearing sheet to an imposed perturbation,
such as a nearly axisymmetric density depression, or groove, that
corotates with the sheet. He found that such a tilted groove ‘emits’
density waves radially inwards and outwards. The more nearly
axisymmetric the groove, the more rapidly these waves travel radially
and the slower they decay. This appears to be a rather generic feature:
more general localized perturbations also trigger wave packets that
travel away from their CR radius and that have a decay time that
declines as the perturbation is more axially symmetric. If these
travelling waves lack a very strongly absorbing ILR, the inward
travelling waves can reflect at the centre, to form a resonant cavity
between the groove and the galaxy centre, both of which reflect
trailing into leading waves that can grow by swing amplification and
set up a global, growing pattern.

It stands to reason that a similar evolution will unfold in the case
of a density break, which, after all, can be regarded as a one-sided
groove. This then offers a tentative explanation for the edge modes,
with their corotation radius coincident with the break radius.

8.2 Consequences for galaxy evolution in discs with a density
break

The linear stability analysis we have carried out reveals that edge
modes are excited by breaks. In Fig. 15, we plot the ratio of the
CR radius, rcr, and ry, versus the break strength, fi,,. The separate
columns represent modes of different multiplicities, while the size
of each marker reflects the growth rate of the modes, with faster
growing modes having larger markers. Fig. 15 shows that, in the
case of Type II profiles, the fast edge mode consistently has rcr/7ur
~ 1 for all values of m.

In Sections 4.3 and 7, we have explored the torque profiles
generated by edge-modes and showed they generally increase the
angular momentum of disc material in the broad vicinity of the
break, pushing it outwards. This has interesting implications for the
growth and evolution of disc galaxies. While a number of processes
are responsible for the growth of a disc, observations support the idea
that disc evolution is inside-out (van der Wel et al. 2014; Rodriguez-
Puebla et al. 2017), including in the Milky Way (Bovy et al. 2012;
Frankel et al. 2019). Disc breaks have also been observed in high
redshift galaxies (Pérez 2004), with observational studies showing
that the break radius increases with cosmic time (Trujillo & Pohlen
2005; Azzollini et al. 2008).

Given the possible connection between disc breaks and galaxy
growth, combined with the vigorously growing edge modes in cases
where the break is strong enough, we envisage two possible scenarios
for the growth of the outer disc: a Type II disc break in a young disc
— seeded by a drop in the star formation rate (SFR)? — drives edge
modes. A number of edge modes, with their CR straddling the disc
break, therefore develop. These spiral modes drive radial migration
across the break, adding mass to the outer disc and weakening the

3The drop in SFR can have various causes, including a drop in gas surface
density, an extragalactic radiation field or the presence of a warp.
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the fir = 1 case being a single-exponential disc model. The separate columns represent modes of different multiplicities. The size of each marker reflects the

growth rate of the modes, with faster growing modes having larger markers.

break in the process. As the star-forming disc grows due to the infall
of fresh gas, the break is pushed further out, dragging along with it
the edge modes. Consequently, as the edge-mode CR moves outward
with the break, it is continuously driving radial migration across the
break as the disc evolves, which changes the stellar demographics of
the outer disc.

Alternatively, the location of the break is primarily driven by the
internal evolution of the disc, and not by details of the gas infall.
In this view, the break itself also plays a role in moving the gas
outward, leading to eventual star formation and inside-out growth.
This — coupled with stars being driven across the break due to the
edge mode — would imply that while the break is responsible for
driving edge modes, the edge modes themselves erase the break from

its current location and push it outwards. This scenario would have
implications for the rate at which discs grow: as the break is pushed
outward into regions of lower density, the surrounding response of
the disc is diminished, resulting in weaker edge modes. Therefore,
disc growth should slow down over time. Our PYSTAB analysis does
not provide any insight into which of these scenarios is more likely.

