
Central Lancashire Online Knowledge (CLoK)

Title Towards Anomaly Detection in Embedded Systems Application Using LLVM
Passes

Type Article
URL https://clok.uclan.ac.uk/52745/
DOI
Date 2024
Citation Ilahi, Sirine, Omotosho, Adebayo and Hammer, Christian (2024) Towards

Anomaly Detection in Embedded Systems Application Using LLVM Passes.
2024 IEEE 48th Annual Computers, Software, and Applications Conference
(COMPSAC). pp. 2453-2458. ISSN 2836-3787

Creators Ilahi, Sirine, Omotosho, Adebayo and Hammer, Christian

It is advisable to refer to the publisher’s version if you intend to cite from the work.

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

Towards Anomaly Detection in Embedded Systems
Application Using LLVM Passes

Sirine Ilahi
University of Passau

Passau, Germany

sirine.ilahi@uni-passau.de

Adebayo Omotosho
University of Central Lancashire

Preston, United Kingdom

aomotosho@uclan.ac.uk

Christian Hammer
University of Passau

Passau, Germany

christian.hammer@uni-passau.de

Abstract—Software security exploits, such as Return-Oriented
Programming (ROP) attacks, have persisted for more than a
decade. ROP attacks inject malicious behaviors into programs,
posing serious risks to computing devices, and they can be par-
ticularly challenging to detect in systems with limited resources.
In this paper, we introduce an approach that exploits Low-Level
Virtual Machine (LLVM) passes, programmatic transformations
applied during compilation, to detect ROP attacks in ARM-based
embedded systems. By customizing LLVM passes, developers
can integrate tailored security checks and optimizations into
embedded systems requirements. Our approach is motivated by
the use of Hardware Performance Counters (HPCs) for certain
mitigations, which are not commonly available on all embedded
systems. The experimental evaluation of our approach for de-
tecting ROP attacks in real-world applications shows that it is
feasible and can be extended to detect new attacks independently
of an Operating System (OS). The storage overhead induced by
our approach is approximately 55%.

Index Terms—Embedded systems, LLVM passes, Instrumen-
tation, Return oriented programming, Security.

I. INTRODUCTION

Embedded systems typically lack the robust security mech-

anisms provided by an Operating System (OS). Traditional se-

curity techniques, such as address space layout randomization

(ASLR) or data execution prevention (DEP), are frequently

absent or difficult to implement [1].

In addition, Hardware Performance Counters (HPCs) based

approaches that count certain hardware events to distinguish

vulnerable and benign applications have been well investi-

gated [2]–[6]. These statistically based approaches have been

reported to be computationally cost-effective, however, HPC

registers are not available on all embedded devices [7]–[9].

In this paper, we investigate a software-based counter ap-

proach derived from Low Level Virtual Machine (LLVM), a

popular compiler infrastructure that offers a range of tools

and technologies for code optimization, analysis, and trans-

formation. At the core of this infrastructure is a language-

independent Intermediate Representation (IR), similar to a

portable, high-level assembly language. This IR can be op-

timized through multiple passes which makes LLVM highly

versatile. One of the key components of LLVM is the LLVM

pass, which is responsible for performing the specific transfor-

mations on the IR code. In the context of security, LLVM pass

transformation can overcome these challenges by examining

the code at the IR level, enabling the detection of vulnerabil-

ities that might be missed by other tools or techniques.

The contributions of this paper are:

• Investigation of the applicability and effectiveness of

an LLVM pass to identify vulnerabilities in embedded

systems applications.

• Development of a novel technique to detect ROP attacks.

• Performance evaluation of the purposed technique on

real-world applications.

II. BACKGROUND

In this section, we briefly introduce the key concepts re-

lated to this paper’s scope of work and contributions. More

particularly, we describe the memory corruption exploitation

technique known as Return-Oriented Programming and detail

some ARM features which are used later in the paper.

A. Return Oriented Programming on ARM

Return-oriented programming (ROP) was proposed by

Shacham in 2007 for the x86 architecture, and then subse-

quently extended to the ARM, SPARC, and other proces-

sors [10]. ROP attacks are increasingly used in practice, in

particular, the recent ROP-based attacks on well-established

products such as Adobe Reader, Adobe Flashplayer, or Quick-

time Player [11]. The main idea of ROP is to exploit memory

vulnerabilities in a program without injecting new code into

the program’s address space. In a ROP attack, short code snip-

pets in the target program to be executed, so-called gadgets,

will be chained together in an order designed by the attacker

to perform a malicious functionality. Typically each gadget

ends with an indirect jump (e.g., ret *rcx or jmp *rcx) will

be chosen to form the ROP code. The attacker chains gadgets

together by controlling the target of a gadget’s indirect jump

to point to the beginning of the next gadget in the sequence.

