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Abstract 
Legacy software is becoming increasingly ubiquitous, and many companies nowadays are facing the 

challenges associated with this phenomenon. In certain circumstances, re-engineering is the only 

logical way to deal with legacy software. Such projects, by their very nature, are subject to a wide 

variety of risk. The first research question of this study was concerned with the identification and 

investigation of different risks associated with one particular re-engineering project. The potential 

impact of those risks over a given development phase of the project, along with their actual impact 

and ultimate mitigation status, have been analysed. The second research question discussed the Scrum 

practices used on the project and evaluated their usefulness in supporting the management of risk. An 

interpretive Case Study approach has been followed, with the method of analysis being inductive and 

reflexive Thematic Analysis. The risks observed were themed around people, process, and 

technology. While technical and procedural risks are discussed in the literature, the presence of risk in 

social situations relating to re-engineering appears to have been overlooked. Although these risks do 

not necessarily have a higher impact, they were found to outnumber those encountered in other 

aspects of the project by a significant factor. Furthermore, the social risks were often either 

underestimated or not even recognised. It has also been found that Scrum is an appropriate approach 

to re-engineering projects. Since many of the re-engineering tasks in the case study were unknown at 

the beginning, the flexibility brought by Scrum was an important factor in the timely and successful 

mitigation of emerging risk. My contribution to the field is an initial set of risk categories including 

their impact on a re-engineering project, which are able to form the basis of further research into 

different types of re-engineering projects in order to produce a more generalised framework. It is 

anticipated that the results presented here will help future project teams to prioritise aeras of re-

engineering and put adequate risk mitigation into place. 
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1. Introduction 

1.1. The history of programming 
The concept of programming – that is to say the idea of setting out a sequence of instructions that 

could be followed by a machine – has fascinated humanity for centuries. Even before the invention of 

the modern programmable computer and the accompanying term “software”, which was first used in 

1958 (Fitzgerald, 2012), mechanical means of controlling the logical behaviour of machines was 

widespread. Take for example the 18th Jacquard loom, which used punched card, an early form of 

storing data sets, to enable the automatization of weaving complex patterns into cloth or mechanical 

interlocking in railway signal boxes setting routes and controlling signals. Even further back in history 

we find the polymath Al-Jazari, who invented a programmable castle clock in the 13th century, which 

contained pure hardware and no software (Tatnall & Davey, 2016). We can see that the ideas of 

“modern” programming, such as sequences and conditions, were developed centuries before the first 

modern computer.  

The first algorithm as we would recognise it was written by the mathematician Ada Lovelace, in the 

18th century (O’Regan, 2013).  Even though her algorithm remained theoretical, she is considered by 

many to be the first computer programmer. Fast forward to the 20th century, and Alan Turing 

proposed the Turing machine, a model of a universal computer, which gave a formal definition to the 

term computable (Strawn, 2014) and allowed mathematicians to begin exploring what would be 

theoretically possible to achieve with a programmable machine. Turing is not just the father of 

computer science, but also made a sizeable contribution to Artificial Intelligence (AI) with the Turing 

test. Furthermore, his work on codebreaking during the second world war famously led to the 

cracking of the German Enigma code using electro-mechanical devices (perhaps shortening the war 

by up to two years). 

These experiences pave the way for post-war work at Manchester university, which ultimately led to 

world’s first stored program computer, the Manchester Baby – a device which could be re-

programmed without making physical alterations using electric memory, and the dawn of the software 

age. However, the early years of computer software were still characterised by punched cards – over 

two hundred years after their first introduction, which were also used for the Apollo Mission that 

needed software to run on the computers of the landing machines. The first compiler, a program 

which translates programming languages to binary, was written in 1951 by Grace Hopper (Strawn & 

Strawn, 2015). Six years later the first major programming language, FOTRAN, designed by IBM for 

scientific computing, appeared. Including statements such as IF, DO, and GOTO, which were 

considered a big step forward. Soon more programming languages followed: Cobol, PL/1, Pascal, and 

C, which influenced many later languages such as Java, C#, C++ and Python, which are the major 

languages today.  

The year when computing truly became mainstream was 1975 (Wirth, 2008), which was triggered by 

two major events: affordable microcomputers appeared on the market, and a cheap, high-level 

compiler, at a time when compilers were very expensive, for Pascal. Programming became accessible 

for the average citizen, and soon software started pervading everyone’s life. In the 1980s companies 

saw the potential of user-friendly software, and soon Apple and Microsoft started producing fast and 

convenient operating systems. By 2008 over one billion personal computers were sold. By 2016 75% 

of the world’s population owned a smartphone (Sommerville, 2016). Today software engineering 

covers a broad spectrum of disciplines and shapes our everyday life. From health and science, over 

social science, management, and manufacturing, to security, and policing, software can no longer be 

imagined away from our lives (Kazman & Pasquale, 2020).  
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1.2. The software crisis and the introduction of software eningeering 
However, the rocket-like rise of software since the 1950s brought problems within the software 

development world. Within 10 years computer power increased rapidly and problems to be solved 

became more complex. The demand for useful and efficient software could not be met and led to a 

software crisis (Naur & Randell, 1969). Software projects never overcame this crisis and since this 

period software project delivery delays, budget overruns, and software developer shortages became a 

persistent problem. In 1991 the increased software demand resulted in a shortage of approximately 

1,000,000 software engineers (Johnson, 1996) and in 2021 it was estimated that the shortage had 

increased to 4,000,000 (Dayaratna, 2021). 

By the 1990s there was a proliferation of legacy. Bennett (1995) escribed the difficulties with legacy 

systems in 1995. The first applications were already 40 years in operation and remedial action had not 

been taken on the majority of them (Bennett, 1995). Clarity and program structure was sacrificed for 

program speed, and features were added in an ad-hoc manner. Legacy applications persist to this day, 

with up to 200 billion lines of legacy code still in use (Fanelli et al., 2016). 

Looking at how the software crisis manifested itself, including projects running late and over budget, 

unmet requirements, low quality software, and never delivered software, most of the problems came 

down to inappropriate project management (Fitzgerald, 2012).  In 1968, these difficulties were openly 

discussed at a NATO sponsored conference, where it was recognised that the current software 

development techniques were inadequate and new methodologies needed to be invented which could 

adapt to the fast-paced change in software development (Wirth, 2008). Retrospectively it was not 

surprising that poor project management was one of the major causes, as programming was seen as a 

pure mathematical discipline for a long time. Programmers were good at writing algorithms, but not at 

working on projects.  

1.3. Early software methodologies 
During this NATO conference, the term software crisis was first coined, and also the term software 

engineering, which refers to software development as a highly disciplined approach of writing and 

maintaining software (Wirth, 2008). Software engineering lifts software development from writing 

algorithms up to managing everything which is involved in the software life cycle, including the 

management of software projects. In the early years of software development, “code and fix” was the 

method employed (Awad, 2005). Due to the difficult nature of this approach, Winston Royce 

proposed the first methodology, the Waterfall model. Soon more methodologies followed, most of 

them based on sequential series of steps. These are known today as traditional or heavyweight 

methodologies. These methodologies were seen as the solution to the software crisis, however, it was 

realised after a while that even though, they were helpful, heavyweight methodologies only tackled 

parts of the problem. 

To visualise why traditional methodologies did not solve the problem completely, the “Iron Triangle” 

can be used. The triangle describes the three basic factors which influence software quality. These 

three factors are cost, features, and time. To ensure the success of the project, no more than two of 

these factors can be fixed without sacrificing quality (Lehman & Sharma, 2011). In traditional 

methods, the requirements are usually the fixed scope. This often leads to late or overpriced software, 

with features which might not even be relevant to the customer anymore.  

1.4. How Agile revolutionised software engineering 
However, around the mid-1990s a new methodology was mentioned in multiple publications 

describing new software development approaches such as Extreme Programming and Scrum (Fowler 

et al., 2001). In 2001 the Agile Manifesto was published, describing Agile as a “lighter approach to 

building software”. The manifesto states the values Agile represents, which are: 

• Individuals and interactions over processes and tools.  
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• Working software over comprehensive documentation.  

• Customer collaboration over contract negotiation.  

• Responding to change over following a plan 

Since then, Agile has increased in popularity. A survey conducted at Microsoft in 2007 pointed out 

that already 30% of the participants used Agile as a software development methodology (Begel & 

Nagappan, 2007). In 2011 the number increased to 66% highlighted by a different survey conducted 

by (Azizyan et al., 2011). A third survey conducted by the Xebia’s Agile Survey in 2012 revealed that 

even 80% of the respondents used Agile for software development (Matharu et al., 2015). The most 

recent numbers show an increase of Agile adoptions in software development teams from 37% in 

2020 to 86% in 2021 (15th State of Agile Report, 2021). 

The reason why Agile became so popular is that it increases the success of software development 

projects. A report published by The Standish Group in 2011 concludes that Agile is three times more 

successful than traditional software development approaches (Matharu et al., 2015). This success can 

be described with the Iron Triangle again. Instead of requirements being fixed at the beginning, in 

Agile the cost and the time are fixed, while the features are estimated and more flexible. This enables 

the software developers to prioritise the features of the application according to the business needs, 

which leads to on-time delivered quality software with the biggest value for the money.  

 

Figure 1: Iron Triangle Paradigm Shift. Photo: CleanPNG/Cowpaw 

The flexibility of requirements, and with that the re-evaluation of priorities during the process, makes 

Agile a superior approach for re-engineering legacy software. In 2014 Masood & Ali (2014) describe 

Agile, more specifically Scrum, as a handy approach in Brownfield (re-engineering) projects. Holvitie 

et al. (2018) also point out how Agile can be used to reduce technical debt. Legacy applications often 

contain a large amount of technical debt (Birchall, 2016). Further review of Agile used in re-

engineering projects will follow in the literature review chapter. 
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1.5. Introduction to this research 
The significance of this research stems from a lack of research papers about agile in re-engineering. 

Some grey literature sources even suggest that Agile is an inappropriate approach (Diana, 2010). 

Moreover, I have discovered that re-engineering risks are an uncharted area as the risks mentioned in 

the literature are barely overlapping, which will be discussed further in the following chapter. My 

proposed framework will be novel as no re-engineering framework to this extent exists. Rajavat & 

Tokekar (2011) proposed an agile re-engineering framework, but it takes decision concerning the 

success of a re-engineering project and does not analyse the whole re-engineering process nor the 

challenges and risks involved.   

The two research questions which will be answered in this thesis are: 

• RQ1: What types of risks are encountered in a software re-engineering project and how are 

they mitigated? 

• RQ2: How helpful are Scrum practices to support a software re-engineering process? 

To answer these questions, a case study of a re-engineering project using an Agile approach was 

conducted. The data collected during the case study were the risks encountered and how, if so, they 

were mitigated. Using Thematic Analysis the data was analysed to find patterns between the type, 

severity and time of the risk encountered, and if, risks were mitigated and how long it took. Moreover, 

a retrospective evaluation was undertaken of which aspects of Scrum supported the re-engineering. 

Both of these analyses were used to build an initial framework to describe risk identification and 

mitigation during a re-engineering process using an Agile approach. An overview of the research 

process is shown in Figure 2 below. 

 

Figure 2: Study process  

The remainder of this thesis is structured as follows. Chapter 3 discusses background information and 

literature about re-engineering legacy applications and associated risks. It also gives an insight in the 

existing re-engineering frameworks in the literature. Chapter 4 describes the research method, and the 

approach used for data analysis. In Chapter 5 a detailed insight into the case study is given. Chapter 6 

presents the risk analysis and results, and Chapter 7 presents and analysis of the different facets of 

Scrum used to support the re-engineering process. In Chapter 8 the findings are discussed and 

compared to already existing frameworks. Chapter 9 looks into the future and how this study can be 

used as the basis of a risk framework. Finally, Chapter 10 concludes my research and proposes 

suggestions to practitioners. 
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2. Literature Review 

2.1. What is legacy software? 
In general legacy applications can be described as old, but well-established software systems, which 

are also essential for business process support (Sommerville, 2000). However, there is not just one 

definition of legacy applications. Bennett (1995) defines legacy software informally as “large 

software that we don’t know how to cope with but that are vital to our organisation”. Seacord et al. 

(2003) state that software applications turn legacy when they begin to resist modification and 

evolution. Birchall (2016) describes it as often large, inherited software which lacks testing, but is 

also difficult to test, consists of inflexible code, and accumulated technical debt. Surprisingly, 

academics and practitioners have different ways of describing legacy systems. Academics tend to look 

at them as obsolete systems which consist of outdated technology, whereas practitioners look at them 

as core company processes that need updating (Khadka et al., 2014). A survey, conducted by Khadka 

et al. (2014), compares 28 practitioners‘ perceptions to those of established academics. The most 

important, but also obvious, finding is that legacy systems are critical. One of the participants would 

go even so far to say that a legacy system is business critical by definition. This is because where 

legacy applications are still in use many years after having been developed, they are reliable systems 

built with proven technology. The definitions important for this study are those of Sommerville and 

Bennett. 

There are clearly benefits of legacy applications as there are still 180-200 billion lines of legacy code 

in use (Fanelli et al., 2016). However, both sides, academics and practitioners, agree on the fact that a 

legacy application is inflexible and expensive to maintain, although practitioners often hesitate to 

upgrade a system if it is not broken. Fanelli identifies a number of drivers for practitioners to 

modernise legacy systems. Over 80% of participants reported that needing to be “flexible to change”, 

and the “high cost of maintenance” were strong or a very strong drivers for modernisation. The next 

most important factors, indicated by over 70% of respondents were “faster time to market”, and “lack 

of experts/documentation”. Less important, but still significant, drivers were “creating business 

opportunities”, and “lack of suppliers”.  

2.2.  What makes legacy software legacy? 
The source of high maintenance is often so-called technical debt. Almost every software developer 

defines technical debt in a slightly different way, but the meaning stays the same. The term technical 

debt is often used as a metaphor to describe numerous software quality problems as it can be used to 

send a strong signal to technical and non-technical audiences. If technical debt is ignored, it may get 

worse (Ernst et al., 2015). It is agreed that technical debt is tightly connected to software quality. 

Eberhard Wolff (Wolff & Johann, 2015) proposes two different types of software quality: an external 

one, which is measured by the customers, and an internal quality, which can only be perceived by 

programmers. This internal quality can be described as anything that makes extending and 

maintaining the code easier or more difficult, including tests, architectural styles, and coding issues. 