The scenarios described above are consistent with Type II breaks,
however, the evolution of Type III breaks do fit into either of these
scenarios. In Section 14, we showed that like the Type II case, a
Type III disc will have an edge mode with its CR close to the break,
resulting in mostly negative torque inside the break and positive
torque outside. Stars immediately inside the break will gain angular
momentum and get pushed into the outer disc. This will add mass
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to the outer disc, strengthening the break and driving more vigorous
edge modes, which, in turn, drive more material into the outer disc.
This constitutes a runaway cycle which continuously strengthens
the Type III break. However, the transfer of angular momentum also
pushes the stellar break outward into regions of lower density, leading
to more weakly growing edge modes and damping the runaway
process. The fact that such a runaway process does not take place
is supported by observations, which show that Type III discs do not
comprise the majority of galaxies in the local universe (e.g. Pohlen &
Trujillo 2006; Erwin et al. 2008). Compared with Type II breaks,
observations of Type III breaks also find that they are found at larger
galactocentric radii; where the disc density is relatively low (e.g.
Pohlen & Trujillo 2006; Laine et al. 2016). Still, our results based on
linear theory do not capture any possible non-linear behaviour and
understanding the evolution of Type III breaks fully will require the
analysis of detailed of N-body simulations.

While the model employed to carry out this work is relatively
simple and neglects the influence of gas, the star-forming hydrody-
namical simulation analysed by Roskar et al. (2012) also revealed
a spiral with rcr/rye & 1 in their Type II disc (see their Fig. 5),
suggesting that edge modes also form in more realistically evolving
systems.

Simulations have also predicted that breaks in the density profile
should also coincide with an upturn in the mean age profile, with
the increase in mean age being interpreted as a signature of radial
migration (Roskar et al. 2008). Indirect evidence of radial migration
through age upturns has also been found in a number of observational
studies (e.g. Bakos et al. 2008; Yoachim et al. 2010, 2012; Radburn-
Smith et al. 2012).

As we argued based on the torque profiles of the edge modes
in Type II profiles (cf. Sections 4.3 and 7), the expected effect of
the secular evolution driven by these edge modes is that the break
will become weaker, and less effective at causing or supporting edge
modes. Hence, we can generally regard edge modes in stellar discs
as an example of negative feedback in which a response of a physical
system counteracts its cause.

8.3 Observational signature of edge mode spirals

One of the key parameters characterizing spirals is their pitch angle.
Observational studies have found possible correlations between pitch
angles and a number of structural parameters (e.g. Kennicutt 1982;
Michikoshi & Kokubo 2014; Kendall, Clarke & Kennicutt 2015;
Hart et al. 2017; Diaz-Garcia et al. 2019; Font et al. 2019; Yu & Ho
2019, 2020).

In Section 4.3, we demonstrated how cavity and edge modes
exhibit different behaviour in the radial variation of their pitch angle.
While the pitch angle for cavity modes varies more gradually and
over a larger radius, the changes in pitch angle for the edge mode
with its CR close to the break is more abrupt, and occurs over a
narrower region immediately around the break. In Section 5, we also
showed that increasing the Q-parameter changes the overall shape of
the edge mode, leading to an even larger change in the pitch angle
around the break region.

In their study of 50 unbarred (or weakly barred) grand design spiral
galaxies selected from SDSS, Savchenko & Reshetnikov (2013)
found that in general spiral arms do not have constant pitch angles,
but show a wide range of radial variation. For the majority of their
sample, the pitch angle decreases with radius, but also observe
cases where the pitch angle increases. Savchenko & Reshetnikov
(2013) find difterences in the pitch angle variation in galaxies with
Type II or Type III breaks, with Type III discs showing more pitch
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Figure 16. The radii of the fast mode OLR (circles) and slow mode CR
(triangles) against the break strength, f, for a model with ry- = 7.5 kpc.
Different colours represent different values of the multiplicity m. A stronger
break results in closer resonances. As the break weakens, the relative distance
between the resonances increases.

angle variation than Type II discs (see their fig. 11). However, the
driving mechanism of the spirals explored in this study is not known.
Therefore, a direct comparison is not possible.

The abrupt change in the pitch angle for the edge mode we find
in our work may provide a way of distinguishing it from other
spiral modes in a disc. Therefore, this provides incentive for future
observational studies to revisit this subject.

