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Bioprocess monitoring
applications of an innovative
ATR-FTIR spectroscopy platform

Loren Christie1,2†, Samantha Rutherford2, David S. Palmer1,2*,
Matthew J. Baker1,3* and Holly J. Butler1*†

1Dxcover Ltd., Glasgow, United Kingdom, 2Pure and Applied Chemistry, University of Strathclyde,
Glasgow, United Kingdom, 3School of Medicine and Dentistry, University of Central Lancashire, Preston,
United Kingdom

Pharmaceutical manufacturing is reliant upon bioprocessing approaches to
generate the range of therapeutic products that are available today. The high
cost of production, susceptibility to process failure, and requirement to achieve
consistent, high-quality product means that process monitoring is paramount
during manufacturing. Process analytic technologies (PAT) are key to ensuring
high quality product is produced at all stages of development. Spectroscopy-
based technologies are well suited as PAT approaches as they are non-
destructive and require minimum sample preparation. This study explored the
use of a novel attenuated total reflection Fourier transform infrared (ATR-FTIR)
spectroscopy platform, which utilises disposable internal reflection elements
(IREs), as a method of upstream bioprocess monitoring. The platform was
used to characterise organism health and to quantify cellular metabolites in
growth media using quantification models to predict glucose and lactic acid
levels both singularly and combined. Separation of the healthy and nutrient
deficient cells within PC space was clearly apparent, indicating this technique
could be used to characterise these classes. For themetabolite quantification, the
binary models yielded R2 values of 0.969 for glucose, 0.976 for lactic acid. When
quantifying the metabolites in tandem using a multi-output partial least squares
model, the corresponding R2 value was 0.980. This initial study highlights the
suitability of the platform for bioprocess monitoring and paves the way for future
in-line developments.

KEYWORDS

fourier transform infrared spectroscopy (FTIR), bioprocess monitoring, process
analytical technology (PAT), metabolite quantification, bioprocessing

1 Introduction

Bioprocessing describes the way in which biological products can bemanufactured from
living organisms and is a fundamental component of the pharmaceutical industry.
Organisms can be genetically modified to express active pharmaceutical ingredients,
including products such as insulin, monoclonal antibodies and vaccines, that can be
used in the pharmaceutical industry (Siew and Zhang, 2021; Kelley, 2009). Upstream
bioprocessing describes the multi-step process where an organism is grown at large scale
volumes, requiring significant resource and expense to complete. A major risk is that the
product yield is insufficient, often due to cell health or contamination. Large scale
production of biologics is a high-cost process that requires precise monitoring (Satzer
et al., 2022).
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Monitoring organism growth during bioproduction is critical to
the success of the culture. Process analytical technologies (PAT)
focus on the measurement of key performance indicators, or critical
process parameters, to assess cell growth (Rathore et al., 2010).
These measured factors include pH, temperature, dissolved oxygen,
and cellular metabolites. Bioreactors are carefully monitored during
cell expansion to measure key performance indicators, either by on-
line (analysing within the production environment), at-line
(collection of samples from production environment and
analysed nearby the production environment), in-line
measurements (similar to on-line measurements but relates to
the use of sensors or monitors positions within the production
line), or finally off-line (where samples are removed and analysed
separately from the production environment, in a controlled
laboratory) (Zhao et al., 2015).

During cell culture expansion, glucose levels are depleted in the cell
medium as it serves as the main carbon source to the organisms.
Conversely, lactic acid levels rise as by-products of anaerobic respiration
(Tsao et al., 2005). An insufficient supply of glucose may inhibit cell
growth and reduce yield of a bioreactor, and an accumulation of lactic
acid can lead to adverse decrease in pH which can be toxic to cell lines.
In large scale and continuous cultures these key parameters must be
closely monitored to ensure optimum metabolic rate and cell growth.
The progression towards continuous cell production at high volumes,
lends itself to new PAT being introduced, that can provide real-time
information from a cell culture (PAT, 2022).

