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ABSTRACT

Human-autonomy teaming (HAT) is becoming a subject of high interest in the human
factors literature. It has several applications, including the collaboration between a
human and an autonomous unmanned aerial vehicle (UAV) for security and defence
use cases (e.g., for search and rescue tasks). This work is focused on methods for task-
allocation between human and autonomous UAV agents. The proposed approach is
human-centred, using a coactive design framework which relies on enabling adaptive
team dynamics where different agents might act as key players for specific tasks based
on an interdependent relationship. This method helps solve complex issues in under-
standing and adjusting to complementary team dynamics where agents might have
different skill levels, experiences, roles, and helps understand which agent is more
competent to perform a task. Additionally, such a framework promotes transparency
towards the control and task-allocation strategies. To demonstrate this task-allocation
strategy, this study looked at the use of neurophysiological features as indicators of
task-specific capacities in UAV operations, more specifically electroencephalogram
(EEG) signals, which opens up for the development of task-allocation adaptive sys-
tems, dependent upon variations in brain activity. Results found that EEG spectral
power bands have potential to help determine different task-based abilities across
groups (i.e., obstacle avoidance vs. target identification), hence contributing to pin-
pointing variations in the type of autonomous support needed. Overall, this research
explores how task-dependencies can be observed through EEG signals for better
transparency and explainability of adaptive control in pilot-AI teaming.

Keywords: Adaptive autonomy, Brain-computer interface, Neuroadaptive autonomy,
Unmanned aerial vehicles, Human-autonomy teaming, Decision-support system

INTRODUCTION

Human-autonomy teaming (HAT) enables the cooperation of a human oper-
ator and an automated system performing a task interdependently. A current
research challenge in this area is to understand the role of the automated
agents within the teaming dynamics (Johnson et al., 2014; Lematta et al.,
2019). Some researchers argue that such agents should be considered as
equivalent to their human teammate to define their role in adaptive teaming
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frameworks, which can help avoid out-of-the-loop problems and enhance
system performance (Calhoun, 2022; Demir et al., 2019). Understanding and
having well-defined roles is necessary to avoid ethical challenges through the
misuse of automation, e.g. when using automation with the sole purpose of
relieving difficult tasks (Neubauer et al., 2020). Maladaptive HAT strategies
can also lead to replicating human-like biases, leading to amplification of
potential deficiencies (Bainbridge, 1982). In addition, poorly designed HAT
systems can generate uneven dynamics, decision biases, failure in monitor-
ing, neglect such as when automation is overused (Parasuraman & Riley,
1997). Overuse of automation can lead to decrease in human situational
awareness (SA), where the human operator is out of touch with the envi-
ronment/control, or skills degradation due to the decrease in opportunity
to practice. Ultimately, this can result in a loss of capabilities and cognitive
performance over time (Gu et al., 2022). Negative performance generally
arises in teaming frameworks with cognitive underload or overload due
to the inability to assimilate information coming from the environment or
the incapability of the human to understand the limitation of the machines
during missions (Hussein et al., 2022). While designing HAT collabora-
tion, it is important to highlight the limitations of automated agents which
can lead to ‘catastrophic failure’, and degradation of system HAT perfor-
mance (Bainbridge, 1982). HAT challenges could be related to different
factors such as inefficient communication, misunderstanding goals, unde-
fined responsibilities, local or shared mental models, or other conflicting
issues (Decostanza et al., 2018). Additionally, it is important to note that dif-
ferent team members have different cognitive and behavioral abilities based
on time, viewpoints, representation and mental model, which might affect
the ability to act or make a decision towards the type of collaboration and
the dynamic control between agents.

This paper focuses on understanding the required capacities towards HAT
teaming for optimal collaboration. It explores how to unveil task-allocation
strategies required for human unmanned aerial vehicle (UAV) operators using
an adjustable coactive design framework and brain-computer interface (BCI).
Thus, the study explores methods to find patterns in human behaviors
which might help determine the types of support needed to enhance human-
autonomy collaboration. Below we present a brief literature review on HAT
framework with an explanation of the key components of the coactive design
framework, followed by a discussion on BCI approaches for improving HAT.
Then, the goal of the study and details on the experiment are presented and
discussed.