Sven Johann adds that internal quality will eventually affect external quality too, which makes it to a 

companywide problem. Buschmann (2011) describes technical debt as a trade-off between writing 

clean, but expensive code and writing messy code, which can be delivered cheap and fast. The 

maintenance cost of the latter is higher once delivered. Buschmann compares technical debt with 

financial debt by saying “it supports quick development at the cost of compound interest to be paid 

later”.  He adds that over time this technical debt needs to be paid back.  

2.3. How do we deal with legacy software? 
Sommerville (2000) states that it is necessary for companies to re-engineer legacy applications to 

keep them in service. The term re-engineering applies to a set of activities and techniques to tidy up 

the underlying structure of the application code without affecting its functionality. These activities 

include the analysis, redesign, restructuring, and re-implementing of the software system (Jain & 
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Chana, 2015). The general aim of such activity is to reduce the ongoing maintenance cost of a system 

by improving its quality (Singh et al., 2019). Re-engineering is also an umbrella term for specific 

processes such as forward engineering, reverse engineering, and refactoring (Jain & Chana, 2015). 

Opdyke (1992) defines refactoring as the process of changing a software system in such a way that it 

does not alter the external behaviour of the code, yet improves its internal structure”. Fowler (2018) 

expands the definition by describing it as “a change made to the internal structure of software to make 

it easier to understand and cheaper to modify without changing its observable behaviour”. Refactoring 

does not necessarily needs to take place during a re-engineering process, but is a continuous process 

throughout the development cycle (Sommerville, 2016). Sommerville (2016) describes it as 

“preventative maintenance” which reduces the problems of introducing future features. Forward 

engineering is the traditional re-engineering process of moving from high-level abstractions, logical 

designs to the physical implementation of the system (Rashid et al., 2013). Sommerville (2000) 

describes the difference between software re-engineering and forward engineering, stating that 

forward engineering starts with the system specification and involves the design and implementation 

of a new system whereas re-engineering starts with an existing system. Nonetheless, forward 

engineering can be employed during re-engineering processes to recover design information from the 

legacy application and utilise this data to modify or reconstitute the system, thereby improving its 

overall quality (Pressman, 1997). Reverse engineering is the opposite process – a working legacy 

system is analysed in order to create an abstract design. This is done to get a fundamental 

understanding of the structure of the legacy application and how to modify it without having suitable 

documentation (Ghezzi et al., 2003). Before reverse engineering work can be undertaken, so called 

“dirty source code” needs to be restructured to turn it into clean and easier to read source code which 

then can then be abstracted (Pressman, 1997). Extra abstraction is the core activity of reverse 

engineering, which includes extracting meaningful specification of the performed processing, the user 

interface, and the database. The final specification is completed after more refining and simplifying 

work. Modernisation is an umbrella term describing the process needed to be undertaken when 

maintenance of a system is no more appropriate to meet the new demands and a more thorough 

rewrite is required (Bakar et al., 2019). All of these processes are used to remove technical debt. 

2.4. Risks in software re-engineering 
The question now to ask is if there are so many strong drivers to modernise legacy system why are re-

engineering processes so often abandoned (Fanelli et al., 2016)? The reason for the reluctance to 

upgrade software can be summarised in one word: risk. Rashid et al. (2013) identify six categories of 

risks which can occur during a re-engineering process according to their frequency mentioned in 

papers. These are: user satisfaction, cost, forward engineering, reverse engineering, performance, and 

maintenance. User satisfaction is essential for every company, and hence reliable measurements need 

to be taken as re-engineering risks introducing unexpected behaviours to the target system, potentially 

impacting user friendliness. Upgrading legacy software is often carried out in order to create a more 

cost-efficient system, but risks in cost benefit can include high maintenance cost after re-engineering, 

and poor-quality processes for re-engineering and inconsistency of business plans. The process of 

moving from high-level abstractions to the physical implementation in forward engineering risks 

difficulties in migrating existing data to the new system or in objects not being able to be integrated to 

the new system. The counterpart of forward engineering is called reverse engineering and its risks 

include the difficulty of capturing requirements and efficient design from source code, and not 

capturing all existing business knowledge embedded in source code. One of the key factors of the re-

engineering process is to improve the performance of the system. If the performance is poorer than at 

the start, one of the basic goals has failed. Risks here include non-portability of the new system. The 

last category, improving maintenance, is one of the key goals of reengineering. The risks here include 

re-documentation and data restructuring, as well as recovery of legacy systems. Khadka et al. (2014) 

also asked participants about the constraints of modernising legacy systems. The most challenging 

constraints mentioned were time constraint for finishing the work, quickly followed by the availability 
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of funding. Other significant challenges were predicting ROI (Return of Investment), data migration, 

lack of knowledge, and adequate testing. Additionally, resistance from inside the development team 

can occur as staff may fear their specialist knowledge will become redundant once the legacy system 

has been modernised. Practitioners also reported: “… they [staff] see legacy systems as their baby… 

they might not share their knowledge.” 

2.5. Risk management in software engineering 
This leaves us with the question how can we mitigate these risks? The main challenge for software re-

engineering is to make improvements whilst simultaneously mitigating risks and keeping the legacy 

application up and running. Such a process can be more risky than new development as the 

operational integrity of the application needs to be maintained throughout (Rashid et al., 2013). Thus, 

it is crucial that risk assessment, risk analysis and management, and risk mitigation are regularly and 

systematically undertaken during the re-engineering of a legacy application.  

Boehm (1991) divides risk management into two main steps: risk assessment and risk control. Both of 

these main steps have three subsidiary steps. The first sub-step of risk assessment is the risk 

identification which produces a list of potential risks for the project. Techniques to identify risks 

include checklists, examination of decision drivers, or decomposition. The following step, risk 

analysis, deals with the assessment of the loss probability and magnitude of each identified risk. 

Performance model, quality-factor analysis, or cost models are typical techniques. The final task of 

the risk assessment step is the risk prioritisation, which ranks the identified and analysed risks. 

Preferred techniques include risk exposure analysis, risk reduction leverage, or group-consensus 

techniques. The first task of the second main step, risk control, is risk-management planning, which 

helps you to address each risk via e.g.: information buying, risk transfer, or risk avoidance. Common 

techniques include cost-benefit analysis, checklists of risk-resolution techniques, and standard-risk 

management outlines. The next step is risk resolution during which risks are being eliminate or 

mitigated by the use of e.g.: prototypes, benchmarks, or incremental development. The last step is risk 

monitoring deals with the tracking of the project’s progress towards the resolving of the identified and 

handled risks. It also includes taking any corrective action if necessary. Milestone tracking and a top-

ten risk-item list, which is highlighted regularly, are suggested techniques for this step.  

To be able to fully implement risk management, Boehm (1991) suggests the use of risk-driven 

software-process models like the spiral model, which was also first described by Boehm. The spiral 

model has a cyclic outline, as opposed to the linear one of the waterfall model, in which each cycle 

consists of four stages (Ghezzi et al., 2003). The first stage sets the objective and evaluates 

alternatives and identifies any potential constraints. Phase two deals with the identification of risks, by 

using prototyping or simulations, and activities for mitigation are put into place. Moreover, the 

alternatives are evaluated. The product is developed and verified in stage three. The strategy the 

development follows is being dictated by risk analysis. During the final stage, the results of the stages 

traversed so far are being reviewed and the next iteration, if any, will be planned. The reason why the 

spiral model is recommended for implementing risk management into a project is because every 

sequence of life-cycle activities are determined by risk analysis (Boehm, 1991). 

2.6. Proposed frameworks for risk management in re-engineering 
A few authors have suggested frameworks for risk management during re-engineering. Clemons et al. 

(1995) suggested a framework for the identification and management of risks. Their approach is to 

support re-engineering as well as achieving strategic advantage by maintaining consistency between 

the internal needs of the organisation and the demands of the external environment (i.e., customers 

and other stakeholders). The authors also criticise that actions to reduce political risks are too 

conservative as they protect the project manager than supporting the re-engineering process. 

Furthermore, the authors make some suggestions based on experience with two Fortune 100 

companies to reduce political and functionality risks. The avoidance of confrontation could move the 

espoused strategy closer to the more conservative strategy-in-use which may be fatal. They 
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recommend the use of action science to uncover private assumptions and privately held strategies 

which could lead to informed discussions of different positions so that political risks can be assessed. 

However, they warn that in some cases discussions could also threaten the success of the project in 

form of unskilled interventions, but also forcing participants to abandon their defensive routines and 

taking the espoused position.  

Rajavat and Tokekar (2011) propose a framework for decision driven risk engineering called 

ReeRisk. This theoretical framework serves to identify and eliminate risks in the early stages of the 

development cycle. The process starts by analysing the current state of legacy system and defining the 

requirements for the target system. The legacy system is used to develop a re-engineering strategy 

through which the target system will be developed. The risk engineering framework provides support 

for decisions made about the re-engineering process. The framework consists of three domains or 

aspects, which are system, managerial and technical. Risks are identified and measured for each 

domain. The system domain is responsible for maintaining the product and service to its customers. 

This domain holds two types of models: the infrastructure perspective model and the stakeholder 

perspective model. The managerial domain deals with the economic side of the project, which 

includes costs of the target system and the impact of market factors. It includes the economic 

perspective model and the business perspective model. The technical domain is concerned with the 

software functionality and quality including its technology. The domain consists of the quality 

perspective model and the functional perspective model. 

2.7. Re-engineering approaches and Agile in re-engineering 
Necessary for a successful re-engineering process is also the chosen approach. The classic approaches 

are “The Big Bang” approach, which replaces the whole system all at once, the “Phase-out” approach, 

which adds new software incrementally, and the “Evolutionary” approach, which is similar to the 

“Phase-out” approach, but where sections are chosen by their functionality, instead of their structure 

(Rosenberg & Hyatt, 1996). Fanelli et al. (2016) describe two other major categories, which are the 

“Database first”, and “Database last” approaches. These two can be categorised into the 

“Evolutionary” approach. While the “Database first” approach starts by migrating the data to a 

modern database, “Database last” does it at the end. An approach less associated with software re-

engineering is Agile as a lack of academic papers shows. Some people would even argue that “re-

engineering in an Agile point of view just can be refactoring” as no user stories are faced (Diana, 

2010). However, every project has its stakeholders, and so its requirements from which user stories 

can be derived. Moreover, Agile, especially Scrum, is designed to deliver incremental additions while 

software is in use as Scrum emphasises a working product (fully integrated and tested) at the end of 

every Sprint. Additionally, Agile methodologies are based on the idea that many events cannot be 

anticipated beforehand, and therefore it is best to plan tasks in a flexible way as the project progresses 

(Masood & Ali, 2014). As one of the risks of software re-engineering is the unpredictability of tasks 

and challenges, Agile approaches can be a real benefit to upgrading legacy systems.   

Singh et al. (2019) proposed a framework, which is supported by a case study, using Agile 

methodology as the flexible methodology fits nicely to the requirements of a re-engineering process. 

Their framework follows the standard pattern of a Scrum lifecycle. It starts of by ensuring the release 

plan including the iteration plan and the estimation of cost. All requirements are put in the product 

backlog. The requirements which will be implemented in the upcoming Sprint are put into the Sprint 

Backlog involving the whole Scrum team and the stakeholders. This also includes the estimation of 

velocity and the Sprint cost estimation. To estimate the size of user stories, story points are used. Each 

three-week sprint cycle is designed to accommodate forward engineering, code alteration and reverse 

engineering. After every sprint, retrospective actions are performed to confirm the correct 

implementation of the user stories. At the end of the lifecycle the application is integrated into the 

system by a big bang approach. 



13 
 

2.8. Gaps of previous research 
However, all the mentioned frameworks ((Clemons et al., 1995), (Rajavat & Tokekar, 2011), and 

(Singh et al., 2019)) fail to describe risks that could occur during a re-engineering project or their 

impact, which would help project teams to prioritise their tasks and put mitigation in place before 

some risks might occur. Clemons et al. (1995) did describe some risk categories, however comparing 

them to Fanelli et al. (2016) risk categories, shows that there is barely any overlap between the two, so 

clearly some risk categories are missing in the framework. Moreover, the paper fails to specify any 

risks. Rajavat & Tokekar (2011) framework rather focuses on the decisions which need to be made 

during a re-engineering project instead of the risks which can appear. 

Only one of the frameworks, which is the one from Singh et al. (2019), suggests a methodology for 

the re-engineering process. However, they only tested their framework over a single Sprint while 

reducing a set of code complexity. 

This dissertation is based on an in-depth empirical study of a single re-engineering project involving a 

legacy application which had to be kept operational throughout. From this study I have developed a 

risk framework that will help practitioners with the identification and classification of potential risks 

and ways in which they can be mitigated. I have also assessed how helpful Scrum practices are during 

such a process.  

  



14 
 

3. Methods 
To answer the research questions about which risks emerged during a software re-engineering project, 

how they got mitigated, and how Scrum supported this undertaking, an interpretive case study 

approach was taken (Walsham, 1995). This was based on the initial phase of a re-engineering project 

(see Case Study).  

3.1. The justification of using a case study and the comparison to action research 
It might not be obvious in the first place why a case study was chosen over an action research study as 

I was directly involved in the project. Let us compare these two research approaches first. A case 

study can be described as a method in which a phenomenon is investigated within its real-world 

context (Yin, 2018). The researcher wants to get an in-depth understanding of the phenomena 

(Dobson, 1999). A case study can be approached in two different ways: positivist, and interpretivist.  

Walsham (1995) describes the positivist approach in contrast to the interpretive one. Positivism is an 

approach that believes that facts, and only facts, represent science. In contrast, the interpretive 

approach states that facts and values are intertwined, and both are involved in scientific knowledge. 

The interpretive researcher could also take the position that “scientific knowledge is ideological and 

inevitably conducive to particular sets of social ends”. Walsham describes interpretive research in this 

field as an ontology with regard to the human interpretation of computer systems. It is supported by 

either the theory of ‘internal realism’, which views reality as an intersubjective construction or 

‘subjective idealism’ where each person has its own idea of reality. In contrast an action research 

study is an empirical research method which includes the researcher’s active involvement in the 

project (Dresch et al., 2015). Action research uses an iterative pattern following two distinct stages: 

first diagnosing, which is about understanding the problem, and second a therapeutic stage, which 

addresses the problem. The focus is on the resolution and better understanding of a problem, but also 

the “improvement of a practice over a period of time”.  

