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AI‑driven predictions 
of geophysical river flows 
with vegetation
Sanjit Kumar 1, Mayank Agarwal 1, Vishal Deshpande 1*, James R. Cooper 2, Khabat Khosravi 3, 
Namal Rathnayake 4, Yukinobu Hoshino 5, Komali Kantamaneni 6,7 & Upaka Rathnayake 8*

In river research, forecasting flow velocity accurately in vegetated channels is a significant challenge. 
The forecasting performance of various independent and hybrid machine learning (ML) models are 
thus quantified for the first time in this work. Utilizing flow velocity measurements in both natural 
and laboratory flume experiments, we assess the efficacy of four distinct standalone machine 
learning techniques—Kstar, M5P, reduced error pruning tree (REPT) and random forest (RF) models. 
In addition, we also test for eight types of hybrid ML algorithms trained with an Additive Regression 
(AR) and Bagging (BA) (AR‑Kstar, AR‑M5P, AR‑REPT, AR‑RF, BA‑Kstar, BA‑M5P, BA‑REPT and BA‑RF). 
Findings from a comparison of their predictive capabilities, along with a sensitivity analysis of the 
influencing factors, indicated: (1) Vegetation height emerged as the most sensitive parameter for 
determining the flow velocity; (2) all ML models displayed outperforming empirical equations; (3) 
nearly all ML algorithms worked optimal when the model was built using all of the input parameters. 
Overall, the findings showed that hybrid ML algorithms outperform regular ML algorithms and 
empirical equations at forecasting flow velocity. AR‑M5P  (R2 = 0.954, R = 0.977, NSE = 0.954, 
MAE = 0.042, MSE = 0.003, and PBias = 1.466) turned out to be the optimal model for forecasting of 
flow velocity in vegetated‑rivers.

Keywords Flow velocity, Alluvial channel, Vegetation, Machine learning models, Empirical equations

List of symbols
V  Flow velocity
Nv  Number of cylinders per unit vegetated area
Df  Flow depth
α  Channel slope
hv  Height of the vegetation
dv  Diameter of cylindrical vegetation
βd  Non-dimensional drag coefficient
g  Gravitation acceleration

Vegetation in an aquatic environment, such as aquatic herbs, plants, saplings, and shrubs that blossom around the 
water body, may be either submerged in the flow or emergent. The presence of vegetation decreases flow velocity 
and promotes local sedimentation by enhancing hydraulic roughness. Thus, being able to forecast accurately 
flow velocity is important for estimating flow resistance and the shear stress acting on the bed, and for producing 
estimates of flow depth and sediment transport. Nevertheless, our comprehension of the comprehensive impact 
of vegetation cover on river hydraulics, encompassing factors such as size, density, arrangement of vegetation 
stems, height of submergence, stem flexibility, geometry, and spacing, remains  incomplete1, making flow velocity 
forecasting in vegetated alluvial channels a significant challenge in river science.

The velocity profiles generated by submerged and emergent vegetation differ due to a contrast in height and 
flexibility of the vegetation. The complexity of estimating these profiles escalates when the boundary roughness 
undergoes variations tied to the vegetation’s growth stage, along with the temporal alignment of these changes 
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with seasonal differences in river flows, often affecting whether the vegetation is submerged or  emergent2. For 
example, Kouwen et al.3 performed various laboratory flume experiments and concluded that velocity profile 
above the vegetation layer followed the logarithmic law.

Velasco et al.4 performed numerous lab experiments to ascertain the flow resistance occurring due to vary-
ing densities of flexible vegetation. Their results showed the velocity profile within the canopy differed from a 
logarithmic profile due to the existence of vegetation stems in the flow, and that the profile shape is related to 
the deflected height of the plants. Wilson et al.5 also concluded that plant form has a significant effect on the 
mean flow field. A similar vertical change in flow structure was also observed by Chen et al.6. Their experiments 
showed a considerable variation in the flow field at the sheath section and at the top of a plant clump. The plants 
foliage thus contributes to the plant’s global resistance, reaching 40% of the overall  drag7.

Other researchers have focused on understanding how flow dynamics are impacted by the existence of vegeta-
tion. For example, Ikeda and  Kanazawa8 conducted experiments to examine the three-dimensional, organized 
vortices generated above flexible vegetation. Liu et al.9 performed lab experiments to examine velocity profiles 
under rigid acrylic dowels. Their discoveries support the idea that the flow along the riverbed and atop vegeta-
tion exhibits notable instability, leading to the formation of coherent structures and significant exchange of mass 
and momentum.

Stoesser et al.10 also showed that the interspacing between the vegetation impacts turbulence by altering the 
3D flow patterns. Their study found that, cylinder (or vegetation) density had a greater impact on flow and turbu-
lence than the cylinder Reynolds number. Flow velocity in vegetated channels can be forecasted using four main 
types of model: theoretical, numerical/mathematical, empirical and machine-learning  approaches11. Theoretical 
and numerical attempts have included using first-order and higher-order closure  models12–15.  Neary11 showed 
that reasonable forecasting of velocity profiles is achieved by adopting universal values for all model coefficients.

Choi and  Kang16 worked on numerical simulations and found that flow quantities are optimal forecasted using 
Reynolds stress model as compared to others approaches. Theoretical descriptions are usually complex however, 
and often require poorly understood closure parameters, and at times, there are practical difficulties in collecting 
such data, especially in natural rivers. To overcome these difficulties, others have developed empirically based 
regression models to estimate depth-averaged velocity. For example  Green17 utilized natural vegetated fields to 
generate percentiles of blockage factor (the fraction of a cross-section blocked by vegetation), which were then 
regressed against vegetation resistance. The optimal results were obtained using an exponential optimal-fit con-
nection utilizing the 69th blockage-factor percentile.

Huthoff18 proposed an alternate model for flow velocity within submerged vegetation. The model was con-
structed based on a two-layer approach, with distinct characterizations for the flow above and through the plant 
layer. Other linear empirical models, developed mainly from experimental datasets, include Kouwen and Fathi-
Moghadam19, Stephan and  Gutknecht20, Stone and  Shen21, Velzen et al.22,  Huthoff18, and Baptist et al.12. These 
equations provide an underlying relation between flow velocity and vegetation interactions, but their applicability 
beyond the conditions in which they were derived and developed is limited.

In natural rivers, flow conditions depend on flow resistance and roughness type, with bedform dynamics 
regulating flow resistance. Manning’s equation is commonly used for predicting roughness. Mir and  Patel23 used 
ML models to predict Manning’s roughness coefficient (n) based on six input features. Random forest, extra 
trees regression, and extreme gradient boosting models performed exceptionally well  (R2 = 0.99), while Lasso 
Regression showed moderate efficiency. Sensitivity analysis revealed the energy grade line as a crucial predictor, 
providing deeper insights into riverbed characteristics and the complex relationship between roughness and 
other parameters.

