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Abstract

Recent advancements in omics techniques have revolutionised the study of biological

systems, enabling the generation of high-throughput biomolecular data. These innova-

tions have found diverse applications, ranging from personalised medicine to forensic

sciences. While the investigation of multiple aspects of cells, tissues or entire organ-

isms through the integration of various omics approaches (such as genomics, epige-

nomics, metagenomics, transcriptomics, proteomics and metabolomics) has already

been established in fields like biomedicine and cancer biology, its full potential in

forensic sciences remains only partially explored. In this review, we have presented

a comprehensive overview of state-of-the-art analytical platforms employed in omics

research, with specific emphasis on their application in the forensic field for the identi-

fication of the cadaver and the cause of death. Moreover, we have conducted a critical

analysis of the computational integration of omics approaches, and highlighted the

latest advancements in employingmulti-omics techniques for forensic investigations.
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1 INTRODUCTION

One of the fundamental concepts in forensic anthropology is that

‘every body tells a story’. This notion, deeply ingrained not only in

forensic literature but also embedded in common knowledge, under-

scores the significance of studying human remains to enable the

reconstruction of past events and to contribute to the investigation

of unresolved cases. The art of studying the cadaver to solve criminal

cases has old roots and dates back to 82 BCE, when, in the ancient

Rome, Cicero used forensic evidence from the exhumed body of Sex-

tus Roscius’s father to demonstrate the innocence of the son, charged

of patricide. The use of scientific examinations to establish innocence

or guilt in legal matters summarizes the main concept of forensics

also in modern days, which is defined as ‘the application of scientific

principles and techniques to matters of criminal justice especially as

relating to the collection, examination, and analysis of physical evi-

dence’ (Merriam-Webster.comMedical Dictionary, Merriam-Webster,

accessed on 4 September 2023). Personal identification and the estab-

lishment of the cause of death are two key points in any investigation

involving human remains, as they form the basis for understanding the

circumstances surrounding a person’s death and contribute to the pur-

suit of justice. Traditionally, the role of the forensic anthropologist has

been to assist with sex, age, ethnicity, and stature determination, as

well as to study skeletal traumas associated with the cause of death,

starting from remains in various decomposition stages and states (e.g.,

fleshed, decomposing, skeletal, burnt) [1] with the final aim to identify

the remains. This process involves comparing antemortem information

of a person reportedmissingwith the results of a post-mortem examina-

tion of an unidentified individual. A positive identification is confirmed

when the antemortem and post-mortem data match completely, with no

explainable discrepancies. The evidence must be substantial enough

to establish that both sets of data pertain to the same individual [2].

The use of biometrics, the measurement of physical aspects of the

human body, has become the gold standard in forensic investigations.

Amongst those, fingerprint identification, which assesses variations in

the typical ridge patterns (minutiae) unique to each person, continues

to be widely used in forensic settings, in conjunction with DNA anal-

ysis. Another tool largely employed in personal identification is facial

recognition, driven by the extensive deployment of closed-circuit tele-

vision systems and personal digital devices that facilitated the creation

of vast databases that serve as reference matches, leading to signifi-

cant advancements in facial recognition digital technology. Finally, gait

analysis has become extremely popular in personal identification for

identifying living individuals from a significant distance. It is out of

doubt that the combination of more than one of these approaches

could lead tomore accurate identifications in various scenarios [3]. Bio-

metrics traits, as all disciplines applied to the forensic settings, need to

adhere to seven essential characteristics: universality, distinctiveness,

permanence, collectability, performance, acceptability and resistance

to circumvention [4]. However, in case of advanced body decompo-

sition, these features may not be reliable or accessible, necessitating

the consideration of additional traits for personal identification. The

use of orthopedic surgical implants can provide accurate personal

identification and was found to be extremely effective during disas-

ter victim identification (DVI) [5]. When recording orthopedic devices,

serial number and comprehensive details on the manufacturer as logo,

name and company number are essential information to be collected.

Moreover, these have to match patients’ medical records that have to

be legally disclaimed by the next of keen [5]. The main limitation is the

lack of durability of implants or medical records resulting, frequently,

in only partial identifications.

Traditional forensic anthropology approaches aim to create the bio-

logical profile of the individual by reconstructing age, sex, stature, and

ancestry of unknown skeletal remains to aid positive identifications [6].

Despite not leading automatically to positive identifications, these con-

tribute to the goal of either confirming a deceased person’s identity

or eliminating the possibility of certain remains belonging to a specific

missing individual.

Age estimation is a critical demographic feature that must be

evaluated during the analysis of unidentified skeletal remains. How-

ever, traditional methods for assessing age are subject to significant

limitations. The expertise of the individual conducting the analyses

remains a crucial factor in accurately evaluating anthropological char-

acteristics through morphological methods. In their research, Baccino

et al. [7] examined the accuracy of age-at-death (AAD) estimations

using various approaches, including the Suchey-Brooks [8] method

for pubic symphysis, the İşcan et al. [9] method for sternal end car-

tilage calcification of the fourth rib, the Lamendin et al. [10] single

root translucency technique and the Kerley et al. [11] histomorpho-

metric analysis of the femur. This study was conducted on a French

population, and two observers (a forensic pathologist and a foren-

sic anthropologist) demonstrated comparable age estimation abilities.

However, the histological method displayed the highest level of inac-

curacy, likely due to different levels of experience or expertise of the

observers. Furthermore, the pubic symphysis method, while showing

relatively low inter-observer inaccuracy, exhibited notable differences

in terms of observer variability. The study also evaluated a multi-

factorial approach, which generally outperformed individual methods

used in isolation [7]. Similarly, Garvin and Passalacqua [12] investi-

gated the preferences of 145 forensic anthropologists regarding age

estimation methods. Irrespective of the experience level, the Suchey–

Brooks method remained the preferred choice, followed by cranial

sutures and dental wear. A noteworthy outcome of this study was

the majority of anthropologists indicating a case-specific approach to

selecting ageestimationmethods [12].Overall, the findings underscore

the pivotal role of experience, especially to guide method selec-

tion, in morphological age estimation. This suggests that while the

nature of the case partly influences the choice, experience remains a

central factor. This inherent non-quantifiable bias must not be over-

looked in terms of witness admissibility. Another technical concern

pertains to the fact that most methods are developed for specific ref-

erence populations, potentially hindering their application on samples

from unknown populations. Konigsberg and Frankenberg [13] warned

against applying methods designed for one population to another, as

this can lead to increased error rates, a phenomenon observed with

traditional methodologies [14, 15]. This issue could also extend to

 16159861, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202200335 by T
est, W

iley O
nline L

ibrary on [08/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.merriam-webster.com/medical/forensic%20science
https://www.merriam-webster.com/medical/forensic%20science


3 of 47

inter-population variations influenced by factors such as income, diet

and physical activity. Moreover, endogenous, and exogenous factors

contribute to significant inaccuracy in advanced age individuals, mak-

ing these methods unsuitable for forensic applications. Advancements

in medical sciences and biomedical engineering have yielded quantita-

tive methodologies for studying physiological aging and pathological

processes. These approaches offer standardized experimental proce-

dures and statistical analyses that provide quantifiable errormeasures,

giving confidence in reliability but still require validation to be applied

to forensic settings [16, 17].

Similarly, for sex estimation, the three main approaches used in

forensic examinations of skeletal remains are quantitative and qual-

itative morphological examinations, morphometric evaluations and

quantitative metric methods that can be performed both on dry bones

or via digital imaging [18]. Morphological methods, despite being the

most commonly applied in forensic settings, have been considered

heavily affected by the operator subjectivity and therefore they are

not sufficiently repeatable, as previously mentioned for age estima-

tion methods [19]. These mostly rely on the visual assessment of

certain traits of skull and pelvis, with the latter being the most reli-

able for forensic examination [20]. Tested on an Albanian population,

Durić et al. [20] highlighted the importance of the anthropologist’s

experience in obtaining accurate sex estimations. In contrast, morpho-

metric and metric approaches for age estimations are far easier to

replicate and provide associated error and probabilistic estimations.

Furthermore, the implementation of these techniques with radiol-

ogy and digital imaging allows the creation of digital databases and

the possibility to share and repeat the assessments in a completely

non-invasive manner [21]. The main limitation for the use of morpho-

metric and metric approaches for sex estimation is the considerable

loss in accuracy in highly fragmented and phonemically weathered

remains [22]. Furthermore, it is important to note that also these

techniques are strongly influenced by the population they were devel-

oped for. In situations involving unidentified human remains where

ancestry information is unavailable, there is a risk of misclassification

[23].

For this reason, metric and morphometric analysis can also be

employed for the estimation of ancestry. It is important to emphasize

that in a forensic setting, evaluating an individual’s ancestry or geo-

graphic provenance is not about social classification with the scope

of discrimination, as often debated, but a valuable tool in the identi-

fication process, aiding in the refinement of potential matches from

a pool of missing persons [24]. For this purpose, the application of

metric methods has become the gold standard in forensic investiga-

tions with the skull being recognized as the most accurate among

all skeletal elements [24]. Additionally, significant effort has been

invested in developing automated computational systems that employ

user-friendly discriminant formulas. These systems are designed to

be replicable and offer clear indications of posterior probability and

estimation error. FORDISC [25], for example, contains 34 cranial and

39 postcranial measurements for ancestry estimation based on vast

data sets that have shown 91% accuracy when applied to forensic

caseworks. Another approach used for ancestry estimation is the

assessment of morphological variations of specific cranial, facial, or

palatal regions through a present or absent scoring system [24]. This

method is less reliable than the earlier approach due to inherent varia-

tions among individualswithin the same ethnic group and the influence

of the operator’s experience. A recent attempt in automating this

morphological examination has resulted in rASUDAS: a new Web-Based

Application for Estimating Ancestry from Tooth Morphology that includes

the analysis of 21 independent dental traits from 30,000 individuals

from seven biogeographic regions and that showed a correct classifica-

tion 51.8% of the times [26]. Despite their potential, all these methods

require continuous validation. Finally, geometric morphometric meth-

ods are relatively recent approaches that offer a remarkable benefit

for the estimation by employing diverse forms of data to measure

shape and size discrepancies, consequently reducing the influence of

observer subjectivity [24]. Another great advantage is the possibility

to apply these methods on digital material such us computed tomog-

raphy or magnetic resonance imaging, thus eliminating invasiveness of

the sampling.

In recent years, the remarkable growth of omics technologies

has revolutionized various fields, enabling high-throughput analy-

sis of biological data in genomics, proteomics, metabolomics and

other areas, presenting vast opportunities in personalized medicine

[27, 28], biomarkers and drug discovery [29–31], disease research

[32–34] and regenerative medicine [35]. However, forensic sciences

have only recently started to embrace omics approaches in research

contexts [36], and even less so into routine use for caseworks. Rea-

sons for this include awaiting either affordable instrumentation or

demonstration of superior scientific validity and cost-effectiveness

compared to existing methods, as well as for the establishment of

their scientific reliability and robustness, pivotal for the admissibil-

ity of evidence in court [37]. As a result of the ruling from Daubert

v. Merrell Dow Pharmaceuticals Inc., General Electric Co. v. Joiner

and Kumho Tire Co. v. Carmichaelwere, to ensure the reliability

and the relevance of a scientific testimony a method must be pre-

sented to the scientific community and must provide clear indications

of its accuracy, methodological rationale, and application [38]. Fur-

thermore, other important aspects are the accuracy level and the

repeatability of the methodology, as well as the possibility to apply

it to any material of similar nature [38]. While the use of omics

in judicial caseworks requires ongoing efforts to meet admissibility

requirements, forensic research in omics disciplines aimed at gen-

erating intelligence data is already demonstrating the potential of

these approaches in the field. Omics and multi-omics approaches rep-

resent the future of modern forensic research in many disciplines

and have the potential to reshape the landscape of forensic science

by meeting the standards required for whiteness admissibility. This

review will focus on the state-of-the-art platforms available for omics

analyses, on the application of omics analyses in forensic sciences

and specifically for the cause of death, for the identification of the

dead, and on the current research existing in the field of multi-omics in

forensics.
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2 ANALYTICAL PLATFORMS FOR OMICS
RESEARCH

Omics disciplines involve the comprehensive (or global) analysis of dif-

ferent biomolecular types in a particular biological system on a large

scale. By acquiring the suffix -omics, disciplines such as genomics, tran-

scriptomics, proteomics and metabolomics (also known as the ‘four

big omics’ and articulated in this order to follow the central dogma of

molecular biology) refer to the collective studyof the totality of specific

biomolecular typeswithinbiological systems, like cells, tissuesor entire

organisms. The development of cost-efficient, high throughput techno-

logical platforms such as genetic sequencers and mass spectrometers

set the bases for the study of omics disciplines also known as ‘technol-

ogy based omics’. In this chapter, we will discuss the most important

platforms for each omics disciplinewith particular emphasis on the use

of such technology in forensics.

2.1 Genomics

After Dr Alec J. Jeffreys introduced the technique of DNA fingerprint-

ing in 1986 for the case of Colin Pitchfork and the double murder he

committed, DNA evidence rapidly became the ‘queen’s evidence’, due

to its probative power. DNA is currently considered the gold standard

forhuman identification; its recovery is prioritized in crimescene inves-

tigations, and forensic genetics techniques aimed at analyzingDNAare

constantly growing and improving to maximize the information that

can be obtained from biological sources of interest.

Similarly to what happened in forensics, DNA has been the first tar-

get of interest also in omics research, when high-throughput platforms

were developed to investigate in deep the inter-individual variations

embedded in the genetic code and the phenotype associated with it

[39]. Genomics is aimed at studying the whole genome, and it differs

from genetics as the latter aims at investigating only specific portions

of the genome or single genes [32].

DNAmicroarray (or expression array) technologywas the first high-

throughput platform designed to evaluate gene expression levels via

the hybridization of cDNAs on capture probes arranged on a coated

glass slide [40]. The major step towards genomics, however, was made

by the introduction of Sanger sequencing (or first-generation DNA

sequencing) in 1977, that allowed the sequencing of thewhole genome

of the bacteriophage Phi X174 [41].

2.1.1 Sanger sequencing

Sanger sequencing is a traditional DNA sequencing method that uses

chain-terminating nucleotides and electrophoresis to determine the

sequence of a DNA strand, enabling the reading of the bases’ sequence

letter by letter and providing long read lengths (around 1000 bp).

Significant achievements obtained with the introduction of Sanger

sequencing include the completion of the Human Genome Project

in 2003 [42]. Sanger sequencing continues to be the gold standard

methodology for various analyses in forensic genetics. In particular,

Sanger platforms are used in forensic laboratories for the analysis of

short tandem repeats (STR), highly polymorphic regions of repetitive

DNA consisting of 2–6 base pairs that vary in length between individ-

uals, and of mitochondrial DNA (mtDNA), particularly valuable for the

identification of human remains when nuclear DNA is unavailable or

damaged. The primary constraints associated with Sanger technology,

notably the high analytical costs and limited throughput, have been

effectively addressed through the evolution of enhanced sequencing

methodologies known as next generation sequencing (NGS) ormassive

parallel sequencing (MPS) technologies.

2.1.2 NGS platforms

NGS platforms can provide increased data outputs and efficiency,

lower costs, higher throughput, and variable read lengths. Short-read

(35–800 bp) sequencing platforms can be divided in two broad cate-

gories: sequencing by synthesis (SBS) and sequencing by ligation (SBL).

Both methods involve the preliminary fragmentation and clonal ampli-

fication of the DNA template on a solid support, where clones of the

same DNA template are clustered in different portions of the sur-

face. The clonal amplification can be achieved mainly via emulsion

PCR (emPCR), where clones are generated on beads in water-in-oil

emulsion droplets [43] or via bridge amplification, where clones are

generated on a solid surface through the creation of ‘DNAbridges’ that

generate spatially separated clonal clusters [44]. The high-throughput

capability of NGS platforms compensates for the relatively short read

lengths they offer, making them invaluable in addressing several areas

within the field of forensics. These applications include DNA profiling,

which encompasses paternity testing, missing persons identification,

victim identifications and population genetics studies. NGS also plays a

pivotal role in post-mortem interval (PMI) estimation through metage-

nomics, AAD estimation, mitochondrial DNA (mtDNA) analysis and

the identification of various body fluids. Specific applications include

whole exome sequencing (WES), targeted sequencing of specific genes,

amplicon sequencing and metagenomics, (see Section 2.3 for more

details), RNA-seq, DNA methylation (see Section 2.2 for more details)

and microarray-based genotyping platforms/single nucleotide poly-

morphisms (SNP) arrays. For an extensive review of the NGS platforms

and their details, including platform comparisons, we recommend

Goodwin et al. [45] and Hu et al. [46].

SBS consists in the use of DNA polymerase to elongate a DNA

strand complementary to the single strand template to be sequenced,

and can involve three main chemistry approaches: pyrosequencing,

sequencing by reversible termination and sequencing by detection of

hydrogen ions [47]. Pyrosequencing, the chemistry used by 454 plat-

form from Life Sciences since 2005 and then purchased by Roche in

2007, represented the first step towards the massive parallelization

of the sequencing reactions and the reduction of sequencing costs in

comparisonwith Sanger sequencing [48]. Pyrosequencing relies on the

emission of light following the incorporation of nucleotides and the

release of a pyrophosphate (PPi) during the elongation of the DNA
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strand. The intensity of the light produced is directly proportional to

the number of nucleotides incorporated at each position on the DNA

strand, and the sequence of the DNA is determined by analyzing the

specific light peaks corresponding to each incorporated base, allow-

ing for accurate base identification [49]. Read length is between 400

and 500 bp [48]. Roche discontinued this platform in 2016 due to chal-

lenges in keeping up with the latest NGS technologies available on

themarket.

After the success of 454, Solexa/Illumina [50] set the bases for

the creation of platforms that, instead, still represent one of the gold

standards for genomics research. Illumina sequencing uses fluorescent

‘reversible-terminator’ dNTPs that get incorporated in the extend-

ing DNA strand; after the addition of a mixture of all four dNTPs

and the incorporation of the complementary dNTP in the growing

DNA filament, the fluorophore is cleaved away and through laser

excitation, the type and number of dNTP incorporated is recorded.

The fluorescent tag is then removed enzymatically, dNTPs and DNA

polymerase are removed, and sequencing continues on the next posi-

tion. Read length is 50–600 bp, depending on the platform used

(Introducing Illumina Complete Long Read sequencing technology,

accessed on 4 September 2023). Minimum DNA input is 1–10 ng for

applications like targeted amplicon sequencing andmetagenomics, and

at least 100 ng forWGS.

More recently, Ion Torrent developed a new platform based on

the generation of hydrogen ion signals to detect the incorporation of

dNTPs in the growing DNA filament. The concept is similar to pyrose-

quencing when considering the clonal amplification via emPCR and

thepotential incorporationofmultiple dNTPs in homopolymer regions,

however the accuracy of the detection of the number of nucleotides

incorporated in such areas using a pH sensor is less precise than

those achievedwith optical sensors or by sequencing by reversible ter-

mination approaches [46]. Read length is between 200 and 600 bp

(IonGeneStudio SystemModels, accessed on 4 September 2023). Sim-

ilarly to Illumina platforms, 10 ng is the minimum amount of material

recommended for targeted sequencing and 100 ng for whole genome

sequencing (WGS).

In contrast with SBS, SBL involves the incremental addition of short

DNA probes, each one labelled with specific fluorescent dyes, to a

template DNA fragment. The template contains a known sequence on

at least one end, where an anchor strand is bound. Complementary

oligonucleotides from the pool of labelled probes preferentially ligate

to the anchor strand using DNA ligase, releasing a distinct fluorescent

signal. By associating specific dyes with positions on the DNA strand,

the released signals accurately inform the DNA sequence, making SBL

a powerful and high-throughput method for DNA sequencing [51].

Commercial platforms using the SBL technology were those named

SOLiD platforms [52] and discontinued in 2013, and those developed

by Complete Genomics [47], that were acquired by Illumina in 2013.

2.1.3 Third-generation sequencing

In addition to the short-read platforms developed after Sanger

sequencing, known as second-generation sequencing technologies, the

demand for performing WGS and WES on large genomes led to the

emergence of third-generation sequencing platforms capable of pro-

ducing even longer reads. The main difference in comparison with

second-generation NGS platforms is that sequencing can be achieved

starting from native DNA (e.g., non-amplified) and the read length is

> 10 kb. Applications in forensics for long read-length sequencing plat-

forms include de novo genome assembly for studying heterozygosity

or structural variations, mtDNA analysis, epigenetic analysis (see Sec-

tion 2.2 for more details), RNA-seq and metagenomic (see Section 2.3

for more details) analysis.

