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A B S T R A C T

The adoption of the Internet of Things (IoT) has proliferated across various domains, where everyday objects
like refrigerators and washing machines are now equipped with sensors and connected to the internet.
Undeniably, the security of such devices, which were not primarily designed for internet connectivity, is
of utmost importance but has been largely neglected. In this paper, we propose a framework for the real-
time DDoS attack detection and mitigation in SDN-enabled smart home networks. We capture network traffic
during regular operations and during DDoS attacks. This captured traffic is used to train several machine
learning (ML) models, including Support Vector Machine (SVM), Logistic Regression, Decision Trees, and K-
Nearest Neighbors (KNN) algorithms. These trained models are executed as SDN controller applications and
subsequently employed for real-time attack detection. While we utilize ML techniques to protect IoT devices,
we propose the use of SNORT, a signature-based detection technique, to secure the SDN controller itself. Real-
world experiments demonstrate that without SNORT, the SDN controller goes offline shortly after an attack,
resulting in a 100% packet loss. Furthermore, we show that ML algorithms can efficiently classify traffic into
benign and attack traffic, with the Decision Tree algorithm outperforming others with an accuracy of 99%.
1. Introduction

In recent years, the proliferation of smart home technologies has sig-
nificantly enhanced residential convenience and efficiency. However,
this advancement has also introduced new vulnerabilities, particularly
to Distributed Denial of Service (DDoS) attacks. Current methodologies
in network security, while effective to a degree, often struggle with
the real-time detection and mitigation of such attacks in increasingly
complex and interconnected home networks.

This paper addresses these critical challenges by proposing a novel
framework that leverages traditional Machine Learning (ML) tech-
niques, tailored specifically for the nuanced environment of smart home
networks. Our approach is designed to not only detect but also mitigate
DDoS attacks in real-time, bridging a crucial gap in current security
methodologies.

The relevance of our approach is underscored by its alignment with
the latest trends in network security and IoT device integration. By
focusing on real-time processing and adapting ML models to the specific
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context of smart home networks, our methodology presents a timely
and effective solution to an escalating security concern.

In a typical smart home, various sensors (such as temperature,
humidity, and pressure sensors) and household items like refrigerators,
washing machines, IP cameras, smart bulbs, and alarm systems are con-
nected to the internet. They communicate with remote applications and
servers to collect, share, and transmit data from the environment [1],
aiming to simplify the homeowner’s life [2]. However, due to the
limited processing capability and memory in these devices, they often
lack embedded security mechanisms, becoming vulnerable launchpads
for attacks against different systems. As reported by [3], a DDoS attack
on smart TVs and Blu-ray DVDs can result in these devices entering an
endless reboot loop, rendering them unusable for the homeowner.

Information and communication resources in a smart home environ-
ment are crucial to homeowners; thus, the security of the smart home is
paramount, yet it can be compromised by DDoS attacks. For instance,
encrypting user credentials in a smart refrigerator is impractical due
to limited bandwidth, memory, and processing power required for en-
cryption and decryption tasks [4]. In 2016, vulnerable IoT devices were
vailable online 3 April 2024
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exploited to carry out one of the largest Distributed Denial of Service
(DDoS) attacks using malware known as the Mirai IoT Botnet [5]. The
Mirai IoT botnet compromised over 150,000 IoT devices, subsequently
launching a DDoS attack against a DNS provider, DYN [6].

Software-defined network (SDN) architecture provides logically cen-
tralized network control, programmable networks, and network ab-
straction [7]. In this paper, we propose a real-time DDoS attack detec-
tion and mitigation framework in an SDN-enabled smart home network.
The approach combines a Signature-based Intrusion Detection Sys-
tem (IDS) and ML algorithms to detect such attacks from malicious
hosts within the smart home network in real-time without interrupting
network operation between devices in the Smart home.

The SDN controller, central to the IoT testbed and our experiments,
controls the IoT devices and directs traffic between each device, and
the proposed detection algorithms are deployed on the SDN controller
as an application. We use the RYU SDN Controller, which is responsible
for the entire network’s operation in the smart home, to connect various
IoT devices. The network traffic between these devices is captured
while TCP SYN flood DDoS attacks are conducted from several hosts in
the network, targeting the SDN controller and IoT devices. Hence, the
controller is crucial to the success of the proposed detection technique.

The SDN controller itself is susceptible to DDoS attacks with dev-
astating effects on the operation of the IoT testbed, as shown in our
experiments. To protect the SDN controller from such attacks, we
deploy SNORT IDS with rules in its database to match the controller’s
IP address and Port number. SNORT IDS is suitable for detecting known
attacks by using a database of signatures from known attacks [2]. How-
ever, it is not suitable for IoT network traffic due to the heterogeneous
characteristics of IoT devices and the daunting task of creating rules
for every IoT device in the smart home network. Therefore, trained
ML models are deployed on the SDN controller to protect IoT devices
from DDoS attacks in the network in real-time. In summary, the main
contributions of this work are as follows:

1. We propose a real-time DDoS attack detection and mitigation
approach, enabling legitimate IoT devices to continue commu-
nicating in a smart home with minimal network interruption.
This approach is scalable as it can be deployed on the SDN con-
troller without incurring extra deployment costs in large-scale
networks.

2. Using dimension reduction techniques, we identify and select an
accurate set of features that maximize relevance, reduce redun-
dancy, and decrease the number of features, thereby enhancing
the overall detection accuracy of the proposed framework.

3. We conduct an evaluation of the proposed system in a real-world
testbed and perform a comprehensive performance comparison
of the results using a DDoS attack dataset available in the public
domain alongside the dataset captured from the IoT testbed.
The results from the evaluation and comparisons with stan-
dard datasets indicate that the proposed technique is scalable
and improves detection accuracy while also minimizing false
positives.

The remainder of the paper is structured as follows. In Section 2,
We introduce the background of the study and discuss different types
of DDoS attacks, key considerations for detecting and mitigating DDoS
attacks, along with privacy and security considerations. Section 3
presents the proposed frameworks, covering the SNORT IDS framework
and the Detection Architecture, which includes the different compo-
nents of the proposed real-time detection technique. In Section 4,
we identify the selected ML algorithms used alongside the proposed
framework for real-time detection, Feature Extraction techniques, net-
work topology, and finally the attack scenarios. In Section 5, we
conduct the performance evaluation of the detection techniques with
standard datasets, compare the results, and discuss the outcomes of the
proposed framework. Next, we discuss the role of our techniques in
30
Fig. 1. Reflective DDoS attack using IoT devices.

enhancing DDoS detection in SDN-enabled smart homes and propose
future research directions in Section 6. Section 7 presents related works.
Finally, Section 8 concludes the paper and highlights the open research
areas and concludes the work.

2. Background

In this section, we explore different types of attacks, essential factors
for DDoS detection and mitigation in IoT networks, and considerations
for privacy and security.

2.1. Various types of attacks

2.1.1. UDP flood attack
A User Datagram Protocol (UDP) flood attack is a type of DDoS at-

tack that floods a victim device with random UDP requests. The victim’s
device continuously monitors the listening port and responds with an
unreachable destination message (ICMP) since no application utilizes
those random port numbers. Consequently, this process depletes the
victim’s resources, rendering it incapable of responding to legitimate
UDP packets [8].