Kouwen and Fathi-Moghadam19 proposed a modified model for estimating coniferous tree resistance coef-
ficients in open-channel flow that takes into account species flexibility variations. Experiments have validated 
that model, which effectively incorporates vegetation-flow interactions while improving accuracy over existing 
methods. Key findings include a method for estimating Manning’s n value, which improves flow resistance 
predictions in vegetated channels. Stephan and  Gutknecht20 investigated the impact of roughness caused by 
submerged macrophytes on flow dynamics, emphasizing their adaptability and variable nature in various flow 
scenarios. Conventional flow formulas are inadequate for this complexity, necessitating the development of a 
hydraulic roughness parameter based on deflected plant height. Laboratory experiments with three types of 
aquatic vegetation revealed a relationship between hydraulic roughness and deflected plant height, resulting in 
a more precise quantification method.

Stone and  Shen21 conducted extensive flume experiments to study flow hydraulics in an open channel with 
circular cylindrical roughness. The results showed that flow resistance varies with flow depth, stem concentra-
tion, length, and diameter and is best expressed as the maximum depth-averaged velocity between stems. They 
developed and validated physically based formulas for flow resistance and velocities in roughness and surface 
layers, which enable the calculation of channel hydraulic conditions. Velzen et al.22 submitted a RIZA report on 
floodplain vegetation flow resistance for the Directorate of Public Works and Water Management in the East 
Netherlands, which summarizes office studies conducted in collaboration with WL/Delft Hydraulics. The first 
section of the report is a manual that details flow resistance for various vegetation structures, while the second 
section discusses resistance formulations, vegetation structural properties, and the parameters used. The key 
findings include detailed descriptions and validated formulas for estimating flow resistance across various veg-
etation types.

Huthoff18 investigated methods for describing vegetation impact on flow fields, which is important for river 
flood studies because vegetation-covered floodplains influence flow during high discharge. It emphasizes the 
importance of incorporating vegetation obstruction into river-reach hydraulic models with simple, measur-
able input parameters that require little computational effort. The proposed method effectively meets these 
requirements while improving flow behavior predictions. Baptist et al.12 developed vegetation-induced roughness 
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equations using a variety of methods, including two analytical methods and a numerical turbulence model. The 
first analytical approach simplified the vertical flow profile, whereas the second addressed the momentum bal-
ance for flow through and over vegetation. They also demonstrated the use of genetic programming to generate 
roughness expressions from synthetic data, which are then validated against flume experiment results. Include 
the effective development and validation of these roughness estimation methods.

Recently, machine learning (ML) models have been widely used to model different catchment phenomena 
such as  floods24,  landslides25,26, and incipient sediment  motion27,28. ML methods are widely adopted these days 
because they able to forecast complex and non-linear environment phenomena, they require less data than 
other model types, are user friendly, have a non-linear structure, and without any knowledge of the underlying 
phenomenon, are able to formulate a non-linear and robust formula between inputs and output. Thus, these 
models can have a higher predictive power than both theoretical and empirical  equations28. Data driven and ML 
approaches have been widely used in various hydraulic applications in rivers.

For instance, Wang et al.29 estimated river velocity based on GAN image enhancement and multi-feature 
fusion. Their results revealed ML models can produce high levels of accuracy, up to 92%. Hussain and  Khan30 
found that Random Forest models had a 17.8% and 33.6% higher performance than ANN and SVM methods for 
forecasting river stream flow. Others have shown that ANN models used to forecast the hydraulic geometry of 
irrigation  canals31 and gravel-bed  rivers32 outperform empirical equations. Tahershamsi et al.33 forecasted width 
of alluvial channels using multi-layer perceptron (MLP) and radial basis function (RBF) models. The performance 
of both models was satisfactory. Gene Expression Programming has been used to estimate bed shear stress 
distributions within channels, demonstrating superior performance to a well-established entropy-based  model34.

Hybrid machine learning methods in machine learning (ML) employ the amalgamation of multiple 
independent ML methods to generate a more resilient predictive ML method. The aim of this method is 
to leverage the benefits of different base ML methods to improve the overall accuracy, robustness, and 
generalizability of the forecast, particularly when applied to fresh data. Hybrid machine learning methods are 
widely used in several fields due to their ability to tackle complex difficulties and enhance ML method accuracy.

Investigating changes in flow characteristics in open channels is crucial for understanding water ecosystems, 
influencing sediment deposition and water quality.  Maji35 used Machine learning, specifically Polynomial 
Regression Techniques to validate laboratory experimental data of turbulent flow in a channel with emergent 
vegetation, showing close matches between experimental and theoretical data. Deng and  Liu36 used a hybrid 
ML model, combining Bayesian Optimization with Least Squares Support Vector Machine (BO-LSSVM) 
to predict depth-averaged velocity in submerged vegetation flows, improving accuracy over traditional ML 
models and empirical formulas. Non-dimensionalization as a preprocessing method further enhances prediction 
performance. BO-LSSVM outperforms standalone LSSVM, SVM, and MLP models, achieving superior results 
and demonstrates the highest reliability in uncertainty analysis. Sensitivity analysis reveals frictional resistance 
parameters are more critical than bed slope parameters.

Kumar et al.37 evaluated multiple standalone and hybrid ML methods to predict flow velocity in vegetative 
alluvial channels using diverse datasets. Among the six ML methods analyzed, AR-M5P demonstrated the highest 
prediction accuracy. Sensitivity analysis identified vegetation height as the most critical variable in predicting flow 
velocity. Meddage et al.38 proposed models using tree-based ML models (Decision Tree, Extra Trees, XGBoost) 
to predict bulk-average velocity and surface layer friction factor (fS), with SHAP for interpretation. Existing 
regression models, despite accuracy, lack feature importance and causality insights. XGBoost outperforms 
in predicting bulk-average velocity (R = 0.984) and fS (R = 0.92). SHAP enhances understanding by revealing 
prediction rationale, dependencies, and feature importance, aligning with observed flow behaviors and increasing 
trust in the predictions.

Boraah and  Kumar39 investigated the impact of vegetation on the transport of sediment and the flow of water 
in river channels. They discovered that aquatic plants regulate the mean flow and turbulence, reduce discharge, 
and increase sediment accumulation. The study employs the Group Method of Data Handling (GMDH) soft 
computing technique to model flow-vegetation interactions and predict flow resistance, given the limitations of 
traditional methods. The GMDH model efficiently optimizes predictions and emphasizes the impact of a variety 
of factors on the velocity profile by capturing the relationship between input and output parameters.

Barman and  Kumar40 looked at how bank angle and floodplain vegetation emergence affect flow in compound 
channels. They used 45-degree and 90-degree bank angles, as well as three vegetation setups: no vegetation, fully 
submerged, and partially emergent. The findings indicate that vegetation has a significant impact on slopes, 
with steeper banks (90 degrees) experiencing higher velocity, Reynolds shear stress (RSS), and turbulent kinetic 
energy (TKE) resulting in greater instability. Increased vegetation emergence in floodplains exacerbates slope 
vulnerability, providing insights for improved hydraulic engineering and bank stability maintenance.