The twomain third-generation technologies available on themarket

are produced by Pacific Biosciences (PacBio) and by Oxford Nanopore

Technology (ONT). PacBio sequencing, also known as single molecule,

real-time (SMRT) sequencing, is a third-generation DNA sequencing

technology that reads DNA sequences arranged in single-strands and

circularized. Each circularized DNA is replicated with a DNA poly-

merase within tiny wells on a surface, creating multiple sequencing

reactions simultaneously. During sequencing, the DNA polymerase

incorporates fluorescently labelled nucleotides into the DNA strand,

producing a light signal whose color indicates the type of nucleotide

incorporated. This process is observed in real-time, allowing for con-

tinuous data collection. Light pulses are interpreted as nucleotide

sequences, and the resulting sequence obtained from each well is

referred to as a ‘continuous long read’ (CLR). Circular consensus

sequences are generated by analyzing multiple reads of the sameDNA

molecule, to enhance accuracy [53]. By adapting the protocol using

the Iso-Seq method, that converts RNA into cDNA, also RNA can be

sequenced on this platform.With the extensive read length (> 135 kb)

and the real-time data acquisition, PacBio systems such as the PacBio

Sequel II allow forWGS andWES analyses, aswell as for the analysis of

epigeneticmodifications suchasDNAmethylation, in a fast turnaround

time (Sequel II System v8.0 and SMRT Link v8.0 Technical Overview,

accessed on 4 September 2023). Minimum amount of DNA for human

samples is 10 𝜇g, but can reach 5 ng using the Ultra-Low DNA Input

Workflow that includes a PCR to detect human genome variants. In

all cases, the requirement for DNA quality to exceed 30 kb poses a

significant challenge, especially in forensic research, where samples

are frequently degraded, and achieving the desired DNA quality can

be problematic.

ONT, applied on instruments like Flongle, MinION, MinION Mk1C,

GridION and PromethION, involves the passage of single-stranded

DNA and RNA molecules through staphylococcal alpha-hemolysin

(alphaHL) nanopores. A motor enzyme at the 5′ end of the nucleotide

sequence and an applied ion current enables nucleotides to pass

through the protein pore. Real-time measurements of electrical cur-

rent changes during nucleotide passage allow for DNA sequence

analysis and provide long read lengths (500 bp to 2.3 Mb) and high

accuracy [54]. When > 400 ng of high molecular weight gDNA is

available, ONT allows for amplification-free protocols, which are ideal

for WGS, WES, targeted sequencing, and the study of methylomes,

variants, isoforms, haplotypes and metagenomes [55]. When DNA

input is lower (1–100 ng or < 1 ng), whole genome amplification

(WGA) PCR-based or MDA-based is required, respectively, prior to

sequencing.
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Illumina is also offering long-reads sequencing on NovaSeq

platforms, both using PCR-based or PCR-free protocols.

DNA should be extracted from blood or saliva, the recom-

mended input quantity is 50-ng DNA and the read length is

5–7 kb (Deeper insights into complex regions of the genome,

accessed on 4 September 2023. Applications such as WGS, epige-

nomics, metagenomics and single-cell sequencing are the most

suitable for leveraging Illumina’s long-read capabilities, enabling the

comprehensive analysis of complex genomic regions and diverse

biological samples.

Third-generation sequencing approaches based on SBL are those

launched by the BGI group and based on DNBSEQ instruments and

single-tube long fragment read (stLFR) technology. It consists in the

ligation of DNA fragments to adaptor sequences containing known

DNA bases. This specific approach allows for long read lengths and it

involves fragmentingDNA, ligating known adaptors and amplifying the

fragments into DNA nanoballs. These nanoballs are sequenced using

fluorescence-based detection to determine theDNAbases. DNBSEQ’s

advantages include long reads (> 10 kb), low error rates and cost-

effectiveness. It is used in genomics research forWGS, transcriptomics

and metagenomics, enabling a comprehensive analysis of complex

genomes and diverse samples.

2.2 Epigenomics and DNA methylomics

A particularly interesting omics discipline with great relevance in

forensic applications is epigenomics. Epigenomics involves the high-

throughput characterization of epigenetic modifications, including

reversible changes toDNA andDNA-associated proteins, such asDNA

methylation and histone modifications. The human genome is char-

acterized by 0.6 billion cytosines and by 56 million CpG sites (e.g.,

those cytosines followed by a guanine), 80% of those are modified

in mammalian genomes [56]. While the primary biological function

of these modifications is to regulate gene expression, their use in

forensics primarily revolves around establishing correlations between

DNA methylation (5-methylcytosine, 5mC) and specific biological flu-

ids or an individual’s chronological age (see Section 3 for more details).

With this rationale in mind, this sub-chapter will focus specifically

on the high-throughput methodologies available for conducting 5mC

DNAmethylomics studies. Other approaches (e.g., targeted SNaPshot

assays) are not the focus of this review paper and therefore will not

be discussed in detail, despite their use in forensic contexts will be

reported in the following section.

Bisulfite sequencing (BS) (also known as whole-genome bisulfite

sequencing, WGBS) has emerged in the recent years as the pre-

ferredmethod for cost-effective andefficient explorationof thehuman

methylome at the genome level with base-pair accuracy [57]. Briefly,

bisulfite conversion consists in the treatment of DNA with sodium

bisulfite under denaturing circumstances able to separate the dou-

ble DNA strand and to make cytosines accessible to the bisulfite. The

addition of bisulfite leads to the conversion of unmethylated cytosines

into uracil bases, while preserving methylcytosines as unchanged,

through a sequence of sulphonation, deamination and desulphonation

reactions. Upon sequencing, unmethylated cytosines are converted

to thymidines, whereas methylated cytosines resist deamination and

are read as cytosines. This allows to map the methylation status of

each cytosine in specific DNA regions, but requires high-quality DNA

as degraded, fragmented or poor quality DNA can lead to incom-

plete or inaccurate conversions, overall affecting the reliability of the

downstreammethylation analysis. Other limiting factors consist in the

amount of starting DNA, which should be minimum 5 𝜇g for success-

ful conversion, in the fact that the conversion procedure is highly harsh

and degrading due to the extreme pHs and temperatures used in the

process, in the high costs associated with the deep sequencing level

required toovercome theunder-representationofC- andG-containing

dinucleotides in comparison with non-converted genomes [58] and in

the difficulty in the alignment of the reads [59].

In order to overcome the limitations posed by the bisulfite con-

version, a more gentle enzymatic conversion promoted by three

enzymes, Ten-Eleven Translocation (TET) family dioxygenases, T4-

phage beta-glucosyltransferase (T4-BGT) and apolipoprotein B mRNA

editing enzyme catalytic subunit 3A (APOBEC3A), has been devel-

oped recently. First, TET2 transforms 5-methylcytosine (5-mC) into

5-hydroxymethylcytosine (5-hmC), followed by conversion to 5-

formylcytosine (5-fC), and ultimately, to 5-carboxylcytosine (5-caC).

T4-BGT then catalyses the glucosylation of both TET2-formed and

genomic 5hmC to 5-(beta-glucosyloxymethyl)cytosine (5gmC). Finally,

APOBEC3A catalyses the deamination of both methylated cytosines

into thymines and unmethylated cytosines into uracils, enabling their

discrimination. 5mC and 5hmC are sequenced as cytosines, whereas

unmethylated cytosines are sequenced as thymines [58]. Based on

this principle, New England Biolabs recently introduced an enzymatic

methyl-seq (EM-seq) technique. In their approach, they employ TET2

to oxidise methylated cytosines and then apply APOBEC3A treatment

to transform unmethylated cytosines into uracils. WGBS and EM-seq,

collectively knownaswhole-genomemethylation sequencing (WGMS),

both convert 5-mC/C to C/T, making the analysis tools developed for

WGBS equally applicable to EM-seq [60]. This approach requires Illu-

mina library preparation by adaptor ligation before the conversion (in

the sameway required for bisulfite conversion), andprovides increased

CpG coverage in comparison withWGBS, reduced sequencing costs as

it covers more genomic features by using the same number of reads

and allows formethylation studies of samples with lower starting DNA

input. In fact, EM-seq can provide reliable results evenwhen applied to

as little as 100pgofDNA, offeringmethylation andCpGcoverage com-

parable to DNA inputs ranging from 10 to 200 ng when using standard

bisulfite conversion.

2.3 Microbiomics

Microbiomics involves the study of the microbiome through metage-

nomic and/or metabarcoding techniques [61]. The term ‘metage-

nomics’ and its techniques were developed in 1998 to address the

constraints of conventional microbiological methods, eliminating the
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need for culturing individual organisms and enabling researchers to

directly investigate varied microbial communities within their natu-

ral habitats [62]. Metagenomic approaches entail the examination of

genetic material, primarily DNA, extracted from environmental sam-

ples containing a diverse array of microorganisms, including bacteria,

archaea, viruses, and other microorganisms. Metagenomic analyses

eliminate the need for a PCR amplification step, resulting in a high

capacity for species identification and precise quantitative analyses.

Importantly, this approach avoids biases introduced by the amplifica-

tion step, enhancing the overall accuracy of results. Several platforms

can be used for metagenomic studies, including Illumina, PacBio and

ONT [63]. While short-read platforms are widespread for metabar-

coding, long-read sequencing techniques like PacBio and ONT are

becoming more popular for overcoming challenges associated with

short reads allowing the process of assembling short reads into full

genes. After sequencing, obtained sequences are assembled into con-

tigs and aligned with reference genomes. For bacteria, widely used

databases include SILVA, RDP, Greengenes and NCBI [64], while for

fungi, UNITE and Warcup are popular choices [65]. The results from

assembly or binning are utilized for forecasting taxonomic classi-

fication and functional pathways by referencing diverse databases.

Computational tools have been specifically designed to support such

analyses [66].

While metagenomics is aimed at analyzing the entire microbial

population in a sample, metabarcoding (or metagenetics) refers to

the targeted analysis of specific genetic markers or barcode regions,

allowing for the identification of different taxa. The analysis of short

fragments of specific genes (e.g., 16S rRNA for bacteria and archaea,

18S for most non-fungal eukaryotes and ITS for fungi) is based on

amplicon analysis studies and differs from untargeted metagenomics

approaches [67]. Amplicon metabarcoding sequences are typically

obtained on Illumina platforms, and universal primers have been

designed to target conserved areas within specific genes to discrimi-

nate distinct microbial taxa. For example, primers designed for the 16s

rRNA gene target nine hypervariable regions, denoted as V1 through

V9, anddifferent combinations of these regions havebeen employed to

investigate bacterial communities at the familial, genus and species lev-

els [68]. However, less studied domains may lack such primers, making

taxonomic attribution via metabarcoding complex. Universal primers

used in metabarcoding may not cover all bacterial groups identified

through metagenomic DNA sequencing [69]. Additionally, overestima-

tions in bacterial abundance may occur due to varying numbers of 16S

rRNA gene copies in bacterial genomes, which can range from 1 to 16.

This leads to overestimation on the abundance of bacteria carrying a

high number of 16s rRNA operons per cell [70]. Various techniques

are available for quantifying and characterizing microbial diversity

within metabarcoding datasets, including amplicon sequence variants

(ASVs) and operational taxonomic units (OTUs).WhileOTUs have been

widely used, ASVs are now preferred as they provide higher resolution

by considering exact sequence variants instead of clusters of similar

sequences. ASVs are based on sequencing a specific marker gene (e.g.,

16S rRNA for bacteria/archaea or 18S rRNA for eukaryotes) using

denoising algorithms likeDADA2 [71] to identify unique sequence vari-

ants. This approach allows for clustering similar sequences together

without applying a fixed similarity threshold, enabling to take into

account sequencingerrors, chimeras andother artifacts, andultimately

the generation of high-resolution variants that can be compared across

different studies. Standard bioinformatic tools for processingmetabar-

coding data using ASVs include quality filtering to remove low-quality

reads and correct sequencing errors, sequence dereplication to col-

lapse identical sequences into a single representative sequence to

reducing redundancy, denoising and chimera removal to eliminate arti-

ficial sequences created during PCR amplification, overall ensuring

data accuracy.

2.4 Transcriptomics

Transcriptomics represents the analysis of the complete set of tran-

scripts in a cell, tissue, or organism, including their abundance and

function in different conditions. Twohigh-throughput approaches have

been developed to identify and quantify RNA transcripts, and they are

either hybridization-based or sequencing-based.

Hybridization-based methods generally entail the incubation of

fluorescently labelled cDNA with either custom-designed microar-

rays or commercially available high-density oligonucleotide microar-

rays. The dependence on pre-existing genome sequence information,

the high levels of background noise due to cross-hybridization, the

restricted dynamic range for detection due to both background noise

and signal saturation and the challenging comparison of expression

levels between distinct experiments led towards the development

of improved methods for transcriptomics analyses [72]. Sequencing

methods, instead, directly determine the cDNA sequence. Despite

these approaches originally used Sanger sequencing (see Wang et al.

[72] for a comprehensive review), with the introduction of NGS RNA-

seq became the gold standard for transcriptomics analyses. With

RNA-seq, a set of RNA molecules is transformed into a collection of

cDNA fragments, with adaptors attached to either one or both ends

of the fragments. Every individual molecule, whether subjected to

amplification or not, is subsequently sequenced in a high-throughput

fashion to generate short sequences from a single end (single-end

sequencing) or both ends (paired-end sequencing). The read lengths

typically range from 30 to 400 base pairs, depending on the specific

DNA sequencing technology employed. After the sequencing process,

the generated reads are then either mapped to a reference genome

or reference transcripts, or assembled de novo. This leads to the

creation of a comprehensive transcriptional map at a genome scale,

which includes information about both the transcriptional structure

and the expression levels associated with each gene. RNA-seq has the

capability to resolve sequence variations, such as SNPs, within the

transcribed regions, it has a higher dynamic range than microarrays,

due to the lack of noise signal and upper limits for quantification and

a higher quantitative accuracy and reproducibility. New applications

of transcriptomics include single-cell transcriptomics [73] and spatial

transcriptomics [74]. Their application in the forensic field has not been
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exploited yet; therefore, this review will not focus on these specific

topics.

2.5 Proteomics

Proteomics refers to the study of the full set of proteins present in

a cell, tissue or organism, and includes their identification, modifi-

cation, quantification and localization [75]. Proteomic studies enable

researchers to understand the complex interplay between geno-

type and phenotype, and to decipher how the genetic information is

expressed in biological systems and influenced by extrinsic and intrin-

sic factors to result in a specific phenotype. Proteomics predominantly

leverages high-throughput methodologies, with mass spectrometry

approaches playing a pivotal role. Across each phase of the process,

which encompasses sample preparation, fractionation, MS data acqui-

sition, quantification and data analysis, numerous methods and tools

have been developed and extensively reviewed [75, 76].

The two main techniques used in the field of mass spectrometry-

based proteomics to analyze and characterize proteins are bottom-up

(or shotgun proteomics) and top-down strategies. The main difference

between the two is that in the first one, proteins are extracted and

digested prior to their analysis, whereas in the second one, proteins are

analyzed directly without enzymatic digestion. Depending on the tech-

nique chosen, different protocols for sample preparation are required,

as well as different instrumentation and data processing strategies.

2.5.1 Untargeted proteomics

In shotgun proteomics, peptides are separated, ionized and then trans-

ported into themass spectrometer, where spectra of peptide fragment

ions are recorded. Separation is aimed at decreasing the complexity

of the sample and at increasing the accuracy and sensitivity of the

experiment, and is generally achieved either via gel-based approaches

(e.g., two-dimensional polyacrylamide gel electrophoresis, 2D PAGE)

or via gel-free approaches (liquid chromatography, LC). For extensive

reviews and comparisons on2DPAGEand LC, see refs. [77, 78]. Follow-

ing separation, ionization is a crucial step in the procedure that allows

to convert polar, non-volatile and thermally unstable peptides into

ionized analytes that can enter the gaseous phase in theMSwhile min-

imizing their degradation [75]. Ionization methods in proteomics are

essentially matrix-assisted laser desorption ionization (MALDI) [79,

80] and electrospray ionization (ESI) [81, 82]. The distinguishing fea-

ture ofMALDI is its ability to utilise a matrix mixed and deposited with

the sample on the MALDI plate, which absorbs laser energy and sub-

sequently transfers this energy to the acidified analytes. This swift,

laser-induced heating then leads to the desorption of both the matrix

and [M+H]+ ions of the analyte into the gaseous phase, predominantly

generating single-charged positive ions.

In contrast, ESI operates by applying a high voltage (typically rang-

ing from 2 to 6 kV) between the emitter located at the end of the

separation pipeline and the entrance of the mass spectrometer. The

physicochemical processes involved in ESI include the formation of a

Taylor cone, which is followed by the generation and drying out of

analyte-solvent droplets and the resulting creation ofmultiply charged

ions [75]. Once ions are transported in the mass spectrometer, the

mass analyzer filters and optionally fragments ions and separates them

based on their mass-to-charge ratios, allowing for the assignment of

peptide sequences, which in turn permits the inference of the cor-

responding proteins, their modifications and relative abundance. Ion

trap (IT), Orbitrap and ion cyclotron resonance (ICR) mass analyzers

employ ion separation methods that are dependent on the resonance

frequency of ions m/z values and use a trapping system to select

and fragment ions. Fragmentation can occur in separate higher-energy

collisional dissociation (HCD) cells which allows for collision-induced

dissociation (CID). An example is the hybrid configuration of Orbitrap

with linear ion trap (LTQ-Orbitrap) where the HCD cell accumulates,

isolates, and fragments peptide ions [83]. Alternatively, fragmentation

can occur following electron capture dissociation (ECD) in instruments

such as Fourier transform ion cyclotron resonance mass spectrometry

(FT-ICR-MS) [84]. In contrast, quadrupoles (Q) utilize m/z stability as

their principle of separation and are considered ion-beam mass spec-

trometers, while time-of-flight (TOF) analysers rely on the flight time

of ions for separation. Several mass analysers can also be combined

in hybrid mass spectrometers to take advantage of the various prop-

erties that different analysers can offer and maximise dynamic range,

speed, mass range, resolution, and sensitivity [75, 85–87]. The combi-

nationbetween ion sources andmass analysers is also variable.Usually,

TOF mass analysers are interfaced with MALDI (MALDI-TOF instru-

ments), whereas ion-beam and traps are usually associated with ESI

ionizers. For extensive comparisons between the mass spectrometry

instruments most used in proteomics, we recommend Yates et al. [75].

In many bottom-up applications, it is necessary to employ tandem

data acquisition (MS/MS). Methods for data acquisition in bottom-up

proteomics include untargeted (or discovery) approaches such as data-

dependent acquisition (DDA) and data-independent acquisition (DIA),

and targetedmethods such as selected reactionmonitoring (SRM, also

known as multiple reaction monitoring or MRM) and parallel reaction

monitoring (PRM).

In DDA, the mass spectrometer scans the peptide ions as they

elute from the LC column and selects a specific number of the most

intense peptide ions (often the ‘top N’ ions) from each scan for frag-

mentation. These selected ions are called precursor ions and are then

fragmented to obtain the MS2 spectra via the collision with a neu-

tral gas (collision-activated or collision-induced dissociation, CAD or

CID).Whilst theMS1 spectra are used to infer protein abundance,MS2

spectra are used to obtain sequence information required to identify

the proteins present in the sample. Protein abundances are usually

inferred via label-free quantification [88], as signal intensities in mass

spectrometry data correlate with the quantities of ions responsible for

generating those signals, subject to the dynamic range constraints of

the instrument. Consequently, quantifying a peptide entails identify-

ing all or a representative portion of the signals originating from its

ions and subsequently integrating their signal intensities. Alternatively,

relative quantification can be achieved via isotope labelling strategies,
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such as iTRAQ [89] or SILAC [90]. Limits in both label and label-free

quantitative approaches in shotgunproteomics stem from the inherent

challenges associated with the partially random sampling approaches

used to collect tandem mass spectra (MS/MS spectra) from peptides

within complex proteome digests. Peptides with higher abundances

are more frequently sampled, resulting in more accurate measure-

ments. Conversely, peptides with lower abundances are sampled less

frequently, leading to less precise quantifications [91].

With reference to protein identification, database searches allow

then to match the experimental MSn data against the anticipated,

computationally generated fragmentation patterns of the analyzed

peptides [92]. Advanced algorithms for post-processing search results,

coupled with target-decoy search strategies, enable the statistical val-

idation and assignment of meaningful confidence scores to peptide

identifications [93].