Spectroscopy-based approaches have been explored at PAT due
to their ability to non-destructively interrogate materials (Esmonde-
White et al., 2022). Infrared (IR) spectroscopy is an analytical
technique capable of deducing subtle biological changes in
samples without the need for extensive sample preparation or
expensive reagent. It has been routinely used in the analysis of
cells and cell derivatives, as well as in the field of PAT (Helgers et al.,
2021). Attenuated total reflection Fourier transform Infrared (ATR-
FTIR) spectroscopy in particular has shown advantages in this field
due to the robustness of measurements, and ability to analyse
aqueous samples (Landgrebe et al., 2010). However, the
technique has been mostly restricted to at-line monitoring due to
limitations with existing instrumentation, specifically the fixed
crystal through which ATR measurements are made.
Advancements in traditional instrumentation may allow high-
throughput, automated analysis that may be more readily
adapted to an in-line system. The use of detachable internal
reflection elements that are also disposable, immediately lends
itself to rapid at-line analysis, but could be integrated into
bioreactor designs or probes for real-time analysis (Butler et al.,
2019). An extensive review conducted by Tiernan et al., 2020
outlines the current advances ATR-FTIR spectroscopy within the
bioprocessing environment, including looking at metabolite
quantification within a bioreactor producing monoclonal
antibodies (Wu et al., 2015).

There have been a multitude of studies which have attempted to
integrate FTIR as an in-line or on-line process monitoring tool,
including the use of FTIR probes which can be submerged directly
into a bioreactor to provide real-time measurements (Grimm Marko
Sandor et al., 2022; Goldfeld et al., 2014; Clavaud et al., 2013;
Alimagham et al., 2021). FTIR probes have been utilised in different
sampling modes including near IR, focused beam reflectance as well as

mid-IR andATR (Gerzon et al., 2022). However, it has been shown that
FTIR probes may be sensitive to environmental changes such as
temperature and humidity, as well as issues with various particle
sizes, where fluctuations in these variables can lead to measurement
inaccuracies (Dhruv, 2022). They can also suffer from poor spectral
peak resolution in the case of theNIR probes where the samplematrix is
complex, as well as requiring substantial cleaning and sterilisation prior
to use (Arnold et al., 2002; Crowley et al., 2005). The main issue with
these probes are materials they are constructed of. They typically have
poor physical and transmission characteristics and as such are restricted
in length which can be an issue in the manufacturing environment.
Additionally these materials vibrate at regions of interest and as such
have the potential to obscure important biological peaks
(Roychoudhury et al., 2006). There still exists the need for extensive
development in this area to make the technology more viable.

A study conducted by Rhiel et al monitored the glucose and
lactate profiles in CHO cell cultures in situ, real-time using an ATR
diamond probe. They were able to accurately monitor both
metabolites for up to 15 days while keeping the probe in situ for
2.3 years without requiring calibration. This work proved the
viability of such a technology while utilising in situ probes and
has supplied a good stepping stone to advance this type of analysis
(Rhiel et al., 2002). In contrast, here we explore the use of disposable
crystals which have the potential to be integrated into existing
vessels to provide an in-line analysis technology, which does not
require cleaning or sterilisation, and can measure substances that
may not be achievable through using a probe. This would lead to
reduced down-time between batches as no cleaning would be
required and the risk of cross-contamination would be
greatly reduced.

This study describes the use of an innovative ATR-FTIR
spectroscopy platform for feasibility testing in the field of
bioprocessing. This novel approach overcomes sample matrix issues
such as particle size or sample turbidity, removes the need for
sterilisation between batches, and has the potential to become a
minimally invasive in-line technology. Initially, a qualitative
approach is explored to determine cell health by analysing both cells
and cellmedia. Furthermore, a quantitative study to characterise cellular
metabolites (glucose and lactic acid) in cell media and to subsequently
develop quantification models to predict glucose and lactic acid levels.
This data will provide proof-of-concept evidence that a novel ATR-
FTIR spectroscopy platform is adept at bioprocess monitoring, in
advance of future instrumentation developments using this
technology. The results of the qualitative analysis showed the
suitability of cell media for obtaining health related information
from a bioreactor. Subsequently, this study investigated the
monitoring of key growth indicators, glucose and lactic acid, in cell
media. These critical process parameters have been quantified in
previous studies which have been used to benchmark this study
(Rajan Parachalil et al., 2019).

