
The Use of Machine Learning to Provide an Early Indication of
Programming Students in Need of Support

by

Oliver Andrew Paul Kerr

A thesis submitted in partial fulfilment for the requirements for the degree of

Doctor of Philosophy, at the University of Central Lancashire

February 2024

RESEARCH STUDENT DECLARATION FORM

Type of Award PhD

School Psychology and Computer Science

1. Concurrent registration for two or more academic awards

 I declare that while registered as a candidate for the research degree, I have not been

a registered candidate or enrolled student for another award of the University or

other academic or professional institution.

2. Material submitted for another award

I declare that no material contained in the thesis has been used in any other

submission for an academic award and is solely my own work.

3. Collaboration

Where a candidate’s research programme is part of a collaborative project, the thesis

must indicate in addition clearly the candidate’s individual contribution and the

extent of the collaboration. Please state below:

 N/A

4. Use of a Proof-reader

 No proof-reading service was used in the compilation of this thesis.

Signature of Candidate O.Kerr

Print name: Oliver Kerr

 I

Abstract
Programming is a core component of any university-level computer science course. When

learning to program, students’ efforts can be hampered by a variety of misconceptions

pertaining to fundamental programming concepts. These can range from a complete

misunderstanding of a concept, to small, yet frequent mistakes that can lead to logical errors

within programs. The misconceptions students hold can prevent them from developing

appropriate mental models of concepts, which can ultimately create a barrier to students’

learning. These misconceptions can cause issues in terms of students’ understanding of the

content they are being taught and can also have a detrimental impact on students’ confidence.

As such, it is necessary to identify students who are likely to require support with learning to

program at the earliest possible opportunity. The present research, therefore, intends to

establish a deeper understanding of the mental models students hold of core programming

concepts prior to starting their degrees, and how they develop during the first semester of

teaching within an introductory programming module. How students’ mental models relate to

their prior experiences and their perceived levels of confidence is also explored as part of this

work, as well as how these factors link to students’ performance within their programming

module.

There are two distinct parts to this investigation. The first part focuses on the design and

development of an aptitude test, termed the Programming Checkup, which is the main data

collection mechanism for this research. The Programming Checkup was subsequently issued

to students at two occasions, with the first being at the beginning of their courses and the

second being towards the end of the first semester, therefore, allowing for an examination of

students’ progress throughout the initial stage of their introductory programming module.

The second part of the investigation explores the potential for using machine learning and

students’ responses to the Programming Checkup at the beginning of their courses, as a

means to predict students’ results in their first introductory programming assessment.

The findings from the analysis conducted during this investigation indicate that there is a

clear benefit to students in terms of their likelihood of holding appropriate mental models and

their levels of confidence and anxiety surrounding learning to program by having prior

programming experience. Likewise, having previously studied computer science also benefits

students, although not as substantially as prior programming experience. It is apparent that

 II

previously studying a mathematics-based subject after leaving school, does not benefit

students in ways directly represented in their likelihood of holding appropriate mental

models, nor in terms of their levels of confidence or anxiety surrounding learning to program,

to the same extent as previously studying computer science or having prior programming

experience. Furthermore, factors that point to some students being intrinsically motivated,

wherein students intend to work in a software engineering role after they graduate or consider

themselves to be “self-taught programmers”, are seen to relate to higher levels of confidence

and for students being more likely to hold appropriate mental models.

One of the main intentions of this investigation was to explore how students’ responses to the

Programming Checkup at the beginning of their course can be used to help identify students

who are likely to require support with learning to program. As such, an exploration of how

machine learning can be utilised to predict the results students achieve in their first

introductory programming assessment was undertaken, with both classification and

regression approaches being considered. The results of this evaluation found that the best

performing regression model was the Random Forest Regressor, which achieved an average

RMSE of 0.1686 when trained on the full training dataset, and 0.1687 when evaluated on the

holdout testing dataset. This, therefore, demonstrates that the training data have not been

overfitted, and that the model is capable of making predictions with a level of accuracy that is

sufficient to provide an indication of a student’s performance, and as such, used as a guide

for identifying students who likely benefit from additional support. Similarly, the Random

Forest Classifier was found to be the best performing classification model, achieving an

average AUC of 0.7400 when trained on the full training dataset. However, an average AUC

of only 0.6595 was achieved when evaluated on the holdout test set, thus indicating a

substantial amount of overfitting, potentially due to the inherent imbalance within the dataset

when a result of 50% is used as a threshold. There is, therefore, a clear need for future work

to establish a more appropriate threshold, as well as to explore ways of improving the

performance of both the regression and classification models. However, this investigation has

demonstrated the potential of this approach, which can be improved and expanded upon

within future research stemming from this work.

 III

Acknowledgements

I would like to express my deepest appreciation to my supervisory team for their unwavering

support throughout this process.

Linden, as my Director of Studies you have continuously pushed me to be at my best. From

guiding my methodological approaches to fine tuning my writing, your support and

encouragement has helped to make me not only a better researcher, but also a better lecturer.

Nicky, without you, none of this would have been possible. Thank you for believing in me,

all the way from my first year as an undergraduate student, right through to completing my

PhD. Although, I think you will always say my writing is too “flowery”!

Gareth, although you retired whilst my PhD was still at a very early stage, thank you for your

support and for sharing your wealth of experience of teaching programming with me.

I am extremely grateful to all the students who chose to take part in my investigation. Having

struggled with programming myself at college, helping you overcome your difficulties with

learning to program has been the driving force behind my work. By taking part in my

research, you are helping me to find new ways to help future cohorts of students, for which I

thank you.

I must also especially thank my family for their support whilst completing my PhD. In

particular, I wish to thank my mum, Allison Kerr, who has always done her upmost to allow

me to achieve my ambitions. Thank you.

Finally, I wish to dedicate my work to my grandad, Iain Balmer, who died from Prostate

Cancer in March 2023. He was always a huge part of my life, and I know how proud he was

of my achievements. I hope I continue to make him proud in all that I do in the future.

Iain David Balmer

6th December 1947 – 11th March 2023

R.I.P.

 IV

Table of Contents
Abstract .. I

Acknowledgements ... III

List of Tables .. VI

List of Figures .. IX

List of Appendices .. X

List of Abbreviations .. XI

1. Introduction ... 1

1.1 Investigation Rationale ... 1

1.2 Scope of Research .. 2

1.3 Research Questions ... 5

1.4 Thesis Structure .. 8

1.5 Research Contribution .. 9

2. The Issue of Learning to Program ... 11

2.1 Literature Scope .. 11

2.2 The Difficulties of Programming.. 12

2.3 The Mind of a Programmer .. 24

2.4 Programming Cognition ... 31

2.5 Students’ Interpretations of Programming Concepts .. 44

2.6 Summary ... 60

3. Investigation Methodology ... 61

3.1 Investigation Scope ... 61

3.2 Potential Factors for Inclusion in the Aptitude Test ... 62

3.2.1 Aptitude Test Rationale .. 62
3.2.2 Students’ Previous Experience ... 64
3.2.3 Students’ Mental Characteristics .. 65
3.2.3 Working Memory Capacity and Spatial Ability ... 72

3.3 Predictive Model Considerations .. 76

 V

3.4 Aptitude Test Design .. 85

3.4.1 Section Outline ... 85
3.4.2 Initial Aptitude Test Design ... 85
3.4.3 Subsequent Modifications .. 98

3.5 Overview of Machine Learning Algorithms ... 106

3.6 Summary and Methodology Reflection .. 123

4. Predictive Model Development ... 128

4.1 Model Objectives .. 128

4.2 Data Pre-Processing .. 131

4.3 Model Evaluation and Testing .. 152

4.4 Summary ... 159

5. Programming Checkup Analysis .. 160

5.1 Analysis Scope ... 160

5.2 T1 and T2 Comparison ... 160

5.2.1 Analysis of Students’ Understandings of Core Programming Concepts .. 160
5.2.2 Influence of Prior Experiences on Likelihood of Holding Appropriate Mental Models 168
5.2.3 Analysis of Students’ Levels of Confidence .. 175

5.3 Examination of Relationships with Assessment 1 Results ... 197

5.4 Comparison with Assessment 2 Results ... 230

5.5 Summary ... 235

6. General Discussion and Reflections of Research Outcomes and Future Work............. 236

6.1 Scope of Discussion .. 236

6.2 Responses to Research Questions ... 236

6.3 Limitations of this Investigation ... 251

6.4 Future Work .. 254

6.5 Self-Reflection and Concluding Remarks .. 256

References ... 259

Appendices ... 288

 VI

List of Tables
Table 2.1 Example Schema of a House ... 32

Table 3.1 Comparison between Learning Analytics and Educational Data Mining (derived

from Siemens & Baker, 2012) .. 77

Table 4.1 Associated Misconceptions of Each Mental Model ... 133

Table 4.2 Chi-Squared Test Between Binarized Assessment 1 Results and Dichotomous

Background Factors... 142

Table 4.3 Mann Whitney U Tests Between Assessment 1 Results and Dichotomous

Background Factors... 143

Table 4.4 Mann Whitney U Tests Between Binarized Assessment 1 Results and Confidence

Factors ... 147

Table 4.5 Spearman’s Rank Correlation Tests Between Assessment 1 Results and Confidence

Factors ... 148

Table 4.6 Mann Whitney U Tests between Binarized Assessment 1 Results and Mental Model

Estimates Established Using Bayesian Knowledge Tracing ... 150

Table 4.7 Spearman’s Rank Tests Between Assessment 1 Results Mental Model Estimates

Established Using Bayesian Knowledge Tracing .. 151

Table 4.8 10-Fold Cross Validation Scores of Regression Models (RMSE) 154

Table 4.9 10-Fold Cross Validation Scores of Classification Models (AUC) 155

Table 5.1 Wilcoxon Signed Rank Comparison of Misconception Occurrences at T1 and T2

.. 162

Table 5.2 Wilcoxon Signed Rank Comparison of Mental Model Estimates Established using

Bayesian Knowledge Tracing at T1 and T2 ... 166

Table 5.3 Mann Whitney U Tests Between Prior Programming Experience (Yes/No) and

Mental Model Estimates Established using Bayesian Knowledge Tracing at T1 and T2 170

Table 5.4 Mann Whitney U Tests Between Previously Studying Computer Science (Yes/No)

and Mental Model Estimates Established using Bayesian Knowledge Tracing at T1 and T2

.. 171

Table 5.5 Comparison of Prior Programming Experience, Previously Studying Computer

Science and Average Estimates of Having an Appropriate Mental Model at T1 and T2 172

Table 5.6 Spearman’s Rank Correlation Test Between Students’ Agreement in Considering

Themselves “Self-Taught Programmers” at the Start of Their Course and Mental Model

Estimates Established Using Bayesian Knowledge Tracing at T1 and T2 174

 VII

Table 5.7 Mann Whitney U Tests Between Previously Studying a Mathematics-Based Subject

(Yes/No) and Mental Model Estimates Established Using Bayesian Knowledge Tracing at T1

and T2 .. 175

Table 5.8 Wilcoxon Signed Rank Comparison of Confidence Factors at T1 and T2 176

Table 5.9 Mann Whitney U Tests Between Prior Programming Experience (Yes/No) and

Confidence Factors at T1 and T2 .. 179

Table 5.10 Mann Whitney U Tests Between Previously Studying Computer Science (Yes/No)

and Confidence Factors at T1 and T2 ... 182

Table 5.11 Spearman’s Rank Correlation Test Between Students’ Agreement in Considering

Themselves “Self-Taught Programmers” at the Start of Their Course and Confidence

Factors at T1 and T2.. 186

Table 5.12 Mann Whitney U Tests Between Previously Studying a Mathematics-Based

Subject (Yes/No) And Confidence Factors at T1 and T2 ... 187

Table 5.13 Spearman’s Rank Correlation Tests Between Self-Efficacy Factors and Mental

Model Estimates Established Using Bayesian Knowledge Tracing at T1 and T2 189

Table 5.14 Spearman’s Rank Correlation Tests Between Average Confidence in Answers for

All Programming Questions and Mental Model Estimates Established Using Bayesian

Knowledge Tracing at T1 and T2 .. 190

Table 5.15 Mann Whitney U Tests Between Students’ Intentions to Pursue a Career in

Software Engineering (Yes or Undecided/No) and Mental Model Estimates Established Using

Bayesian Knowledge Tracing at T1 and T2 ... 194

Table 5.16 Mann Whitney U Tests Between Students’ Intentions to Pursue a Career in

Software Engineering (Yes or Undecided/No) And Confidence Factors at T1 and T2 196

Table 5.17 Mann Whitney U Test Between Assessment 1 Results and Dichotomous

Background Factors, Conducted on All Available Data at T1 .. 198

Table 5.18 Mann Whitney U Tests Between Prior Programming Experience (Yes/No) And

Mental Model Estimates Established Using Bayesian Knowledge Tracing, Conducted on All

Available Data at T1 .. 200

Table 5.19 Mann Whitney U Tests Between Prior Programming Experience (Yes/No) and

Confidence Factors, Conducted on All Available Data at T1 ... 201

Table 5.20 Moderation Analysis Between Prior Programming Experience (Yes/No) and

Mental Model Estimates When Predicting Students’ Assessment 1 Results, Conducted on All

Available Data at T1 .. 203

 VIII

Table 5.21 Moderation Analysis Between Prior Programming Experience (Yes/No) and

Confidence Factors When Predicting Students’ Assessment 1 Results, Conducted on All

Available Data at T1 .. 205

Table 5.22 Mann Whitney U Tests Between Previously Studying Computer Science (Yes/No)

And Mental Model Estimates, Conducted on All Available Data at T1 208

Table 5.23 Mann Whitney U Tests Between Previously Studying Computer Science (Yes/No)

and Confidence Factors Conducted on All Available Data at T1 ... 209

Table 5.24 Moderation Analysis Between Previously Studying Computer Science (Yes/No)

and Mental Model Estimates When Predicting Students’ Assessment 1 Results, Conducted on

All Available Data at T1 .. 210

Table 5.25 Moderation Analysis Between Previously Studying Computer Science (Yes/No)

and Confidence Factors When Predicting Students’ Assessment 1 Results, Conducted on All

Available Data at T1 .. 212

Table 5.26 Spearman’s Rank Correlation Tests Between Assessment 1 Results and

Confidence Features, Conducted on All Available Data at T1 ... 215

Table 5.27 Mediator Analysis Conducted on Confidence Factors When Predicting

Assessment 1 Results .. 219

Table 5.28 Spearman’s Rank Correlation Tests Between Assessment 1 Grades and Mental

Model Estimates Established Using Bayesian Knowledge Tracing, Conducted on All

Available Data at T1 .. 221

Table 5.29 Mediator Analysis Conducted on Mental Model Estimates When Predicting

Assessment 1 Results .. 222

Table 5.30 Mediator Analysis Conducted on Confidence Factors and Mental Model

Estimates When Predicting Assessment 1 Results ... 226

Table 5.31 Spearman’s Rank Correlation Tests Between Assessment Grades and Mental

Model Estimates Established Using Bayesian Knowledge Tracing, Conducted on All

Available Data at T1 Where Students Had Completed Both Assessments 232

Table 5.32 Spearman’s Rank Correlation Tests Between Assessment Results and Confidence

Factors, Conducted on All Available Data at T1 Where Students Had Completed Both

Assessments .. 233

Table 5.33 Mann Whitney U Tests Between Assessment Grades and Dichotomous

Background Features, Conducted on All Available Data at T1 Where Students Had

Completed Both Assessments ... 234

 IX

List of Figures
Figure 2.1 Representation of Cognitive Load ... 36

Figure 3.1 Bayesian Knowledge Tracing Hidden Markov Model .. 82

Figure 3.2 Example of Objects Used in Mental Rotation Test .. 89

Figure 3.3 Corsi Block Test Implementation Screenshot .. 91

Figure 3.4 Example of Single Assignment Operation Question .. 93

Figure 3.5 Example of Multiple Assignment Operations Question ... 94

Figure 3.6 Example of “If” Statement Question ... 95

Figure 3.7 Example of “For” Loop Question ... 96

Figure 3.8 Example of “While” Loop Question .. 96

Figure 3.9 Example of Recursion Question .. 98

Figure 3.10 Example of Variable Assignment with Inferred Meaning Variables Question . 100

Figure 3.11 Example of Boolean Operator Question ... 102

Figure 3.12 Example of Addition of “Braces” to Questions... 103

Figure 4.1 Assessment 1 Grade Distribution within the Training Dataset 138

Figure 4.2 Distributions of Results Relating to Students’ Background Factors 140

Figure 4.3 Distributions of Results Relating to Students’ Confidence Factors 140

Figure 4.4 Distributions of Results Relating to Students’ Mental Model Estimates

Established Using Bayesian Knowledge Tracing .. 141

Figure 4.5 Year of Birth Distribution within the Training Dataset 144

Figure 4.6 Random Forest Regressor Feature Importance Plots ... 158

Figure 4.7 Random Forest Classifier Feature Importance Plots.. 158

Figure 5.1 Distribution of Misconceptions and the Frequency of Occurrences Per Student

(Who Completed Both Programming Checkups) at T1 and T2 ... 161

Figure 5.2 Estimates of Whether Students Hold Appropriate Mental Models at T1 and T2,

Established Using Bayesian Knowledge Tracing with a Threshold of 0.5 166

Figure 5.3 Conceptual Diagram of a Simple Mediation Model .. 217

Figure 5.4 Estimates of Whether Students Hold Appropriate Mental Models at T1 (Using All

Available Data), Established Using Bayesian Knowledge Tracing with a Threshold of 0.5 223

 X

List of Appendices
Appendix A Final Programming Checkup Questions .. 288

Appendix B Misconceptions Examined by the Programming Diagnostic Questions Within

the Programming Checkup ... 326

 XI

List of Abbreviations

AUC Area Under the ROC Curve

BKT Bayesian Knowledge Tracing

CART Classification And Regression Tree

CPU Central Processing Unit

EDM Educational Data Mining

ENR Elastic Net Regression

EPE Expected Value of Prediction Error

GCSE General Certificate of Secondary Education

IDE Integrated Development Environment

KNN K-Nearest Neighbor

LA Learning Analytics

LASSO Least Absolute Shrinkage and Selection Operator

ML Machine Learning

MOOC Massive Open Online Course

OLS Ordinary Least Squares

PRIMM Predict, Run, Investigate, Modify and Make

RBF Radial Basis Function

RMSE Root Mean Squared Error

ROC Receiver Operating Characteristic Curve

RQ Research Question

RSS Residual Sum of Squares

SMOTE Synthetic Minority Over-Sampling Technique

SVC Support Vector Machine Classifier

SVM Support Vector Machine

SVR Support Vector Machine Regressor

ZPD Zone of Proximal Development

 1

1. Introduction

1.1 Investigation Rationale
This research investigation is inspired by my own experiences of learning to program, which

began whilst studying A-Level computer science. I remember copying lines of Visual Basic 6

code from the whiteboard and running them without really understanding what they meant or

how to modify them. It took a lot of independent work for me to really develop an

understanding of core programming concepts, although it wasn’t until I started learning C++

at university that everything really began to “click together”.