In DIA, all precursor ions identified in an MS1 survey scan are

subjected to fragmentation. During this process, fragment ions are col-

lected within a set of wide isolation windows that cover the entire

mass-to-charge ratio (m/z) range. In DIA-MS, the initial steps of sam-

ple processing and data acquisition closely resemble those of the

single-shot DDA-MS approach. However, additional post-acquisition

data processing steps are necessary to match the acquired MS data

with spectral libraries. A spectral library serves as a repository con-

taining various mass spectrometric and chromatographic parameters,

such as precursor and fragment m/z values, fragment types, charges,

and elution times (in case of in-house built libraries), for each indi-

vidual peptide within the analyzed sample. Human spectral libraries

are now available [94] and often eliminate the requirement to create

customized libraries for every DIA-MS experiment, enhancing cross-

laboratory consistency, reducing sample demands and optimizing the

utilization of mass spectrometry instrument time [95]. Traditionally,

these study-specific spectral libraries were generated through exten-

sive proteomic characterization using the DDA-based approach on the

same samples before conducting the DIA-MS analysis. However, it is

important to note that the variability in DDA experiments and the sub-

sequent spectral library generation across different laboratories can

lead to discrepancies in the identification and quantification of pro-

teins between studies. Furthermore, the extensive number ofDDA-MS

experiments required to construct study-specific spectral libraries can

becostly and timeconsuming.Despite the current availability of human

libraries for biomedical research, these are not always suitable for

forensic experiments, where oftentimes samples are taphonomically

degraded and are notably different from the ‘fresh’ samples used to

generate such references libraries, therefore building internal custom

libraries is still a requirement that brings in all the downsides previ-

ously discussed associated with the customization of libraries for DIA,

and still limits the use of this technology in the forensic field. DIA offers

some advantages in comparisonwithDDA, including high reproducibil-

ity across technical replicates as well as across different experiments,

and significant reduction inmissing values due to the cyclic fragmenta-

tion of all precursor ions [95]. The higher data processing demands and,

more importantly, the need to generate study-specific libraries rep-

resents instead the major downside of DIA in comparison with DDA,

particularly in situations like the forensic ones where the starting sam-

ple may be already extremely limited and therefore not suitable for

conducting both DDA (to build the library) and DIA runs.

2.5.2 Targeted proteomics

In contrast with untargeted approaches, targeted proteomics allows

for accurate quantification of selected sets of peptides (and, there-

fore, proteins) of interest in a multiplex, highly sensitive, fast, and

extremely reproducible way, therefore allowing also for the detec-

tion of low-abundance proteins or PTMs challenging to quantify using

untargeted approaches [96–98]. SRM experiments typically involve

triple quadrupole mass spectrometers, where the first quadrupole

selects precursor ions, the secondquadrupole induces their fragmenta-

tion and the third quadrupole isolates target-specific fragment ions for

detection. Multiple fragment ions are usually monitored sequentially

in this process. Unlike SRM, PRM experiments are conducted on mass

spectrometry systems capable of capturing complete fragment spec-

tra, including quadrupole-Orbitrap-type mass spectrometers, QqTOF,

MALDI-TOF and MALDI-TOF/TOF systems [98]. In PRM, all fragment

ions from a chosen precursor are simultaneously recorded. In both

setups, an inclusion list is provided to the mass spectrometer, out-

lining precursor m/z ratio windows and retention time (RT) windows.

In the case of SRM, the inclusion list also specifies the m/z values

of the fragment ions to be monitored. A key aspect in targeted pro-

teomics is the need of using libraries with fragmentation spectra that

allow researchers to select themost ideal peptide candidates to subse-

quently identify proteins of interest, ensuring accurate identification

and quantification of specific peptides or proteins, reducing inter-

ference and allowing the validation of the results, overall facilitating

method development. Libraries can be empirically determined, and

someare available online [99, 100] or generated via in silico predictions

of the fragmentation patterns [101].

Targeted proteomics approaches allow to perform absolute quan-

tification of proteins, in contrast with the label-free relative quan-

tification approaches available for discovery studies. Quantification

is usually performed with stable isotope-labelled internal standards

or with reference peptides with known concentrations [98]. In both

cases, the principle is that proteins (either non modified or post-

translationally modified) can be assessed by quantifying the distinct

peptides that make up their structure after undergoing proteolytic

digestion. This application offers advantages in contrast with standard

immunological quantitative assays (e.g. ELISAs) as it allows for multi-

plexing and it does not require specifically developed antibodies for its

scope. Excellent reviews on the topic are Liebler and Zimmerman [102]

and van Bentum and Selbach [98].

In general, bottom-up proteomics offers several advantages when

compared with top-down approaches, including suitability to analyze

complex samples, higher sensitivity in detecting low-abundance pro-

teins, simplified data analysis, robustness and possibility to obtain

relative and absolute quantitative measurements [103]. On the con-

trary, top-down proteomics offers advantages like the comprehensive
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analysis of proteoforms (the specific molecular form of the protein

resulting from combinations of genetic variation, alternative splicing,

and post-translational modifications [104]), 100% sequence coverage

and the consequent full characterization of PTMs [105]. A detailed

reviewof top-downapproaches in proteomics is out of the scopeof this

review, as their application in forensics is not exploited yet, but exten-

sive reviews can be found in literature including those of Toby et al.

[106], Catherman et al. [105] andMelby et al. [107].

2.6 Metabolomics

Metabolomics is the comprehensive analysis of cellular and tissue

metabolic products, a field that has seen significant development and

implementation over the past twodecades. It focuses on the character-

ization of small molecules within biological systems (≤1000 Da) [108,

109]. The interest in this field has grown due to the understanding

that the components comprising the metabolome are the outcomes of

variations in cellular regulatory processes, which can be influenced by

genetic or environmental perturbations [110]. In addition to the com-

monly used profiling of polar functional metabolites, lipidomic analysis

is gaining increasing popularity. Molecular lipids constitute a crucial

component within cells, playing vital roles in energy retention, main-

taining membrane integrity, and facilitating signaling processes [111].

Several key factors must be carefully considered when conducting

metabolomic studies. Sampling, quenching, storage, andextractionplay

pivotal roles in ensuring consistent and comparable results within and

across studies, making them essential in the context of forensic sci-

ence and investigation, as previously discussed. The initial two steps

in a metabolomics workflow are of paramount importance. They are

designed to achieve systematic sampling, thus minimizing variation

resulting from tissue heterogeneity. Additionally, prompt quenching

is essential to arrest metabolism, ensuring that the extracts provide

a dependable compound pool that accurately reflects the qualitative

and quantitative composition of endogenous metabolites in the orig-

inal, living tissue or at the time of the sampling [109, 112]. Indeed,

creating a universal protocol that fits all situations can be challenging,

especially considering the diverse materials, and working conditions

involved. However, when it comes to quenching, the primary objec-

tives are to prevent any disruption to the current levels of metabolites

during the harvesting process and to effectively halt all enzyme and

chemical activities. This is typically achieved by rapidly snap-freezing

the samples in liquid nitrogen, followedby storage at−80◦C [113, 114].

Besides the approach chosen, an efficient sample preparation proto-

col is characterized by four main attributes: (I) lack of selectivity, (II)

simplicity, (III) reproducibility and (IV) consideration of any chemical

or enzymatic reactions that could affect the metabolites after their

extraction [115]. Another important aspect is the choice of replicates

to be employed in a study. Biological replicates typically originate from

distinct individuals of the same genotype. In contrast, technical repli-

cates are generated by performing the complete analytical procedure

either using the same initial bulkmaterial or by repeatedly injecting the

same extract. Technical replicates can be generated at various phases,

including sampling, quenching, extraction, and analysis, allowing for

independent replication of each stage in the process [109, 112, 116].

In the realm of metabolite identification, nuclear magnetic reso-

nance (NMR) stands as the primary method for elucidating metabolite

structures. NMR relies heavily on objective physical characteristics,

resulting in a high level of reproducibility. This implies that factors

such as instrument specifications, setup, sample type and data collec-

tion parameters, along with the spectroscopic data produced, should

collectively furnish sufficient information for a definitive metabolite

characterization. On the other hand, mass spectrometry (MS) cou-

pled with gas chromatography (GC) and LC, offer broader coverage of

metabolites within the system under investigation. However, a poten-

tial challenge for both NMR andMS lies in the ambiguity of compound

identification. The combination of chemical information provided by

NMR andMS in combination is highly efficient inmetabolite identifica-

tion [117]. In addition, ionmobility has provided significant advantages

in structural biology by facilitating the differentiation of isomeric and

isobaric ions and directly revealing their conformation [118].

2.6.1 NMR

NMR is a spectroscopic technique based on the energetic transi-

tions of nuclear spins in the presence of a robust magnetic field.

Over the years, it has found extensive use in both clinical and non-

clinical settings for metabolomics analysis. Since the acquisition of the

first NMR spectrum in the 1940s, its primary application has been

the identification and structural elucidation of organic compounds.

This capability has been instrumental in exploring the behaviors of

substantial biological molecules, such as proteins and nucleic acids

[117]. Furthermore, the use of Stable Isotope Resolved Metabolomics

(SIRM) has been employed in monitoring reactions across metabolic

pathways by providing positional labelling information and, there-

fore, finding applications in various scientific fields, includingmedicine,

nutrition, and toxicology. Recently, NMR has gained significant trac-

tion in the field of metabolomics for the analysis of complex mixtures.

This trend is driven by several advantages offered by NMR com-

pared to mass spectrometry (MS). First and foremost, NMR is known

for its high inter-laboratory reproducibility and instrumental stability.

Maintenance of the NMR instrument is remarkably straightforward,

as the sample never encounters any components of the instrument.

This not only ensures reliability but also minimizes the risk of sample

carry-over between experiments [119]. In terms of metabolic cover-

age, approximately 60 metabolites can be detected in an untargeted
1H NMR spectrum when employing a 600-MHz NMR spectrometer.

This applies to samples such as human urine, and it requires minimal

sample preparation [120]. NMR, and particularly high-resolution (HR)

magic angle spinning (MAS)-NMR, provides another valuable capabil-

ity – the analysis of intact tissues without the need for extraction.

This approach allows for the direct examination of biological samples

in their native state, providing insights into the metabolites’ spatial

distribution and interactions within the tissue. The final technical

aspect to consider when using 1H NMR is the solvent suppression
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to obtain a flat baseline for better detection of lower abundant

compounds and increased sensitivity [121]. Although more computa-

tionally intensive and time consuming, 2D NMR experiments offered

better deconvolution of complex mixtures. As previously mentioned,

themost commonapplicationofNMR is todeterminemetabolite struc-

tures by providing information about functional groups (revealing the

position of chemical shifts), spatial or connecting protons (describ-

ing the multiplicity of signals and coupling patterns), as well as the

count of equivalent protons (depicted through signal integrals) [117].

Despite the great potential of 1D 1H NMR in elucidating compound

structure, for the most complex molecules with complex multiplicities

and second order effects, quantum-chemistry algorithms are com-

monly employed [122]. Identifying metabolites in metabolomics can

pose difficulties due to the numerous overlapping signals. Reference

libraries containing metabolites commonly present in matrices like

urine, plasma and serum serve as valuable tools. To validate structures

in metabolomic investigations, profiles are compared to standards in

spectral databases. The combined use of NMR and MS analyses can

provide both structure and exact masses, confirming compound iden-

tifications and eliminating the need for metabolites isolation [123]. In

recent years, and of particular interest for forensic applications, is the

use of quantitative NMR (qNMR) for the analysis of complex biologi-

cal fluids and tissues. The quantification is based on the principle that

the intensity of the signal is proportional to the number of nuclei of the

compound and is optimized by controlling the longitudinal relaxation

time. The complexity of this procedure lies in managing experimental

conditions and accounting for factors such as pH, ionic strength, solu-

bility, chemical interactions, and sample storage. The main advantage

is the ability to perform quantification without the need for an internal

standard or calibration curve, which is a requirement forMS platforms

[123].

2.6.2 MS-based approaches

Mass spectrometry-based metabolomics is a rapidly advancing tech-

nique widely employed in biomedical research, with a primary focus

on mechanistic studies of pathological conditions and the discovery of

biomarkers for diagnostic purposes. Similar to proteomics, the analyti-

cal platform formetabolomics consists of a source, amass analyzer and

a detector. The choice and combination of various components offer

both advantages and disadvantages.

Regarding the source, the preferred choice is ESI, which is respon-

sible for converting molecules into ions in the gas phase. ESI has the

advantage of producing a large number of intact ions through charge

exchange in solution, making it a ‘soft ionization’ method. In contrast,

atmospheric pressure chemical ionization (APCI) and atmospheric

pressure photoionization ionization (APPI), which does not typically

promote high source fragmentation, are less commonly used [124].

However, they complement ESI by their ability to profile non-polar

compounds in dual-source instruments [125]. In LC-MS hardware,

the mass analyzer is another essential component, and there are

four main types to consider. Triple quadrupole (QQQ) and linear-ion

trap (LIT) instruments are low-resolution tools. High-resolution instru-

ments commonly applied in metabolomics include quadrupole-time

of flight (Q-TOF), quadrupole-orbitrap (Q-Orbitrap), Fourier trans-

form ion cyclotron resonance mass spectrometer (FT-ICR MS). These

instruments offer the capability to simultaneously aid in compound

identification and quantification by resolving m/z values. Additionally,

the use of CID instruments enables the acquisition of fragmentation

patterns, which are valuable for structural analysis and improved com-

pound identification by providing fragmentation patterns of precursor

ions [125, 126].

MS metabolomics can be performed via direct infusion, by inject-

ing the sample directly in the MS detector, or via use of separation

techniques such as GC, capillary electrophoresis (CE) and LC [125].

The implementation of separation techniques requires deproteiniza-

tion and extraction protocols to prevent the sample from interfering

with the separation technique and, therefore, resulting in destruc-

tive and laborious protocols. However, this offers clear advantages

in terms of compound separation and identification. Furthermore,

besides the separation technique,MS-basedmethods offer higher sen-

sitivity thanNMR, larger selectivity, and greatermetabolic coverage. In

terms of chromatographic approaches, GC-MS is often considered the

most cost-effective and user-friendly separation technique; however,

the choice of separation strategy should be based on the properties

of the compounds under investigation and the scope of the anal-

ysis. It also offers enhanced stability and reproducibility compared

to some other methods. The underlying principle of GC-MS reduces

its capability to exclusively examine substances that are volatile or

readily volatilized and can undergo derivatization. The conventional

derivatisation approach in GC-MS involves a two-step process involv-

ing oximation followed by silylation and plays a crucial role in the

separation and identification of metabolites [127]. GC-MS also allows

the detection of polar compounds as fatty acids, amino acids, amines,

sterols and sugars. In terms of identifications, this happens via com-

parison with commercially available library (e.g., NIST and Fihen [128,

129]). CE-MS offers several advantages such as high-resolution and

low sample consumption to detect polar metabolites. However, it

shows low concentration sensitivity as well as narrow separation

windows [130].

Even though none of the current methods is capable of compre-

hensively profile the entire metabolome, LC-MS is arguably the most

common platform for metabolic phenotyping [131]. High- and ultra-

performance liquid chromatography (HPLC/UPLC) offer a versatile

tool to obtain efficient separations and improve MS data quality due

and low background noise by reducing sample complexity. Semi-polar

compounds (e.g., phenolic acids, fiavonoids, glycosylated steroids,

alkaloids and other glycosylated species) are easily profiled using

reverse-phase liquid chromatography (RPLC), normally using C18

columns. On the other hand, hydrophilic interaction liquid chromatog-

raphy (HILIC) columns are ideal for profiling more polar compounds,

including sugars, amino sugars, amino acids, vitamins, carboxylic acids,

and nucleotides. Both GC-MS and HILIC-based approaches are highly

compatible with all the MS platforms mentioned earlier. However, it is

often necessary to combine different chromatographic techniques and
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customize extraction protocols to achieve comprehensive coverage of

themetabolome [112, 125].

Furthermore, as for proteomics, there are different MS data acqui-

sition modes for metabolomics, namely full-scan, DDA and DIA. The

typical approach for untargeted metabolomics begins with profiling in

full-scan mode, which allows the assessment of mass-to-charge ratios

(m/z) and relative abundances for all detected features. These features

are automatically extracted during reprocessing, and the results are

analyzed using both univariate andmultivariatemethods. Additionally,

tandemmass spectrometry (MS/MS or MSE) techniques are employed

to further elucidate the structures and fragmentation patterns of

detected metabolites. DDA combines full-scan MS with the analysis

of MS/MS spectra, enabling both semiquantitative analysis and the

collection of structural information for the profiled compounds. How-

ever, there is a risk associated with DDA: certain precursor ions may

never be selected for fragmentation, potentially leading to the neglect

of these compounds in the profiling process [132]. Moreover, MS/MS

spectra tend to exhibit lower signal intensity when fragmentation

is employed, which can compromise the quantitation of compounds

and increase the risk of missing those present in low concentrations.

In contrast, the DIA strategy is based on the fragmentation of all

ions, making it more inclusive of compounds with lower intensity.

In practice, multiple precursor ions are simultaneously fragmented.

The two primary approaches for DIA are all-ion fragmentation and

‘sequential window acquisition of all theoretical’ fragment-ion spec-

tra (SWATH), which uses predefined molecular mass values to create

medium-sized pass windows for acquisition [133, 134]. Additionally,

these profiling methods are typically designed to discover biomarkers

in response to specific biological questions. They are often followed

by targeted approaches for confirmation of identification and pro-

viding absolute quantification. One of the widely adopted techniques

is MRM, commonly performed in triple quadrupole (QQQ) LC-MS

instruments. MRM allows for the monitoring of specific precursor

ions and product ions at a fast scan speed, with the capability to

switch between polarities. However, it has the drawback of limited

coverage. Toovercome this limitation, PRMstrategies havebeendevel-

oped for Orbitrap instruments. PRM enables the monitoring of groups

of fragment ions and quantification in a high-resolution instrument

[126].

To address complex biological questions, large-scale study designs

are essential. These designs often involve measurements taken over

time and may incorporate a multi-batch design. However, they also

underscore a major limitation of MS-based metabolomics, which is the

low replicability of results and the introduction of analytical or tech-

nical variation. This variation needs to be carefully accounted for and

corrected during data pre-processing and processing to ensure the

reliability of the results [135]. For this reason, in order to enhance

reproducibility within and across studies, quality assurance (QA) and

quality control (QC) approaches need to be considered for both untar-

geted approaches, that provide semi-quantitative data of as many

metabolites as possible, targeted approaches, that give quantitative

results via the monitoring of selected isotopically labelled internal

standards or standards added to the analysis, and semi-targeted ones,

that provide approximate quantification by analysis standards before

the formal analysis of the sample under investigation [112, 136,

137]. QA encompasses standard operating procedures that ensure

quality requirements are met during experimental procedures. In

untargeted assays, where identification is putative and relies on ref-

erence libraries, QC measures can involve a mixture of authentic

chemical standards distributed across the run and batches, similar to

what is done for targeted and semi-targeted assays. However, this

strategy may not fully capture the need for QC to reflect the com-

bined metabolite profile of all biological specimens. To address this,

a common approach is to use a small aliquot from each sample to

create a pooled QC sample. This pooled QC is then divided and ana-

lyzed across the entire experiment, providing a more comprehensive

assessment of the overall quality and consistency of the data [112,

137]. Another essential QA is the evaluation of artifacts created by

the extraction protocol via the creation of extraction blanks. These

are generated by performing the extraction without any samples and

allow the evaluation of ‘carryover’ phenomena that can be excluded

during data processing or run in series to assess system suitability

[137].

3 OMICS IN FORENSIC SCIENCES

This review aims to present readers with the cutting-edge

advancements in the use of omics disciplines within the realm

of forensics, concentrating specifically on their pivotal role in

the investigation of deceased individuals, encompassing aspects

such as determining cause of death, estimating PMIs, assessing

age at death, and facilitating the identification of the cadaver

(Figure 1).

3.1 Manner of death (MOD) and cause of death
(COD)

One major challenge that forensic practitioners face during inves-

tigations is determining the cause of death, especially when death

occurs unexpectedly or in unwitnessed circumstances [138]. Nowa-

days, biochemical and molecular high-throughput approaches allow

the assessment of pathophysiological changes, drug abuse and intox-

ications, which play a central role in understanding the mecha-

nisms that lead to death [138, 139]. This field is often referred

to as forensic molecular pathology and involves the analysis of

the tissue believed to have caused death (local molecular pathol-

ogy) and the examination of the entire systemic pathophysiology

to evaluate potential additional causes of death (systemic molec-

ular pathology) [140]. The main analytical approaches have been

previously introduced but important aspects to consider in imple-

menting forensic molecular pathology are (I) existing pathology prior

to insults, (II) changes in the process of death following insults,

encompassing particular discoveries and non-specific alterations, and

(III) modifications or artifacts occurring after death [140]. Manner
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F IGURE 1 Schematic representation of the central dogma of molecular biology, the omicmethodologies associated to each level and their
application to the study of the cadaver in forensic science.

of death is defined as ‘the underlying medical condition, disease

or injury that begins a lethal chain of events resulting in death’

while cause of death ‘describes the way in which a death occurs,

which may be homicide, suicide, accidental, natural or undetermined’

(Maryland Department of Health, Office of Chief Medical Examiner,

accessed on 4October 2023).

3.1.1 Search results

Using the Scopus database, the combined search terms were used:

‘forens*’, ‘omic*’, ‘cause of death’, ‘forens* AND proteomic* AND cause

of death’, ‘forens* AND metabolomic* AND cause of death’, ‘forens*

AND metagenomic* AND cause of death’, ‘forens* AND metabar-

cod* AND cause of death’, ‘forens* AND metabarcod* AND cause of

death’, ‘forens* AND omic* AND toxicology’, ‘toxicology AND omics

AND human AND metabolomic*’, ‘forens* AND genomic* AND cause

of death’, ‘forens* AND transcriptomic* AND cause of death’, ‘forens*

AND wound AND age AND omic’*. Two hundred and forty-nine

articles were retrieved, and 46 retained as considered appropriate

for the topic of the current review. Eleven additional articles were

also included manually for the pertinence to this specific thematic

area.