2 Materials and methods

2.1 Qualitative analysis of CHO cells

In this initial feasibility study, we investigated spectral
differences derived from Chinese Hamster Ovary (CHO) cells

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Christie et al. 10.3389/fbioe.2024.1349473

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1349473


subjected to different growth environments. CHO cells are a cell line
that can be genetically modified to express a range of proteins,
including therapeutic drugs and monoclonal antibodies, that are
used in the pharmaceutical industry (Omasa et al., 2010). The aim of
this study was to investigate if cell and cell media samples could be
analysed as indicators of nutrient stress during cell expansion.

2.1.1 Sample preparation
CHO cells obtained from a commercial partner were either

cultured in optimum growth conditions (“Healthy”) or allowed to
grow passed the optimum time for cell passage (“Nutrient
Deficient”). Samples were obtained directly from the cell culture
flasks, containing both cells and cell media. Triplicate CHO cell
samples were obtained for both “Healthy” and “Nutrient Deficient”
samples, and frozen at −80°C in 1 mL cryovials. Prior to analysis,
samples were thawed at 37°C, gently inverted, and centrifuged at
1000 rpm for 1 min to concentrate cellular material and to separate
cell media. Both the supernatant and the cell pellet were analysed in
this study.

Samples were deposited on Dxcover® Sample Slides (Dxcover
Ltd., United Kingdom). For more information regarding the
Dxcover® Infrared Platform please see Appendix A (Butler et al.,
2019). The Sample Slides contain a background well and three
sample wells to enable triplicate measurements. Three independent
Sample Slides were also prepared per sample. Following sample
thawing, 3 μL of sample was immediately deposited onto the surface
of a Sample Slide well and allowed to dry for 10 min.

2.1.2 Spectral analysis
The analysis of Sample Slides was facilitated by the Dxcover®

Autosampler, which is a novel FTIR spectrometer accessory that
automates the movement of the Sample Slide so that each of the
background and sample wells can be analysed in turn. The
Autosampler was installed in a Perkin Elmer Spectrum Two
spectrometer (Perkin Elmer, United Kingdom). Spectra were
obtained at a resolution of 4 cm−1, with 16 co-added scans and a
data spacing option of 1 cm−1. In this instance, spectra were cut to
3700–1000 cm−1 and vector normalised. Principal component
analysis (PCA) was employed as an unsupervised multivariate
analysis approach to explore variance in the dataset that may be
indicative of differences in the samples analysed. Data analysis was
conducted using in-house developed scripts in both Matlab and
Python computing languages.

2.2 Metabolite quantification in cell media

2.2.1 Sample preparation
Glucose free Dulbecco’s Modified Eagle’s Medium (Sigma,

United Kingdom), was prepared with Bovine Serum Albumin
(BSA) (Sigma, United Kingdom) to make a 1% BSA in cell
media stock solution. BSA was added to aid sample deposition
and spreading onto the Sample Slide. Three separate concentration
profiles were investigated; 1) glucose (Sigma, United Kingdom), 2)
lactic acid (Sigma, United Kingdom) and 3) a combination of both.
For the binary classifications 1) and 2), cell media was spiked with
glucose and lactic acid using a serial dilution at a concentration
range of 100, 80, 60, 40, 30, 20, 10, 8 mg/mL 648 spectra were

collected in total for each of these classifications, with 81 spectra per
concentration.

For the combined approach, each a negative correlation gradient
was created to mimic the environment in a bioreactor (Table 1). A
total of 648 spectra were collected in total, with 81 spectra for each
concentration.

Sample Slides were prepared by depositing the sample directly
into the centre of the three sample wells. Three replicate Sample
Slides were prepared for each concentration of the study. Three
independent iterations of the study were conducted, with all results
collated during analysis. This was conducted in triplicate across
three separate sample runs to capture the variability in sample
preparation. Samples of unknown concentrations were also
created by a separate analyst to be used as an independent test set.

2.2.2 Spectral analysis
The spectral acquisition parameters of Sample Slides were as

previously stated for the previous study. The spectra were pre-
processed using an in-house Python-based script. In this instance,
spectra were cut to the range of 3700–950 cm−1 to ensure all
biological information arising from the molecular vibrations of
the proteins, lipids and carbohydrates, whilst excluding more
variable regions of the spectrum. Spectra were then vector
normalised to account for pathlength differences within the
samples which can manifest as absorption differences not related
to concentration. Partial Least Squares (PLS) was then utilised to
create quantitative models to describe the metabolite concentration
gradients. PLS is a linear regression model that reduces the dataset
dimensionality to allow comparison between variables. The
optimum number of components for the models were chosen
based on where the R2 value stabilised; for the glucose and
combined model 5 components were used, and 4 components for
the lactic acid model. The PLS model was first trained on a dataset
containing 648 spectra in total, with 81 spectra for each
concentration. The training data set consists of; 8 concentrations
x 3 sample slides (each of which have 3 sample wells which are
analysed in triplicate) resulting in 27 spectra per concentration. This
process was repeated a further two times to generate three
independent data sets to account for experimental variability,
resulting in a total of 81 spectra per concentration.