The general idea of case studies is that they involve a clear division between the researchers work and 

the activity that is being researched (Petersen et al., 2014). However, Walsham (1995) states that most 

researchers influence the work of those people who are being researched, even if the researcher just 

shares a concept with them. Furthermore, the researcher holds two distinct roles during a case study: 

the one of being the outside observer, and the one of being the involved researcher. None of these 

roles can be considered as objective from an interpretive perspective given that the researcher 

analyses the data in their own subjective way. The involvement still could be considered as a threat to 

the validity as the researcher could get too involved in the project and lose sight of the reason for the 

research (Dawson, 2005). On the other hand, this approach has strengths as the researcher is deeply 

involved at the source of the data and has a good understanding of the issues faced during the 

software engineering process. A point of criticism, mentioned by Yin (1989), is how a single case 

study can be generalised.  Walsham (1995) introduces four different types of generalisations 

supported by examples from information system case studies. The first type is the development of a 

concept as a single concept can be part of a broader network or a fusion of multiple concepts. The 

next type is the generation of a theory by constructing a theoretical framework. Another suggested 

way of generalisation is drawing of specific implications in which a tendency can be described. Last 

but not least, the contribution of rich insight describes the generalisation which readers gain from 

studying a report and result from an interpretive case study. 

There were several reasons why a case study rather than an action research methodology was chosen 

even though I was directly involved in the re-engineering project. The most important was that no 

research information or suggestions for changing practice were fed back to the development team 

during this re-engineering project which is what would have happened if it had been run as an action 

research study. Also, the re-engineering work started before the research so the actual analysis 

happened retrospectively. Moreover, I wanted to immerse myself in the re-engineering work 
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completely to gain an in-depth understanding of the phenomena without concurrently learning how to 

do action research. Finally, the team was very small, had little experience of re-engineering, and an 

external consulting company were involved so it would have been very difficult to run it as action 

research project. 

3.2. Application of case study in this project 
Yin (2003) describes the typical five stages of a case study: design, preparation, data collection, 

analysis and reporting. The first phase is the design of the case study in which objectives are defined, 

in this case it was the re-engineering process of a legacy application. The second phase is about the 

preparation for data collection, which includes the definition of the procedure. The data came from 

different sources. One of the most important forms of my data were the tasks in form of user stories, 

which were tracked on a Kanban board. The Kanban board was held online, which made it possible 

for everyone involved in the development process having access to it. The reason why it was so 

important for my dataset is that it made it traceable when which tasks had been carried out, when 

which user stories had been added as challenges occurred and risks needed to be handled or mitigated, 

or if tasks were delayed. It was not enough to know which tasks had been carried out when, but it was 

important to find out why. The meeting notes and the reflective field journal were the answers to this 

question. The meeting notes documented the Stand-Ups, Sprint Reviews, and Customer Demos. The 

most important decisions were made during these meetings. The field journal consisted of notes that 

appeared important about the code or decisions that have been made. A smaller, and not so important 

data source was the code basis of the legacy application. It was held in a repository on GitHub, where 

multiple people had access to. With a repository it can be ensured, that code changes can be undone, 

and to get an overview of the evolution of the code. Furthermore, bugs can be reported there. The 

code was important as it showed how the application was formed during the modernisation process. 

Collecting the evidence, which was the third phase, was done by going through the meeting notes, and 

the Kanban board, and looked which risks when occurred, and what or if anything was done to 

mitigate them. But also, the repository was studied to see what was done with the code and when 

certain risks were tackled. 

3.3. Thematic analysis and its application in this project 
The fourth phase was the data analysis, which in this case used a Thematic analysis (TA) approach to 

see how risks were handled and mitigated. TA can be applied when data needs to be interpreted, 

coded, and categorised (Alhojailan, 2012), or in other words to identify and interpret recurrent themes 

or patterns in data (Clarke et al., 2015). This project used an inductive, and reflexive TA. It was 

inductive since no pre-existing codebook was used, and the analysis was based primarily on the 

collected data. A pure induction was not possible, as the analysis had already been shaped by 

assumptions and prior knowledge of the researcher. To get a better understanding the reflexive aspect 

of TA, we need to understand  Braun and Clarke's (2021) view of qualitative research which is also 

referred as “Big Q”. It rejects the idea of producing a general meaning as it is understood to be always 

tied to the context in which it appears. Qualitative research focuses on situated meaning, instead of 

searching for the truth or a theory as the quantitative research does. As the qualitative research accepts 

the fact that the truth is situated, or even multiple truths exist, the contribution is seen as a part of a 

rich tapestry, instead of searching for a singular truth and stepping towards to a complete, and perfect 

understanding. The researcher is seen as an interpreter of meaning and embraces their position by 

being seen as a subjective storyteller, instead of as an objective observer who is frightened of being 

biased and invalidating their research. The purpose of the data, which is rather text and meaning 

instead of numbers, is not to gain a generalised understanding, but an in-depth perception.  

Braun and Clarke (2021) describe the analytic process which applies the reflexive TA method to the 

work in six phases: (1) dataset familiarisation, (2) data coding, (3) initial theme generation, (4) theme 

development and review, (5) theme refining, defining and naming, and (6) writing up. The 

familiarisation happens by re-reading the data until the researcher is deeply and intimately familiar 
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with the dataset. The dataset in this case was a list of all the risks found in the notes, the Kanban 

board, and the repository. During the data coding, code labels are put on segments of the data. The 

coding is aimed to put a single meaning or concept on these segments. The level of coding can reach 

from surface meaning (semantic) to an implicit meaning (latent). The code is not just used to 

generalise the data, but also to capture the analytic take. In this research project, the codes put on the 

data reflect the risks which occurred during the project. Some of these data segments have the same 

code as the same risk arose multiple times. The coding is semantic and tries to state the risks 

explicitly. Some risks (codes) were difficult to identify as they were covered by the problems and 

work, they created. Moreover, it needs to be mentioned that these codes are my subjective 

interpretation of what the risks are. In the third step, initial theme generation, the researcher tries to 

identify any patterns across the dataset. By clustering codes meaningful answers to the research 

question might appear. The themes will not just appear, rather the researcher constructs them based on 

their research question, the data, the researcher’s knowledge, and insights. Themes are trying to catch 

a broader, shared meanings. Once potential themes are identified, coded data are collated to candidate 

theme. In this case, the themes and sub-themes show in which situation the risks appeared. It puts the 

different risks into categories to see if a pattern can be found between different risk categories, e.g.: 

Did specific risk categories emerge during a specific time? How severe was the impact of certain risks 

through the lifetime of the project? Have all risks been mitigated? If not, can a pattern be found in the 

different types of risks? The candidate themes need to be reviewed in the fourth step to ensure it fits to 

the data set. The researcher needs to go back to the full dataset, and ask themselves if each theme tells 

a compelling story or does it highlight the most important patterns? Radical revision is a normal 

process during this step, which can lead to the collapse of whole themes. The relationship between 

candidates also needs to be considered. In this project the sub-themes changed a few times until they 

reflected the different types of risk in the best possible way without having themes with too many or 

too few risks. A result of this was that some risks (codes) appear in multiple themes as they fit into 

multiple risk types. The fifth step deals with giving every theme a concise name and a brief synopsis. 

Analysis still can happen during this step if noticed that a theme needs more development. The name 

of the themes and sub-themes reflects the situation in which the risk occurred. The last step, writing 

up, sounds misleading, as the writing should already have started around step 3 in the form of notes. 

The more notes generated during the steps, the more it can feed into the formal writing process. The 

aim of this step is to write a persuasive narrative about the researcher’s dataset that addresses their 

research question. The results of the analysis are discussed in chapter 5.  

The final phase of the case study deals with the reporting of the data, which talks about the basis of a 

risk framework and how Scrum/Agile aspects supported the re-engineering project and the mitigation 

of its risks. 

3.4. Researcher’s involvement during the re-engineering process 

As mentioned in the beginning of this chapter, I, the researcher, was involved in the re-engineering 

process of the analysed legacy application. The small core team of developers working on a day-to-

day basis, also formed part of a larger Scrum team, which involved internal stakeholders as well as 

external consultants. The full Scrum team is described in more detail later in Chapter 6.2. The core 

development team, which was the context in which the research was conducted, was formed as 

follows: I, a female junior developer, completed the main re-engineering work. It might also be 

important to mention that although a competent C++ developer, I had no previous experience with the 

MFC library which was a major part of the legacy system. The remainder of the development work 

was shared with two male senior developers of whom one is the original developer of this application, 

therefore, the most important contribution made by him was his intimate knowledge of the legacy 

application. The other senior developer has extensive knowledge of (deprecated) C++, so his technical 

support was essential for the success of the re-engineering work undertaken. 
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The external consultant company was not involved any development activity, although they 

participated in some stand-up meetings and most other scrum events in a support role.  
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4. Case Study 
This case study is about the first phase of the re-engineering process of a legacy application. The two 

goals for the first phase were to make the application commercially viable again, and to turn it into a 

multi-developer application, while keeping it functional, both of which were achieved. My 

contribution, which was mainly from the development perspective, started with phase one during 

which I was the main software engineer. Some initial re-engineering had been done before my 

contribution started, which included the upgrade to a modern Integrated development environment 

(IDE). This work is categorised as Sprint 0 in the following timelines. The software was initially built 

in 1998, it was audited by an external company January - February 2021, Sprint 0 ran March – August 

2021, and Phase one ran September 2021 – August 2022. Phase two began in January 2023. 

4.1. The Application 
The development of the application started 25 years ago. The system was written in non-standard C++ 

and was built by a single developer for a research project. Over time it was constantly expanded, not 

just for additional functionality, but also for research purposes. Due to the absence of an architecture, 

and the constant extensions, the code quality worsened over time and the code base became very 

messy as it included numerous redundant elements. All of this contributed to the accumulating 

technical debt, on top of which there was a constant need for quick bug fixes. 

Several versions of this system exist. A demo variant is used for sales and other demonstration 

purposes. Another version is used for training. Within the main product, a version for more 

experienced users exists. Two different solutions of the system are provided: a desktop version using 

MS Windows native user-interface, and a browser-based cloud version using a WordPress front-end.  

4.2. The Technical Debt Audit 
Before the re-engineering started, the application was audited by an external consultant company. The 

audit was carried out to evaluate the status of the system and covered a technical review of the 

software source code and documentation, but it also included suggestions to improve the quality of 

the code. The audit was released in February 2021. The two dimensions of the audit, which are 

pertinent for the re-engineering are comments about the software itself, and the process. Comments on 

the software were categorised into six factors where technical debt were found: coding standards, 

testing, build and deploy, architecture and system design, collaboration, and technology stack and 

infrastructure. The important process dimension was the software development process. 

4.3. The Re-engineering Process 
The following sub-chapter describes the technical debt identified by the consulting company in their 

audit, and how it was resolved if it was tackled during the first phase. The sub-chapters are structured 

as the categories in the audit. 

The decisions of which work needed to be done in Phase 1 were based on the two goals for the phase: 

making the application commercially viable again and turning the system into a multi-developer 

software. 

4.3.1. Software 

4.3.1.1. Coding Standard 

Technical Debt Solution 

Use of god classes/functions 

• Redundant code has been removed 

• Large files have been broken into 
smaller ones, each with a single purpose 

• Deleted unnecessary class 

Inconsistent capitalisation of file and folder 

names 

• Files and folders have been renamed to 

achieve consistency in Camel Case 



19 
 

Hard coded sensitive data 

• Passwords in plain text have been   

removed from the code and encrypted   
and saved in a file 

Absolute file paths 
• Absolute file paths turned into relative 

file paths 

Use of magic numbers Will be done in Phase 2 

Large conditional statements Will be done in Phase 2 

Hard coded database names Will be done in Phase 2 

Hard coded user data Will be done in Phase 2 
Table 1: Technical Debt - Coding Standard 

Four elements of technical debt were identified as needing to be removed in phase 1. The first was the 

god classes/functions. A “God Class” is a single class with multiple purposes. One of these classes 

had 35,000 lines of code. The principle of “God Functions” is the same, but on a function/method 

level. The course of action to reduce this technical debt was to break up these classes into multiple 

classes, each with a single purpose.  The second technical debt elements that needed removing in 

Phase 1 was the inconsistent capitalisation of file and folder names. These were renamed to achieve 

consistency in camel case. The third element of technical debt, which posed a security gap, was hard 

coded sensitive data in form of passwords. To close this gap, passwords in plain text were removed, 

encrypted and saved in a file. The final element of technical debt to be removed in Phase 1, which was 

necessary to turn the system into a multi-developer application, was absolute file paths. These were 

turned into relative file paths. The timeline of the re-engineering work regarding the coding standard 

can be seen in Figure 3. 

The remaining technical debt will be removed in Phase 2, as it was not necessary for either turning it 

into a multiple-developer application, nor for re-commercialisation. 
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Figure 3: Timeline of re-engineering work regarding the aspect of coding standard  
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4.3.1.2. Testing 

Technical Debt Solution 

Manual user acceptance tests 

• Detailed, documented user acceptance  

have been created 

• Automatic user acceptance tests have  

been created 
 

No unit tests Will be done in Phase 2 

No integration tests Will be done in Phase 2 
Table 2: Technical Debt – Testing 

The technical debt which needed to be removed in Phase 1 regarding the testing was that the manual 

user acceptance tests needed to be replaced with automated ones, in order to speed up testing. For this 

purpose, detailed, documented user acceptance tests were created, and a menu item to run the 

automated test was added. The timeline of the re-engineering work regarding the testing of the 

application can be seen in Figure 4. 

Unit and integration tests are important indeed, but they were not essential for the goal of Phase 1, and 

therefore they will be added in Phase 2. 
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Figure 4: Timeline of re-engineering work regarding the aspect of testing  
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4.3.1.3. Build and Deploy 

Technical Debt Solution 

No automated build tools • Visual Studio is used as the build tool 

No deployment tool 

• Set up release version of application 

• Installer has been created as deployment 

tool 

• Added security key to installer 
Table 3: Technical Debt - Build and Deploy 

An important factor of a modern application is to have automated build tools, which saves the project 

settings and build instructions along with the code. Visual Studio was chosen and used as the build 

tool to remove this technical debt. Second, a major criterion for releasing an application to market is a 

deployment tool. The first step to achieve this was to set up a release version of the application, then 

to create an installer as a deployment tool. The installer also included a new splash screen, the C++ 

Redistributables – to enable offline installations -, and a prompt to ask the user for a license key. The 

timeline of the re-engineering work regarding building and deploying the application can be seen in 

Figure 5. 
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Figure 5: Timeline of re-engineering work regarding the aspect of building and deployment  
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4.3.1.4. Architecture and System Design 

Technical Debt Solution 

No architectural style Will be done in Phase 2 

Single directory for source code 

• Files and folders have been structured  

based on functionality, and named 
based on naming conventions 

Same development approach for cloud and 

desktop version 

Will be done in Phase 2 

Table 4: Technical Debt - Architecture and System Design 

The architecture and system design technical debt that needed removing were related to the goal of 

moving towards a multi-developer system. The source code was bundled in a single directory, and no 

project structure was given. The files and folders were structured based on their functionality, and the 

folders named based on naming conventions. This makes it easier for new developers to understand 

the structure of the project and can also be considered as the first step towards creating an 

architecture. The timeline of the re-engineering work regarding the architecture and design can be 

seen in Figure 6. 