Arora et al.41 investigated flow structure changes at the interface of partially and fully vegetated sections 
and recommended fully vegetated sections near riverine structures for improved flow management. Partially 
vegetated sections show helical flow and increased turbulent kinetic energy downstream, while fully vegetated 
areas show more transverse flux and intermixing. These findings indicate that fully vegetated covers improve 
safety and effectiveness in managing flow around critical river structures.

Barman et al.42 used three soft computing techniques to predict flow velocity in vegetated channels. They 
discovered that the group method data handling (GMDH) model is better at making predictions than the 
optimizable Gaussian process regression (GPR) model and the ensemble tree (ET) model with Bayesian 
optimization. However, ET-B converges more quickly.

Barman et al.43 investigated flow past homogeneous and heterogeneous vegetation heights in a controlled 
setting, accounted for submerged and emergent vegetation cases. Barman et al.43 discovered that while height 
variations in fully submerged heterogeneous vegetation influence main channel flow, increased vegetation 
emergence and density significantly impact flow near the floodplain interaction zone. Near the water’s surface, 
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fully emergent cases show a dip effect with specific velocity gradients and negative streamwise Reynolds shear 
stress. Near the channel bed, sweep and ejection events are more common.

Despite the fact that all of this earlier research has demonstrated that ML algorithms have greater predictive 
capacity than conventional equations, they have yet to be used to forecast flow velocity in vegetated channels. 
As a result, there exists a significant gap in knowledge concerning the potential of machine learning algorithms 
and the identification of the most flexible and accurate algorithm.

Research gap

1. Very limited studies have worked on prediction of flow velocity in vegetated alluvial channel
2. The application of hybrid ML methods along with the sensitivity analysis of the input parameters used is often 

missing from the existing studies. At times, researchers are not in a position to capture all the parameters 
due to various limitations. Using the sensitivity analysis researchers can get information regarding which 
parameters are important and which are relatively less important.

3. Using multiple datasets from the lab as well as flume ensures that a robust model is developed which 
incorporates the uncertainties from various data collected.

The current paper aims to address this knowledge gap by achieving the following objectives: (1) forecasting of 
flow velocity in vegetated alluvial channels using four types of standalone ML techniques—Kstar, M5P, reduced 
error pruning tree (REPT) and random forest (RF) models—in addition to eight types of hybrid ML methods; 
viz., Additive Regression (AR) and Bagging (BA) (AR-Kstar, AR-M5P, AR-REPT, AR-RF, BA-Kstar, BA-M5P, 
BA-REPT and BA-RF); (2) Compare and contrast the predictive capabilities of these proposed ML models with 
four frequently employed empirical equations.; and (3) Conduct a sensitivity analysis on the input combination 
that yields the highest forecasting accuracy.

This work is the first attempt to predict flow velocity in vegetated channels using a variety of machine learning 
methods. Based on simple flow and channel factors, the research offers new insights into ML techniques that 
might be used for precise and effective flow velocity forecasting.

Methodology
Proposed architecture
Figure 1 presents the proposed architecture utilized in this research work for the forecasting of flow velocity. The 
methodology can be summarized in eight steps:

1. Data collection from different sources
2. Dimensional analysis to find the effective input parameters
3. Divide data sets for model training and testing
4. Construct different input scenarios
5. Find the effectiveness of each input parameter on the modeled results, based on sensitivity analysis
6. Develop standalone and hybrid ML approaches
7. Optimize model’s hyper-parameters
8. Compare and contrast the efficacy of the proposed models using existing approaches.

Dimensional analysis and functional formula
Yen1 analyzed a number of flow resistance equations with respect to their dependent and independent parameters, 
revealing the following functional form can characterize flow-vegetation  interactions1.

where V is the flow velocity, α is the channel slope, hv is the height of the vegetation, Df is the flow depth, Nv is 
the number of cylinders per unit vegetated area, dv is the diameter of cylindrical vegetation, and βd is the non-
dimensional drag coefficient. Equation (1) applies to homogeneous vegetation having a fixed diameter and height 
of stems. The channel flow is assumed to be steady, 2D and uniform. All data comes from wide channels and 
thus sidewall effects are  neglected44. In this study, V is viewed as a dependent variable, which mainly depends 
on several factors, according to Eq. (1). With this in mind, Eq. (1) can be rewritten as:

Dataset
We compiled 447 data points from different sources. These datasets included Einstein and  Banks45,  Fenzl46, 
Kouwen et al.3, Ree and  Crow47,  Murota48, Tsujimoto and  Kitamura49,  Tsujimoto50,  Tsujimoto51,  Shimizu52, 
Dunn et al.53, Ikeda and  Kanazawa8,  Meijer54,  Jarvela55, Rowinski and  Kubrak56, Stone and  Shen21, Poggi et al.15, 
Carollo et al.57, and Murphy et al.58. These studies include results for both lab-based flume experiments as well 
as experiments conducted on natural rivers.

After ascertaining the optimal input combination and selecting the optimal hyper-parameters, the data was 
split into two  parts59 with 70% reserved for training and 30% for testing purposes. This ratio produced 314 data 

(1)f (V ,α, hv ,Df ,Nv , dv ,βd) = 0

(2)V = f (α, hv ,Df ,Nv , dv ,βd)
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points for training and while 133 data points was allotted for testing phase. Table 1 presents the statistical metrics 
related to both the training and testing sets, as well as the entire dataset.

Determination of optimal input parameter combination
Six parameters (α, hv, Df, Nv, dv, and βd) were considered as potential effective parameters. The correlation 
coefficient between each of these six parameters with V was utilized to construct different input combinations. In 
total, six inputs were formulated, starting with the parameter exhibiting the highest correlation with flow velocity 
(i.e., Nv), followed by the inclusion of the parameter with the second highest correlation, and subsequently 
incorporating the parameter with the third highest correlation, continuing this sequence until all parameters 
were utilized (see Table 2). This approach was grounded in the assumption that parameters with the highest 
correlation would exert the most significant influence on forecasting power.

Model descriptions
Machine learning models
Kstar. The Kstar  procedure60 is an instance-based model that was inspired by the k-Nearest Neighbor regres-
sion model. In k-Nearest Neighbor, the Euclidean metric is used to evaluate the distance between the instances, 
while K* uses the entropy metric. The complexity of transforming instances is calculated by K* distance:

(3)K∗
(
βk

αk

)
= −log2P

∗
(
βk

αk

)

Figure 1.  Overview of the workflow of the study.
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where the probability of paths between instances is represented by P*. In the case of real numbers, P∗(βk/αk) 
depends on the difference between βk and αk.

where j = �αk − βk� and s is a parameter, whose value is between zero and one.