This generated a plot of predicted against observed
concentration where the model has seen all training data. A
leave-one-concentration-out (LOCO) cross validation was then
performed where a single concentration from the training data is
used as an internal validation set to assess the model, here the model
is only seeing 8 out of 9 of the concentrations at any one time, with
the 9th being used as the internal validation set. This process is
repeated, leaving out each concentration at least once, and then the
full process reiterated 21 times This generates a LOCOCV model
with subsequent training and cross-validation statistics (such as R2

and RMSECV values).
For the combination approach, a multi-output regression was

employed also utilising a subsequent LOCOCV. This was conducted
by using a separate dataset that contains the concentrations for both
glucose and lactic acid. The multi-output method utilises the same
method as the binary models in that it is also a PLS regression,
however it uses the both concentrations as an input for the training
set. This is termed a multi-output model as the predicted metabolite
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concentrations are generated simultaneously. The reasoning behind
this methodology is so that in a production environment, both
profiles can be monitored simultaneously using a singular model.

3 Results and discussion

3.1 Qualitative analysis of CHO cells

Spectra obtained using the ATR-FTIR spectroscopy system
produced high quality spectra from CHO cells which have been

spun down into a pellet sample (Figure 1A). It is noticeable that
more variation is evident in the spectra of the “Nutrient
Deficient” sample group, particularly in the high wavenumber
region and silent region. As these samples were in a nutrient
stressed state, it is possible that there was an increase in cell death
prior to analysis which may contribute to spectral variability.
Principal component analysis (PCA) is able to effectively
separate the two sample groups, shown predominantly in
principal component (PC) 1 (Figure 1B). The data suggests
that changes during cell expansion could be characterised by
ATR-FTIR spectroscopy.

Within the production environment the analysis of cell media
rather than cellular material could provide an indirect measurement
of cell health that does not require removal of valuable samples from
a bioreactor. This lends itself more closely with in-line
measurements, which could measure the cell environment.
Spectra obtained from the corresponding supernatant CHO cell
media show clear biological profiles (Figure 1C). Spectra show
increased noise throughout the spectra, which can be attributed
to a reduced signal on account of the relatively unconcentrated
sample type. This could likely be improved with greater sample
volume and altering spectral acquisition parameters such as
increasing the number of co-added scans to improve the signal-
to-noise. As with the cell samples, PCA is able to differentiate the
two sample groups along the PC1 axis (Figure 1D). As PCA is an
unsupervised approach, the results are promising as spectral
differences are discernible without providing class
information.

TABLE 1 Combined Glucose and Lactic acid concentration profile.

Glucose concentration
(mg/mL)

Lactic acid concentration
(mg/mL)

150 50

100 100

80 120

60 140

40 160

30 170

20 180

10 190

FIGURE 1
Qualitative analysis of CHO cells and CHO cell media (A) Offset spectra from nutrient deficient and healthy CHO cells in pellet form, (B) principal
component analysis (PCA) scatterplot of the nutrient deficient and healthy cell spectra, (C) Offset spectra from corresponding nutrient deficient and
healthy the supernatant CHO cell media, and (D) PCA of the corresponding nutrient deficient and healthy CHO cell media data.
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For implementation into bioprocessing pipelines, it would
first be necessary to create appropriate reference data, such as
described here. This data would be used to establish quality
references that could subsequently be used to predict data as it
is generated.

4 Quantitative analysis of cellular
metabolites

The previous results show a suitability of the ATR-FTIR
platform for the analysis of cell media. In this study, the ability
of the platform to quantify specific molecules in the nutrient media
was explored. Infrared spectroscopy can be used to determine the
concentration of molecules by analysis of absorbance intensity at
spectral peaks inherent to the molecule of interest, following the
principle of Beer-Lambert law (Ganzoury et al., 2015).
Quantification of molecules can be approached using simple
linear modelling of specific wavenumbers, or using multivariate
approaches that investigates multiple spectral regions across
the spectrum.