3.1.2 Genomics and epigenomics for COD and
MOD

Genomics, primarily utilizing NGS, has found extensive application in

cases involving sudden cardiac death (SCD). SCD is characterized by an

individual in good health experiencing cardiac-related symptoms one

hour prior to death,with underlying cardiac conditions being the cause.

This technology plays a crucial role in understanding the genetic fac-

tors contributing to such cases [141]. A number of cardiac disorders

have been associated with SCD and investigated via genome sequenc-

ing such as long QT syndrome (LQTS), short QT syndrome (SQTS),

Brugada syndrome (BrS) or catecholaminergic polymorphic ventricu-

lar tachycardia (CPVT) and inherited cardiomyopathies [142]. A very

comprehensive analysis performedbySanchezet al. [143] involved786

cases of individuals who did not die from violent causes. In 81.1% of

these cases, the cause of death was determined during autopsy. For

the remaining 283 cases, for which the cause was not assigned macro-

scopically, further investigation using Sanger sequencing revealed that

34.63% were attributed to coronary disease, and 12.72% were due

to inherited cardiomyopathy. The accuracy of these findings was con-

firmed through histological analysis. The study also identified specific

genetic variants, such asPKP2andSCN5A,which havebeenpreviously

reported by Kiehne and Kauferstein [144]. Additionally, compound
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variants were identified as potential causes of rare cardiac conditions.

This highlights the need for further research, ideally involving the anal-

ysis of family members to assess the potential inheritance of these

conditions [143].

Another field of application is the study of hypertrophic cardiomy-

opathy (HCM), an autosomal dominant genetic disorder characterized

by left ventricular hypertrophy. As a result, NGS represent a natu-

ral analytical platform for the post-mortem study of this condition. In

a case study that involved heart tissue from 15 participants, it was

observed that almost 50% of the cases (7/15 cases) did not exhibit

any pathogenic mutations associated with HCM. This finding suggests

that in these cases, the cause of HCMmay not be attributed to genetic

mutations commonly associated with the condition. However, in the

remaining cohort, eight missense variants in five genes were identi-

fied (i.e., MYBPC3, CAV3, PRKAG2, MYH6, MYH7) with only two that

were correlated with the conditions (i.e., MYBPC3p.Arg470Gln and

MYBPC3p). Recent research findings have indicated that cases where

therewas a specific level ofmyocardial disarray, typically exceeding 5%

within the heart, were often associated with pathogenic rare variants

related to hypertrophic cardiomyopathy. Specifically, in the majority

of such cases, which accounted for 88.9% of the nine cases studied,

pathogenic rare variants were identified as a contributing factor to the

condition [145]. A similar panel of genes was detected by Christiansen

et al. [146] on a cohort of 97 deceased diagnosed with schizophrenia

analyzed by MPS. Their analysis revealed that there was no overrep-

resentation of heart-related disease variants in deceased individuals

with schizophrenia. However, the study did find that the collective

genetic load of variants within the panel of genes under investigation

was higher in individuals with schizophrenia.

An interesting case was reported involving a sudden unexpected

death following a mild trauma during a physical altercation for an

individual suffering from a psychotic disorder. Toxic causes of death

were excluded following analysiswithUPL-MS/MS. The study revealed

the association of heterozygous variants in the RYR2 gene, which

are typically associated with CPVT. This association had not previ-

ously been linked to the cause of sudden death. The findings sug-

gest that the confluence of the genetic variant and the traumatic

trigger event might have been the underlying cause of the SCD

[147].

Another marker for SCD is 8bp insertion/deletion polymorphism

(rs150703258) within downstream of NPC1 [148]. In a more recent

study conducted on a cohort of 30 individuals at the Department of

Medical and Surgical Sciences, University of Bologna, between 2018

and 2021, a comprehensive investigation was carried out. This study

involved full autopsies, cardiovascular pathological examinations, and

systematic toxicological analyses. The findings of this study confirmed

the presence of several genetic variants that can be associated with

SCD. These results contribute to our understanding of the genetic

factors underlying SCD and provide valuable insights for forensic

pathology and clinical practice [149]. The study, employing Illumina

sequencing, identified 25 SNPs that may be indicative of a poten-

tial pathogenic association with SCD. A particular interest was raised

by the missense variant rs2228314 in the SREBF2 gene, associated

with the metabolism of cholesterol, responsible for the insurgence

of coronary atherosclerosis, a known cause of SCD. This hypothe-

sis was also confirmed by the presence of CACNA1C, KCND2 and

PRKAG2 variants all associated with lipid, cholesterol, arachidonic

acid, and xenobiotics/drugs metabolisms [149]. Interestingly, the same

study identified genetic variants mapping involved drug metabolism

(i.e., ABCB1, ABCB2, CYP2E1, CYP2C9 and CYP2J2). These findings

suggested the combined effects of drug abuse and arachidonic acid

metabolism could be related to the incidence of SCD. This under-

scores the complex inter-play of genetic and environmental factors in

contributing to SCD risk [149].

Another condition of interest is Marfan syndrome (MFS), which is

an autosomal dominant genetic disorder. It has been associated with

∼ 600 mutations in the FBN1 gene, which encodes the extracellular

connective protein fibrillin-1, in MFS patients. This genetic variation

can result in a range of cardiovascular and skeletal abnormalities in

affected individuals. In a case of study, Takahashi et al. [150] reported a

case of a Japanese individual diagnosedwithMFSwho died due to aor-

tic rupture. This case highlights the importance of considering genetic

variants like the p.C1307Y substitution in the FBN1 gene, which affects

connective tissue integrity. Individuals carrying this variant should

receive thorough medical attention to monitor for the potential devel-

opment of aortic dissection and sudden death (also see Ref. [151]).

However, it is essential to note that the pathophysiology of thoracic

aortic dissection or rupture (TADR) cannot be solely attributed to the

FBN1 gene. A comprehensive study conducted withMPS and involving

1078 post-mortem cases of sudden death with cardiovascular genet-

ics focus, including 34 cases of TADR, revealed that molecular testing

of the TADR sub-panel of genes had a diagnostic yield of 23.5% in

the TADR sub-group (n = 34). The genes with the highest number

of pathogenic variants were FBN1, TGFBR2, TGFBR1 and MYLK [152].

This finding underscores the significance of genetic variants in these

specific genes in both post-mortem examination and clinical diagnosis

of TADR.

Exome sequencing, which involves sequencing all the exons in a

genome, has gained popularity in the investigation of SCD aswell [153,

154]. Wang et al. [153] examined a case involving a 34-year-old male

and identified a potential cause of SCD in the form of a heterozygous

gene mutation, KCNQ1 G643S. This genetic variant was considered a

potential contributor to the occurrence of SCD. This underscores the

utility of exome sequencing in uncovering genetic factors associated

with SCD.

Another application of exome analysis is the investigation of sud-

den infant death syndrome (SIDS) via MPS. Neubauer et al. [155]

extracted from alcohol-fixed and paraffin-embedded tissue blocks of

161 cases of SIDS, resulting in 155 successful sequencing, showing

two potential causative variants in SCN5A (p.Arg1897Trp) and RYR2

(c.2907-1G4C) in two cases, while further variants of interest were

identified in KCNE2, CAV3, RYR2 and MYBPC3. Altered ion channel

functionsweremostly identified as SIDScauses,while variants found in

genes associatedwith cell adhesionproteins andor sarcomereproteins

are associatedwith cardiomyopathies andmight, therefore, contribute

to themain cause of death related to SIDS [155]. In another recent case
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study, exomesequencingwasemployed to investigate genes associated

with congenital thrombophilia, including SERPINC1, PROC, PROS1, F2,

F5, PLG, MTHFR, in a Japanese man in his 30s. The study revealed the

presence of a c.416C > T p.A139V variant in the PROS1 gene, which

was considered potentially related to the cause of death, specifically

pulmonary thromboembolism. In response to this finding, further bio-

chemical testing was conducted on deceased family members due to

the autosomal dominant inheritance pattern of the variant. This case

underscores the significance of molecular autopsies in forensic inves-

tigations [156]. In the context of applying molecular autopsies, several

crucial aspects related to variants of uncertain significance (VUS) need

to be carefully evaluated. These aspects encompass economic con-

siderations, ethical and legal constraints, the challenge of confidently

interpreting results and the absence of standardized guidelines for

the utilization of VUS findings. Addressing these issues is essential for

ensuring the responsible and effective use of molecular autopsies in

forensic investigations [157].

In contrast to the extensive body of literature on variant analy-

sis, only a limited number of studies have explored the potential of

analyzing methylation patterns within specific gene promoter regions.

Thesepatterns canundergo alterations in response to various acquired

predispositions and causes of death. One study conducted on a small

cohort of individuals (n = 19) demonstrated a significantly higher

degree of p16 promoter methylation in individuals exposed to Pb2+

compared to the control group. This suggests that methylation analy-

sis in specific gene promoter regions may offer valuable insights into

the effects of environmental exposures and their relationship to causes

of death [158]. This has clear implication in the analysis of industrial

chemical poisoning that has direct relevance for forensic assessment

of cause of death. Similarly, Nakatome et al. [159] evaluated the dif-

ferent degree of DNA methylation of nine circadian clock genes in

relation with cause of death and methamphetamine intoxication in an

autopsy sample (n = 32). Results revealed that Per2, Per3, Cry1 and

Tim showed differential methylation patterns in different individuals,

and those individual exposed to methamphetamine displayed higher

methylation inPyr1.While nodirect correlationwith the causeof death

has been established, methylation analysis holds the potential to aid in

understanding themechanisms leading to death in forensic settings, as

suggested by a study conducted by Nakatome et al. in 2011 [159]. This

potential is further confirmed by a recent and comprehensive study

that analyzed 737 selected White males with known medical records.

DNA samples extracted from blood were analysed using the Illumina

Infinium HumanMethylation450 BeadChip. This study revealed that

DNA methylation-based biomarkers of age acceleration have a strong

relationshipwith common causes of death in the aging population, such

as myocardial infarction, stroke and cancer [160]. These findings show

the potential of employing DNA methylation for the estimation of the

cause of death. However, they also highlight the need for method-

ological standardization and further testing to ensure the reliability

and accuracy of such an approach. This represents a promising avenue

for forensic investigations and understanding the underlying factors

contributing to various causes of death.

3.1.3 Microbiomics for COD and MOD

In recent decades, the post-mortem microbiome has gained signifi-

cant attention and is now considered a promising tool to be routinely

involved in forensic investigations. This is evident from the substantial

number of reviews on this topic in the scientific literature [161–164].

Despite the main application of microbiomics in forensics has focused

on the estimation of PMI by evaluating bacterial community succession

over time, recently successful applications have included the potential

use of microbiomics for the identification of COD and MOD [165]. A

comprehensive cross-sectional study conducted by Pechal et al. [166]

aimed to assess microbial communities in various anatomical sites,

including the external auditory canal, eyes, nose, mouth, umbilicus, and

rectum. The study focused on determining PMI, variations in anatomi-

cal sampling and the influence of the individual’s health status before

death. The results confirmed the existence of niche differentiation

between different anatomical locations and indicated the potential for

utilizing microbiome studies in forensic cases with short timescales,

specifically in those with a PMI of less than 48 hours. This conclusion

was supported by the observed stable turnover patterns in microbial

communities over time. Additionally, the study indicated that micro-

bial communities present before death continue to exist post-mortem

and could potentially serve as indicators of an individual health status

as well as for MOD. The study revealed interesting findings regard-

ing microbial diversity in individuals who died from different causes.

It was observed that individuals who died from heart disease had

lower microbial diversity, while those associated with violent deaths

exhibited a higher bacterial community diversity. These distinctions

in microbial diversity could potentially serve as indicators in foren-

sic investigations to help determine the cause of death. This suggests

that microbiome analysis has the potential to provide insights into

antemortem health (e.g., Aemophilus and Fusobacterium showed twice

the abundance in healthy individuals, whereas Rothia exhibited only

9% of more abundant in heart disease) [166]. The same dataset was

later reanalyzed with the specific purpose of evaluating M/COD from

beta dispersion data [165]. Results were promising and were used

to developed multinomial logistic regression models able to validate

the medical examiner cause of death assessment, assigning a correct

COD ∼ 62% of the times. However, the best results were obtained

using binary logistic regressions (natural vs. accidental death; cardio-

vascular disease vs. drug-related death; disease vs. non-diseased state)

for which cardiovascular disease versus drug-related deaths showed

∼ 79% of correct assignments. The study also included random forest

(RF) classification and logistic regression performances using beta-

dispersion, highlighting the importance of appropriate bioinformatics

pipelines in forensic science [165]. To confirm the potential of micro-

biome to differential M/COD, skin microbiomes from eight cases were

sequenced and showed differences at both phylum and genus levels

among thedifferentCODs.Despite the interesting results of this study,

the authors also highlighted important aspects to be considered when

using post-mortemmicrobiome, such as biases introduced by the origi-

nal depositional environment, the time elapsed between retrieval and
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sampling and the anatomic location selected for the samplings [167].

For this reason, future studies should thoroughly consider the technical

aspects connected to the sampling strategies starting from the study

design, to ensure the replicability of the results [163]. Another inter-

esting application of microbiome analysis for understanding M/COD

was presented by Javan et al. [168], who investigated the correlation

between post-mortemmicrobial composition and drug abuse. Similarly

to the previous studies, the sequencing of the 16S rRNA via NGS

showed that it is possible to distinguish between cases of drug abuse

and non-drug abuse.

3.1.4 Metabolomics and proteomics for COD and
MOD

Advanced high-throughput methods, other than nucleic acid based

ones, have enabled the identification of metabolites associated with

various human traits, including health, disease, toxicology, and the

aging process. Between these methods, proteomics and metabolomics

are becoming increasingly popular in the diagnosis and in the mech-

anistic explanation of pathological conditions and drugs addiction.

Consequently, the field of forensic investigation for the determination

of the manner and cause of death has rapidly adopted these micro-

bial tools to aid in the analysis and provide valuable insights into the

circumstances of death.

GC-MS andNMRmetabolomicswas performed byWang et al. [169]

on myocardial samples from rats to evaluate the possibility to detect

myocardial ischemia (MI). The research findings indicate that when

examining lethal ventricular tachyarrhythmia (LVTA) against control

samples, PLS-DA yielded R2Y and Q2 values of 0.479 and 0.525 for

GC-MS, and 0.626 and 0.981 for NMR. Additionally, for rats exhibit-

ing severe atrioventricular block, the corresponding R2Y andQ2 values

were 0.379 and 0.283 for GC-MS, and 0.691 and 0.994 for NMR.

These results highlight the significant potential for effectively distin-

guishing between different causes of death. To confirm these findings,

acute myocardial ischemia (AMI) was further investigated in an ani-

mal model including 30 rats belonging to three groups: control, sham,

and AMI. The analysis of serum samples using UPLC-HRMS allowed

for the classification of groups in a pairwise manner but also revealed

nearly complete separation between all three groups when analyzed

together, with R2Y = 0.987/Q2 = 0.814. The study also analyzed dif-

ferent machine learning models showing that multi-layer perceptron

(MLP) provides the best accuracy (96.67%). The same study also tested

a selection of seven metabolites from the MLP model (i.e., L-threonic

acid, N-acetyl-L-cysteine, CMPF, glycocholic acid, L-tyrosine, cholic

acid, and glycoursodeoxycholic acid) on serum samples from 17 cases

(AMI, n = 9) showing 88.23% of accuracy [170]. A more complex rat

model evaluated the possibility of characterize anaphylactic shock (AS,

n = 11), mechanical asphyxia (MA, n = 11) and SCD (n = 11) using

GC-HRMS on serum sample [171]. The study showed changes in glu-

cosemetabolism, the TCA cycle, glycolysis, lipidmetabolism, creatinine

catabolism, and purinemetabolism accordingwith the threeCODs and

pointed up the potential to classify them with a good degree of accu-

racy. However, the study highlighted biases that could be introduced

by sample collection time, limited inter-individual variability in rats

compared to humans, and low metabolic coverage offered by GC-MS

in comparison with LC-MS [171]. Vitreous humor (VH), a target fluid

for metabolomic analysis, was utilized in a targeted assay to compare

cases of hypothermia fatalities (n = 20) to control cases (n = 16) by

Rousseau et al. [172]. Orthogonal partial least-squares discriminant

analysis (OPLS-DA)was applied to the profiles of 188metabolites. This

analysis captured 72% of the correlation between variables and 89%

of the variance, with a predictive ability of Q2 = 0.51, highlighting the

effectiveness of the technique. Furthermore, good markers were iden-

tified in methionine sulfoxide, methionine, and acetylcarnitine [172].

Overall, these studies provide preliminary evidence thatmetabolomics

could have real-world applications in understanding the cause of death

in forensic science.

Similarly, the profiling of lipids, another class of less polar functional

metabolites, can be employed to gain insights into the cause of death.

Wu et al. [173] developed a rat model on serum samples to investi-

gate LVTA linked tomyocardial ion channel diseases usingUPLC-MS. In

their research, they analyzed serum samples and identified 749 lipids,

of which 188 displayed the potential to discriminate the post-mortem

condition. The advantage of this approach is also represented by the

possibility to perform a comprehensive pathway analysis in order to

explain the metabolic mechanism of the COD [173]. In a recent study,

the integration of metabolomics and machine learning techniques was

employed to assess the ability to differentiate between drowning cases

and post-mortem submerging in a rat model. This investigation utilized

variousmachine learning algorithms, including RF, partial least squares

(PLS), support vector machine (SVM) and neural network (NN). The

study findings demonstrated the exceptional performance of the RF

algorithm,with an area under the curve (AUC) of 1 and an accuracy rate

of 95% [174].

Only one study was found regarding the use of proteomics for the

understanding of COD. The study aimed to identify potential biomark-

ers by conducting serum LC-MS/MS analysis on four cases of drowning

and comparing them to a control group consisting of onemanwho died

by hanging and one woman who died due to polytrauma. Through this

analysis, ApoA1 and −1 antitrypsin were identified as biomarkers of

particular interest. To validate these findings, immunonephelometry

was performed using a BN ProSpec equipment from Siemens Health-

care Diagnostics (Marburg, Germany) on a larger cohort of drowning

cases (n= 16) and compared to cases with other causes of death (n= 9,

including four cardiovascular deaths, one hanging, two cases of poly-

trauma, one stabbing and one death from drug overdose) [175]. The

use of advanced analytical techniques like LC-MS/MS, in combination

with biomarker validation, offers promising insights into the distinctive

biochemical profiles associated with drowning cases. By comparing

these profiles to other causes of death, proteomics can contribute to

more accurate and reliable forensic diagnoses, particularly in cases

involving drowning.

Another approach that could have application in forensic settings is

the analysis of the exosome (Exos). Exos are a specific type of extracel-

lular vescicles involved in the regulations ofmost aspects of the cell life
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cycle. In response to external stimuli, the plasmamembrane undergoes

its initial invagination. External active substances, including nucleic

acids, proteins, lipids andmetabolites, enter the cell along with surface

proteins of the plasma membrane through the process of endocyto-

sis, leading to the formation of endocytic vesicles forming endosomes

(ESE). Early sorting endosomes initiate the process by endocytosing

mitochondria, endoplasmic reticulum, Golgi bodies and nucleic acids,

forming late-sorting endosomes (LSEs). Subsequently, under the influ-

ence of endosomal sorting complexes required for transport (ESCRT),

LSEs undergo a secondary internalization, leading to the development

of multiple inter-luminal vesicles (ILVs) of various sizes. Due to this

mechanism, LSEs containing ILVs are termed multi-vesicular bodies

(MVBs). Some MVBs are degraded by autophagosomes or lysosomes,

while the majority fuse with the plasma membrane, releasing ILVs and

eventually becoming exosomes [176]. Wang et al. [177] showed the

possibility of applying it to the study of coronary disease, cardiomy-

opathy,myocarditis, andheart failure. Theadvantageof targeting these

biomolecules is the possibility to analyze proteins, metabolites and

miRNA. Exosomes, in fact, can be used to identify SCD without rely-

ing on cardiac tissue samples. They are easily accessible for forensic

analysis, making them valuable tools in forensic medicine. Further-

more, due to the protective role of the lipid membrane of the exosome,

the biomolecules contained in these structures could maintain longer

stability post-mortem compared to circulating biomolecules, enhancing

reliability of the COD assessment. One main limitation is the cost and

the complexity of the Exos purification procedure [177].

A few studies have applied proteomics and/or metabolomics meth-

ods to investigate wound age for forensic purposes. Tarran et al. [178]

performed experimental incisions on the skin of 18 adult rats from 5

minutes to 12 days before euthanasia, then excised the wounds and

extracted proteins that were subjected to 2-DE and MALDI-TOF MS.