Human-Autonomy Teaming Frameworks

Adjustable autonomy describes the division of labour between humans and
artificial agents as not fixed, but rather varying in real time (Singh et al.,
2021). It has been shown that adjustable autonomy can allocate workload,
improve performance, and enhance SA (Zhao et al., 2020). In this paper, we
focus on a coactive design framework which takes a team-centred approach
where human and autonomous components support each other and create



NeuroTeaming: Using Power Spectral Density for Adjusting Teaming Dynamics 25

synergies through their complementary capabilities. This framework offers
both agents to display a very transparent exchange by undertaking each
other’s tasks and negotiating dynamic allocation strategies. It demonstrates
aspects of interdependencies and reliability on each other to optimise per-
formance (Johnson et al., 2011). Johnson et al.’s coactive design framework
has been found useful in domains such as UAVs or even unmanned ground
vehicles. Additionally, this approach has recently been used in a DARPA
challenge for robots capable of assisting humans in responding to natural
and man-made disasters (Lundberg et al., 2021; Johnson et al., 2014). The
coactive design framework helps understand each of the agent’s intentions,
motivations and cognitive modelling (Johnson et al., 2011; Wang et al.,
2020). The framework addresses the complexity of more sophisticated roles
within which humans and automated systems or robots are being teamed
up in a complex environment. Coactive design is based on the principles
of interdependence, dependence and capacity. Interdependence is described
as a complementary relationship between entities which generates depen-
dencies during a joint activity (Johnson et al., 2014). Dependence exists
when an entity lacks a required capacity to competently perform an activ-
ity. Capacity captures all components required such as skills, knowledge and
understanding, which facilitates an entity to competently perform an activity
independently. The team dynamics are based on principles of observability,
predictability and directability (OPD; Johnson et al., 2014). In this paper, we
focus on the human operator capabilities to fit OPD in order to adjust the
use of potential automated systems for specific support. One novel approach
to the coactive design framework is the use of electroencephalogram (EEG)
signals, and exploring how EEG can help observe and anticipate human
capacities.

Neuroadaptive Systems and EEG Signals

EEG is a device capable of measuring electrical activity of the brain. EEG uses
electrodes placed on the scalp which can then feed systems by processing and
extracting frequency bands to assess the amplitude of event-related potentials
of the EEG. It can help extract information about the operator’s mental, cog-
nitive or affective states, such as cognitive workload (Neubauer et al., 2020;
Rozado and Dunser, 2015). The use of common spectral bands has been asso-
ciated with SA and other cognitive states such as fatigue, drowsiness, mental
workload, and cognitive workload. A way to enhance SA is through “aug-
mented cognition”, which is a form of human-system interaction in which
physiological sensing of the UAV operator can be used to predict invoked
automation when needed (Wilson et al., 2021). Being able to determine the
optimal combination of EEG factors to predict an opportunity for augmented
cognition would help gain transparency towards collaboration between auto-
mated systems and humans. This would enable more adaptive assistance by
analysing physiological data.

One promising method for measuring SA is by measuring EEG frequency
bands (Gu et al., 2022). Those frequency bands are delta, theta, alpha, beta,
and gamma, called power spectral density (PSD), and can inform on the
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operator’s states. For example, the theta band has been found to increase
as fatigue and workload increases (Singh et al., 2021), and augment while
vigilance or cognitive capacity decreases (Borghini et al., 2014). Secondly,
the alpha band has been demonstrated to decrease as workload and sus-
tained attention “awake” frequencies increased (Pfurtscheller and Aranibar,
1977). Increases in beta bands are associated with problem solving skills
and decision-making capabilities (Kumar and Bhuvaneswari, 2012), alert-
ness, engagement or even motor skills and decrease with fatigue (Borghini
et al., 2014). Gamma bands are often paired with hyper alertness and inte-
gration of sensory inputs (Duta et al., 2010; Kumar and Bhuvaneswari,
2012; Singh et al., 2021; Stikic et al., 2011). Using PSD as an indication for
certain specific mental states reveals to be complex and sometimes contradic-
tory (e.g., alpha-band activity might reflect inattentiveness and as selective
attention; Foxe and Snyder, 2011). Nevertheless, the use of PSD has been
previously tested as a predictor of workload in pilots (Salvan et al., 2023).
However, no study has yet explored the possibility of using PSD bands
to determine differences among capacities, and types of support required
in the context of dynamic task-allocation strategies in a coactive design
framework.