I remember looking around my first-year lab classes and seeing others struggling to get to

grips with programming, in a similar way to how I had struggled during my classes at

college. Consequently, when undertaking my first-year research project, I was drawn toward

developing an understanding of the difficulties of learning to program as a key research

theme, which continued through into my undergraduate project work and now into this

research.

As a computer science lecturer, I now have the opportunity to see the process of learning to

program from an educator’s perspective. Now that I am teaching the first-year undergraduate

introductory programming module at the University of Central Lancashire, I am required to

accommodate large variances in programming abilities in students, ranging from those who

have no programming experience at all, to others who have become quite advanced.

Nevertheless, I often observe a significant proportion of students who struggle to comprehend

core programming concepts and require additional support in order to overcome

misconceptions they are holding. These experiences reinforce my rationale for investigating

the difficulties students face whilst learning to program, with the eventual aim of providing a

more individualised learning environment for students, in order to ensure they receive the

support they need.

 2

1.2 Scope of Research
When students are attempting to learn to program at university level, their efforts may be

hampered by a variety of misconceptions pertaining to fundamental programming concepts.

These misconceptions can take a wide range of forms, from a complete misunderstanding of

a concept, to simple, yet frequent mistakes that will result in logical errors within their

programs (i.e., the program will compile but the output may not be what the student expects).

Although many of these misconceptions may appear to be trivial to experienced programmers

they can be difficult for students to overcome (Sorva, 2013), creating a barrier to their

learning.

The misconceptions students develop are potentially unknown to the student and are not

likely to be addressed without specific intervention from teaching staff. However, as Bergin

and Reilly (2005b) explain, it is common for there to be a very high student-to-lecturer ratio

in university courses. Lecturers often do not know how students are performing until their

first assessment, which can take place six to eight weeks into the course. By this time

students’ misconceptions will have become embedded and will be harder to overcome. It is,

therefore, necessary to identify students who are most in need of support early on in the

course to allow appropriate and timely support to be provided to tackle their misconceptions

directly. This need to identify students who are likely to require support, at the earliest

possible opportunity, is therefore the primary focus of this investigation.

Subsequently, there are two distinct parts to this investigation. The first part revolves around

the design and development of an aptitude test, termed the Programming Checkup, which is

used to collect data on a variety of different factors about each student, including their

backgrounds and levels of confidence, as well as assessing their levels of understanding of

core programming concepts. This is achieved by evaluating students’ capacity to read,

comprehend and logically deduce appropriate answers from a series of simple programming

statements, which can subsequently be used to highlight any misconceptions that are

preventing them from developing an accurate mental model of each concept.

The Programming Checkup is issued to students twice, once at the start of their course, prior

to any teaching taking place (T1), and once at the end of the first semester; approximately 12

 3

weeks later (T2), therefore, allowing for a comprehensive view of students’ progress between

the two timepoints.

For context, this investigation is being carried out within the Computing Department at the

University of Central Lancashire, with first-year students who are studying one of a number

of computer science related courses at undergraduate level, which include Computer Science,

Software Engineering, Computer Games Development, Cyber Security and Computer

Networks & Security. An additional degree named Computing is also offered, which

provides students with a level of optionality in what they study during their second and third

years.

All courses involve the completion of a common first-year, which includes the introductory

C++ programming module at the centre of this investigation, the learning outcomes of which

are:

• Appropriately apply the principles of programming to produce working programs

• Design an appropriate solution for a given problem

• Implement a readable and maintainable software solution based on their own design

• Evaluate the quality of their developed software

Students are not required to have any prior experience of programming in order to study for

their degrees, therefore the first semester of teaching focuses primarily on introducing

fundamental programming concepts, up to and including functions, which are reflected in

their first assessment undertaken towards the end of the first semester. These concepts are

then built upon during the second semester with topics up to and including object-oriented

programming (OOP) being covered. The module’s second assessment provides the

opportunity for a wider range of programming skills to be evaluated, although both

assignments do assess all four learning outcomes. It should be noted that prior to the

commencement of their introductory programming module, all students undertake an

intensive four week long module that exposes them to the various topics that they will

encounter during their degrees (see Mitchell et al., 2013), including programming in the form

of Appinventor.

 4

The main data collection for this investigation was carried out across three academic years,

commencing in September 2019. As such, the second and third years of data collection were

impacted by the Covid-19 pandemic, which necessitated that teaching, and therefore, data

collection with the Programming Checkup, needed to be carried out solely online during the

second year of the investigation (academic year 2020-2021). Subsequently, teaching and data

collection during the third year of the investigation (academic year 2021-2022) was carried

out in a hybrid setting, which included both in-person and online sessions. Teaching in the

latter part of the 2019-2020 academic year was also impacted by the pandemic, although this

was constrained to the final weeks of the introductory programming course and students’

submissions of their second assessment. Therefore, data collection with the Programming

Checkup and students’ first assessment were not affected during the first year of the

investigation. Nevertheless, efforts were made to ensure that both teaching and data

collection were as consistent as possible across all three years of the investigation.

The second part of this investigation centres around demonstrating the potential for using

machine learning and students’ responses to the Programming Checkup at T1, as a means of

predicting the results they are likely to achieve in their first introductory programming

assessment, in order to provide an indication as to whether they require additional support.

Students’ responses at T1 are utilised as this allows for support mechanisms to be

implemented as students’ progress through the course, rather than attempting to correct

potentially engrained misconceptions at a later point, for example, after completing their first

assessment.

This work should generally be viewed as an initial explorative investigation that examines

whether it is possible to make predictions on students’ performance before they have engaged

with any teaching, with the aim of identifying those who are likely to require support, and

upon which future studies can be based on.

Ethical approval for this research was obtained through the University of Central

Lancashire’s Psychology and Social Sciences (PSYSOC) ethics committee (Reference

number: PSYSOC 454).

 5

1.3 Research Questions
At the heart of this investigation, is my motivation as a practitioner-researcher to help

struggling students overcome their difficulties with learning to program. As such, the

investigation is guided by three research questions:

RQ 1 How do students’ mental models of core programming concepts develop during a

university introductory programming module?

Mental models can be defined as a mental representation of the properties and behaviours of

a given concept that is based upon an individual’s prior knowledge and experiences (Norman,

1983; Sorva, 2013). As such, the concept of mental models is critical within this investigation

as the process of learning to program can be viewed in terms of students’ development of

coherent mental models that represent the actions that fundamental programming concepts

perform when processed by a computer (Ben-Ari, 1998; VanDeGrift et al., 2010). Students’

mental models are significantly influenced by their prior experiences and the knowledge they

believe to be relevant (Ben-Ari, 2001; Sorva, 2013). However, misconceptions can be

introduced if mental models are constructed upon knowledge which is in fact irrelevant or

inaccurate, resulting in a mental model that is therefore inaccurate, and can create a barrier to

students’ learning (Sirkiä & Sorva, 2012).

In order to establish a deeper understanding of the issues students face when learning to

program, it is important to examine the mental models that they possess upon commencement

of their course, and subsequently, how they develop as students progress with their learning.

As such, in this research, estimates are produced of how likely students are to be holding

appropriate mental models of core programming concepts through students’ responses to the

Programming Checkup and a technique known as Bayesian Knowledge Tracing (Baker et al.,

2008; Corbett & Anderson, 1994). Originally developed for use with Intelligent Tutoring

Systems, Bayesian Knowledge Tracing attempts to estimate the probability of a student

knowing a skill based on whether students answer questions correctly or not, while also

taking into account the potential for them to slip and make a mistake or guess the answer

correctly (Baker, 2020; Baker et al., 2008; Corbett & Anderson, 1994). Therefore, within the

context of this investigation, Bayesian Knowledge Tracing estimates the likelihood of

students holding an appropriate mental model for each concept, with answers being examined

 6

to identify whether students have demonstrated use of an appropriate model, or whether

potential misconceptions have been shown within their answers. Such an approach allows for

a detailed analysis of the development of students’ mental models between T1 and T2, as

well as their performance within the introductory programming module.

RQ 2 Is students’ perception of confidence and their previous experience positively related to

their mental model development as well as their performance within their first introductory

programming assessment?

As previously discussed, students’ prior experiences exert a significant influence on the

misconceptions that they hold, and as such, the accuracy of their mental models (Bonar &

Soloway, 1985). Given that this investigation is taking place within higher education,

students are likely to come from a variety of backgrounds, which could potentially be of a

help or a hindrance when learning to program. Therefore, it is important to establish what

relevant previous experience a student has, in order to examine the impact it has on their

programming abilities. This naturally includes whether they have prior experience of

programming and/or studying computer science, but also their experiences in studying

mathematics-based subjects, given that experience in mathematics has been shown to aid

students when learning to program (Bergin & Reilly, 2005b; Byrne & Lyons, 2001; Gomes et

al., 2006; Wilson & Shrock, 2001). Furthermore, it is also beneficial to examine how strongly

students consider themselves to be “self-taught programmers”, and whether they intend to

pursue a career in software engineering, as both of these factors provide an indication as to

whether students are intrinsically motivated, which has previously been shown to be linked to

higher levels of performance within an introductory programming module when compared to

students who are extrinsically motivated (Bergin & Reilly, 2005a).

Learning to program is often a slow, complex and daunting process for students (Cheah,

2020; Guzdial, 2010; Perkins et al., 1986; Robins, 2019; Rogalski & Samurçay, 1990),

particularly for those who do not have any prior experience associated with programming.

Indeed, students’ programming abilities can also be influenced by their perceived levels of

confidence, with Rogerson and Scott (2010) claiming students’ level of fear towards

programming can form almost physical barriers, resulting in a loss of confidence that

ultimately hampers their learning. The Programming Checkup contains a number of factors

 7

that assess different aspects of students’ confidence levels, ranging from a modified version

of Ramalingam and Wiedenbeck’s (1998) “Computer Programming Self-Efficacy Scale”, to

measures of how confident students are in their answers being correct for each question

within the Programming Diagnostic portion of the Programming Checkup. Reviewing how

students’ previous experiences and levels of confidence relate to their programming abilities,

both in terms of their mental model estimates and their results within the introductory

programming module, allows for the establishment of a deeper understanding of the factors

that influence students’ programming abilities.

RQ 3 Can students’ initial responses to the Programming Checkup be used to make

predictions of students’ introductory programming assessment results?

The design of the Programming Checkup was guided by the previous two research questions.

The overall intention of the Programming Checkup was always the identification of students

who would likely require support with learning to program. Early identification of these

students enables support mechanisms to be put in place in order to allow for their

misconceptions to be tackled directly before they have become engrained, thus aiding in

students’ mental model development and allowing them to progress through their course

(Romero & Ventura, 2019).

As the T1 data collection for the Programming Checkup takes place at the commencement of

students’ courses and as such, prior to any teaching taking place, the results can be utilised as

input for a predictive model that attempts to predict the result each student will achieve

within their first introductory programming assessment, given that it assesses students’

understandings of core programming concepts. This, therefore, requires an exploration of a

variety of machine learning algorithms, with both regression and classification techniques

being considered, which can then be built upon in future work that explores integrating the

predictions into formal support mechanisms within the introductory programming module

that students study.

At this stage, the aim of this research is to examine whether it is at all possible to use the

results from the Programming Checkup at T1 to make predictions on students Assessment 1

results given the inherent difficulties associated with making predictions at such an early

stage, due to the variety of factors that can influence students’ performance (López-

 8

Zambrano et al., 2021). Therefore, a degree of error can be tolerated when considering the

performance of regression models, with the intention being for the models to be refined and

improved upon in future, larger studies.

1.4 Thesis Structure
This thesis consists of six chapters, including this introduction, which has defined the scope

of the investigation and provided context for the three research questions that have influenced

this work. The overall thesis structure, including a summary of the subsequent chapters is

provided below:

Chapter 2 – The Issue of Learning to Program provides a detailed account of the literature

that has influenced the focus of this investigation. This includes discussion of topics relating

to the difficulties students face when learning to program, including the misconceptions that

they can develop, as well as on the cognitive impacts of learning to program.

Chapter 3 – Investigation Methodology is primarily focused on the first part of this

investigation whereby the aptitude test, which becomes the Programming Checkup, is

developed. This includes discussion of literature associated with the different factors that

were considered for inclusion, along with the pilot studies that were used to refine the

aptitude test design. A brief explanation of each of machine learning algorithms being

considered for use within the predictive models, as detailed in Chapter 4, is also presented

within this chapter.

Chapter 4 – Predictive Model Development describes the second part of this investigation,

which is the development and testing of the models that use students’ responses to the

Programming Checkup to predict their first introductory programming assessment results. As

such, this chapter includes a full description of how the Programming Checkup data were

processed and subsequently used to train and evaluate the different classification and

regression models.

 9

Chapter 5 – Programming Checkup Analysis presents an in-depth statistical analysis of

students’ Programming Checkup results, which includes reviewing how students’ responses

change between T1 and T2, as well as how they relate to both introductory programming

assessments. It should be noted that the analysis within this chapter was conducted after the

model development described in Chapter 4. This was done in order to prevent the data, which

had been originally isolated in order to be used as a test dataset, from influencing any of the

decisions during model development.

Chapter 6 – General Discussion of Research Outcomes and Future Directions details the

conclusions stemming from this work, including directly addressing the three research

questions that were established at the start of this thesis. Additionally, the limitations which

constrain the conclusions from this work and the future work stemming from it are also

discussed. Finally, the work presented in this thesis is reflected upon within the concluding

remarks and self-reflection.

1.5 Research Contribution
This investigation is firmly situated within the field of computer science education. The

findings of this work can directly contribute to supporting both researchers and educators

alike with understanding some of the difficulties students face whilst learning to program.

Specifically, this investigation represents an original contribution to knowledge as it is the

first time that students’ mental models of core programming concepts, their levels of

confidence and their prior experiences have been evaluated concurrently, subsequently

allowing for a deepening of the understanding of how these factors relate to each other and

also how students’ performance within their introductory programming module develops.

Furthermore, the use of Bayesian Knowledge Tracing to estimate the likelihood of students

holding appropriate mental models for each of the concepts being examined within the

Programming Checkup represents a unique approach to assessing students’ mental models

that could be adopted for use within other fields.

The intention behind this investigation has always been to identify students who are likely to

require support with learning to program at the earliest possible opportunity. This

investigation also seeks to demonstrate the potential for using students’ responses to the

Programming Checkup at T1, which takes place prior to any teaching, to predict the results

they are likely to achieve in their first introductory programming assessment, therefore,

 10

giving an indication as to whether they are likely to require support. The subsequent

exploration of how this can be achieved using machine learning provides a foundation for

future work to examine methods of improving the performance of the predictive models,

particularly in the case of the classification model where a significant body of work could be

conducted into determining an appropriate threshold within students’ assessment results from

both a machine learning and a pedagogic perspective. Furthermore, this investigation should

be viewed as a starting point that enables future research into the issues students face when

learning to program and the interventions that can be put in place to support them.

The contributions from this investigation align with the intention to publish within the field

of computer science education. As such, publications will be developed with specific foci on

students’ mental models of core programming concepts, the impact of students’ confidence

levels on their progression within their introductory programming module and predicting

students’ assessment results using data from the Programming Checkup. Additionally,

publications focusing on pedagogic interventions will form a core part of future work

stemming from this investigation.

 11

2. The Issue of Learning to Program

2.1 Literature Scope
This chapter intends to provide an account of the literature that has influenced the focus of

this investigation through the three previously stated research questions. The reasons as to

why programming is seen to be such a difficult topic for students to learn will be discussed as

a means of providing context for further consideration regarding the cognitive impacts of

learning to program and the issues students face when attempting to comprehend

fundamental programming concepts.

Specifically, Section 2.2 provides context to this investigation by exploring why learning to

program is generally a difficult task for students. Subsequently, Section 2.3 focuses on

exploring the concept of computational thinking and approaches to teaching and learning

programming, with discussions surrounding the cognitive factors that can impact on students’

capacity to comprehend the material being taught being presented within Section 2.4. Finally,

Section 2.5 introduces the concept of “mental models” and provides discussion pertaining to

how students can misinterpret fundamental programming concepts. As such, this chapter

aims to contextualise the motivations of this research by providing a detailed understanding

of the process of learning to program and subsequently highlight the difficulties that students

face.

