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Abstract: Polyaniline has been utilized in various applications, yet its widespread adoption has often
been impeded by challenges. Composite systems have been proposed as a means of mitigating some
of these limitations, and anthranilic acid (2-aminobenzoic acid) has emerged as a possible moderator
for use in co-polymer systems. It offers improved solubility and retention of electroactivity in neutral
and alkaline media, and, significantly, it can also bestow chemical functionality through its carboxylic
acid substituent, which can greatly ease post-polymer modification. The benefits of using anthranilic
acid (as a homopolymer or copolymer) have been demonstrated in applications including corrosion
protection, memory devices, photovoltaics, and biosensors. Moreover, this polymer has been used
as a versatile framework for the sequestration of metal ions for water treatment, and, critically,
these same mechanisms serve as a facile route for the production of catalytic metallic nanoparticles.
However, the widespread adoption of polyanthranilic acid has been limited, and the aim of the
present narrative review is to revisit the early promise of anthranilic acid and assess its potential
future use within modern smart materials. A critical evaluation of its properties is presented, and its
versatility as both a monomer and a polymer across a spectrum of applications is highlighted.

Keywords: anthranilic acid; polyaniline; polyanthranilic acid; conducting polymer; electrode

1. Introduction

Research into intrinsically conducting polymers (ICPs), first established by the pio-
neering work of Shirakawa, MacDiarmid, and Heeger in 1977 [1], has intensified in recent
times, with polyacetylene being eclipsed by a spectrum of new conjugated systems [2–7].
Polypyrrole, polythiophene, polyaniline, and their associated derivatives are the more
common of the new variants and are among the few that are stable enough, under normal
processing conditions, to be considered for use in a wide range of applications ranging
from energy generation and storage to environmental remediation [2–7]. There has been
a tremendous increase in the production and characterization of these polymers, leading
to an extensive library of systems with unique electrical and optical properties. Ironically,
polyaniline (PANI) is far from a new discovery, and its preparation was reported in the
1800s by various groups [8]. It is only in modern times that the true potential of the orig-
inal aniline black has been recognized, and it is increasingly being proposed to be a key
component in the design of smart devices. The applications in which it has been applied
have included electromagnetic shielding, photothermal therapies, photovoltaic generation
and catalysis, energy storage, membrane separation, molecular electronics and memory
devices, chemical and biosensing, anti-corrosion coatings, organic light-emitting diodes,
and electrorheological materials [9–17]. The use of PANI has also taken many physical
forms, ranging from films to fibers and nanoparticles, and found extensive use in the
formation of composite materials [10–12]. The relative significance of PANI systems within
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the conducting polymer research base is highlighted in Figure 1, where the numbers of
peer-reviewed publications citing the common conducting polymers are compared.
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The ease with which PANI can be prepared through both chemical and electrochemical
oxidation and its low cost, stability, conductivity upon doping, and unique protonic doping
process have proven to be attractive within the bioelectronics sector [17]. Despite these
formidable merits, it nevertheless suffers from considerable practical limitations. In its
powdered form, its processability is very limited in that it is quite an intractable material,
being insoluble in common organic solvents. Moreover, it is not amenable to melt process-
ing and degrades at high temperatures [13,18]. Its conductivity is also limited to highly
acidic solutions, with a loss of electrochemical activity observed in solutions with a pH
greater than 4 [19,20]. The core backbone of PANI is also relatively chemically inert, which
can be problematic when attempting to tailor the interface to specific applications. As such,
there have been significant efforts made to find alternatives that can address the limita-
tions associated with PANI. Co-polymerization with aniline derivatives possessing acidic
functional groups (sulphonic [21,22], phosphonic [23], and carboxylic acids [19,24–35]) has
been proposed as a means of mitigating the processing and conductivity factors whilst
also creating opportunities for improved chemical functionality. The latter could allow
postproduction modification, which is an increasingly significant prerequisite for biosens-
ing applications. In particular, anthranilic acid, or 2-aminobenzoic acid, has emerged as
a low-cost yet highly versatile monomer for use in the preparation of copolymer PANI
systems (Figure 2), wherein the carboxylic acid substituent can address many of the core
limitations of PANI homopolymers.

It has been previously reported that the presence of acidic groups within a chain can
modify the microenvironment of a polymer network—shifting the local pH and allowing
the retention of conductivity, where the pH > 4 [19,24,25]. Moreover, the presence of the
polar carboxylic groups enhances solubility [25,26] and processability, and it also provides
the chemical flexibility for further modification that allows such systems to be tuned to a
particular application. These features have led to the use of anthranilic acid as a modifying
agent in a wide range of copolymer systems beyond PANI.
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Figure 2. Typical head-to-tail co-polymerization of aniline and anthranilic acid.

Some of the more common applications in which anthranilic acid in the form of a
homopolymer, copolymer, or composite have been characterized [36–81] are highlighted
in Table 1.

Table 1. Range of applications for polymers incorporating anthranilic acid.

Polymer
Composition Application Refs

PANI-PAA Absorbents [36]
PANI-PAA, CS Anode Protection [37,38]

PEG-PAA, PAA, PANI-PAA Anti-corrosion [39–41]
PAA Catalysis [42–44]

PANI-PAA Magnetic Materials [45–50]
PANI-PAA, PAA Memory Storage [51–53]
PANI-PAA, PAA Nanomaterials [42–50,54–64]

PAA-PDA Photovoltaics [49,50,55,58]
PAA, PANI-PAA, PAA-PP Sensors [61,65–80]

PANI-PAA Waste Water Treatment [59,81]
PANI = Polyaniline, PAA = Polyanthranilic Acid, PDA = Phenylene Diamine; PEG = Polyethylene glycol;
CS = Chitosan; PP = Polypyrrole.