2.1.2. TCP syn attack
In TCP SYN attacks, a component of DDoS tactics, the attacker

leverages the TCP connection procedure. The attacker initiates a SYN
request to the server, prompting a SYN-ACK response, but then fails
to respond or redirects the response, resulting in the server being left
with open, incomplete connections [9]. In other words, the attacker can
utilize vulnerable IoT devices to flood the victim with SYN requests.
The attacker then either fails to respond to the SYN-ACK or redirects
the response to a spoofed IP address of another victim. This leaves
the server with open ports awaiting SYN-ACK responses, resulting
in multiple open connections without responses. As a consequence,
the server’s resources are depleted, causing it to deny responses to
legitimate SYN requests.

2.1.3. Reflective attacks
Reflective attacks entail the spoofing of a victim’s IP address. The at-

tacker sends requests to a server, which unwittingly directs its response
to the spoofed IP address. Fig. 1 depicts an example of a Reflective
DDoS attack using IoT devices. Other types of DDoS attacks include
TCPreset, UDPStorm, and Topology discovery poison attack [10].

Reflective attacks, by nature, do not directly target IoT devices.
Instead, they exploit publicly accessible servers to amplify and redirect
traffic to the victim. In a typical home network scenario, where IoT
devices have private IP addresses shielded by NAT, the reflective attack
would proceed as follows:
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1. Initial Compromise and Command and Control (C&C): The at-
tacker first compromises one or more IoT devices within the
home network. This can be achieved through various means such
as exploiting default credentials, unpatched vulnerabilities, or
phishing attacks. Once compromised, these devices can commu-
nicate with an external Command and Control server, even in
a NAT environment, as outbound connections from private IP
addresses are allowed and managed by the router.

2. Exploitation of Public Servers: The attacker utilizes the compro-
mised IoT devices to send requests to public servers (e.g., DNS,
NTP) with spoofed source IP addresses. These requests are
crafted to elicit large responses. The source IP addresses used
in the spoofing are those of the intended victim, which could
be an external entity or another device within the same home
network.

3. Amplification and Reflection: Public servers, upon receiving
these requests, respond with significantly larger payloads di-
rected towards the victim’s IP address. This amplification of
traffic, combined with the reflection (redirecting the response
to an address different from the source), results in a substantial
amount of unsolicited traffic overwhelming the victim.

4. Impact on Smart Home Networks: In home networks, where IoT
devices are typically behind NAT, the router plays a crucial role.
The unsolicited traffic from the public servers is directed towards
the home router’s public IP address. The router, depending on
its configuration and the nature of the attack, may struggle to
manage this influx, leading to network congestion or denial of
service.

It is important to note that while NAT provides a layer of protection
y masking internal IP addresses, it does not inherently prevent com-
romised internal devices from participating in reflective attacks, nor
oes it fully shield the home network from becoming the target of such
ttacks.

.2. Key considerations for DDoS detection and mitigation solutions

In the context of DDoS detection and mitigation, understanding
ssential factors is crucial for devising effective solutions. The following
tems, defined in technical documents such as the Internet Denial of
ervice Considerations (RFC 4732) [11] and the US-CERT DDoS Quick
uide [12], are considered key factors:

1. Ability to detect and mitigate DDoS attacks from external sources
and within the local network (internal attacks) — It is vital to
detect attacks from spoofed IP addresses generated by malicious
and compromised hosts within the IoT environment, as well as
attacks generated from external domains. This will also prevent
compromised IoT devices from being used for attacks against
external domains.

2. Detection and Mitigation of multiple attacks — The proposed
solution should detect multiple types of DDoS attacks, such as
Volumetric and Network exhaustion attacks.

3. Protecting and Supporting the SDN control plane from DDoS at-
tacks — The SDN control plane becomes a single point of failure
for network devices when overloaded, or when the link between
the OpenFlow switch and the SDN controller is exhausted due to
an attack. The proposed system should also prevent overloading
the switch’s TCAM memory by employing effective mitigation
techniques.

4. Online Validation — The proposed solution should detect DDoS
attacks in real-time without interrupting network operation.
Additionally, it should have the ability to validate the solution
using various experiments, network topologies, and datasets.
31
2.3. Security and privacy considerations

We integrate specific measures within our proposed SDN-based
DDoS detection and mitigation framework to ensure the privacy of
users is maintained. Privacy, a primary concern in home networks, is
addressed through the following mechanisms:

1. Data Handling and Processing: All data collection and anal-
ysis processes within our framework are designed to comply
with privacy-preserving principles. Only essential network traffic
metadata, such as packet headers, are used for analysis, avoid-
ing the inspection of payload data that could contain personal
or sensitive information. We employ strict data minimization
techniques to ensure that only the data necessary for detecting
and mitigating DDoS attacks are processed, thereby reducing the
exposure of private information.

2. Local Processing and Decision Making: Key components of our
framework, particularly the ML models for intrusion detection,
operate predominantly within the smart home network. By
processing data locally, we avoid external data transmission,
thereby reducing the risk of privacy breaches. Decisions re-
garding network security are made internally within the SDN
controller, which resides within the Home’s network, further
ensuring that sensitive data does not leave the premises.

. Proposed framework

This section presents our proposed detection framework designed
o protect the SDN controller and IoT devices from DDoS attacks. The
ramework includes a SNORT IDS and trained ML IDS.

.1. SNORT IDS framework

SNORT [13] is an open-source network intrusion detection sys-
em (IDS), that was chosen for its robustness, flexibility, and well-
stablished reputation in network security. Its signature-based detec-
ion approach is highly effective in identifying known attack patterns,
aking it a reliable choice for protecting the SDN controller against

ommon and well-documented threats. Moreover, SNORT’s extensive
upport for custom rules allows for tailored security measures specific
o the SDN environment. The decision to use SNORT is also influenced
y its widespread adoption in both academic research and industry,
hich ensures a rich set of resources and community support for its

ntegration and deployment in our framework.
The SDN controller can be targeted via the OpenFlow port or the IP

ddress used for communication with the OpenFlow switch. Therefore,
wo SNORT rules are created to detect such attacks aimed at the
penFlow port and the SDN controller’s IP address. However, using
NORT IDS to protect IoT devices is often impractical as it necessitates
reating multiple rules tailored to each device’s characteristics in the
etwork. Moreover, updating rules for vulnerable IoT devices becomes
umbersome with the emergence of new attack forms. Fig. 2 illus-
rates the SNORT detection framework employed to safeguard the SDN
ontroller from DDoS attacks. The main components of the proposed
NORT IDS detection framework are discussed below:

1. The smart home network comprises numerous IoT devices linked
to an OpenFlow switch, each serving a distinct purpose. For
instance, an IP camera transmits streams of captured video,
while other sensors gauge humidity, temperature, and pressure.
Both benign and malicious network traffic can be generated
within the smart home network.

2. SNORT IDS, an open-source IDS, categorizes network traffic

based on predefined rules in the signature database.
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Fig. 2. SNORT IDS detection framework.

3. Rules are written in a single line, featuring the rule header
(source and destination IP addresses, protocols, port numbers,
and actions) and rule options (specifying the packet portion to
inspect and the defined rule action).