M5Prime (M5P). The M5P model, proposed by Wang and  Witten61, extends the M5 model that was initially 
proposed by Quinlan et al.62. One of the valuable features of the M5P model is that it handles large datasets con-
sisting of a high number of features and dimensions. The model is also robust when it comes to handling missing 
data points in the dataset.

The M5P model initiates by partitioning the input space into multiple sub-spaces, ensuring that each sub-
space encompasses data points with common features. To minimize the variability within a particular sub-space, 
a linear regression is used. This information is utilized to make several nodes; at these nodes a splitting process 
is carried out according to a given attribute. These steps help create an inverse tree-like structure with the root 
at the top and leaves at the bottom. When a new record comes to the system, it moves from the root, traversing 
the tree until it reaches the leaf node. This process helps in knowledge derivation. Model development consists 
of three important steps:

Step 1: To construct a tree, the input space is divided into several sub-spaces, and the specified splitting 
criterion is employed to minimize intra-subspace variability. In order to measure the variability, the standard 
deviation is used for the values that reach a node. During the M5P tree-growing procedure, the standard deviation 
reduction (SDR)63 is optimized to ensure optimal model performance. The equation for SDR is given by:

(4)K∗
(
βk

αk

)
= K∗(j) = 1

2
log2(2s − s2)− log2(s)+ j

[
log2(1− s)− log2(1−

√
2s − s2)

]

Table 1.  Statistical description of the datasets.

Dataset Parameter Mean Standard deviation Minimum Maximum

Train (count 314)

dv 0.006 0.004 0 0.013

Nv 8810.207 14,794.109 3 44,000

hv 0.22 0.363 0.014 1.65

Df 0.439 0.645 0.058 2.5

α 0.005 0.008 0 0.05

βd 1.245 0.562 0.67 3.14

V 0.328 0.282 0.013 1.242

Test (count 133)

dv 0.006 0.004 0 0.013

Nv 8299.865 13,374.15 11 44,000

hv 0.211 0.32 0.024 1.5

Df 0.41 0.577 0.063 2.48

α 0.003 0.006 0 0.044

βd 1.351 0.693 0.61 3.14

V 0.298 0.245 0.03 1.151

Overall (count 447)

dv 0.006 0.004 0 0.013

Nv 8658.36 14,373.294 3 44,000

hv 0.218 0.35 0.014 1.65

Df 0.43 0.625 0.058 2.5

α 0.004 0.007 0 0.05

βd 1.276 0.605 0.61 3.14

V 0.319 0.272 0.013 1.242

Table 2.  Input combinations used in model development and testing.

Input Input combination Output

1 f (Nv) V

2 f (Nv ,Df ) V

3 f (Nv ,Df ,α) V

4 f (Nv ,Df ,α,βd) V

5 f (Nv ,Df ,α,βd , hv) V

6 f (Nv ,Df ,α,βd , hv , dv) V
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where S represents the collection of data records that reach the node, Si are the sets resulting from dividing 
the node based on a specified attribute, and sd represents the standard deviation.

• Step 2: Pruning of the tree is carried out to remove unnecessary sub-trees. This phase aims to mitigate 
overfitting, a phenomenon wherein a machine learning model accurately predicts training data but struggles 
with testing or new data.

• Step 3: The pruning process may induce sharp discontinuities between the adjacent linear models at the leaves 
of the pruned  tree64. As a final stage, a smoothing process is therefore implemented to address this issue.

Reduced error pruning tree (REPT). The machine learning model called the Reduced Error Pruning Tree 
(REPT) starts with building a decision tree and works its way up to a complete representation of the data. A 
pruning procedure is then used to remove superfluous branches, which avoids overfitting and enhances gen-
eralization to fresh data. After that, rules are extracted from this pruned tree, yielding a more straightforward 
and understandable model. The REPT model is useful in  situations where precise forecasts and a thorough 
comprehension of the elements influencing decisions are crucial because it finds a balance between complexity 
and transparency.

Random forest (RF). Breiman65 introduced a tree-based ensemble learning model RF that is used for regres-
sion as well as classification problems. In RF, multiple weak learner trees are used to compose a strong learner, so 
each tree is responsible for the RF errors. Multiple trees are known as forests, and if they are not fully grown, are 
considered deep trees. These deep trees have low bias but high variance, so they are appropriate choices for the 
RF model as it focuses on reducing variance. To decrease the dataset’s variance, it is partitioned into numerous 
small subsets using a replacement method known as bootstrap sampling.

However, RF also uses another sampling method called feature sample to use a random subset of the dataset 
to make the tree. This method can also help in reducing the variance of the dataset. Both sample methods are 
introduced for RF by Dong et al.66 that prevent overfitting problems that can arise from multiple decision trees 
using the same feature to make their decision. Hence, we can say that RF model is an enhancement of bagging 
model with feature sample of the dataset.

Additive regression (AR). Additive Regression (AR) is a ML method approach that focuses on increasing the 
forecasting accuracy by combining the predictions of multiple regression models. AR methods involves the 
creation of individual regression models for each predictor variable and then combining their outputs. The AR 
method aims to utilize the additive effects of each predictor on the response variable. AR models usually perform 
well when predictor variables interact nonlinearly, as they possess the flexibility to model complex relationships. 
The final model is an additive composition of these individual regressions models, providing a comprehensive 
representation of the overall relationship between predictors and the response variable.

Bootstrap aggregation (bagging/BA). Bootstrap aggregation (bagging) is an ensemble methodology used for 
both regression and classification problems. In many cases, decision tree models suffer from high variance, 
which can be circumvented by the Bagging approach. Bagging is usually applied when the amount of data is 
limited, and a robust estimate of a statistical feature is required. The model uses multiple random training data 
samples to train multiple models for forecasting. To provide a reliable forecast, the forecasting accuracy of each 
of these many models is evaluated, and the averaged findings are used. By reducing the effect of individual model 
variances, this averaging strategy improves the forecasts’ overall reliability.