 

An MVC (Model-View-Controller) architecture will be implemented in Phase 2, and the application 

will be broken up in three distinct parts: a standalone C++ library, a desktop application, and a client-

server application. 



26 
 

 

Figure 6: Timeline of re-engineering work regarding the aspect of architecture and system design 
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4.3.1.5. Collaboration 

Technical Debt Solution 

Only ad hoc collaborations with another team 

within the university 

• A second software developer has been 

employed and trained 

Some use of communication tools 

• GitHub has been set up for version  

control, distribution, and issue tracking 
Table 5: Technical Debt – Collaboration 

The system was mainly developed by a single developer with some ad hoc collaboration with another 

team within the university. In order to help with the re-engineering work, I was employed and trained 

as a second developer. The training included running the system as a user two dozen times, along with 

creating a detailed set of user acceptance tests. A major step towards a multi-developer application 

was to set up a communication tool. GitHub was identified and set up as a tool for version control 

distribution and issue tracking. The timeline of the re-engineering work regarding the improvement of 

the ability to collaborate with other developers can be seen in Figure 7. 
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Figure 7: Timeline of re-engineering work regarding the aspects of collaborative working 
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4.3.2. Process 

4.3.2.1. Technology Stack and Infrastructure 

Technical Debt Solution 

Use of deprecated version of C++ 

• Upgraded to latest C++ ISO and MFC 
standards 

• Identified and fixed compilation errors 

• Ensured full functionality of system 

Use of non-supported IDE 

• Migrated system to modern IDE  

(Visual Studio 2019) 

Use of external libraries, which are outdated or 

alarming 

• Created an inventory of the third party  

libraries 

• Assessed external libraries 

• Put a façade on deprecated/unsafe 

libraries to enable fast exchange 

No use of declarative UI Will be done in Phase 2 
Table 6: Technical Debt - Technology Stack and Infrastructure 

As the technology of the system had not been updated since it was first created, a significant 

proportion of it was deprecated. The first thing to be done in Phase 0, before my involvement, was the 

migration of the system from Visual C++ 6 to a modern IDE, in this case Visual Studio 2019. During 

this process, the older version of C++ was upgraded to the latest ISO and MFC standards, and 

compilation errors were identified and fixed. When my involvement started, the first thing to do was 

to check the full functionality of the system after the migration. The bespoke user acceptance tests 

were the outcome of this procedure. A full inventory of the external libraries was created to ascertain 

which are currently supported, and which are a security risk. A façade was put on the deprecated 

and/or unsafe libraries to enable fast exchange.  

It was also planned to re-compile Matlab files to DLLs with the newest compiler. However, the most 

recent compiler only compiles Matlab files to 64-bit, which is not compatible with the 32-bit system. 

The alternative would have been to use an older version of the Matlab compiler, which is still 

significantly more modern than the one the original DLLs were compiled with, but the newly 

complied DLLs were too different to make them compatible with the application. After it was 

checked that no security threats arose from the old DLLs, it was decided to leave the old DLLs and 

wait to compile 64-bit DLLs until Phase 2. The timeline of the re-engineering work regarding the 

technology stack and infrastructure can be seen in Figure 8. 

An upgrade to the User Interface (UI) will be made in Phase 2 in form of a declarative UI. 

Furthermore, the application will be upgraded to a 64-bit system. 
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Figure 8: Timeline of re-engineering work regarding the aspect pf technology stack and infrastructure 
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4.3.2.2. Software Development Process 

Technical Debt Solution 

No use of modern development process • Implemented a Scrum process 
Table 7: Technical Debt - Software Development Process 

The audit noted that the implemented development approach was consistent, but that it was not a 

modern approach. It was decided to change the approach to a modern development process: Scrum. 

The way this Agile approach was applied to the re-engineering process was by working in Sprints, 

having Stand-Ups twice a week, and Sprint Reviews, Sprint Retrospective and Sprint Planning every 

three weeks, and undertaking a Customer Demo with the Stakeholders every six weeks. The timeline 

of the re-engineering work regarding the software development process can be seen in Figure 10. 

Since using Scrum as the methodology of a re-engineering process is part of the research question, the 

process is explained in more detail later. 
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Figure 9: Timeline of re-engineering work regarding the aspect of software development process  
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5. Towards a Risk Framework 
The aim of this study was to build the basis of a risk framework to support future re-engineering 

projects within Agile (Scrum) environments. The primary data consisted of a list of risk descriptions. 

Each risk description was augmented with a qualitative assessment of other attributes of the risk a) the 

potential impact of the risk on the project viability, b) the actual impact of the risk, and c) the 

mitigation status, which is the status of the risk after the first phase of the re-engineering project 

ended. The risk descriptions were analysed using inductive Thematic Analysis (TA) (Clarke et al., 

2015), and the other attributes were used to aid a more comprehensive analysis of how the risks 

affected the re-engineering work. 

5.1. The Analysis of Risks 

5.1.1. The Dataset 

The dataset consisted of a list of different risks that had occurred during the re-engineering process. 

The risks were collected post hoc from various sources. They were collected from the Kanban board 

by looking for tasks undertaken to mitigate risks. Other sources were meeting notes as well as the 

field journal which held information about decisions, including the mitigation of risks. Also, the 

source code gave good insights into certain risks and how they were tackled. Each of these risks was 

summarised in a single sentence.  

5.1.2. Thematic Analysis: Coding, Sub-Themes and Themes 

Following Braun & Clarke’s TA approach (Braun & Clarke, 2021)  the analysis started with coding. 

The codes slowly developed after reading through the data multiple times. Some of these codes 

appeared multiple times as the same type of risk had occurred multiple times during the project in 

slightly different situations. Other risk descriptions were allocated multiple codes as multiple potential 

risks occurred in this situation. During this process some code names were revised as sometimes the 

name initially given reflected the work it created or other problems rather than describing the risk 

itself. This was done because codes should only reflect a single meaning. The challenge was to not get 

into too much detail as the codes were used to capture a broader, more general picture, while still 

being explicit. This process resulted in 44 different codes. Codes could be linked to multiple risk 

descriptions, which means a risk occurred multiple times, but some codes were only linked to one risk 

description. A list of all codes with a description can be found in Appendix 1: Themes, sub-themes, 

and codes with explanation. To group together multiple codes and identify potential patterns, sub-

themes and themes were created. The sub-themes categorise and group together similar codes to see if 

a pattern in the different codes can be found, but also to give these codes a more general meaning. 

Some codes appeared in multiple sub-themes as they fitted in multiple categories. The themes, in 

which the sub-themes were grouped into, reflect the different parts of the project. I was able to 

identify three distinct parts which form my themes: Technology, Process and People. The Technology 

theme is rather obvious as it contains all the risks related to the technical side of programming, and 

different technologies. Process consists of all the risks which were related to managing the re-

engineering work. People holds all the risks which are caused by human failure. These themes hold 

different sub-themes are as follows: 

Themes Sub-themes Codes 

Technology legacy technology discontinued technology support 

    struggle to integrate technologies 

    legacy code 

    no replacement for technologies 

    lack of old technology for developing old software 

    fundamental change of technology 

    lack of knowledge about old technology 
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  insufficient technology lack of testing environment 

    missing version controlling 

    inability to roll back code changes 

    code over-heap for IDEs and support tools 

  legacy application lack of legacy application documentation 

    lack of readability of code 

    
limited number of people with knowledge about legacy 
application 

    lack of commentary in code 

    fix is worse than problem 

    lack of knowledge about legacy application code 

Process testing missing test documentation 

    lack of time for testing 

    lack of automated testing 

    lack of testing environment 

    inconsistent testing 

  time constraint lack of time for testing 

    limited licensing time 

    lack of time for meetings 

  lack of documentation missing test documentation 

    lack of commentary in code 

    lack of legacy application documentation 

    lack of re-engineering documentation 

People lack of knowledge lack of knowledge about legacy application code 

    lack of state-of-the-art technology knowledge 

    
limited number of people with knowledge about legacy 
application 

    lack of knowledge about old technology 

    lack of commentary in code 

  process engagement confused stakeholders 

    not clarifying importance of task 

    inconsistent issue tracking 

    holding meetings incorrectly 

    lack of time for meetings 

    no clear goal 

    inconsistent testing 

    inconsistent bug tracking 

    inconsistent use of version control 

    unwillingness to change 

  
methodology 
engagement misevaluation of story points 

    too big tasks 

    neglecting methodology 

    unclear definition of done 

    wrong prioritisation 

    poorly written user stories 

  social unwillingness to change 

    lack of face-to-face working 
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    lack of support 

    lack of a team 

    confused team members 

    confused stakeholders 

    not clarifying importance of task 

    insecurity of team members 
Table 8: All Codes, Sub-Themes, and Themes 

It might not be obvious why the sub-theme Process engagement is located in the theme People and 

not in Process. However, these risks were not caused by the process itself, but rather by the way 

people executed it. Taking the code “inconsistent use of version control” as an example, it can clearly 

be said that the use of version control is part of the process engagement, but failing to commit code 

regularly is a human issue. The sub-theme Legacy technology includes all the risks which are caused 

by old, out-dated technologies used in the application. Insufficient technology describes all the risks 

which limited or even derailed the execution of re-engineering tasks due to the restriction or lack of 

certain technologies. Every risk which dealt with the legacy application itself falls under the sub-

category Legacy application. This also includes everything about the code, not to be confused with 

the programming language which falls under Legacy technology. The sub-theme Testing covers all 

risks which are caused by anything related to testing or the lack of it. Time constraints include the 

risks which arose by a lack of time. Risks which arose by missing documentation are covered in the 

Lack of documentation sub-theme. The Lack of knowledge sub-theme entails all risks which 

occurred because of ignorance. Process engagement covers all risks which fell under the 

housekeeping side of the project such as testing and holding meetings. This should not be confused 

with Methodology engagement, which is an own sub-theme, holding all risks related to Scrum in this 

project. The last sub-theme is Social, which includes all risks which arose from interpersonal 

relationships and the group dynamic of the team.  

5.1.3. The Weighted Risk Codes 

Two weightings were added to each risk code to indicate a) the potential impact it could have had, and 

b) the actual impact it had on the project. The potential impact stated here was not assessed before the 

start of the project, but retrospectively, at the same time as the rest of the analysis was conducted. The 

potential impact was reconstructed as accurately as possible by making reference to notes and the 

Sprint board. In this project the potential impact does not indicate the potential worst-case scenario, 

but rather a realistic assessment of the impact the risk code of the imagined point of view before the 

project started, which was challenging. The realistic assessment fits better for this analysis as it shows 

how the team perceived the risk. The actual impact describes how big the effect of the risk was as it 

happened.  

The base risk graph can be found in chapter 5.2.1. Each risk has the value 1 before the impact for a 

weighting was added. Each risk can have different types impacts on the project. Stress, time, or 

money are the most frequent ones which occurred in this project. All these factors constitute a certain 

thread to the project. These weightings are relative, so the framework can be fitted to any re-

engineering project. The weighting is divided into four levels: none, low, medium, and high. The 

explanation of each weighting for the project is: 

• None: The risk did not occur, or it was decided to deal with the mitigation during a later point 

of time; hence no work or stress was caused. 

• Low: The risk has been noticed but is rather a nuisance and led to some inconveniences. 

• Medium: The risk caused moderate inconveniences. 

• High: The risk was a potential showstopper. The work and/or stress it generated is vast. 
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Each weighting was assigned a logarithmic value in order to make the higher-impact risks stand out in 

the resultant graph. Risks with the weighting “none” received the value 0, with the weighting “low” 

the value 1, with the weighting “medium” 2, and with the weighting “high” they obtained the value 4. 

The reason for having only four weightings was to simplify the process of assigning them to risk 

codes. Consideration was given to using additional weightings, as some higher-rated risks posed a 

greater threat than others with the same weighting. However, given the size of this study, four 

weightings were considered sufficient. 

A list of each code with its weighting can be found in Appendix 2: Codes with their expected and 

actual impact. 

A third factor was also added to describe the status of mitigation of each risk code after the end of the 

first phase. The different statuses are: 

• Not occurred: The risk did not occur at all, hence there was no mitigation to be done. 

• Mitigated: The risk was mitigated successfully. 

• Partially mitigated: The risk was mitigated, but not satisfactory or the solution was rather a 

temporary one. 

• Not mitigated: The risk was not mitigated at all. 

• Deferred: The risk was not mitigated; however, it will be tackled in the future. 

A list of each code with its mitigation status can be found in Appendix 3: Codes with their 

mitigation status. 

5.2. Results 

5.2.1. The Calculation 

 

Figure 10: The risk codes frequency within a sub-theme per Sprint (without weightings) 
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The basis of the calculations was a table matrix with the Sprints on the x-axis and the risk code 

frequency within a sub-theme (sub-themes) on the y-axis. Each risk code had the value one, so no 

weightings were applied so far. 

A risk code could appear in multiple Sprints or over a certain period like the beginning (Sprint 0-2), 

the middle (Sprint 4-8), or the end (Sprint 9-11). Another time span used to declare when a risk 

happened was the first half (Sprint 0-5), or the second half (Sprint 6-11). If a risk code only occurred 

partially during a timespan, the weighting of this code will be divided by 2. 

To make it a bit clearer, I give a detailed explanation below of the risk codes in the Legacy 

application sub-theme (see Table 9). Lack of legacy application documentation appeared only in 

Sprint 1, which means its value was only shown in Sprint 1 on the graph. Lack of readability of code 

was a longer occurring risk. The occurrence description reads ‘during the whole project, but 

especially in the beginning’, which implies the risk was omnipresent during the whole project, but 

only relevant in the beginning. Therefore, the value of the risk code counts medium, with the value 

two in this case, in the first three sprints, but only half for the rest of the project. Lack of knowledge 

about legacy application code occurred in the middle of Phase 1, so the risk code value was added 

from Sprint 4-8. 