The literature discussed in this chapter comprises a wide range of sources collected using the

University of Central Lancashire Library Search, which is powered by the ExLibris database,

and supplemented with the use of Google Scholar and the ACM Digital Library. The

preference was to include literature that has been published more recently. However, it is

important to acknowledge that a significant amount of work surrounding the difficulties of

learning to program was conducted pre-2000 and is still heavily cited. This work has also

been included within this section as although technologies have developed significantly over

the years, the core principles of teaching and learning programming have remained the same.

 12

2.2 The Difficulties of Programming
Exploring the difficulties attached to learning to program is crucial to the construction of this

work and has been a widely deliberated topic in computer science for decades. Stemming

back as far as the 1970s and 80s, researchers have been attempting to develop an

understanding of the difficulties faced by anyone wanting to learn to program (Capstick et al.,

1975). The broad nature of programming has encouraged a variety of research approaches,

from investigating relationships between programming abilities and cognitive styles (the

methodology a student uses to solve problems, i.e. analytical or heuristic based approaches;

Cheney, 1980), to examining how students’ understanding of specific programming concepts

(such as iteration or recursion), can influence their capacity to understand other related

concepts. For example, Wiedenbeck (1989) examined the relationships between the

understanding of iteration and recursion. Subsequently, as computers have evolved over time,

so have the research methods, with newer investigations utilising various data mining and

artificial intelligence techniques (Al-Radaideh et al., 2006; Blikstein et al., 2014; Watson et

al., 2013) in an attempt to gain insight into the factors that influence programming abilities.

An initial analysis by Konecki and Petrlic (2014) of literature relating to the problems faced

by novice programmers revealed that the general consensus amongst both students and

teachers is that programming is a difficult topic to learn. To that end, a large, multi-

institutional study conducted by the Innovation and Technology in Computer Science

Education (ITiCSE) 2001 working group (McCracken et al., 2001) revealed that many

students are still unable to program after the conclusion of their introductory course. They go

on to discuss that many of the programming solutions that students provided would not

compile due to syntax errors, suggesting that students have not even acquired the skills

needed to make a program during their course. This observation aligns with original

motivation for conducting this research.

Although the study conducted by McCracken et al. (2001) highlights a range of issues facing

students who are learning to program, their study does not attempt to identify any causes of

these difficulties. Subsequently, a later ITiCSE working group (Lister et al., 2004) explored

the issues identified by McCracken et al. (2001) through an additional multi-institutional

study, in an attempt to identify an explanation of why students struggle to program.

 13

The premise of Lister et al.’s (2004) study focuses around providing an alternative to the

belief that a lack of problem-solving abilities is responsible for students’ difficulties. Lister et

al. (2004) believe this to be a popular explanation, although no empirical evidence is

provided to support this claim, My own personal experiences of teaching programming at

university-level does, however, points towards this as a cause.

Like the study conducted by McCracken et al. (2001), Lister et al. (2004) undertook a multi-

institutional investigation in which students were tasked with completing a series of multiple-

choice questions. These questions tested students’ ability to predict the outcome of executing

a short piece of code, as well as their capacity to complete a short piece of near-complete

code by selecting from a number of possibilities. Lister et al. (2004) also conducted

interviews with the students and analysed their “doodles” on scratch paper to gain further

insight into how they arrived at their answers.

It was determined by Lister et al. (2004) that many of the students who took part in their

study had manifested a fragile ability to systematically analyse a short piece of code and as

such, lacked the capacity to read and comprehend code. These claims were supported by

interviews conducted with students who had scored poorly in the test as they showed the

students had significant difficulties in correctly evaluating the code, with some students even

admitting to guessing.

Lister et al. (2004) noted that some students who scored well on their test but struggled to

write code of a similar complexity are likely suffering from a weakness in problem-solving

ability, as the ability to accurately read and comprehend code is a precursor to developing the

ability to devise appropriate solutions to problems. They therefore suggest that any future

studies wishing to investigate the problem-solving abilities of novice programmers should

include a mechanism to identify students who face difficulties with reading and

comprehending code.

Lister et al. (2004) also acknowledge the fact that as this is a multi-institutional study, it is

inevitable that there will be some differences amongst the participating students. For

example, it was noted that students’ programming abilities varied by institutions – potentially

because of differing entry requirements. It was also acknowledged that the questions had to

be translated from Java to C++ and indention styles changed to account for what students had

 14

been taught in their classes. Furthermore, although the majority of students completed the test

towards the end of the first semester, it was found that some students completed the test at an

earlier point in the semester or as late as the third semester, thus having differing levels of

experience. Differences in how the test was carried out were also identified, with one

researcher creating multiple versions of the test to prevent copying and another issuing the

test on a computer whilst the rest of the tests were issued on paper. Additionally, students’

motivations for taking part in the test also differed, with some students taking part

voluntarily, whilst others were required to complete the test as it contributed to their course

results.

To improve the generalisability of future studies, greater experimental control of factors

would be desirable, for example, by using pseudocode to make the test language-independent

and making the participant recruitment and testing process as identical as possible to support

any claims arising from the study. It is also worth noting that over half of Lister et al.’s

(2004) data was contributed by a single university. Lister et al. (2004) acknowledge this fact

and state that after conducting a statistical analysis it was determined that the uneven

sampling did influence the results of the investigation but did not dominate their findings.

However, further studies should be carried out to support their claims.

The initial claims that a lack of problem-solving skill can hamper programming ability were

also examined by Gomes et al. (2006) who conducted an investigation into how students’

programming abilities are influenced by mathematical and problem-solving abilities. Gomes

et al.’s (2006) propose that a lack of problem-solving abilities, specifically those that involve

mathematical and logical knowledge, significantly contribute to the difficulties students face

whilst learning to program. To investigate this belief, their investigation focused on around

33 students who had failed their first programming course and were showing severe

difficulties in getting to grips with basic programming concepts. As part of the investigation

students were enrolled in a course designed to improve their mathematical and logical

knowledge. During the course, students attended sessions where they were required to

complete different mathematics and logic-based exercises, as well as a number of problem-

solving tasks in a variety of contexts, with a particular focus on tasks relating to

programming. Students were also supported by mathematics and computer science teachers

who were able to address problems and introduce mathematical concepts where necessary

after each task-based session.

 15

Although Gomes et al. (2004) did not present results for how students’ programming abilities

had progressed by the time they had finished the course, they did identify that students

exhibited a significant lack of mathematical skills, which was reflected in limited problem-

solving abilities and, therefore, poor programming abilities. This is an important

consideration that must be kept in mind within the design of the study for this research. It will

be interesting to determine whether previously studying mathematics has a significant

relationship with students’ success within an introductory programming module.

McCracken et al. (2001) defined problem solving as a five-step process:

1. Abstract the problem from its description

2. Generate sub-problems

3. Transform sub-problems into sub-solutions

4. Re-compose

5. Evaluate and iterate

Despite the limited sample size of Gomes et al.’s (2004) study, a number of factors, which

they propose contributed to students’ lack of problem-solving abilities, were identified, some

of which appear to correlate with McCracken et al.’s (2001) definition of the problem-solving

process. These factors were mostly related to students’ abstraction abilities, which involve

developing an understanding of a problem, breaking it down into smaller chunks and then

making logical deductions to develop an appropriate solution.

It is apparent from these three studies that more work is needed to validate the relationship

between programming and problem-solving abilities. More research is also required into the

factors that contribute to problem-solving abilities, including the ability to accurately read

and comprehend code, and engage in abstraction (a key component of computational thinking

- which is discussed in more detail in the next section).

An interesting line of research has also been posed by Lowe (2019) who re-examined the

work conducted by Lister et al. (2004) using Dual Process Theory. According to Lowe

(2019), the minds of novice programmers can often seem forgetful, irrational, and sometimes

paradoxical, with students appearing to be on the right path and then making an irrational

mistake. Dual Process Theory offers a potential explanation for how decisions are made by

separating mental processing in to two mechanisms, System 1 and System 2 (sometimes

 16

referred to as Implicit and Explicit). System 1 can be described as universal cognition and

includes instinctive behaviours and complex, yet mundane tasks such as reading and

interpreting text. Whereas System 2 handles more logical, focused thinking (Evans, 2003;

Lowe, 2019). Although Lowe’s (2019) initial study only examines data from two of Lister et

al.’s questions, they have potentially identified a new method of examining the thought

processes of novice programmers, which may prove useful in the design of future research

into programming pedagogy.

Although a lack of problem-solving ability has been suggested as one potential cause of

difficulties in learning to program, the broad nature of programming provides several

different areas that could be potentially troublesome for students. Du Boulay (1986) suggests

that there are five key areas of difficulty within programming:

1. General Orientation – students must develop an understanding of what programming

is for, the kinds of problems that can be tackled by it and the advantages of learning it.

2. Notional Machine – students can struggle to realise how a computer executes the

instructions in a program through a lack of understanding of the notional machine.

A notional machine represents the general properties of the machine the student is

learning to control and as such, is a characterisation of the computer in its role as an

executor of programs in a particular language (Sorva, 2013).

3. Notation – students may experience problems with learning the syntax and semantics

of a particular language. The semantics of a language can be viewed as an elaboration

of the properties and behaviour of the notional machine.

4. Structures – students may face difficulties in applying the notation of a language

when attempting to apply or adapt known schemas and plans to suit the requirements

of a program, for example, adapting a loop to compute a numerical sum.

5. Pragmatics – students must learn to apply their knowledge of programming to specify,

develop, test and debug a program. This not only requires an understanding of how to

write a program, but also how to identify and solve problems effectively.

These five areas cannot be fully separated from each other and as such, students are often

overwhelmed during their first encounters with programming as they attempt to try and

comprehend all of the different issues at once (Du Boulay, 1986). In this research, this feeling

of overwhelmingness will be referred to as “programming shock”. Despite the fact that Du

 17

Boulay’s (1986) analysis of novice programmers was conducted over 30 years ago, during

which time technology has advanced significantly, the principles that Du Boulay discussed

are still highly relevant to modern-day programming and, result in Du Boulay’s (1986) work

still being heavily cited within the Computing Education research field.

Robins (2019) describes programming languages as “complex artificial constructs”, which,

like natural language, “consist of a relatively small number of elements that can be combined

in infinitely many productive ways (p. 327). Consequently, the process of learning to

program is often referred to as being slow and complex (Guzdial, 2010; Robins, 2019;

Rogalski & Samurçay, 1990). Rogalski and Samurçay (1990) suggested that the complexities

of learning to program stem from the fact it relies on a variety of cognitive activities, with

students being required to develop accurate and reliable mental representations of the

processes carried out during the development of a program, as well of basic programming

concepts such as variables, loops and conditional statements that are, in effect, the building

blocks students utilise to solve problems. Even the most basic of programming concepts is

abstract in nature, with no real-world counterpart (Guzdial, 2010; Khalife, 2006), which

consequently makes understanding and applying them appropriately an area of difficulty for

students (Cheah, 2020; Guzdial, 2010; Lahtinen et al., 2005; Luxton-Reilly, 2016; Luxton-

Reilly et al., 2018; Robins, 2019). Indeed, students’ knowledge is often limited to a surface

level, ‘line by line’ view of programs, resulting in students often struggling to identify where

it is appropriate to use a particular concept, even if they have a general understanding of how

it works (Lahtinen et al., 2005; Perkins et al., 1986).

In an attempt to gain a more detailed understanding into why students find even the most

basic programming concepts difficult to master, Berglund and Lister (2010) utilised

Kansanen and Meri’s didactic triangle (1999) to analyse the interactions between students,

teachers and content in an introductory programming scenario. A didactic triangle is a

technique used to illustrate the interactions between components within the teaching-

studying-learning process (Kansanen & Meri, 1999). This was applied by Berglund and

Lister (2010) to gain an improved awareness of the issues that they believe are often taken for

granted or left implicit when teaching and learning programming. During their investigation

Berglund and Lister (2010) revealed that there is a strong disconnect between teachers and

students, with teachers tending to base their lessons on their own understanding of a

particular concept rather than on how it should be taught effectively.

 18

Berglund and Lister (2010) demonstrate this latter point with an example from Bruce (2005),

who revealed that teachers who are familiar with teaching procedural programming, as

opposed to object-oriented programming, tend to teach an object-oriented based course much

the same as they would teach a procedural programming course, and only include object-

oriented topics when required too. Although Bruce’s comments are derived from an analysis

of the Special Interest Group on Computer Science Education (SIGCSE) mailing list

discussion and have little empirical evidence to support them, they do demonstrate teachers’

viewpoints and support Berglund and Lister’s view that teachers base lessons on their own

needs instead of that of the students.

Berglund and Lister (2010) go on to add that programming is a difficult topic to both teach

and learn and that educators know very little about their students’ world and motivations. To

make the teaching more accessible to students, educators must adapt their methods to meet

students’ viewpoints. Berglund and Lister’s (2010) work highlights the need for more

comprehensive research into the different factors that influence a student’s view of basic

programming concepts, and programming as a whole, as well as into how teaching methods

can be modified to meet students’ needs. Furthermore, it is the motivating factor behind the

research questions that form the focus of this investigation, as enabling educators to identify

students who are likely to require support, as well as developing an understanding as to how

students are attempting to understand programming concepts, will enable them to provide

more direct support to students.

Additionally, Lister (2011) examines the processes through which students learn to

comprehend and reason about code from a neo-Piagetian perspective, which is centred

around the belief that regardless of age, people progress towards increasingly abstract forms

of reasoning as they gain more domain experience (Lister, 2011; Teague & Lister, 2014a).

This is opposed to the traditional Piagetian perspective which focuses on the development of

children, whereby increasingly forms of abstract reasoning becomes possible as their brains

develop (Lister, 2011; Teague & Lister, 2014a). The four stages of cognitive development

within novice programmers; which progress from least mature to most, are defined as (Lister,

2011; Teague et al., 2013; Teague & Lister, 2014a, 2014b, 2014c):

 19

1. Sensorimotor – Students in this stage cannot reliably trace code in order to establish

the final values of variables due to the misconceptions that they hold. Their domain

knowledge is limited and fragile, and the focus of the student is on learning the syntax

of the language, thus making tracing code a task which requires significant cognitive

effort. Students in this stage also often work through trial and error.

2. Preoperational – By this stage, students are able to trace code reliably but struggle to

reason about it. Misconceptions may still be present, with students being generally

unable to see how different pieces of code fit together to produce a solution as a

whole. Students at this stage may eventually produce a correct solution, but

significant effort would be required in order to do so.

3. Concrete Operational – Students at the Concrete Operational stage are starting to

reason at a more abstract level. They can understand short pieces of code simply by

reading them, without the need to manually trace through their operations, and can

now, for the first time, comprehend both the whole solution, and the individual parts

at the same time.

4. Formal Operational – At the Formal Operation stage, students are able to reliably

and efficiently produce solutions to solve problems by carrying out each of the

previously discussed ‘problem solving steps’ (McCracken et al., 2001).

A series of think aloud studies were conducted by Teague et al. (Teague et al., 2013; Teague

& Lister, 2014a, 2014b, 2014c) which provide support for the validity of these four

developmental categories. Similar to Berglund and Lister’s (2010) recommendation to

modifying teaching methods to meet students’ needs, there is also a clear need to explicitly

consider students’ reasoning abilities within the design of introductory programming modules

(Lister, 2011; Luxton-Reilly et al., 2018; Teague et al., 2013; Teague & Lister, 2014a, 2014b,

2014c). However, it would be beneficial for future studies to be conducted with larger

numbers of participants in order to allow for the exploration of the rate at which students

progress between each of the categories while learning to program, and what issues can

prevent them from making progress (Luxton-Reilly et al., 2018).

As has been mentioned previously, learning to program is a slow and complex task (Guzdial,

2010; Rogalski & Samurçay, 1990) with Winslow (1996) suggesting it takes approximately

10 years to turn a novice programmer into an expert, a view supported by my own personal

experiences in learning and later teaching programming. Consequently, a three-year

 20

undergraduate course can only provide a platform for students to develop their programming

abilities from.

Naturally, the conversion from novice to expert has several intermediate steps. Winslow

(1996) cites a commonly referenced scale from Dreyfus and Dreyfus (1986), a republished

version of which (Dreyfus, 2004) has been cited over 700 times, that breaks down the

novice/expert continuum into five stages:

1. Novice: Learns objective facts, features and rules for determining actions –

everything they do is context free.

2. Advanced Beginner: Starts to recognise and handle situations not covered by given

facts, features and rules (context sensitive) without quite understanding what they are

doing.

3. Competence: After considering the whole situation, consciously chooses an

organised plan for achieving the goal.

4. Proficiency: No longer has to consciously reason through all the steps to determine a

plan.

5. Expert: Generally knows what to do based upon mature and practiced understanding.

It is hoped that by the end of an undergraduate degree students should be ranked between

competent and proficient (Winslow, 1996). However, with large portions of students being

unable to produce working programs at the end of their introductory programming modules

(Konecki & Petrlic, 2014), the aim of having the majority of graduates being classed as at

least competent programmers seems optimistic at best. Bruce et al. (2004) investigated in

great detail the processes that students go through whilst learning to program. Through

interviews conducted with students, Bruce et al.’s (2004) study revealed that students can go

about learning to program in any of five different ways:

1. Following: Students who are classed as “following” are generally only interested in

keeping up with set assignments. Their interests are only focused on where there are

marks to be gained, and they often exhibit frustration if the course material does not

match their expectations. Their interests are limited to what is needed to pass the

module and they do not reflect on programming in a broader context.

 21

2. Coding: Students view the act of learning to program as learning to code specifically.

Such students focus on learning the syntax of a language as being central to learning

to program. They are driven by the belief that they must learn to code in order to

program. Due to the amount of syntax needing to be learned students often get

frustrated and see taking time to explore concepts and discovering their own solutions

as being a waste.