For a given set of k independent observation k1, k2, …, kn each having variance σ 2 , the variance of mean K of 
the set of observation is σ 2/k . Thus by taking the average value, the resultant observed variance is reduced, and 
increasing the size of the training sample reduces the variance, enhancing the forecasting accuracy For sample 
training sets C, Multiple models are produced sample training sets C. f1′(x), f2′(x), f3′(x), .., fC ′(x), where x < k . 
These algorithms are averaged to obtain a low variance model:

However, in many instances large sample sizes are not available. To overcome this, bootstrapping is used to 
randomly sample multiple datasets and the averaged model is given by:

(5)SDR = sd(S)−
∑

i

Si

⌈S⌉ × sd(Si)

(6)favg (x) =
1

C

C∑

c=1

fb(x)

(7)fbag (x) =
1

C

C∑

c=1

f ∗b (x)
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Empirical equations
The proposed approach is compared to four commonly used empirical equations (Eqs. 8–11)  (Huthoff18; Velzen 
et al.22; Baptist et al.12; Stone and  Shen21):

Model performance metrics
To evaluate the effectiveness of the proposed models in forecasting the mean velocity of flow in a vegetated 
channel, the following six metrics were used:  R2, R, MAE, MSE, NSE, and PBias. Their mathematical formulation 
is given below:

where V̂  and V refer to the forecasted and actual values, V̂  and V  denote the mean forecasted and mean actual 
value, respectively, and N is the total number of data points used in the study. Ideal values of R2, R, NSE, MAE, 
MSE and Pbias are 1, 1 or − 1, 1, 0, 0 and 0 respectively. Model performance can be classified using the NSE values 
(between − ∞ and 1; Moriasi et al.67): (i) unsatisfactory: NSE ≤ 0.4; (ii) acceptable: 0.40 < NSE ≤ 0.50; (iii) 
satisfactory: 0.50 < NSE ≤ 0.65; (iv) good: 0.65 < NSE ≤ 0.75; (v) very good: 0.75 < NSE ≤ 1.00.

For visual examination Taylor diagrams, box plots as well as line and scatter plots were utilized in this study. 
The Taylor diagram offers the advantage of incorporating two primary correlation statistics: standard deviation 
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(SD) and correlation ®, providing a comprehensive visualization of model  performance68. The reference point 
for a Taylor diagram refers to the measured data point. The stronger the forecasting capability of a given model, 
the nearer the forecasted value to the reference value in terms of R and SD. A box plot’s can demonstrate how 
effectively a model predicts values at the extremes, median, and quartile ranges; the closer the quartile line of 
the forecasted value to the actual quartile, and more generally, the greater the similarity in box-plot shape, the 
better the model performance.

Results
Ascertaining the optimal input parameter combination
Spider and heat map plots of the correlation coefficient in Fig. 2 shows that the number of cylinders per unit 
vegetated area had the highest impact on flow velocity (R = 0.27), followed by flow depth (R = 0.21), channel 
(R = 0.18), non-dimensional drag coefficient (R = − 0.08), height of the vegetation (R = 0.05), and diameter of 
cylindrical vegetation (R = − 0.04).

Table 3 shows the different input combination effectiveness, based on the R and MSE values. Input 6 (all input 
parameters involved) was the optimal combination for seven models out of 12 models (AR-M5P, AR-REPT, 
AR-RF, BA-Kstar, BA-M5P, BA-RF, and RF). Input 5 (all involved except dv) was optimal for four models 
(AR-Kstar, BA-REPT, Kstar, and M5P), and the REPT model performed most strongly with Input 4 (all involved 
except of dv and hv).

Model performance
Using the testing dataset, it can be observed that all ML models exhibit high performance (Fig. 3), and hybrid 
models are more capable than standalone models at capturing extreme values (minimum and maximum V 
values).

To benchmark this performance, Table 4 shows a comparison in performance metrics of the twelve ML 
models with four empirical equations. In all cases, the model performance is far superior for the ML models. All 
the models except the empirical equations demonstrate very good forecasting capabilities in terms of R2 (R2 > 0.7). 
Based on the NSE model performance classification proposed by Moriasi et al.67, all ML models performed very 
well, while empirical equations had unsatisfactory performance.

The PBias metric shows the level of bias in model performance. The optimal value of PBias is 0. Usually, 
the value of PBias ≤  ± 10 corresponds to very good model  performance69. A positive PBias indicates an 
underestimation, while a negative PBias signifies overestimation. Although all ML models have a very good 
performance, Table 4 shows the PBias values for the standalone and hybrid version of the Kstar model are close 
to zero. All models, except the empirical equations of Baptist et al.12 and Stone and  Shen21, demonstrate that the 
developed models underestimated flow velocity.

The comparison in Table 4 also reveals which of the models had the highest performance. For all metrics but 
PBias, AR-M5P model had the highest forecasting power. In the case of PBias, the Kstar model was judged as the 
optimal performing model. For all metrics the hybridized ML models outperformed their standalone counterpart.

Box plots are presented to compare the performance of both standalone and hybridized machine learning 
models (Fig. 4). The results show the quartiles of the AR-M5P and observed data almost coincide. In contrast, 
the quartile for AR-REPT shows higher deviation, indicating low performance. In terms of the maximum V 
value, the RF model and its hybridized versions (AR-RF, BA-RF) showed higher performance, while AR-M5P 
more accurately captured the lowest V value than the other models.

Figure 5a–d shows the box plots of forecasted flow velocity for the empirical equations, plotted separately 
to those in Fig. 4 because they overestimate flow velocity by a very large margin. The equation developed by 

Figure 2.  (a) Spider and (b) heat map plots illustrating the correlation coefficient between input parameters 
and flow velocity.
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Baptist et al.12 performed better than the other empirical equations, but none of these equations were able to 
forecast V accurately.

In the Taylor plot (Fig. 6), the AR-M5P model was in close proximity to the observed reference point, indi-
cating that the forecasted standard deviation of flow velocity closely matched the observed data standard devia-
tion, and the correlation was highest among the models evaluated. On the Taylor plot, the RA-KStar, BA-KStar, 
AR-RF, and BA-REPT data points nearly coincide, indicating comparable model performance. Stone and Shen’s21 
empirical equation had the lowest performance.

Sensitivity analysis
A sensitivity analysis is undertaken to understand the impact of each input parameter on flow velocity by remov-
ing one by one a parameter from the model construction and evaluating the effect on model performance. The 
input combinations for sensitivity analysis are shown in Table 5. For example, Input combination A removed 
the parameter dv and used the remaining five parameters (Nv, Df, α, βd, and hv), Input combination B removed 
parameter hv and so on. The removal of the hv parameter from the input variable combination produced the 
largest increase in MAE and MSE values, and thus improvement in model performance, compared to the other 
parameters (Fig. 7). Therefore, the hv parameter was the most sensitive and effective input parameter for the 
forecasting of flow velocity, followed by Df, α, Nv, βd, and dv.

Discussion
Compare and contrast of the efficacy of empirical, standalone, and proposed hybrid machine 
learning models
The paper used numerous datasets collected from various sources, in which flow velocity had been measured 
in differing ways in vegetated channels in varied natural and laboratory conditions, to investigate the efficiency 
of each model. The empirical equations performed poorly, confirming these relations should be used with due 
caution outside the conditions for which they were developed. In contrast, all ML models performed well because 
they can learn and adapt to the changing data.