4.1 Glucose quantification

Glucose is an IR active molecule that has strong absorbance
bands across the full spectrum, including a wide O-H band between
3570 and 3120 cm−1, the C-H band between 3085 and 3020 cm−1, a
C-O band between 1230 and 1000 cm−1, the C-O-C stretching and
deformation between 1275 and 800 cm−1 and an intense peak at
1074 and 1033 cm−1 arising from C-O (Petibois et al., 1999; Kosa
et al., 2017).

The influence of glucose when spiked into cell media is most
noticeable at both the 1074 and 1033 cm−1 peak, corresponding to
the C-O stretch of glucose (Figure 2). Amoderate change in intensity
can also be seen at other glucose related peaks between 1200 cm−1

and 900 cm−1 which shows the concentration of glucose within the
cell media solution can be monitored by the intensity of the
absorbance bands. As glucose related peaks contribute to the full
spectrum, this may also affect the absorbance at the Amide I and II
peaks (1654 cm−1 and 1545 cm−1) which are largely representative of
cell media and BSA.

A PLS regression model was used to create a concentration
calibration plot (Figure 3A).

The leave-one-out cross-validation results of the training data
give realistic view of the model accuracy, which treats one of the
classes as an unknown and attempts to predict it based on the
training data supplied (Figure 3B). Typically, the R2 for this model is
less than the PLS model. The R2 value for the cross-validation model
is 0.969 which is promisingly close to the PLS model statistics which
has seen all of the training data, indicating model stability. The Q2

value was 0.956 and the root mean square error estimated from
cross-validation (RMSECV) is 5.7 mg/mL. Similarly to the PLS
model the sample spread is increased at lower concentrations as
the limit of detection (LOD) is approached, making it harder to
predict concentrations in this range. This concentration range has
been selected in order to encompass a variety of product being
created within the industry which can range from concentrations
starting at 1 mg/mL up to 100 mg/mL for some applications (Kosa
et al., 2017). Here, the concentrations above the 10 mg/mL the
groupings are tightly clustered which suggests consistency across
the three independent sample sets. LOOCV models also tend to
predict worse at the end-points as at some point that concentration
must be left out, which makes it hard to extrapolate the data past
these points which may be attributing to the variation at the lower
extremities.

4.2 Lactic acid quantification

Lactic acid also exhibits infrared peaks across the full
3700–950 cm−1 wavenumber range, particularly in the

FIGURE 2
Average spectral plot of DMEM cell media with increasing concentrations of glucose. 8, 10, 20, 30, 40, 60, 80, and 100 mg/mL.
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FIGURE 3
(A) PLS model of predicted vs. observed concentration of glucose in DMEM cell media generated using a partial least squares model, and (B)
corresponding leave-one-out cross validation partial least squares model.

FIGURE 4
Average spectral plot of DMEM cell media with increasing concentrations of lactic acid. 8, 10, 20, 30, 40, 60, 80, and 100 mg/mL.
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FIGURE 5
(A) Calibration plot of predicted vs. observed concentration of lactic acid in DMEM cell media generated using a partial least squares model, and
corresponding (B) cross validation partial least squares calibration plot.

FIGURE 6
Average spectral plot of DMEM cell media with alternating concentrations of glucose and lactic acid.
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fingerprint region where bands corresponding to the C-O and
C-O-C bonds of carboxylic acids are present, as well as C-H
bending peaks. The peak at 1215 cm−1 can be assigned to the C-O
stretching peak and the 1730 cm−1 peak corresponds to the C=O
stretching of the carboxylic acid (Păucean et al., 2017). These are
two peaks which vary the most in terms of intensity within the
spectrum and show the correlation between peak intensity and
concentration of analyte (Figure 4).

The mean spectral plot for lactic acid shows more variance
overall compared to glucose, particularly across the fingerprint
region. At the peaks between 1200 and 1000 cm−1 the spectra of
lower concentrations, such as 8, 10, and 20 mg/mL converge in

peak intensities which indicates that the limit of detection may be
approached at around these values. Again, these concentrations
have been selected based on previous studies within this area
looking at a range between 1 and 100 mg/mL (Tamburini
et al., 2014).