While there is an extensive body of reviews dedicated to PANI and its various
applications [10–17], information on anthranilic acid and its application as a conductive
polymer/composite has yet to be collated. The anthranilic acid unit offers a number of
distinct features that can dramatically enhance the properties of conventional conducting
polymers such as a polyaniline. These include greater solubility, self-doping/retention of ac-
tivity at higher pH levels, and providing a versatile functional group that can interact with
metal ions, yielding metal nanomaterials. As interest in biosensing grows, the carboxylate
group can also be invaluable as a means of tethering biological agents. There are no reviews
on the polymer properties of anthranilic acid, and hence the aim of the present report,
therefore, has been to train a spotlight on the diversity of roles that anthranilic-acid-based
polymers (either as homopolymers or copolymers with respect to PANI) can fulfil such
that its functional capabilities can be highlighted and exploited in the design of new smart
materials and devices.

2. Origins and Chemical Significance

Anthranilic acid is a key metabolite in a number of biochemical pathways [82–85] and
has also been exploited in numerous therapeutic applications. In many cases, these have
helped to inform the subsequent translation of this molecule to engineering
contexts—whether for advanced materials or sensor applications. While reviews of an-
thranilic chemistry are available [86–88], the more pertinent contextual points that can
have a direct impact on its adoption and its ultimate application are summarized here.
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Anthranilic acid was originally thought to be a necessary dietary factor and originally de-
noted as Vitamin L1 [82]. It has since been found to be non-essential for human health, but,
nevertheless, it remains a key intermediate in human biochemistry. It has been implicated
as both a diagnostic and prognostic marker for conditions including chronic brain injury,
Huntington’s disease, stroke, depression, coronary heart disease, intrathoracic disease,
and osteoporosis [82–85]. Anthranilic acid arises through the catabolism of tryptophan
via the Kynurenine pathway and is normally a momentary intermediate that undergoes
further conversion (summarized in Figure 3), eventually resulting in the production of
nicotinamide (NAD+).
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The in vivo conversion of anthranilic acid is enzymatic and otherwise chemically
stable such that dysregulation of the kynurenine pathway can lead to its accumulation.
Another key source of anthranilic acid is the gut microbiome, where microbes within the
gastrointestinal tract share similar Kynurenine enzymatic machinery to the mammalian
host [83,84]. It is noteworthy that there is considerable clinical interest in monitoring
changes in systemic anthranilic acid concentrations, but it could also be a critical fecal
marker for gut health.

Anthranilic acid has long been established as a versatile precursor in organic synthesis
and forms the core of many bioactive compounds. There is an extensive body of literature
on its use for the preparation of anticancer, antimicrobial, insecticidal, anti-inflammatory,
and antiviral drugs offering a spectrum of therapeutic uses [86–88]. The amine and car-
boxylic acid functionalities within this molecule serve as sites through which its structure
can be modified to target particular biological pathways, with the aim of inducing some
therapeutic action. These same properties are key to the versatility of polymers incorporat-
ing anthranilic acid monomer units where the carboxylate substituents are harnessed to
tailor the functionality of the polymer backbone.

3. PANI—Anthranilic Acid Polymerization
3.1. Polymerization Mechanism

The polymerization of aniline or its derivatives (including anthranilic acid) is well
documented and initiated by the oxidation of the aromatic amino functionality, leading to
the production of a radical cation [89,90]. The generic reaction scheme is shown in Figure 4,
where the R group can be either H (for aniline) or COOH (for anthranilic acid). Upon the
generation of the radical cation (II), the unpaired electron can be delocalized within the
aromatic ring with resonance forms favoring the ortho (III) and para (IV) positions.
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Figure 4. Oxidative polymerization pathway for aniline derivatives highlighting head-to-tail coupling
through the 4 position, where R = H (for aniline) or R = COOH (for anthranilic acid).

In general, PANI (or those derivatives with a substituent in the 2 position) will typically
form long linear chains through head-to-tail coupling (via the para position), as highlighted
in structures (V→VII). The subsequent oxidation of the amino “head” of the resulting
dimer (VIII) continues the propagation of the chain (VIII→IX) and is repeated to yield the
long linear chain associated with PANI. The fact that the carboxylate group (COOH) on
anthranilic acid is in the ortho position also facilitates head-to-tail coupling and minimizes
steric issues that would normally shorten chain length. However, the latter can be affected
by the general reactivity of the monomer. It has been reported that PANI is some 7000 times
more reactive than anthranilic acid due to the lower nucleophilicity of the amino functional
group on the latter [24–27]. This can significantly impact the outcome of mixed-monomer
polymerization, where the anthranilic content within the final polymer has been found to
be much lower than the original ratio used in the monomer solution. It is only when the
anthranilic acid monomer is the major component that the final polymer becomes enriched
with the former [25,27].
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All three aminobenzoic acid isomers (with the COOH group being positioned either
ortho, meta, or para with respect to the amino group) have been used as copolymers
in PANI systems [74,91,92]. In the case of the 4-aminobenzoic acid (4ABA) isomer, the
COOH group blocks the 4-position, thereby impeding head-to-tail coupling, and would
be expected to force ortho coupling, which would lead to a much more sterically complex
polymer structure, as indicated in Figure 5.
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Figure 5. Steric restriction forcing oxidative polymerization to progress through the 2-position (ortho).