Among the standalone models, the RF model had a superior performance as compared to the other models. 
This result occurred for a number of reasons: (1) RF is better at handling datasets that contain null or missing 
values; (2) each constructed base tree is independent of the others, exhibiting the feature of parallelization; (3) the 
algorithm is extremely stable, since the average response of a large number of trees are used; and (4) the model 
preserves variety since all qualities are not evaluated when creating each base tree. This feature has the added 
advantage of minimizing the feature space and resulting in RF being unaffected by the curse of dimensionality 
(When the number of features is large compared to the number of observations in the datasets, this situation is 

Table 3.  Ascertaining the optimal input combination using model evaluation criteria. Significant values are 
given in bold.

Models Evaluation criteria Input 1 Input 2 Input 3 Input 4 Input 5 Input 6

AR-Kstar
R 0.764 0.834 0.905 0.918 0.961 0.958

MSE 0.025 0.019 0.011 0.01 0.005 0.005

AR-M5P
R 0.758 0.845 0.882 0.892 0.965 0.977

MSE 0.026 0.018 0.014 0.013 0.004 0.003

AR-REPT
R 0.798 0.811 0.857 0.882 0.905 0.909

MSE 0.022 0.022 0.016 0.014 0.011 0.011

AR-RF
R 0.793 0.871 0.923 0.94 0.966 0.97

MSE 0.023 0.015 0.009 0.007 0.004 0.004

BA-Kstar
R 0.749 0.834 0.886 0.896 0.944 0.946

MSE 0.027 0.019 0.013 0.012 0.007 0.006

BA-M5P
R 0.754 0.845 0.895 0.899 0.957 0.959

MSE 0.026 0.018 0.013 0.012 0.007 0.007

BA-REPT
R 0.779 0.835 0.88 0.9 0.92 0.915

MSE 0.024 0.019 0.014 0.012 0.01 0.01

BA-RF
R 0.794 0.853 0.902 0.914 0.944 0.946

MSE 0.023 0.017 0.011 0.01 0.007 0.007

Kstar
R 0.75 0.84 0.897 0.913 0.953 0.95

MSE 0.027 0.018 0.012 0.01 0.006 0.006

M5P
R 0.758 0.845 0.882 0.892 0.947 0.935

MSE 0.026 0.018 0.014 0.013 0.007 0.01

REPT
R 0.798 0.811 0.862 0.882 0.879 0.875

MSE 0.022 0.022 0.016 0.014 0.014 0.014

RF
R 0.796 0.866 0.908 0.927 0.946 0.956

MSE 0.023 0.016 0.011 0.009 0.006 0.005
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commonly referred to as the "curse of dimensionality."). Thus, RF can handle larger datasets, both in dimension 
and attributes. The hybridized models outperformed their standalone counterparts. This enhanced performance 
occurred due to the hybridization which lead to a coupled model exhibiting higher flexibility, that is better trained 
and has a non-linear  structure70. Given the non-linearity of the relationships between the variables and the weak 
connection between the individual variables and flow velocity, this flexibility and structure is particularly crucial 
for the forecasting of flow velocity.

Several factors explain why the hybrid M5P models outperformed all other hybridized models. First, M5P 
is a comparatively simple and interpretable algorithm, which makes the model’s output simpler to comprehend 
and interpret. Second, M5P is capable of handling both continuous and categorical data, which is beneficial 
when working with datasets containing both categories of variables. Thirdly, M5P model contains two key 
components: growing stages and pruning stages. The growth stage involves splitting nodes based on the growth 
stage values of the characteristics, aiming to reduce the forecasting error for numerical responses at terminal 

Figure 3.  Forecasted versus actual flow velocity for the testing dataset.
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nodes and increase the tree’s depth. The pruning stage assesses the contribution of each attribute to a node’s 
forecasting inaccuracy and subsequently prunes unnecessary branches. Fourthly, hybrid models that combine 
M5P with other algorithms can capitalize on the strengths of both models, resulting in a model that is more 
robust and accurate.

Impact of input variables on the accuracy of model forecasting
The permutation of input variables significantly influenced the predictive capability of the model, underscoring 
that identifying the optimal combination is a crucial step in developing an accurate machine learning model. 
For instance, the input combination with variable "hv" removed exhibited over three times superior forecasting 
accuracy (in terms of NSE) compared to the least performing input combination. Consequently, a variety of input 
variable combinations must be explored during the optimization of machine learning models. We employed a 
manual approach in order to determine the optimal input combination. Methods like PCA and gamma test also 
provide for optimal input combination but they provide only one set of combination. Manually ascertaining 

Figure 3.  (continued)
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the optimal combination can result in models with a superior forecasting performance because it is possible to 
determine the hyper-sensitivity parameters and comprehend the model’s hyper-parameter reaction and trend 
by varying the input values.

The current paper showed that, in most of the cases, the optimal input combination corresponded to the 
inclusion of all the input parameters. Even parameters with low correlation with flow velocity, such as vegeta-
tion height and diameter, contributed to better forecasting power. This result further highlights the complex, 
nonlinear nature of the interaction of vegetation with flow mechanics, and the requirement for multiple input 
parameters to represent this interaction. Consequently, a variety of distinct input variable combinations must be 

Table 4.  Performance of applied models (bold indicates the optimal performance). Significant values are given 
in bold.

Model R2 R NSE MAE MSE PBias (%)

AR-M5P 0.954 0.977 0.954 0.042 0.003 1.466

AR-RF 0.941 0.97 0.941 0.043 0.004 0.587

BA-M5P 0.92 0.959 0.878 0.067 0.007 2.619

AR-Kstar 0.917 0.958 0.915 0.052 0.005 0.267

RF 0.913 0.956 0.912 0.052 0.005 2.551

Kstar 0.902 0.95 0.899 0.058 0.006 0.194

BA-Kstar 0.895 0.946 0.893 0.061 0.006 0.385

BA-RF 0.894 0.946 0.891 0.059 0.007 4.072

M5P 0.875 0.935 0.839 0.078 0.01 3.374

BA-REPT 0.838 0.915 0.833 0.074 0.01 5.452

AR-REPT 0.826 0.909 0.82 0.077 0.011 2.219

REPT 0.766 0.875 0.76 0.086 0.014 5.054

Huthoff18 0.416 0.645 − 189.828 2.053 11.485 687.501

Velzen et al.22 0.36 0.6 − 17.066 0.5 1.087 146.431

Baptist et al.12 0.319 0.565 − 0.009 0.156 0.061 − 47.076

Stone and  Shen21 0.285 0.534 − 0.488 0.186 0.09 − 33.689

Figure 4.  Box plot of the actual and forecasted flow velocity values by ML models.

Figure 5.  Box plots of the actual and forecasted flow velocity by four empirical equations.
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Figure 6.  Taylor diagram illustrating model performance.

Table 5.  Input combinations used in sensitivity analysis.

Input combination Model Removed parameter

A f(Nv, Df, α, βd, hv) dv

B f(Nv, Df, α, βd, dv) hv

C f(Nv, Df, α, hv, dv) βd

D f(Nv, Df, βd, hv, dv) α

E f(Nv, α, βd, hv, dv) Df

F f(Df, α, βd, hv, dv) Nv

G f(Nv, Df, α, βd, hv, dv) –

Figure 7.  Bar chart showing difference in model performance for different input parameter combinations based 
on (a) MAE, and (b) MSE. 