They found differences in the level of hemoglobin, which was high

and stable for wounds up to 3 hours, and dropped to control level by

12 hours. However, the authors stated that this analysis cannot be

used on its own as hemoglobin is too abundant in tissue samples and

proteins unique to specific time periods for healing may bemore infor-

mative for forensic applications. Dammeier et al. [179] conducted a

study to determine which projectile caused a lethal injury by pene-

trating bovine organs with 79 projectiles and identifying organ specific

proteins on their surfaces. They performed tryptic ‘on-surface’ diges-

tion and used an LTQ OrbitrapXL and SVMs, RFs, Gaussian naïve and

multinomial naïve Bayes they obtained over 90%of classification accu-

racy for allmodels and> 99%accuracy for themultinomial naïveBayes

in discriminating the organs. This approach could also be applied to

the analysis of other weapons to improve the forensic re-construction

surrounding MOD. Instead, Cao et al. [180] focused on the applica-

tion of metabolomics and tandem machine learning for the estimation

of wound age inflicted on rats and sampled from 4 to 48 hours post-

contusion. They found consistent changes in the metabolomics profile

at specific time intervals and highlighted 43 endogenous compounds

that could be used for wound ageing. Amongst four machine learning

models tested,MLPwas able to classify wound agewith an accuracy of

92.6% for samples taken from 4 to 12 hours post-contusion.

3.1.5 Toxicology methods for COD and MOD

The application of omics to forensic toxicology, the branch of toxicol-

ogy that applies acceptedand standardized analyticalmethods to cases

and issues where drug effectsmay have administrative ormedico-legal

implications. In practice, forensic toxicology involves the analysis of

ethanol, drugs of abuse (DOA), prescription drugs or poisons in various

types of matrices (e.g., urine, blood) via pre-screen immunoassays for

known and common substances or GC-MS, LC-MS(/MS) for confirma-

tory analysis or unknown compounds screening. In addition to identify-

ing specific drugmetabolites andmonitoring their stability andchanges

over time, metabolomics can reveal endogenous biomarkers indica-

tive of drug use or potential sample tampering, as well as the severity

of intoxication. Furthermore, it provides insights into the mechanisms

underlying drug actions,which is crucial for understanding their effects

and addressing chronic toxicity, ultimately informing the development

of suitable therapeutic interventions. In metabolomics-based toxicol-

ogy, it is crucial to analyze all samples, including the target substance,

from the same batch and under consistent conditions. This practice

helps mitigate bias resulting from sampling, storage, or instrument

variations, as emphasized earlier [139, 181]. To reinforce the signifi-

canceof standardization in toxicology, the ‘HumanToxomeProject’was

initiated. Its objective is to deduce, validate and share molecular path-

ways of toxicity (PoT) by employing endocrine disruption as a model.

The project focused on examining the responses of MCF-7 human

breast cancer cells, utilizing transcriptomics and metabolomics as ini-

tial approaches. More specifically, the project aimed to face several

challenges including (I) Cell model and reference compound selection,

(II) Cell model standardization and QA, (III) Omics and QA as well

as bioinformatics integration of different outputs from platforms, (IV)

mechanistic Human Toxome Knowledge-base and (V) real-word appli-

cation. An example of the application of toxicology to the evaluation

of COD was presented by Chighine et al. [183] who evaluated the

possibility of identifying methadone intoxication in cases of perinatal

asphyxia. In the study, urine samples from 10 newborns affected by

perinatal asphyxia, 16 healthy control newborns and one affected by

methadone intoxication were tested via 1H NMR. Results of multivari-

ate analysis showed that the metabolome profile of the intoxicated

individual was similar to the perinatal asphyxia ones, and the separa-

tionwith the control groupwasmostly drivenby increased levels of lac-

tate that could be associatewith awitch to anaerobic glycolysis, caused

by the switch to anaerobic metabolism. Finally, based on the metabolic

profile of the asphyxia cohort, it was possible to distinguish between

the individual that survived the asphyxia episode [183]. This shows the

possibility not only to identify intoxication via metabolomics, but also

to provide amechanistic explanation of themetabolic changes induced

by it. In another study, researchers investigated cases of hypoglycemia-

related deaths, which included 19 instances of insulin intoxication, 19

diabetic cases and 38 instances of hanging, the latter serving as the

control group. The analytical method employed was UPLC-qTOF mass

spectrometry. Moreover, the study screened a total of 776 randomly

chosen post-mortem cases. The results showed decreased levels in 12

acylcarnitineswithin the profiles of the 19 insulin intoxication samples,
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demonstrating a notable distinction between the three groups. When

the model was applied to the randomly selected cases, it correctly

identified 46 instances as being associated with hypoglycemia-related

deaths, five of which were subsequently confirmed through autopsy

reports [184]. As previously mentioned, it is crucial to consider the

time-dependent changes of non-endogenous compounds during the

investigation. In a study involving 477 cases, femoral blood samples

were collected at two different time points. LC-MS/MS and GC-HRMS

were utilized for drug abuse analysis and the identification of specific

DOA. The investigation demonstrated distinct behavioral variations

based on the specific compound under examination. Specifically, con-

centrations exhibited a decrease for diazepam and nordiazepam, an

increase for mirtazapine and citalopram, while morphine and codeine

displayed relatively consistent behaviour. Furthermore, LC-MS/MS

profiling proved that including methionine, phenylalanine and valine

in the targeted analysis could be beneficial in post-mortem concentra-

tion changes of drug concentrations [185]. Bai et al. [186] recently

investigated antipsychotic agents’ fatal intoxications bybuilding anani-

mal model based on LC-MS metabolomics of blood samples. Ten mice

were first administered chlorpromazine or olanzapine in known doses

to simulate fatal-intoxication and compared to 10 control samples and

metabolic profiles of the two groups showed clear differences when

testwithOPLS-DAwith somepathways (i.e., betaoxidationof very long

chain fatty acids, oxidation of branched chain fatty acids, TCA cycle,

fatty acid biosynthesis, and arginine and prolinemetabolism) being dis-

turbedby the intoxication.Additionally, L-acetylcarnitine, succinic acid,

L-carnitine, and propionylcarnitine were confirmed via targeted and

found to be good marker to evaluate potential antidepressant fatal

intoxication [186].Only one studywas selected according toour search

criteria that applied a multi-omics approach to toxicology [187]. The

study aimed to identify biomarkers of cannabis use applying a combina-

tion of slow off-rate modified aptamers proteomics, semi-quantitative

targeted LC-MS/MS metabolomics on plasma samples from eight dis-

cordant twin pairs and four concordant twin pairs. Furthermore, 11

cannabinoids and their metabolites in ethylenediaminetetraaceticacid

plasma were quantified via LC-MS/MS. Results show that 13 proteins,

three metabolites, and two lipids that were associated with THC-

COOH. Besides, the mechanistic explanation of pathways influenced

by cannabis administration, the authors were able to identify new

biomarkers that could be used to identify cannabis use from plasma

sample (e.g., Myc proto-oncogene protein) [187].

3.2 Post-mortem interval

In the realm of forensic investigations, establishing an accurate time-

line of events is crucial, particularly in criminal inquiries. The process

of PMI estimation assumes a pivotal role in this context, represent-

ing a fundamental component of the investigative framework. It yields

insights into the circumstancesenvelopingan individual’s demise,while

concurrently addressing critical questions pertaining to the cause of

death. Furthermore, in cases characterised by missing persons, homi-

cides or unidentified remains, precise PMI estimation facilitates the

identification and subsequent legal action against those implicated in

the loss of life.

PMI estimation has been originally addressed via classic

approaches, such as the evaluation of early post-mortem physical

changes (algor [188], livor and rigor mortis [189]), the analysis of bio-

chemical parameters (such as potassium levels in the VH of the eye

[190]), the morphological examination of the remains (to evaluate, for

example, ocular changes [191] or the decomposition stage [192]) and

the use of forensic entomology [193]. Despite their wide use in foren-

sics, they suffer from limitations in terms of precision and reliability

due to the effect that intrinsic and extrinsic variables can play on those

estimates. Additionally, the experience of the operator conducting

the analyses can affect the accuracy of the estimations. Lastly, the

applicability of some of these approaches to specific post-mortem time

windows poses some limits, that can eventually be partially over-

come by combining multiple techniques together [194]. Therefore,

the development of advanced methods for PMI estimation, such as

those offered by the adoption of omics approaches, can significantly

enhance the precision of PMI estimations and increase the reliability

of forensic investigations, ultimately contributing to more accurate

and accountable outcomes in the field of forensic science.

3.2.1 Search results

Using the Scopus database, the combined search terms were used:

‘forens* AND “metagenom* AND “PMI”’, ‘forens* AND metabarcod*

AND “PMI”’, ‘forens* AND microbiom* AND postmortem interval’,

‘forens* AND microbiom* AND “PMI”’, ‘forens* AND transcriptom*

AND postmortem interval’, ‘forens* AND transcriptom* AND “PMI”’,

‘forens* AND proteom* AND postmortem interval’, ‘forens* AND pro-

tein* AND postmortem interval’, ‘forens* AND proteom* AND “PMI”’,

‘forens* AND metabolom* AND “PMI”’, ‘lipid* AND postmortem inter-

val”, ‘forens* AND lipidom* AND “PMI”’, ‘forens* AND omic* AND

“PMI”’. Two hundred and seventy-seven articles were retrieved, and 75

retained appropriate for the topic of the current review. Twenty-nine

additional articles were also included manually for the pertinence to

this thematic area. Table 1 summarises all the studies that exploited

omic technologies combined with machine learning algorithms for

PMI estimation.

3.2.2 Microbiomics for PMI estimation

The first studies exploiting the use of microbiomics for PMI estimation

were those conducted byHyde et al. [216], Pechal et al. [195] andMet-

calf et al. [196]. Hyde et al. [216] conducted their study on two human

cadavers at Southeast Texas Applied Forensic Science (STAFS) facility

and sampled mouth and rectum at the onset of the bloat stage and at

its end, and analyzed the 16S via pyrosequencing. They were able to

demonstrate the aerobic to anaerobic microbial shift during decom-

position and to identify novel bacterial species in comparison with

culture-based studies. Pechal et al. [195], instead, placed three swine
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carcasses outdoor and sampled the oral and skin epinecrotic commu-

nities at selected time points up to 5 days PMI. Bacterial communities

were analyzed via 16S amplicon pyrosequencing, and RFmodels devel-

oped were able to explain 96% of the time since placement of the

carcasses using 10 selected taxa. Metcalf et al. [196] increased the

sample size by using a smaller animal model (mouse, n = 40) indoor

to estimate PMI starting from different body sites (abdominal, skin

of body, skin of head) and sample types (soil underneath corpse and

control soil without corpse) for a total of 223 samples collected. They

sequenced both 16S and 18S amplicons using the Illumina HiSeq plat-

form together with longer fragments of the rRNA genes on the Pacific

Biosciences RS platform. With RF modelling, they obtained an error

of approximately 3 days when using data from the skin of the head.

The authors recommended the use of skin and soil sites instead of the

abdominal cavity for increased accuracy, and found that the combined

use of 16S and 18S dataset does not significantly improve the PMI esti-

mations. Hyde et al. [217] used two donated cadavers at STAFS that

were sampled in their mouth, on different skin sites and in the rec-

tum on daily basis for 19 days. 16S metabarcoding was achieved with

pyrosequencing and allowed the group to describe for the first time

the successive bacterial changes associated with human decomposi-

tion. Due to the limited sample size, they were not able to develop

regression models nor to make inferences about human decomposi-

tion in general. Guo et al. [218] instead sampled the oral and rectal

microbiome of six rats placed outside up to 3 days post-mortem. They

identified dominant taxa at several time points via 16S metabarcod-

ing using the Illumina MiSeq platform but due to the limited sample

size were not able to develop PMI predictive models. Johnson et al.

[198] targeted instead the skin microbiota of ear canals and nose of

21 human cadavers located outdoor at the Anthropological Research

Facility (ARF) at theUniversity of Tennessee to evaluate the applicabil-

ity of non-invasive samplings for PMI estimation. 16S metabarcoding

was conducted on the Illumina MiSeq platform and several regression

techniques were tested to identify the best predictors for PMI. They

found out that the combination of the two anatomical sites increases

the accuracy of the estimation, that results in a mean absolute error

(MAE) of 55 accumulated degree days (ADD) (approximately two days

of decomposition in the warmmonths in Tennessee) when considering

a PMI of 500 ADDs. In order to evaluate the principles governing the

decomposition process on different soil substrates, Metcalf et al. [199]

placed mouse carcasses indoor on three soil types and sampled their

skin, abdominal cavity and gravesoil for amaximumPMIof 71days, and

conducted in parallel human decomposition studies on four donated

bodies at STAFS by sampling their skin and associated gravesoil over a

maximum period of 143 days. Similarly to their previous study [196],

they did full metabarcoding analyses on archaeal, bacterial, micro-

bial eukaryotic and fungal communities. Their RF regression model

resulted in an error of 2–3 days over the first 2 weeks of decomposi-

tion. Soil types, seasons and host species did not affect the accuracy

of the estimations. They also showed that soil is a crucial source of

decomposermicrobial communities, which are found at very low abun-

dance at the beginning of the experiment and that increase with the

progression of the decomposition. Javan et al. [219] conducted a study

onhumancadavers fromcriminal investigations (n=27)withPMI rang-

ing from 3.5 to 240 hours. Specifically, they sampled internal organs,

mouth and blood and performed 16S metabarcoding. They were able

to show that sex, internal organ chosen for the analysis and taxonomic

depth (e.g., genus vs. species level) all play a role in explaining the

variance of the PMI predictive models, and that temperature, on the

contrary, did not play a key role in contributing to the differences in the

community structure.DeBruynandHauther [220] sampled the caecum

of four human individuals placed atARF andperformedmetabarcoding

on the 16S via Illumina MiSeq. They identified a common decay com-

munity among the different cadavers characterised by an increased

richness and a decreased diversity with increasing PMIs. Pechal et al.

[166] conducted the largest study so far on 188 human cadavers which

were sampled during routine death investigations. Specifically, they

sampled ears, eyes, nose, mouth, rectum, and umbilicus and conducted

metabarcoding of the 16S gene with either Illumina HiSeq and MiSeq

instruments. The PMI range was from <24 hours to more than 73

hours post-mortem, and was determined either on the basis of tapho-

nomic alterations or on corroborated eye witness reports. Their study

was aimed at exploring the ecology and the microbial successions in

different anatomical districts postmortem, and not at developing a

model for PMI estimation. Their findings suggest that the post-mortem

microbiome reflects the antemortem one for at least 24–48 hours post-

mortem, similarly to what found by Iancu et al. [167]. In their study,

they sampled eight bodies at the morgue by swabbing their face and

hands upon their arrival and after 12 hours. Sequencing of the 16S

with Illumina MiSeq revealed minor variations in the microbial popu-

lations at the two time points considered, and identified correlations

between the skin microbiome and cause of death, in line with what

observed by Pechal et al. [166]. Fu et al. [221] focused exclusively on

the fungal successions associated with PMI by using juvenile pigs as

human proxies both indoor (for up to 56 days) and outdoor (for up to

14 days). Both cadaveric and soil fungal communities were sampled at

selected time points and the ITS1 region was targeted for subsequent

metabarcoding analyses with Illumina MiSeq. They identified fungal

species correlated with accumulated degree hours (ADH) that were

proposed as indicators for PMI estimation. Moreover, due to the sim-

ilarity in terms of fungal communities observed between the carcasses

and the gravesoil, they proposed the use of fungal analyses to ascertain

the location fromwhich a cadaver has beenmoved. Liu et al. [205] sam-

pled several internal organs (brain, heart and caecum) of 80 mice left

to decompose indoor for a period of 15 days. 16S gene was sequenced

via amplicon sequencing with IonS5XL and several machine learning

algorithms including RF, SVM and artificial neural network were used

to estimate PMI. The best result was obtained when using data from

the caecum and artificial neural network, with MAE = 1.5 hours for up

to 24 hours decomposition and MAE = 14.5 hours for up to 15 days

decomposition. Despite the great accuracy obtained, it has to be noted

that controlled indoor decomposition conditions are far from the real-

ity in forensic scenarios, therefore results of these models should be

interpreted carefully before their use in real life forensic contexts. Hu

et al. [222] conducted a large study on human cadavers, by sampling

the gut microflora from the large intestine (vermiform appendix and

 16159861, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202200335 by T
est, W

iley O
nline L

ibrary on [08/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



22 of 47

transverse colon) of 63 human cadavers frommorgues with PMI rang-

ing between 5 and 192 hours, conducted metabarcoding analyses on

the 16S gene on Illumina MiSeq platform and applied RF modelling to

develop PMI prediction models. Results showed that the microbiome

of the appendixmay be a good indicator for PMI, withMAE= 25 h for a

maximum PMI of 192 hours. Li et al. [213] have recently compared rat

and human thanatomicrobiomes by sampling caecum feces at selected

time points (up to 30 days) from 84 rats and from nine humans at the

time of forensic autopsies (PMI ranging from 3 to 28 days). 16S gene

amplicons were sequenced via Illumina MiSeq. They divided the sam-

ples in two PMIwindows (0–7 and 9–30 days) based onMLPmodelling

andestablished then regressionmodels usingRF ineachgroup.Overall,

the model on rats for 0–7 days had aMAE of 0.58 days and the one for

9–30 days had aMAE of 3.16 days. Subsequently, they selected shared

taxa between the caecum of rats and human and predicted the human

PMI based on the rat model previously developed. The MAE for the

PMI group of 0–7 days was 0.56 days, and the MAE for the PMI group

of 9–30 days was 4.51 days overall supporting the potential transla-

tion of PMI models based on animal proxies to the estimation of PMI

in humans.

In contrast with the significant amount of literature available for

PMI estimation using microbiomics from soft tissues, much less is

known regarding the microbial profile of bones post-mortem. Damann

et al. [223] analyzed bone samples from 12 human individuals and

three soil samples, and found the presence of gut bacteria in the par-

tially skeletonised remains, and a profile more similar to soil bacteria

in dry remains. Similarly, Deel et al. [207] investigated the microbiome

of ribs from six individuals at selected time points post-mortem and in

different seasons, and successfully identified a core bone decomposer

microbiome characterized by environmental taxa present in the sur-

roundings of the bones (e.g., skin and soil). They managed to develop a

RFmodel that predicted the PMI with an accuracy of 34 days over 1–9

months PMI timeframe, providing investigators with a new tool for the

estimation of PMI from skeletal remains.

Other studies focused on the analysis of the soil associated with

the cadaver/carcass (gravesoil) to estimate PMI also in circumstances

when thebodyhasbeenmoved from its original location. The first stud-

ies focused on the characterization of the communities associatedwith

decompositionandon their shifts over time.Carter et al. [224] explored

the microbial succession in soils underneath pig carcasses in summer

and winter by analyzing the 16s rRNA gene with Illumina HiSeq 2000,

and demonstrated that soil microbial successions associated with the

phenomenon of decomposition are predictable and reproducible, and

that the seasonality plays a key role in the soil microbial communities

and should therefore be taken into account when exploring the use

of soil microbiome analyses for PMI estimation. Cobaugh et al. [225]

collected soil from beneath four human cadavers at ARF throughout

decomposition (up to 198 days) and analyzed the 16S genewithMiSeq.

They identified distinct communities and predominant taxa in associ-

ation with specific decomposition stages, human-associated bacteria

present in the soil up to 198 days PMI, and potential taxa for PMI esti-

mation from soil samples. Similarly, Finley et al. [226] evaluated the

microbial communities associatedwith human cadavers (n= 18) either

exposed on the soil surface or buried at the Forensic Anthropology

Research Facility at Texas State University (FARF), that decomposed

for up to 303 days. The analysis of the 16S via IlluminaMiSeq revealed

the presence of distinct communities when comparing buried versus

surface gravesoil, with the latter beingmore stable throughout decom-

position. Metcalf et al. [196, 199] in their studies targeted the 16S,

18S and ITS regions to identify the gravesoil communities associated

with both human and mice decomposition and showed that the micro-

bial communities in the decomposing tissues become similar to those

in the gravesoil and that soil microbes play a key role as decomposers.

Olakanye et al. [227] evaluated the sub-surface decomposition of three

stillborn piglets and the parallel process of litter decomposition by

using Illumina MiSeq to sequence the 16S gene. They identified some

taxa that could be used as post-mortemmicrobial clocks in such subsur-

face conditionswhen a decomposing body is present. Adserias-Garriga

et al. [228] conducted a study at ARF using three donated cadavers and

investigating thebacterial successions in thegravesoil via16S sequenc-

ing. They also identified the migration of bacterial communities from

the cadaver to the soil, and proposed the use of the growth curve

of Firmicutes from human remains to estimate PMI placed in outdoor

conditions similar to those experienced by cadavers in Tennessee in

summer months. Procopio et al. [229, 230] investigated both the bac-

terial (16S) and the fungal communities (ITS1-ITS2) associatedwith the

gravesoil of four pig burials for up to 6months in England and identified

specific microbial shifts in association with increasing PMIs, as well as

the presence of mammalian-derived microbial species in the soil, sim-

ilarly to what reported by Cobaugh et al. [225], for up to 6 months

post deposition. Recently, Cui et al. [211] developed for the first time

a RF model to identify biomarker taxa from gravesoil for PMI estima-

tion. The model was developed on n = 65 mouse carcasses buried in

a forest and predicted PMI with a MAE = 1.27 days for up to 36 days

decomposition. Despite the promising results obtained, similar stud-

ies on human cadavers and in other conditions (e.g. exposed vs. buried,

different seasons/climates) are yet to be performed.