4. The Unified2 File contains a packet alert generated from a
specific event, including the packet causing the alert and its
length in octets.

5. Barnyard2 interprets Snort unified2 binary output files and con-
ducts deep packet inspection.

6. MySQL Database stores interpreted events from Barnyard2, ex-
porting them as CSV or Pcap files for further analysis.

7. WebSnort serves as a web interface for packet analysis, monitor-
ing, and viewing SNORT alerts.

3.2. Detection architecture

The main objective of the detection architecture is the capability
to effectively detect DDoS attacks, also, mitigate such attacks in real-
time while maintaining continuous network operation of legitimate
traffic. The proposed system architecture consists primarily of three
components, namely Data Collection, Detection, and Mitigation com-
ponents, as shown in Fig. 3. All components of the proposed system
are applications running on the RYU controller written in Python
programming language.

(1) Data Collection: The Data Collection component is tasked with
gathering network traffic within the topology. This includes both
benign and attack traffic, which is utilized to train ML algo-
rithms. The data is collected using the Flow-based monitoring
technique in the RYU Controller. Flow entries in SDN switches,
managed by the controller, are used to track network traffic
patterns. These entries provide valuable data that are used for
detecting potential DDoS attack patterns. When a new flow is
detected by the switch, it forwards the flow details to the SDN
controller. The controller then analyzes this information as part
of the data collection process.

(2) Detection: The DDoS Detection component consists of two el-
ements: ML models, trained and exported from TensorFlow,
and a detection agent deployed on the SDN controller. In the
subsequent sections of the paper, we delve into the specifics of
various ML models that can be integrated as part of the detection
component.
32
Fig. 3. Components of the system architecture.

(3) Mitigation: The DDoS Mitigation component leverages the Open-
Flow protocol’s programmability to respond to detected attacks,
either by rerouting or dropping traffic from the attacking host.
It is worth noting that as the SDN ecosystem progresses with
advancements like P4 [14], our proposed mitigation method
can seamlessly be integrated into P4 environments. All essential
elements required for our method are readily available in P4
environments, offering enhanced flexibility. Through P4, we can
further customize and fine-tune packet processing behaviors, in-
cluding rerouting or dropping traffic, crucial for effective DDoS
attack mitigation.

3.3. Real-world deployment considerations

To provide a clearer understanding of the deployment model for our
proposed SDN-based DDoS detection and mitigation framework in real-
world scenarios, we detail the placement and role of each component
within a typical broadband connectivity architecture.

3.3.1. SDN controller deployment
In a real-world deployment, the SDN controller, which is central to

our framework, would ideally be situated within the home where the
IoT devices are situated. This placement ensures robust connectivity
and control over the network infrastructure of the smart home which
allows for efficient management of network traffic and security policies.

3.3.2. Data collection and analysis
The data collection component, responsible for gathering network

traffic data for analysis, would be deployed at strategic network nodes
within the smart home, such as the smart home main router or network
switch, providing visibility to the entire network traffic. Collecting data
at these points allows for a comprehensive view of the traffic patterns
and potential threats, ensuring effective monitoring and analysis.

3.3.3. Machine learning model training and inference
For the training of ML models, we propose utilizing cloud-based ser-

vices or dedicated servers within the smart home infrastructure. These
platforms offer the necessary computational resources for processing
large datasets and training complex models. In this paper, we utilized
the Google Cloud platform for model training.
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Once trained, the inference instances of these models can be de-
ployed on the SDN controller. This integration allows for real-time anal-
ysis and decision-making, enabling prompt detection and mitigation of
DDoS attacks at control plane of the network.

It is important to note that our system operates exclusively within
the smart home infrastructure, ensuring data remains within the
premises, thus addressing privacy concerns. Although training may
take place on a cloud server or external platform, our method solely
extracts network traffic metadata and packet headers, avoiding the
use of sensitive or personal packet payload data for training, thereby
minimizing privacy risks.

4. Selecting suitable classifier

In the development of our proposed DDoS detection framework,
we utilize four distinct supervised ML algorithms, selected for their
individual strengths in addressing the challenges of IoT network traffic
analysis. Here, we elaborate on the reasoning behind the selection of
each model and its effectiveness in our study.

1. Decision Trees: Utilized for their simplicity and efficiency, Deci-
sion Trees are binary tree structures that make predictions using
both categorical and numeric features, without the need for
normalization. This characteristic is particularly advantageous
in handling diverse IoT data types. They are renowned for their
rapid training and prediction capabilities, making them suitable
for real-time attack detection in IoT environments.

2. Logistic Regression: This model is popular for its scalability to
a large number of features and efficient distributed training.
It functions by classifying numerical feature vectors, making
it adept at predicting the probability of network traffic being
normal or an attack. In our study, Logistic Regression demon-
strated significant efficacy in distinguishing between benign and
malicious traffic.

3. Support Vector Machines (SVM): SVM is renowned for its excep-
tional performance in high-dimensional spaces, a common trait
of network traffic data. While training with extensive datasets
can be time-consuming, SVM efficiently scores new data points.
Our performance evaluation in the later part of the paper shows
its accuracy in classifying network traffic within our IoT network
context.

4. K-Nearest Neighbors: Known for its straightforward approach,
KNN rapidly trains by storing all feature vectors and their labels.
During prediction, it identifies the most common label among
a test sample’s K nearest neighbors. This method proved to be
effective in our framework, particularly due to its simplicity and
the relatively smaller size of the IoT datasets we analyzed.

It is worth mentioning that our detection method involves a
ightweight trained ML model that performs rapid inferences for fea-
ures extracted from network flows, making it highly scalable. How-
ver, the training phase for constructing an effective detection model
s a resource-intensive and time-consuming process, requiring powerful
ervers and extensive data collection. In practical scenarios, such ML
odels can be trained once using large datasets gathered from real

mart home environments and reused multiple times by deployment
cross several smart home systems.

Given the limited size and quality of the dataset available in our
rototype smart home testbed, we made the deliberate choice to ex-
lude deep learning models from our approach. Deep learning models
ypically excel in tasks requiring extensive data and intricate relation-
hips, elements not readily available in our case study. Therefore, we
33

eave this avenue as a potential area for future research.
Table 1
Feature description before PCA.

Feature Description Type

ip.length Total Length Numeric
frame.length Frame Length Numeric
ip.protocols Protocol String
ip.hdr_len Header Length Numeric
ip.flags.df Fragment Numeric
ip.flags.mf More Fragments Numeric
tcp.flags.res Reserved Numeric
tcp.flags.ns Nonce Numeric
tcp.flags.cwr Congestion Window Reduced Numeric
tcp.flags.ecn ECN-Echo Numeric
tcp.flags.ack Acknowledgment Numeric
tcp.flags.push Push Numeric
tcp.flags.reset Reset Numeric
tcp.flags.syn SYN Numeric
tcp.flags.fin Fin Numeric
tcp.windows_size Calculated window size Numeric
tcp.srcport Source Port Numeric
tcp.dstport Destination Port Numeric
tcp.length Segment Length Numeric
tcp.hdr.len Header Length Numeric
ip.ttl Time to live Numeric
tcp.ack Ack number Numeric
ip.frag.offset Fragment Offset Numeric
tcp.time.delta Time since first frame Time offset
class Traffic Category Binary

4.1. Feature Selection (FS)

The network traffic captured by the Data Collection component of
the proposed detection architecture in our smart home testbed under-
goes Feature Selection (FS) analysis before training with the selected
ML algorithms discussed in the previous section. The datasets captured
from the IoT testbed comprise a total of 29 features, with 2,990,062
packets for attack traffic and 2,668,936 packets for normal traffic. Var-
ious techniques were employed to analyze the traffic features, including
those detailed below. Tables 1 and 2 present the features before and
after Feature Selection, respectively.