15

Vol.:(0123456789)

Scientific Reports |        (2024) 14:16368  | https://doi.org/10.1038/s41598-024-67269-2

www.nature.com/scientificreports/

taken into account during the optimization of machine learning models, even when channel, flow and vegetation 
parameters might a priori be considered ineffective.

Capturing impact on flow velocity of vegetated alluvial channels through AI models
Vegetative elements significantly influence flow velocity in vegetated channels, and understanding these effects is 
critical for accurate forecasting and effective river management. Taller plants extend further into the flow, giving 
the water more surface area to push against, increasing drag force and decreasing flow velocity. Furthermore, 
dense canopies formed by taller vegetation greatly restrict water flow, increasing resistance and decreasing 
velocity, whereas shorter vegetation allows water to flow more freely, resulting in higher velocities. Taller 
vegetation contributes to more turbulence in the water column. The turbulence dissipates the water’s kinetic 
energy, further reducing its velocity. In contrast, shorter plants have less surface area in contact with the water, 
resulting in less drag and faster water flow. In addition, shorter vegetation produces less turbulence, preserving 
the water’s kinetic energy and maintaining a higher flow velocity.

These complex interactions between vegetation and flow mechanics demonstrate the nonlinearity of flow 
velocity in vegetated channels. Machine learning models, particularly hybrid models, have demonstrated great 
potential for capturing these complex nonlinear interactions. These models can learn the relationships between 
various vegetative parameters (such as height, density, and flexibility) and flow velocity by utilizing heterogeneous 
datasets. The superior performance of hybrid models demonstrates their ability to accurately forecast flow velocity 
in a variety of vegetative and channel conditions. The proposed AR-M5P model, for example, effectively integrates 
autoregressive components to account for temporal dependencies and combines them with tree-based algorithms 
to detect non-linear patterns in data.

This study compared twelve ML models, including hybrids like AR-M5P, to traditional empirical equations. 
The results showed that hybrid ML models outperformed empirical equations for predicting flow velocity in 
vegetated channels. These models excelled at accounting for the diverse and complex effects of vegetative elements 
on flow velocity. However, more research is needed to investigate how these models perform across a wider 
range of vegetation types and channel morphologies. Vegetation flexibility, spacing, and seasonal variations 
in vegetation characteristics all have an impact on model accuracy and should be taken into account in future 
studies.

Applying machine learning methods to forecast flow velocity in vegetated channels
The results indicate that hybrid M5P models, particularly M5P models trained with an Additive Regression 
algorithm, have the potential to generate accurate forecasting of flow velocity in vegetated river channels. Such 
methods can be easily employed in regions/countries where understanding of the flow-vegetation processes 
in river systems is limited. The ML models developed in this paper offer primary advantages in terms of 
simplicity, ease of construction, and low operational costs. This stands in contrast to theoretical and numerical 
models, which frequently demand substantial prior knowledge and resources for their development. The main 
disadvantages are two-fold. In line with other statistical approaches, the models formulated in this research are 
tailored to the specific rivers under examination and employing them in different river settings might not produce 
comparable forecasting accuracy. The input parameter range will be wider than examined in this paper, despite 
using datasets composed from a variety of sources from both lab and field investigations. Thus, future studies 
should develop and apply ML models to rivers with differing channel and plant morphologies to test their wider 
applicability. Second, as a result of their ’black box’ structure, these models have limited explanation regarding 
their results and are unable to provide insight into the physical factors that determine flow velocity.

The current study has considered seven controlling parameters, revealing that flow depth, channel slope, 
non-dimensional drag coefficient, height and the diameter of vegetation, and ratio of cylinders to vegetation 
per unit area must all be accounted for in ML models of flow velocity. Future studies should take into account 
how other characteristics, like vegetation flexibility and spacing, affect the effectiveness of these models where 
data is available. (e.g.  Haslam71; Sand-Jensen72), assisting in identifying the key parameters influencing flow 
velocity and elucidating the reasons behind their variations among rivers characterized by distinct vegetation 
and channel properties.

Applying hybrid ML models for forecasting natural issues
The AR-M5P algorithm, a hybrid approach combining autoregressive (AR) models with the M5P model tree, 
has demonstrated superior performance in our prediction tasks. This model’s effectiveness can be leveraged in 
several critical natural and environmental domains. AR-M5P can be used to model and predict climate variables 
such as temperature, precipitation, and sea-level rise. Its ability to handle both linear and non-linear relationships 
makes it particularly suitable for capturing the complex interactions inherent in climate systems. For instance, it 
can predict temperature anomalies or precipitation patterns, which are crucial for understanding and mitigating 
the impacts of climate change.

In order to estimate pan evaporation rates using meteorological data from three Iraqi stations, Elbeltagi et al.73 
investigated the coupling of the additive regression model (AR) with four machine learning models including 
M5P. The AR-M5P model, which used wind speed, relative humidity, and minimum and mean temperatures, 
showed that hybrid methods can accurately predict complex hydrological relationships.

Elbeltagi et al.74 used five intelligent and hybrid metaheuristic machine learning algorithms (AR, AR-Bagging, 
AR-RandomSubspace, AR-M5P, and AR-REPTree) to predict monthly mean daily reference evapotranspiration 
using climatic data from two semi-arid regions in Pakistan (1987–2016). The results revealed that all models 
predicted monthly mean daily reference evapotranspiration with high precision, with the AR-M5P model 
achieving the highest accuracy.
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The increasing need for agricultural production and frequent droughts require accurate estimation of actual 
evapotranspiration for effective irrigation management.  Granata75 compared three machine learning models 
along with AR-M5P with different input variables to predict evapotranspiration using data from Central Florida. 
Vishwakarma et al.76 used the M5P model to assess dams’ impact on river hydrology and daily water temperature 
in the Yangtze River at Cuntan, emphasizing the importance of accurate water temperature prediction for 
ecological and operational planning. These models offer dependable and cost-effective tools for forecasting 
water temperature, which helps with reservoir planning and environmental management.

In summary, the AR-M5P algorithm’s robustness and flexibility makes it a valuable tool for addressing a 
wide range of natural and environmental issues. Its ability to integrate and analyze multifaceted datasets allows 
for more accurate predictions and informed decision-making, ultimately contributing to the sustainability and 
resilience of natural systems. We trust that this enhanced discussion addresses your concern and illustrates the 
broader applicability of the AR-M5P model in tackling natural issues.