3. Understanding and Integrating: In this category students view the act of learning to

program as learning to understand and integrate the concepts involved. Students who

go about learning to program in this way are seeking to develop an understanding of

the “bigger picture” of programming. Typing in the code and seeing if it works is not

enough for them; these students seek to understand what they have done in order to

affect the particular outcome. In some cases, students view learning to program as

building on prior experience, with concepts being learned sequentially. Each concept

is viewed as a “building block” which must be mastered before moving on to the next

one; a student may spend a significant amount of time on a single concept they are

struggling to understand and will only move on once they have mastered it, or when

introduced to an additional concept they feel is more important. It is possible that

students may adopt a trial and error approach to writing their programs, making

experimentation an important part of their learning process. Students in this category

focus less on the code itself, but more on using code as a means to achieve an

understanding of concepts. They are motivated by their desire for insight and are

consciously aware of the ‘bigger picture’ of programming outside of their module

assignments.

4. Problem Solving: Students in this category experience learning to program as

learning what it takes to solve problems. As in the previous category, students are

conscious of the ‘bigger picture’ of how the programming skills they are learning

relate to the problems they are attempting to solve. For students in this category the

problem is always the starting point and although coding is an important part of the

learning process, it is not the main focus. Students in this category do tend to want to

‘jump in’ and start coding in an attempt to solve the problem and can also be inspired

to solve problems that have not been set as part of the assignment.

5. Participating: Students in this category are learning what it means to be part of a

programming community. Students are no longer focusing on learning the syntax and

semantics; instead, students are learning how to think like a professional programmer,

 22

as well as investigating the different aspects of working in the software engineering

industry. Students also become much more aware of programming culture – for

example, evaluating the readability of a program as being as important as the

program’s features.

Bruce et al. (2004) go on to state that students who do not move past Categories 1 (following)

or 2 (coding) are less likely to achieve the learning outcomes of their programming course.

These students have adapted a surface orientation and are, therefore, not seeking meaning in

what they are doing and are merely learning the answers to questions or strings of code

needed to complete tasks. As a result of their surface orientation students may struggle to

apply the concepts they have ‘learned’ in later programming tasks.

In contrast, students who experience learning to program as in Categories 3 to 5 are adopting

a deeper orientation to the subject – they are seeing the meaning in what they are doing and

can place it within the ‘bigger picture’, therefore providing themselves with much firmer

foundations for learning more advanced concepts in later programming classes.

Bruce et al. (2004) note that the range of categories highlights a distinction between students

who focus on ‘parts’ as opposed to those who focus on ‘wholes’ in their learning experience

and as such, teaching and assessment strategies must be adapted to ensure students of all

categories remained engaged with the course. For example, students from Categories 1 or 2

could be classed as focusing on ‘parts’ of the subject, as Category 1 students tend to have a

desire for information to be presented to them in small amounts and make little or no attempt

to place learning into the boarder context of programming. Similarly, students in Category 2

focus purely on the syntax of the language they are trying to learn, often to the detriment of

their understanding of the underlying programming concepts. Teachers may be able to

encourage students to begin to see the bigger picture by prompting them to refocus by

explicitly emphasising the broader context of what the students are learning and

programming generally. In terms of assessment, Bruce et al. (2004) suggest that smaller,

more frequent assignments may help students who see learning to program as a means of

getting through the course as it increases the opportunities for the students to receive

feedback and for teachers to ensure they are on the right track.

 23

Alternatively, students who focus on ‘wholes’ whilst learning to program, as in Categories 3

and 4, expect staff to provide context and ways to help them develop a sense of

understanding of how the topics they are learning relate to the wider programming world.

Consequently, students in these categories tend to prefer assignments which build on

previous ones, as students’ motivation may increase if they are given problems they perceive

as having relevance to them (Bruce et al, 2004).

If it is the goal of the class to produce students who approach programming in the way that

Category 3 describes, then this must be explicitly incorporated into the teaching strategy.

Students cannot be expected to embrace new ways of viewing the programming world if they

are not being introduced to it by their teachers. These comments echo those of Berglund and

Lister (2010), who noted that teachers must adapt their material to meet the views of the

student. Although the studies by Bruce et al. (2004) and Berglund and Lister (2010) are both

well cited, there still remains a significant amount of work to determine how well these

modifications to teaching strategies actually benefit students who are struggling to learn to

program. Bruce et al. (2004) also acknowledge that whilst their categories are discrete,

students may adopt different ways of experiencing learning to program at various points

during their introductory programming module, therefore, a more in-depth study should be

carried out across a larger sample of students to identify how they progress through an

introductory programming module and what factors influence their approaches to learning.

Nevertheless, the categories described by Bruce et al. (2004) speak to the motivational levels

of students and as such, may influence students’ performance within their introductory

programming module.

 24

2.3 The Mind of a Programmer
There is a common misconception that computer science is predominately about

programming (Lu & Fletcher, 2009) however, an important factor in both learning to

program and developing an understanding of computer science as a whole is the concept of

computational thinking.

A popular definition of computational thinking comes from a paper by Jeannette Wing

(2006), which has been cited over 10,000 times (Google Scholar), and describes

computational thinking as “taking an approach to solving problems, designing systems and

understanding human behaviour that draws on concepts fundamental to computing”. Further

to Wing’s definition, Lue and Fletcher (2009) provide an overview of the main components

of computational thinking:

• It is a method of solving problems and designing systems that draws on fundamental

computer science concepts.

• Different levels of abstraction are used to understand and solve problems more

efficiently.

• It involves thinking algorithmically and applying mathematical conceptions to

develop more efficient, fair and secure solutions.

• An understanding of the consequence of scale must be developed, not only in terms of

efficiency, but also for economic and social reasons.

It is important to note that computational thinking is not about getting people to think like

computers, rather it is about encouraging students to develop a full set of mental tools

necessary to effectively use computers to solve complex human problems (Lu & Fletcher,

2009; Reges, 2008; Wing, 2006).

Rogalski and Samurçay (1990) highlighted the fact that acquiring and developing

programming knowledge is a highly complex process, as students must not only learn to code

(i.e., by understanding and applying the syntax and semantics of a language appropriately),

but they must also develop the skills and thought processes needed to establish the

requirements of a program and to devise appropriate solutions. In essence, students must

develop their computational thinking abilities concurrently with learning to code.

 25

Students’ exposure to topics such as problem solving through iteration (Brennan & Resnick,

2012) and abstraction (Wing, 2008) whilst learning to code help to form the building blocks

of their computational thinking abilities, which in turn enable students to improve their

problem solving and develop more succinct solutions (Wing, 2006; Wing, 2008). However,

the applications of computational thinking are not limited to the realms of computer science

and programming alone. Wing (2008) believes that computational thinking is for everyone,

everywhere, as it encourages new ways of tackling problems which would not be possible

without a computer. As such, computational thinking has found increasing relevance in

subjects outside of computer science including mathematics, science and engineering

(Hambrusch, Hoffmann, Korb, Haugan, & Hosking, 2009; Weintrop et al., 2016; Wing,

2008).

The importance of computational thinking within the computer science syllabus itself has

also been acknowledged by a number of exam boards (AQA, 2020; OCR, 2020; Pearson,

2020) whose GCSE specifications explicitly examine students’ Computational Thinking

abilities. Although the exact content of introductory programming classes at undergraduate

level varies by university, they must all nevertheless address some of the key components of

computational thinking whilst also introducing students to basic programming concepts such

as variables, selection and iteration.

The range of content needing to be addressed within introductory programming classes,

combined with the fact that students with varying levels of experience must be catered for,

makes designing effective content difficult for educators. This is reflected in the relatively

high failure rates in introductory programming modules which were revealed in a study

conducted by Bennedsen and Caspersen (2007) who estimated that on average 33% of

students fail their introductory programming modules. Although the initial study by

Bennedsen and Caspersen (2007) had a limited sample size, their initial results were later

confirmed by Watson and Li (2014) and then later revised in a significantly larger study to

28% of students failing (Bennedsen & Caspersen, 2019). These figures are substantial

enough to indicate that there is still a clear requirement for improvement within introductory

programming modules and provides support for the importance of adapting materials to meet

the needs and experiences of students, as Berglund and Lister (2010) suggest.

 26

One potential method for improving student performance in their introductory programming

modules could be the adoption of the constructivism teaching methodology (Ben-Ari, 2001;

Jones & Brader-Araje, 2002; Piaget, 1973; Vygotsky, 1962). Constructivism differs from

traditional teaching approaches in which knowledge is transferred to students in a continuous

process in the form of lectures, textbooks, etc. Rather, constructivism-based teaching is

centred around students actively constructing their own understanding of a concept. In doing

so, students create a cognitive model, which is a combination of their pre-existing domain

knowledge and the knowledge that they have gained through applying the concept being

learned (Ben-Ari, 2001; Gonzalez, 2004; Jones & Brader-Araje, 2002; Piaget, 1973;

Vygotsky, 1962; Yadin, 2012).

There are said to be two dominant constructivism philosophies: Piaget’s personal (individual)

constructivism and Vygotsky’s social constructivism (Phillips 2000, as cited in Amineh &

Asl, 2015). Piaget’s philosophy is based around active participation, whereby students pass

through successive stages that allow for an increasingly accurate understanding of reality

(Piaget, 1973) to be established. As such, there may be stages where students accept an idea,

but then may come to change it or reject it entirely at a later stage (Amineh & Asl, 2015;

Piaget, 1973), therefore, students develop their understanding of a topic through active

participation, meaning learning cannot occur passively (Amineh & Asl, 2015).

Vygotsky’s social constructivism philosophy, on the other hand, is centred around the belief

that cognitive growth occurs first at a social level and then later at an individual level

(Amineh & Asl, 2015; Vygotsky, 1978). Learning is still viewed as an active process but is

done so in coordination with other people (Amineh & Asl, 2015). Leeds-Hurwitz (2009)

suggests that the two most important elements in social constructivism are the assumption

that humans rationalise their experiences by creating a model of the social world and the way

it functions, as well as the belief that language is the essential system through which humans

construct reality. Learning, according to Vygotsky (1978) is a process of continual movement

from a student’s current intellectual level, to a higher one which is closer to their potential.

Subsequently, this movement occurs within the Zone of Proximal Development (ZPD)

(Amineh & Asl, 2015; Shabani et al., 2010; Vygotsky, 1978) which is defined by Vygotsky

as “the distance between the actual developmental level as determined by independent

problem solving and the level of potential development as determined through problem

solving under adult guidance, or in collaboration with more capable peers” (Vygotsky, 1978,

 27

p. 86). Therefore, the ZPD represents a key component of social constructivism as it

describes a student’s current level development, as well as the next level that the student can

achieve when appropriate support, in the form of the presence of a more skilled, or

knowledgeable, person (Amineh & Asl, 2015; Shabani et al., 2010; Vygotsky, 1978). This

highlights the key belief behind social constructivism that interactions, whether it be with a

teacher or a fellow student, supports learning (Shabani et al., 2010).

Despite the clear differences between the philosophies presented by Piaget and Vygotsky, a

commonality amongst them both, as well as amongst the many other variations of

constructivism, is that students take an active role in their learning (Amineh & Asl, 2015;

Biggs, 2014; Shephard, 2019). Within the setting of higher education, a key constructivism-

based approach which has widespread use is constructive alignment (Biggs, 2014). This is a

outcome-based approach to teaching whereby the intended learning outcomes are defined

prior to any teaching taking place. The intended learning outcomes are then used to design

appropriate teaching and learning strategies to enable students to achieve the outcomes and

assess how well they have been met (Biggs, 1996, 2014; Shephard, 2019). Biggs (1999) notes

that two variables that influence learning are the level of engagement by students, and the

extent to which the teacher requires students to be actively involved in the teaching process.

As such, Biggs’ work provides further grounds to support and encourage students taking an

active role in their learning.

Ben-Ari’s (2001) widely cited paper ‘Constructivism in Computer Science Education’

provides one of the earliest discussions surround constructivism within computer science

education. The paper presents a comprehensive comparison between traditional and

constructivist teaching methodologies, which is centred around the following definition of the

four key components of an education paradigm from Ernest (1995, as cited in Ben-Ari,

2001):

• An ontology, which is a theory of existence.

• An epistemology, which is a theory of knowledge, referring to both the specific

knowledge of an individual and to shared human knowledge.

• A methodology for acquiring and validating knowledge.

• A pedagogy, which is a theory of teaching.

 28

Ben-Ari uses these four components to describe the traditional educational paradigm

culminating in the following points:

• An ontological reality does exist. Scientific theories of relativity, quantum mechanics

and the Newtonian model of absolute space and time are generally used to represent

reality.

• Epistemology is foundational. The truth is out there to be uncovered. Necessary

truths, such as 2 + 2 = 4, are accepted and are combined with valid forms of logical

deduction to expand the extent of true knowledge.

• Minds are a clean slate, which can be filled with knowledge. Once enough facts and

rules of inference are understood, new knowledge can be created through logical

deduction.

• The primary means of knowledge transmission is listening to lectures and reading

books. Repetition ensures that knowledge is retained.

Ben-Ari goes on to describe the constructivist paradigm which he believes to be

“dramatically different” to that of the traditional educational paradigm.

• The ontological reality is either completely rejected or at least considered irrelevant as

you can never truly ‘know’ something, therefore, ontologies do not influence the

constructivist paradigm.

• Constructivism’s epistemology is nonfoundational and fallible. Absolute truth is

unattainable and therefore there are no foundations of truth to build upon. Knowledge

is constructed by each individual and is therefore fallible.

• Knowledge is acquired recursively, with sensory data being combined with existing

knowledge to create new cognitive structures, which then form the foundation for

further construction. Knowledge can also be created through reflection on existing

knowledge.

• Passive learning is likely to fail as each student brings a different cognitive frame to

the classroom and as such, will construct knowledge differently. Learning must

therefore be active under guidance from the teacher and with feedback from fellow

students. As Winslow (1996) stated, learning concepts and techniques of a new

language requires writing programs in that language. The constructivism paradigm is

 29

centred on the belief that effective learning requires not only the discovery of facts,

but also the construction of viable mental models (discussed in detail in the

subsequent section).

Ben-Ari (2001) also notes that as constructivism builds recursively on knowledge already

held by the student, the result is an idiosyncratic version of knowledge that may differ from

“standard scientific knowledge”. In such cases the student is said to have developed a

misconception (programming misconceptions are discussed in Section 2.4). It is Ben-Ari’s

belief that teaching techniques derived from constructivism may be more successful than

traditional techniques as they explicitly address the process of knowledge construction, thus

placing greater emphasis on addressing the misconceptions students develop. Indeed, I

believe Ben-Ari’s (2001) suggestions of explicitly teaching models of underlying constructs

is particularly important in supporting students’ understandings of concepts when learning to

program.

Learning how to appropriately use and apply a programming language can require a student

to revaluate their understanding of the language they are attempting to learn, and also their

understanding of the computer system as a whole (Pea & Kurland, 1984). Discussions

surrounding constructivism have highlighted the need for students to play an active role

within their learning, as the teaching of even the simplest of concepts, such as variables, can

be surprisingly complex (Hill & Guzdial, 2019). As Ben-Ari (2001) suggests, there is a need

for clear and direct instruction of models of fundamental programming concepts (Ben-Ari,

2001), which is supported by Hill & Guzdial’s (2019) belief that direct teaching should focus

on plans (groups of statements as opposed to single lines of code), with worked examples

being used to aid comprehension and understanding. However, Pea and Kurland (1984)

believe that students are unlikely to experience the complex cognitive changes required to

develop understandings of programming conceptions either through spontaneous exploring or

explicit instruction alone, as they must be engaged with a task in order to interpret new

concepts.

Whilst the specific ways in which introductory programming modules are taught are not the

focus of this investigation, they are relevant to how the outcomes of this work are intended to

be implemented. The improved understanding of students’ mental models which RQ 1 aims

to establish, would directly support a teaching strategy informed by Lui et al.’s (2004)

 30

guidelines, which encourage the clear instruction of mental models of core concepts.

Furthermore, students deemed likely to struggle within their introductory programming

course, as per RQ 3, could be supported to take an active role within their learning, through

constructivism-based techniques. Possible techniques include physical computing (Brehm et

al., 2019; Przybylla & Romeike, 2014), program visualisation (Bakar et al., 2019; Moons &

De Backer, 2013), or “cognitive apprenticeships”, such as that described by Boyer et al.

(2008), which is centred around live demonstrations of how to solve particular problems.

Boyer et al. (2008) also utilised peer learning activities and online discussion-based activities

to help promote active engagement amongst students in order to challenge students in their

zone of proximal development. These techniques could naturally form the basis of the main

teaching within an introductory programming module, or as part of dedicated, targeted

interventions, which could be developed as part of an extension to RQ 3 in future work.

 31

2.4 Programming Cognition
Programming is a complex, abstract process that can be difficult to learn (Guzdial, 2010;

Khalife, 2006). Therefore, in order to conduct meaningful research, and to develop effective

tools to support the teaching of introductory programming classes, an understanding of the

cognitive processes involved in programming must be established. There is a strong bi-lateral

relationship between programming and the field of cognitive psychology, as programming

offers cognitive psychologists the ideal opportunity to examine cognitive processes in a real-

world domain whilst participants are carrying out clearly defined tasks. Similarly, cognitive

psychology offers methods for examining the processes that underlie performance in

computing tasks (Ormerod, 2014).

Ormerod (2014) compares the cognitive processes being carried in the brain to those of a

computer, stating that much of cognitive psychology is based on a “computational metaphor”

in which the mind is viewed as a type of information processor. Ormerod goes on to discuss

the computational metaphor in more detail, stating that the brain carries out processes such as

memory storage and retrieval, language production and comprehension, attention, perception

and problem solving that are also carried out by a computer’s Central Processing Unit (CPU).