In Fig. 1, we give an example of ROP exploit that presents a

buffer overflow caused by an unchecked strcpy that allows the

user to smash the contents of the stack and start the execution

of the ROP chain at return time.

B. Defences Against Return-Oriented Programming

Despite extensive research in computer security, vulnerabil-

ities caused by memory corruption in low-level programming

Fig. 1. General principle of ROP attacks.

languages remain to pose a major attack vector. The research

community has proposed various approaches to improve mem-

ory protection.
1) Data Execution Prevention: Data Execution Prevention

(DEP) is is one of the major countermeasures against code

injection widely used in modern OS. Its main function is to

enforce the restriction that a memory region cannot simul-

taneously be both writable and executable, and thus prevent

the execution of unauthorized code [12]. In the absence of

such mitigation techniques, the program could potentially

write CPU instructions into a memory segment designated for

data and subsequently execute those instructions. While this

technique effectively mitigates against code injection attacks,

it remains susceptible to return-into-libc attacks that leverage

existing code rather than injecting their own [13].
2) Address Space Layout Randomization: Address Space

Layout Randomization (ASLR) is another relevant and widely

deployed technique aimed at enhancing security against vari-

ous types of buffer overflows and to render their exploitation

more difficult by randomizing the locations of the most im-

portant program components in (virtual) memory. Once ASLR

is implemented, it is hard to determine the location of the

program data. However, despite its effectiveness, ASLR also

has its limitations. Research by Schacham [14] highlights a

significant weakness in ASLR for both 32-bit and 64-bits

architectures: the finite number of bits available for address

randomization. This limitation means that only a portion of the

address space can be randomized, leaving some bits suscepti-

ble to brute-force attacks [15]. Furthermore, another critical

ASLR weakness is its susceptibility to memory disclosure

attacks, where the adversary gains knowledge of a single

runtime address and then uses that information to re-enable

code reuse [16].
3) Control Flow Integrity: Control Flow Integrity (CFI) is

also another defence technique that restrict the set of possible

Fig. 2. Principle design of a three-phase compiler.

control-flow transfers to those that are required for correct

program execution from being transferred to unintended and

malicious addresses [17], making it significantly harder to

perform such attacks. By ensuring that program execution

follow a valid path through the static Control-Flow Graph

(CFG), CFI ensures that the program follows its expected

behaviour and prevents deviations [17], which are considered

as CFI violation that terminates the application. The goal of

CFG is to restrict the set of possible control-flow transfers to

those that are strictly required for correct program execution.

This prevents code-reuse attacks such as ROP, because they

would cause the program to execute control-flow transfers,

which are illegal under CFI technique. However, implementing

CFI can include an optimization between security and per-

formance. For example, some implementations may sacrifice

certain checkpoints by not instrumenting function calls and

paying attention only to return instructions.

Nevertheless, this approach can leave vulnerabilities in

the protected program, as attackers may exploit remaining

widgets. As shown in Coudray et al. [18], many CFI imple-

mentations have been tested and found to be quite permissive,

so an attacker can still carry out ROP attacks despite the

security measures in place.

As far as we know, the ROP mitigation techniques we have

discussed can be bypassed by knowledgeable adversaries using

generic methods.

III. DESIGN AND IMPLEMENTATION

A compiler is an essential part of software development. It

converts source code instructions into object code instructions.

Conceptually, its software design consists of three phases:

Front-end, Optimizer, and Back-end [19]. Fig. 2 shows the

main components of a three-phase compiler design.

In embedded systems where memory resources are often

constrained, and energy efficiency is a priority, the ARM

processor stands out in a unique way to optimize program size

and memory usage [20]. It has become one of the most widely

used processors in the world. However, the widespread use of

ARM-based devices has led to a significant increase of attacks

on these devices. One such attack that has gained popularity

is ROP. Based on its requirements, a ROP payload has the two

low-level properties:

• a sufficiently long chain of gadgets with few instructions

in each gadget.

• a mispredicted return for each gadget’s terminal indirect

jump instruction.

These properties are intrinsic to each ROP payload and are

independent of the program being monitored. To effectively

Fig. 3. LLVM inftrastructure overview.

target ARM processors under attacks, a comprehensive un-

derstanding of assembly language programming is crucial.