4.1.1. Principal Component Analysis (PCA)
This is a feature reduction technique where the dataset is decom-

posed into principal components. The objective is to transform a large
dataset into a smaller one while preserving as much of the original
dataset’s information as possible. PCA facilitates the visualization and
analysis of high-dimensional datasets in a lower-dimensional space,
thereby reducing the overall complexity of the detection algorithm.

To ensure that no single feature disproportionately influences the
final components, we employed the Standard Scaler class from Ten-
sorFlow to center the data by removing the mean and scale it. This
normalization procedure ensures that all features contribute equally to
the analysis.

4.1.2. Feature selectors class
This method employs three techniques to eliminate redundant se-

lected features from the datasets. The feature selector class comprises
the following methods:

1. Identify columns with missing fractions
2. Find feature with only one single unique value
3. Locate collinear features using a correlation coefficient

Missing and Single Unique Values: Zero value features were
identified in the captured dataset with missing values above 70%, 80%,
and 90% thresholds upon running the feature selector class for missing
values. Furthermore, the second method employed is straightforward
and involves finding any feature that has only a single unique value.
This technique did not identify any features with a single unique value.
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Table 2
Feature description after PCA.

Feature Description Type

frame.length Frame Length Numeric
ip.protocols Protocol String
ip.hdr_len Header Length Numeric
ip.flags.mf More Fragments Numeric
tcp.flags.res Reserved Numeric
tcp.flags.cwr Congestion Window Reduced Numeric
tcp.flags.ecn ECN-Echo Numeric
tcp.flags.push Push Numeric
tcp.flags.reset Reset Numeric
tcp.flags.syn SYN Numeric
tcp.flags.fin Fin Numeric
tcp.windows_size Calculated window size Numeric
tcp.srcport Source Port Numeric
tcp.dstport Destination Port Numeric
ip.ttl Time to live Numeric
tcp.ack Ack number Numeric
ip.frag.offset Fragment Offset Numeric
tcp.time.delta Time since first frame Time offset
class Traffic Category Binary

The results indicate that each column contains relevant information
using different threshold values.

Pearson Correlation: This method finds pairs of features that are
linearly related. The Pearson correlation ranges between −1 and 1, with
a value of 0 indicating no correlation between the features. A value
closer to 0 indicates a weak correlation. A value of exactly 1 indicates
a strong positive correlation and a value closer to −1 implies a strong
negative correlation.

In the experiments, a correlation threshold of 90% was selected.
Utilizing this threshold for each pair of features, the Pearson correla-
tion identifies features to be removed from the dataset. Typically, the
features identified for removal are those that come last in the column
order.

4.2. Network topology

The smart home IoT testbed’s network topology, illustrated in Fig. 4
features a RYU SDN controller linked to a TP-Link switch that serves as
a DHCP server for the controller and the OpenFlow switches connected
to the same TP-link switch.

The Ryu controller was selected due to its compatibility with the
OpenFlow protocol, ease of use, and active development community.
Its open-source nature and the availability of comprehensive documen-
tation make it a suitable choice for academic research, allowing for
transparent and reproducible results. Additionally, Ryu’s lightweight
design and straightforward programming interface facilitate the inte-
gration of custom applications like our DDoS detection and mitigation
modules. This flexibility, combined with its performance and scala-
bility, makes the Ryu controller an optimal choice for our research
purposes.

The RYU controller is installed on a server running Ubuntu 18.04.1
LTS, Intel i7 processor with 8 GB of RAM. Two Raspberry Pis are
configured to serve as OpenFlow switches, with IoT devices subse-
quently connected to these switches. Among these devices is an IP
camera equipped with a motion sensor, which captures movements and
uploads image streams using the FTP protocol to an FTP server hosted
on a network-connected device. Additionally, temperature, humidity,
and pressure sensors gather data from a living room and transmit
it via the MQTT protocol to a dashboard for visualization, utilizing
Freeboard [15].

Google Chromecast is connected to a SONY Smart TV, while a
Google Home Mini is linked to the same network. Table 3 provides
a list of devices within the smart home network. A host connected
to the OpenFlow switch executes multiple TCP SYN DDoS attacks
against the SDN controller on port 6633, the IoT sensors, and conducts
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Fig. 4. SDN-IoT topology.

Table 3
List of IoT devices.

IoT device Connection type

Google Home Mini Wireless
Smart TV Wired
IP Camera Wired
Sensors (Temp. Humidity, Pressure) MQTT
Smart Plug Wireless
Google Chromecast Wireless

another attack on the IP Camera by uploading streams of captured
images. These DDoS attacks are conducted utilizing the Xerxes [16] and
Hping3 [17] tools.

TensorFlow is an open-source library developed by Google for nu-
merical computation and large-scale machine learning. The captured
network traffic is trained using TensorFlow on a Tesla K80 GPU,
which features 2496 CUDA cores and 12 GB GDDR5 VRAM. The
trained models are exported from TensorFlow and utilized to assess
the performance of the proposed detection framework. Four supervised
machine learning algorithms were chosen to classify DDoS attack traffic
from regular traffic in the smart home network. These classifiers were
trained using a training set comprising 70% of the dataset, including
both benign and attack traffic, while the remaining data served as a
validation set. The experiment was repeated ten times to ensure the
training results derived from the datasets are free from uncertainty.
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Fig. 5. TCP SYN and SDN controller attacks.
4.3. Attack scenarios

As mentioned earlier, two different attack tools, Hping3 [17] and
Xerxes [16], are employed to execute the attacks. Each tool adopts
distinct approaches to conduct DDoS attacks, offering various attack
modes and supporting different attack types. These tools are utilized to
execute actual DDoS attacks against a specified target. To prevent over-
fitting with the machine learning algorithms, we utilized both tools in
different attack modes against the targeted IoT devices. Subsequently,
the network traffic was captured for analysis using the selected machine
learning algorithms.

The Xerxes tool offers an automated method for executing DDoS
attacks, allowing for the launch of multiple attacks against the same
target or multiple targets simultaneously. On the other hand, the Hping3
tool can send large volumes of TCP SYN attack traffic while spoofing
the source IP addresses, ensuring that the attack appears random to the
target and originates from multiple sources [18].

We conducted DDoS attacks in multiple scenarios during the exper-
iment. In Scenario I, the SDN controller was targeted without config-
uring the SNORT IDS in the IoT testbed. Multiple hosts were utilized
to launch TCP SYN attacks directed at the controller’s IP address and
port number. Additionally, the attack tool employed generated TCP
SYN attacks from spoofed random IP addresses. The outcome of this
attack was a complete loss of network functionality, causing the entire
IoT testbed to go offline as the SDN controller served as a single point
of failure. Packet loss in this scenario was observed to be 100%. This
scenario was designed to illustrate the devastating impact of the attack
on the network controller in the absence of any security mechanisms.