Study Goal

The goal of our study was to rely on neurophysiological features, extracted
from them PSD of EEG signals, to identify capacities and strategies during
UAV operations. To reach this goal, participants took part in a simulated
semi-autonomous UAV control task. Half of them were assigned to a target
identification training whereas the other half focused on object avoidance.
Across all participants, EEG signal—more specifically PSD—was analysed as
a marker for cognitive workload and SA. We hypothesized that group attri-
bution would affect capacities in mission performance and therefore impact
required levels of support from the automated agent. When analysing the
PSD, it was hypothesized that differences would be reflected across the two
skill-based training groups.

METHOD

Participants

Ten participants (4 women, 6 men) took part in this study conducted in
Thales Research and Technology premises, which was approved by the
Bath University’s Research Ethics Committee. They had a mean age of 28.2
(SD = 6.42). All provided informed consent before starting the experiment.

Material and Procedure

A simulated environment was created for human operators to navigate a
UAV quadrotor. Participants were told to navigate the UAV for a search
and rescue mission using a PlayStation 3 wired USB controller. The task
was developed using Unreal Engine Simulator and Airsim plug-in to mimic
realistic flight dynamics. Participants were wearing Conscious Lab EEG
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SUPRA headphones. Those headphones collected electrical signals from
across different regions of the brain: frontal (Fp1, Fp2, F3, Fz, F4), cen-
tral (C1, C2, Cz), parietal (P3, Pz, P2), occipital (O1, Oz, O2), and
temporal (T3, T4).

To generate coactive interdependence and capacity variability on the task
and EEG signal, participants were divided into two groups. Five participants
were randomly assigned to Group 0 (G0). Their training was focused on
finding the optimal path to reach and identify their targets during the UAV
mission. Group 1 (G1) was rather trained on obstacle avoidance, that is to
swerve and avoid obstacles to minimize the risk of collision. Each group had
four training opportunities and was tested after each session. Then, they were
tested on their ability to perform the exact same mission. Thus, both groups
were rated on the same subtask capacities composed of the ability to detect
(targets or obstacles), the ability to navigate (reaching for a waypoint versus
swerving an obstacle), as well as their ability to remain in the area of interest
(AOI) set by the mission.

Data Processing and Analysis

The performance metrics on the task were collected using the number of
collisions, number of targets reached, if targets are present within the oper-
ator’s field of vision, and the percentage of time spent outside of the AOI.
As for EEG signal, following a missing value and outliers signal assess-
ment, PSD extraction was performed using the eeglib Python library with
a window size of 2000 ms. This allowed the extraction of spectral power
feature measures from the EEG signal for each electrode. The five PSD fre-
quencies used went as follows: delta (δ: 1–4 Hz), theta (θ : 4–7 Hz), alpha
(α: 8–12 Hz), beta (β: 12–30 Hz) and gamma (γ : 30–45 Hz). A Fast Fourier
Transform function was applied to the PSD for each electrode as it allows
to transform the signal from time domain to the frequency domain and to
implement spectral analysis. A high-pass filter of 1 Hz and low-pass filter
of 45 Hz was applied. A total of 80 (16 × 5) features was extracted. This
enabled analysis on the mean of the five PSD bands as well as comparisons
between brain region means throughout the performance results (frontal,
parietal, central, temporal and occipital). Additionally, the mean of the
PSD signal across both groups was compared representing the length of the
missions.

RESULTS

Both groups were assessed based on their performance score during mis-
sions for all subtasks. The mean of their capabilities for each subtask was
then transformed into two categories where participants with scores equal
or below 1 were classified in “High Capacities”, which means lower depen-
dence, vs. higher than 1 in “Low Capacities”, which means higher depen-
dence. These findings enable us to confirm the manipulation of variation and
interdependence between groups, where G1 had higher capacities, thus lower
requirement of support from the automated system, compared with G0. The
results demonstrated statistically significant differences between both groups
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for all sub-tasks, using a Mann-Whitney test with at least p-value < 0.005 for
all subtasks: detection of targets (U = 1540.0, p <0.001), detection of obsta-
cles (U = 1520, p <0.001),ability to avoid obstacles (U = 1460.0, p <0.001),
ability to reach targets (U = 1080.0, p = 0.004), ability to remain in the area
of interest (U = 1280.0, p <0.001).