Legacy application Lack of legacy application documentation Sprint 1 

  Lack of readability of code 

during the whole project, but 
especially in the 
beginning 

  
Limited number of people with knowledge about  
legacy application 

during the whole project, but 
especially in the 
beginning 

  Lack of commentary in code 

during the whole project, but 
especially in the 
beginning 

  Fix is worse than problem Sprint 8 

  Lack of knowledge about legacy application code in the middle 
Table 9: Risk code appearances in the sub-theme Legacy application 

For the sake of clarity, all preparatory work for the re-engineering implementation phase was put into 

Sprint 0. The risks that appeared during the preparation were as much as a risk for the success of 

completing the re-engineering work as the risks that appeared during the implementation phase.  

Even though the weightings were not included, (Figure 10) shows certain trends within the sub-

themes. In the beginning the IDE and the compiler were changed, which raised the number of risk 

codes withing the Legacy technology and Insufficient technology sub-themes. It can also clearly be 

seen that it took some time to get used to Scrum (looking at the sub-theme Methodology engagement). 

Later, more process work was done, such as writing tests and in the later Sprints at the end, more 

technical work was done again, but also the time pressure increased towards the end. It is striking how 

important the People sub-themes Social, and Process engagement are, but this will be discussed 

further in the following chapters. 

5.2.2. Weighted Impact of Risks per Sprint  

To generate the weighted potential impact of the risk types, the frequency was multiplied by the n 

weighting mentioned in 5.1.3. 
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5.2.2.1. Weighted Impact of Technology Risks per Sprint 

 

Figure 11: Weighted impact of technology risks per Sprint 
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Another risk was Lack of knowledge about old technology. It was expected that team members might 

have problems using old technologies which are used within the legacy application, but because of the 

good support from other team members, the lack of knowledge was able to be compensated quickly. 

Even though most risks had less impact than expected, it can be seen that in Sprint 7, the lines 

crossed, indicating that there was a risk, which had more impact than expected. This was Lack of old 

technology for developing old software as instead of just getting an old laptop, a Virtual Machine 

needed to be set up, which caused some work. 

Most of the risks regarding insufficient technology were eliminated within Sprint 0 as the risks were 

triggered by the lack of version control, which was added right in the beginning through the use of 

GitHub. The medium-impact risk code a code overflow for IDEs and supporting tools was 

omnipresent, which peaked in Sprint 6, as a static analysis tool could not comprehend some code files 

as they were around 35,000 lines long. Another risk with rather small impact risk occurred towards 

the end caused by a lack of a testing environment as a clean machine without pre-installed C++ re-

distributable was needed. Both graphs, the expected and the actual impact, overlap for most of the 

sprints, except for Sprint 0. This was due to the risks missing version control and inability to roll back 

code changes as work on the code was done before a version control was added. It was expected it 

would cause a lot of extra work as the code could not easily be shared among team members and 

changes could not be rolled back. However, none of that happened.  

Risks related to the Legacy application also posed a big threat at the beginning of project. In this 

case, the reason was the initial ignorance for the legacy application as most team members have not 

worked with/on it before. As the team got to know the code better, many risks decreased after the first 

few Sprints, however, they still caused issues through the whole project. The peak in Sprint 8 was 

caused by a potential fix, which was a workaround to integrate modern technology into the legacy 

application, which would have been worse than the initial bug as it would have introduced new 

technical debt. This risk is not bound to a point of time and could have happened at any time of the re-

engineering activity. The graphs in this risk category overlap again, apart from the difference in the 

middle phase caused by one risk, lack of knowledge about the legacy code. It was expected that more 

coding would occur during Phase 1, hence the risk was expected to cause a high impact. However, it 

turned out that there was not enough time to get more coding done, so the impact was less severe. It is 

expected that this risk will need to be addressed in Phase 2. 
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5.2.2.2. Weighted Impact of Process Risks per Sprint 

 

Figure 12: Weighted Impact of Process Risks per Sprint 
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about the legacy application itself for the reason mentioned above. Both graphs overlap through the 

whole project, which does not prove the estimation would have been right, but still gives a realistic 

indication. 

5.2.2.3. Weighted Impact of Social Risks per Sprint 

 

Figure 13: Weighted impact of people risks per Sprint 
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controlling, etc.). The only risk which turned out to be a high impact risk was Lack of time for 

meetings as it turned out to be more difficult to organise meetings among all team members. The 

misestimation is covered up in the graph by a risk code which was initially expected to have a high-

impact, but ended up only being a medium-impact one, namely Unwillingness to change. It had less 

impact as it was easier to change some team members’ minds than expected, however it still delayed 

some tasks. 

The drop in the Methodology engagement line indicates the learning process of the team using 

Scrum as a methodology. These initial risks consisted of an unclear definition of done, too big tasks, 

and poor prioritisation. Risks which were mostly solved early on, but still appeared through the 

project included the misevaluation of story points and neglecting the methodology. The rise which can 

be seen in the second half is poorly written user stories. All of the risks are rated to have either a low 

or medium impact. This is the only risk category in which expected and actual impact pattern are not 

even similar. Most of them had had even a higher impact than expected. This may have several 

causes: the lack of experience with Scrum of some team members or the, the fact that only facets of 

the methodology were used instead of everything, the small size of the team, or even plain ignorance 

of the impact of the risks on the project. The only risk with a smaller than expected impact was wrong 

prioritisation as it did not occur at all. This is since the next tasks were always obvious as either risks 

needed to be mitigated or there was a clear plan how to get the application back to market. 

Another constant problem was posed by Social threats. Even though most of the risks were marked 

with a low or medium importance, the graph shows that the overall risk category can be considered as 

rather serious. The only hazard which was tagged with a high importance was lack of a team. Such 

enormous undertaking as a re-engineering project represents requires a lot of teamwork, especially as 

only some of the team members might have knowledge about the application. Not having enough 

team members, or a lack of a team spirit could be fatal for the success of the project. Even though, the 

expected and actual impact seem to overlap, a few risks were still misjudged. A risk which has 

already been mentioned which was poorly estimated was unwillingness to change. Another risk which 

causes less impact than expected was lack of support. The risk was rated medium as other members of 

the team were not working full-time on the project, so it was expected that getting support would be a 

struggle, however, there was barely a problem to receive support when needed. On the other hand, the 

risk lack of team had a higher than anticipated impact. It was expected that it will cause stress and 

more work to have so few people working on the project, however, it turned out to be even more 

stressful as it is not only the missing work force, but also the lack of having colleagues to share ideas 

with or discuss problems. A surprisingly severe risk was lack of face-to-face working as it should not 

be a problem to hold meetings online, especially in technology work. However, there were situations 

when it would have been easier to be in the same room to discuss problems or to look at code. 

Connection dropouts were also part of this problem. 
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5.2.2.4. Overall Comparison of Weighted Impact of Codes within a Theme 

 

Figure 14: Weighted risk codes frequency within a theme per Sprint 

It is remarkable how much more significant the impact of the risk codes in the theme “People”, seen 

in red shadings, were compared to the other two themes. The impact was high through the whole 

project with only a little dip at the end. The even higher impact at the beginning can be explained by 

the risks related to team members having a lack of knowledge, which got resolved by getting to know 

the technologies, and also the methodology risks were resolved during the course of the project as the 

team members got used to Scrum. Most risk codes in this theme were marked of having a low or 

medium impact, however, the substantial amount of risk codes in this theme, made it to a considerable 

threat for the success of this project. 

Another striking detail in this diagram is that the theme “Technology” peaked in Sprint 8. This was due 

to the trouble and eventually the failure of integrating 64-bit DLLs. Different risk codes occurred during 

this time and each of them was marked having a high impact. 

It is also noticeable that the impact of the theme “Process” suddenly increased in Sprint 10 due to not 

having the application tested thoroughly at the end of Phase 1. Moreover, due to running out of time at 

the end of Phase 1, some tasks could not be executed and therefore risk codes related to having a lack 

of time emerged. 

5.2.3. Mitigation Status of Risk Categories after Phase 1 

This section describes the different mitigation statuses of the risk codes within a sub-theme after the 

first phase. A risk can hold one of the following statuses: not occurred, mitigated, partially mitigated, 

not mitigated, or deferred.  
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5.2.3.1. Standardised Mitigation Status of the Risks after Phase 1 

The data has been standardised to show a relative view of the mitigation. Without this view it might 

seem that one risk category mitigated more risks just because it has a bigger amount of risk, whereas 

there was a bigger success in the mitigation of risks in a different category. 

 

Figure 15: Standardised mitigation status of risk categories after Phase 1 

The sub-theme which was clearly most successful in the mitigation of risks is Methodology 

engagement. This was because risks got mitigated by getting used to the methodology. However, the 

learning curve of using Scrum was very steep.  

Another successful sub-theme in mitigating risks was Insufficient technology as the tasks behind the 

risks were crucial for the project and needed to be done e.g.: adding version controlling. A risk – code 

over-heap for IDEs and support tool - was deferred as it was not necessary to be mitigated in Phase 1. 

It only prevented the completion of some tasks to “pimp up” the code.  

The mitigated risks in the category Testing were all the risks related to everyday testing e.g.: missing 

test documentation or a lack of automated testing. However, the problem in this category was the 

inconsistent testing. It did not get mitigated as the application was not always tested after a task was 

finished. The risk code Not enough time for testing did not occur as it was decided to do the full 

system pre-release testing before the release at another time.  

Similar to the previous category, the risk codes mitigated in Lack of documentation are risks 

regarding documentation which was necessary for the success of the project, such as documentation 

about the legacy application itself. The commenting of the code was deferred as it was not necessary 

in the first phase, and it would have taken up too much time. Furthermore, many parts of the 

application will be re-written in the future, hence it would not made sense to put comments into the 

code. The risk code A lack of re-engineering documentation was only partially mitigated as no formal 
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documentation exists, but rather slides from customer demos. However, a full test documentation was 

created during the first phase. 

Half of the mitigated risks in the category Legacy technology were mitigated after the legacy code 

was transferred into a new IDE right in the beginning which was a crucial task. The other two risk 

codes were crucial too, but easier to mitigate. The first one was A lack of knowledge about legacy 

technology and the second was A lack of old technology for developing old software. Two out of three 

deferred risk codes are linked together as the first one is caused by a fundamental change of 

technology leading to the second risk code which is the Struggle of integrate technology. The major 

cause of these risk codes was the struggle to integrate re-compiled DLLs. This still needs to be done, 

however, it would have taken too long, so it was decided to execute this task in the next phase as it 

was not crucial. Another deferred risk code was No replacement for technologies. Some libraries 

needed to be replaced as they are deprecated, however, it is unknown if a comparable replacement can 

be found. It would have taken too much time to find new libraries and integrate them into the 

application. Legacy code was partially mitigated as the code was successfully integrated into a new 

IDE, however, it still remains to be fully understood by all team members. 

The risk codes mitigated in Process engagement were mostly trivial (low impact) risks e.g.: not 

clarifying importance of task, apart from unwillingness to change, which addresses the team members. 

The mitigation of this risk code was less important for Phase 1, but rather for the future of this 

application. The non-mitigated risk of this category were threats which were partially not mitigated 

because of lack of time, or it simply was just forgotten to be done by the team members, such as 

inconsistent testing, and inconsistent use of version controlling. Both risks are rated to have a medium 

impact on the project. It can be said that the mitigation would have made the team members’ life 

easier. One risk – lack of time for meetings – seemed impossible to be mitigated as it was dependent 

on the availability of other team members. As it was rated to have a high impact, the non-mitigation 

of this risks caused enormous damage in form of stress. 

A similar pattern applies to the sub-theme Social. Most of the risk codes mitigated were marked as 

having a low impact, apart from apart from Unwillingness to change, which has already been 

mentioned. The other risk codes have been mitigated by clear communication and confirmation. 

Communication still failed sometimes as the risk code Confused team members could not be 

mitigated. The mitigation of the other risks was rather difficult as it was beyond the team’s power. A 

Lack of support or Lack of face-to-face meetings could not be mitigated because other team members 

worked only part-time on this project. And without having more team members, a Lack of a team 

could not be resolved either.  

The mitigated risk codes in Lack of knowledge are related to the knowledge of both old and state of 

the art technology. The risks were mitigated during the process of the project as knowledge necessary 

to do tasks was gained. Both of the partially mitigated risk codes are related to each other. The first 

one, Lack of knowledge about legacy code, has been mitigated –, and through this it helped to mitigate 

the other risk – Limited number of people with knowledge about the legacy application – as other 

team members gained partial knowledge about it. It has been mentioned in a previous paragraph why 

the lack of commentary in code was deferred. 

The risks in the sub-theme Legacy applications which were mitigated appeared mainly in the crucial 

phase right in the beginning when the legacy code had to be transferred into the new IDE. In contrast, 

the deferred risk codes turned out to be more complicated than expected and the work behind the risk 

did not need to be done during this first phase e.g.: improving the readability of code. Both partially 

mitigated - lack of knowledge about legacy code has been mitigated and limited number of people 

with knowledge about the legacy application - risks were discussed in the previous paragraph.   
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Time constraint was the only category with no mitigated risk. The risk code Lack of time for testing 

did not occur, and the risk Lack of time for meetings were discussed in previous paragraphs The risk 

code A lack of licensing time was deferred as the team almost run out of time to compile new DLLs, 

however, the DLLs could not be properly tested before the licensing time ended, so it is unknown if 

the risk is mitigated or not. 

5.3. Summary 
The analysis produced a set of 44 different risk codes which are grouped together into sub-themes and 

themes. The sub-themes and themes reflect in which part of the project the risks were found. After the 

risks were identified, two types of impact weighting – the potential, and the actual - were added to 

each risk code and the mitigation status. The impact weighting adds a deeper meaning of how much 

extra stress, money, or time the risk caused. The mitigation status shows how the risk was left after 

the end of the first re-engineering phase. 

