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WILDetect - Part I
A new non-parametric approach, WILDetect, has been built using an ensemble of supervised 
Machine Learning (ML) and Reinforcement Learning (RL) techniques. We present here 
the first part of the paper. The concluding part will be published in next month
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Abstract

The habitats of marine life, characteristics 
of species, and the diverse mix of maritime 
industries around these habitats are of 
interest to many researchers, authorities, 
and policymakers whose aim is to 
conserve the earth’s biological diversity in 
an ecologically sustainable manner while 
being in line with indispensable industrial 
developments. Automated detection, 
locating, and monitoring of marine 
life along with the industry around the 
habitats of this ecosystem may be helpful 
to (i) reveal current impacts, (ii) model 
future possible ecological trends, and (iii) 
determine required policies which would 
lead accordingly to a reduced ecological 
footprint and increased sustainability. 
New automatic techniques are required to 
observe this large environment efficiently. 
Within this context, this study aims to 
develop a novel platform to monitor 
marine ecosystems and perform bio census 
in an automated manner, particularly 
for birds in regional aerial surveys since 
birds are a good indicator of overall 
ecological health. In this manner, a new 
non-parametric approach, WILDetect, 
has been built using an ensemble of 
supervised Machine Learning (ML) and 
Reinforcement Learning (RL) techniques. 
It employs several hybrid techniques 
to segment, split and count maritime 
species – in particular, birds – in order 
to perform automated censuses in a 
highly dynamic marine ecosystem. The 
efficacy of the proposed approach is 
demonstrated by experiments performed 
on 26 surveys which include Northern 
gannets (Morus bassanus) by utilising 
retrospective data analysis techniques. 
With this platform, by combining multiple 
techniques, gannets can be detected 
and split automatically with very high 
sensitivity (Se) (≈ 0.97), specificity (Sp) 
(≈ 0.99), and accuracy (Acc) (≈ 0.99) — 

these values are validated by precision 
(Pr) (≈ 0.98). Moreover, the evaluation 
of the system by the APEM staff, which 
uses a completely new evaluation dataset 
gathered from recent surveys, shows the 
viability of the proposed techniques. The 
experimental results suggest that similar 
automated data processing techniques 
– tailored for specific species – can be
helpful both in performing time- intensive 
marine wildlife censuses efficiently and 
in establishing ecological platforms/
models to understand the underlying 
causes of trends in species populations 
along with the ecological change.

1. Introduction

The oceans cover two-thirds of the 
Earth’s surface and the maritime economy 
has always been diverse and abundant. 
With the applications of emerging fields 
of science and technology in new and 
existing industries, prominent companies 
and research organisations have been 
recently developing and deploying 
evolving technologies supported by 
location-independent advanced maritime 
mechatronics systems (AMMSs) (Kuru 
& Yetgin, 2019; Shi et al., 2017) to 
explore and exploit the resources in 
this tough landscape. This massively 
evolving industry, enabling enormous 
continuous human control in the maritime, 
has the potential to impact the marine 
ecosystem dramatically; in particular, 
the seabed, birds, turtles, and fish. Birds 
are an inseparable part of the maritime 
ecosystem. Seabird population changes 
are good indicators of long-term and 
large-scale change in marine ecosystems, 
and important because their populations 
are strongly influenced by threats (e.g., 
entanglement in fishing gear, overfishing 
of food sources, climate change, 
pollution, disturbance, direct exploitation, 
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development, energy production) to marine and coastal 
ecosystems (Paleczny et al., 2015). Considerable differences 
in population trajectories of off- shore bird families have been 
documented, which suggests that overall offshore bird populations 
are decreasing (BOEM, 2022). The monitored portion of the 
global seabird population, representing approximately 19% of the 
global seabird population, has declined by nearly 70% between 
1950 and 2010 (Paleczny et al., 2015), a net loss approaching 3 
billion birds (u.e., %29) since 1970 (Rosenberg et al., 2019). This 
loss of bird abundance signals an urgent need to address threats to 
avert future avifaunal collapse and associated loss of ecosystem 
integrity, function, and services (Rosenberg et al., 2019).

One type of bird is the northern gannet (Morus bassanus), the 
largest seabird in the North Atlantic, having a wingspan of up 
to 180 cm and a length of up to 100 cm (RSBP, 2015). More 
specifically, gannets are large white birds with distinctive 
features including yellowish heads and black-tipped wings. 
They are distinctively shaped with a long neck and long pointed 
beak, long pointed tail, and long pointed wings (RSBP, 2015). 
An example is displayed in Fig. 1. The most important nesting 
ground for northern gannets is the UK with about half of the 
world’s population (55.6%) (JNCC, 2015). APEM Ltd4 has a wide 
range of gannet data with geographical positions obtained from 
all around the world and this species is the focus of this study 
which aims to test the developed approaches to help perform 
further autonomous bird censuses paving the way for automated 
classification of multispecies and counting them. The censuses 
of gannets have been undertaken since the 1980s (JNCC, 2015; 
Murray et al., 2015) and all Scottish colonies were surveyed in 
2013 and 2014 via manual approaches (Murray, Harris et al., 
2014; Murray et al., 2015; Murray, Smith et al., 2014). In a typical 
marine survey programme, there might be around half a million 
images taken over 12 months for a specific area and it is a labour-
intensive task to separate this survey into positive images with 
targeted objects and negative images with no objects, and then 
count the objects in the images deemed positive. Many surveys 
acquired by APEM Ltd suggest that more than 95% of the images 
contain no targeted objects. The detection of small objects, 
particularly birds, in large-scale images with more than 50 million 
pixels is a non- trivial task when using manual approaches. Long-
term data that utilises standardised and structured methodologies 

are ideal for quantifying change in species populations; 
Unfortunately, such data does not exist for most biogeographic 
regions (Clements & Robinson, 2022) due to the difficulties 
and high cost of manual methods. Therefore, automation of 
this work using an automated intelligent computer system 
which would help the development of effective prospective 
environmental models with realistic inputs is highly beneficial.