Sarvani et al. (2016) employed 4-aminobenzoic acid not as a homopolymer but
rather as an electropolymerizable end cap, which was added to a hyperbranched aliphatic
polyester. Here, the 4ABA was the terminating unit at the end of each branch, which could
then be oxidized in the presence of aniline to crosslink the polymer chains for use as cellular
scaffolds [92]. While the 4ABA derivative leads to the ortho-coupled polymer structure
(Figure 5), in principle, it could be envisaged that polymerization of the ortho and meta
substituted derivatives would result in chains with near identical chemical structures, as
indicated in Figure 6. In both cases, the amino and carboxylate functionalities end up
being adjacent (1,2 relative positioning) to each other as a consequence of the head-to-tail
coupling process. Although the end chains may be structurally similar, steric issues will
undoubtedly arise in the initial polymerization process, wherein the meta substituted
COOH could impede subsequent head-to-tail coupling. Benyoucef et al. (2005) found that
the meta derivative was more difficult to oxidize than the ortho and was associated with a
greater degree of chain branching and shorter chains [24]. The structural consequences of
ortho and meta anthranilic acid, however, have yet to be fully clarified [74,91].
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3.2. Chemical Polymerization

The formation of this polymer occurs readily through the oxidation of the amino group
and can be achieved using either chemical or electrochemical means [89,90]. The electron-
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withdrawing nature of the COOH substituent renders the anthranilic acid derivative less
active than aniline, and it has been reported that the preparation of a PAA homopolymer
results in a lower yield when compared with PANI under the same conditions [24–27]. The
most common chemical route for the preparation of PANI, PAA, or PANI-PAA copolymers
is through oxidation with ammonium persulphate (S2O8

2−, APS) in an acidic solution,
typically resulting in significant quantities of the respective polymer. In some cases, the
APS is supplemented with a redox initiator such as ferrous sulfate (FeSO4) to enhance
the polymerization rate [92,93]. The Fe2+ ions have a lower oxidation potential than the
anthranilic acid and react with the APS to produce sulfate radical anions in accordance
with Equation (1).

S2O8
2− + Fe2+ → SO4

2− + SO4
− + Fe3+ (1)

Polymerization conducted in the presence of Fe2+ has been shown to proceed at a
much greater rate than that conducted in the absence of a mediator, where it has been
proposed that the main oxidative protagonist is the sulphate radical anion rather than
APS itself [23]. While APS is the most common agent used for the polymerization of
anthranilic acid and supporting monomers, metal ion oxidants such as Fe(III) [36,42,46],
Cr(VI) [26,44,49,56,58,81], Pd(IV) [42], and Au(III) [61,63,74,76] have also been used to form
polymeric structures—usually when the development of nanostructures is required, and
these are discussed in more detail in Section 4.1.

3.3. Electrochemical Polymerization

The intractable nature of the PANI product arising from chemical polymerization
can create obvious issues regarding the subsequent processing of the material—especially
when considering the placement of the polymer within microdevice architectures. Elec-
tropolymerization addresses many of these issues, offering a greater degree of control
over the spatial deposition of a polymer as well as its thickness. It also enables a uniform
distribution of the film across nonplanar substrates such as wires or mesh geometries. It
must be noted that the presence of the electron-withdrawing COOH on anthranilic acid
will increase the oxidation potential of the monomer [20,24]. This is of particular impor-
tance when considering co-polymerization with more easily oxidizable monomers such
as pyrrole [70].

3.4. Polymer Doping and pH Dependence

MacDiarmid proposed three idealized types of PANI: leucoemeraldine (fully reduced),
emeraldine (half-oxidized), and pernigraniline (fully oxidized) [94]. Among these, the
emeraldine form is the most stable and conductive—with the latter being achieved through
doping with a protonic acid. Hence, most of the polymerization processes are conducted in
the presence of a suitable acid (typically HCl, or H2SO4). While anthranilic acid exhibits
these same states, it must be noted that its carboxylate group, in contrast to the case for
PANI, enables self-doping [20,24–29]. The main transitions between the various states in a
PAA homopolymer are detailed in Figure 7.

A high degree of protonation at the imine nitrogen atoms within the emeraldine form
(Figure 7C) is needed to maintain conductivity, and, as such, PANI is known to lose activity
above pH 4 [25–29]. Modification with acid functionalities (sulphonic, phosphonic, and
carboxylic) has been extensively investigated as a means of self-doping that can broaden
the electrochemically active pH range, but both the sulphonic and phosphonic systems are
procedurally complex [21–23]. Monomers with sulphonic acid substituents are difficult to
directly polymerize, thereby requiring post-modification processing with fuming sulfuric
acid [22]. While these approaches have successfully yielded conductive films with activity
beyond pH 4, the harsh post-polymer conditions required to achieve functionalized films
could be prohibitive for some applications. It is also important to note that with regard
to PANI, the redox transitions necessitate the transport of anions in and out of the film
to maintain charge balance. In the case of the self-doped systems (Figure 7), the film is
anion-independent, wherein the acid groups directly compensate for the charge generated
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along the polymer backbone [24]. As such, anions are not exchanged with the film; rather,
excess positive charge is eliminated by the expulsion of protons.
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3.5. Polymer Solubility and Processing

In general, the emeraldine base (EB) of PANI is typically obtained as a dark powder
and is insoluble in most solvents. This intractable nature is attributed to its rigid polymer
backbone and the H bond interactions between neighboring chains. It is also noteworthy
that the EB form is also unstable with respect to melt processing, which further hampers
its commercial/industrial application. In contrast, the COOH group of the anthranilic
acid monomer unit within PANI-PAA copolymers increases the inter-chain spacing as
a consequence of steric considerations, which can subsequently weaken H bonding and
increase solubility [17,18]. An example of a situation where enhanced solubility can lead to
the formation of hitherto unobtainable PANI composites is provided in the work by Gupta
et al. (2011). Here, the solubility of PAA in tetrahydrofuran facilitates its direct mixing with
a carboxylated PVC to yield a solid-state membrane for use in pH sensing [95].

4. Polyanthranilic Acid Applications

It is clear that anthranilic acid, when copolymerized with aniline, can yield polymers
with better processing capability and retention of conductivity in environments with higher
pH levels. The applicability of anthranilic acid along with a critical appraisal of its value
are discussed in turn within the following sections.