The most remarkable result this analysis produced is that Social risk codes had a much bigger impact 

compared to the two other themes. Even though, most risks were rated as having a low or medium 

impact, the substantial amount of the risks made it a considerable threat. Moreover, most of the risk 

codes were a constant threat through the whole first phase. The risk codes which were most 

significant in the beginning were “lack of knowledge for technologies” and the risks around the 

methodology, which were resolved by getting used to Scrum. However, the methodology risks rose 

again in the second half of the first phase as Scrum became neglected after getting comfortable with 

it. Another risk code, which was also considered as very impactful was “lack of a team” as re-

engineering requires teamwork, especially when only one person had all the knowledge about the 

application. Some of the risks were also caused by omissions, e.g.: inconsistent testing. The difference 

between the potential and actual impact comes from the underestimation of social risks. 

The most significant risk code in the beginning in the theme Technology related to transferring the 

code to a new IDE. Also the risk of the deprecated technology ceasing to be supported and the risk of 

not using version control were very impactful. A peak of impact was caused in Sprint 8 by a 

technology which could not be integrated into the existing system, which caused several risks to 

appear. The difference between the predicted and the actual impact in this theme was caused by the 

fact that less coding than expected was done in the first phase, so the risk codes around this topic were 

less impactful. Also, the integration into a new IDE went more smoothly than expected and the lack of 

version controlling before it was implemented did not cause any major problems either. 

The last theme, which is Process, had the most impactful risk codes in the beginning and around 

Sprint 10. The risk codes in the beginning were related to the missing code and application 

documentation. The increased risk impact in Sprint 10 was caused by the lack of time for a big test 

before releasing the application to customers, however, this did not have a big impact in the end as 

testing was deferred to the next phase. 
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6. Scrum in Re-engineering  
As discussed in the literature review, Scrum has been used as part of a re-engineering framework 

(Singh et al., 2019). However, I would go even further and state that in this case study Scrum was not 

only useful for process engagement it was also crucial for mitigating risks.. As one of the risks of 

software re-engineering is the unpredictability of tasks and challenges, an Agile approach can be a 

real benefit. 

Agile was a response to the document-heavy, big planning upfront, contract-based, bureaucratic, and 

rigid classic methodologies, such as Waterfall, V-Model, and Spiral Model. It was popularised in the 

early 2000s following the publication of the Agile Manifesto (Fowler et al., 2001) when software 

developers noticed that projects need to be flexible and responsive to customers’ needs. Agile rather 

prioritises business value through the software development itself instead of its process, 

documentation, and design (Schwaber & Sutherland, 2011).  

Several methods and frameworks were invented based on Agile values and principles. The most 

popular Agile methods and frameworks are Kanban, Scrum, which was used for this project, and 

Scrumban  (State of Agile Report, 2022). 

6.1. Scrum Overview 
Scrum is a light-weight framework which offers a customised way of working on different projects 

with a variety of requirements without having the need to follow a specific procedure (Srivastava et 

al., 2017) Due to its flexible requirements and adaptive solutions, the project can adapt to customer 

needs even after the contract has been set out. 

Scrum is iterative. The development work is structured in cycles called Sprints. The Sprints should 

last at least two weeks, but no more than four weeks, and are continuous. These iterations are strictly 

timeboxed – they end on a specific date, no matter if the planned work has been finished or not and 

are never extended.  

To estimate the velocity of a task (a user story), it is common in Scrum to use Story Points. Story 

Points are relative compared to traditional time measurements. They express an estimated of the 

overall work done to fully implement product backlog. The advantage of story points over absolute 

time measurements are that dates don’t account for the errands which need to be run outside of the 

project such as answering emails or attending meetings.  

At the beginning of each sprint, the teams put items (customer requirements), which are written as 

user stories, from a prioritised list (product backlog) onto the sprint backlog. They commit to finish 

the tasks by the end of the sprint. During the sprint these items are not allowed to change, and neither 

is it allowed to add items to the sprint backlog. Every workday, the team gathers briefly (around 15 

mins) to inspect the progress towards the Sprint Goal, and adapt the Sprint Backlog as necessary, to 

adjust the upcoming work. At the end of every sprint the done work is inspected at the Sprint Review. 

The team is presenting their work to the stakeholders and the progress towards the Product Goal. 

During this meeting, the product may also be adjusted to incorporate feedback. Scrum emphasising on 

having a working product at the end of every Sprint. In software development terms this means 

integrated code, which is fully tested and potentially ready to be shipped. The last event at every 

Sprint is the Sprint Retrospective, which’s purpose is to improve quality and effectiveness. The team 

discusses if the Sprint went well, what could have done better, and what problems were encountered. 

This process repeats until the Product Goal is achieved. 

A Scrum Team consists of three roles: the Scum Master, the Product Owner, and the Developers (also 

referred to as The Team). The Developers are committed to execute the tasks on the Backlog and 

building the product. The Team is self-organised and cross-functional – it includes all the expertise 
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needed to deliver the product. The skills required can be very broad, however the Developers are 

always accountable for (Schwaber & Sutherland, 2011):  

• Creating a plan for the Sprint, the Sprint Backlog 

• Instilling quality by adhering to a Definition of Done 

• Adapting their plan each day toward the Sprint Goal 

• Holding each other accountable as professionals 

The Scrum Master ensures that Scrum is practiced as described in the Scrum guide. They are helping 

the team (and the organisation) understanding Scrum theory and improving its practice. 

The Product Owner represents the customers (in some cases they are the customer) within the team. 

They are responsible for maximising the ROI (Return of Investment) and the Product Backlog 

including its prioritisation.  

The number of members of the Scrum Team should not exceed 10. Smaller teams have been proven 

to work better as the communication and productivity are increased (Schwaber & Sutherland, 2011). 

If a team is getting too large, they might not share the same Product Goal, Product Backlog, or 

Product Owner anymore, therefore it should be considered to reorganise them into multiple cohesive 

Scrum Teams. 

Scrum should rather be seen as a philosophy, or structure supporting a project to achieve its goal and 

create a value (Schwaber & Sutherland, 2011). It is not a process with strict rules, and only uses a 

framework to define the parts required to practice Scrum. This makes Scrum extremely flexible and 

fit for all kinds of teamwork, which is one of the reasons why it became so popular.  

6.2. Scrum in this Project 
The Scrum Team of this project consisted of five people, of whom only one was working full-time on 

this project. The Developers were a full-time software developer (myself), and a part-time one. The 

Product Owner was the researcher who had initially written the software, but who was now not in a 

position to do further development or modernisation on the product. The role of the Scrum Master 

was shared by two people from a consultant company hired to support the project. 

Stand-up meetings were held twice a week instead of daily. Because of the small number of 

developers and the reduced amount of time spent on the project two meetings a week were sufficient.  

The sprints were held in a three-week cycle, which is within the recommended duration of two to four 

weeks. The Sprint Review and Sprint Retrospective happened on the Friday of the third week. Every 

other Sprint (every six weeks) the Customer Demo took place within the Sprint Review, where the 

customers got to see the progress made during the last couple of Sprints and had the chance to ask 

questions or give feedback. The Sprint Planning for the upcoming Sprint took place after the Sprint 

Retrospective. During the Sprint Planning the User Stories which were intended to be worked on in 

the next Sprint were given a velocity. Instead of using Story Points right away, the popular T-Shirt 

sizing method was used to estimate the size of a task. This method uses the US way of indicating T-

Shirts and Story Points are given to each size. This way takes the advantages of the relative time 

estimations of story points even further. Before User Stories which fit within the set time limit for the 

upcoming Sprint were added to Sprint Backlog, they were prioritised.  

Because of the nature of this project – making functional changes to an operational system - there was 

a potential for risks to have a severe impact. This affected the prioritisation of the User Stories during 

the Sprint Planning as the risks and problems that had emerged during the previous sprint were 

discussed in the Sprint Reviews, hence tasks to mitigate risks might have been added to the Product 

Backlog with a higher prioritisation than a normal re-engineering task. Tasks were prioritised in three 

categories: low, medium, and high. 
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A tool which is often used in Scrum is a Kanban board. It was used to visualise the work. The 
identified user stories were collected in the Product Backlog and the relevant ones were moved into 

the Sprint Backlog during Sprint Planning. During the Sprint, the items were moved into the In 

Progress column. Before a user story could be moved into the Done column, it was reviewed by being 

aligned with the Definition of Done and evidence for the Customer Demo was added. 

6.3. How Agile and Scrum Practices Supported this Project 
As Scrum is a part of Agile, Scrum follows Agile practices as well as its own guidelines. As 

mentioned, Scrum was chosen for this re-engineering project because its flexibility is a good response 

to the unpredictability of challenges and risks. 

6.3.1. Agile Principles 

In this section the Agile Principles listed in the Agile Manifesto (Fowler et al., 2001) are discussed in 

the light of the experience in this project in terms of how they supported the re-engineering process. 

This is a reflective analysis from a subjective point of view. The principles most relevant for this 

particular project were: customer satisfaction, embracing change, incremental and iterative delivery, 

customer involvement, face-to-face conversation, delivering working software, and team reflection. 

According to the Agile Manifesto, customer satisfaction has the highest priority in Agile software 

development. In this project, at the end of every other Sprint, the functionality of the software was 

confirmed to the stakeholders during a customer Demonstration.  

One of the most challenging parts of a re-engineering project is the unpredictability of tasks and 

challenges. Agile embraces change instead of resisting it. When it comes to risk management and 

mitigation, amendments need to be executed as soon as possible. This means that an agile approach 

can be used to support risk mitigation. 

The incremental and iterative delivery approach in agile projects product allows regular feedback to 

the development team. In this case, the delivery happened every six weeks, and was discussed during 

the customer demonstration, where the stakeholders could check the functionality of the application, 

and confirm that no major features had been broken during the re-engineering process. During these 

meetings stakeholders also had the chance to express concerns, mention criticisms and give feedback. 

Customers feedback is also related to another Agile principle, the importance of customer 

involvement. Frequent feedback from customers allowed fast correction of mistakes. The goal of this 

project was not to re-engineer the whole application at once, but rather to make it fit for sale again 

within 8 months. This meant that not everything highlighted for re-engineering could have been done. 

Close cooperation with the customers was needed to know what was important for the re-sale. 

Additionally, this collaboration was bidirectional, so when some things did not work out as intended, 

alternative ways were suggested to the customers by the development team. This collaborative 

approach helps. 

As the team was physically dispersed, face-to-face conversations, which the agile manifesto states are 

the most efficient and effective method of conveying information, were not possible. It can be said 

that this quite probably impaired the project, and some problems would have been solved faster if this 

Agile principle had been implemented. 

Agile emphasises delivering a fully functional application at the end of every Sprint, which played 

into our hands as during the re-engineering process as the application was still being used and needed 

to be kept up and running. It also ensured that the software was always ready to be demonstrated to 

the stakeholders. 

To reflect regularly how to become more effective and how to adjust such a behaviour, Sprint 

Retrospectives were used. This will be discussed in more detail in the next chapter. 
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6.3.2. Scrum Practices 

In this chapter, I will consider the common Scrum practices used in this project and discuss how they 

supported the re-engineering process. To give an even better insight, I will use an example from the 

project to explain how each practice influenced the project. This example is from the time when the 

re-compilation from Matlab files to 64-bit DLLs failed, triggering two risks: fundamental change of 

technology and struggle to integrate technology. See 4.3.2.1 for more details about this event. More 

examples will be given as needed. This chapter is a reflective analysis from a subjective point of view. 

The iterative pattern in the form of Sprints supported this re-engineering project by always needing to 

have a deliverable product, which means that at the end of every Sprint, the application needed to 

work bug free. It was a requirement of this project that the application was kept up and running, so 

that other software engineers could still add functionality to it. 

At the beginning of the project, only a few tasks were planned out properly. Most of the other tasks 

were identified during the process of the project. Re-engineering projects can rarely be properly 

planned as many aspects of the work to be undertaken are unknown initially. Tasks to be done kept 

emerging during Sprints and were flexibly added to the backlog for the following Sprint during the 

Sprint Review. Even when tasks had been planned, they often turned out to be far more complicated 

than expected. I found that Scrum gave us the agility to handle such events. Remembering the 

example given in the beginning of this chapter, it was first planned to just re-compile the DLLs into 

64-bit, however, it turned out that this task was more complicated as 64-bit DLLs cannot be integrated 

into a 32-bit application, which this legacy application is. Therefore, it was planned to compile older 

versions of the DLLs in 32-bit, which are still more modern than the old ones. However, it turned out 

that the interfaces of the modern DLLs are incompatible with the application. 

Moreover, the flexible planning given by the Sprint Review helped a lot with the mitigation of the 

risks too, as countermeasures could be done right away in the next Sprint. In the previous example, 

we tried to mitigate the two risks of fundamentally changing the technology and the struggle to 

integrate different technologies. However, flexible planning helped to handle more risks. Another 

example would be that at a certain point in the project the manual user acceptance testing were taking 

up too much time, so a user story was added to the upcoming Sprint to write an automatic user 

acceptance test. This practice is also called Backlog Refinement, which was later on added to the 

Scrum Guide (Schwaber & Sutherland, 2011). 

Meetings like the Sprint Review or the Daily Stand-up (Daily Scrum) were the perfect opportunity to 

discuss ideas or raise concerns. Especially the Daily Stand-up helped discuss concerns about tasks. If 

a problem could not be resolved during the Sprint or more actions were needed, the discussions were 

recessed to the Sprint Review. These techniques also supported me to stay on track with the work as I 

did not work full-time on the project, so time management was a challenge sometimes. The Stand-Up 

itself did not help to uncover risks – this rather happened during the execution of tasks - most of the 

time, however it helped to understand the extent of the impact of risks. Given the example with the 

DLLs, it was only during a meeting that we realised the problem was so big it could not be solved 

during that phase of the project as it would have caused more technical debt than it fixed, which is the 

against every intention of the project.  

In addition to discussing completed work in Sprint Reviews, we also discussed the risks which had 

occurred during the previous Sprint. If they had been resolved, no further discussion was needed, 

however, if this was not the case, they were analysed further and if needed additional User Stories 

were added to the Backlog to mitigate them. When we found out that the DLLs could not just be re-

compiled into 64-bit ones and integrated into the project, it was decided during a Sprint Review that a 

test harness for 32-bit DLLs from a modern compiler should be created to find out if this alternative 

would work. These meetings also helped to deal with risks quicker. The social risks could often be 

mitigated during meetings. Many risks related to having a lack of knowledge about something and 
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were resolved by getting support from other team members during meetings. Even though these 

meetings were an extremely important for the project, it was often a struggle to organise them. Most 

team members only worked part-time on the project and many of them also worked remotely, so it 

was difficult to find times when everyone was available.  