A PLS model was used to generate a plot of predicted against
observed concentration where the model has seen all of the training
data. This yielded an R2 value of 0.989, again indicating the
regression line is approximating the data well (Figure 5A). The
20 and 30 mg/mL samples are predicted slightly lower than their
true concentration, but the rest of the samples across the full range
are predicted close to their observed concentrations. All sample
groups are tightly clustered together with minimal intra-sample
variability.

The leave-one-out cross validation model yields an R2 value of
0.976, a Q2 value of 0.944 and an RMSECV of 5.04. As with the PLS
model, samples 20 and 30 mg/mL are predicting lower than their
true concentration (Figure 5B). It is reassuring that there is minor
intra-sample spread across all concentrations. This may indicate that
the ATR-FTIR approach is consistently able to measure lactic acid in
the sample medium.

FIGURE 7
(A) Cross validation multi-output partial least squares models for glucose, and (B) lactic acid in DMEM cell media.

TABLE 2 R2 and Q2 values for the cross-validation models of all models.

Model R2 Q2

Glucose 0.969 0.956

Lactic Acid 0.976 0.944

Glucose and Lactic Acid 0.980 -
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4.3 Glucose and lactic acid

The combination of both metabolites produces a spectrum
which contains characteristic peaks corresponding to each
compound. The peaks are well defined, and the overall spectrum
has a high signal-to-noise ratio which allows for easy identification
of individual bands (Figure 6). The spectra are dominated by the
1730 and 1215 peaks when lactic acid is found in high
concentrations The Amide I and II peaks are only visible at
150 mg/mL glucose and 50 mg/mL lactic acid. Even larger in
intensity than the lactic acid peaks are the two glucose peaks at
1125 and 1030cm−1.

A multi-output PLS model was trained to quantify the
concentration of glucose and lactic acid simultaneously. As
previously, a leave-one-out cross validation was performed to
assess the model for both analytes (Figures 7A, B). The R2 value
for both was 0.98, meaning the multi-output PLS model was
estimating the concentrations with a high level of precision.
Table 2 tabulates the R2 and Q2 results for each model.
Overall, each concentration is tightly clustered showing
reproducibility over three independent tests.

Figure 5B shows the cross-validation plot for lactic acid. There
is a significant set of samples for the 140 mg/mL group that are
lower concentrations than expected. However, the R2 result
remains high and on par with the glucose quantification. A
higher concentration range was evaluated here due to poor
predictions of a blind tests set in the binary quantification.

Thus, the concentration range investigated was expanded to
assess whether these predictions would be improved for the
combined model.

The multi-output model generated predictions for both analytes
in parallel, which would be the most useful application of this
technology in the field as it would allow the simultaneous
monitoring of analytes within a bioreactor. The model described
above was utilised to predict blind test data which has varying
concentrations of glucose and lactic acid (Table 3). In this instance
both analytes are predicted closely to their expected concentrations.
For the glucose predictions, the mean predicted concentrations are
generally higher than the expected concentrations, except in the
prediction of the 92 mg/mL sample which is accurately predicted.
The typical accuracy of current techniques for glucose and lactic acid
quantification is between 5% and 10% of the true concentration
(Gerzon et al., 2022; Kastenhofer et al., 2021). It is however
important to note that specific accuracy requirements may vary
depending on factors such as the criticality of the metabolites, the
complexity of the bioprocess, and the sensitivity of the analytical
method used for measurement.

The model in this instance may be overestimating extremes in
concentration relative to the training dataset. As these extremes are
at the top end of the concentrations observed within the
bioprocessing environment, a wider error within this range is not
of great concern.

With regards to lactic acid measurements, the mean predicted
concentrations are close to their expected concentration. The
second sample is predicted 12 mg/mL higher than its expected
concentration, which is a moderate overestimation by the model.
An increased standard deviation for this sample may indicate
increased variability during the experimental measurements, for
example, the sample slide deposition could have been
inconsistent.