To avert the scenario represented in Scenario I, we carried out
another attack on the SDN controller similar to that in Scenario I. How-
ever, in Scenario II, the SNORT IDS was configured to safeguard the
controller from such attacks. Two rules were established in the SNORT
database to monitor the controller’s IP address and port number. Any
traffic matching these rules initiated from an external network would
trigger the SNORT IDS to identify it as an attack, generating an alert
on the SNORT console, as illustrated in Fig. 5.

In Scenario III, hosts within the smart home network are employed
to launch attacks against the IP camera and sensors responsible for
streaming images and collecting environmental conditions data from
the home. An attack script automates the attacks during regular net-
work operations; this script dispatches multiple traffic streams to the
designated targets using randomly spoofed IP addresses. Referring to
the switch flow table depicted in Fig. 6, an output action is appended
to each flow to mirror all network packets to port 5. The network traffic
in this scenario is captured during regular network operation and post-
attack. It is then converted to a format suitable for using the Data
collection component described in Section 3.2. Finally, the captured
network traffic is utilized to train the selected ML algorithms.
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5. Performance evaluation

In this section, we evaluate the performance of our proposed
method, along with the evaluation of the selected ML models, using
both the smart home IoT testbed dataset and other existing datasets.
First, we analyze the performance of ML models utilizing the IoT
testbed. Then, we compare their performance with other publicly
available datasets. Finally, we report the results of evaluating the
signature-based IDS performance to protect the SDN controller.

We utilize Google TensorFlow [19] platform to train ML models. For
the smart home IoT testbed, the captured network traffic is imported
from the data captured in the smart home IoT testbed. Additionally, we
evaluate our models using standard IoT DDoS attack datasets published
by the Canadian Institute for Cybersecurity (CIC) [20] and the Cyber
Range Lab of the Australian Center for Cyber Security (ACSS) [21].

5.1. Datasets

Before we delve into the evaluation of ML methods, we provide
the details of employed datasets. We employed our own captured
IoT testbed dataset derived from our smart home IoT setup alongside
two DDoS datasets furnished by the Canadian Institute of Cyberse-
curity [20] and the Cyber Range Lab of the Australian Center for
Cyber Security (ACSS) [21]. Both of these public datasets have been
extensively employed in security research [22]. Below, we present
detailed information about the datasets.

IoT testbed Dataset: This dataset is collected from the OpenFlow
switches of the testbed, ensuring the capture of the total network
traffic within the IoT testbed. This process is conducted using the data
collection component of the proposed detection framework discussed in
Section 3.2. The captured network traffic is stored in PCAP format over
a 24-hour period while the network operates under regular conditions
and when scripts are employed to launch TCP SYN DDoS attacks
generated from randomly spoofed IP addresses, as explained earlier.
Subsequently, the PCAP file is converted to a CSV file format using the
same data collection component. This CSV file is utilized to train the
ML models in TensorFlow. The IoT testbed captured traffic comprises
a total of 29 features, with attack traffic totaling 2,990,062 packets
and regular traffic 2,668,936 packets. However, after conducting traffic
feature extraction, the number of features is reduced to 19, as shown
in Table 2.

UNSW-NB15 Dataset: This dataset was created in the Cyber Range
Lab of the Australian Center for Cyber Security (ACCS), capturing
approximately 100 GB of raw network traffic containing nine differ-
ent attack types: Fuzzers, Reconnaissance, Backdoors, DDoS, Exploits,
Shellcode, and Worms. A hybrid dataset was constructed, compris-
ing both real modern activities and synthetic contemporary network
attacks. The dataset comprises about two million records stored in
four CSV files. The network topology and a complete description of

the dataset are published in [21]. This dataset has been utilized in
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Fig. 6. Switch flow table.
numerous studies in the literature to evaluate the performance of
various proposed algorithms.

CICDDoS2019 Dataset: The CICDDoS2019 dataset contains various
recent types of DDoS attacks, encompassing more than 1 million benign
traffic instances and over 30 million instances of attack traffic. The
dataset includes 26 different types of network attacks such as NTP,
DNS, LDAP, TCP SYN, and NetBIOS. Originally provided in PCAP for-
mat, the authors utilized the CICFlowMeter to extract features from the
PCAP files and convert them into CSV format. The dataset was captured
over a 24-hour period, resulting in a storage size of 4.6 GB. Notably, the
dataset utilized for the training phase is entirely distinct from that used
for the testing phase. For comprehensive details, including network
topology and dataset analysis, refer to [20].

5.2. Performance of machine learning models utilizing IoT testbed dataset

The first algorithm we analyze is the Decision Trees model, which
can solve regression and classification problems. Selecting the attribute
to place as the root of the tree is considered a complicated step.
Selecting a random node will result in low classification accuracy. To
solve the selection attribute, we used the Gini index criteria. The Gini
index is a cost function used to evaluate splits in datasets, calculated
by subtracting the sum of each class’s squared probabilities from one,
as denoted in Eq. (1), where Pi is the probability of network traffic
classified to a particular class.

𝐺𝑖𝑛𝑖 = 1 −
𝑐
∑

𝑖=1
(𝑃𝑖)2 (1)

The Gini index calculations are in two steps: first, the sub-nodes are
calculated using the equation above for regular traffic and attack traffic.
Then, the split’s Gini index is also calculated using the weighted score
of each node’s particular split. The Gini index degree ranges between
1 and 0, with 1 denoting randomly distributed traffic across the two
classes (attack and benign) and 0 representing all the network traffic
belonging to a particular class. A well-balanced distribution of the
network traffic into the two classes has a Gini index of 0.5. Another
common problem with Decision trees is overfitting, which can result
in a 100% accuracy on the training data, eventually affecting the
classification of any unseen data. We counter this issue by using prun-
ing, which continuously removes the decision nodes until the overall
accuracy is not affected.

The Decision Tree algorithm performs exceptionally well in Preci-
sion, Recall, and F1-Score, with a detection accuracy of 98.93%. The
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Fig. 7. Classification of detection accuracy.

algorithm achieves excellent results using the full feature set from the
dataset, with a slight increase in detection accuracy after conducting
the feature selection to 99.57%. These results can be attributed to the
algorithm’s use of Information Gain in selecting the best feature that
splits the data during the construction of the tree.

The second algorithm analyzed is K-Nearest Neighbors (KNN),
which is versatile in solving both classification and regression predic-
tive problems. The KNN algorithm depends on the assumption that
similar data points are always in proximity to each other [23]. We used
the Minkowski distance function given in Eq. (2) to calculate the 𝐾
values, where 𝑥 and 𝑦 denote the distance between two points, and 𝑞
is an integer between 𝑥 and 𝑦.

𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖 =

( 𝑘
∑

𝑖=1

(

|

|

|

𝑥𝑖 − 𝑦𝑖
|

|

|

)𝑞
)1∕𝑞

(2)

To select a 𝐾 value for the dataset, the algorithm is run several times
with different values. Finally, the value that reduces the percentage of
error while accurately making predictions with unseen network traffic
is chosen as the 𝐾 value.