Despite recent advances in computer vision and learning 
techniques as well as many attempts to monitor off-shore species 
in an automated manner, comprehensive large off-shore wildlife 
censuses are still conducted manually by experienced ecologists, 
ethologists, ornithologists (e.g., JNCC, 2022; Thompson, 
2021) due to unmet expectations in accuracy rates for the 
counting and classification of species via automated methods 
as elaborated in Sections 2, 3 and 4.1. With this motivation 
in mind considering the challenges mentioned in Section 3, 
this study proposes a new supervised Machine Learning (ML) 
approach supported by Reinforcement Learning (RL) enabling 
user-model-data interaction that can detect, split and count 
birds, in particular, offshore gannets, in an automated decision-
making way with high accuracy rates. To clarify the novelty of 
this paper, particular contributions are outlined as follows.
1.	 This is the first attempt that explicitly aims to implement 

maritime bio censuses in marine surveys automatically 
using an ensemble of supervised ML and RL techniques 
with a user model-data interaction in finding the best 
analysis parameters for mitigating the highly dynamic 
characteristics of the maritime ecosystem.

2.	 The two phases of using ensemble techniques within 
the developed methodology can work successfully 
in performing the offshore bird censuses and most 
importantly, the methodology can be generalised to the 
automated classification and counting of broader maritime 
multispecies. The methodology can be expandable with more 
feature extraction techniques in addition to the employed 
three techniques to achieve higher accuracy rates.

3.	 The proposed approach shows a new direction for the 
detection of particular, small species with a diverse 
background and most importantly for the classification of 
multispecies even if there is a strong resemblance between 
them, as seen in bird species, where current techniques (i.e., 
off-the-shelf approaches (e.g., OBIA), Deep Neural Network 
(DNN) (e.g., CNN)) cannot converge to a desired solution 
with high accuracy rates based on the features of datasets.

The remainder of this paper is organised as follows. 
Section 2 surveys the related literature. Section 4 reveals 
how the methodology is built up. The implementation of 
the established methodology in splitting and counting the 
particular species in surveys is explained in Section 5. The 
results are presented in Section 6. Discussions are pro- 
vided in Section 7. Finally, Section 8 draws conclusions 
and provides directions for potential future ideas.

Fig. 1. Example of a gannet in a high-resolution image.3



2. Literature review

Wang et al. (2019) reviews studies regarding wild animal surveys 
based on multiple platforms, including satellites, manned aircraft, 
and unmanned aircraft systems (UASs), and focuses on the 
data used, animal detection methods, and their accuracies. The 
resolution of (sub- metre) satellite images is not sufficient to 
discern small (<0.6 m) animals at the species level; Manned aerial 
surveys have long been employed to capture the centimetre-scale 
images (with a spatial resolution of 2.5 cm Hollings et al., 2018) 
required for animal censuses over large areas whereas UASs can 
cover only small areas (Wang et al., 2019). Groom et al. (2013) 
analysed a very limited number of images (18 frames) within 
two offshore areas in the Irish Sea using an off-the-shelf object-
based image analysis (OBIA) algorithm, aiming at combining 
manual and automated image analysis, to describe marine bird 
distributions and abundances. Similarly, Chabot et al. (2018) used 
OBIA to detect and count Lesser Snow Geese in large numbers of 
images of breeding colonies across the Canadian Arctic, achieving 
better results compared to human counting. It is noteworthy 
to mention that the prevalent use of aerial thermal-infrared 
images for detecting large mammals is of limited applicability 
to seabirds because of the low pixel resolution of thermal 
cameras, the smaller size of birds (Chabot & Francis, 2016), 
and most importantly their low body temperature. Borowicz et 
al. (2019) established a semi-automated approach using deep 
learning networks for whale detection from satellite imagery 
with sub-metre resolution. Kellenberger et al. (2021) developed 
an approach to automatically detect and count seabirds in UAS 
imagery using deep convolutional neural networks (CNNs) 
resulting in low accuracy rates for some types of species regarding 
the insufficient number of training species for the CNN technique. 
Again, Dujon et al. (2021) developed a deep CNN using UAS 
imagery to detect three types of species, in particular, gannets 
with an overall precision of 0.74. Hong et al. (2019) employed 
several types of DNNs in non-marine bird detection, resulting in 
precision values ranging from 85.01% to 95.44%. Hayes et al. 
(2021) employed CNN in counting two types of birds on the shore 
in the sitting state using UAS at a close range, resulting in success 
rates of 97.66% for Black-browed Albatrosses, and 87.16% for 
Southern Rockhopper Penguins. Close-range use of UAS may 
disturb wildlife or disrupt their normal activities (Johnston, 
2019), especially for flying birds. Akçay et al. (2020) conducted 
on-ground flying bird detection on bird popu- lation movement 
trends using several DNN techniques with precision values 
ranging from 0.86 and 0.94. Alqaysi et al. (2021) found the pre- 
cision values ranging from 60% to 92% for bird detection around 
wind farms using DNN. There is no guarantee in achieving good 
accuracy rates using the most popular learning technique, the so-
called DNNs. It can be concluded that these approaches require 
a huge amount of data samples to achieve a satisfactory training 
outcome (Delhez, 2022). The aforementioned techniques are 
discussed in Section 7 considering the proposed approach in this 
study. It is worth discussing the emerging promising approach, 
namely, Deep Reinforcement Learning (DRL) here as well. 