4.1. Nanomaterials/Nanocomposites

Polymers and copolymers of anthranilic acid have been used to yield a 3D matrix
within which nanoparticles can be incorporated. In such cases, a PAA or PANI-PAA hybrid
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can be utilized as a means of selectively embedding the core ion, which is subsequently
converted to the corresponding oxide—usually through thermal treatment [18,55–58].
This has been performed for a number of metal oxides and is described in detail in
Section 4.2. The chemical polymerization of PAA or its copolymers can, however, also be
manipulated to yield polymer composite structures that possess nano dimensions. The
latter typically include nanoparticles, nanorods, and nanofibers. While electropolymer-
ization inevitably leads to the deposition of films on the electrode substrate, chemical
polymerization offers more opportunities to significantly alter morphological character
through the simple manipulation of the reaction medium. This was demonstrated by
Khalil et al. (2013), who showed that the polymer’s shape could be transformed from
spherical to fiber-like by changing the polymerization conditions [96]; the results of this
research are summarized in Figure 8.
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A number of core–shell strategies have also arisen and typically involve the polymer-
ization of anthranilic acid in the presence of a metal nanoparticle. This can involve coating
the outside of an existing metal nanoparticle or system, wherein the oxidant that induces
the polymerization then becomes the core. In terms of coating pre-existing nanoparticles,
TiO2 [44] and magnetite Fe3O4 [45–49] are the more common applications that involve
photocatalysis, photovoltaics, energy, and remediation. Chao et al. (2006) exploited the
O,N coordination capabilities of the iron oxide to attach monomeric anthranilic acid [45].
The resulting anthranilic-acid-capped Fe3O4 was precipitated and then placed in an aniline
solution along with the oxidant to produce well-dispersed Fe3O4-PAA-PANI nanoparticles.

However, employing metal ion oxidants such as Pt, Pd, and Au allows a more cus-
tomized approach, potentially simplifying procedural methods. In this case, oxidation of
the aniline/anthranilic acid monomer leads to the simultaneous reduction of the metal ion,
which then serves as the nanoparticle core. This strategy has been used for PAA [42,63]
and various copolymer mixtures. Mallick et al. (2008) employed palladium acetate in the
presence of anthranilic acid to simultaneously oxidize the latter to PAA whilst reducing
Pd(IV) to a metal. This led to the formation of 2 nm Pd nanoparticles dispersed within
the PAA matrix and was subsequently used as a catalyst for ethylene hydrogenation [42].
Similarly, Golshaei and colleagues (2017) exploited the oxidizing capabilities of Au(III) with
m-anthranilic acid to yield discrete PAA-Au core–shell structures [65].
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4.2. Metal Ion Complexation

Anthranilic acid’s metal chelation capabilities are well established, and it has found
widespread application as a versatile ligand. Ros et al. (2002) demonstrated that the
chemical modification of carbon fibers with anthranilic acid through chemical attachment
rather than polymerization led to the creation of a functional surface that could coordinate
rhodium ions [43]. Carboxylate groups on the fiber were activated via an acid chloride
reaction pathway (in contrast to the carbodiimide approach discussed later) that coupled
them to the amino group of the anthranilic acid, yielding an amide. Coordination of
the rhodium was achieved through the free carboxylate of the tethered anthranilic acid
and the amide nitrogen. The subsequent reduction of the coordinated Rh ions gener-
ated nanoparticle clusters of the metal, which were shown to be catalytically active [43].
One issue with such an approach is that surface coverage is essentially limited to a mono-
layer, which will inevitably reduce the yield of material.

Rather than employing anthranilic acid as an individual ligand, polymerization can
transform the metal-binding capacity from being geared toward a 2D surface to a 3D
matrix, which is dependent upon the thickness of the film. The formation of PAA (as noted
in Figure 7) will still retain the metal complexing components (amine and carboxylate)
yet can be easily grown and thereby find similar applications in sensing, catalysis, and
remediation. Hosny et al. (2016) demonstrated the capability of copolymers of anthranilic
acid and 2-aminophenol to engage in the complexation of Mn2+, Co2+, Ni2+, Cu2+, and
Fe3+ ions [50,55]. In particular, Hosny and coworkers exploited various anthranilic acid
composites as a means of coordinating metal ions that would then act as the seed for the
production of oxide nanoparticles [55–57]. It was anticipated that the three-dimensional
matrix presented by the polymer could aid in preventing aggregation, thereby leading to
spatially distinct clusters. Thermal decomposition of the PAA-POAP-Fe(III) was found to
yield α-Fe2O3 nanoparticles with an average size of 34 nm [55,56]. A similar templating
approach was demonstrated by Hossainy et al. (2018) for the production of CuO through
the thermal decomposition of coordinated Cu [60]. While thermal treatment (800 ◦C) can
yield the respective metal oxide nanoparticle, Ogura et al. (1999) have shown that the
application of heat, at a considerably lower temperature, i.e., 280 ◦C, has a direct effect on
the polymer backbone itself, provoking the loss of the carboxylate group and effectively
resulting in the formation of PANI [18].

In contrast to using anthranilic polymers as a means of generating nanoparticles,
Mahmoud et al. (2020) used a variant of PAA as a matrix for incorporating carbon quan-
tum dots (CQDs) for use as a fluorescent nano-absorbent [59]. Rather than the simple
head-to-tail oxidative polymerization highlighted in Figure 4, Mahmoud and colleagues
employed a single-step condensation reaction involving carbon quantum dots in the pres-
ence of anthranilic acid, formaldehyde, and phthalic acid to produce the methylene-linked
polymer highlighted in Figure 9.

In this system, uranyl (VI) ions from wastewater or seawater can be scavenged through
complexation with the carboxylate groups present within the CQD [59]. It was anticipated
that these same groups would also coordinate other metal ions in a similar manner to that
observed in previous metal–PAA systems [55–58]. Moreover, one could query whether a
simple PAA film, with its abundance of carboxyl functionality, might be equally effective at
removing metal ions. Nevertheless, the main strength of Mahmoud’s work lies in the green
credentials of the synthesis process and its relative simplicity—especially when considering
the production of CQDs and their incorporation within polymer matrices.