Overall, the trends in the table indicate that the combined
predictive model shows promise but requires further research to
develop accurate predictive models which can easily be
transferred into real-world environments. To aid this problem,
more concentrations could be analysed and fed into the training
model particularly at lower end where the limit of detection is
being neared. It is also important to discuss with stakeholders the
level of accuracy needed for such an approach. The relatively low
standard deviation values for both glucose and lactic acid suggest
that the data derived from the platform and the performance of
the predictive model is consistent across different samples.
However, it is important to note that further development
would be required to validate the accuracy and reliability of
the model fully.

5 Conclusion

The results of this proof-of-concept study suggest that
disposable IREs have potential in applications of
bioprocessing analytics. For qualitative analysis, the ATR-
FTIR based system generated high quality spectra that was
able to differentiate cells in a nutrient deficient state
compared to control samples. It was also shown that
measurements from cell media were able to highlight these
differences. This may present a preferable option to in-line
monitoring in future, where the valuable materials within the
bioreactor can remain undisturbed.

The feasibility of cell metabolite quantification offers a
straightforward, rapid, and cost-effective method for
monitoring batch health in a bioreactor. The relationship
between absorbance and concentration lends itself well to
potential process analytical technology, as FTIR is a non-
invasive technique. The results demonstrate strong

TABLE 3 Expected and predicted concentrations of glucose and lactic acid as determined by partial least squares model.

Sample Expected concentration (mg/mL) Mean predicted concentration (mg/mL)

Glucose Lactic acid Glucose Lactic acid

1 138 47 151 ± 0.76 48 ± 0.75

2 34 128 46 ± 2.38 153 ± 2.32

3 92 113 92 ± 0.60 108 ± 0.63
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reproducibility across multiple sample runs, indicating the
methods robustness against equipment variability. The high R2

values observed in the cross-validation models for both binary
measurements and combined data underscore the potential for
utilizing this approach either at-line or on-line within the
manufacturing environment. This technology enhances the
current understanding of the cell growth process by offering a
ways to accurately track the consumption and expulsion of
metabolites within a bioreactor such that the progress and
health of a batch can be monitored and adjusted in real-time.
In comparison to current methods such as Raman spectroscopy,
high-performance liquid chromatography (HPLC) and liquid
chromatography mass-spectrometry (LC-MS) which can suffer
from analysis issues due to sample matrix, higher complexities
and with regard to the chromatographic techniques, longer
analysis times. These can be mitigated by utilising this type of
ATR-FTIR approach.

It is clear that further development is required to ensure
robustness of models for real-world applications. It is likely that
training data would need to be generated at site, which is
universally accepted to be the standard approach in the field.
A benefit of using a disposable sample slide coupled with an ATR-
FTIR spectroscopy system is that sample analysis and throughput
can be improved by automated analysis which to date has not
been possible.

While this study focused on at-line monitoring, future
instrumentation developments hold promise for broader
applications. The versatile nature of the IREs opens the
possibility of incorporating them into bioreactor systems as
part of a feedback loop or a sampling chamber with a silicon
internal reflection element mounted on the bioreactor wall,
enabling real-time measurements as samples pass through.
Furthermore, there is exciting potential for at-line
measurements, utilizing existing sampling techniques and
implementing the Dxcover system as-is within the
manufacturing environment to swiftly assess batch health and
yield. This opens doors for efficient and practical implementation
in the biomedical research and manufacturing fields.

There is scope to apply this novel ATR-FTIR approach across
the bioprocessing field as ATR-FTIR spectroscopy as a whole is
adaptable and easy to implement. For example, it can be
integrated into in-line instrumentation which could be
inserted into a vessel or reactor to monitor and control
processes as well as determining the endpoint. The technology
discussed here is better suited to these applications due to its
disposable and flexible nature whereby no sterilisation is required
between sample runs, and instrumental considerations such as
probe material type, length or distance between reactor and
spectrometer are not a factor.

This method can also be adapted to offline measurements
where samples are collected and analysed in a laboratory setting

which could be useful for quality control measurements to ensure
batch to batch consistency. The kinetics of bioprocesses could
also be monitored by conducting time-course experiments with
frequent sampling intervals. Coupling this technique with
interrogative multivariate data analysis opens an avenue to
allow for the routine use of ATR-FTIR in the bioprocess
environment.
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Appendix A

The Dxcover Infrared Platform—A novel ATR-FTIR
spectroscopy platform that allows higher throughput analysis of
samples due to disposable and detachable internal reflection elements.

FIGURE A1
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