Recent revolutionary advances in artificial intelligence (AI) using 
the learning principles of biological brains and human cognition 
has fuelled the development and use of Deep Reinforcement 
Learning (DRL) in numerous fields such as Atari games (Mnih 
et al., 2015), poker (Moravčík et al., 2017), multiplayer games 
(Jaderberg et al., 2019), and board games (Silver et al., 2016; 
Silver, Hubert et al., 2017; Silver et al., 2018; Silver, Schrittwieser 
et al., 2017). DRL has surpassed human-level performance in 
many similar applications. It, with goal- directed behaviour and 
representation learning with the ability to learn different levels of 
abstraction from data, has emerged as a very effective approach 
by combining the strengths of two successful approaches – RL 
and DNN – to overcome the representation problem of RL as 
function approximators, which generalises knowledge to new 
unseen complex situations. More explicitly, DRL can be defined 
as a function approximation method in DNN to generalise past 
experiences to new situations in complex scenarios by mapping 
them to near-optimal decisions using scalable and generalisable 
optimal policies. DRL, in particular, with the most commonly 
used Deep Q-Networks (DQN), has been found successful in 
addressing high dimensional problems with less prior knowledge. 
However, to the best of our knowledge, DRL has been employed 
for generalising past experiences to a new situation to find the 
best optimal decision and has yet to be employed for a problem 
space similar to the one mentioned in this paper. Therefore, this 
method seems not applicable to our objectives considering the 
aforementioned problem space which is defined in Section 3.

3. Problem definition

Very large areas need to be surveyed in shorter time spans 
to understand the ecological footprint and to take necessary 
measures accordingly in a timely manner. Despite recent 
advances in computer vision and learning techniques as well 
as many attempts to monitor off-shore species in an automated 
manner, comprehensive large off- shore wildlife censuses are 
still conducted manually by experienced ecologists, ethologists, 
ornithologists (e.g., JNCC, 2022; Thompson, 2021) due to unmet 
expectations in accuracy rates for the counting and classification 
of multispecies via automated methods. Manual approaches 
increase the cost of surveying large areas significantly and 
required regular surveys may not be conducted due to this high 
cost. New automated computer-based approaches are required to 
observe large areas efficiently and effectively to meet the desired 
objectives of the research community. We performed a literature 
survey analysis (Section 2) and conducted several preliminary 
experiments using the most commonly used techniques to develop 
the most appropriate approach that can meet the expectations 
of the research community. The outcomes of our preliminary 
tests are elaborated in Section 4.1. To summarise considering 
the survey analysis and preliminary tests specific to the airborne 
survey data, (i) template-matching approaches (e.g., SIFT) 
that requires no prior training are far from being able to realise 
any objectives desired by the research community due to the 



indistinct features of very small objects within very complex 
background, (ii) off-the-shelf computer vision techniques 
(e.g., OBIA) and off-the- shelf ML techniques that require 
prior training don‘t result in high accuracy rates due to the 
indistinct features of very small objects in very big images, 
and (iii) DNN (e.g., R-CNN), requiring prior training with a 
large number of data instances, do not converge to a desired 
solution due to the limited number of instances with the 
indistinct features of very small objects within a diverse 
background; Besides, the misclassification of multispecies 
is high with DNN where data instances in different groups 
resemble each other too closely as seen in bird species.

The literature, to the best of our knowledge, has a gap that 
can be filled with the research of computer-automated study 
analyses of species datasets acquired from the photogrammetry 
settings which use small aeroplanes to survey very large 
areas in shorter time spans when compared with other 
approaches that use static locations, ships or UAS. Due to 
low accuracy rates in detecting small animals in the marine 
ecosystem using several off-the-shelf computer vision 
techniques, off-the-shelf ML techniques, template-matching 
approaches, and DNN, which is elaborated in Section 4.1 
regarding the preliminary experiments with our findings 
(e.g., the changing and complicated background of the sea, 
number of data samples in the training set, low- quality 
images of small species that lack clear features due to them 
being captured by small aeroplanes with remotely-sensed 
aerial moni- toring photogrammetry settings), we developed 
a novel approach using an ensemble of ML and RL with 
a motivation to increase the detection accuracy to reach 
our target (>0.95) and classify multispecies for the further 
improvement of the application with multispecies training.