Figure 1 displays distribution of the PSD during the test mission. It
shows G1 (obstacle avoidance) had higher levels of activations across
the different power spectral bands, with higher peaks for the delta, and
theta, compared to G0 (path finding) which had much lower activation
in higher densities with lower peaks. These findings were confirmed with
Mann-Whitney tests showing statistical differences across both groups for
the δ (U = 502.0, p = 0.0042), θ (U = 481.0, p =0.0021), α (U = 526.0
p = 0.0084), β (U = 539.0, p = 0.0121), and γ (U = 531.0, p = 0.0097)
bands. These differences demonstrate the distinct activation patterns across
groups, correlating with the skill-based training each individual had. Thus,
these results demonstrate the potential for detecting differences among capac-
ities between UAV operators and could help observe the different teaming
dynamics required for each agent.

Table 1 shows the more precise grouped mean PSD bands across brain
regions (frontal, central, parietal, occipital and temporal). Major changes
across activation occurred in FP2with amean difference of+4 in beta activity
on the F4, C2 and T3 channels. However, the largest mean difference between
groups was found to be related to the frontal lobes (FP1, FP2, F3, Fz, F4), and
central lobe (C1, Cz, C2), with the lowest mean difference PSD being related
to the occipital lobe (O1,Oz,O2), then lastly temporal lobe with only T3 hav-
ing a significant difference compared to T4. The overall pattern demonstrates
a higher activation for individuals with obstacle avoidance skills training
(G1), where peaks aligned with the mean difference in the FP2, F4, C2 and
T3. Additionally, larger drops in channels Pz, P2 and O2 also align with
decreases in G0 within all five PSD bands. The first eight electrodes related
to the frontal and central brain regions had much larger activation in G1.
Among all PSD bands, the highest standard error was found in delta waves
with their activation being lower across G1, compared to G0. On the other
hand, G0 PSD had peaks in similar channels (FP2, P2), with higher peaks in
FP1 and Cz for the theta band. Additionally, compared to G1, the highest
activation of G0 was within T3 and not T2 which was consistently higher
than T2 in G0. Overall, G0 had much lower variability and lower drops and
peaks. The statistical tests demonstrate that activation in occipital lobe does
not have any significant difference (ps > 0.05). The most prominent differ-
ence found was within the frontal brain region, with all five bands differing
between groups. The three main PSD bands across the central, parietal and
temporal regions that constantly differed were the alpha, beta and gamma
bands.
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Figure 1: Comparing PSD (α, β, δ, γ , θ ) across groups G0 and G1 during test mission.

DISCUSSION

In this study, we relied on neurophysiological features to index human capac-
ities in a simulated semi-autonomous UAV control task. The experimental
manipulation was found to impact interdependence among groups. G0 had
lower capacities (thus higher dependency on the automated agent) compared
to G1. The two groups had different activation within their PSD mean bands
during the mission, and demonstrated peaks of different magnitudes in the
frontal lobe. More precisely, PSD activity during mission testing was higher
for G1 as opposed to G0. In addition, both groups experienced drops at P3
and Pz. Individuals trained in optimal path avoidance had higher peaks in the
P2 (all bands) as well as Cz theta. Those findings can help observe the differ-
ence in activation patterns based on group capacities and training experience,
suggesting distinct neural processing based on capacities. Higher activa-
tion in certain regions may suggest task-specific neural processing related to
planning, decision-making and visual attention.

Table 1. Brain activation variability within PSD based on groups during mission.

Brain Region Power Band Group 0 M (SD) Group 1 M (SD) U

Frontal Alpha 0.011 (0.002) 0.031 (0.008) 14.604***
Beta 0.017 (0.003) 0.048 (0.0129) 15.296***
Delta 1.291 (0.429) 4.119 (2.080) 8.975**
Gamma 0.006 (0.001) 0.016 (0.004) 15.279***
Theta 0.044 (0.014) 0.134 (0.046) 13.139***

Central Alpha 0.011 (0.0001) 0.027 (0.007) 4.715*
Beta 0.016 (0.0015) 0.040 (0.0135) 5.166*
Delta 1.254 (0.325) 4.809 (1.1802) 2.642
Gamma 0.005 (0.0005) 0.013 (0.004) 5.378*
Theta 0.046 (0.008) 0.117 (0.0395) 4.179*