K-nearest neighbor closely follows Decision Trees as the second-
best performer in all metrics, achieving a detection accuracy of 97.30%
before feature selection and increasing to 99.02% after reducing the
number of features. This notable improvement far surpasses the perfor-
mance of Logistic Regression and Support Vector Machine models.
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Fig. 8. Benign network traffic.

Fig. 9. Attack network traffic.

The next algorithm we use for DDoS attack detection within our
proposed framework is Logistic Regression. It supports categorical de-
pendent variables and uses the sigmoid function to handle outliers, as
shown in Eq. (3), where 𝑝 is the probability estimate between 0 and 1, 𝑥
is the algorithm’s prediction, and 𝑒 is the base of the natural logarithm.
The sigmoid function ensures that the final prediction value is between
0 and 1, unlike in Linear Regression, which can produce values beyond
1 or less than 0. Additionally, the sigmoid function aids in making the
final classification between an attack and regular traffic. However, the
inclusion of independent variables can increase the amount of variance
in the logistic regression model, leading to overfitting.

𝑝(𝑥) = 1
1 + 𝑒−(𝛽0+𝛽1𝑥)

(3)

Logistic Regression performs poorly with an initial detection accuracy
of 53.86% with 29 features. However, after carrying out the principal
component analysis (dimension reduction technique) of the features,
the detection accuracy improves significantly to 81%.

The final algorithm used to identify new attacks from the smart
home network after training the captured network traffic model is
the Support Vector Machine (SVM). It requires low computational
power and is also employed for regression and classification tasks. To
distinguish between an attack and benign traffic within the data points,
the algorithm creates a hyperplane (decision boundaries) between the
two classes [23]. The primary objective is to identify a hyperplane
that maximizes the margin; support vectors (data points closer to the
hyperplane) are utilized to achieve this goal. In this work, we employ
the Hinge loss function to maximize the margin between the hyperplane
and the data points. Additionally, the regularization parameter is used
to balance the maximized margin and the loss, as shown in Eq. (4).

𝑙𝑜𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝛽 + 𝐶
𝑁
∑

𝑖=1
𝜉𝑖 (4)

Support Vector Machine, before performing principal component analy-
sis, performs rather poorly with an accuracy of 58.55%; however, after
dimensional reduction of the features, the accuracy is improved to a
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detection rate of 81.38%. The detailed comparison of results is shown
in Fig. 7.

5.3. Datasets comparison results

The comprehensive evaluation comparison involving the CICD-
DoS2019, UNSW-NB15, and IoT testbed datasets is presented in Ta-
ble 4. Employing identical model parameters and feature selection
techniques as those used on the IoT testbed dataset, we extend our
analysis to the CICDDoS2019 and UNSW-NB15 datasets to facilitate
comparison across larger-scale environments.

Beginning with the UNSW-NB15 dataset, the results show similar
performance trends to those observed with other datasets. Notably,
the Decision Tree algorithm emerges as the top performer, achieving
a detection accuracy of 98.2%, with the K-Nearest Neighbor being the
second best performer with 93.78%. The SVM and Logistic Regression
algorithms exhibit lower performance, with detection accuracies of
89.19% and 89.36%, respectively.

The next dataset we evaluated with the detection model is the CICD-
DoS2019 dataset. This dataset is used in almost every literature for per-
formance evaluation of various proposed detection algorithms. As with
the other datasets, the Decision Tree algorithm also performs exception-
ally well with this dataset. In terms of detection accuracy, the algorithm
achieves a 99.95% accuracy with the CICDDoS2019 dataset compared
to 99.57% for the captured dataset and 98.20% for the UNSW-NB15
dataset. The next well-performing algorithm is the K-Nearest Neighbor
with 99.94% detection accuracy. With the UNSW-NB15 dataset, the de-
tection accuracy is 93.78%, while with our captured dataset, it reaches
99.02%. Note that the training and testing stages took about one hour
and forty minutes with the CICDDoS2019 dataset, while it took only
five minutes with the UNSW-NB15 and approximately two minutes
with the dataset from our IoT testbed. SVM and Logistic Regression
again underperformed with the CICDDoS2019 dataset, as observed with
the UNSW-NB15 and the captured IoT dataset. The detection accuracy
for both SVM and Logistic Regression using the CICDDoS2019 dataset
is 95.7% and 98.4%, respectively.

Considering the three datasets, based on the weighted average of
the evaluation metrics, it is observed that the Decision Tree algorithms
have the highest detection accuracy, Precision, Recall, and F1-Score as
shown in Table 4. It can be concluded that this is the most suitable
algorithm for this problem, while the Support Vector Machine model
and Logistic Regression are the least suitable for DDoS attack detection
using our proposed approach. These results are also in agreement with
the analysis of the CICDDoS2019 Dataset conducted by [20], with the
ID3 algorithm — a variant of Decision Tree algorithm outperforming
the other algorithms used in the analysis such as Naive Bayes and
Logistic Regression, which is the worst performing algorithm in their
analysis.

5.4. Signature-based IDS performance

Our performance evaluation shows that DDoS attacks towards the
SDN controller are timely detected and subsequently mitigated using
the SNORT IDS and SDN Controller. The detection is based on the
defined rules in the SNORT IDS database. Furthermore, alerts of de-
tected attacks are captured and logged in real-time into a separate
database for further analysis. The SNORT console shows the alerts of
respective incoming attacks on the SDN Controller IP address and port
number, as shown in Fig. 5. Once the SNORT IDS detects an attack,
the RYU controller instructs the OpenFlow switch to create a new flow
rule to learn the MAC address of the attacker(s) to avoid a subsequent
Flood attack from the learned MAC address. Then, the RYU controller
installs another flow rule in the switch to drop the packet entirely. To
prevent a Content Addressable Memory (CAM) table attack — which
is an attack where the switch learns and saves thousands of spoofed
random MAC addresses generated by random sources in its memory,
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Table 4
Evaluation with standard dataset.

Dataset Algorithms Detection
accuracy

Precision Recall F1-Score

UNSW-NB15 Logistic Regression
Decision Tree
K-Nearest Neighbor
Support Vector Machine

89.36
98.20
93.78
89.19

90
98
94
90

89
98
94
89

89
98
94
89

CICDDoS2019 Logistic Regression
Decision Tree
K-Nearest Neighbor
Support Vector Machine

98.4
99.95
99.94
95.7

100
100
100
100

100
100
100
100

100
100
100
100

Captured Dataset Logistic Regression
Decision Tree
K-Nearest Neighbor
Support Vector Machine

81
99.57
99.02
81.38

83
100
99
84

81
100
99
81

81
100
99
81
the switch or security endpoint employs a whitelist of legitimate MAC
addresses that are saved in the switch’s memory. With multiple or
groups of devices attacking the SDN controller, the rules defined in
the SNORT IDS database will detect such attacks. A packet sniffer
tool called Wireshark1 is used on SNORT IDS port 5 to capture real-
ime traffic transfer rate during regular and attack network operation,
s shown in Figs. 8 and 9. During regular network traffic transfer,
he average packets sent per second between the IoT devices were
ell below 6,000 packets per second. However, after conducting the
ttack, the average packet rate received increased significantly, close
o 90,000 packets per second, as the SDN controller became flooded
ith TCP SYN attack traffic. Also, communication between the IoT
evices during the attack was severely affected, with an average round-
rip time between the IP Camera and the FTP server at 19.64 ms,
esulting in 39% packet loss, while during regular network operation,
he average round-trip time for the same devices is at 0.78 ms. During
he experiments, increasing the rate of the DDoS attacks without the
NORT IDS configured and detection rules enabled, the attack quickly
xhausts the SDN controller’s processing capability and effectively takes
he controller offline, resulting in a 100% packet loss.