4. Methodology

4.1. Technical background

Repetitive surveying of very large areas for the purpose of 
observing trends and population fluctuations, which also use 
human-dependent approaches, may result in huge financial 
and time costs. Therefore, sampling is commonly employed 
to census species within representative sample areas using 
varying sampling strategies and a way of statistical prediction 
or projection to a whole figure to avoid high costs where 
the larger the sample of sites, the better the approximation. 
However, there can be many sampling biases in such datasets 
like spatial, taxonomic, or temporal leading to inaccurate 
inferences: Spatial bias refers to uneven sampling efforts 
across a region; Taxonomic bias can include over or under-
representation of certain species in the dataset; Temporal 
bias occurs when records are collected in one season only, 
or more often at certain times of the year (Jayadevan et al., 
2022). Sampling may not be extrapolated to a reliable figure, 

in particular, for rare species, considering the high percentage of 
negative images in whole surveys(> %95) and uneven density 
and variance in counts of species from one habitat to another, 
mostly, related to the habitat associations (e.g., food, breeding, 
sheltering) leading to poor sampling (i.e., oversampling, 
undersampling), which may produce misleading inferences. 
Several studies developed particular approaches to mitigate the 
effect of biases in surveys. For instance, Smyser et al. (2016) 
utilised a double-observer survey configuration to quantify 
and correct the bias caused by the failure of observers in aerial 
surveys. Monitoring all regions of interest and counting all 
species of interest is crucial to reach highly reliable outcomes 
and proper decisions with appropriate interpretations. Aerial 
surveys are an efficient survey platform, capable of collecting 
wildlife data rapidly across large spatial extents in short time 
frames; however, these surveys can yield unreliable data if not 
carefully executed (Davis et al., 2022). To this end, numerous 
approaches such as entropy-based information screening 
method (Li et al., 2021) and normalised double entropy 
(NDE) (Li et al., 2023) were developed to distinguish bad and 
redundant image data to increase the quality of sampling.

As an active research direction for decades, object recognition 
and detection have had increased importance within many fields 
such as nature, biometrics, medicine, and robotics. Current 
clustering algorithms, in which no prior training is performed, 
on visual datasets, are not successful in grouping similar objects 
with high rates of accuracy, particularly, for objects with very 
complex backgrounds (Kuru & Khan, 2018). One of the oldest 
methods of object recognition is the template-matching approach. 
It consists of sliding a particular template over the search area 
(usually an image in which we are trying to locate) and at each 
position, calculating a distortion or correlation measure that 
estimates the degree of dissimilarity or similarity between the 
template and the candidate (Reyes, 2014). Then, the minimum 
distortion or maximum correlation position (depending on the 
implementation) is taken to represent the instance of the template 
into the image under examination. There are various ways of 
calculating the degree of dissimilarity or similarity, such as the 
Sum of Absolute Differences (SAD) and the Sum of Squared 
Differences (SSD). The Normalised Cross-Correlation (NCC) is 
by far one of the most widely used correlation measures (Stefano 
et al., 2003; Yang, 2010). Recently, several well-advanced 
template-matching techniques have been developed to detect 
objects automatically. These off-the-shelf template-matching 
techniques are scale-invariant feature transform (SIFT), speeded-
up robust features (SURF), features from accelerated segment 
test (FAST), binary robust independent elementary features 
(BRIEF), oriented FAST and rotated BRIEF (ORB), maximally 
stable extremal regions (MSER) and binary robust invariant 
scalable key points (BRISK). In these techniques, a similarity 
value regarding the specified number of most important key 
points is utilised to determine if there is a similarity between 
the reference object and the objects in images, videos, or real- 
time scenes given a threshold value. No pre-processing and 



training is required. We tested these approaches on our sample 
datasets and the preliminary results indicated that none of 
these approaches is successful enough to detect and split very 
small birds with many different postures in large-scale images 
against the changing and complicated background of the sea 
(Ex: Figs. 6, 16). It is noteworthy to mention that variations in 
sea-state, marine environments, atmospheric conditions, and 
solar illumination angles combine to produce a wide range 
of sea surface image patterns that form the background to the 
targets of a bird mapping operation (Groom et al., 2013).

The other approach is the supervised ML approach, which 
requires prior datasets to both determine the common features 
and train the system for further similar detections based on these 
features. Accuracy rates of detection are mainly dependent on 
the quality of datasets used in training in terms of representing 
the real environment by avoiding overfitting. In the training 
process, general features are acquired and these features are 
then compared to the features of objects in test datasets to 
observe how well the features are detected and to determine if 
these features are suitable to be employed in real life. Trained 
models (i.e., detectors) are used for the detection of similar 
objects after the evaluation is conducted successfully by using 
an evaluation dataset. Our preliminary tests on the sample 
datasets using the supervised ML approaches showed promising 
results, which is elaborated in Section 4.2. The frequent low 
numbers of marine birds in any given area adds to the complexity 
of developing methods for large- scale operational surveys 
(Groom et al., 2013). Most of the time, there might be a single 
gannet in a large-scale image (Ex: Fig. 16) within our surveys. 

This makes detecting them highly difficult with regards to 
splitting the images with gannets from those without gannets, 
for aerial surveys with more than half a million images, into 
the positive folder. In other words, it would be easier to detect 
at least one gannet among several gannets in a large-scale 
image rather than detecting a single gannet in the image.