A computer system can be broken down into three key levels: the software; the

implementation of programs on the hardware (e.g., memory allocation, CPU speed, etc.); and

the hardware itself. Ormerod (2014) adopts a literal interpretation of the computational

metaphor when describing the human cognitive system: the cognitive software is made up of

mental procedures and representations of knowledge used in performing cognitive tasks.

Cognitive implementations of software relate to the mechanisms for carrying out mental

procedures and knowledge representation, such as storage, retrieval or symbol manipulation,

where limitations in attention and memory can hamper problem solving. Finally, the

cognitive hardware are the physiological structures in which cognitive processes are carried

out, specifically, the human brain.

An important construct relating to knowledge representation within the human cognitive

system is that of the “schema”. A schema is a type of cognitive software that in essence, is a

data structure used to represent generic concepts being stored in a person’s memory

(Ormerod, 2014; Rumelhart & Ortony, 2017). Schemas are used to hold generalised versions

 32

of objects, situations, events and sequences of actions or events, essentially representing a

stereotype of a given concept. Anderson (2015) states that schemas represent categorical

information using a slot structure with each slot representing a particular category.

The slots within a schema can hold multiple default values or specific instances of the slot’s

attributes, as shown in Table 2.1 (Anderson, 2015).

Table 2.1

Example Schema of a House

Category Attributes

Isa Building

Parts Rooms

Materials Wood, Brick, Stone

Function Human Dwelling

Shape Rectilinear, Triangular

Size 100 – 10,000 square feet

The attributes listed in Table 2.1 are the default values for the category; what you would

expect to see. However, other values that have not been included are also acceptable as

Anderson explains, “the fact that houses are usually built of materials such as wood, brick,

and stone does not mean that something built of cardboard could not be a house” (Anderson,

2015, p.113). Additionally, schemas can include an ‘isa’ slot, which unless contradicted,

allows a concept to inherit the features of a higher concept through a generalisation hierarchy,

for example, a schema for a house inherits from a building schema, thus negating the need to

explicitly represent the building’s features within the house schema (Anderson, 2015).

Interestingly, the way schemas represent information is similar to that of a “Class” within

object-oriented programming, as the schema itself represents a class definition, slots

represent data members, attributes represent the values assigned to the data members and the

real-world object that the schema describes is represented by an instance of a class.

Additionally, classes can also inherit from one another in the same way that schemas do

using an Isa slot.

 33

It is worth noting that the content of a schema is purely an abstract representation of a

particular concept, independent from any particular instance, and is based solely on an

individual’s prior knowledge (Ormerod, 2014). Drawing on the work of Bartlett (1933),

Sweller (1994) provides a useful analogy for explaining how the mind processes schemas, by

examining schemas designed for handling trees. Sweller states that no two trees are identical,

but all share common features such as branches, height, colour, etc. When asking a person to

describe a particular tree from memory their description will be heavily influenced by their

tree schema rather than the exact features of the tree they were asked to describe. Therefore a

person can easily process potentially infinite varieties of trees by incorporating them into the

existing tree schema (Ormerod, 2014).

According to Sweller (1994), intellectual skills are gradually learnt through incremental

schema acquisition, which when first acquired, will be severely constrained until a person

becomes proficient in the specific skill. Similarly, Perkins et al. (1986) state that experienced

programmers rely on a repertoire of well-practiced schemas that are developed over time,

which as Winslow (1996) suggests, may take up to ten years before an individual has

acquired sufficient knowledge to be classed as an “expert” programmer.

Skills such as programming are gradually learnt through incremental schema acquisition,

which when first acquired, will be severely constrained until sufficient experience has been

gained in applying the schemas to allow the individual to become proficient in the skill

(Sweller, 1994). Subsequently, as a skill is learned and reinforced, the way it is processed in

the brain changes. A highly cited psychological model developed by Schneider and Shiffrin,

which was presented across two separate publications (Schneider & Shiffrin 1977; Shiffrin &

Schneider, 1977), implies that when a skill is first learned it requires the explicit attention of

the individual in order to carry it out. As such, this can often be time consuming and require

conscious effort to move from one step to another (Paas & Van Merriënboer, 1994; Sweller,

1994). Schneider and Shiffrin (1977) therefore, termed this type of information processing

Controlled Processing. In contrast to controlled processing, Schneider and Shiffrin (1977;

Shiffrin & Schneider, 1977) also defined Automatic Processing, which occurs with no

conscious attention from the individual. Automatic processing of a skill is triggered by a

corresponding stimulus (input) and is then processed automatically without any explicit

intervention from the individual, thus allowing for faster processing, which appears effortless

 34

to the individual (Paas & Van Merriënboer, 1994; Schneider & Shiffrin, 1977; Sweller,

1994).

Paas and Van Merriënboer (1994) describe the process of a skill developing from purely

controlled to purely automatic processing as Rule Automation, which occurs through

continuous practice allowing for the development of “rules” that control problem solving

behaviour, often over a prolonged period of time. For example, a young child who is learning

to read must make a conscious effort to read and understand a simple sentence; however, an

adult who has been reading successfully for a significant number of years would not need to

actively devote attention to deciphering the meaning of individual letters or words (Sweller,

1994). Therefore, the child is seen to be using controlled processing, whereas the adult is

using automatic processing.

Paas and Van Merriënboer (1994) go on to state that novel and inconsistent processing tasks

typically necessitate controlled processing, whereas automatic processing typically occurs in

well-practiced consistent tasks. However, complex cognitive tasks require a combination of

both controlled and automated processing due to the fact that these kinds of tasks can contain

aspects that cannot be easily automated.

Although schema construction and automation play an important part in the acquisition and

development of an intellectual skill, they also play an important part in reducing the amount

of working memory required to perform the skill. Working memory is essentially an area of

memory. which is dedicated to storing information needed to perform a task that is currently

being carried out (Anderson, 2015; Baddeley, 1992). Information is stored in slots within

working memory, with the total number of slots (i.e., a person’s working memory capacity),

being of a fixed amount. Miller (1956) theorised that an individual’s working memory has 7

(+/-2) slots available, thus imposing a limit on the amount of information that can be held at

any one time in working memory.

Owing to the limits of working memory it can become a bottleneck when learning new

intellectual skills (Duran et al., 2018) as more complex tasks require a greater amount of

working memory, which in turn degrades the learner’s performance once their working

memory capacity has become overloaded (Paas et al., 2003). However, the use of schemas

decreases the overall demands placed on working memory by increasing the amount of

 35

information that can be stored within a single slot (Sweller, 1994). For example, a schema’s

representation of a car can be stored within a single slot without the need to also recall the

individual elements (engine, doors, wheels, etc.) into working memory. Similarly, once a

schema has been fully automated there is no need to recall it into working memory, therefore

bypassing it entirely as processing occurs automatically and allows for other functions to

utilise available working memory capacity (Paas et al., 2003; Sweller, 1994).

When an intellectual skill is first encountered, a significant amount of cognitive resources

must be utilised in order to process it until a sufficient number of schemas have been

constructed and automated, thus freeing resources for other activities (Sweller, 1994). The

amount of load that performing a particular task poses on a person’s cognitive systems is

represented by Sweller’s (1988) Cognitive Load Theory. Paas and Van Merriënboer (1994)

provided an in-depth examination into the causes and effects of cognitive load on skill

development, stating that the construct of cognitive load is comprised of causal and

assessment factors; the factors that affect cognitive load and the factors that are affected by

cognitive load, respectively. Figure 2.1 depicts Paas and Van Merriënboer’s (1994)

diagrammatic overview of the concept of cognitive load, with casual factors on the left, and

assessment factors on the right.

 36

Figure 2.1

Representation of Cognitive Load

Note. From “Instructional Control of Cognitive Load in the Training of Complex Cognitive

Tasks” by F. G. Paas and J. J. Van Merriënboer, Educational Psychology Review.

The casual factors of cognitive load relate to the characteristics of the task (or the

environment in which it is being performed), the characteristics of the individual performing

the task, or interactions between the two (Paas et al., 1994; Paas & Van Merriënboer, 1994).

For example, Paas and Van Merriënboer (1994) suggest that task characteristics such as task

novelty, time available to complete the task and the possible rewards from the task can all

influence levels of cognitive load. Additionally, an individual’s characteristics can affect

levels of cognitive load, such as task-relevant prior experiences, cognitive style, preferences

and the like. These characteristics tend to be relatively stable, meaning they are unlikely to

suddenly change when performing a task (Paas et al., 1994; Paas & Van Merriënboer, 1994).

However, factors such as motivation, state of arousal and internal criteria of optimal

performance, are dependent upon interactions between the individual and the task, and are,

therefore, unstable, meaning that they may not remain fixed throughout the duration of the

task (Paas et al., 1994; Paas & Van Merriënboer, 1994).

There are three key factors that can be used to assess an individual’s cognitive load: mental

load, mental effort and performance (Paas & Van Merriënboer, 1994). Mental load is

determined by task or environemnt demands and as such, is independent from an individuals

 37

characteristics (Paas et al., 1994; Paas & Van Merriënboer, 1994). Paas and Van Merriënboer

gave the following example to demonstrate mental load:

“[S]uppose that there are two maze tasks A and B, and that maze A is more complex than

maze B. Then, for all subjects solving the task, the mental load releated to task A is higher

than the mental load related to task B.”

(Paas & Van Merriënboer, 1994, p. 354)

From this example it is evident that the mental load of a task is a consistent factor across all

personel involved in completing that task. Subsequently, mental effort refers to the amount of

cognitive resources required to complete a particular task (Paas & Van Merriënboer, 1994)

and is therefore a differentiating factor amongst a set of individuals completiing a task. The

amount of mental effort required to perform a task also reflects the amount of controlled

processing being carried out (Paas et al., 1994), and, as such, tasks that require more

controlled processing will incur a higher cognitive load compared to those that can be

processed automatically (Sweller, 1994). Paas and Van Merriënboer (1994) again refer to

their maze example to demonstrate mental effort, stating that as task A is more complex, and

commands a higher mental effort, it will therefore often show a higher level of mental load.

However, as Paas and Van Merriënboer go on to explain, this assumption is not always

accurate, as it is possible that an individual may “brush aside” task A due to its complexity

and put a lot of effort into completing task B, thus resulting in a higher level of mental effort

for task B than task A. Additionally, prior expierence can also affect mental effort as a group

of students who have no previous knowledge of either of the mazes will show higher levels

of mental effort for task A, whereas a group of students who have had expierence with task A

but none with task B will show a higher level of mental effort with task A (Paas and

Merriënboer, 1994).

Due to the subjective nature of mental effort, it is also important to consider an individual’s

performance on the task that is being examined, in order to accuratly determine the level of

cognitive load being experienced by an individual, as all three causal factors are reflected

within task performance (Paas et al., 1994; Paas & Van Merriënboer, 1994). Refering again

to Paas and Van Merriënboer’s (1994) maze example, performance is likely to be higher on

the simpler of the two tasks (task B) with the maze being completed quicker and with fewer

 38

errors. However, it may possible to obtain a similar level of performance on the more

complex task through an increase in a mental effort (Paas & Van Merriënboer, 1994), and

therefore an increase in overall cognitive load. Differences in prior knowledge and

expierence are also likely to influence performance levels when completing these tasks.

The level of cognitive load experienced by a student may be a significant factor in

determining whether a particular topic or concept is successfully learnt by the student (Paas,

et al., 2003). The overall level of cognitive load a person experiences is in fact a culmination

of three specific types of cognitive load: intrinsic load, extraneous load and germane load

(Paas, et al., 2003). Paas et al. (2003) provide the following definitions for each type of

cognitive load:

• Intrinsic Load – is the interaction between what is being learned and the expertise and

experiences of the learner.

• Extraneous Load – is the extra load on top of intrinsic load, which is mainly produced

through poorly designed instructions.

• Germane Load – is the amount of load required for the creation and automation of

schemas.

Whilst Paas et al. (2003) acknowledge that each of the types of cognitive load combine to

create a total cognitive load, more research is required to study how each of these types of

cognitive load can be measured individually and to investigate any potential relationships

with performance. The causes of a high overall level of cognitive load have been discussed in

length by Paas and Van Merriënboer (1994). They suggest that there are a number of

characteristics of complex tasks that invoke a high level of mental load, which often results in

high levels of mental effort and consequently, a high level of cogntive load. Paas and

Merriënboer (1994) identified two specifc factors that can contribute to high levels of mental

load: the number and nature of component skills involvelved in completing the task, and the

complexity of the goal hirearchies.

Paas and Van Merriënboer (1994) define component skills as “subskills that form part of the

to-be-learned skill”. Consequently, Paas and Van Merriënboer suggest that skills with greater

numbers of component skills induce a higher level of mental load than those with fewer

 39

component skills. Paas and Van Merriënboer (1994) go on to state that the component skills

can either be recurrent components, which dictate a consistent level of performance across

problem situations, or nonrecurrent components, which having varying levels of performance

between tasks, with tasks requiring a greater number of nonrecurrent components imposing a

greater demand on an individual’s cognitive system.

To demonstrate their definition of component skills, Paas and Van Merriënboer (1994) use

examples from the context of programming. Tasks such as the use of an Integrated

Development Environment (IDE), selecting basic commands and applying syntax rules can

all be classed as recurrent components, whereas tasks including problem decomposition, or

the identification and resolution of errors can be classed as nonrecurrent components. In

addition to component skills, Paas and Van Merriënboer (1994) identified that the complexity

of the sub-goals which must be accomplished in order to achieve a specific overall goal; the

goal hierarchy, can also provoke higher levels of cognitive load through more complex goal

hierarchies. It is evident from the work conducted by Paas and Van Merriënboer (1994) that

as the complexity of the task increases, so does the overall cognitive load experienced by the

individual.

Sanders and Thomas (2007) conducted an investigation into the misconceptions shown by 16

novice programmers across five separate programming assignments. Their aim was to

support instructors of an object-oriented programming course, by developing a number of

checklists to be used to assess students’ understanding of programming concepts, and also

diagnose common problems in their programs. Sanders and Thomas (2007) developed their

checklists by manually reviewing “several hundred pages of code” which they admit was a

time consuming task. A similar study in the future could potentially use a selection of the

Educational Data Mining techniques, discussed in Section 3.3, to conduct a more efficient

study, with a reduced potential for bias. However, during the course of their investigation,

Sanders and Thomas identified that as the complexity of programs increased, so did the

number of “elementary” syntactic mistakes. Although this could be, as Sanders and Thomas

(2007) suggest, due to a “lack of time rather than lack of understanding”, their finding could

be a potential indicator of the increased cognitive load placed on the students, which is

inducing a greater number of simplistic mistakes, thus supporting Paas and Van

Merriënboer’s (1994) claims.

 40

In addition to Sanders and Thomas' (2007) evidence in support of the effects of cognitive

load, a study conducted by Anderson and Jeffries (1985) appears to also support Paas and

Van Merriënboer’s (1994) view. Anderson and Jeffries (1985) present a series of experiments

that studied the errors made whilst learning to program in LISP, the first of which examined

how the complexity of the tasks students were performing affected error rates. Like Sanders

and Thomas (2007), they determined that as the programs students were writing became

more complex, the more errors were made. Anderson and Jeffries (1985) go on to state that

they believe the increase in error rate is due to the excessive demands placed on the students’

working memory and may in fact be responsible for the majority of errors made by the

students rather than their own misunderstandings.

It is reasonable to assume, based on the evidence discussed above, that students experience

higher levels of cognitive load when completing more complex programming tasks. This

higher level of cognitive load has the potential to have a negative effect on the students’

learning of new material (Paas & Van Merriënboer, 1994), whilst also increasing the

likelihood of mistakes being made on previously learnt content (Anderson & Jeffries, 1985;

Sanders & Thomas, 2007). As such, attempting to learn new tasks whilst contending with

high levels of cognitive load will be difficult for students (Sweller, 1994), thus making the

level of cognitive load a student experiences a limiting factor when attempting to convey

tasks of substantial complexity (Paas et al., 1994).

Whilst the design of instructional materials is outside the scope of this investigation, it is

important to highlight the impact students’ levels of cognitive load can have on their abilities

to fully engage with the learning process (Berssanette & De Francisco, 2022). Given the

complexities associated with learning to program, it has been suggested that cognitive

overload is one of the primary problems within introductory programming due to the

increased demand that is placed on students’ working memory (Yousoof et al., 2007).

Students’ levels of cognitive load are, therefore, likely to be a factor in students’ mental

model development and their levels of confidence, and as such, may influence the results for

both RQ 1 and RQ 2.

It should be noted, however, that whilst the level of intrinsic load placed on students is fixed,

the level of extraneous load can be reduced (Sweller, 1994), for example, by reducing the

number of new topics introduced in a single lesson, ultimately reducing the overall demands

 41

on students’ cognitive systems. If lessons are not suitably designed to reduce cognitive load

the possibility of students experiencing cognitive overload is increased. This is when the

demands of the task being completed by a student exceed their cognitive capacity and

consequently, increase the likelihood that a student will fail to learn the topic being taught

(Paas et al., 1994). A student experiencing “programming shock” is a good example of how

presenting numerous complex, unfamiliar concepts simultaneously can result in cognitive

overload and hamper further progress. If a student frequently experiences cognitive overload,

Paas et al. (1994) believe that it may result in the student losing motivation within the

subject, and ultimately failure, consequently making it especially important that students’

cognitive load levels be considered when designing course materials.

As discussed previously, mental effort is a key component that can be used to assess an

individual’s level of cognitive load. An interesting experiment conducted by Mason and

Cooper (2012) examines the views of academic staff from 28 Australian universities on the

characteristics of the “bottom 10%” of students on their introductory programming modules.