Mohan et al. (2010) described the use of PAA to immobilize cobalt (II) cyclam (Co-
Cy) complexes within a film [65]. In this case, the carboxylate groups of the anthranilic
acid units were thought to form a coordinate bond with Co-Cy, transforming the latter
into a mixed-ligand complex, with evidence suggesting a shift from its four-coordinate
arrangement to an octahedral complex. When applied to an electrode, the PAA-Co-Cy
composite was found to electrocatalyze the reduction of azidothymidine (AZT)—a potent
antiviral drug used in the treatment of HIV. Nateghi and Fallahian (2007) employed a
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copolymer of pyrrole and anthranilic acid for the detection of copper ions [66]. Again, the
carboxylate substituent played a pivotal role in the capture and preconcentration of the
metal ion, thereby enabling its detection through electrochemical stripping techniques. It is
clear that the anthranilic acid unit is extremely versatile in terms of being able to complex
various transition metals for both catalytic and analytical purposes.
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4.3. Corrosion Protection

Corrosion is a major issue in most industrial fields, and there continues to be extensive
research into functional coatings that can minimize its effects. Coatings containing nitrogen,
sulfur, and oxygen functionalities have been reported to be inhibitors, with those possess-
ing unsaturated bond networks exhibiting higher efficiency [97]. More recently, attention
has turned to the use of conducting polymers, wherein there is extensive delocalization
of pi electrons. PANI and its derivatives have shown high inhibition efficiency toward
mild steel in acidic conditions, but its processability, as noted previously, for coating sur-
faces can be problematic [98,99]. PAA can be imagined to be similarly effective, wherein
the amino and carboxyl and the conjugated network could all play a part in the inhibi-
tion process. Banumathi and colleagues (2010) reported the use of a polyethylene glycol
(PEG)–anthranilic acid composite for this purpose, with the PEG component presumably
aiding the usability of the material [39]. Polymerization was oxidatively initiated using APS
within a mixture of the two, but the actual composition of the composite was unclear. While
APS will induce the polymerization and formation of PAA, the subsequent interaction with
PEG has not been clarified.

Polyanthranilic-acid–metal composites (PAA-Zn, PAA-FE, PAA-Mg) were investigated
by Sophia et al. (2010) as anti-corrosion films for stainless steel [40]. Chemical preparation
of the composites was achieved through oxidation by either Fe(III) (PAA-Fe) or persulphate
in the presence of either zinc oxide (PAA-Zn) or magnesium oxide (PAA-Mg). PAA-Fe
and PAA-Zn were found to adhere strongly to the steel substrate with a granular texture
and thereby served as an anti-corrosive pigment. PAA-Mg was not found to induce any
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significant improvement in inhibition over the PAA homopolymer. Shirazi et al. (2019)
demonstrated the efficacy of a chemically prepared PANI-PAA copolymer in protecting
stainless steel in an acid solution [41]. Different ratios of aniline/anthranilic acid were
investigated, with an increasing concentration of anthranilic acid leading to increased solu-
bility. The optimum composition was found to be a 3:0 PANI/PAA mixture, leveraging the
majority of aniline for reduced solubility while effectively utilizing the carboxylate group
of the anthranilic acid to strongly adsorb onto the metal [41]. The increased solubility of the
high-PAA loading may explain the poor inhibition results observed by Sophia et al. (2010)
with regard to the PAA homopolymer [40].

Lee and Kim (2018) examined the use of a PANI-PAA hybrid polymer as an
anti-corrosion binder for silicon anodes for use within high-capacity Li ion batteries [37].
Silicon has been advocated as a replacement for the graphite electrodes that are presently
used in Li batteries, as it has been reported to possess ten times the capacity of carbon mate-
rial and should be sufficient for high-energy-density storage. Unfortunately, the subsequent
charge–discharge cycles can induce dramatic volume changes in the silicon due to Li stor-
age, and this can result in mechanical fracture and a rapid deterioration in battery efficiency
and life cycle expectancy. Nano-structuring the silicon component to accommodate for
the volume change through the use of nanowires, nanotubes, and networks has been
proposed as a potential solution, but such solutions come with increased cost [100,101]. An
alternative is to employ polymeric binders [100,102–104] to encase the electrode material,
providing mechanical strength to the structure.

A number of conducting polymers (PANI, PEDOT, etc.) have been investigated as
possible binders and have been proposed to provide the benefit of being an additional
conducting element, which can increase the energy density through an increase in the
active electrode material [100,103,104]. Despite many initial attempts, it was clear that
most of the traditional systems engaged in, at best, only weak interactions with the Si
surface. Polymers abundant in carboxylate functionalities, such as polyacrylic acid and
alginate, have demonstrated an ability to hydrogen bond with the polar (OH) groups at the
Si interface. Consequently, there have been endeavors to fabricate hybrid PANI–Polyacrylic
acid composites, with PANI imparting electrical conductivity to the binding matrix. While
PANI has no intrinsic groups capable of binding to Si, it could be envisaged that PANI-PAA
hybrids would maximize the conductive backbone while exploiting the COOH groups
within the anthranilic acid units to anchor the film to the Si electrode [39]. The greater
solubility of the PANI-PAA composite could again be considered critical to ensuring
complete coverage of the Si anode. Kim et al. (2020) polymerized aniline and anthranilic
acid in the presence of chitosan to yield a chitosan–PANI–PAA composite [38]. In this case,
it was suggested that the amino functionality of chitosan was directly incorporated into the
PANI-PAA chains, leading to a grafted/crosslinked mesh. The polarity of chitosan was
found to enhance water solubility and hence processing capability. Critically, the resulting
3D matrix, possessing an abundance of both amine and carboxylate functional groups,
was found to strongly adsorb onto the Si surface. The conductive nature of the PANI-PAA
copolymer component was attributed to a high initial capacity of 3057.3 mA h g−1, with
the 3D mesh binder allowing 51.4% retention after 300 cycles. The inexpensive nature of
the PANI-PAA system, its water solubility, and its performance stand in marked contrast
to the more conventional polyvinylidene fluoride (PVdF) coatings on Si and could have
considerable implications for commercial Li ion battery production.