To summarise, as explained above, our preliminary test results 
showed that employing a template matching approach did not 
work for detecting and splitting birds in large-scale aerial images, 
because, despite their distinctive features (Ex: Fig. 1) the birds are 
not very clear in very complex and changing sea textures despite 
the high quality of the images with a very high camera resolution 
(i.e., > 50 Megapixels). Moreover, DNN techniques do not result 
in satisfactory outcomes where the number of instances in domain 
sets is not many as in our case in this study even though they are 
recently popular and successfully employed in many different 
types of application fields and these techniques have far exceeded 
the accuracy rates of current ML methods. More importantly, our 
preliminary test using DNN showed that the misclassification of 
multispecies is high if data instances in different groups resemble 
each other too closely as seen in bird species. Therefore, we have 
employed an ensemble of ML and RL techniques for automated 
recognition, splitting, and counting of birds in aerial surveys to 
both reach our goals in accuracy rates and classify multispecies 
in the further development of the proposed application and a 
user-friendly application was developed using Matlab Simulink 
MatWorks R2020,5 as displayed in Fig. 2. The algorithms were 
developed to work on any size of bird objects using interpolation 
and extrapolation techniques, providing there is a training data 

Fig. 2. Interfaces of the application from top to bottom: (i) the main, (ii) training for ROI selection, (iii) training for blank set and parameter 
selection and (iv) recognition/splitting.



set available. In particular, the methods of the sliding window 
(Forsyth & Ponce, 2012) and Gaussian pyramid (Witkin, 1984) 
are applied to detect any object that can appear in different 
regions of the image and in different scales. A detection 
window in the sliding window method slides over the image 
to extract the regions. The Gaussian pyramid (Witkin, 1984) 
method is primarily applied to the image during the detection 
stage of the sliding window to operate a scale search.

Three feature extraction techniques are employed in our 
methodology, namely Haar Cascades, Local Binary Patterns 
(LBP), and Histogram of Oriented Gradients (HOG). Each of 
these techniques acquires different features of objects using 
different mathematical modelling. We applied these techniques 
to establish the detectors in our implemen- tation using Matlab 
ready-to-use commands along with the Viola– Jones matching 
technique.6 (i) Haar cascade technique resembling Haar wavelets 
was first introduced by Papageorgiou et al. (1998) and Viola 
and Jones (2001). First, the pixel values inside the black area 
are added together; then the values in the white area are added 
together. Following that, the total value of the white area is 
subtracted from the total value of the black area. This result 
is used to categorise image sub-regions (Cruz et al., 2015), 
which requires a fair amount of time to train a classifier and 
generate the Haar training set. The calculation method of 
Haar-like features is faster by introducing an integral image or 
summed-area table (Viola & Jones, 2001), which makes the 
computing of Haar-cascade classifiers more efficient. (ii) LBP 
was first introduced by Wang and He (1990) and analysed in 
detail by Ojala et al. (1994). It has been improved by several 
other studies regarding object identification and recognition 
(Ojala et al., 2002; Trefný & Matas, 2010; Zhang et al., 2007). 
In the LBP technique, the texture is defined as a function of 
spatial variations in the pixel intensity of an image with a 
low computational cost by focusing on a small set of critical 

features, discarding most of the non-critical ones to increase the 
speed of the feature extraction and classification significantly 
without affecting accuracy; common features, such as edges, 
lines, points, flat areas, and corners can be represented by 
a value in a particular numerical scale (Cruz et al., 2015). 
Therefore, it is possible to recognise objects in an image using 
a set of values extracted a priori and several weak classifiers 
turn into a strong classifier regarding recognition (Cruz et al., 
2015). (iii) HOG which explores gradient information and local 
shape information was first explored by McConnell (1986) and 
improved by Dalal and Triggs (2005). The technique counts 
occurrences of gradient orientation in localised portions of an 
image, which is computed on a dense grid of uniformly spaced 
cells and uses overlapping local contrast normalisation by the 
distribution of intensity gradients or edge directions. Due to 
the strong texture and shape description ability, HOG can be 
used in the detection of many different types of objects. It is 
highly sensitive to object orientation. It responds rapidly to 
changing parameters of FAR and TPR based on its feature 
extraction method which uses histograms. (iv) The Viola– 
Jones technique that is included in Matlab Computer Vision 
System Toolbox (i.e., vision.CascadeObjectDetector) is used 
to match acquired features in detectors to those of the objects 
in images for comparison and detection. This technique along 
with feature extraction techniques is highly sensitive to different 
orientations of objects in images/videos. The main reasons 
for choosing Viola–Jones are its fast detection speed and its 
high accuracy detection rate regarding the large-scale aerial 
images on which we are working. How these techniques are 
employed in a novel approach in our methodology is explored 
in the following sections, particularly, Sections 4.2 and 5.

The main components of the platform, WILDetect, built in this 
study are depicted in Fig. 3. The phases are (i) data preparation/
pre- processing (A.1), (ii) feature extraction/training (A.2), 
(iii) viability testing of the detectors and specifying the best 
detectors (A.3), (iv) implementation of the model in splitting and 
counting in surveys (A.4) (i.e., determining the best detectors 
in splitting and counting using the recursive RL approach 
(A.4.1), recognition and splitting (A.4.2.Phase1), recognition 
and counting (A.4.2.Phase2)), and (v) database operations 
(A.5) that are explained in the following sections respectively.