8.4 Resonant coupling

In Section 3, we demonstrated that, in a Type II disc, the edge modes
driven by breaks generally occur in pairs. Given that this study was
carried out purely in the framework of linear theory, all the modes
in this study grow independently and do not interact. However, an
interesting feature which emerges from our analysis is that, for a
given multiplicity, the OLR of the higher frequency mode is in close
proximity to the CR of the lower frequency mode. In Table 2, we list
the CR and OLR radii for the edge modes in a model with a Type
IT disc. For a given m, we highlight in bold the frequencies which
are in close proximity. The m = 2 modes show the weakest potential
coupling, with roughly 700 pc separating the OLR of the fast mode
from the CR of the slower mode. However, coupling seems more
likely for the m = 3 and m = 4 edge modes, with their respective
resonance being separated by 100 pc or less.

In Fig. 16, we plot the OLR (circles) of the high frequency mode
and the CR (triangles) of the low frequency mode versus the break
strength, fi,,. We do this for a model with r,, = 7.5 kpc, and show the
results for m = 2 (red), 3 (blue), and 4 (green). In general, we find
that a strong break leads to closer resonances. In the case of m = 3
and m = 4, the two resonances are, on average, separated by only
0.07 kpc when f,; < 0.6, whereas the m = 2 resonances are separated
by 0.6 kpc on average. Alternatively, as the break becomes weaker
(for = 0.6), the resonances start to separate, with the OLR and CR
being separated, on average, by 1.21, 0.63, and 0.43 kpc for m = 2,
3, and 4, respectively. Since the resonances approach each other in a
region well outside the disc break itself (r,, = 7.5 kpc), this permits
stars to migrate even further into the disc outskirts.

In Section 5, we also investigated the impact which changing
the disc Q profile has on the edge modes. We find that as the
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disc becomes hotter, the separation between the edge mode pair
resonances increases. For example, when Q = 1.7, the separation
between the fast mode OLR and slow mode CR is roughly 0.4 kpc,
while the separationina Q = 1.1 model is only 0.27 kpc (see Table 3).
While the pattern speeds do not vary substantially, an increase in Q
leads to a decrease in the pattern speed of the slow outer edge mode,
resulting in larger separation of the resonances.

Therefore, a strong break leads not only to more vigorously grow-
ing edge modes, which redistribute material across their resonances,
but our analysis also suggests that there is a higher probability of
resonant spiral-spiral coupling, which further increases the efficiency
of the redistribution of material across the outer disc (e.g. Minchev
etal. 2011)

8.5 Caveats

An important caveat to this work is that it omits the influence gas
and disc thickness, which impact the stability characteristics of
the disc (e.g. Jog & Solomon 1984; Elmegreen 2011; Romeo &
Wiegert 2011; Hoffmann & Romeo 2012; Shadmehri & Khajenabi
2012; Romeo & Falstad 2013). Romeo & Falstad (2013) carried
out a multicomponent stability analysis of galaxies from The HI
Nearby Galaxy Survey (THINGS), and found that while stars largely
dominate the disc stability beyond one scale-length, molecular gas
also provides a significant contribution. Using the same survey,
Hoffmann & Romeo (2012) also showed that ISM turbulence has
a significant effect across the disc, and makes the outer disc more
prone to star-dominated instabilities. The effective Q-parameter is
also impacted by disc thickness (Elmegreen 2011; Romeo & Wiegert
2011). In particular, Romeo & Wiegert (2011) find that disc thickness
increases the Q-parameter by ~ 20 — 50 per cent.

This work also ignores the influence of a bar. While we do not
expect that the presence of a bar will alter the stability characteristics
of the disc, studies have found hints that bars may play a role in
setting the break radius. In an observational study of 218 nearby disc
galaxies, Mufioz-Mateos et al. (2013) found that, for galaxies more
massive than 10'° M, the distribution of the ratio of the break and
bar radii has two peaks at ry/roar = 2 and ry/rpy & 3.5. They link the
first value with the bar OLR and the second with a resonant coupling
between the bar and a spiral.