In the context of this review paper, it is also vital to bridge the gap

between studies focusing on PMIs in terrestrial conditions and those

conducted in aquatic environments (post-mortem submersion interval,

PMSI). Benbow et al. [231] presented the first metabarcoding study on

theevaluationof thepost-mortem skinmicrobiome (epinecrotic biofilm)

of swine remains sub-merged in a temperate head-water stream dur-

ing two seasons via pyrosequencing the 16S gene. They showed an

increased bacterial richness over increasing PMSIs and significant vari-

ations between the bacterial community structures found at the same

PMSI but in different seasons. Lang et al. [232] performed a simi-

lar study but targeted the bacterial automated ribosomal intergenic

spacer instead of the standard 16S gene and compared the swine

epinecrotic biofilm against the epilithic biofilm present on ceramic tiles

exposed to two different water streams. They showed the presence

of changing communities on both biofilms analyzed, and identified dis-

tinctive shifts associated with the first weeks of PMSI with a potential

for their use in PMSI estimations. They recommended, however, to pay

attention to the influence of environmental factors (water type, envi-

ronment, seasonality) as these are likely to affect the community shifts
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and have, therefore, to be kept into account prior to conducting such

estimations. More recently, Kaszubinski et al. [233] simulated a cold

case by dressing in human clothing five pig carcasses and by placing

them at 1m depth into a pond. Skin and mouth swabs were collected

regularly up to 22 days and the 16S gene amplicons were analyzed via

MiSeq sequencing. They highlighted common community shifts along

the PMSIs across the five pig replicates, supporting the potential for

microbiome analyses to estimate PMSI when adequate samples are

collected at the time of the discovery of the cadaver, and developed

a RF model with a mean squared error of ± 3 days over the PMSI

investigated. Cartozzo et al. [208, 209] investigated the possibility to

perform PMSI estimation starting from the bone microbiome of swine

bones sub-merged in a freshwater river for 353 days (n= 240, ribs and

scapulae) and in a freshwater lake for 579days (n=190, ribs and scapu-

lae), respectively, via 16S analysis withMiSeq. Bone types affected the

results, but an increase of the bacterial diversity was observed consis-

tently with increasing PMSIs for all bone types. They also developed

an estimation model on ribs and obtained a root-mean-squared-error

(RMSE) of 28 days for the river environment and on scapulae with an

RMSE of 37 days in the lake environment. Finally, Zhang et al. [174]

focused on the gut microbial successions of mice sub-merged in fresh-

water (16S gene) and either died of drowning or CO2 asphixia. They

noticed that the cause of death did not cause variations in the post-

mortem microbial successions and developed a regression model for

PMSI estimation with a MAE = 0.81 days for a maximum PMSI of 14

days. The results obtained, despite the limited number of study avail-

able, clearly support the use of post-mortem microbial successions for

PMI estimation also in water environments.

Something that has to be consideredwhen conductingmicrobiomics

studies for PMI estimation is the storage condition of the body post-

mortem, and in particular, the effect of freezing and thawing on the

post-mortem microbiome. The vast majority of the works on post-

mortem microbiomics rely indeed on the analysis of human or animal

bodies that were preserved frozen until the start of the experiments.

Pechal et al. [234] showed a shift in the post-mortem microbial com-

munities (structure and abundance) during the thawing process of

two pediatric cases, whereas Ogbanga et al. [235] showed that stor-

ing bodies frozen preserves the composition and abundance of their

pre-freezing microbiome despite reporting some statistically non-

significant changes to the post-mortem microbiome post freezing and

thawing. These results, despite limited to a few studies, highlight the

needs for a better understanding of the effects that storage conditions

can have on the bodies, to ensure a correct interpretation of the find-

ings for the identification of potential biomarkers for PMI estimation

and human profiling.

While acknowledging the relevance of microbiome analysis in esti-

mating PMIs, it is worth noting that some studies have delved into

utilizing microbiome data from larvae and insects for PMI estimation

[236–238]. However, it is important to emphasize that these specific

investigations, while noteworthy, fall beyond the scope of this review

andwould not be explored in detail here. Finally, it is worthmentioning

that several methodological papers have addressed the crucial aspects

of extracting and preserving microbial samples for metabarcoding

analyses, including kit and instrumental comparisons [239, 240] and

sample storage evaluations [241], overall providing valuable insights

into optimizing the techniques used in this domain.

3.2.3 Transcriptomics for PMI estimation

In the pursuit of refining PMI estimation techniques, thanatotran-

scriptomics emerges as a powerful tool with distinct advantages.

Post-mortem mRNA profiling can, in fact, offer high accuracy estima-

tions of relatively short PMIs (from hours to days), and is, therefore,

able to complement the standard approaches used in forensic pathol-

ogy for PMI prediction. Despite the vast number of studies conducted

historically on RNA degradation of specific genes and their association

with PMI estimation (and for which numerous review papers are avail-

able [242, 243]), this section will focus on the systematic analysis of

transcripts (therefore, following a transcriptomics approach) and will

not include the targeted works just mentioned.

Experiments conducted on animal models revealed increased levels

of mRNA transcripts in liver and brain associated with stress, apop-

tosis, inflammation, and other molecular functions from 1 hour from

death for up to 96 hours post-mortem, potentially associated with the

response of the cells still alive after death fighting for survival or with

the fast decay of specific gene repressors leading to an increased tran-

scription of such genes [244]. Similar findingswere also found by Javan

et al. [245], which showed the up-regulation of pro-apoptotic genes

and the down-regulation of anti-apoptotic genes post-mortem in human

livers with increasing PMIs, and the stability of mRNA molecules in

decomposing tissues for up to 48 hours post-mortem. Tolbert et al.

[246], instead, identified an initial up-regulation of antiapoptotic genes

followedby the up-regulation of apoptotic genes in humanprostate tis-

sues post-mortem. Halawa et al. [247] found no significant increase in

inflammation-relatedgene transcripts in animal brains forup to6hours

post-mortem at room temperature, but identified increased inflamma-

tion signals following post-mortem heat stress. Therefore, temperature

at which bodies are found should be carefully recorded and taken into

account when conducting transcriptomics studies on human cadavers

for PMI estimation. Additionally, these results suggest that the post-

mortem response is organ- and species-dependent, so specific studies

should be conducted to identify suitable mRNA markers, human- and

organ-specific. More recently, a work conducted longitudinally on

human blood from seven individuals at known PMIs (up to 38 hours)

identified two groups of up- anddown-regulated genes associatedwith

increasing time elapsed since death [210]. In general, they observed

the activation of DNA damage repair genes and the suppression of

apoptotic pathways and developed a PMI prediction model with an

accuracy of 4.75 hours for PMIs up to 38 hours post-mortem. Another

study conducted on data published on the Genotype-Tissue Expres-

sion (GTEx) database, focused on human blood samples ante mortem

and post-mortem at different PMIs and showed the up-regulation

of genes associated with changes in DNA synthesis, deactivation

of the immune response, increase of cell necrosis, inactivation of

carbohydrate metabolism, synthesis of lipids and ion transport and
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finally with blood coagulation and response to stress, particularly

between 7 and 14 hours post-mortem [201]. They also investigated

the transcriptomics signature in other tissues and their correlation

with PMI and developed a model with a prediction accuracy of

9.45 min when using multiple tissues. By exploring the same GTEx

database, Zhu et al. [248] confirmed that the mRNA signature associ-

ated with PMI for up to 27 hours is tissue-specific, gene-specific and

genotype-dependent, and that the majority of transcripts decreases

with increasing PMIs as a result of mRNA degradation, but that other

transcripts associated with specific biological functions taking place

post-mortem increase, as highlighted also above. Despite not propos-

ing specificmodels for PMI estimation, the authors proposed the use of

up-regulatedmRNAmarkers to predict longPMIs, anddown-regulated

genes for the prediction of shorter PMIs.

3.2.4 Proteomics for PMI estimation

Proteomics, traditionally renowned for its pivotal role in various sci-

entific disciplines, has recently found applications in fields such as

bioarcheology and paleontology. Notably, researchers have harnessed

proteomic techniques for tasks ranging from species identification to

the validation of ancient molecules within ancient specimens. Build-

ing on these successes, investigators have shifted their focus towards

shorter timescales, sparking a new era in forensic science [249]. This

section explores the use of proteomics in the estimation of PMI, by

spanning from skeletal remains to soft tissues.

The use of proteomics as a way to address the PMI of skeletal

remains is very recent, with the first publications on this matter being

those of Procopio et al. [250, 251] that developed an optmized proto-

col for proteomic analyses of skeletal remains for forensic applications,

and that explored the inter- and intra-skeletal variability of different

skeletal elements and the proteomics differences associated with a

specific age-at-death (AAD) to evaluate to which extent proteomics

could have been used to estimate PMI in forensic contexts. Follow-

ing their findings, they were then able to investigate the use of bone

proteomics for PMI estimation, by conducting experiments with four

piglets that were buried and allowed to decompose for up to 6 months

[252]. At selected time points, bones were collected and proteomic

analyses were conducted with LC-MS/MS to identify proteome varia-

tions (reduction in proteome complexity, increase of PTMs) associated

with increasing PMIs. Specifically, they found a significant reduction in

blood/plasma and muscle proteins and a significant increase of bigly-

can deamidation in association with prolonged PMIs, setting the bases

for the application of bone proteomics to forensic contexts. In a sim-

ilar way, Prieto-Bonete et al. [253] evaluated the proteome of n = 40

humanskeletal remains fromcemeteries at differentPMIs (5–20years)

and identified 32 proteins that allowed them to discriminate between

< 12 years versus> 12 years PMI groups.

Bone proteomics was also conducted on sub-merged animal

remains in the attempt to evaluate the applicability of this method-

ology to estimate PMSI. Mizukami et al. [254] showed that there are

specific proteins which abundance and/or PTMs levels correlate with

the PMSI, therefore supporting the use of proteomics also in such

contexts. The same group applied then bone proteomics to human

skeletal remains, either from an experimental taphonomy experiment

(n = 4) conducted at FARF [255], and from bones collected from Ital-

ian cemeteries (n = 14) [256]. They found new potential biomarkers

for PMI and AAD estimation, but the number of the samples was not

large enough to apply modelling algorithms for the development of

regression models. It also has to be noted that future proteomic stud-

ies on human bones sampled from curated skeletal collections should

be carefully conducted, as Gent et al. [257] applied proteomics to

experimentally macerated animal bones andmade readers aware of an

alarming alteration in the bone proteome complexity and in the PTMs

in any treated specimen.

In addition to bones, other biological sources have been examined

through proteomics for shorter PMI estimation. It is important to

specify that this review is not aimed at exploring the targeted stud-

ies conducted to evaluate the degradation pattern of specific proteins

post-mortem by using non-omics approaches, as other reviews can be

accessed to deepen this topic. A few publications have focused on

muscle tissue and on the systematic characterization of the protein

markers associated with PMI with a proteomic approach. Li et al. [258]

sampled muscle tissues from four rats at selected time points (up to

144 hours post-mortem) and applied MALDI-TOF imaging to identify

degrading proteins in situ. They developed then a genetic algorithm

(GA) prediction model based on the results obtained, which used five

peptide peaks able to separate the samples based on their PMI and

obtained an accuracy of 83.72% in the cross-validation for the attri-

bution of the samples to the right PMI time-window (0, 48, 96 and

144 hours). They used the same approach also to identify potential

PMI markers from human and rat liver samples for up to 6 days PMI,

obtaining an accuracy of 92.16% in the cross validationwhen consider-

ing the attribution of the sample to the same time-windows previously

reported [259]. Choi et al. [260] conducted proteomic analyses on rat

and mouse skeletal muscles for up to 120-h post-mortem, and identi-

fied specific proteins which showed a consistent degradation over the

course of time, in both species analyzed. Brockbals et al. [261] sam-

pled skeletalmuscles fromnine decomposing human cadavers for up to

3 months. They proposed the use of peptide ratios for the estimation

of PMI and managed to split the samples in sub-groups (< 200 ADDs,

< 655 ADD and< 1535) successfully. Battistini et el. [262] experimen-

tally degraded pig muscle samples by exposing them at 21◦C and 6◦C

for increasing time points (up to 120 h). Then they applied mass spec-

trometry proteomics and identified a few protein targets for potential

PMI assessment.

Other works conducted by Nolan et al. have used, instead, the

decomposition fluid and have applied LC-MS/MS proteomics for the

determination of markers associated with PMI. In their first work

on four pig analogues, they identified a range of peptides consis-

tently found in the fluids and mainly originated from hemoglobin

[263]. Subsequently they expanded the study to 16 pigs and tested

the decomposition fluids via proteomics in both summer and win-

ter months [264]. They identified peptides, again derived mainly from

hemoglobin and from other ubiquitous enzymes, that consistently

 16159861, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202200335 by T
est, W

iley O
nline L

ibrary on [08/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



25 of 47

increased earlier during the PMI and then decreased markedly in both

seasons when they were expressed in ADDs. Despite the differences

noticed for other peptides depending on the season under investiga-

tion, the authors emphasized overall the potential that peptide analysis

has for PMI estimation [265].

3.2.5 Metabolomics for PMI estimation

In the realm of PMI estimation, the emerging field of metabolomics

has taken a central role. This section explores the use of metabolomics

and its pivotal role in determining the biochemical changes that occur

in the post-mortem state. By examining the dynamic metabolic profiles

of cadavers, metabolomics offers a fresh and promising perspective on

enhancing the accuracy of PMI determination.

Within this field, two primary approaches have prominently

emerged: NMR and MS. Originally, NMR studies have involved the

metabolic profiling of animal tissues or fluids post-mortem, in particular

of blood,muscles and ocular fluids and tissues. Hirakawa et al. analyzed

n = 72 rat muscles and identified correlations between the metabolic

profiles, cause of death and PMI [266]. By conducting categorical and

multivariate analyses, they developed a method for PMI estimation

able to discriminate PMIs < 15 min, 1–4 hours or > 8 hours with an

overall accuracy of 84 and 96% with k nearest neighbors (k-NN) and

SVMs, respectively. Rosa et al. [267] monitored the modifications

of goats VH for up to 24 hours post-mortem at selected time points

and multivariate regression analyses showed time-related metabolic

compositional changes including the increase of lactate, hypoxanthine,

free amino acids, creatine andmyo-inositol and the decrease of glucose

and 3-hydroxybutyrate. More recently, Locci et al. [203] proposed the

use of NMR to estimate PMI from ovine AH samples collected for up to

1429-min post-mortem. By using multivariate statistics, they obtained

a prediction error of 59 min for PMI < 500 min, 104 min for PMI

from 1500 to 1000 min and 118 min for PMI < 1000 min. They also

compared results of the NMR analysis of AH against the potassium

concentration levels, a well-known marker for PMI, and demonstrated

that the AH metabolomic profile presents a greater predictive power

than potassium, recommending, therefore, its use in forensic case-

works [268]. Similar results were obtained when comparing VH and

potassium levels in a ovine model; in fact, VH predicts PMI better than

potassium concentrations for up to 48 hours post-mortem, whereas

for longer PMIs (up to 86 hours), the combination of VH metabolites

and potassium levels offers a better PMI estimation when compared

with the single approaches [214]. Zelentsova et al. [206] compared the

human serum, AH and VH profiles (n= 33 for serum and n= 31 for AH

ad VH) post-mortem in order to identify a model for PMI estimation.

As per their previous observations in animal samples [269], AH and

VH seem to be better candidates for PMI estimation than serum.

By developing a multivariate linear regression (MLR) model for PMI

estimation from AH and VH, they obtained a RMAE = 0.45 hours (max

PMI = 58.6 hours) for both fluids, and a slightly higher error for serum

samples when using a univariate model. Recently, another body fluid

has been investigated for PMI estimation via metabolomics. Chighine

et al. [215] applied for the first time NMR on n = 24 human pericardial

fluid samples for PMI estimations ranging from 16 to 170 hours, and

by adopting a multivariate model obtained a prediction error of 33

h over the full PMI investigated, and of 14 hours when narrowing

the time window to 100 hours, showing the potential of the use of

this fluid (normally collected in real forensic scenarios) for successful

PMI estimations.

In parallel with NMR studies, GC and LC approaches have also been

extensively used to address PMI from a metabolomics point of view.

Kang et al. [270] used UPLC/Q-TOF MS on liver of rats decomposing

for up to 48-h PMI and applied PCA, PLS-DA and oPLS-DA to identify

themetabolites associated with PMI. Sato et al. [197] used GC-MS/MS

to identify metabolites associated with the same PMIs in rats’ plasma.

With PLS regressionmodel based on the obtained variable importance

in theprojection (VIP) scores, they successfully predictedmeanPMIsof

0.19±0.81 for 0 hours PMI, 4.04±2.81 for 3 hours PMI, 7.22±1.50 for

6 hours PMI, 10.51±1.02 for 12- hours PMI, 20.70±5.99 for 24 hours

PMI and48.50±5.73 for 48hoursPMI. Similarly to Sato et al., alsoDon-

aldson and Lamont [271] performed GC-MS on plasma from four rats

over increasing PMIs and identified 26 metabolites’ abundances being

correlated with the time elapsed since death. Rats blood was also ana-

lyzedbyWuet al. [202], for aPMIup to72hours. TheyusedGC-MSand

analyzed the data via oscPLS regression model, obtaining estimates of

49.88±6.26 and56.91±5.59 hover 60hours PMI formale and female

rats, respectively. Blood and muscles from decomposing mice (n = 52)

were investigated also by Kaszynski et al. [200] for up to 48 hours PMI.

They conducted GC-MS and generated PMI estimation models using a

non-linear regression analysis algorithm. Muscle samples gave a maxi-

mum absolute error of 5 hours for up to 24 hours PMI and of 2 hours

for the sample with 48 hours PMI, whereas serum samples gave amax-

imum absolute error of 0.9 hours for up to 12 hours PMI, 4 hours for

sampleswith 24 hours PMI and of 1 hours for the samplewith 48 hours

PMI.Ratmusclesdecomposed for a longer time frame (up to168hours)

were investigated in Du et al. [272] via LC-MS. The authors identified

59 metabolites via PLS-DA being correlated with PMI especially after

48 hours post-mortem, and proposed their use as biomarkers for PMI

estimation. Tan et al. [273] studied instead the post-mortem changes in

the rat retinalmetabolome for up to 48 hours by usingUHPLC-MS/MS.

Despite not aiming at addressing PMIwithin their study, they provided

the baseline for subsequent studies on ocular tissues for PMI estima-

tion via metabolomics. More recently, Pesko et al. [274] performed a

comparison between rat (n = 8) and human (n = 6) muscle tissues for

PMI estimations up to 19 days using LC-MS. They identified similar

markers of those found in the other studies previously mentioned, but

did not develop estimationmodels based on the obtained data. Lu et al.

[212] conducted a multi-tissue analysis of post-mortem metabolomics

profiles on a large number of samples (n = 140 rats) for a PMI of up to

30 days. Specifically, they sampled liver, muscle, lung, and kidney and

conducted multivariate analysis on each organ, as well as multi-organ

models, for the establishment for the best model for PMI estimation.

They obtained an accuracy of 93% and an AUROC of 0.96 with the

multi-organ model, recommending the use of multi-organ models for

advancements in the estimation of PMI.
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There have also been studies focusing on specific causes of death

and the associated PMI estimation model based on metabolomics. An

example is the one done by Dai et al. [204] where the blood of rats

killed by DDVP poisoning was sampled and analyzed at selected PMIs

up to 72 hours. Support vector regression (SVR) models were created

by using the metabolites found associated with PMI and obtained esti-

mations with a minimum mean squared error (MSE) of 10.33 hours.

Another one is the work of Zhang et al. [174] which assessed PMSI by

profiling themetabolomeofdrowned ratswithin24hofdecomposition

with LC-MS/MS. They identified selected candidates for PMSI estima-

tion with RF modelling and obtained an MAE = 1 hour. They also used

the same approach to identify the cause of death, andmore details can

be found in Section 3.1.

A few studies combined the two methodological approaches,

namely NMR and MS. Zelentsova et al. [269] proposed a study on

rabbit blood serum, aqueous (AH) and VH for PMIs up to 31 hours

post-mortem and showed that metabolomic changes in VH and AH take

place slower than those in serum, recommending, therefore, these ocu-

lar fluids for the identification of PMI markers over serum samples. In

a very similar work, Snytnikova et al. compared human AH and blood

serum [275] and cornea and AH metabolic changes post-mortem [276]

via a combined NMR and ESI-MS approach. They identified specific

metabolomic changes in the fluids and tissues examined, in associa-

tionwith the disruption of the biochemical cycles post-mortem. Also in

these cases, however, the focuswas not the identification of PMImark-

ers but the characterization of the events taking place post-mortem in

specific fluids and tissues.