Indeed, it is not enough to write attacks in a "simple" scripting

language; a deeper understanding of ARM binary flow analy-

sis, customized ARM shellcode creation, and ARM program

debugging is essential.

A. Design

Code instrumentation is a common technique used to track

application behaviour by inserting specific code, called instru-

mentation code, into the source files under analysis. These

files are subsequently compiled and executed. Therefore, the

execution output includes this instrumentation code can be be

used for further analysis. The most popular usages for code

instrumentation are software debugging, monitoring, perfor-

mance analysis, and aspect oriented programming.

1) IR: An Intermediate Representation (IR) is a data struc-

ture that is designed as an internal form that the compiler or

the virtual machine uses to represent the source code [21].

Typically, compilers generate the IR as a bridge between the

source code and the compiled binaries to generate a generic

assembly code. Therefore, a universal assembler can be used

to to perform the final conversion from assembly to machine-

independent intermediate code. Otherwise, a complete native

compiler for different languages and machine architectures

would be required.

2) LLVM: The Low Level Virtual Machine is a compiler

infrastructure designed to create an interface to the compilation

process so that further optimizations can be applied to the

binary itself, rather than using Just-In-Time (JIT) compilers for

runtime optimizations [22]. Otherwise, the target program can

be operated through a chain of analyses and transformations.

Each of these steps is called a pass, as illustrated in Fig. 3.

A pass performs the transformations and optimizations that

form the core of the compiler. The results of these analyses

serve as a basis for further transformations [23]. Listing 1 is

an example of the Address Sanitizer LLVM pass. This pass

only instruments the IR only if it represents a store instruction.

With a simple check, the modified Address Sanitizer LLVM

pass in Listing 2 will only instrument the store instruction if

the IR is annotated with store, meaning that it is generated

from the guest binary.

if (StoreInst *LI = dyn_cast<StoreInst>(this))
{
//instrument analysis code

}

Listing 1. Address Sanitizer LLVM pass

if (StoreInst *LI = dyn_cast<StoreInst>(this))
{
if (LI->getMetadata("store") && LI->isVolatile())
{
//instrument analysis code

}
}

Listing 2. LLVM Instrumentation

B. Implementation

In our instrumentation approach, applications are tracked at

runtime by by inserting hooks into the source code to record

events such as the number of entries and exits of each basic

block, a sequence of sequential instructions without branches,

along with its execution count. These hooks call the monitor

for each such event, a process known as instrumentation as

shown in Fig. 4. Fig. 4 (a), showcases an unedited version

of a simple code example. This example includes a simple

recursive function func() that calls itself with a decreasing

argument i until this argument is less than or equal to 0,

after which main() function calls func() with values from 0

to 9. While Fig. 4 (b) illustrates the instrumented source code

with added calls to monitor the number of entries and exits

for each basic block and the total number of basic blocks

executed. Whenever an application calls a function, it calls

the ENTER hook and passes control flow to the monitor. The

monitor stores the relevant information, such as the number of

basic block entries, before returning control to the application

for continued execution. Similarly, the monitor manages the

EXIT of each basic block at the function’s end.

C. ROP exploit creation on ARM

In this section, we describe the leveraged ROP attacks

against vulnerable real-world applications on the ARM plat-

form. To test the effectiveness of our approach, we have

implemented various ROP attacks which are publicly available

on Github taken from Welearegai et al. [24]. The total size of

the implemented ROP applications is 139.88MB. During the

ROP attack, the gadget addresses are loaded into the Program

Counter (PC) register using pop instructions. The contents of

the function argument registers (i.e. r0-r4) must be reserved

before the control flow is redirected to the desired function to

provide the function arguments. For example, to open a system

shell, the r0 register must point to /bin/sh before the control

flow is redirected to the address of the system function.

IV. EVALUATION AND DISCUSSION

In this section, we delve into the research questions that

arouse our interest, the evaluation methodology employed, the

experimental setup, and the results of assessing the LLVM

Fig. 4. (a) Original source code. (b) Annotated source code.

pass. The research questions we address are outlined as

follows:

RQ1: Can LLVM pass software-based metrics be used for

distinguishing ROP attack behavior?

RQ2: How significant is the resource usage of the proposed

approach?

A. Evaluation Approach

To answer the first research question, obtaining an accurate

record of the software performance counter metrics is crucial.