Investigating the impact which bars, gas, and disc thickness have
on our results requires the detailed dissection of N-body+SPH
simulations, which is beyond the scope of this paper. Furthermore, it
is also beyond the capabilities of PYSTAB, which needs to start from
an axially symmetric initial state within a razor-thin disc.

8.6 Summary

By analysing the stability of disc galaxy models using linear
perturbation theory, we have investigated the role that breaks play
in driving edge modes in stellar discs. The main conclusions of this
paper are the following:

(i) Introducing a density break (either a Type II or III) in the disc
has a destabilizing effect which gives rise to a number of vigorously
growing m = 2, 3, and 4 edge modes. These edge modes are absent
from the control model lacking a disc break.

(ii) Both a Type II and Type III break drive edge modes in pairs
having different characteristics. In the Type II model, the inner ‘fast’
mode has its CR roughly coincident to the break, and has a higher
growth rate. Additionally, it shows an abrupt increase in pitch angle
at the break. In contrast, the ‘slow’ outer mode — with its CR further
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from the break — shows a smoother variation of pitch angle over a
large radius.

(iii) Transitioning from a Type II to a Type III disc causes the
pattern speeds of the edge modes to increase. Consequently, it is the
slow outer mode in a Type III which has its CR closer to the break.
This, combined with the increased mass in the outer disc, results in
a higher growth rate for the ‘slow’ mode. In addition, it is the ‘slow’
mode which shows an abrupt change in the pitch angle around the
break, with the ‘fast’ mode showing a smoother variation.

(iv) Increasing the break radius results in a decrease in the growth
rates of the edge modes. This is caused by the weaker torque of the
disc in response to perturbations at the break.

(v) Likewise, the break strength, in the sense of the change of
slope at the break, plays an important role in producing edge modes.
We find that in both Type II and Type III profiles, making the break
more abrupt results in a substantial increase in the growth rates of
the edge modes.

(vi) For every multiplicity we investigated, Type II breaks result in
coupled modes. The CR of the high-frequency member of the couple
is almost coincident with the break radius. Moreover, its OLR is
in close proximity to the CR of the low-frequency mode. This may
lead to resonant coupling between these modes when they enter the
non-linear regime.

(vii) The Q-parameter has a substantial effect on the pitch angle
and resulting torque profiles of the spiral. Increasing Q leads to a
spiral which is more radially broad in the vicinity of the break, with
a leading extension just inside the break that quickly tightens at the
break. This results in a sudden increase (and decrease) in the pitch
angle in this region.
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APPENDIX A: LINEAR STABILITY ANALYSIS
CODE

The dynamical properties of an axially symmetric collisionless
disc are captured fully by the underlying gravitational potential
Vo(r), along with its phase-space DF, Fy(E, J). Here, E represents
the specific binding energy of a star and Jy the specific angular
momentum of a stellar orbit. PYSTAB obtains the complex frequencies
w for which a spiral-shaped perturbation of the form

Voer(r, 0, 1) = Vipere(r)e ™0 =" (A1)

constitutes an eigenmode with an infinitesimal amplitude. Here, (r,
0) are polar coordinates in the stellar disc, and Vpe(r) is a complex
function which quantifies the amplitude and phase of the mode.
Additionally, m represents the multiplicity (or radial symmetry) of
the mode, while 2, = R(w)/m and J(w) represent its pattern speed
and the growth rate.

In the linear regime, any general perturbing potential can be
expanded as a series of spirals, which may be analysed independently.
PYSTAB determines the response DF f., (7, 6, vy, vy, 1) produced by
a perturbation Vi (r, 6, 1) by solving the first-order collisionless
Boltzmann equation

D f resp _ O F 02

= VVierts A2
Dt 0 o pert ( )

where the left-hand side contains the time-derivative of the response
DF along an unperturbed orbit. The formal solution to this equation is
given by

- oFy (1 - SN gt
Sresp(r, v, 1) = — PHR VVoer(F(1), t)dt', (A3)

where it is tacitly assumed that the response disappears in the infinite
past.