4.2. Establishment of the methodology

The defined problem space (Section 3), considering the 
literature analysis (Section 2) and the obtained results 
from the preliminary tests (Section 4.1) using off-the-shelf 
approaches, necessitates the development of a new approach 
to achieve the objectives of the research community while 
performing airborne wildlife census automatically in the 
marine ecosystem. With this in mind, the approach built 
here is explained step by step in the following subsections 
(Sections 4.2.1, 4.2.2 and 4.2.3) and the results of the 
implementation using large surveys are provided in Section 5).Fig. 3. Main components of the methodology.



Fig. 4. Use of datasets during training, testing, evaluation, and 
validation of WILDetect.

Fig. 5. APEM aeroplane during a remotely-sensed aerial survey using 
advanced aerial high resolution photogrammetry.

4.2.1. Data sets, data preprocessing/preparation (A.1)

The main subcomponents of this phase along with their 
interaction are illustrated in the dedicated section of Fig. 3 
titled ‘‘A.1’’. A dataset consisting of images with the object 
of interest and a dataset consisting of blank/background 
images that represent anything except the object of interest 
are needed to establish a supervised ML approach for training, 
testing, evaluation, and validation. Data preparation and data 
management in those steps are demonstrated in Fig. 4. The 
negative set typically contains more images than the positive 
set in order to complete the training phase where every positive 
image needs more background images that represent the real-
world environment. APEM has many surveys in its repository 
in which almost %95 of the images are blank background 
images with no targeted object types. APEM conducts offshore 

digital wildlife surveys for the offshore renewables sector, 
reliably capturing imagery all year round in all lighting 
conditions and sea states up to four. The data is captured on a 
variety of sensor formats including both 35 mm and medium 
format from various manufacturers, in both single camera 
and multiple camera configurations, depending on the project 
requirements. The images are collected by these advanced 
cameras mounted in a small twin-engine aeroplane (Ex: Fig. 5) 
within a route in which all regions of interest are surveyed.

A snag library that consists of around 1 million snags (i.e., 
cropped images with objects of interest; ex: Fig. 6) has been 
established by APEM. We aimed to incorporate all possible 
targeted positive images into the methodology, either for training/
testing or evaluation and validation to create a positive dataset that 
can represent the real-world object types by avoiding overfitting 
during the decision-making phase of the implementation in 
real-field tests. We pre-processed the gannets in this library by 
selecting the convenient gannet samples. Our preliminary tests 
showed that flying gannets with their partial body parts can be 
detected using whole body sets, but, a whole gannet body cannot 
be detected by a trained set that consists of various partial parts 
of gannets (e.g., only one wing). Furthermore, partial body 
parts can increase the false-positive (FP) rate. Therefore, in this 
phase, we aim to select as many gannets as possible that have 
whole bodies (i.e., two wings, head, and tail), but in all possible 
postures. With this in mind, we prepared two sets of gannets 
(50%/50%), one of which is for training/testing with 1073 snags 
(Fig. 4I) and the other one is for evaluation with again 1073 
snags in many different postures (Fig. 4II). Our preliminary test 
results suggest that the detectors built using the three feature 
extraction techniques (i.e., Haar, LBP, HOG) based on the specific 
orientations (i.e., north, east, south, west) improve the accuracy 
rate significantly where these techniques are highly sensitive to 
different orientations of objects in images as explained in Section 
4.1. Therefore, all the gannet objects in these sets are rotated 
into 4 directions automatically using the codes produced in this 
study for the data preprocessing phase, namely, north, east, south, 
and west, by which 4 sets of gannet objects totalling 1073 × 4 = 
4292 were generated for training/testing and evaluation, rather 
than separating them into these directions into 4 groups, which 
would reduce the number of objects substantially. In this way, 4 
types of detectors are needed with the orientations north, south, 
east, and west, as well as a large number of negative images. 
The greater the variety of these snags/images representing the 
real environment, the better the detectors avoiding overfitting 
and consequently the higher the accuracy of detecting targeted 
objects in images in real field tests. A sub-sample of the dataset 
in which all gannets are almost rotated to the north is presented 
in Fig. 6. More snag examples can be found in our technical 
report — MarineObjects_Gannet_Supplement_2.pdf in the 
supplementary materials. Moreover, the gannet objects in large-
scale images (Ex: Fig. 16) are presented in our technical report — 
MarineObjects_Gannet_Supplement_3.pdf in the supplementary 
materials with many different postures and background textures.



In addition to the positive dataset, a blank/background/
negative dataset was established using 26 surveys collected 
by APEM between 2014 and 2017. These surveys were 
acquired from different parts of the world in different seasons 
and time zones using different settings and types of image-
capturing technologies. The texture of the negative images 
in these surveys differs from each other as displayed in Fig. 
7, which makes the implementation more challenging. More 
examples specific to the surveys can be found in our technical 
report — MarineObjects_Gannet_Supplement_1.pdf in the 
supplementary materials. We were given around 1 million 
images that are the subsets of these surveys. We used this large 
number of surveys, a volume of around 10 TB, to find out the 
general characteristics of aerial surveys. The diverse features 
revealed from these large surveys help make our approach 
strong and promising for further use of the application in any 
circumstances while separating targeted objects from their 
background. This large dataset was stored in high-powered 
servers and processed using these servers (A storage unit (12 
TB), 2 Novatech servers and 5 HP servers connected to each 
other via the network. The storage unit is used for placing the 