As risks were discussed during Stand-ups, there was a struggle to keep these short. A Daily Scrum 

should not take longer than 15 minutes, however most of these took the team around 30 mins as the 

discussions went beyond a quick overview about what we had done and what we planned to do. We 

discussed risks and their mitigation, upcoming tasks and how to execute them, and the future of the 

project. Even though, the Scrum Guide suggests that this kind of meeting should be kept short, I 

believe that longer Stand-Ups helped a lot with the progress of the project. As mentioned in a 

previous chapter, one of the risks was “a lack of time for meetings”, having already a meeting planned 

and all (many) team members together, it was good to make use of that time. A better way of handling 

this situation would have been to set the first 5 minutes of the meeting out for the Stand-up and then 

use the rest of the time for any further discussions. 

 

Having discussed social risks in previous chapters and how much of an impact they had, this 

highlights the importance of the Sprint Retrospective, in which the good and bad aspects of the last 

Sprint were discussed. Many social risks were uncovered during these meetings as difficulties were 

reconsidered. Risks like “a lack of time for meetings”, and “lack of face-to-face working” were 

identified during Sprint Retrospectives. 

During the first Customer Demo, when the team presented the progress to the Stakeholders, the team 

was asked by one of the Stakeholders how they knew when a task was done. As there was no 

Definition of Done, no answer could be given. After this, the team started adding to every User Story 

a Definition of Done as it did not only show the stakeholders that a task had been done properly, but 

also helped the software developers to know when a task was finished. After this incident, the team 

also started collecting evidence for every done task to document the progress, but also to be able to 

prove it to the stakeholders as they wanted to see progress. 

As with many software development projects, time estimation for tasks was particularly difficult for 

this re-engineering project. Time Boxing did not work out very during this project as tasks often took 

longer than they should have. Once a task was started, it often turned out to be a rabbit hole full of 

little sub tasks. Time Boxing requires to stop after a set amount of time, which was not possible as 

some tasks needed to be done in this sprint. However, this task extension made the stakeholders 

suspicious why less work had been completed than expected during Sprints. To aid transparency the 

team started visualising their work using a burndown chart showing when a task took longer or when 

work has been added. It needs to be mentioned though, that even though individual tasks were not 

time boxed, the Sprint itself was. 

As mentioned in a previous chapter, Story Points were equivalent to hours. For every hour available 

in each sprint, user stories with the appropriate amount of story points were put into it. However, 

using real time measurements instead of relative estimations made the evaluation of velocity difficult 

as the team did not compare the size of jobs, but rather estimated how long it will take. In the 

beginning, the estimations of the size of the user stories were rather experimental. These estimations 

were mostly inaccurate but mostly within a 10% margin, however for repeating tasks such as 

preparations for Sprint Reviews, the estimations became more accurate.  

A good example of finding it hard to estimate task size is the task allocation for Sprint 3. It was 

assumed that after the transfer of the application to a modern IDE many run time errors would occur. 

At least a whole sprint was allocated for fixing these bugs and making the application work again. 

However, this was not necessary. The application ran smoothly with only a minor bug. To use the 

gifted time, the team allocated new tasks into the current Sprint, which is against the Scrum guide as 
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tasks should only be added to the Sprint Backlog during the Sprint Planning. However, as mentioned, 

time was of the essence in this project. 

The prioritisation of tasks was most of the time not an object of discussion as the approach of the 

project was rather reactive. Most of the time it was obvious which tasks needed to be done next, 

especially when it was a risk to mitigated. Taking the DLL example, once the team realised that the 

64-bit DLLs could not be integrated in the system, it was clear that the next task would be to find a 

way to compile 32-bit DLLs. 

Overall, the team became proficient in using Scrum. Velocity estimations became more precise, 

different types of meetings were used in the appropriate situation, and Sprint Retrospectives were held 

after each Sprint. However, I noticed that the team had a tendency to become complacent over the 

time as they became comfortable using Scrum. User Stories became less and less detailed and 

informal to the point when the team did not know anymore what the task were required to complete 

the user story. Definitions of Done were also missing for some User Stories.  

6.3.3. Summary 

The table below summarises all the risks which were mitigated using Scrum techniques during the re-

engineering process of this application. It needs to be highlighted that the risks in the table are not the 

risk codes mentioned in chapter 5, but rather an abstract description of the major risks. This has been 

done to avoid repetition as similar risks were mitigated in the same way, except when stated. 

Risks Mitigation strategies using Scrum 

The precise nature of re-engineering activities 

was not known in advance. 

Continual re-prioritisation of tasks, and planning in detail 

for the short-term. (Sprint planning / Backlog grooming) 

Previously unidentified risks becoming 

apparent as the project progressed.  

Revising and adapting ways of working within the team 

to address risks as they arise (Sprint Review) 

The causes of struggles were difficult to 

identify. 

Discussing issues during Sprint Retrospectives helped to 

uncover the actual risk that caused them 

Being stuck Highlighting potential sticking points early (Daily Stand-

up) so that technical mitigations can be put in place (also 
feeding into Sprint Review and Planning) 

Lack of knowledge Highlighting the issue during Daily Stand-ups to receive 

help from team members (also feeding into Sprint 

Review and Planning). 

Having to struggle with time management 

because of working part-time on the project 

Discussing done work and planning work for the next 

few days during Daily Stand-ups 

Difficulties explaining to stakeholders what 

was done in previous Sprints and how to 
showcase it 

Adding a Definition of Done to every user story and 

collecting evidence for every done task to document 
progress 

Table 10: Summary of risks mitigated by using Scrum practices  
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7. Discussion 
The two research questions which were answered by this study are: 

• RQ1: What types of risks are encountered in a software re-engineering project and how are 

they mitigated? 

• RQ2: How helpful are Scrum practices to support a software re-engineering process? 

7.1. The identified risks compared to previous papers 
This study identified three different risk themes, namely technology, process, and people during the 

first phase of a re-engineering project. Each of these risk themes is made up of three or four different 

sub-themes. The potential and actual impact, as well as the success of the mitigation, of the risks of 

each sub-theme was identified and analysed. The risk categories were coded without using a pre-

existing codebook and the analysis was based on the collected data. This makes it interesting to look 

at the risk categories of previous papers and compare them with my results. Rashid et al. (2013) listed 

in their paper risks which have frequently been mentioned in different papers. The risk categories he 

mentioned in his paper are User satisfaction, Cost, Forward Engineering, Reverse Engineering, 

Performance, and Maintenance. Clemons et al. (1995) also lists different risk categories they found in 

their previous studies: Financial Risks, Technical Risks, Project Risk, Functionality Risk, and 

Political Risk. Surprisingly, there is very little overlap between the risk categories mentioned in these 

papers and my findings. The findings of Rashid et al. (2013) do not show any similarities to mine, 

although it could be argued that the risk codes, a lack of time for testing, which appeared in this case 

study, could be considered as a User Satisfaction risk. Users can be affected by bugs if an application 

has not been tested thoroughly. Clemons et al. (1995) paper contains two risk categories which 

overlap with mine, Technical Risk and Project Risk. My analysis describes a whole theme dedicated 

to technological risks and the description of Project Risk in Clemons et al. (1995) paper can be 

compared to some risks mentioned in the Social theme. Interestingly, Rashid et al. (2013) and 

Clemons et al. (1995) papers also only have one overlapping category, Financial Risks. The variety of 

risks in different papers shows us that the risks of different re-engineering projects can vary a lot. 

The novelty of this study stems from the fact that social risks were taken into consideration, as they 

were found to have a major impact, and are not just being mentioned as a side issue.  

Social risks seem to be totally ignored in some papers, e.g.: (Rashid et al., 2013). Other papers 

mention certain team or social risks, such as  (Khadka et al., 2014). They describe the reluctance of 

software developers to modernise legacy applications as they often conceive them as their “baby”, or 

they fear redundancy following the modernisation process, so they refuse to share their knowledge. 

Further social risks addressed in the paper are the non-understanding of managers for the need of 

modernisation, and reluctance of providing a sufficient budget for it. However, they do not mention 

any risks which could occur within the team or even related to a single person. This proves that social 

risks are often overlooked or forgotten about. Even though they might not be directly related to the 

project - in form of the actual software development work – and do not seem to be obvious, they are 

as critical, or even more, than other risks. 

I can imagine that some risks which only appeared at some point of time in this project are constant 

threads in other ones, such as inconsistent testing. It also always needs to be kept in mind that there 

are risks which are not time bound but just seemed to happen on a specific time in this project, such as 

the risk code fix is worse than problem. This is totally individual. Comparing the risk categories from 

Rashid et al. (2013) and Clemons et al. (1995) to mine, the reasons for the differences can be singled 

out. Financial Risks did not appear in my analysis as the budget for the project had already been 

approved when my contribution started. Forward and Reverse Engineering, and Performance risks did 

not appear as the re-engineering process was not advanced enough in the First Phase to be concerned 

about such risks. Maintenance risks were not of importance in the First Phase either as the re-

engineering process will continue in the next phase, so no maintenance work could be observed. As 
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the original system designer was part of the re-engineering team, functionality risks, such as the 

system not meeting present or future needs, never threatened the project. Because of the high 

importance of the re-engineering project for the organisation, political conflicts did not endanger the 

success of the project. 

Even though, the risks of my findings are barely overlapping with risks identified in previous studies 

((Rashid et al. (2013) & Clemons et al. (1995)), my findings provide a better general understanding of 

the risks which can appear during a re-engineering project. Project teams will be able to look the risks 

and their impact and be able to prioritise the area of re-engineering, and also know what kind of 

mitigations can be put into place.  

7.2. Agile in re-engineering 
Scrum was not just helpful by embracing the uncertainty, but also by handling the prioritisation of the 

tasks, which was crucial for the management and mitigation of the risks. As explained by means of 

the Iron Triangle in chapter 1, the time and money were a fixed factor in Scrum, as well as in this 

project, so the flexible scope was the features, which were constantly re-prioritised to fit to the 

customer value and eventually bring the application back on the market. The Agile characteristic of 

regular meetings not only helped uncovering risks, but also supported staying on track and solving 

problems with tasks. Another Agile/Scrum practice essential for uncovering risks, especially social 

ones, was Sprint Retrospectives as it was discussed what went well or poorly in the previous Sprint 

during these meetings. Timeboxing is one of the Scrum practices, which did not work well for this re-

engineering project as tasks often took longer than expected, which left stakeholders suspicious. 

Suggesting an Agile environment for re-engineering work is the second reason why this study is novel 

as Agile was mentioned in regards of re-engineering before, however, never to such an extent. 

Holvitie et al. (2018) penned one of the few papers mentioning Agile and re-engineering related 

matters, even though it only talks about technical debt, in one breath. By taking a survey among 

practitioners, it was found that Agile practices are perceived to have an effect – either positive or 

more diverged - on managing technical debts. Dealing with technical debt was a big part of the re-

engineering project this study is about. Taking a closer look into the results of their survey, it can be 

seen that some results are overlapping with mine e.g.: most practitioners perceived iteration 

reviews/retrospectives and adhering to coding standards having a positive effect managing technical 

debt. However, practices I would have viewed as useful, such as on-site customers, were mostly 

perceived as neutral, and core practices of Agile, like iterations, backlogs, and daily meetings, were 

rated having a positive impact by only 50-60% of the participants. It needs to be considered that the 

differences between my results and Holvitie et al.’s may emerge from the fact that the survey was 

conducted with software engineers who don’t particularly work on legacy applications. Only 40% of 

the participants had very well or well knowledge about technical debt.  

For the sake of completeness, I want to mention that Singh et al. (2019) published a paper describing 

a re-engineering project using Scrum, claiming that taking an Agile approach reduced maintenance 

cost and improved the maintainability. However, the project narrowly focused on reducing a set of 

code complexity metrics over a single Sprint in a non-industry context, where the only stakeholders 

were themselves. Another paper lacking credibility was composed by Masood & Ali (2014). They 

state that planning the next re-engineering Sprint based on the previous one and breaking down tasks 

into User Stories was very helpful. However, there is no background information about the interviews 

this data is based on.  

7.3. Overall impact 
The overall outcome of this research project is a combination of an initial set of risks including their 

impact on a re-engineering project, which are going to form the basis of further research into different 

types of re-engineering project to make a more generalised framework. Project teams can orient 
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themselves according to the framework and prioritise the areas of re-engineering and what kind of 

mitigation to put into place. Also, the proposed use of an Agile environment supports project teams by 

giving them a suggested way of how to deal with the factor of uncertainty during a re-engineering 

project. By this both of the research questions have been addressed and answered. 
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8. Limitations and Future Work 
The aim of this study is to contribute to the development of a framework for risk identification and 

mitigation in software re-engineering. The limitations are discussed here. 

This study is based on a single case study, it is therefore difficult to generalise the risks found here 

with those that might occur in other re-engineering projects. Also, no assumptions about the 

probability of the risks can be made as multiple re-engineering processes need to be observed for that. 

Some risk categories are missing from this study, because it was based on one phase of a re-

engineering project. For example,  Rashid et al. (2013) found that the maintenance of a system is a 

risk category, which I would consider as important. However, as the case study ended before the 

maintenance process started, these risks were not identified. Another risk category missing from this 

analysis is financial risk as the budget for this project had already been approved when my 

participation started. This risk was mentioned in two separate papers about re-engineering (Rashid et 

al., 2013) and (Clemons et al., 1995), thus they can be considered as important.  

There are also limits with how the findings were presented. The graphs in chapter 5 presenting the 

potential and expected impact (e.g.: Figure 11: Weighted impact of technology risks per Sprint) do not 

show when each risk became apparent. It might be visible when a risk from a certain sub-theme 

emerged or was mitigated, however if another risk from a sub-theme was mitigated or emerged at the 

same time, it could get compensated. Moreover, it does not state which risk code it was. 

Another major drawback of this study is the that the potential impact was not assessed at the 

beginning of the project but was done afterwards with the rest of the analysis. This made it impossible 

to prove how well the team estimated risks. For my future case studies, risks will need to be assessed 

beforehand. Moreover, my study would have stood to benefit from more notes. Even though, the data 

from the Scrum board was sufficient to track back to when certain risks were triggered, it would have 

been easier and faster to analyse if I had written up the initial process with more detailed, and earlier 

notes. 

Finally, there was a strong subjective element to this work as I was directly involved in this project as 

a software engineering, which could be considered as a limitation. The weightings for each impact, 

the potential and actual, were subjective as I was the only person deciding them. This could have been 

improved by doing interviews with each person involved in this project. However, in my opinion, the 

limitations of a researcher involved in the project stated in chapter 3, e.g.: influencing the work 

researched, and getting too involved in the project, did not restrict the quality of my research. 

