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Introduction 
Due to the low availability of annotated data for training polyp segmentation 
models, e.g. Sanderson and Matuszewski (2022), which typically take the 
form of an autoencoder with UNet-style skip connections (Ronneberger et 
al., 2015), it is common practice to pretrain the encoder, also known as the 
backbone. This has almost exclusively been done in a supervised manner 
with ImageNet-1k (Deng et al., 2009). However, we recently demonstrated 
that pretraining backbones in a self-supervised manner generally provides 
better fine-tuned performance, and that models with ViT-B (Dosovitskiy et 
al., 2020) backbones typically perform better than models with ResNet50 (He 
et al., 2016) backbones (Sanderson and Matuszewski, 2024).

In this paper, we extend this work to consider generalisability. I.e., we assess 
performance on a different dataset to that used for fine-tuning, accounting 
for variation in network architecture and pretraining pipeline (algorithm 
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and dataset). This reveals how well models generalise to a somewhat 
different distribution to the training data, which arise in deployment as a 
result of different cameras, demographics of patients, and other factors. 
Our results provide further insights into the strengths and weaknesses of 
existing architectures and pretraining pipelines that should inform the future 
development of polyp segmentation models.

Analysis 
We consider 12 polyp segmentation models pretrained and fine-tuned in 
a previous study (Sanderson and Matuszewski, 2024), specifically those 
fine-tuned on Kvasir-SEG (Jha et al., 2020). Each model is either a ResNet50 
encoder with a DeepLabV3+ (Chen et al., 2018) decoder, or a ViT-B encoder 
with a DPT (Ranftl et al., 2021) decoder. Additionally, each model was 
pretrained on either Hyperkvasir-unlabelled (Borgli et al., 2020) or ImageNet-
1k in a self-supervised manner using either MoCo v3 (Chen et al., 2021), 
Barlow Twins (Zbontar et al., 2021) (ResNet50 only), or MAE (He et al., 2022) 
(ViT-B only); or pretrained in a supervised manner (ImageNet-1k only); or not 
pretrained at all.

We evaluate performance on the full CVC-ClinicDB dataset (Bernal et al., 
2015) with mDice, mIoU, mPrecision, and mRecall. The results are reported in 
Table 1, where we also specify each model’s rank on each metric, as well as 
any change in rank relative to the model’s evaluation on the Kvasir-SEG test 
set (Sanderson and Matuszewski, 2024). The results show that self-supervised 
pretraining on ImageNet-1k generally provides the best generalisation, 
that supervised pretraining on ImageNet-1k is generally better than self-
supervised pretraining on Hyperkvasir-unlabelled, and that any considered 
pretraining is better than no pretraining. These findings are consistent with 
the evaluation on the Kvasir-SEG test set.

However, the model pretrained with MAE on ImageNet-1k, which performs 
best on the Kvasir-SEG test set, reduces its rank on every metric, notably 
dropping from rank 1 to 4 on mDice. In contrast, models with a ResNet50 
backbone generally improve their ranking, implying greater generalisability 



226

Medical Image Understanding and Analysis

frontiersin.org

than models with a ViT-B backbone, which generally experience a drop 
in ranking, and the best generalisation is achieved by the model with a 
ResNet50 backbone that was pretrained on ImageNet-1k using MoCo 
v3, notably improving from rank 4 to 1 on mDice. To better understand 
this, we compare the distribution of instance-wise Dice scores from each 
model’s evaluation on the Kvasir-SEG test set against the distribution from 
its evaluation on CVC-ClinicDB in Fig. 1. This indicates that all models 
experience a drop in overall performance that primarily arises from a higher 
variance. However, the portion of each distribution for the highest Dice 
scores shows that most models with ResNet50 backbones achieve better 
performance on some instances of CVC-ClinicDB than any in the Kvasir-SEG 
test set, while models with ViT-B backbones fail to exceed their maximum 
Dice score across the Kvasir-SEG test set when evaluated on CVC-ClinicDB. 
We verify that all models experience a drop in performance, and quantify 
the relative drop, in Fig. 2, which reveals that most models with ResNet50 

TABLE 1: Performance of models fine-tuned on the Kvasir-SEG training set and tested on CVC-ClinicDB. In addition 
to reporting the value of each metric, we also indicate the rank of each model, as well as any change in this rank 
relative to the model’s evaluation on the Kvasir-SEG test set. For conciseness, we abbreviate Hyperkvasir-unlabelled 
to HK, ImageNet-1k to IN, and Barlow Twins to BT
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FIGURE 1

Comparison of the distribution of instance-wise Dice score from each model’s evaluation on the Kvasir-SEG 

test set (blue) against the distribution from its evaluation on CVC-ClinicDB (red). For conciseness, we denote 

ResNet50s with RN, ViT-Bs with VT, Hyperkvasir-unlabelled with HK, ImageNet-1k with IN, MoCo v3 with MC, 

Barlow Twins with BT, MAE with MA, supervised pretraining with SL, and no pretraining with NA-NA.

FIGURE 2

Relative drop in mDice from each model’s evaluation on the Kvasir-SEG test set to its evaluation on 

CVC-ClinicDB. For conciseness, we denote ResNet50s with RN, ViT-Bs with VT, Hyperkvasir- unlabelled with 

HK, ImageNet-1k with IN, MoCo v3 with MC, Barlow Twins with BT, MAE with MA, supervised pretraining with 

SL, and no pretraining with NA-NA. For clarity, the results for ResNet50 models are coloured blue and the 

results for ViT-B models are coloured red.

backbones do indeed experience less of a drop, potentially as a result of 
their improvement in maximum Dice score, explaining the improvement in 
ranking.
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Conclusion 
In this paper, we showed that previous findings, regarding pretraining 
pipelines for polyp segmentation, hold true when considering generalisability. 
However, our results imply that models with ResNet50 backbones typically 
generalise better, despite being outperformed by models with ViT-B 
backbones in evaluation on the test set from the same dataset used for 
fine-tuning. We expect that this is a result of the larger complexity of the 
models with ViT-B backbones allowing for overfitting on the distribution 
underlying the training data. However, this challenges the assumption that 
the considered pretraining pipelines should help prevent this, and more 
work is required to better understand the relationships between architecture, 
pretraining pipeline, and performance on different distributions of data, as 
well as the amount of training data.
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