Mason and Cooper (2012) postulate that many low performing students lack relevant pre-

existing schemas, which are necessary for understanding programming concepts, and

experience high levels of intrinsic and extraneous cognitive load when faced with an

instructional presentation. This, in turn, blocks the capacity for germane load, and therefore

prevents learning. Mason and Cooper go on to explain that the three types of cognitive load

broadly align to what must be processed by students when learning to program, which are as

follows:

• Intrinsic load, associated with the concepts and interpretation of the problem

statements;

• Extraneous load, determined by the language and environment, along with associated

constraints such as syntax; and

• Germane load, associated with the cognitive processing to acquire and automate

new schemas.

(Mason & Cooper, 2012, p. 191)

Subsequently, participants within Mason and Cooper’s (2012) study were asked to provide

mental effort ratings on three areas of cognition (understanding the problem statement, using

 42

the development environment and reinforcing previous concepts) for themselves

(instructors), an average student and a student in the bottom 10% of their class. Perhaps

unsurprisingly, the participants in Mason and Cooper’s (2012) study rated their own mental

effort for each of the three components as low, with an average student needing to exert

“above average” levels of mental effort and students in the bottom 10% needing to exert

much higher levels of mental effort than an average student. Mason and Cooper state that

these results are consistent with their argument that “students in the bottom 10% of

performance are perceived by the introductory programming instructors to be effectively

swamped in mental effort on each of the three measures” (Mason & Cooper, 2012, p.5).

Mason and Cooper (2012) go on to identify three main “profiles” of students in the bottom

10% of their introductory programming modules based on the interviews conducted with

academic staff. They are as follows:

• ‘Strivers’ – less capable students who are actually trying.

• ‘Idlers’ – those students who attend class but do not try.

• ‘Ghosts’ – students who do not attend class/are not seen by instructors.

(Mason & Cooper, 2012, p. 192)

Mason and Cooper’s (2012) identification of the Idler and Ghost profiles raises an important

point in relation to student success within a course, as in order to succeed a student must be

willing to put in a reasonable level of effort. Students who never attend classes (Ghosts) or

attend but do not apply themselves (Idlers) are much more likely to exhibit

misunderstandings of fundamental programming concepts as they have not put in the effort to

learn them. Paas et al. (1994) also touched on this point when stating that students failing to

learn complex tasks can be attributed to the task demands exceeding their cognitive capacity,

an inadequate allocation of attention from the student, or both.

On the contrary, students who are identified as Strivers are, according to Mason and Cooper

(2012), putting in very high to extreme levels of mental effort and yet are failing to learn and

cannot be expected to put in any more effort than they are already doing. The students in

Mason and Cooper’s (2012) investigation showed very clear distinctions between those who

are failing due to a lack of effort, and those who are failing despite a significant amount of

effort being exerted. It would therefore be beneficial to investigate what factors lead to a

 43

student becoming a Striver, Idler or Ghost and what can be done to lift them out of the

bottom 10% of the class, such as the deployment of methods for getting students re-engaged

with their course (Ghosts and Idlers) or the use of alternative teaching techniques to reduce

the overall cognitive load on students and help them develop the schemas needed to progress

within the course.

Additionally, Mason and Cooper’s (2012) investigation could be expanded to include mental

effort measurements directly from students, thus allowing for a more comprehensive analysis

on students’ mental effort levels to be undertaken, which is not solely reliant on the views of

academic staff. The literature presented clearly indicates that learning to program requires

significant mental effort on the part of the student, particularly in students who appear to be

struggling as they are likely to become “swamped” by the mental effort that they are required

to exert, according to Mason and Cooper (2012), which may limit their progress in the

course. Furthermore, students who may have little or no prior experience with programming

may be more likely to experience “programming shock” and, as such, be at risk of cognitive

overload. This, therefore, supports the inclusion of RQ 2, which allows for the identification

of any significant relationships between students’ prior experiences, as well as perceptions of

confidence, and their programming abilities. It should be noted, however, that newer

formulations of Cognitive Load Theory now consider Germane Load to be a component of

working memory used to handle information associated with intrinsic cognitive load

(Berssanette & De Francisco, 2022; Duran et al., 2022), so whilst Mason and Cooper (2012)

refer to what can be considered ‘Old Cognitive Load’, the implications of their findings

remain relevant.

 44

2.5 Students’ Interpretations of Programming Concepts
The process of learning to program is a complex, and often daunting one that can require a

student to re-evaluate their current, albeit naive, understanding of not only the programming

language itself, but also the computer system as a whole (Cheah, 2020; Guzdial, 2010; Pea &

Kurland, 1984; Perkins et al., 1986; Rogalski & Samurçay, 1990). The complex cognitive

changes that are required to develop an understanding of basic programming concepts are,

according to Pea and Kurland (1984) “unlikely to occur through either spontaneous

exploration or explicit instruction alone” (p.140), thus requiring a student to be fully engaged

in both the task and the programming course in general to support their emerging

understanding of programming concepts.

Linn (1985) provides a chain of potential “cognitive accomplishments” that a student must

achieve in order to successfully learn to program:

• Learning the language features – the fundamental, non-decomposable concepts of the

programming language, such as variables, if statements, etc.

• Learning to design programs to solve problems – by developing a repertoire of

templates; stereotypical patterns of code used to perform specific tasks or parts of

tasks, and developing the procedural skills required to combine templates and/or

features of the language to perform a specific task. Additionally, procedural skills are

developed to ensure programs accomplish the stated objectives or to redevelop the

solution until the objectives are met.

• Learn problem-solving skills, which can be applied to other formal systems – for

example, being able to solve problems in a different programming language.

Additionally generalised procedural skills for carrying out planning, testing and

reformulating problems in a variety of formal systems will also be developed.

Despite Linn’s work being carried out in the mid 1980’s, the cognitive accomplishments she

describes are still very relevant to today’s introductory programming classes and in fact,

reflect many of the factors that cause students initially to become overwhelmed, as described

by Du Boulay (1986). One factor that may create a barrier to students achieving the cognitive

accomplishments set out by Linn (1985) was identified by Sorva (2013) as the fact that in

some disciplines, there may be concepts that are not fixed and are open to interpretation by

 45

the student. This is not the case when it comes to programming, as concepts such as variable

assignment, if statements and for loops have all been designed to operate in a particular way.

However, as Sorva (2013) states, novice programmers may misinterpret these concepts and

may make mistakes whilst using them, and whilst these mistakes may appear trivial to

experts, misunderstandings such as these can be widespread amongst novice programmers

and difficult to overcome.

As noted earlier, students’ interpretations of fundamental programming concepts (correct or

otherwise) can be described as their mental models, which can be broadly defined as a mental

representation of the properties and behaviours of a given concept that is based upon an

individual’s prior knowledge and experiences (Norman, 1983; Sorva, 2013). Johnson-Laird,

who is cited to be one of the pioneers of Mental Model Theory (Sasse, 1997), suggests that

humans view and interprets the world in accordance with their pre-existing mental models

(Johnson-Laird, 1983, 2010). An additional significant contribution to Mental Model Theory

was a series of observations conducted by Norman (1983), whose study involved observing a

wide variety of subjects carrying out a diverse selection of tasks ranging from the use of

everyday technologies. including computers, text editors, calculators, cameras, and digital

watches, to highly specialised tasks such as piloting aircraft. Norman’s (1983) observations

resulted in the development of a set of general characteristics of mental models:

1. Mental models are incomplete and simplified due to limited knowledge or experience.

2. People’s abilities to “run” their models are severely limited.

3. Mental models are unstable – that is, details of the system can be forgotten if it has

not been used in a while.

4. Mental models do not have firm boundaries, leading them to be confused with models

of other similar systems.

5. Mental models are “unscientific” as people maintain superstitious behaviour patterns

even when they are known to be unnecessary. Norman demonstrates this point with

his observation of calculator usage, as a major pattern amongst participants was the

belief that the CLEAR function needed to be carried out several times, or even before

any calculations had been entered on calculators. which did not require the user to do

so (Norman, 1983, p.10).

6. Mental models are parsimonious, as people often perform unnecessary actions that

could be avoided by mental planning. People would rather carry out additional

 46

physical actions instead of increasing mental complexity, especially when this allows

a single simplified rule to be applied to multiple devices, which consequently, reduces

the chances for confusion.

Norman’s (1983) seminal characteristic set highlights the fact that a person’s mental model

typically only represents a limited portion of a particular concept (or system) and that

people’s ability to run through the model is extremely limited, which in turn, limits their

ability to fully comprehend and utilise the concept to its fullest extent. In terms of learning to

program, the lack of appropriate mental models makes learning to program especially

difficult, particularly for students who have not studied programming or computer science

before, as mental models are constructed from what the student believes to be related prior

knowledge (Ben-Ari, 2001; Sorva, 2013).

Although students may be able to develop an understanding of the syntax of the language,

they are likely to lack appropriate models of programming concepts at the beginning of their

course, which are of critical importance for solving programming problems (Ben-Ari, 2001;

George, 2000). This initial lack of appropriate models is likely to make the process of

learning to program more difficult for students, as when faced with unfamiliar scenarios,

students will attempt to construct models based on superficially similar tasks, which may or

may not be appropriate (Ben-Ari, 2001; Sorva, 2013). Sorva (2013) gives the example of how

when faced with an unfamiliar Graphical User Interface (GUI), a person creates an initial

model based on GUIs they have encountered previously in an attempt to understand how to

navigate the new system. Similarly, when a student is faced with a programming concept that

resembles something they are familiar with, confusion can arise. For example, students may

attempt to use the assignment operator; which is denoted by an equals sign (=), in the same

way it is used in mathematics, which is to signify equality, whereas in many programming

languages, equality is in fact signified with a double equals sign (==). These inaccurate

mental models have been constructed based on inaccurate or irrelevant prior knowledge and

will likely lead to mistakes being made by the student, which if made repeatedly, will create a

barrier to learning (Sirkiä & Sorva, 2012).

The process of learning to program can be viewed as students’ development of coherent

mental models, that represent the actions fundamental programming concepts perform when

processed by a computer (Ben-Ari, 1998; VanDeGrift et al., 2010). It is therefore vital that

 47

teaching staff understand and account for any preconceptions students hold at the beginning

of a course by explicitly teaching the mental model that students need to develop (Ben-Ari,

1998), that is, by presenting walkthroughs of how a particular concept operates and

addressing any commonly held misconceptions directly (Sudol & Jaspan, 2010). If students’

mental models are not taken into account within the teaching, it is likely that students will

construct models that do not fully represent the concepts being taught, which will result in

misconceptions being developed (Winslow, 1996). As such, RQ 1 focuses on examining the

mental models that students initially hold at the start of their course, and how they progress

during the first semester, which ultimately supports RQ 3 through the use of students’ mental

models when attempting to predict their assessment results.

By the end of their introductory programming module students should have begun to develop

models that encompass how fundamental concepts operate within a program, typical ways of

solving common problems, as well as general knowledge about the syntax of the language

they have learnt (Canes et al, 1994). However, Sorva (2013) cites studies by Tew (2010) and

Kunkle (2010) as having revealed that the difficulties of introductory programming modules

to adequately teach students fundamental programming concepts is not limited to a single

institution or programming language.

Kunkle and Allen (2016) republished Kunkle’s original study from 2010, which revolved

around the development and validation of an instrument designed to assess students’

understanding of both fundamental and object-orientated concepts. In order to develop the

instrument, Kunkle and Allen (2016) examined differences in teaching approach and the

language being learnt by students, by conducting two data collection sessions – one at the

start of the term and one at the end. The sessions consisted of a demographic survey, an

attitude survey to gauge students’ attitudes towards computer science as a subject and a

computer concepts survey, which assessed students’ programming knowledge through a

series of 24 multiple choice questions.

The teaching approaches Kunkle and Allen (2016) examined included objects-first, which

introduces students to the more advanced topic of object-orientation at the beginning of their

studies, imperative-first, which introduces students to procedural programming, that is,

functions, program logic, etc. first, leaving object-orientated concepts until last, and also a

project-based approach to learning to program. Additionally, the languages students were

 48

taught differed between each approach, with students studying the object-first approach

learning Java, with students studying the imperative-first approach learning C++ and with

project-based students learning Visual Basic.

Kunkle and Allen’s (2016) analysis revealed differences in student performance using their

assessment instrument with students who studied the objects-first approach remaining

consistent in their performance and imperative-first students improving between the two

tests. However, students who studied the project-based approach were found to be

performing worse in the second test than the first. Although Kunkle and Allen (2016) attempt

to explain the drop in performance due to students “forgetting” concepts, it is difficult to

ascertain whether students’ performance is being affected by the teaching approach or the

programming language being studied, owing to each teaching approach utilising a different

programming language. Kunkle and Allen (2016) do admit that they cannot fully explain

their findings, as well as acknowledging that any claims they make may be debatable due to

the lack of consistency in introductory programming syllabuses. However, their study does

identify the fact that students’ performances can differ between introductory programming

modules, whether this is because of a difference in programming language or a difference in

teaching approach. As such, they identify the fact that instructors must take care when

designing their courses in order to extract the most from students.

Tew (2010) also took the approach of performing a language-independent study through a

series of six experiments that were used to inform and validate the design of a programming

assessment instrument. Within these studies it was revealed that students exhibited a

significant number of misconceptions. However, Tew (2010) states that being able to

determine whether students’ errors are caused by conceptual misunderstandings instead of

syntactical mistakes was not possible from her study and is unsure whether any further

studies would be able to reasonably investigate this phenomenon owing to how the syntax

and semantics of a language are deeply intertwined.

The literature discussed in this section has so far demonstrated the importance of appropriate

mental model construction for students learning to program. However, during the

development of these models, students can inadvertently develop misconceptions which

affect their understanding of the concepts they are trying to learn. Various definitions of what

constitutes a programming misconception exist, with broad definitions being provided by

 49

Sorva (2013) who defined them as “understandings that are deficient or inadequate for many

practical programming contexts” (p. 4), and Qian and Lehman (2017) who view

programming misconceptions as conceptual misunderstandings. A more direct approach is

taken by Chiodini et al. (2021) who state that a “programming language misconceptions is a

statement that can disproved by reasoning entirely based on the syntax and/or semantics of a

programming language” (p. 381). Chiodini et al.’s. (2021) definition is tightly focused on

misconceptions associated with a particular programming language, although they do

acknowledge that misconceptions can exist across multiple languages.

However, Evans et al. (2023) take the view that misconceptions are the properties of the

learner, not programs or languages, with Sorva (2012) stating that generic misconceptions

may lie behind more specific ones. He subsequently provides a comprehensive list of what he

considers to be generic misconceptions that demonstrate inaccuracies in students'

understandings of the execution of programs. Given the language-independent nature of this

investigation, the misconceptions being examined fall in line with the broader definitions of

programming misconceptions (Qian & Lehman, 2017; Sorva, 2012), with a view being taken

that the misconceptions students demonstrate are “symptoms” of inaccurate mental models of

a particular concept.

A significant factor that can contribute to students developing misconceptions is the existing

knowledge they bring to their programming classes – their “preprogramming knowledge” as

termed by Bonar and Soloway (1985), hence the need to examine students’ previous

experiences as part of RQ 2. Despite programming being a drastically different subject from

what students have studied previously, it is not appropriate to treat it as being isolated from

the wider world as students are able to intuitively comprehend various programming concepts

by drawing on content learnt in other subjects, as well as their interactions with the physical

world (Pea, 1986; Qian & Lehman, 2016, 2017; Robins, 2010, 2019; Smith et al., 1994).

Both Pea (1986) and Bonar and Soloway (1985) suggest that students draw on natural-

language concepts when constructing mental models of programming concepts such as

looping, decision making and specifying and following instructions in a set order. However,

in some cases, the analogy of human-like conversations can lead students astray with their

mental model construction. Bonar and Soloway (1983) demonstrate this point with an

example of how students can misinterpret “while” loops by assuming that the code contained

 50

within the loop is continuously being evaluated for the break condition becoming true, as

opposed to the actual way while loops operate, which is by evaluating the break condition

once per iteration. Bonar and Soloway (1983) equate this to how the word “while” is

commonly used within natural English to describe a continuous condition – that is, “while the

highway is in two lanes, continue north”. Similarly, Clancy (2004) refers to the mismatch

between some programming key words, such a “while”, and natural English as linguistic

transfer when identifying it as a potential source of confusion for students. Simple

misunderstandings such as these form a barrier to the development of accurate mental models

and as such, become confounded into stronger misconceptions that can then interfere with

students’ learning (Cheah, 2020; Smith et al., 1994). These difficulties can be further

compounded if English is not a student’s first language, as students are required to translate

concepts into their native language, subsequently increasing extraneous cognitive load and

creating an additional barrier to learning (Guo, 2018; Qian & Lehman, 2016).

Students’ difficulties in predicting program outputs (mentally tracing through the program

and processing each instruction) were suggested to still be present after more than a year of

instruction by Pea (1986). Pea (1986) goes on to state that a number of misconceptions

students possess arise from a “superbug”, in which they believe that there is a “hidden mind

somewhere in the programming language that has intelligent, interpretative powers” (p. 5).

This conceptual superbug is a culmination of three individual classes of bugs

(misconceptions) which can lead students astray (Pea, 1986), the first of which is the

parallelism bug. Pea (1986) explains that while it can appear in a variety of contexts,

fundamentally, the parallelism bug refers to when a student assumes different lines of a

program can be concurrently active, for example, a student may mistakenly believe that a

program will continually evaluate an “if statement” such as the following example:

int a = 4;

if (a > 10)

{

 std::cout << "Hello World";

}

 51

As the variable “a” has a value of 4, the if statement evaluates to false and as such, the code

contained within the if statement is not processed. However, if later in the program the value

of “a” is increased to a value greater than 10 students believe that the program would output

“Hello World”, thus demonstrating a misunderstanding of the flow of control within the

program.