4.4. Electronic Devices

Memory devices based on conducting polymers have been proposed as an alternative
to the conventional Si systems—offering scalability and low cost. While Si devices store
information based on the amount of charge stored in a cell, the organic polymer approach
relies upon changes in conductivity associated with an applied voltage. A resistive switch-
ing behavior has been observed with various metal–organic–metal sandwich structures,
with high-performance devices being prototyped with thin films of PAA and PANI-PAA
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hybrids [51–53]. When constructed with Au, Al, or ITO electrodes, a bipolar memory
characteristic was observed, which could be switched within a very low voltage range and,
critically, typically exhibited a very high ON/OFF current ratio providing unambiguous
registration of either state. Baek et al. (2007) used a self-doped polyanthranilic acid ho-
mopolymer exhibiting a very low current range (from 10−6 A to 10−11 A) dependent upon
the applied voltage (1.6 V to −0.4 V) [52]. Upon conducting potential scanning up to
−1.5 V, an electrical transition (ON) was found to occur at −0.5 V, leading to a dra-
matic change in current from 10−7 A to 10−3 A. The film could be returned to the OFF
(low-conductivity) state by applying a voltage of +1.6 V. The ON/OFF current ratio was
found to be in the 2.3 × 103–1.0 × 104 range (based on switching the applied voltages
between −0.50 V and +1.60 V). These switching behaviors demonstrate that this device
can be used as a nonvolatile memory device. The practical nature of the device was
highlighted by the fact that the device’s operation was unaffected by nitrogen or ambient
air environments. These polymer devices were also shown to possess excellent electri-
cal stability—with the ON state being retained for several months without degradation
and with no degradation observed during the execution of repetitive write–read–erase
functions [52]. It is noteworthy that Baek and colleagues did not observe any switching
behavior exhibited by PANI homopolymer samples.

The use of PAA homopolymers has also been studied, with various combinations
of mixed electrode systems for which the bottom electrode/top electrode configurations
influencing the switching behavior between unipolar and bipolar responses were judi-
ciously selected [51,52]. Baek and colleagues (2007) found that altering the device’s design
to one comprising two Au electrodes resulted in much better I–V switching properties than
those involving a Au or Al top electrode and an ITO bottom electrode. In this case, the
device exhibited similarly low current ranges (10−6 to 10−11 A) in the OFF state (between
+0.84 V and –0.86 V), but these increased dramatically to 10−2 A at −0.87 V in the ON
state. Here, the maximum ON/OFF ratio achieved was 1.0 × 105 [52]. While it is clear
that conducting polymer systems have the capacity to serve as memory storage devices,
processing capability must also be considered. Furthermore, the presence of the COOH
substituent on the chain backbone and the solubility it imparts are key contributors to the
success of PAA and PANI-PAA systems.

4.5. Molecular Grafting—Chemical/Biosensing

PANI lacks readily accessible functionality that enables covalent modification; hence,
the great advantage of copolymerization with anthranilic acid lies in the ability to harness
the abundance of carboxylate groups. These can be used as a facile means of tethering
other molecular species to the film post polymerization. This is normally achieved using
conventional EDC/NHS carbodiimide coupling procedures to activate the COOH group,
preparing it for attack by an amino group from the proposed pendant molecule. The basic
reaction scheme is highlighted in Figure 10. It is important to note that this approach has
been successful in harnessing a variety of receptors—both chemical and biological.

Molecularly imprinted polymers (MIPs) have long been hailed as an effective chem-
ical approach to biomolecular recognition and as an alternative to the more costly and
complex antibody/aptamer systems. The premise of their design is based on a templating
methodology in which functional monomers are polymerized around a target molecule.
Removal of the latter should leave a cavity that is complementary in size and shape and
that, ideally, will exhibit some affinity for the template molecule, thereby enabling its
recognition and capture from a fresh solution. The electropolymerization of PANI-PAA in
the presence of the target has been proposed as a simple means of imprinting Amlodipine
(AML) and, in contrast to chemical polymerization methods, provides the added advantage
of immobilizing the MIP directly upon the electrode surface [67]. Recognition of the AML
target is achieved through hydrogen bond interactions between the amine and carboxylate
groups of the PANI-PAA polymer and the oxygen–nitrogen groups on the AML. Detection
was assessed through recovery experiments using human biofluids with good recover-
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ies, and it could speculated that the polymer network, as well as enabling the capture of
the AML, also served as a barrier to interferences and minimized the fouling effects of
non-specific adsorption [70].
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While the strategy devised by Hrichi and colleagues (2017) constitutes a relatively
generic approach to MIP formation [67], an earlier approach by Gu et al. (2013) em-
ployed a more sophisticated system for dopamine detection involving the immobiliza-
tion of functional groups possessing greater selectivity for the target [69]. In this case,
3-Aminophenylboronic acid was bound to a chemically polymerized PAN-PAA film
through EDC/NHS carbodiimide coupling, as indicated in Figure 11A. It was envisaged
that the subsequent attachment of the pendant B(OH)2 groups would be capable of re-
versibly binding dopamine. The formation of stable cyclic esters between boronic acid
groups and 1,2-diols is well known. Template release in this case was achieved through the
facile electrochemical oxidation of the boronic-acid-bound dopamine to the corresponding
1,2-quinone species (Figure 11B). Here, the COOH group of the PAA component was
critical in enabling the processability of the polymer network as well as in providing a
covalent tether for the attachment of the boronic acid group. The covalent imprinting
process adopted by Gu and colleagues is reported to allow a more homogeneous dis-
tribution of binding sites through the combination of specific (cyclic ester) functionality
and electrostatic/H bonding providing cavities with better selectivity over the simpler
electro-polymerized templating system.