big size of the datasets and applications on servers are run 
using the datasets placed in the storage unit for development, 
evaluation and validation. The specifications of the Novatech 
servers: Intel (R) Xeon (R) CPU E5 26300 2.30 GHz 2.30 GHz 
(2 processors), 64 bit, 64 GB RAM, GPU (NVIDIA GeForce 
GTX 680). The specifications of the HP servers: Intel (R) Xeon 
(R) CPU 5160 3.00 GHz, 64 bit, 8 GB RAM. We established 
a sub-sample set from the diverse surveys that consisted of 
100,000 images (Fig. 4I) to use in the training process, with the 
aim of incorporating all the characteristics of the current and 
future surveys into implementation. It is worth emphasising that 
an equal number of negative images from all sub-surveys (107 
sub-surveys), within the above-mentioned 26 surveys, were 
included considering the seasons and time zones to create a 
negative dataset that can represent the real-world circumstances. 
Rather than using 1 million images, this sub-sampled set would 

Fig. 6. Examples of the gannet snags for the north direction in several 
postures and background textures.

Fig. 7. Examples of blank images from 6 different surveys with various 
textures.

Fig. 8. Processing time of detectors in Table 1.



Fig. 9. Results for Table 2: The accuracy rate of recognition is increased 
by combining 3 techniques, which is depicted by the yellow line. 
Combination of 3 techniques is more important where the FAR and TPR 
parameters are smaller to acquire a satisfactory recognition rate. The 
horizontal green line drawn on 0.95 Se is the objective threshold level; 
the Se values over this line are acceptable in terms of the yellow line.

reduce the processing time of training significantly, in particular, 
while singling out the consecutive new sets for each following 
training iteration, which is elaborated in Section 4.2.2. Readers 
are referred to Fig. 4 in the related sections below in which 
the evaluation and validation are explained after revealing the 
establishment of the methodology in the following sections.

4.2.2. Feature extraction and training (A.2)

The main subcomponents of this phase along with their 
interaction are illustrated in the dedicated section of Fig. 3 titled 
‘‘A.2’’. Automatic detection systems usually require large and 
representative training datasets to achieve good detection rates 
with fewer FP rates (Vállez et al., 2015). The training phase is 
very important for the successful recognition of objects in the 
further use of the application. One badly trained file/classifier can 
cause the splitting process (A.4.2. Phase1 in Fig. 3) to function 
poorly and many positive images may be placed in the negative 
folder and vice versa, which we aim to avoid. The user interface 
developed for the training phase is displayed in Fig. 2ii and iii. 
With this interface, the detectors can be generated using several 
parameters such as true positive rate (TPR), false alarm rate 
(FAR), number of training stages, number of background images, 
and neg- ative sample factor (NSF), with respect to the number of 
positive images in each training stage and the feature extraction 
techniques, i.e., Haar, LBP, and HOG. A mathematical model of 
the objects is extracted using these techniques as explained in 
Section 4.1. These techniques were selected, because, in addition 
to providing detectors with encouraging accuracy, they produce 
detectors that can function efficiently. For instance, objects can 
be detected in a few seconds in an image with 50 million pixels. 
The training interface lets the user feed the system with positive 
images for ROI selection and negative images for background 
analysis, as well as specify the parameter values. ROIs are 
specified in positive images by the user (at least one ROI in each 
image), and the feature descriptors are extracted based on ROIs 
using the aforementioned techniques in the training process. 
Several training sets were acquired using different FAR and 
TPR parameters for each feature extraction technique. In each 
training, the number of training stages was 20 (i.e., 20-fold cross-
validation) along with the number of the negative samples 3, 

which means that the number of the different negative images 
to be used in each training stage of the 20 iterations would be as 
many as 3 times the number of positive images. Our preliminary 
tests show that (1) decreasing the number of iterations (e.g., 10-
fold) increases the training time significantly, (2) the recognition 
accuracy rate is almost the same with negative sample factors of 
3 and 10; however, the processing time increases significantly 
with the value of 10. Therefore, the training parameters 20 for 
iterations rather than most commonly used 10-fold and 3 for 
negative sample factor were selected to decrease the training 
time. In each iteration, the techniques choose a set of different 
negative images in the negative dataset whose texture features 

Techniques 0.30–0.985 0.35–0.985 0.40–0.985 0.40–0.995 0.45–0.995 0.50–0.995

Haar 51 45 38 31 28 23

LBP 31 26 22 18 16 13

HOG 43 38 33 27 25 21

Table 1 Processing time of the detectors in days.

Techniques 0.30–0.985 0.35–0.985 0.40–0.985 0.40–0.995 0.45–0.995 0.50–0.995

Haar 0.825 0.975 0.98 0.985 0.989 0.993

LBP 0.675 0.925 0.935 0.966 0.984 0.992

HOG 0.735 0.85 0.9 0.993 0.994 0.994

Combined 0.84 0.99 0.992 0.995 0.996 1

Table 2 Accuracy rates of the training phase with the snag dataset based on the detectors with 6 different parameters: all snags are recognised 
successfully by the parameters, FAR = 0.50 and TPR = 0.995 with the combination of 3 techniques.



are supposed to be different from the 
previously selected sets. The system 
stops if not sufficient negative images 
with different features are provided.