Explainability of machine learning approaches used
Explainability of machine learning approaches in the context of AR‑M5P
Explainability in ML refers to the ability to describe the inner workings and decision-making processes of models 
in a way that is understandable to humans. This is crucial for validating model predictions, ensuring user trust, 
and facilitating regulatory compliance. In the context of our study, the explainability of the AR-M5P algorithm 
can be discussed as follows:

Model structure and decision rules
The AR-M5P algorithm combines autoregressive models with M5P model trees, which are inherently more 
interpretable than many black-box models. The M5P model tree generates decision rules in the form of linear 
regression functions at its leaves. These rules can be easily inspected and interpreted to understand how the 
model makes predictions based on input features. For example, the decision paths in the tree can be traced to 
see how specific variables contribute to the final prediction.

Feature importance
The AR-M5P model provides insights into feature importance by indicating which variables are used in the 
decision nodes of the tree. By analyzing the frequency and impact of features at different nodes, we can identify 
the most influential variables driving the predictions. This helps in understanding the relative importance of each 
feature in the context of the model. Further, we have done input combinations in this study thereby incorporating 
the relative importance of features with respect to others. Also, we determine the sensitivity analysis to find the 
most influential parameter in this study.

Model simplification
While AR-M5P is more interpretable than many complex models, further simplification techniques, such as 
pruning the decision tree, can enhance interpretability without significantly compromising accuracy. Simplified 
models are easier to interpret and explain, making them more accessible to non-technical stakeholders.

In summary, the AR-M5P algorithm offers several avenues for explainability, from its inherently interpretable 
model structure. By leveraging these methods, we can enhance the transparency and interpretability of our ML 
predictions, thereby fostering greater trust and understanding among users and stakeholders.

Limitations of the study
Predicting flow velocity in a vegetative alluvial channel can be quite challenging due to the numerous variables 
that require consideration. This study utilized a range of datasets from the literature, including the number of 
cylinders per unit vegetated area  (Nv), flow depth  (Df), channel slope (α), vegetation height  (hv), cylindrical 
vegetation diameter  (dv), and non-dimensional drag coefficient (βd). However, various factors, such as the shape 
of the channel bed, the Froude number, the amount of water flowing through the channel, and more, can all 
impact the prediction of flow velocity. Our dataset was missing these factors, so our proposed methods did not 
take their influence into consideration. In addition, the range of variables plays a crucial role in the training of 
the ML method. Although our dataset includes data from various field and laboratory studies, there are instances 
where the input variables exceed the values considered by the authors. In these two instances, the proposed 
method may not perform as well as it currently does. These concerns are common in most ML-based methods, 
as training heavily depends on the dataset and its characteristics.

Gaussian noise is a key concept in signal processing and machine learning. It refers to a type of random 
variation that follows a Gaussian distribution. By injecting Gaussian noise into the data, we impose a level 
of unpredictability specified by this particular distribution. This has the potential to significantly alter the 
performance and analysis of the ML approach. In our method, we apply 10%, 20%, and 30% Gaussian noise to 
each column sequentially. This methodology introduces a specified level of disruption into the data, which might 
be useful for assessing the resilience and ability of ML approaches to apply to fresh data sets. An investigation 
of the influence of Gaussian noise on ML method performance frequently includes analyzing the ML method’s 
ability to handle noisy inputs and determining whether it can still create correct predictions despite the increased 
variability (Table 6).
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Conclusion and future work
The precise forecasting of flow velocity in vegetated channels is important for estimating flooding and sediment 
transport. As a result of the non-linear interactions between vegetation and flow mechanics, machine learning 
methods have great potential for forecasting flow velocity with high accuracy. Using flow velocity measurements 
in natural and laboratory flume experiments, this research evaluated the performance of twelve ML models 
(Kstar, AR-Kstar, BA-Kstar, M5P, AR-M5P, BA-M5P, REPT, AR-REPT, BA-REPT, RF, BA-RF, AR-RF) for 
forecasting of flow velocity in an alluvial channel with submerged vegetation. Their performance was compared 
against those of four empirical equations, using a large number of datasets available in the literature. The main 
findings were as follows:

(1) Results from a sensitivity analysis indicated that the most influential factor on flow velocity was vegetation 
height, followed by flow depth, the ratio of cylinders to vegetation per unit area, channel slope, non-
dimensional drag coefficient, and vegetation diameter.

(2) The AR-M5P model had the greatest predictive ability. According to Nash–Sutcliffe Efficiency values, all 
machine learning models displayed ‘very good’ performance and outperformed empirical models which 
had ‘unsatisfactory’ performance. All models, except two empirical equations, underestimated flow velocity.

(3) Compared to standalone machine learning and empirical models, hybrid models have a superior forecasting 
power because they are more flexible in their internal structure and had capabilities of reproducing 
nonlinear interactions between vegetation, channel, and flow characteristics more effectively.

(4) Nearly all ML methods performed accurately when all input parameters were utilized in model construction. 
Input variables exhibiting low correlation coefficients with flow velocity were found to enhance the accuracy 
of forecasting. As a result, the optimization of machine learning models necessitates the consideration of 
a diverse array of input variable combinations.

These results of this study shows that hybrid ML models possess tremendous potential in forecasting flow 
velocity and examining non-linear flow-vegetation interactions, particularly in situations where the physical 
processes under consideration are not fully understood. Consequently, understanding this potential over a wider 
range of vegetation and channel morphologies, and considering how other factors affect the performance of these 
models, such as vegetation flexibility and spacing, is a crucial research avenue for river scientists.

Future work on flow velocity prediction in vegetated channels could explore and improve in a number 
of directions. Firstly, the ML method could enhance its ability to capture non-trivial data by incorporating 
cutting-edge deep learning architectures such as convolutional neural networks (CNNs) or recurrent neural 
networks (RNNs). Domain-specific properties related to fluid dynamics and hydrodynamics may enhance the 
prediction capacity of the ML approach. As a result, predictions for different flow patterns, vegetation types, and 
scenarios may be more accurate and reliable. Also, studying hybrid machine learning methods that combine 
data-driven machine learning methods with physics-based ML techniques could combine the benefits of both 
approaches, making predictions more accurate without sacrificing the ability to understand how physical things 
work. Furthermore, the acquisition of a larger and more diverse dataset encompassing a wide range of flow 
conditions, geometries, and sizes facilitates the training of machine learning algorithms that can handle real-
world scenarios with greater precision and reliability. Furthermore, the development of easy-to-use software 
tools or platforms for predicting flow velocity in vegetated channels using web-based techniques or Android 
apps can improve their acceptability. This way, we can practically implement our work on river flow management 
and environmental protection.

Data availability
Data will be made available on request from the corresponding author Vishal Deshpande at  deshpande@iitp.
ac.in .
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)2 , 0 ≤ IA ≤ 1

Table 6.  Gaussian noise added in input parameters by 10%, 20%, and 30% then performance analysis with 
best method (AR-M5P).

% Added Gaussian noise Index of agreement (IA)

0 0.988

10 0.872

20 0.831

30 0.820
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