The second class of bug identified by Pea (1986) is the intentionality bug, which is where

students demonstrate the belief that a program has the ability of foresight and can go beyond

the information explicitly given in the code, in essence, making the program self-aware. Pea

(1986) goes on to define an additional bug termed as the egocentrism bug, which as Pea

states, is the opposite of the intentionality bug and represents students’ mistaken belief that

there is more meaning to the code that has been written than there actually is, consequently

meaning that students believe that the program can do more than what is has been explicitly

told to do. This type of inappropriate mental model could prove particularly frustrating for

students as they struggle to get to grips with the basic syntax and semantics of the language

they are trying to learn.

Despite Pea’s (1986) work being carried out over thirty years ago, “little has changed”

according to Simon (2011) when highlighting that students still struggle with issues relating

to Pea’s (1986) parallelism bug. Furthermore, Kwon (2017) provides a real-world example of

the egocentrism bug, which was uncovered whilst analysing solutions provided by a group of

undergraduate students. Kwon (2017) begins by describing a separate misconception amongst

students where they would declare multiple variables in accordance with the number of

expected values – that is, students would define variables such as “m” and “f” (male and

female) instead of declaring a single gender variable which could hold “m” or “f” as a value.

Kwon (2017) goes on to describe how students demonstrate the egocentrism bug by

“assuming the computer would be able to tell the gender if they specified the gender in form

of “if m” or “if f”. This, therefore, shows a misunderstanding of how a conditional statement

must be used to evaluate an if statement while also showing an assumption that the program

understands what is being implied by “if male”, which would be acceptable in natural-

language, but not within a computer program.

Pea’s (1986) description of the inappropriate mental models that students use to comprehend

how the code they write translates into actions being performed by the computer, reflects Du

 52

Boulay, O’Shea and Monk's (1999) view that teaching students how to control the machine

they are using is one of the more difficult aspects of learning to program. As mentioned

earlier, Du Boulay et al. (1999) suggest that the learning process can be made easier for

students by introducing them to programming through the use of a notional machine – an

abstracted model of the computer that is used to understand what happens when a program

executes, which is influenced by the programming language being used rather than the

specific computer hardware (Du Boulay et al., 1999; Sorva, 2013). Sorva (2012) highlights

that many of the misconceptions that students exhibit are as a result of a lack of an

appropriate mental model of the notional machine, whereby students do not have a clear

model of how the program is executed. However, Sorva (2012) goes on to state that in

addition to understanding what actually happens when a program is run, students must also

recognise what a notional machine (and therefore, a computer) does not do unless explicitly

instructed to do so by a programmer. Students who fail to recognise what explicitly needs to

be defined within a program could be seen to be demonstrating elements of Pea’s (1986)

Superbug.

A potential implementation of a notional machine has been developed by Berry and Kölling

(2013), although more research is required to evaluate if this approach is truly beneficial to

students’ learning as there is limited literature available that directly measures the

effectiveness of teaching introductory programming using a notional machine (Fincher et al.,

2020). Support for the use of notional machines within introductory programming modules

is, however, provided by Johnson et al.’s (2020) view, that teaching introductory Python

without use of a notional machine to support students’ comprehension of the underlying

concepts, can result in students developing misconceptions and subsequently, inadequate

mental models (Dickson et al., 2020; Johnson et al., 2020).

Whilst Pea’s (1986) work takes a more generalised view of students’ mental models of

program execution, an alternative research approach has been to examine students’ models of

individual programming concepts. One rather controversial study that took this approach was

conducted as part of Saeed Dehnadi’s PhD research in which he explores how mental models

of variable assignment can be used to predict success within an introductory programming

module. Dehnadi’s work is presented across a set of papers (Bornat et al., 2008; Dehnadi,

2006; Dehnadi et al., 2009; Dehnadi & Bornat, 2006) in which students mental models of

variable assignment were assessed through a series of multiple choice questions. Dehnadi’s

 53

(2006) questions asked students to predict the values of each variable after the assignment

operation(s) have been carried out and ranged from simple one line assignment operations

such as:

int a = 10;

int b = 20;

a = b;

to more complex multi-line operations, such as:

int a = 5;

int b = 3;

int c = 7;

a = c;

b = a;

c = b;

By using multiple choice questions, Dehnadi (2006) was able to map each potential answer to

a specific mental model. Originally, Dehnadi had predicted eight different mental models but

three more were uncovered throughout the course of the experiment. The preliminary test

was administered twice to first year undergraduate students: at the beginning of the course

and after the students had been taught about variable assignment and sequences. Dehnadi

(2006) revealed that after the first test, three groups of student responses were identified:

• Consistent – students used a single mental model to answer all (or most) of the

questions, with 44% of students being classed as consistent.

• Inconsistent – students used several models to answer questions, with 39% of

students being classed as inconsistent.

• Blank – students refused to answer the majority of the questions, with 8% of

students being classed as blank.

 54

Dehnadi (2006) goes on to state that the majority of students became consistent in their

model usage after the second test. However, he does not provide any exact figures and

focuses subsequent analysis on the results from the first test. As only 60 students were

included in Dehnadi’s (2006) preliminary study it is difficult to draw any statistically reliable

conclusions. However, Dehnadi indicates that a clear “separation of populations” (Dehnadi,

2006, p. 29) can be observed when correlating the first test results against the official course

results. Although a visual analysis of Dehnadi’s (2006) results does indeed reveal a

separation between the consistent and inconsistent/blank groups, no statistical tests are

provided to corroborates it. Dehnadi (2006) also presents a correlation of the first test results

against the official in-course exam but does not conduct any further analysis, stating that the

more “complex picture” should not be analysed at this stage due to the small sample size (p.

29).

Despite the distinct lack of any in-depth statistical analysis, Dehnadi (2006) documents his

testing and marking process thoroughly, allowing his experiment to be replicated relatively

easily. Nevertheless, Dehnadi concludes by saying that he has developed a categorisation

method that is “more likely to be used as a reasonable predictor of success in introductory

programming” (Dehnadi, 2006, p. 35), claims which without further statistical analysis,

appear premature at best. It should be noted that additional claims made by Dehnadi and

Bornat (2006) regarding their aptitude test’s ability to accurately predict students who are

likely to fail their introductory programming module were later retracted by Bornat (2014).

Subsequently, Dehnadi’s (2006) original study has been replicated several times by different

researchers with mixed results. Bornat et al. (2008) applied the test to 500 students across six

institutions but their results indicated that the aptitude test failed to live up to the original

expectations from the promising preliminary study. Bornat et al. (2008) stated that they failed

to separate the “programming goats from the non-programming sheep” (p. 8) within their

expanded investigation, although they believed that their results indicate further research into

the consistency of mental models is warranted.

Additionally, a study by Caspersen et al. (2007) applied Dehnadi’s test to approximately 300

students and was unable to find a correlation similar to that originally presented by Dehnadi

(2006) and questions the viability of Dehnadi and Bornat’s interpretation of their results,

stating that their test instrument “does not measure what it is supposed to” (Caspersen et al.,

2007, p.210). However, a study by Strnad et al. (2009) adds support for Dehnadi’s aptitude

 55

test being used as a predictor of success with students who have had no prior programming

experience.

Dehnadi (2009) later revised his aptitude test design in response to the criticism from PPIG

members by expanding the total number of models being examined from eight to eleven, as

well as making the judgment for consistency more explicit and repeatable. Dehnadi et al.

(2009) also conducted a meta-analysis using the refined test in an attempt to confirm the

initial findings. The results appear to support claims of a relationship between consistent

mental model usage and student performance but does not suggest any explanation for it.

Ultimately, Dehnadi’s (2006) aptitude test design presents an intriguing method of examining

the mental models of students, which has had some mixed success in predicting the abilities

of students with no prior programming experience. Dehnadi’s methods warrant further

research, and subsequently inform the research questions at the heart of this study. However,

the context in which Dehnadi’s methods will be integrated into this investigation will be in a

far less draconian context than an attempt to separate “programming goats from the non-

programming sheep”.

In addition to Dehnadi’s work in analysing students’ mental models of variable assignment,

there have been a number of studies that demonstrate students’ difficulties with developing

appropriate mental models of core programming concepts through an examination of

students’ misconceptions. Although not all studies explicitly refer to mental models, the

misconceptions students demonstrate can be a useful indication that the mental model a

student holds of a given concept is either incomplete or inaccurate. For example, students’

difficulties with understanding that a variable can only hold a single value that is not affected

by the name of the variable have been uncovered (Grover & Basu, 2017; Kaczmarczyk et al.,

2010; Sirkiä & Sorva, 2012). Subsequently, misconceptions relating to variable assignment,

that is, believing that 5 = A and A = 5, have also been prevalent in a number of studies (Du

Boulay, 1986; Ma et al., 2008; Qian et al., 2020; Qian & Lehman, 2017; Simon, 2011; Sirkiä

& Sorva, 2012; Žanko et al., 2019, 2022), thus supporting Dehnadi’s (2006) methodology.

Furthermore, the fundamental nature of variables to programming means that students who

struggle to develop an appropriate understanding will face greater difficulties when

attempting to comprehend more complex topics such as iteration (Corney et al., 2011; Simon,

2011).

 56

Pea and Kurland (1984) state that handling conditional statements (if statements) are a major

part of programming and as such, it is reasonable to assume that a student who has sufficient

understanding of conditional logic is more likely to succeed than a student who does not. To

this end, a number of misconceptions have been identified which indicate students’

difficulties with grasping conditional logic. These misconceptions include continuously

monitoring the if statement throughout the program – identified by Pea (1986) as the

parallelism bug. Or alternatively, believing that if the if statement condition evaluates to

false, then the program will stop, or that if the condition evaluates to true, that both the if and

the else blocks are executed (Sleeman et al., 1986, as cited in Qian & Lehman, 2017; Swidan

et al., 2018).

Work by Grover and Basu (2017) identified students’ difficulties with grasping Boolean

operators such as AND and OR. Although most students answered questions involving the

AND operator correctly, only half of students answered questions about the OR operator

correctly, some exhibited a misconception where when both conditions are true the statement

is evaluated to false. Grover and Basu (2017) explain this is an embodiment of the natural-

language use of “or”, as students believe only one of the conditions can be true, which is also

equivalent to the XOR (exclusive or) condition. Consequently, Grover and Basu’s (2017)

XOR misconception is an embodiment of Clancy’s (2004) linguistic transfer.

Misconceptions that demonstrate potentially inadequate mental models have also been

identified for two related programming concepts, namely, iteration and recursion (Kessler &

Anderson, 1986). Iteration, the simpler of the two concepts, involves repeating a block of

code until a condition is met. However, students have been known to have difficulties

identifying which lines of code are being repeated, as well as how many times the loop is

repeated (Caceffo et al., 2019; Sleeman et al., 1986, as cited in Qian & Lehman, 2017) . In

some cases students fail to recognise how the iterative loop affects the execution of the code

(Eckert et al., 2022; Grover & Basu, 2017).

 57

For example, the following “while loop” in C++ should produce an output of “0,1,2,3,4,5”:

int num = 0;

while (num <= 5)

{

 std::cout << num << ",";

 num++;

}

However, students may predict that the code will repeatedly produce the same output of

“0,0,0,0,0,” as suggested by Grover and Basu (2017) or may simply not perform any iteration

at all and produce an output of “0,”. Whilst it is possible that students have misunderstood

how the variable “num” is being incremented in this example, it is reasonable to assume that

their difficulties stem from an inadequate mental model of iteration, leaving them unable to

comprehend that the code inside the while loop is being repeated, and that the value of “num”

is being increased by one during each loop.

Recursion on the other hand, is a more complex concept, which Kahney describes as a

“process that is capable of triggering new instantiations of itself, with control passing forward

to successive instances and back from terminated ones” (Kahney, 1983, p. 235). A non-

programming example of recursion is performing a factorial calculation. One of the most

profound misconceptions amongst students relating to recursion is that they view a recursive

function in the same way as they view an iterative loop (Götschi et al., 2003; Kurland & Pea,

1985). However, the complexities associated with recursion lend itself to varying

interpretations by students.

Various studies have attempted to gain an insight into students’ interpretations of recursion,

both in terms of identifying potential mental models to explain students’ understandings

(Götschi et al., 2003; Kahney, 1983) and also examining how differing teaching methods can

impact on students’ learning of the concept (Kessler & Anderson, 1986; Kurland & Pea,

1985; Wiedenbeck, 1989). Interestingly, Kessler and Anderson (1986) and Wiedenbeck’s

(1989) studies suggest that by allowing students to develop an appropriate and reliable

understanding of iteration prior to teaching them recursion eases their construction of

 58

appropriate recursive mental models and reduces the likelihood of the student becoming

overwhelmed.

In conducting a study into children’s mental models of recursion, Kurland and Pea (1985)

identified a number of “general bugs” that were causing students difficulty. These bugs

included:

• Decontextualized interpretation of commands – Children carried out “surface

reading” of programs, meaning they attempted to develop an understanding of each

individual line of the program, thus ignoring the context provided by the previous

lines. This is similar to the mental model identified by Dehnadi (2006) where students

do not carry the changes made by assignment operations on to subsequent lines.

• Assignment of intentionality to program code – An embodiment of Pea’s (1986)

intentionality bug, whereby children did not differentiate the meaning of a command

from the meaning of lines of commands they were expected to follow.

• Overgeneralization of natural language semantics – Children interpreted keywords

within the LOGO programming language as having their natural language meanings,

that is, STOP or END would completely stop the program from running rather than

ending a statement.

• Overexaggerating of mathematical operators – Kurland and Pea (1985) describe how

children expressed confusion when using numbers as inputs and when performing

simple calculations, as well as how numbers were often seen as a source of

discrepancies between the children’s predicted execution of the program and the

actual result. Kurland and Pea’s (1986) identification of students’ difficulties when

mathematics is introduced into a program raises an interesting question about the

relationship between mathematics and programming skill. Whilst some argue that

students with a mathematical background are more likely to succeed within a

programming course (Bergin & Reilly, 2005b; Gomes et al., 2006), others state that

students’ prior experience of mathematics, especially algebra, can lead to additional

misconceptions such as assuming that a variable is only a representation of an

unknown number, or the difference between assignment and equality operations

(Grover and Basu, 2017).

 59

• Mental model of embedded recursion as looping – As discussed previously, the

children in Kurland and Pea’s (1986) experiment had a fundamental

misunderstanding of how the concept of recursion works, resulting in them viewing it

in the same way as they view iteration.

Although Kurland and Pea’s (1985) study was primarily focused around children’s mental

models of recursion, it does provide an interesting demonstration of a number of general

mental models of programming that are likely to be detrimental to students’ learning.

There does, however, appear to be a distinct lack of common approach for categorisation and

analysis of misconceptions and the subsequent inappropriate and inadequate mental models

that are constructed across the entirety of the introductory programming syllabus. This can be

seen in the different ways that mental models and misconceptions are identified and

presented across many of the studies presented in this section, which in turn, makes

comparisons between concepts more difficult.

There has been some effort to create a concept inventory for introductory programming by

Kaczmarczyk et al. (2010) and Caceffo et al. (2016). However, more work is required to

create and validate a more comprehensive list of misconceptions developed from a larger and

more varied range of participants.

 60

2.6 Summary
By delving into the literature surrounding the difficulties students face when learning to

program, this chapter has provided support for the research questions at the heart of the

investigation. There are clear indications from the literature presented throughout this chapter

that the teaching and learning of programming is a complex process, where there is a

significant potential for simple misunderstandings to have a profound impact on students’

progression within their introductory programming module. Whilst designing specific

pedagogic interventions is outside of the scope of this investigation, the issues raised within

the literature, particularly relating to students’ levels of cognitive load and the

misconceptions that they can develop, highlight the need for direct support in order to address

misconceptions by directly teaching the models students need to establish. As such, it is

hoped that the outcomes of this investigation will be able to guide future work into the

development and implementation of appropriate early interventions in order to support

students with their mental model development and, as such, allow them to progress within

their introductory programming course.

 61

3. Investigation Methodology

3.1 Investigation Scope
As mentioned previously, there are two distinct parts to this investigation, with the first

focusing on the development of the aptitude test, and the second being the development of

the predictive model. The aptitude test acts as the main data collection mechanism for the

investigation. The purpose of this chapter is to describe the design process underpinning the

development of the aptitude test, including how pilot studies were used to further refine the

test, as well as exploring how previous studies that have attempted to predict students’

programming abilities have influenced this investigation. The second part of the investigation

focuses on the development of the predictive model and is the focus of the next chapter.

Given the use of the aptitude test as a means of collecting data to answer the research

questions at the heart of this work, as well as to support the development of the predictive

model, this investigation is firmly seated within the realm of quantitative research. Therefore,

an appropriate research paradigm must be identified in order to support the investigation

design. Like the educational paradigms discussed in Section 2.2, it is necessary to specify the

ontological and epistemological orientation of the research. As the investigation is

quantitative in nature, Bahari (2012) states that Positivism and Objectivism are the

appropriate epistemological and ontological orientations respectively.

The epistemological orientation of Positivism is centred around the empirical testing of

hypotheses in a manner that is as independent and unbiased as possible (Bahari, 2012).

Within positivist research, knowledge is gained through observations of reality, which allows

for relationships to be established and integrated into theoretical models that can be used to

make predictions (Bahari, 2012; Flowers, 2009). Furthermore, Objectivism is based around

the premise that a reality can be established through the examination of relationships and

although the true depiction of reality may never be established, researchers have the capacity

to move closer to it through their investigations (Bahari, 2012). Consequently, Positivism and

Objectivism are clearly appropriate for an investigation of this nature, given that the main

focus is identifying factors that have significant relationships with students’ programming

abilities, which can later aid in the development of the predictive model.