A separate mention should be made to the works that have used

lipidomics from tissues for PMI estimation. Wood and Shirley [277]

have used LC-MS/MS for the investigation of the lipidomic profile in

skeletal muscles and their association with PMI. They sampled human

muscles from donated cadavers at ARF, which were decomposing for

up to 24 days. The results showed a decline in specific lipids over the

post-mortem period investigated; however, the authors did not propose

a PMI estimationmodel due to the limited sample size available.

Also in this case, similarly to the application of proteomics to skele-

tal remains, particular attention should be put on the treatment of the

remains prior to the application of metabolomic and lipidomic analy-

ses.A study conductedbyBonicelli et al. [278] showedhowdetrimental

the pre-processing of skeletal remains is on the subsequent analysis of

the bonemetabolomic profile, thereforemacerated or treated samples

should be avoidedwhen conducting such studies.

3.3 Age at death

AAD estimation is another main challenge of forensic science. For

individuals that have not yet reached complete maturation, develop-

mental traits are the ideal target for estimating chronological age.

When these traits are no longer useful for assessment, physiologi-

cal degeneration represent a valid alternative and can focus on both

molecular and biochemical characteristics of the tissue [17]. Among

these, the main omics techniques applied are genome-wide methy-

lation, transcriptomics, microbiomics and, more recently, proteomics

(Table 2).

3.3.1 Search results

Using the Scopus database, the combined search terms were used:

‘age AND forens* AND genomic* AND human’, ‘age AND forens*

AND methylation AND human’, ‘age AND forens* AND transcript*

AND human’, ‘age AND forens* AND proteomic* AND human’, ‘age

AND forens* AND metabolomic* AND human’, ‘age AND forens*

AND microbiome* AND human’. Three hundred and sixty-seven

articles were retrieved and 24 retained as considered appropriate

for the topic of the current review. Nine additional articles were

also included manually for the pertinence to this specific thematic

area.

3.3.2 DNA methylation for AAD estimation

DNAmethylation is by far the most investigated area for AAD estima-

tion. This targets several fluids and tissues to accommodate different

forensic scenarios and decomposition stages. In this section, only

studies employing WGS were considered. However, most studies

present in literature are based on targeted analysis of age-related CpG

(AR-CpGs) to evaluate tissue and population-specific variation as well

as the effect of certain pathological conditions on the degree of DNA

methylation and, as a result, of the age estimate. The interest in this

approach stems from its potential applications in various fields, includ-

ing disease prevention, treatment, forensics, and the enhancement of

overall quality of life. For this reason, the sequencing of 450,000 CpG

markers of whole blood from 656 human participants, aged between

19 and 101, provides a comprehensive model to elucidate the com-

plexity of human ageing and its potential application in age estimation

for forensic purposes [280]. The study identified 70,387 methylation

markers associated with age, and through the application of the elastic

net algorithm, a model was developed that included 71 methylation

markers. This model achieved an impressive accuracy of 96% with an

error of 3.9 years in age estimation. The accuracy remained high at

91% with an error of 4.9 years when validated in an independent test

set. Notably, all selected markers were linked to age-related biological

processes, including Alzheimer’s disease, cancer, tissue degradation,

DNA damage, and oxidative stress. Additionally, it was observed that,

in this cohort, male individuals appeared to age 4% faster than their

female counterparts. When the model was tested using methylation

profiles from other tissues, which were obtained from the Cancer

Genome Atlas [296], it demonstrated a correlation of R = 0.72 with

a tissue-consistent offset. This finding suggests that methylation

patterns are not tissue-specific and can provide reliable age estimates

across different tissue types. Furthermore, the authors emphasized

that methylomes in young individuals exhibit specific similarities that

gradually decrease as changes accumulate with age. This observation

aids in understanding epigenetic drift, as evidenced by the evaluation
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TABLE 2 Research articles applying omics technologies andmachine learning algorithms to estimate AAD, and the accuracy of the best model
developed.

AAD

range Host Species Sample type Omics used Instrument used

Best

performing

modelling

method

Accuracy of the

best model Reference

10–101 Human (n= 49) Whole blood Methylomics Illumina Infinium

HumanMethylation

BeadChip

RKHS R2 = 0.98,

RMSE= 2.98

[279]

19–101 Human (n= 656) Whole blood Methylomics Illumina Infinium

HumanMethylation

BeadChip

glmnet R2 = 0.863,

RMSE= 7.22

[280]

20–80 Human (n= 4409) Blood Methylomics Illumina Infinium

HumanMethylation

BeadChip

SVR MAE= 2.8 [281]

17–77 Human (n= 21) Teeth Methylomics MALDI-TOF MLR MAE= 2.45 [282]

2–90 Human (n= 1156) Whole blood Methylomics Illumina Infinium

HumanMethylation

BeadChip

GRNN R2 = 0.96,

MAE= 3.3

[283]

37–43 Human Whole blood (n= 394),

buffy coat (n= 852)

Methylomics Illumina Infinium

HumanMethylation

BeadChip

RFR MAD3.21 [284]

20–59 Humam (n= 41) Multi-tissue (whole blood,

saliva, semen, menstrual

blood and vaginal

secretions)

Methylomics Illumina Infinium

HumanMethylation

BeadChip

Elastic net r= 0.73,

MAE= 7.8

[285]

6–15 Human (n= 48) Blood Methylomics Illumina Infinium

HumanMethylation

BeadChip

MLR R2 = 0.941,

MAE= 0.33

[286]

31–112 Human (n= 12) Bone Methylomics Illumina Infinium

HumanMethylation

BeadChip

r= 0.964,

MAD= 6.4

[287]

19–101 Human (n= 991) Whole blood Methylomics Illumina Infinium

HumanMethylation

BeadChip

MLR R2 = 0.891,

MAD= 3.76

[288]

2–87 Human (n= 180) Whole blood, mesenchimal

stromal, breast, brain

Methylomics Illumina Infinium

HumanMethylation

BeadChip

RFR MAD3.44 [289]

0–88 Humam (n= 756) Whole blood Methylomics Illumina Infinium

HumanMethylation

BeadChip

Elastic net MAE= 2.6 [290]

20–69 Human (n= 22) Blood miRNA Illumina Hiseq 2500 AdaBoost MAE= 5.52 [291]

Human (n= 8959) Faecal (n= 4434), saliva (n
= 2550), skin (n= 1975)

6S-V4 rRNA RFR R2 = 73.91,

MAE= 3.8

[292]

18–56/1–

87

Human (n= 63/n
= 308)

Peripheralvenous blood Methylomics Illumina Infinium

HumanMethylation

BeadChip

MLR R2
>0.97,

MAE 2.53

[293]

19–73 Human (n= 100) Whole blood circRNA Illumina Hiseq 4000 RFR S.rho.= 069,

MAE= 8.767

[294]

17–104 Human (n= 171) Blood circRNA Illumina Hiseq 4000 RFR r= 0.96.

MAE= 0.68

[295]

of the entropy of a CpG marker. The increasing entropy indicates that

the methylation state of the marker becomes less predictable with

age, withmethylation fraction tending to approach 50%. In this cohort,

approximately 70% of the markers tended toward a methylation

fraction of 50%. These findings regarding epigenetic drift were corrob-

orated by a similar study, which showed that 97% of age-associated

methylation is affected by drift. Lastly, the study explored the relation-

ship between methylomes and transcriptomes of 488 participants and

found that expression patterns linked to aging were correlated with

nearbymethylationmarkers associated with age [280].
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Before focusing on the application of forensic age estimation

using DNA methylation, it is important to consider employing high-

dimensional variable selection methods due to the substantial number

of CpG sites typically sequenced using NGS. In a study conducted by

Xu et al. [281], 49 female blood samples spanning ages from 20 to 80

years were subjected to analysis using Sequenom Massarray technol-

ogy. PCR products were designed to cover a total of 95 CpG sites,

and from these, 11 were selected to construct age prediction models.

Various methods, including MLR, Multivariate Nonlinear Regression,

Back Propagation Neural Network and SVM, were compared in this

analysis. Among these methods, the SVR model emerged as the most

reliable, showing the smallest mean absolute deviation (MAD) from

the actual chronological age (2.8 years) and an average accuracy of

4.7 years, utilizing only six out of the 11 selected CpG loci. More-

over, SVR demonstrated lower cross-validated error when compared

to the linear regression model. This innovative approach provides

precise age estimation, proving to be a valuable tool in forensic prac-

tice for individual age assessment and monitoring the aging process

in related applications. A more recent and comprehensive study by

Vidaki et al. [283] compared MLR with generalized regression neu-

ral network model (GRNN) on a blood sample from 1156 donors,

aged 2–90 years. The GRNN model achieved an impressive R2 =
0.96 and MAE of 3.3 years for the training set and 4.4 years for a

blind test set (n = 231) with only 16 CpGs. This represents a signif-

icant improvement compared to MLR, that showed instead a MAE

of 4.6 years (R2 = 0.92). The authors advise caution when interpret-

ing these results and recommend to consider pathological condition

when developing these models, as they could have a great influence

in the DNA methylation pattern and its correlation with age. Fur-

thermore, when the model is applied to saliva samples, a decrease

in performance is observed, underscoring the need for fluid-specific

studies [283]. Another study tested the assessment of a model per-

formance based on 13 AR-CpGs selected in silico using a test dataset

of sequenced blood and demonstrated similar outcomes, with a MAD

of 3.16 years and a RMSE of 3.93 years. A simplified version of the

model, focusing solely on the top four markers (ELOVL2, F5, KLF14

and TRIM59), yielded a RMSE of 4.19 years and a MAD of 3.24 years

for the test dataset. During cross-validation on the training set, the

reduced model exhibited a RMSE of 4.63 years and a MAD of 3.64

years [284]. Lau and Fung [288] investigated the effectiveness of

four variable selection methods: forward selection, LASSO, elastic net

and SCAD. These methods were applied to multiple linear regres-

sion (MLR), RF regression, SVMs using a polynomial function, neural

networks with one hidden layer and neural networks with two hid-

den layers. The evaluation was carried out using MAD and RMSE on

a dataset of 991 whole blood samples. Their analysis revealed that

the best model, constructed using forward selection with 16 selected

markers, demonstrated outstanding performance in predicting age,

achieving a MAD of 3.76 years and a RMSE of 5.01 years. In another

study that involved the sequencing of 180blood samples and examined

the performance of MLR, SVMs and RF regression, it was found that

SVM (MAD = 3.44) outperformed MLR (MAD = 3.46) and RF (MAD =
3.56) [289].

HumanMethylation450 BeadChip collected profiles from the NCBI

repository, aimed to establish a multi-tissue model for estimating

age in forensic applications. The results identified 10 age-related

CpG markers (AR-CpGs) from a dataset of 41 samples, including

whole blood, saliva, semen, menstrual blood,and vaginal secretions.

When tested on a validation set of 24 samples from four different

tissues, the model produced a MAD of 5.6 years for buccal swabs,

6.9 years for vaginal fluid and 7.8 years for blood, demonstrating its

potential in age estimation across various tissues [285]. Using lllumina

MethylationEPIC (EPIC) array, 756 DNA methylation profiles were

acquired from whole blood samples with the purpose of isolating

blood-specific AR-CpGs [290]. According to Spearman’s coefficient,

19 CpGs were positively correlated and 33 negatively correlated with

age. The most striking outcome of the EPIC BeadChip analysis is the

identification of new genes specific for blood analysis, namely LHFPL4,

SLC12A8, EGFEM1P, GPR158, TAL1, KIAA1755, LOC730668, DUSP16

and FAM65C, with 16 sites hypomethylated and five hypermethylated.

Further, applying elastic net regression feature selection on 816,127

CpGs, 425 CpGmarkers were selected for their capability to provide a

very accurate age estimation with a MAD of 0.68 years in the training

set and of 2.6 years in a test set of 277 individuals. To decrease the

variable count, a selection criterion was applied, choosing markers

with an R2 value greater than 0.5 at a false discovery rate (FDR) below

0.05. This process resulted in the selection of 10 markers based on

the regression of age against CpG methylation levels. Subsequently,

forward selection was used to further reduce these markers to six,

ultimately producing a model that exhibited a MAD of 4.6 years in the

test set. It is worth noting that this model primarily included markers

specific to blood samples [290]. Another example of the importance

of testing other variables that could influence methylation was

provided by a study fromXiao et al. [293], who developed a pool of AR-

CpGs for male (chr6:11044864ELOVL2, chr1:207997068C1orf132,

cg19283806CCDC102B, cg17740900 and chr10:73740306CHST3)

and female (hr6:11044867ELOVL2,chr1:207997060C1orf132,

chr2:106015757FHL2, cg26947034, chr16: 67184108B3GNT9 and

chr20:44658203SLC12A5) individuals in Han population.

Another critical focusof genomic analysis in forensic science is bone,

which becomes the primary source of human remains for medium to

long-term cases. Dealing with fully skeletonized remains poses signif-

icant challenges due to the DNA’s poor preservation in such samples.

The standard procedure for extracting DNA from bone powder gen-

erally involves several stages. First, the bone powder is incubated in a

lysis buffer, which breaks down tissue and cell structures chemically.

Next, the sample is incubated in a concentrated salt binding buffer to

facilitate DNA binding to silica, usually prepared in columns. Subse-

quently, the DNA is washed with an ethanol-based solution to reduce

the possibility of inhibitor contamination and then eluted in a low-

concentration salt buffer [297]. The first successful methylation study

that included also bone samples was carried out by Horvath and col-

leagues [298]. Together with skeletal tissues, other 30 anatomic sites

and tissues were considered. Results showed that bone and bone mar-

rowhadolderDNAmethylation ages compared to other tissues. Reppe

et al. [299] tested 84 biopsy bone material to evaluate methylation
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patterns. These studies identified 63 CpGs with higher methylation

levels in osteoporotic women compared to postmenopausal healthy

individuals. It is worth noting that these studies often use ideally pre-

served materials that may not be readily available in forensic settings.

Shi et al. [286] conducted a study that focused on analyzing AR-CpG

(age-relatedCpG sites) in a sample of 124Chinese children, aged 2–15,

using the Illumina HumanMethylation450 BeadChip. They examined

both skeletal age (SA) and dental age (DA). Combining the results from

SA and DA, the model achieved an accuracy of 88.6% with an error of

0.47 years for male and 94.1% accuracy with a 0.33 years error for

female. In another study, DNA methylation in 32 bone samples was

analyzed, and this data was supplemented with published data from

133 additional bone donors, revealing 108 AR-CpG sites. Estimations

of AADwere found to be very accuratewith an error of 7.1 years when

applied to a sample aged 49–112 years. Furthermore, it was observed

that previously developed prediction formulas performedwith consid-

erable accuracy on the new sample [287]. The complexity of working

with this material is highlighted by Lee et al. [300], who attempted the

sequencingof skeletal remains from28male and four female aged from

31 to 96 years using the HumanMethylationEPIC BeadChip (Illumina).

Out of the entire sample, only six yielded enoughDNA tomeet themin-

imum requirement for Illumina’s BeadChip array and, after sequencing,

only 12 displayed high-quality and were employed in the estimation.

The estimation demonstrated an R value >0.95, with errors falling

within the range of 5–7 years. Interestingly, TMEM51, TRIM59, ELOVL2

and EPHA6 exhibited moderate-to-weak relationships, indicating the

need for further research to establish a comprehensive method for

forensic science [300].

A very different approach instead consists in the use of MALDI-

TOF mass spectrometry to analyze DNA methylation levels. Despite

targeting ELOVL2, FHL2 and PENK genes from 21 modern teeth (aged

17–77 years) [282], this approach uses a high throughput technol-

ogy in contrast with targeted genomics studies and, for this reason,

was included in this review paper. The study found that if DNA is

obtained from dental pulp, it can be detected within approximately

2.25 years of error (with SD of 0.52). Similarly, if DNA is extracted

from cementum, it can be identified within around 2.45 years (with

SD of 0.53). However, when DNA is recovered solely from dentin

and ADD could be detected within roughly 7.07 years (with SD of

0.57 years) [282].

3.3.3 Transcriptomics for AAD estimation

Another category of biomolecules with the potential for estimating

AAD is RNA. MicroRNAs (miRNAs) are a type of small non-coding

RNAknown for their resistance todegradationand their tissue-specific

expression. For this reason, they are considered a useful target for

forensic examinations. Fang et al. [291], utilizing the HiSeq 2500 plat-

form to sequence miRNAs from blood samples of 220 individuals aged

20–69 years, successfully identified 485 miRNAs. Among them, miR-

451a, miR-486-5p, let-7i-5p, let-7f-5p and let-7g-5p were found to

be the most abundant in blood. They applied several models, includ-

ing SVM, decision tree, k-nearest neighbor (kNN), stochastic gradient

descent (SGD), RF, GLR and AdaBoost. The best-performing model,

using the AdaBoost algorithm, achieved a MAE of 5.52 and 7.46 years

for males and females, respectively. Interestingly, among the mark-

ers correlating with age, functional analysis unveiled associations with

DNA replication, cell apoptosis and the regulation of glycerol channel

activity [291]. Circular RNAs (circRNAs)were investigated in the blood

of thirteen Chinese unrelated healthy subjects aged 20–62, leading to

the identification of 40,000 circRNAs. Subsequently, 28 circRNAmark-

ers were chosen for validation in 30 unrelated healthy subjects using

real-time quantitative polymerase chain reaction (RT-qPCR). Finally,

100 blood samples from individuals aged 19–73 were employed to

assess the age estimation capabilities of the five AR-circRNAs. The

RF model provided a MAE of 9.126 years, and notably, there was a

noticeable increase in the error for the female subset of the sample

compared to the male subset [294]. In another study, miRNAs were

combined with circRNAs [177]. The sample consisted of four young

participants (20–29 years) and four elderly participants (50–62 years)

from circRNA-seq. Additionally, 171 samples of miRNA microarray

data from public datasets were used, along with an additional valida-

tion set comprising 40 subjects (19–73 years), whichwere tested using

RT-qPCR to assess non-coding RNAs (ncRNAs). A total of 27 circR-

NAs displayed a significant correlationwith age. Among these, 13were

selected for RT-qPCR validation. Additionally, 18 age-related miRNAs

were chosen for validation. In termsof themachine learning algorithms

assessed, RF demonstrated the best performance for estimating age-

associated disease (AAD) in both the training set (MAE=3.68 years,R2

0.96) and the testing set (MAE= 6.840 years, R2 0.77) [177].

3.3.4 Microbiomics for AAD estimation

If we consider ageing as a perturbation of homeostasis, it is clear

that this is reflected in one’s microbiome. This has attracted atten-

tion for understanding investigating age-related trends. However, the

microbiome is highly variable, influenced by both personal and exter-

nal environmental factors [301] and therefore very few attempts are

present in literature for the estimation of AAD in forensic sciences. A

large study investigated gut microbiome from fecal samples (United

States n = 2.588, United Kingdom n = 936, Colombia n = 437 and

China n = 4.963). The V4 hypervariable region of the 16S rRNA gene

was sequenced with Illumina MiSeq platform [302]. Despite there was

not an attempt to estimate age for forensic applications, they found

that microbial richness increased in Colombian, U.S. and U.K. pop-

ulations for individual aged 20–45 years. Additionally, the findings

showed that women, especially younger adults, exhibited a greater

degree of alpha diversity compared to their middle-aged counter-

parts. Moreover, women in the United States and the United Kingdom

demonstrated a notably higher predicted microbiota age than men,

whereas distinctions were only discernible among middle-aged Chi-

nese adults [302]. Results of these studies were expanded by Huang

et al. [292] that compared oral, gut and skin (hand and forehead)micro-

biomes to predict age in adults.Modellingwas performed using RF, and
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the best results were for the models developed on skin microbiome

that could estimate age with a SD of 3.8±0.45 years and of 4.5±0.14
years for the oral microbiome, while the error was 11.5±0.12 years

for thegutmicrobiome. Interestingly, the relationshipprediction seems

to plateau after 60 years with the exception of gut microbiome [292].

Twomore studies based on an Italian sample composed of oral and skin

microbiomes on 50 subjects showed a positive relationship between

the abundance of Spirochaetota and Synergistota and the age of the

enrolled participants [235, 303].

3.3.5 Proteomics for AAD estimation

Proteomics is, so far, the MS-based profiling approach that has pro-

duced thebest results, althoughpreliminary, for the estimation ofAAD.

Procopio et al. [252] used an animal model to investigate post-mortem

decay in porcine bones. Besides proving the efficacy of proteomics

in assessing PMI, the study also highlights the negative relationship

between fetuin-A and age. A further animal model based on rats aged

between 1 week and 1.5 years confirmed a drop in fetuin-A levels.