J. Compos. Sci. 2024, 8, 208 15 of 21

J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 15 of 22 
 

 

a more sophisticated system for dopamine detection involving the immobilization of func-
tional groups possessing greater selectivity for the target [69]. In this case, 3-Aminophe-
nylboronic acid was bound to a chemically polymerized PAN-PAA film through 
EDC/NHS carbodiimide coupling, as indicated in Figure 11A. It was envisaged that the 
subsequent attachment of the pendant B(OH)2 groups would be capable of reversibly 
binding dopamine. The formation of stable cyclic esters between boronic acid groups and 
1,2-diols is well known. Template release in this case was achieved through the facile elec-
trochemical oxidation of the boronic-acid-bound dopamine to the corresponding 1,2-qui-
none species (Figure 11B). Here, the COOH group of the PAA component was critical in 
enabling the processability of the polymer network as well as in providing a covalent 
tether for the attachment of the boronic acid group. The covalent imprinting process 
adopted by Gu and colleagues is reported to allow a more homogeneous distribution of 
binding sites through the combination of specific (cyclic ester) functionality and electro-
static/H bonding providing cavities with better selectivity over the simpler electro-pol-
ymerized templating system. 

 
Figure 11. Poly(aniline-co-anthranilic acid) (PANI-PAA) polymer, highlighting the direct interaction 
with boronic acid groups and indirect electrostatic interactions enhancing the molecular recognition 
of dopamine. 

Gopalan et al. (2016) used a highly sophisticated composite assembly based on a 
grafted PAN-PAA copolymer as a non-enzymatic sensor for glucose [69]. Their team func-
tionalized graphene nanobeads with PANI-PAA through chemical oxidation (via APS) 
and then tethered a polyethyleneimine (PEI) linker via EDC/NHS linkage, as previously 
indicated in Figure 10. In contrast to the carboxyl groups on most PAA functional inter-
faces, modification with PEI provided an abundance of terminal amines (R-NH2), which 
were used to capture ferrocene redox probes (through Schiff base reactions of the carbox-
aldehyde derivative). A further step involved the electrodeposition of Cu nanoparticles, 
which were responsible for the detection of glucose, where the latter is chemically oxi-
dized by Cu(II) ions. The network of ferrocene redox moieties in this case aids the electron 
transfer process, and the sensor was shown to perform well in human serum. 

EDC/NHS coupling has been used extensively in biosensor development, wherein 
the lysine resides within the protein shell of enzymes and antibodies can be covalently 
linked to a carboxylate functionalized polymer. These approaches have been 

Figure 11. Poly(aniline-co-anthranilic acid) (PANI-PAA) polymer, highlighting the direct interaction
with boronic acid groups and indirect electrostatic interactions enhancing the molecular recognition
of dopamine.

Gopalan et al. (2016) used a highly sophisticated composite assembly based on a
grafted PAN-PAA copolymer as a non-enzymatic sensor for glucose [69]. Their team
functionalized graphene nanobeads with PANI-PAA through chemical oxidation (via APS)
and then tethered a polyethyleneimine (PEI) linker via EDC/NHS linkage, as previously
indicated in Figure 10. In contrast to the carboxyl groups on most PAA functional interfaces,
modification with PEI provided an abundance of terminal amines (R-NH2), which were
used to capture ferrocene redox probes (through Schiff base reactions of the carboxaldehyde
derivative). A further step involved the electrodeposition of Cu nanoparticles, which were
responsible for the detection of glucose, where the latter is chemically oxidized by Cu(II)
ions. The network of ferrocene redox moieties in this case aids the electron transfer process,
and the sensor was shown to perform well in human serum.

EDC/NHS coupling has been used extensively in biosensor development, wherein
the lysine resides within the protein shell of enzymes and antibodies can be covalently
linked to a carboxylate functionalized polymer. These approaches have been comprehen-
sively reviewed elsewhere [101,105,106]. A summary of the biocomponents anchored to
PAA-based systems is presented in Table 2.

In the case of antibody and aptamer systems, the PAA or PANI-PAA film is commonly
electropolymerized and serves only as a suitable support for the subsequent immobilization
of the recognition component. Talet et al. (2013) employed such a methodology, in which
antibodies for Cancer Antigen 125 (CA125) were immobilized on a PAA film on a graphite
screen-printed electrode and detected using a label-free methodology [77]. Here, the detec-
tion principle was initially based on monitoring the changes in the interfacial property that
arises between the electrode surface and solution when a binding event occurs between
the antibody and target antigen. Detection of the binding event was achieved using elec-
trochemical impedance spectroscopy (EIS) with a ferrocyanide–ferricyanide redox probe,
with a linear response observed between 0 and 50 U/mL and a detection limit (LOD) of
7.6 U/mL. Taleat and colleagues attempted to improve this approach using a sandwich
strategy in which the secondary antibodies were conjugated to gold nanoparticles (AuNP).
In this approach, a silver solution was introduced post binding, with the reaction between
AuNP and Ag+ leading to the generation of AgNPs, which could be electrochemically
quantified through stripping voltammetry. This led to an enhancement in the LOD for
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CA125 amounting to 2 U/mL. Similar strategies were employed for the antibody-based
detection of Tumor Necrosis Factor α, with PAA again used as a convenient electropoly-
merizable substrate for subsequent modification [78].

Table 2. Sensor systems exploiting polyanthranilic acid as an immobilization substrate.

Polymer Type Substrate Agent Target
Biomarker

Immobilization
Method Ref.