Parietal Alpha 0.009 (0.0032) 0.018 (0.0119) 4.472*
Beta 0.014 (0.005) 0.027 (0.0185) 4.607*
Delta 0.875 (0.6969) 2.369 (2.5245) 3.880
Gamma 0.005 (0.001) 0.009 (0.006) 4.822*
Theta 0.034 (0.015) 0.061 (0.0481) 3.302

(Continued)
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Table 1. Continued

Brain Region Power Band Group 0 M (SD) Group 1 M (SD) U

Occipital Alpha 0.008 (0.002) 0.017 (0.007) 2.748
Beta 0.012 (0.003) 0.026 (0.009) 3.133
Delta 0.656 (0.287) 2.661 (1.365) 2.998
Gamma 0.004 (0.001) 0.009 (0.0032) 3.274
Theta 0.030 (0.012) 0.067 (0.0328) 2.370

Temporal Alpha 0.011 (0.002) 0.026 (0.007) 5.055*
Beta 0.016 (0.0032) 0.040 (0.0114) 5.591*
Delta 1.253 (0.589) 4.371 (0.7679) 2.578
Gamma 0.005 (0.001) 0.013 (0.00399) 5.815*
Theta 0.038 (0.011) 0.112 (0.024) 2.999

* p <0.05 **p <0.01 ***p <0.001

Based on previous studies, the role of the prefrontal cortex has been viewed
as a major contributor to navigation and for the processing of future goals
to guide action (Spiers and Maguire, 2007). Studies demonstrate a simi-
lar pattern within the significance of the frontal region. In addition, the
medial region is hypothesized to play a role in goal-related information,
especially when goal-action might have a dynamic interaction over time
(Matsumoto, 2003; Matsumoto and Tanaka, 2004). Functional magnetic
resonance imaging research showed the importance and higher activity in
the medial prefrontal cortex correlating with goal proximity during naviga-
tion, which requires consistent monitoring of spatial relationship between
current location and the goal while negotiating with obstacles (Epstein et al.,
2017). This is aligned with our findings for G1 with higher activation in
the frontal regions compared to G0. Based on spatial navigation research,
studies indicate major roles primarily from hippocampal and entorhinal
spatial codes which are used in conjunction with frontal lobe mechanisms
to plan routes during navigation, such as the optimal path finding tasks
(Epstein et al., 2017).

More “navigation network” regions have major activity in the frontal lobe
during active navigation and planning. For tasks related to path and plan-
ning, the retrieval of path options tends to be related to the hippocampus
whereas the assessment of these paths are mostly related to the prefrontal
cortex (Javadi et al., 2017). Parietal regions also play a major role with repre-
sentations of heading direction and activates when perceiving landmarks such
as targets during virtual navigation (Epstein et al., 2017; Sato et al., 2006;
Spiers and Maguire, 2007). This pattern of activation in parietal regions
might be particularly interesting when assessing capacities related to G0.
Thus, further investigation could be conducted comparing the activation of
PSD with respect to brain regions in relation to skill-based capacities and
type of support.

On the other hand, research focusing on analysing PSD bands found that
gamma band plays a role in increased state of hyper alertness and integra-
tion of sensory input; likewise, the beta band relates to increase in alertness
and is known to decrease with fatigue (Kumar and Bhuvaneswari, 2012).
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Previous literature results found that increases in task difficulty is associ-
ated with frontal theta, decrease alpha in posterior brain, and increase in
beta (Borghini et al., 2014; Diaz-Piedra et al., 2020; Smith et al., 2005;
Zokaei et al., 2020). Beta PSD bands are related to motor control and known
to be associated with increased level of engagement, alertness and vigilance.
Thus, similar assessments could be investigated through the use of SA subjec-
tive questionnaires to compare the differences within specific mental states
and the relationship to PSD differences between groups.

CONCLUSION

The results of this study contribute to exploring the use of EEG for optimizing
human-autonomy teaming dynamics among training and mission capacities.
More specifically, results demonstrate the ability to use PSD for assessing
trained skills between groups with different capacities. These features have
the potential to assess an individual or team differences on their capacities and
interdependence. Further research could explore how these features could be
implemented within a closed-loop system for adjustable automated support
for manned-unmanned teaming or even among human-human collaboration.
Thus, these results show the potential of EEG cues for online detection of
task-specific assistance required, which is a key component for HAT.
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