For future work I am planning to continue this research in for my doctoral thesis. I want to consider 

the two missing risk categories mentioned above – maintenance and finance - so the framework 

covers the whole re-engineering cycle, by carrying out multiple long-term case studies in different 

companies, as well as continuing the research with the current  this project. Maintenance and financial 

risks could arise in future phases of this project by having a lack of budget for future maintenance or 

improvements and having a lack of time or staff to do maintenance work or quick fixes which would 

cause new technical debt. 

Undertaking multiple case studies would also allow me to calculate a sensible probability to each risk 

code. I think the framework would also stand to benefit from a case study on a re-engineering project 

which does not use Scrum (or other Agile frameworks), but rather a traditional methodology, to 

compare how much Agile essentially supports such an undertaking. With case studies using Agile, the 

analysis about how Scrum supported the project could be more detailed as this one was rather 

restricted due to the limited number of team members. The adapted Scrum practices in this project 

also made it very individual. Attaining insights to a re-engineering project with a standard Scrum 

team – as described in the Scrum Guide (Schwaber & Sutherland, 2011) - would certainly provide 

useful insights. Case studies from different re-engineering projects will also yield more objective 
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results. The final framework will support re-engineering teams to identify potential risks, their impact 

and probability in different stages and situations of the process. It will also focus on the prioritisation 

and mitigation of identified risks. The framework will be novel as it suggests using an Agile 

environment for re-engineering work.   

I also want to mention what the future of the re-engineered application investigated in this study will 

look like. As Phase one addressed bringing the product back to market, Phase two will be an overall 

re-engineering process, which includes taking the core application and turning it into a 32-bit system 

using an MVC architecture. It will also deal with the replacement of several libraries, the upgrading of 

the user interface, the improvement of the cloud version, and more things which will be mentioned in 

chapter 4.4. 
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9. Conclusion 
Legacy software is becoming increasingly ubiquitous, and most companies nowadays need to deal 

with the challenges associated with this phenomenon. On many occasions re-engineering is the only 

logical way to deal with such software. However, such projects are prone to many kinds of risk. This 

thesis has identified the different risks encountered in one particular re-engineering project and 

analysed their potential and actual impact on the project, as well as their mitigation status at the end of 

a given phase of development. Moreover, it has evaluated how helpful Scrum practices were to 

support this project. 

The first main observation is that substantial risks were faced in several aspects of the re-engineering 

project, which were themed around people, process and technology. Interestingly, while much has 

been written about the technical aspects of re-engineering, the presence of risk in social situations 

relating to re-engineering appears to have been overlooked in the literature. Risks related to human 

interactions were not found to have a bigger impact than risks from other areas, however it was 

surprising to discover that the number of those risks was much higher than those found in other 

aspects of the project. Furthermore, the social risks were often either underestimated or not even 

recognised.  

While the limited duration of the case study might have led to the omission of some risks related to 

maintenance and cost, it successfully identified risks related to personal relationship and the re-

engineering process itself, which were not reported in previously published papers. Having a small 

Scrum team with just one developer and only using some facets of Scrum limits the generalisability of 

the results, however it is clear from the findings that Agile brings in the flexibility needed to succeed 

with such an project, since many of the tasks which constitute a re-engineering project are often 

unknown at the beginning. This flexibility was also key for mitigating risks quickly. 

Further research is required to better understand the implications of Agile on a re-engineering project, 

specifically case studies with a standard-sized Scrum team using all facets of Scrum. Moreover, the 

study of a complete re-engineering cycle is needed to identify all risks emerging during such an 

undertaking. 

Based on these conclusions, organisations need to become more aware of people-related risks to 

ensure the success of their re-engineering work. As many kinds of risk could arise from anything 

people related, there is no definite way to mitigate these risks, however, I discovered that 

miscommunication is often the underlying cause and improved communication often mitigated the 

risk. 
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Appendices 

Appendix 1: Themes, sub-themes, and codes with explanation 

Themes Sub-themes Codes Code explanation 

Technology legacy technology discontinued technology support 

Technology (e.g. IDEs) might not be provided 
with updates and support anymore.  
Chances that it might not work in newer OS 
versions. 

    struggle to integrate technologies 

It might be difficult to integrate technologies 
because of the deprecated technology in the 
legacy application (e.g.: integrating legacy 
application into new IDE, using new 
technology in legacy application) 

    legacy code 
Legacy code might be difficult to understand 
and integrate. 

    no replacement for technologies 

Deprecated technologies might not be able  
be replaced (e.g. no similar technology  
to be replaced with) 

    lack of old technology for developing old software 

Lack of technology for developing software 
which needs outdated development 
environment (e.g.: 32-bit OS). 

    fundamental change of technology 

The same technology changed fundamentally 
too much over time, that it might not be able 
to simply be updated. 

    lack of knowledge about old technology 
Team members might have a lack of  
knowledge about old technology. 

  insufficient technology lack of testing environment 

Technology for testing the application might 
not be available (e.g.: "clean" machines 
without development technology). 

    missing version controlling 
Version controlling might not be used for the 
legacy application. 

    inability to roll back code changes Code changes cannot be rolled back. 
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    code overheap for IDEs and support tools 
Some code files might be too long for the IDE 
or support tools to process. 

  legacy application lack of legacy application documentation 
The functionality of the application might not 
be well-documented. 

    lack of readability of code 
The code might not be readable due to a lack 
of naming conventions or an old coding style. 

    limited number of people with knowledge about legacy application 
Only a limited number of people might have 
knowledge about the legacy application. 

    lack of commentary in code 
The code might be difficult to understand due 
to a lack of comments in it. 

    fix is worse than problem 

A fix used during the re-engineering process 
might actually introduce more technical debt 
(e.g.: upgrading the technology requires a 
workaround). 

    lack of knowledge about legacy application code 
A lack of knowledge about the legacy 
application and its functionality. 

Process testing missing test documentation 

Missing test documentation might cause 
difficulties to the app thoroughly as team 
members might not know how certain test 
results should look like. 

    lack of time for testing 
Not enough time for testing might lead to miss 
bugs. 

    lack of automated testing Manual testing might take up a lot of time. 

    lack of testing environment 

Technology for testing the application might 
not be available (e.g.: "clean" machines 
without development technology). 

    inconsistent testing 
Insufficient testing after applying changes 
might cause that bugs are getting missed. 

  time constraint lack of time for testing 
Not enough time for testing might lead to 
missing bugs. 

    limited licensing time 
Limited time with a licensed technology might 
cause time pressure. 

    lack of time for meetings 
A lack of time for meetings due to team 
member's limited time. 
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  lack of documentation missing test documentation 

Missing test documentation might cause 
difficulties to test the app thoroughly as team 
members might now know how certain test 
results should look like. 

    lack of commentary in code 
The code might be difficult to understand due 
to a lack of comments in it. 

    lack of legacy application documentation 
The functionality of the application might not 
be well-documented. 

    lack of re-engineering documentation 

The re-engineering process might not get 
documented properly. It might lead to 
confusion afterwards (e.g.: about decision 
making). 

People lack of knowledge lack of knowledge about legacy application code 
New developers lack knowledge about the 
legacy application and its functionality. 

    lack of state-of-the-art technology knowledge 
A lack of knowledge within the team about 
modern technology. 

    limited number of people with knowledge about legacy application 
Only a limited number of people might have 
knowledge about the legacy application. 

    lack of knowledge about old technology 
Team members might have a lack of  
knowledge about old technology. 

    lack of commentary in code 
The code might be difficult to understand due 
to a lack of comments in it. 

  process engagement confused stakeholders 

Stakeholder might get confused about the 
process presented during the Sprint Review 
(e.g.: decision making). This could come from 
a too complex explanation or an unclear 
definition of done. 

    not clarifying importance of task 

Team members might become unmotivated if 
the importance of the task hasn't been 
clarified. 

    inconsistent issue tracking Issues might not be tracked when they arise. 

    holding meetings incorrectly 

Meetings might not be held correctly (e.g.: not 
sticking to the agenda, mixing different kinds 
of meetings). 

    lack of time for meetings 
A lack of time for meetings due to team 
member's limited time. 
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    no clear goal 

The goal of the project might not be clear 
(e.g.: different parties might have different 
expectations; the goal is not set out properly) 

    inconsistent testing 
Insufficient testing after applying changes 
might cause that bugs are getting missed. 

    inconsistent bug tracking Bugs might not be tracked when they arise. 

    inconsistent use of version controlling 
Code changes might not be committed 
regularly.  

    unwillingness to change 
Unwillingness to change might prevent the 
progress of the project. 

  methodology engagement misevaluation of story points 
The time it takes to execute a task might be 
over- or underestimated. 

    too big tasks Tasks might not be broken up enough. 

    neglecting methodology 
Team members might not stick to all 
processes of the used methodology. 

    unclear definition of done 
The definition of when a task is finished might 
not be clear. 

    wrong prioritisation Tasks might be prioritised wrong. 

    poorly written user stories The definition of a task might be unclear. 

  social unwillingness to change 
Unwillingness to change might prevent the 
progress of the project. 

    lack of face-to-face working 
Some team members might want to work 
more in person with their colleagues. 

    lack of support A lack of support among team members. 

    lack of a team Not enough people working on the project. 

    confused team members 
Unclear communication might lead to 
confusion (e.g.: explanations). 
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    confused stakeholders 

Stakeholder might get confused about the 
process presented during the Sprint Review 
(e.g.: decision making). This could come from 
a too complex explanation or an unclear 
definition of done. 

    not clarifying importance of task 

Team members might become unmotivated if 
the importance of the task hasn't been 
clarified. 

    insecurity of team members 
Team members might be insecure (e.g.: 
prevents them from asking questions). 

 

Appendix 2: Codes with their expected and actual impact 

Themes Sub-themes Codes 
Expected 
Impact Actual impact 

Technology legacy technology discontinued technology support high high 

    struggle to integrate technologies high high 

    legacy code high high 

    no replacement for technologies high medium 

    lack of old technology for developing old software low medium 

    fundamental change of technology high high 
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    lack of knowledge about old technology medium low 

  insufficient technology lack of testing environment low low 

    missing version controlling high low 

    inability to roll back code changes high low 

    code overheap for IDEs and support tools medium medium 

  legacy application lack of legacy application documentation high high 

    lack of readability of code medium medium 

    limited number of people with knowledge about legacy application high high 

    lack of commentary in code medium medium 

    fix is worse than problem high high 

    lack of knowledge about legacy application code high medium 

Process testing missing test documentation high high 

    lack of time for testing high none 

    lack of automated testing medium medium 

    lack of testing environment low low 
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    inconsistent testing medium medium 

  time constraint lack of time for testing high none 

    limited licensing time high high 

    lack of time for meetings medium high 

  lack of documentation missing test documentation high high 

    lack of commentary in code medium medium 

    lack of legacy application documentation high high 

    lack of re-engineering documentation low low 

People lack of knowledge lack of knowledge about legacy application code high medium 

    lack of state-of-the-art technology knowledge low high 

    limited number of people with knowledge about legacy application high high 

    lack of knowledge about old technology medium low 

    lack of commentary in code medium medium 

  process engagement confused stakeholders low low 
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    not clarifying importance of task low low 

    inconsistent issue tracking low low 

    holding meetings incorrectly low low 

    lack of time for meetings medium high 

    no clear goal low low 

    inconsistent testing medium medium 

    inconsistent bug tracking low low 

    inconsistent use of version controlling medium medium 

    unwillingness to change high medium 

  methodology engagement misevaluation of story points low medium 

    too big tasks low medium 

    neglecting methodology low low 

    unclear definition of done low medium 

    wrong prioritisation medium none 

    poorly written user stories low medium 

  social unwillingness to change high medium 

    lack of face-to-face working low medium 
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    lack of support medium low 

    lack of a team medium high 

    confused team members low low 

    confused stakeholders low low 

    not clarifying importance of task low low 

    insecurity of team members low low 

 

Appendix 3: Codes with their mitigation status 

Themes Sub-themes Codes 
Mitigation 
Status 

Technology legacy technology discontinued technology support mitigated 

    struggle to integrate technologies mitigated, deferred 

    legacy code partially mitigated 

    no replacement for technologies deferred 

    lack of old technology for developing old software mitigated 
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    fundamental change of technology deferred 

    lack of knowledge about old technology mitigated 

  insufficient technology lack of testing environment mitigated 

    missing version controlling mitigated 

    inability to roll back code changes mitigated 

    code overheap for IDEs and support tools deferred 

  legacy application lack of legacy application documentation mitigated 

    lack of readability of code deferred 

    limited number of people with knowledge about legacy application partially mitigated 

    lack of commentary in code deferred 

    fix is worse than problem mitigated 

    lack of knowledge about legacy application code partially mitigated 

Process testing missing test documentation mitigated 

    lack of time for testing not occurred 

    lack of automated testing mitigated 



11 

 

    lack of testing environment mitigated 

    inconsistent testing not mitigated 

  time constraint lack of time for testing not occurred 

    limited licensing time deferred 

    lack of time for meetings not mitigated 

  lack of documentation missing test documentation mitigated 

    lack of commentary in code deferred 

    lack of legacy application documentation mitigated 

    lack of re-engineering documentation partially mitigated 

People lack of knowledge lack of knowledge about legacy application code partially mitigated 

    lack of state-of-the-art technology knowledge mitigated 

    limited number of people with knowledge about legacy application partially mitigated 

    lack of knowledge about old technology mitigated 

    lack of commentary in code deferred 
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  process engagement confused stakeholders mitigated 

    not clarifying importance of task mitigated 

    inconsistent issue tracking not mitigated 

    holding meetings incorrectly mitigated 

    lack of time for meetings not mitigated 

    no clear goal mitigated 

    inconsistent testing not mitigated 

    inconsistent bug tracking not mitigated 

    inconsistent use of version controlling not mitigated 

    unwillingness to change mitigated 

  methodology engagement misevaluation of story points mitigated 

    too big tasks mitigated 

    neglecting methodology mitigated 

    unclear definition of done mitigated 

    wrong prioritisation not occurred 
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    poorly written user stories mitigated 

  social unwillingness to change mitigated 

    lack of face-to-face working not mitigated 

    lack of support not mitigated 

    lack of a team not mitigated 

    confused team members not mitigated 

    confused stakeholders mitigated 

    not clarifying importance of task mitigated 

    insecurity of team members mitigated 

 