PAA CPE/Pt Co(II)–cyclam Azidothymidine Complexation [65]

PANI-PAA GCE 3-Amino-
boronic Acid Dopamine EDC [68]

PP/PAA Pt GOx Glucose GA [70]
PAA CFME Laccase p-nonylphenol EDC [71]

PEDOT/PAA Pt Gox Glucose EDC [72]

PANI-PAA Multiwell Plate GOx, HRP,
Tyrosinase

H2O2,
Glucose,
catechol

EDC [73]

P(AA-coCNTA)-
PVAc ESF GOx Glucose EDC [74]

PAcN/PU/PAA ESF Tyrosinase N/A EDC [75]
P(AA-co CNTA) ESF Tyrosinase [76]

PAA GSPE Antibody Tumor Necrosis
Factor α EDC [77]

PAA GSPE Antibody CA 125 EDC [78]
PANI-PAA GSPE Aptamer β-lactoglobulin EDC [79]
PANI-PAA GSPE Aptamer Aflatoxin B1 EDC [80]

PAA = polyanthranilic acid; PANI = polyaniline; PP = polypyrrole; PEDOT = Poly(3,4-ethylenedioxythiophene);
PAcN = polyacrylonitrile; PU = polyurethane; P(AA-co-CNTA) = Poly(anthranilic acid-co-3-carboxy-N-(2-
thenylidene)aniline); PVAc = poly vinyl acetate; ESF = electrospun fiber; CPE = carbon paste electrode;
GSPE = graphite screen-printed fiber; CFE; carbon fiber mat electrode; EDC = 1-Ethyl-3-(3′-dimethylaminopropyl)
carbodiimide hydrochloride; GA = glutaraldehyde; GOx = glucose oxidase; HRP = horseradish peroxidase;
GC = glassy carbon electrode.

Lettieri et al. (2020) developed a competitive aptamer assay for b-lactoglobulin
(BLG) [79]. The recognition and capture of a biotin-labelled BLG allowed the subsequent
binding of a streptavidin-alkaline phosphate conjugate, with electrochemical detection
achieved through the enzyme hydrolysis of 1-nphthyl-phosphate to 1-naphthol. The greater
the concentration of BLG in the sample, the greater the proportion of aptamer sites that
became occupied. As a consequence, the proportion of biotin-labelled BLG was captured,
and, likewise, fewer enzyme conjugates were generated, leading to a decrease in the gener-
ation of 1-naphthol. A similar methodology was employed by Selvolinia et al. (2019) for
the detection of Alfatoxin, highlighting the generic nature of this approach [80].

Rather than using PAA for its immobilization capabilities, Berkkan et al. (2010) employed
a copolymer consisting of pyrrole and anthranilic acid in order to harness its interference
rejection properties [70]. While the previous discussions have lauded the capability of
anthranilic acid components to pick up metal ions through interaction with the carboxyl
functionality [55–58], the latter can also be useful for the electrostatic repulsion of similarly
charged interferences. In this respect, the PAA component is employed as an electropoly-
merizable variant of Nafion® in order to exclude anionic species, such as ascorbate or urate,
which would normally lead to significant interference for conventional electrochemical en-
zyme sensors. In contrast to the previous use of EDC/NHS linkage for the immobilization
of the biocomponent, Berkkan and colleagues used glutaraldehyde to chemically crosslink
the enzyme. This preserved the carboxylate functionality of the underlying PAA, which
would otherwise have been compromised through carbodiimide bonding, and retained
the anti-interferent anionic interface (COO-). While PANI-PAA films have typically been
used only as the underpinning support, it is worth noting that these films retain perme-
ability to small molecular species. This can be attributed to the steric considerations of
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the COOH within the anthranilic acid units increasing interchain separation at the time
of polymerization.

5. Conclusions

Anthranilic acid was initially regarded as a useful monomer for altering the solubility
of polyaniline copolymers and can greatly improve their processing capability. While
these are significant merits, it must be recognized that the monomer unit can bestow
considerably more. Retaining electroactivity beyond pH 4 through self-doping greatly
expands its use as a copolymer or homopolymer for electronic applications. Moreover,
the carboxylate group serves as a key attachment site, opening up a vast array of sensing
opportunities. Recognition elements such as enzymes, antibodies, or aptamers can be easily
anchored and enable the detection of target elements by taking advantage of the intrinsic
conductivity of the underlying polymer framework. At the smaller scales, there continues
to be substantial progress in the development of nanomaterials for biosensing applications,
and yet it is clear that there is ample scope for using polyanthranilic acid as a both a means
of templating catalytic particles and as a core–shell coating. In the latter application, gold
has often served as a key substrate, but it frequently requires modification in order to host
receptors. The use of anthranilic acid provides opportunities for the creation of the central
catalytic particle whilst simultaneously decorating and priming the external surface for the
subsequent attachment of the biological or chemical receptor. On the macro scale, chemical
synthesis of the copolymer is relatively facile, promoting scalability, while the increased
solubility of the polymer provides routes for conventional processing. When the latter is
combined with anthranilic acid’s capability to template catalytic nanoparticles, there could
be a host of opportunities for electrosynthesis. It is evident that even though anthranilic
acid has served more as an academic curiosity, it holds considerable industrial promise. Its
low cost, ease of production, and intrinsic chemical versatility could open many avenues
for exploration.

While the number of papers relating to conducting polymers continues to grow, it
can appear, at least based on the superficial inspection provided earlier, that the use of
polyaniline and polypyrrole is beginning to plateau. One possible factor in this trend is
that there is increasing interest in more functional polymers that can be directly tailored
to particular applications. Both polyaniline and polypyrrole, while robust, are chemically
inflexible. They lack any readily accessible means of chemical modification, hence the need
for new derivatives that can be better tuned. It is here that anthranilic acid could come
to the fore, offering ease of copolymerization with existing polymer systems (polyaniline,
polypyrrole, pedot, etc.) and providing a carboxylate group that can be readily exploited
for post-film modification and thereby greatly expanding the functionality of the polymer.
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