To achieve this goal, we performed experiments involving

instrumented code, where supplementary code segments were

inserted at the entry and exit points of each basic block. This

process was facilitated by the implementation of an LLVM

pass as described in Algorithm 1. Within this implementation,

three global variables BasicBlockCounter, EntryCounter, and

ExitCounter were created. These variables respectively track

the number of basic blocks, the number of entries, and the

number of exits. For each basic block, an instrumented code

was added to count its entries and exits, and the counter

BasicBlockCounter was incremented by 1. Discrepancies in

the values of these three counters indicate illegal control

flow violations. The pass includes 55 lines of C++ code

designed to track these three counters. Discrepancies in entry

and exit counts indicate the occurrence of ROP attack. Our

instrumentation process was implemented into the LLVM

11.0.1 compiler and the evaluation hardware setup consists

of a Raspberry Pi 4 Model B running kernel version 5.4. The

approach to the second research question involves measuring

the efficiency of the proposed method using metrics such as

storage and runtime overhead.

Algorithm 1: Algorithm to instrument LLVM IR and

count basic blocks, entries, and exits

Input : LLVM IR

Output: Instrumented IR with number of basic blocks,

entries, and exits

initialize variables;

BasicBlockCounter = 0;

EntryCounter = 0;

ExitCounter = 0;

for each Function F in Module M do
for each BasicBlock B in Function F do

BasicBlockCounter++;

InsertEntryCounterCode(B);

EntryCounter++ ;

InsertExitCounterCode(B);

ExitCounter++;

end
end

for each BasicBlock B in Function F do
return (BasicBlockCounter, EntryCounter,

ExitCounter);

end

B. Discussion

This section presents our findings based on the two research

questions.

RQ1: Can LLVM pass software-based metrics be used for
distinguishing ROP attack behavior?
From the analysis of our test applications, we identified a key

mismatch between ROP attacks and non-ROP implementa-

tions, specifically in the differences between the number of

entries and exits of basic block counters, as shown in Table I.

For instance, in the application Crashmail, during normal exe-

cution, the number of entry and exit basic blocks is 15, because

in normal execution each basic block has its entry and exit.

However, when illegal code execution occurs in Crashmail due

to ROP attack, the number of exits (11) and entries (12) do

not match. This discrepancy can be explained by the program’s

behavior when it jumps to unknown memory locations so that

the subsequent exit cannot be counted. The results in Table I

show that our approach can correctly distinguish between ROP

and non-ROP behaviors in real applications albeit the attacks

are only detected after the application terminates.

RQ2: How significant is the resource usage of the proposed
approach?
Table II presents the overhead of our proposed approach

in terms of runtime and storage overhead. The size of the

instrumented binary files increases by an average of 55%

compared to the original files due to the additional integrated

instrumentation code. In terms of runtime, our approach re-

quires an additional initialization overhead of 20ms on average

compared to the original code. The increase in execution time

ranges from 3.0% to 15.5% depending on the characteristics

of the target program and the number of basic blocks on each

TABLE I
COMPARISON BETWEEN ROP AND NON-ROP

Applications ROP execution Non-ROP execution
#Basic blocks #Entries #Exits #Basic blocks #Entries #Exits

Crashmail 12 12 11 15 15 15
Dnstracer 5 5 4 5 5 5
Mcrypt 13 13 12 13 13 13
Nethack 15 15 14 15 15 15

PHP 9 9 8 11 11 11
Wifirx 15 15 14 18 18 18

TABLE II
BINARY SIZE AND RUNTIME OVERHEAD

Applications Binary size (bytes) Runtime (ms)
Before instr After instr Increment(%) Before instr After instr Increment(%)

Crashmail 8464 13128 55.2 257 293 14.0
Dnstracer 6020 7544 25.3 328 338 3.0
Mcrypt 6904 10580 53.3 251 262 4.4
Nethack 8336 13004 56.0 237 259 9.3

PHP 8652 13424 66.7 601 694 15.5
Wifirx 8572 13240 54.6 593 612 3.2

TABLE III
COMPARATIVE ANALYSIS OF OUR APPROACH AND ALTERNATIVES

Characteristics Our approach Honeygadget SafeLLVM RIO
OS requirement No No No No
ROP attack detec-
tion

Detects ROP attack
by differencing the
number of entries
and exits of basic
blocks

Prevents ROP at-
tacks by enforc-
ing return address
checks at runtime

Prevents ROP at-
tacks by minimiz-
ing the number of
gadgets present in
binaries using llvm

Prevents ROP at-
tacks by encrypting
all return instruc-
tions

Average storage
overhead

55% - - 30%

Average runtime
overhead

8.22% 6.8% 0.2% 8.79%

function of the program. The resource consumption of our

method is comparable to that of similar existing works, thus

validating its practicability in detecting anomalies in embedded

systems applications.