Therefore, the images in the negative 
dataset must be different from each 
other with respect to their textures. 
A large number of images in the 
negative dataset increase the chance of 
finding a new set for each following 
training iteration. As explained earlier, 
100,000 images selected for the 
negative datasets from different surveys 
provide enough distinctive iteration 
sets for our training iteration steps.

The training process is repeated to 
obtain several detectors using different 
parameters, in particular, reducing the 
values of TPR and FAR to flag fewer FPs. 
This is mainly beneficial to the analysis 
of different types of surveys with regard 
to their varying textures, as explained in 
the following sections. As soon as the 
detectors are generated, they are tested on 
the sample test dataset and the threshold 
parameters are reduced until almost all 
negative images are transmitted into 
the negative directory. This may cause 
several positive images to be missed with 
respect to each technique with reduced 
threshold parameters. However, these 
techniques use different features and if 
one detector with a technique misses one 
positive image, there is a high probability 
that one of the other two detectors using 
the other two techniques may specify this 
image as a positive image. Therefore, we 
are employing these three techniques at 
the same time for the splitting phase to 
overcome the reduced sensitivity (Se) 
because of the FNs with respect to each 

the datasets changed. For instance, the 
effect of the HOG technique is relatively 
poor when the parameters are small, 
and it increases rapidly after the values 
of parameters are increased. In this 
way, the drawbacks of one technique 
considering the features of data can be 
compensated by the other two techniques 
while the parameters need to be changed 
for achieving the desired goals, either 
for increasing Se or for increasing Sp. 
The trained files with the parameters 
FAR = 0.30 and TPR = 0.985 resulting 
in a Se value of 0.840 are excluded from 
the trained folder in order not to be used 
for further recognition and splitting 
process. Because the main objective 
of this research is to obtain a Se value 
greater than 0.95 which is one of the 
targeted success criteria, i.e., threshold 
level, as shown in Fig. 9 with the green 
line. In other words, we do not want 
to miss positive images at any cost 
even with small Sp values by achieving 
this success criterion. As explained in 
Sections 5.1 and 5.2, the system with 
established detectors was run on various 
evaluation and validation surveys (Fig. 
4III and IV) with varying characteristics 
to find out the detectors’ viability on 
further surveys based on the observed Se 
and Sp values, strictly speaking, Sp after 
achieving a satisfactory Se value with 
5 threshold intervals, all of which are 
above the targeted sensitivity value, 0.95.

The use of three feature extraction 
techniques at a time is more important 
where the detectors with smaller threshold 
parameters are selected by the system 
with the RL approach as explained in the 
following Section 5. Some of the gannet 
objects detected by only one of the feature 
extraction techniques are presented in Fig. 
10 where FAR = 0.35 and TPR = 0.85. 
These three gannet objects are detected by 
the three techniques at the same time with 
bigger threshold values where FAR = 0.50 
and TPR = 0.95. We would like to note 
that these high threshold values may cause 
many FPs depending on the complexity 
of the background and it may not be a 
good option to use them for particular 
types of surveys, which is explained 
in the following sections in detail.

Fig. 10. Snag examples detected by only one of the techniques with the parameters of FAR = 
0.35 and TPR = 0.85.

technique in order not to miss any 
positive image, which is explained in 
Section 4.2.3 in detail with examples.

Detectors for the specific types of 
objects are created only once and can 
be used whenever needed to recognise, 
split and count specific objects in 
images for further analysis. Six trained 
sets — detectors consisting of 72 
trained files (i.e., 6 threshold values × 
3 techniques × 4 directions = 72) were 
created using 6 threshold values, as 
displayed in Table 1. In other words, 
12 trained files were obtained for each 
trained set, 4 for each technique (i.e., 
Haar, LBP, HOG) and each of which 
represents the gannet sets in one of 
the four directions (i.e., north, east, 
south, west) (i.e., 12 trained files for 
each detector × 6 detectors = 72). The 
processing time of the training in terms 
of threshold values is shown in Table 
1 and Fig. 8. The smaller the threshold 
values, the longer the training time.

4.2.3. Viability testing of the 
detectors and specifying min/
max threshold parameters (A.3)

The acquired trained files were 
evaluated on the evaluation dataset 
(i.e., 1073 snags in four directions) 
spared for evaluation (Fig. 4II) as 
mentioned in Section 4.2.1. The 
evaluation results are presented in 
Table 2 and Fig. 9. As it is noticed in 
Fig. 9, the detection success of the 
feature extraction techniques varies 
depending upon the approaches 
followed in these techniques as 
elaborated in Section 4.1 as the pa- 
rameters concerning the features of 



Endnotes

1 https://apem- inc.com.

2 https://www.apemltd.co.uk.

3 Courtesy of the photographer 
and artist Rahul Alvares.

4 APEM Ltd is a leading independent 
environmental consultancy special- 
ising in freshwater and marine ecology. 
The company is the world’s leading 
provider of digital aerial wildlife 
surveys for the offshore wind industry, 
having carried out over 2000 surveys 
in the North Sea, Irish Sea, Baltic Sea, 
Pacific, Atlantic, and Gulf of Mexico.
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