The study further reports a positive trend of Chromogranin-A with

age. In contrast serum, albumin increaseduntil sexualmaturity, peaking

earlier in females (3–4weeks) thanmale (6–8weeks). Biglycan andpro-

tothrombin were positively correlated with age while negative trend

were seen for apolipoproteinA-1, vimentin, osteopontin andmatrilin-1

[304]. Even fewer studies have used human samples and, interestingly,

the same proteins previously highlighted for animal bones were con-

firmed, including a study conducted on archeological human remains

[305] and a study conducted on experimentally buried individuals

[255]. In addition to variation of protein abundances associated with

age, a study found a strong positive correlation between deamidation

of LUM-FNALQYLR (R = 0.68) with age, suggesting that PTMs on spe-

cific proteins might consistently accumulate or decrease with age as

a result of physiological ageing [256]. Despite these few studies high-

lighted the potential of proteomics for AAD estimation, larger sample

sizes should be employed in the future in order to account for inter-

individual variability, which is higher in human than animal organisms.

Furthermore, it seems that certain protein biomarkers are stable after

death, making them ideal target for taphonomically degraded remains

while other quickly degrade after death, allowing the applicability of

forensic proteomic studies for both PMI and AAD estimation [230,

256].

3.4 Personal identification of the cadaver

In forensic sciences and anthropology, the identification of human

remains is particularly challengingwhen bodies have undergone exten-

sive decomposition or have become skeletonised. These situations

demand innovative sets of techniques and methodologies due to the

absence of traditional identifying features, such as intact facial struc-

tures or readily accessible fingerprints. Amongst the available omics

approaches, genomics and proteomics play the most crucial role when

dealing with the identification of the cadaver.

3.4.1 Search results

Using the Scopus database, the combined search terms were used:

‘forens* AND identification AND genom* AND skelet*’, ‘forens* AND

identification AND proteom*’. One hundred and ninety-one articles

were retrieved and 37 retained as considered appropriate for the

topic of the current review. Eight additional articles were also included

manually for the pertinence to this specific thematic area.

3.4.2 Proteomics for personal identification

Amongst the various evidentiary samples, hair is one of those where

oftentimes nuclear DNA analyses fail. In such contexts, GVPs were

proven to work for the correct imputation of SNPs alleles [306] and

many works in the last years managed to increase the discrimination

powerby applying targetedpeptide assays [307]. Recently, researchers

managed to successfully identify GVPs from shed hair lacking root

nuclear root DNA [308], from hair shafts of decreasing lengths up to

0.12 cm [309] and from anagen head hairs shorter than 1 mm [310].

Interestingly, they demonstrated that the body site of origin does not

affect the correct genetic identification of hair shafts [311, 312] nor

the hair color [313]. Hair GVP could be used to potentially distin-

guish gender and ethnicity [314, 315] and to discriminatemonozygotic

twins [173]. However, for the remits of this review paper, which is

focused on the identification of the cadaver, it should be highlighted

that only a few works so far explored the applicability of such analy-

ses to damaged hairs or to hair from highly decomposed cadavers, and

this topic requires, therefore, additional investigation in order to clar-

ify to which extent this approach on human hair can be viable. Chu

et al. [316] explored the effect of an explosive blast on the hair pro-

teome and on the subsequent GVP identification. They successfully

conducted proteome profiling on hair damaged by the explosion, sup-

porting the potential use of GVPs in hair for personal identification in

situations involving explosive blasts and laying promising foundations

for the use of hair GVPs in challenging forensic scenarios. Something

less clear is, instead, to which extent decomposition can affect the hair

proteome, and the consequent possibility to apply GVP analyses on

hair shafts from cadavers in various decomposition stages. Despite it

is frequent to find scalp hair on highly decomposed individuals, hair

undergoes changes associated with decomposition shortly after death

and develop a darkened band around the root end [317]. Donfack

et al. [318] has applied proteomics to hair segments either contain-

ing or not containing this darkened band and showed that banded

hair are severely affected by protein degradation, particularly in the

banded section. Therefore, additional work should be conducted to

evaluate to which extent hair GVPs can be applied for the identifica-

tion of decomposed human cadavers. Similarly, also fingermarks could
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be a reservoir of GVPs able to assist in human identification in con-

junction with dactyloscopic information, particularly considering how

frequently touch DNA analyses fail. Recently, a protocol has been

developed to attempt to extract GVPs from human skin cells, and this

should enable the future application of proteomic genotyping also to

these samples [319].

Several methodological papers have been published aimed at effi-

ciently extracting proteins from hair shafts [320–322], at improving

data analysis and search algorithms for the discovery of GVPs [321],

at allowing the co-extraction of proteins and mtDNA from a range of

hair types to provide additional probative value to hair samples with-

out sacrificing the mtDNA analyses [323] and at improving the mass

spectrometry outcomes by exploring the use of alternative LC-MS/MS

platforms and by testing PRM andMRM as a way to validate the exist-

ing methods for GVPs inferred genotypes [324]. Interestingly, the age

of the donor, nor the storage conditions of the samples or the expe-

rience of the operators conducting the analysis are able to affect the

GVP results, despite the yield can be different and batch effects can

exist [325]. These results support the application of GVPs to foren-

sic caseworks, where the storage conditions, length of storage and

operators, are not always consistent within the same laboratory or

across laboratories.

Based on the same principles, GVPs can also be used on bones

for human identification in association with mtDNA analyses when

the genomic DNA content is not adequate (quantity/quality) to obtain

a successful identification (e.g. small bone fragments with low bone

mineral density, bones processed post-mortem with physical/chemical

treatments able to alter the DNA content [326]). Results showed that

proteomics can be a valid method for human identification of compro-

mised skeletal remains [307, 327]. Another application of proteomics

to mineralized tissues is the analysis of sexually dimorphic amelogenin

protein fragments in human enamel to estimate the sex of the indi-

vidual when DNA analysis fail. This application is particularly viable

in archaeological contexts where frequently DNA is too degraded to

offer an exhaustive answer regarding the sex of the remains. Stew-

art et al. [328] proposed for the first time the use of nano LC-MS/MS

to identify the peptide regions of amelogenin, a protein expressed

from X and Y chromosomes in a dimorphic way and present in dental

enamel, the hardest tissue in vertebrates. They were able to extract

enamel proteins (including the two non-amelogenin proteins present

in dental enamel ameloblastin and enamelin) in a non-destructive

way by depositing a droplet of acid on the tooth surface and identi-

fied Y-chromosome-specific amelogenin peptides demonstrating the

identification of gender dimorphic peptides for forensic and archae-

ological applications. In a subsequent work, they also showed that

this method works for both adult and juvenile samples in a minimally

disruptive way, overcoming the limitations encountered when using

morphological assessments for sex identification of juvenile skeletons

[329]. Gowland et al. [330] demonstrated also that sufficient pep-

tide signal can be recovered also from developing perinatal teeth not

fully mineralized and originated from archaeological sites. Similarly,

Parker et al. [331] showed that amelogenin proteins, AMELX_HUMAN

and AMELY_HUMAN can be obtained from ancient enamel samples

(including deciduous teeth) and analyzed via LC-MS/MS from open-

air archaeological contexts from least 7300 years ago. They proposed

a new statistical framework to maximize the confident attribution of

samples to either male or female sex by developing also a probabil-

ity curve to calculate the probability of female sex in function of the

AMELX_HUMAN signal. Proteomic analyses on ancient enamel seem

to offer better sex estimation than DNA-based sex estimates, as the

genomic signal decreases in older burials whereas the proteomic one

remains stable. In the work of Buonasera et al. [332], proteomics sex

estimationwaspossible in100%of the samples for55 individuals dated

between 2440 and 100 B.P., whereas genomic attribution was pos-

sible only in 91% of the cases and osteological ones in 51% of the

cases. It is, therefore, reasonable to think that the application of such

methods for highly compromised skeletal samples may also become

the gold-standard in forensic contexts for sex attribution. Lugli et al.

[333] used the enamel proteomics principle to determine the sex of

the so-called ‘Lovers of Modena’, 1600 years old, and confidently clas-

sified them as both males, shining a new light on the understanding

of the funerary practices in Late Antique Italy. Gasparini et al. [334]

performed enamel sex estimation of skeletal remains from two VII

century CE necropolises and identified the sex of skeletons buried in

non-gendered graves. Similarly, Mays et al. [335] identified the sex of

highly degraded skeletal remains dated 1st century BCE overcoming

the limitation posed by high-throughput DNA sequencing, that failed

as no aDNA survived in such remains. Olszewski et al. [336] recently

conducted proteomic analyses on human remains from a Dutch East

India Company burial ground in South Africa andmanaged confirm the

biological sex of the remains from these poorly preserved samples.

In order to maximize the success rate of the enamel peptide

approach for sex identification, Wasinger et al. [337] developed a

MRM method to target the amelogenin isoforms for sex determina-

tion and applied it to Iron Age individuals (2000–1000 years B.P.),

and Froment et al. [338] used PRM MS approach to detect sex-

specific amelogenin peptides in 5000 years old human teeth. Lately,

Casas-Ferreira [339] proposed two fast methods for the assigna-

tion of biological sex to prehistoric human remains with run times

of one and three minutes per analysis, which open the possibil-

ity to perform AMEL analyses to a greater number of laboratories

due to the reduced cost of the instrumentation required for such

analyses.

Recently, some concerns have been raised on the sex attribu-

tion based on Y amelogenin-specific peptides in association with a

condition, known as Y amelogenin allele deletion, that affects 1%

of the global population but 10% of Indian phenotypically normal

biological males. By using either a PCR-based amelogenin sex test,

or the proteomic method previously described, individuals with Y

amelogenin deletion may be falsely attributed to female individuals,

with impact on forensic investigations and archaeological research

[340].

3.4.3 Genomics for personal identification

MPS methods have recently gained a significant interest in foren-

sics, due to their enhanced sensitivity in comparison with standard
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STR analyses, that offers increased potential for personal identifica-

tion also when DNA reference samples are not available. By exploting

the recent advances in MPS, several panels have been introduced

on the market to achieve human identification, ancestry determina-

tion and phenotype prediction for forensic purposes. Amongst the

most used ones, it should be mentioned the Illumina ForenSeqTM

DNA Signature Prep Kit, the first kit approved for upload to the

National DNA Index System (NDIS) for casework that runs on the

MiSeq FGxTM Forensic Genomics System [341]. It combines over 200

markers in a unified workflow, including 27 autosomal STRs, seven

X-chromosomal, 24 Y-chromosomal haplotype markers and 94 identi-

ficative SNPs, plus 56 ancestry and 22 phenotypic informative SNPs.

It can analyze up to 96 DNA samples in <2 hours, eliminating the

necessity for conducting multiple STR tests. Other panels include the

HIrisPlex-S System for the simultaneous prediction of eye, hair and

skin colour from trace DNA, but this one is based on two SNaPshot-

based multiplex assays targeting specific SNPs instead of on the MPS

technology [342]. The ForenSeqTM DNA Signature Prep Kit has been

already tested on bone powder extracts from a 140 years old skele-

ton from South Dakota, USA, and obtained results from 5/26 Y-STRs,

34/34 Y SNPs, 166/166 ancestry-informative SNPs, 24/24 phenotype-

informative SNPs, 102/102 human identity SNPs, 27/29 autosomal

STRs (plus amelogenin) and 4/8 X-STRs [343]. The kit allowed the

researchers to establish the ancestry of the individual as European and

to discover that the individual was amale with light red hair and brown

eyes. Similarly, but using the HIrisPlex system, Chaitanya et al. anal-

ysed the SNPs profiles for 49 samples originated from bones or teeth

from theWorldWar II and obtained and eye and hair color predictions

from all the skeletal samples analysed [342]. Equally good results were

obtained by Draus-Barini et al. [344], which successfully obtained eye

and hair color from 22 out of 23 old bone samples approximately 800

years old using the HIrisPlex system. Also when samples are partially

degraded and give only partial STR profiles with standard CE analy-

ses, MPS can provide higher allele recovery and valuable investigative

information, as showed in the study byAlmohammed et al. [345]where

30 challenging bone samples (e.g. aged bones that partially failed STR

profiling) were tested with the ForenSeqTM DNA Signature Prep Kit

and gave full STR profiles and indications on ancestry and phenotype

prediction for the majority of the samples analyzed. Elkins et al. [346]

used the same kit and obtained biogeographical ancestry prediction

from 15 historic human samples from 1600 to 1700s (tooth, tempo-

ral bone, femur, and tibia) and phenotype predictions of eye, hair and

skin color from four samples (tooth, temporal bone, femur and fibula).

Ambers et al. [347] appliedMPSon two skeletons recovered fromahis-

torical shipwreck (La Belle) discovered in 1995 off the coast of Texas

that sunk at the bottom of the bay in 1686. The ForenSeqTM DNA

Signature Prep Kit allowed them to obtain partial Y-STRs (18/24 and

5/24 for the two skeletons), almost complete ancestry informative and

phenotype informative SNPs (56/56 and 49/56 aiSNPs and 22/22 and

18/22 piSNPs), 15/27 and 22/27 autosomal STRs, 94/94 and 66/94

identity informative SNPs and 4/7 and 1/7 X-STRs. Kukla-Bartoszek

et al. [348] performed eye, hair and skin color predictions on 63 bone

samples with a PMI up to 80 years using the HIrisPlex-S panel and the

Ion Torrent technology. 55.6% of the samples gave a full DNA profile

for eye, hair and skin colour prediction, 7.9% failed and 36.5% gave

a partial profile where only eye and/or hair colour was predicted but

not the skin one. Interestingly, full profiles were obtained from sam-

ples quantified as little as 49pg of template DNA and the samples that

failed for HIrisPlex-S failed also for standard STR analyses. Aged bone

remains from the World War II and from the 3rd to the 18th centuries

AD were also tested with the HIrisPlex panel by Zupanič Pajnic et al.

[349], which obtained hair and eye colour prediction from 27.3% of

ancient skeletons and from 50% of the skeletons from the World War

II. When conducting forensic phenotyping from old skeletal remains,

it is important to consider the variability that different samples may

provide due to the differences in DNA yield existing in such samples.

As a result, Inkret et al. [350] recommend to conduct multiple sam-

plings (three bones per skeleton) to overcome such limitations and to

obtain a better quality consensus profile. To target the same markers

included in the commercial panels, recently in-house developed pan-

els have been created, as shown by Melchionda et al. [351] and by

Sguazzi et al. [241]; however, they still have to be tested on skeletal

remains.

3.5 Integration of omics approaches

Integration of multiple omic datasets is a new and developing field

for which methodologies are yet to be fully established. However, the

combination of omics technologies for data acquisition, boosted by the

recent advances in NGS platforms and spectrometric techniques, and

the possibility to computationally combine molecules from different

functional levels, has enabled to gain a more comprehensive holistic

view of system biology. Forensic science is no exception, and the

application of an integrative acquisition and processing strategy could

assist in explaining important features such as the cause of death,

post-mortem molecular degradation trends and, potentially, AAD for

the entire system. This is in contrast with more traditional approaches

that aim to reduce the size of a biological model to prove a specific

hypothesis. However, data-driven integrative approaches serve as a

complementary tool for system-level investigations that should be

further enhanced and validated through traditional hypothesis (HP)

testing [352, 353]. Themore traditional statistical approach commonly

employed in biology is univariate analysis, where one HP is tested for

one variable independently in a controlled experiment. This includes,

among others, t-tests, F-tests or non-parametric equivalent tests that

assess the expression/abundance of a specific molecule across the

population. HP testing is evaluated using p-values. Bivariate analysis,

instead, accounts for the relationship between two variables to infer

on causation mechanisms. Finally, multivariate analysis considers a

large number of variables (e.g. genes, transcripts, proteins andmetabo-

lites) simultaneously to obtain the holistic view of a specific biological

model. It is important toemphasize that these threeapproachesarenot

mutually exclusive but highly complementary. Multivariate analysis

serves as the initial step in identifying candidate molecules for use

in more tailored experimental designs, which may involve uni- and
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bi-variate analyses. This complementary role enables the elucidation

of causally driven hypotheses, which would be challenging to achieve

with the sole application of data-driven analysis [352, 353].

Despite its significant potential, omics integration is accompanied

by certain technical limitations. First, omics analysis often involves

acquiring a larger number of biomolecules (variables) than the sam-

ple size, which can lead to computational challenges. Overfitting,

where a statistical model captures noise in the data, may result in

the description of molecular networks that lack biological significance.

This issue is closely connected to collinearity, which arises from spuri-

ous correlations in high-dimensional datasets, potentially highlighting

relationships between compounds that are irrelevant for addressing

a specific biological question. Besides these problems related to sta-

tistical models, acquiring omics data from various platforms results

in the obtainment of significantly different data matrices in terms

of format, dimensionality and, scale, among others, that requires

to be accounted for. This is known as heterogeneity, and is cur-

rently one of the main challenges when it comes to create balanced

models across different omics. As a result, normalization and filter-

ing become essential steps in the integration workflows [352–354].

In terms of practical application, Athienity and Spyrun [354] pro-

vided the following list of potential approaches joint dimensionality

reduction (jDR), correlation and covariance-based jDR (COR), factor

analysis (FA), probabilistic/Bayesian models (PR), similarity (Kernel)

based (KB), network-based integration (NB), regression-based (RB)

anddeep learning (DL).While adetaileddiscussionof theseapproaches

goes beyond the scope of this review, it is crucial to keep in mind that

there is no one-size-fits-all model, and the selection of a computa-

tional tool should always be data-driven. This choice should take into

account all the limitations mentioned earlier when discussing results

and providing interpretations.

While many studies have utilized a single omics methodology to

explore forensic inquiries or have combined one omics approach

with other non-omics techniques [355–359], there remains a notable

scarcity of research that delves into the use of multiple omics

approaches and in their integration to approach the same questions

from diverse perspectives. Burcham et al. [360] used a murine model

that included various organs to investigate the bacterial dynamics

during decomposition. Their multi-omics approach included metage-

nomics and metatranscriptomics, that were both conducted on an

Illumina HiSeq platform. Specifically, they identified transcripts asso-

ciated with metabolic pathways being highly expressed during the

migration and colonization of Clostridiumbacteria in the host’s organs,

and an increase of gene transcripts associatedwith stress response and

dormancy later on during the progression of the decomposition, fol-

lowing the bacterial succession patterns. Mok et al. [361] conducted

both proteomics andmetabolomics onmaggots on porcine corpses for

PMI estimation, identified a total of 573 metabolites and more than

800 pig-derived proteins and proposed the use of specific metabolites

as biomarkers for PMI based on their quantitative patterns. However,

both studies did not integrate the two omics but instead focused on

analyzing each separately to understand their individual contributions

to the post-mortem decay.

Bonicelli et al. [362] proposed the combination of proteomics,

metabolomics and lipidomics on human bones to investigate the PMI,

defining this approach ‘Forens-OMICS’. In first place, they investigated

the three omics blocks independently using univariate and multivari-

ate analyses. Subsequently, they applied the Data Integration Analysis

for Biomarker discovery using Latent variable approaches for Omics

studies (DIABLO) method to identify the best markers able to discrim-

inate the individuals based on their PMI. Despite the study did not

result in the development of an integrated multi-omics model for PMI,

due to the small sample size, it set the bases for the future applica-

tion of the Forens-OMICSmethod to greater sample sizes for PMI and

AAD estimation. Salignon et al. [363] recently explored the combined

use of proteomics and the analysis of small RNAs for age prediction

in blood plasma samples (n = 103 human subjects). The proteomic

analyses were performed in an untargeted way to first identify poten-

tial biomarkers among a pool of 612 profiled proteins. Targeted MRM

approach was then performed on 31 proteins that showed consistent

trends with age. Between the small RNAs, they identified 288miRNAs

and 229 transfer RNAs (tRNAs), of which the top 10 miRNAs, tRNAs

and fragments of tRNAs (tRFs) correlated with AADwere retained for

the analyses. Results showed a good performance for all the classes

of molecules, with R2 = 0.59 ± 0.02 for the proteins and R2 = 0.42 ±
0.03 for the small RNAs. Finally, the combination of the two classes

of compounds showed a clear increase in performance (R2 = 0.70 ±
0.01).

4 CONCLUSIONS

In conclusion, the landscape of forensic science is undergoing a

transformative shift with the integration of omics disciplines and

multi-omics approaches. While their use in judicial caseworks still

requires efforts to meet admissibility requirements, the potential of

these approaches in generating intelligence data for forensic inves-

tigations is already evident. The state-of-the-art platforms for omics

analyses, their applications in forensic sciences, particularly in deter-

mining the cause of death and identifying the deceased, as well

as the growing body of research in the field of multi-omics, all

point to a promising future for modern forensic research. As these

approaches continue to evolve and meet the stringent standards nec-

essary for courtroom admissibility, they hold the potential to re-shape

the very foundations of forensic science, enhancing its effective-

ness and reliability in solving complex criminal cases. The fusion

of advanced molecular technologies and forensic expertise repre-

sents a pivotal step forward in our relentless pursuit of truth and

justice.
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