. Discussions and future directions

In light of the evolving landscape of IoT security, the implications
f using AI and ML become increasingly significant. Our research has
emonstrated the instrumental role of ML algorithms in enhancing
he detection and mitigation of DDoS attacks in SDN-enabled smart
ome networks. However, the rapid advancement of IoT technologies
nd the diversification of IoT devices introduce both challenges and
pportunities for AI and ML applications.

When developing AI or ML systems or algorithms, it is imperative to
ddress potential security risks and implement appropriate safeguards
gainst threats or vulnerabilities. While in line with much of the
iterature, we utilized ML algorithms for DDoS attack detection in this
ork, we did not delve into the potential security risks associated with
mploying ML techniques. Further research is required to evaluate any
isks inherent in utilizing ML methods to perform DDoS attack detection
nd mitigation.

Our next phase involves broadening the scope of IoT devices in-
luded in the experiments to expand the research’s scale and assess the
ataset with deep learning algorithms. While we employed supervised
earning models in this study, necessitating a labeled dataset – an
xhaustive and complex endeavor – we recognize the importance of
xploring alternative clustering and unsupervised algorithms that do
ot rely on labeled data.

Moving forward, our focus will extend to feature selection and anal-
sis, delving into the dataset’s key features that significantly influence

1 https://www.wireshark.org/
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the clustering of benign network traffic and attack traffic within a smart
home network. Future work in this area should prioritize the adaptabil-
ity and scalability of ML models to accommodate a broader range of IoT
devices and scenarios. This includes exploring real-time learning and
adaptive algorithms capable of responding to new, unforeseen attack
patterns and behaviors, thereby fortifying the resilience of smart home
networks against an ever-evolving threat landscape.

NIST’s recent lightweight cryptographic standards [24] signify a
major step forward in cybersecurity, especially for resource-constrained
IoT devices. These standards, tailored for devices with limited re-
sources, are vital for ensuring strong security in IoT setups. The en-
dorsed lightweight cryptographic algorithms by NIST aim to provide
robust security without burdening devices, making them ideal for smart
home IoT gadgets with limited processing power or battery life.

Besides adopting lightweight cryptographic standards as in [25],
addressing fault attacks is crucial for IoT systems. Fault attacks exploit
errors to breach security, posing a significant risk to IoT devices.
As IoT devices become more widespread, the threat of such attacks
increases. Future research should focus on integrating fault detection
and mitigation into IoT security to prevent unauthorized access and
manipulation of sensitive data.

Another important aspect is considering post-quantum cryptography
(PQC) for securing IoT frameworks. PQC offers resilience against quan-
tum computing threats, ensuring long-term security. Future iterations
of security systems should assess the application of PQC algorithms,
including compatibility with existing ML models and enhancing data
transmission security in smart home networks.

Given these considerations, our proposed framework can incorpo-
rate both NIST’s lightweight cryptographic standards and fault attack
mitigation strategies. This integration will significantly enhance the
overall security posture of smart home IoT environments. Our future
work focuses on evaluating the effectiveness of lightweight crypto-
graphic algorithms in our proposed SDN-based IoT environment and
developing fault detection mechanisms as an integral part of the se-
curity framework. By doing so, we can ensure that our system not
only addresses current security challenges of DDoS attacks but is also
prepared for emerging threats in the rapidly evolving landscape of IoT
security.

7. Related work

7.1. DDoS detection in IoT networks

Several studies address DDoS detection and mitigation in IoT net-
works, each with distinct approaches. [26] targets Application Layer
DDoS attacks with a time series prediction model, achieving high
detection rates and low false positives compared to [27,28]. Unlike
their focus on the Application layer, our approach spans the network
layer, covering all network endpoints. [29] worked on a lightweight

method to detect DDoS attacks based on traffic flow features using the

https://www.wireshark.org/
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Self Organizing Maps (SOM) algorithm. The evaluation of the proposed
detection system is done using the KDD-99 dataset. However, the KDD-
99 dataset has been proven to have several underlining issues such
as redundant and duplicate records in the training set, which results
in a biased classifier towards the more frequent records [30]. [31]
proposed a DoS detection system based on signature-based intrusion
detection called Suricata. This method can only detect known attacks
in the signature database and requires a continuous update of the
database. [32] presents a network of infected IoT devices connected to
an SDN-controlled fog network. Rate Limiting and Threshold Random
walks with credit-based rate-limiting algorithms are used for DDoS
detection and mitigation. In these papers, the proposed algorithms used
signature-based or statistical comparison, which performs well in only
specific situations.

Similar to our work, [33] also used the SDN controller and used
Support Vector Machine, K-nearest neighbors, and Random Forest al-
gorithms to detect DDoS attacks. This work is closely related to this
paper; however, we specifically focuses on smart home scenarios and
integrate a Signature-based detection technique alongside ML models to
protect both the SDN controller and the IoT devices. In the experiment,
simulated IoT devices are used as hosts in an SDN Mininet environment,
and traffic behavior can be very different from actual IoT devices.

The IoT-IDM framework [34] employs a host-based IDS technique,
necessitating setup for each IoT device in a smart home, requiring pro-
filing and registration in a device manager. In contrast, our approach
deploys the detection algorithm at the network layer, monitoring IoT
device traffic within the smart home network. Another method pro-
posed by [35] positions software-based managers between the IoT
network and the gateway router to detect and mitigate DDoS attacks,
effective for small-scale IoT deployments like smart homes or buildings.

Similarly, [36] utilizes SDN architecture for dynamic attack detec-
tion and mitigation in IoT networks, aiming to prevent attacks at the
network level rather than the device level. They propose SoftThings
framework, employing a supervised ML algorithm requiring constant
retraining and labeled datasets for normal and malicious traffic. Ad-
ditionally, [37] introduced IoT-specific network DDoS detection using
ML algorithms, showing effective detection with accuracy ranging from
0.91 to 0.99, albeit lacking evaluation against standard datasets. Fur-
thermore, [38] presented a method for securing smart homes utilizing
SDN and low-cost traffic classification, employing a random forest
classifier trained on network traffic data to detect attacks such as DNS-
based attacks, port scans, and malware infections. While effective, the
approach has limitations including potential false positives and the
need for ongoing algorithm retraining.

[39] proposed an SDN-based system for dynamic DoS detection in
IoT networks using statistical analysis and ML. They employ OpenFlow
protocol and Mininet emulator for evaluation. [40], proposed entropy
analysis for DDoS detection in SDN-IoT, but faces challenges like false
positives and added computation. [41] also proposed an algorithm that
measures entropy implemented in POX [42] SDN controller; the authors
claimed their algorithm is lightweight and uses fewer resources, also
the algorithm detects and mitigates DDoS attacks promptly, the POX
controller terminates processing of the malicious traffic once an attack
is detected.