V. RELATED WORK

This section discusses some of the closely related ap-

proaches to ours and Table III presents the comparison of our

technique to some of the existing LLVM works for detecting

ROP attacks. Honeygadget [25] consists of inserting honey
gadgets into the application as decoys to confuse adversaries

with traps based on the LLVM pass. However, the enrichment

of the type and location of the inserted gadgets is limited as

some types of gadgets are rare but necessary for a certain

kind of code reuse attacks which consequently limits the

types of these honey gadgets and increases the possibility

of leaking the traps. In contrast, our approach takes a more

general stance as it is not bound to specific gadget types,

which makes it adaptable to a wider range of scenarios.

Furthermore, Safellvm [26] is a technique that focuses on

minimizing the number of gadgets in x86-64 binaries compiled

with the LLVM infrastructure. It is able to reduce the number

of gadgets in a binary and in most cases prevents the automatic

generation of ROP chains. However, this approach has some

limitations, as it targets only x86_64 binaries. Moreover, the

Return Instruction Obfuscation (RIO) technique [27] encrypts

all return instructions and instruments the necessary modules

to decrypt and execute the encrypted return instructions using

LLVM pass. However, this technique also requires a high

storage overhead which is about 30%, to prevent attackers

from collecting gadgets. Eberius et al. [28] approach is similar

to ours in terms of using software-based performance counters,

although it targeted exposing low-level open MPI performance

information. Their approach basically introduces a simple low-

level approach that instruments the Open MPI code at key

locations to provide fine-grained MPI performance metrics.

Unlike in our paper, their approach did not focus on attack de-

tection but only on how to use software performance metrics to

determine bottlenecks in user code and MPI implementation.

VI. CONCLUSION

Memory corruption attacks arising from stack buffer over-

flow have been a major security problem for decades and have

been extensively studied in the academic community. Because

these attacks are persistent, this paper investigates innovative

software performance counters-based statistical methods using

LLVM pass to detect ROP in embedded systems. Although our

current approach is limited in that it cannot perform runtime

prevention, our experimental result shows that it can distin-

guish ROP from non-ROP executions in real-life applications.

Hence, our follow-up research will address two objectives:

investigating additional LLVM instrumentation counters that

can help with runtime prevention of ROP attacks and reducing

storage overhead.

REFERENCES

[1] A. Abbasi, J. Wetzels, T. Holz, and S. Etalle, “Challenges in designing
exploit mitigations for deeply embedded systems,” in 2019 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P). IEEE, 2019, pp.
31–46.

[2] B. Singh, D. Evtyushkin, J. Elwell, R. Riley, and I. Cervesato, “On the
detection of kernel-level rootkits using hardware performance counters,”
in Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, 2017, pp. 483–493.

[3] X. Wang, C. Konstantinou, M. Maniatakos, R. Karri, S. Lee, P. Robison,
P. Stergiou, and S. Kim, “Malicious firmware detection with hardware
performance counters,” IEEE Transactions on Multi-Scale Computing
Systems, vol. 2, no. 3, pp. 160–173, 2016.

[4] S. P. Kadiyala, P. Jadhav, S.-K. Lam, and T. Srikanthan, “Hardware per-
formance counter-based fine-grained malware detection,” ACM Trans-
actions on Embedded Computing Systems (TECS), vol. 19, no. 5, pp.
1–17, 2020.

[5] K. Basu, P. Krishnamurthy, F. Khorrami, and R. Karri, “A theoretical
study of hardware performance counters-based malware detection,”
IEEE Transactions on Information Forensics and Security, vol. 15, pp.
512–525, 2019.

[6] C. Li and J.-L. Gaudiot, “Detecting spectre attacks using hardware
performance counters,” IEEE Transactions on Computers, vol. 71, no. 6,
pp. 1320–1331, 2021.

[7] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi, “Hardware
performance counters can detect malware: Myth or fact?” in Proceedings
of the 2018 on Asia conference on computer and communications
security, 2018, pp. 457–468.

[8] C. Malone, M. Zahran, and R. Karri, “Are hardware performance
counters a cost effective way for integrity checking of programs,” in
Proceedings of the sixth ACM workshop on Scalable trusted computing,
2011, pp. 71–76.