The response DF freq (7, 6, vy, vy, 1) produces a response density
Xresp(, 0, 1) of the form

El'esp(rv 0, t) = /fresp(r’ 0, vr, vy, 1)dv,dvg. (A4)

From this, the corresponding gravitational response is also obtained

Veep(F) = G / Sresp (PO (IF — FNAF (A5)
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where ¥ is the interparticle interaction potential, which in a Newto-
nian framework, is given by

Y(F -7 = (A6)

=
and is used for all interactions. The eigenmodes of the disc are
determined by the condition

Voert(r, 0, 1) = Vie(r, 0, 1), (A7)

which PYSTAB determines via a matrix method (Kalnajs 1977;
Vauterin & Dejonghe 1996). In order to locate the eigenmodes, Vier
is expanded as a series basis potentials, V. The response to each
individual basis potential, V) rsp, can again be expressed as a series

Viresp = D CicVke (A8)
k

PYSTAB exploits the fact that the C matrix, which is w-dependent,
will have a unity eigenvalue if the perturbation is an eigenmode
(Vauterin & Dejonghe 1996). The amplitude at t = —oo is assumed
to be zero. Therefore, only eigenmodes with positive growth rates
(3(w) > 0) are considered.

A number of technical parameters were employed in order to set
up the model. First, the number of orbits on which phase space is
sampled is given by nowic(Foric + 1)/2, where ngp;e = 600. Secondly,
the number 7ngyyier, Which reflects the number of Fourier components
in which the periodic part of the perturbing potential is expanded. We
took this value to be npyuier = 80. Additionally, we used a total of 60
potential-density pairs (PDPs) for the expansion for the radial part
of the perturbing potential and density. We use PDP densities with
compact radial support which cover the relevant part of the stellar
disc and are evenly spaced on a logarithmic scale, resulting in the
highest resolution in the inner regions of the disc. Their radial widths
are automatically chosen such that consecutive basis functions are
unresolved and can be used to represent any smooth radial function.
The corresponding PDP potentials are computed numerically using
equation (A3).

APPENDIX B: BREAKS IN PHASE SPACE

As an aside, we note that, from the impedance argument, one expects
that an initial phase-space perturbation need not have a corresponding
density signature to excite waves. Indeed, Sellwood & Kahn (1991)

© 2024 The Author(s).
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find that when a groove is introduced in the angular momentum space
of a warm disc, the disc is still destabilized even when the groove is
masked in the density distribution by the epicyclic motion of the stars.
This can be seen from the formal solution of the linearized Boltzmann
equation, given by equation (A3). The response DF depends on
the velocity gradient of the DF of the unperturbed, zeroth-order
galaxy model. If the latter is altered such that its velocity gradient
changes while its corresponding density distribution remains the
same, the corresponding spectrum of eigenmodes will be affected
and eigenmodes may pop up where previously there were none (De
Rijcke, Fouvry & Pichon 2019).

To investigate whether we can induce new modes in our fiducial
model without changing its density profile, we run a number of
models which include either a sudden rise or dip in the Q profile at
r = 7.5 kpc while keeping its exponentially declining radial density
profile fixed. We model the Q-profile using the following function,
which introduces the abrupt feature at ry,

Q(r) = *a arctan(b(r — ry;)) + c. (B1)

Here, a controls how large the change in Q is at ry,, while b reflects
the abruptness of the change. Lastly, c is a simple offset. In agreement
with Sellwood & Kahn (1991), we find that any sudden change in
the Q-profile results in a number of new modes for m = 2, 3, and 4.
In Section 4, we showed how a density break gives rise to an edge
mode with its CR straddling the break. Similarly, here we also find
that, for all m, the fastest growing edge mode has its CR close to
7.5 kpc — the radius where the change in Q is introduced. We also
find that the range of pattern speeds and growth rates are in the same
range as those found in the density break models. Unsurprisingly,
the growth rates are mainly dependent on the size of the change in
O (constant a in equation (B1)). Analysing these modes further, we
find their density distribution and torque profile to be similar to those
of the edge modes in the previous models.

We conclude that sharp features in phase space are able to drive
modes, irrespective of whether they have a corresponding spatial-
density signature. This supports the argument that travelling waves
being reflected off abrupt impedance jumps in the underlying disc
are causing the break-related modes we find (be that density breaks
or Q breaks).

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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