[43] proposed ML for DDoS detection in IoT networks via SDN-
cloud setup. It relies on cloud resources for monitoring and may lack
real-time suitability due to ML processing delays. [44] proposed an
approach to combat DDoS and MitM attacks in SDN-based IoT net-
works using belief theory and correlation analysis. Though effective,
it overlooks other potential threats. [45] propose a framework for
real-time detection and mitigation of DDoS attacks in stateful SDN-
based IoT networks using ML. Despite its promise, the approach faces
limitations in evaluation, scalability, resource requirements, and SDN
dependency. Further research is needed to validate its effectiveness
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under diverse network conditions. In [46], a Snort-based secure edge
router is proposed for smart homes, providing protection against net-
work attacks through attack detection and VPN encryption. The paper
offers a detailed evaluation, showcasing the solution’s efficacy. How-
ever, the proposed solution may not be effective against novel or
advanced attacks, and it may not be suitable for large or complex
smart home environments that require more comprehensive security
solutions.

In [47], an intelligent DDoS attack detection model using a tree-
based approach and the Gini index feature selection method is pre-
sented. Trained on network traffic features, the model achieves high ac-
curacy in detecting DDoS attacks, outperforming other ML techniques.
However, limitations include assumptions about dataset balance and
lack of real-world testing. Additionally, comprehensive evaluation un-
der various attack scenarios and traffic conditions is lacking. [48]
proposes a framework for DDoS attack detection in an SDN-based IoT
environment using a hybrid classifier of decision trees and K-nearest
neighbors (KNN). Evaluated on a simulated SDN-based IoT setup, the
hybrid classifier demonstrates superior accuracy and false positive rates
compared to other ML and deep learning techniques.

While previous works focused on enhancing accuracy or response
times, they face limitations in smart home environments due to unique
configurations and traffic patterns. Our research addresses these lim-
itations by introducing novel strategies and refining existing method-
ologies. We utilize SVM, Logistic Regression, Decision Trees, and KNN
algorithms, selected for their effectiveness in structured datasets like
network traffic, particularly suited for diverse smart home interac-
tions. Our approach ensures real-time processing capabilities critical
for effective DDoS attack mitigation and demonstrates improved adapt-
ability across various attack types. Through experimental analysis, we
provide comparative data showcasing the enhanced performance of
our approach, validating its effectiveness in improving smart home
network security. While our research represents a significant step for-
ward, we acknowledge limitations and anticipate further refinement
and expansion of our findings, aligning with the evolving network
security landscape. Table 5 summarizes the proposed solutions and
methodologies in the literature.

7.2. Post-quantum and cryptographic methods

The work by [56] delved into the integration of post-quantum
authentication mechanisms within the MQTT protocol, a critical com-
ponent in IoT communications. The authors scrutinize the current
vulnerabilities of MQTT in the face of quantum computing advance-
ments and propose solutions to reinforce its security. [57] presented
an innovative approach to implementing Curve448 and Ed448 algo-
rithms in the wolfSSL cryptographic library, with a special emphasis
on Cortex-M4 processors. [58] proposed the Supersingular Isogeny Key
Encapsulation (SIKE) algorithm for FPGA platforms, its relevance in the
post-quantum cryptography landscape, and the importance of FPGA in
cryptographic applications, particularly for IoT devices. [59] provided
a broad overview of the transition to post-quantum security, identifying
both opportunities and challenges that arise from this shift.

[60] explored FPGA-based error detection strategies for the WG-29
stream cipher, emphasizing the importance of hardware-level security
enhancements. Similarly, [61] investigated error detection mechanisms
in the QARMA block cipher, aligning with the imperative for robust
cryptographic systems in IoT networks. Additionally, [62] showcased
FPGA-based optimization algorithms, vital for resource-efficient com-
putational tasks crucial in IoT security frameworks, including DDoS
mitigation. Furthermore, [63] contributed by integrating the Khum-
belo function with the Camellia algorithm to reinforce IoT device
security against cyber-attacks. Lastly, [64] focused on detecting and
mitigating vulnerabilities in the Midori cipher, providing insights into
safeguarding cryptographic systems from active side-channel attacks.

Our work is different and can be complementary to these stud-
ies as we focus on network traffic analysis instead of cryptographic

approaches.
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Table 5
Summary of existing literature.

Proposed work Detection technique #1 #2 #3 #4

[49] Cosine Similarity × × × ✓

[50] Flow Filtering × × ✓ ×
[39] SDN-based ✓ × ✓ ✓

[43] Machine Learning ✓ × ✓ ×
[51] Flow Filtering ✓ ✓ × ×
[45] Multi-layer Approach including Machine Learning ✓ × ✓ ×
[48] Machine Learning (Hybrid classifier ) ✓ × ✓ ✓

[36] SDN-Fog ✓ × × ×
[37] Machine Learning × ✓ × ×
[38] Traffic Classification based on Support Vector Machine ✓ ✓ × ✓

[52] Machine Learning ✓ ✓ × ×
[41] Entropy measurement ✓ ✓ × ×
[47] Decision tree with Gini index feature selection ✓ × ✓ ✓

[53] Flow-base SNORT IDS × × × ✓

[46] SNORT ✓ ✓ × ✓

[54] Machine Learning ✓ ✓ ✓ ×
[44] Belief-Based Secure Correlation ✓ × ✓ ✓

[55] Count-based Rate Limiting × × ✓ ✓

Proposed work SDN-Machine Learning-SNORT ✓ ✓ ✓ ✓

1. Detect internal and external source attacks. 2. Detect multiple types of attacks. 3. Protect the IDS from attacks itself. 4.
Real-time DDoS detection.
. Conclusions

In this paper, we presented a framework for real-time detection and
itigation of DDoS attacks in SDN-enabled smart home networks, uti-

izing traditional ML models such as SVM, Logistic Regression, Decision
rees, and K-Nearest Neighbors. Our proposed detection framework

s designed to protect the SDN controller using SNORT IDS and IoT
evices from DDoS attacks using machine learning models for detecting
DoS attacks. We evaluated our proposed framework using a real

mart home testbed utilizing several IoT sensors and software-defined
etwork controlled by a Ryu controller. We evaluated our proposed
ethods using real data captured from the IoT testbed and standard

oT DDoS attack datasets published. Results showed that ML algorithms
an efficiently classify traffic into benign and attack traffic, with the
ecision Tree algorithm being able to detect attacks with an accuracy
f 99.57%.

While our framework performs well in smart home environments,
e recognize the rapidly evolving nature of network security, particu-

arly in IoT settings. To address advanced threats, we plan to explore
he integration of modern deep learning methods capable of discerning
ubtle patterns indicative of sophisticated DDoS attacks. Additionally,
e aim to investigate other advanced models for handling fault attacks
nd apply lightweight cryptographic algorithms to bolster overall secu-
ity measures. This exploration will contribute to the broader discourse
n securing IoT environments against evolving cyber threats.
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