[9] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose,
“Sok: The challenges, pitfalls, and perils of using hardware performance
counters for security,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 20–38.

[10] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
Proceedings of the 17th ACM conference on Computer and communi-
cations security, 2010, pp. 559–572.

[11] L. Davi, A.-R. Sadeghi, and M. Winandy, “Ropdefender: A detection
tool to defend against return-oriented programming attacks,” in Pro-
ceedings of the 6th ACM Symposium on Information, Computer and
Communications Security, 2011, pp. 40–51.

[12] L. Liu, J. Han, D. Gao, J. Jing, and D. Zha, “Launching return-oriented
programming attacks against randomized relocatable executables,” in
2011IEEE 10th International Conference on Trust, Security and Privacy
in Computing and Communications. IEEE, 2011, pp. 37–44.

[13] A. Gupta, S. Kerr, M. S. Kirkpatrick, and E. Bertino, “Marlin: A
fine grained randomization approach to defend against rop attacks,” in
Network and System Security: 7th International Conference, NSS 2013,
Madrid, Spain, June 3-4, 2013. Proceedings 7. Springer, 2013, pp.
293–306.

[14] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings
of the 11th ACM conference on Computer and communications security,
2004, pp. 298–307.

[15] V. Parikh and P. Mateti, “Aslr and rop attack mitigations for arm-based
android devices,” in Security in Computing and Communications: 5th
International Symposium, SSCC 2017, Manipal, India, September 13–
16, 2017, Proceedings 5. Springer, 2017, pp. 350–363.

[16] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in 2013 IEEE symposium
on security and privacy. IEEE, 2013, pp. 574–588.

[17] Y. Ruan, S. Kalyanasundaram, and X. Zou, “Survey of return-oriented
programming defense mechanisms,” Security and Communication Net-
works, vol. 9, no. 10, pp. 1247–1265, 2016.

[18] T. Coudray, A. Fontaine, and P. Chifflier, “Picon: control flow in-
tegrity on llvm ir,” in Symposium sur la sécurité des technologies de
l’information et des communications, Rennes, France, 2015, pp. 3–5.

[19] R. Tschüter, J. Ziegenbalg, B. Wesarg, M. Weber, C. Herold, S. Döbel,
and R. Brendel, “An llvm instrumentation plug-in for score-p,” in Pro-
ceedings of the Fourth Workshop on the LLVM Compiler Infrastructure
in HPC, 2017, pp. 1–8.

[20] A. Krishnaswamy and R. Gupta, “Profile guided selection of arm and
thumb instructions,” ACM SIGPLAN Notices, vol. 37, no. 7, pp. 56–64,
2002.

[21] J. Stanier and D. Watson, “Intermediate representations in imperative
compilers: A survey,” ACM Computing Surveys (CSUR), vol. 45, no. 3,
pp. 1–27, 2013.

[22] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python
jit compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, 2015, pp. 1–6.

[23] H. Peeler, S. S. Li, A. N. Sloss, K. N. Reid, Y. Yuan, and W. Banzhaf,
“Optimizing llvm pass sequences with shackleton: a linear genetic pro-
gramming framework,” in Proceedings of the Genetic and Evolutionary
Computation Conference Companion, 2022, pp. 578–581.

[24] G. B. Welearegai, C. Hu, and C. Hammer, “Detecting and preventing
rop attacks using machine learning on arm,” in 2023 IEEE 47th Annual
Computers, Software, and Applications Conference (COMPSAC). IEEE,
2023, pp. 667–677.

[25] X. Huang, F. Yan, L. Zhang, and K. Wang, “Honeygadget: A deception
based approach for detecting code reuse attacks,” Information Systems
Frontiers, vol. 23, pp. 269–283, 2021.

[26] F. Cassano, C. Bershatsky, and J. Ginesin, “Safellvm: Llvm without the
rop gadgets!” arXiv preprint arXiv:2305.06092, 2023.

[27] B. Kim, K. Lee, W. Park, J. Cho, and B. Lee, “Rio: Return instruction
obfuscation for bare-metal iot devices,” IEEE Access, 2023.

[28] D. Eberius, T. Patinyasakdikul, and G. Bosilca, “Using software-based
performance counters to expose low-level open mpi performance in-
formation,” in Proceedings of the 24th European MPI Users’ Group
Meeting, 2017, pp. 1–8.