 62

As discussed in detail throughout this chapter, the aptitude test is designed to collect data on a

number of factors that could potentially influence a student’s success within the introductory

programming module. As the aptitude test is issued to students twice, once at the start of their

course, prior to any teaching taking place (T1), and once at the end of the first semester;

approximately 12 weeks later (T2), it allows for a holistic review of students at the two

timepoints. The aptitude test is, therefore, an embodiment of the Positivist research

philosophy as it enables empirical evidence to be collated, which can be used to help in

answering the three research questions which guide this work. Subsequently, the analysis of

the data collected using the aptitude test aligns with the Objectivism philosophy, as I am

attempting to establish how the factors examined within the test relate to students’

performance within their introductory programming module, and by extension, attempting to

develop a predictive model that can aid in the identification of students who are likely to

require support.

3.2 Potential Factors for Inclusion in the Aptitude Test

3.2.1 Aptitude Test Rationale

There have been numerous studies that have attempted to predict students’ programming

abilities. A search conducted within the ACM Digital Library using the phrase “predicting

student programming abilities”, revealed over 500,000 results dating back to the 1970s, with

a variety of different approaches being taken. For example, Simon et al. (2006) attempted to

predict the programming abilities of students studying on an introductory programming

module by using a series of cognitive tasks, including a paper folding test to evaluate their

spatial visualisation and reasoning, map sketching to assess their design skills as well as their

ability to make decisions based on these maps and searching a phonebook to assess their

ability to form searching strategies. In addition, Simon et al. (2006) also used a questionnaire

to explore the students’ approaches to learning and studying. Similarly, Bergin and Reilly

(2005a, 2005b) examined students’ motivational and “comfort” levels using a questionnaire,

which they believed would be able to predict students’ performance within an introductory

programming module. Alternatively, researchers such as Blikstein et al. (2014) and Watwin,

Li and Goodwin (2013) took a more automated approach to predicting student performance

by utilising various machine learning (ML) techniques to analyse data collected from

students during their introductory programming modules.

 63

Although the use of automated methods that track students’ progress to produce predictions

may be useful for ongoing assessment, this method of performance prediction would not be

appropriate for attempting to identify students in need of support at the beginning of the

course due to the time required to collect the necessary data. Similarly, conducting exams,

whether these involve cognitive tasks or traditional closed-book style tests, needs a

significant amount of time for the results to be processed (Bergin & Reilly, 2006), making

this approach impractical. As such, it seems essential to develop a method of prediction that

is easily automatable and that can readily be used to produce performance predictions at the

beginning of an introductory programming module.

Dehnadi’s (2006) notion of using an aptitude test, despite the criticisms discussed in Section

2.5, was seen as an appropriate starting point for this investigation, as an online aptitude test

would allow for easy distribution to students as well as relatively quick analysis once the

appropriate software is developed. It was felt that an online aptitude test, combined with a

statistical model capable of predicting students’ performance, would be a powerful tool for

Computing educators as it enables students who are likely to need additional support to be

identified early on the course without the need for time-consuming manual analysis.

The main focus of the aptitude test draws on Dehnadi’s (2006) original methodology of

exploring students’ misconceptions of fundamental programming concepts. The initial design

of the test included an adaptation of some of Dehnadi’s (2006) variable swapping questions,

as well as questions which assess students’ understanding of other fundamental concepts such

as conditional logic and Boolean operators (AND, OR and NOT), iteration and recursion. In

addition to these concepts, students’ comprehension of program output statements and flow

of compilation was also assessed. For each question, students were required to trace a simple

program that assessed one or more of the concepts listed above and answer a question about

its output.

As the aptitude test was designed to be used online and at the beginning of an introductory

programming module, no assumptions could be made about students’ prior knowledge.

Therefore, students were only required to read and comprehend the code within the questions,

and not write any code for themselves. This approach to testing is supported by Lister et al.’s

(2004) belief that the ability to write code relies upon the ability to read code and, as such, is

appropriate for use at the beginning of the academic year, where it cannot be assumed that

 64

students have any relevant prior programming experience. Indeed, such students may become

overwhelmed when tasked with writing a program, in a similar way to when students

experience “programming shock” when they first attempt to write programs for real.

Additionally, limiting the aptitude test to questions that only relate to reading code helps to

improve the scope for automating the testing process, as expected answers (both correct and

incorrect) can be predetermined. Allowing students to write their own code would require a

significant amount of analysis, and whilst it might be possible to develop an algorithm

capable of analysing students’ code, this was deemed to be beyond the scope of the present

research programme. Furthermore, all question code was written using pseudocode based on

the OCR GCSE computer science guide (OCR, 2015), which minimises the amount of

potentially unfamiliar syntax that is employed, and allows students to logically deduce the

answers to questions, even if they have never programmed before. The online format of the

aptitude test also allowed for a number of factors to be explored in addition to students’

understanding of fundamental programming concepts. Following on from the literature

presented in the previous chapter, the following factors were considered for inclusion within

the aptitude test.

3.2.2 Students’ Previous Experience

The mental models that students construct are influenced by what they believe to be relevant

prior knowledge (Ben-Ari, 2001; Sorva, 2013). It is therefore important to establish an

understanding of students’ previous experiences, as students at university level are likely to

come from a wide range of backgrounds and have a variety of prior knowledge, which could

potentially be a help or a hindrance when learning to program. An obvious starting point for

examining students’ previous experiences is to determine whether they have had any prior

programming experience, including whether they have studied computer science before and

also whether they consider themselves to be self-taught. Identifying students who have had

prior experience with programming is important because if it is to be believed that it takes 10

years for a novice programmer to become an expert (Winslow, 1996), students who have

been exposed to programming will have begun to construct their own mental models of

fundamental programming concepts.

However, it is also important to understand the context in which students have previously

been learning to program. For example, if a student has been learning to program without the

 65

support of a teacher, then it is possible that they have constructed mental models that include

unrecognised misconceptions. Moreover, although these misconceptions may not currently be

hampering the student, they may cause issues for them during their subsequent studies.

Furthermore, Dehnadi’s (2006) test was able to work reasonably well on students who had no

prior programming experience but did not work at all for students with previous experience.

Therefore, it is important to identify and explore the differences between students with or

without prior programming experience, as this may need to be accounted for by the predictive

model.

In addition to prior programming experience, students’ mathematical abilities, as explored

throughout Chapter 2, have been cited as a potential influencing factor in students’

programming capabilities. Ideally, a mathematical aptitude test could be run alongside the

programming aptitude test to provide an independent evaluation of students’ mathematical

abilities; however, the development of such a test was considered to be beyond the scope of

the current research programme. Nevertheless, it is important to identify students who have

studied mathematics, or other math-based subjects such as Physics or Engineering, as they

potentially have stronger mathematical skills than students who have not studied such

subjects.

Another important consideration that must be taken into account when evaluating students’

misconceptions is the fact that not all students’ first language will be English. As the majority

of programming languages utilise English-like keywords such as “print” in Python

(Veerasamy & Shillabeer, 2014), there is an increased potential for misconceptions, similar to

that of linguistic transfer described in Section 2.5 and, as such, this factor should be taken

into consideration when developing the predictive model.

3.2.3 Students’ Mental Characteristics

One potential method of predicting students’ programming abilities; which has had

reasonable success (Bergin & Reilly, 2005a, 2005b; 2006; Quille & Bergin, 2018; Wilson &

Shrock, 2001), is by using a student’s own estimation of their abilities, including their beliefs

of how they are performing or will perform within their introductory programming module.

The term “comfort level” has been used to represent a series of variables that are indicative of

a student’s level of anxiety surrounding a programming course. These variables include: a

 66

student’s ease in asking questions in class and during one-to-one sessions with the tutor; a

student’s anxiety level while working on assignments; a student’s perceptions of the

difficulty of the course; a student’s perceived understanding of concepts compared to

classmates; and a student’s perceived difficulty in completing assignments (Bergin & Reilly,

2005b; Wilson & Shrock, 2001). These factors can be combined to produce a single

continuous variable for use in comparative analysis against students’ performance.

Studies by both Bergin and Reilly (2005a, 2005b) as well as by Wilson and Shrock (2001)

have revealed comfort level to be a significant and relatively powerful predictor of student

performance, although comfort level questions were ultimately not included within the final

predictive model developed by Bergin and Reilly (Bergin & Reilly, 2005a, 2005b; 2006;

Quille & Bergin, 2018). However, some factors that are used to calculate the comfort level

score, such as students’ levels of anxiety when asking questions in class, would not be

appropriate for use in an aptitude test, which would be administered prior to any teaching.

Nevertheless, students’ initial beliefs regarding how difficult the course and learning to

program are going to be may, in fact, be indicative of their subsequent programming

performance as students’ fear of programming has been shown to form a “very real, almost

physical barrier that causes intense emotions, a loss of confidence” and ultimately results in a

block in students’ learning (Rogerson & Scott, 2010, p.167).

Interestingly, Curzon and Rix (1998) revealed that one of the major motivations for students

wanting to learn to program at the beginning of their courses was their desire to become a

professional programmer. However, as students progress through their course, the proportion

wanting to become a professional programmer dwindles. Additionally, Bergin and Reilly

(Bergin & Reilly, 2005a) reveal that intrinsically motivated students who are motivated by

the satisfaction that they can gain from performing well in their course, show increased levels

of performance as opposed to extrinsically motivated students who are primarily motivated to

complete tasks by the rewards they can gain, or to avoid punishment.

Although comfort level has been shown to be a strong predictor of programming

performance, a number of the factors it examines, such as students’ anxiety levels when

answering questions, can only be measured once a student has been studying the course for a

period of time, and are therefore, not appropriate for an aptitude test designed to be initially

distributed to students at the beginning of their course. It should be noted, however, that some

 67

factors that are examined within the comfort level rating, such as how apprehensive students

feel about programming, would be applicable to an aptitude test. A potentially more

appropriate metric for use within an aptitude test is students’ “self-efficacy”, which is a

representation of their own judgments of their capabilities (Bandura, 1977, 2006). Bandura

states that a person’s self-efficacy can influence the activities they choose and how much

effort they exert, their level of persistence when faced with a problem as well as their overall

performance level (Bandura, 1977; Ramalingam & Wiedenbeck, 1998). Recent research has

also revealed significant relationships between students’ levels of self-efficacy and factors

including their course performance, levels of emotional engagement, occurrence of

misconceptions (Kallia & Sentance, 2019; Kanaparan et al., 2019; Tek et al., 2018), thus

making it an appropriate metric for developing a predictive model of students’ performance.

As self-efficacy is not a personality trait that can measured by generic tests (Bandura, 1977,

2006; Ramalingam & Wiedenbeck, 1998), it is essential that a self-efficacy scale that is

specific to introductory programming be used when evaluating students’ programming

abilities. One such scale that has seen widespread use is Ramalingam and Wiedenbeck’s

(1998) “Computer Programming Self-Efficacy Scale”, which has been cited 300 times at the

time of writing and has been employed in various studies ranging from investigations of

students’ computer anxieties (Doyle et al., 2005) to evaluating alternative pedagogic

approaches and assessment styles for introductory programming courses (Sharmin et al.,

2019; Ventura & Ramamurthy, 2004; Zingaro, 2014). Ramalingam and Wiedenbeck’s (1998)

Computer Programming Self-Efficacy Scale consists of 32 questions originally written to be

used to evaluate self-efficacy in students studying object-oriented C++. The questions in

Ramalingam and Wiedenbeck’s (1998) scale vary in complexity, with answers being

recorded using a 7-point scale ranging from 1 (not at all confident) to 7 (absolutely

confident).

In order to validate their scale, Ramalingam and Wiedenbeck (1998) performed an

investigation with 421 students enrolled on an introductory computer science course. The

scale was administered to students twice, once during the first week of the course, to establish

students’ “pre-self-efficacy”, and also after the thirteenth week of the course, to establish

“post-self-efficacy”. Ramalingam and Wiedenbeck (1998) reported a Cronbach’s alpha score

of 0.98 for the first administration of the scale and 0.97 for the second administration, which

therefore indicates that their scale is a highly reliable measure of students’ programming self-

 68

efficacy. They go on to report significant gains in self-efficacy between the two tests and

suggest that students with the lowest levels of self-efficacy are likely to be those who have

had no prior programming experience, or who have had previous bad experiences with

programming and therefore may exhibit higher levels of apprehension and fear towards

programming, which as Rogerson and Scott (2010) state, can cause a barrier to students’

learning.

Ramalingam and Wiedenbeck’s (1998) scale was later used by Wiedenbeck et al., (2004)

when examining how students’ performance in a course is affected by their previous

programming experience (or lack thereof), their self-efficacy, and the mental models that

they hold relating to programming. Wiedenbeck et al. (2004) hypothesized that that pre-self-

efficacy should not affect programming performance directly but should instead affect

performance indirectly through its effect on post-self-efficacy. Using a sample of 75 students

studying introductory C++, Wiedenbeck et al. (2004) identified that self-efficacy increased

significantly during the course, thus supporting Ramalingam and Wiedenbeck (1998) original

findings.

Wiedenbeck et al. (2004) also conducted a Path Analysis that revealed that students’ self-

efficacy prior to teaching (pre-self-efficacy) influences course performance through post-self-

efficacy (the measurement taken after completion of teaching), which acts as a mediator

variable. In addition to self-efficacy, the strength of a student’s mental models was also found

to have an effect on their course performance, with strong mental models increasing a

student’s self-efficacy due to an increase in program comprehension. Additionally, it was

determined that prior experience of programming is a strong predictor of both pre- and post-

self-efficacy.

The apparent relationship between mental models and self-efficacy as described by

Wiedenbeck et al. (2004) would suggest that Ramalingam and Wiedenbeck’s (1998) scale

would be potentially beneficial when used in conjunction with the proposed aptitude test

design in the present research. However, some modifications may need to be made to bring

the scale in line with the proposed language-independent philosophy being taken, as has been

done previously by Zingaro (2014) who modified Ramalingam and Wiedenbeck’s (1998)

original scale to fit the context of his investigation into peer instruction. The Computer

 69

Programming self-efficacy scale has also been modified to be used to assess students’ self-

efficacy within an introductory algorithms course (Danielsiek et al., 2018).

Ramalingam and Wiedenbeck’s (1998) scale provides a measurement of students’ levels of

self-efficacy associated with programming in general. An alternate approach, which was

posed by Duran et al. (2019), focused on measuring students’ own estimations of their

understanding of fundamental programming concepts. In their study, conducted with students

studying an online course in introductory programming, Duran et al. (2019) found that

through multiple administrations of their online self-evaluation form at different stages within

the course, it was possible to identify students growing in confidence as they gained more

experience through practice, with differences in confidence being reported between the

concepts. Duran et al. (2019) go on to suggest that there is an ‘overlap’ between self-

evaluation and self-efficacy, which is evident from the increase in students’ perception of

their programming related abilities as the course progresses. There is, however, need to

further validate Duran et al.’s (2019) tool outside the context of an online course.

An additional area of interest which is believed to be related to self-efficacy (Luxton-Reilly

et al., 2018) stems from Dweck’s (2000) notion of ‘mindsets’ in relation to how a student

believes they can grow and develop, with two categories being identified – fixed and growth

(Cutts et al., 2010; Dweck, 2000). Students who hold a fixed mindset that ability (in this

context, programming ability) is fixed, will likely give up if they cannot do something as they

believe that it is not possible to change their abilities (Cutts et al., 2010; Morales-Navarro et

al., 2023). On the other hand, students who hold a growth mindset believe that their abilities

can change through practice, and view failure as an opportunity to grow through feedback,

suggesting higher levels of resilience and self-efficacy (Cutts et al., 2010; Morales-Navarro et

al., 2023; Tek et al., 2018).

The difficulties of learning to program can often lead students to adopt a fixed mindset given

that there are so many ways a student can become stuck (Cutts et al., 2010; Luxton-Reilly et

al., 2018; Murphy & Thomas, 2008; Simon et al., 2008). Like low levels of self-efficacy, a

fixed mindset can directly impact on a student’s performance within their introductory

programming module, which is reflected in students’ levels of self-efficacy being associated

with the mindset that they possess (Cutts et al., 2010; Morales-Navarro et al., 2023; Quille &

Bergin, 2020; Tek et al., 2018).

 70

Cutts et al. (2010) devised an intervention to support students in developing a growth mindset

in order to improve their performance in their introductory programming module. The results

of the study revealed an increase in performance amongst students receiving mindset training,

which was also confirmed in a similar investigation by Quille and Bergin (2020) designed to

re-validate Cutts et al.’s (2010) work. However, Quille and Bergin (2020) highlighted that

mindset training promoted a growth mindset for some students, and a fixed mindset for

others, suggesting that implementing mindset-based interventions within introductory

programming modules may be more complex than first thought.

While conducting a series of observations with school students studying introductory

programming, Perkins et al. (1986) identified a behaviour amongst students that may be

indicative of their level of confidence with programming. The behaviour Perkins et al. (1986)

uncovered relates to students’ responses when faced with a problem with their program that

does not immediately have an obvious solution. Students’ behaviour broadly fell into one of

two categories: “stoppers” or “movers” (Perkins et al., 1986). When faced with a problem, a

student who is classified as a stopper will often feel at a complete loss as to what to do to try

and produce a solution and will inevitably give up at attempting to find a solution (Perkins et

al., 1986). Perkins et al’s (1986) description of a stopper is highly similar to previous

descriptions of a student who is holding a fixed mindset (Murphy & Thomas, 2008; Simon et

al., 2008). On the other hand, when faced with the same problem, a student who is classified

as a mover will attempt to solve the problem by trying one solution after another until they

eventually find the correct one (Perkins et al., 1986).

Although the mover category may appear to be the more positive of the two, Perkins et al.

(1986) identify a further subset called “extreme movers”, which relates to students who

attempt to fix code in ways which would clearly not work if the student thought carefully

about what they were doing. Students who are classified as extreme movers are, in essence,

trying to develop programming solutions by brute force rather than trying to come up with a

logical solution, which will probably result in them going round in circles. Perkins et al.

(1986) also explain that students who are classified as stoppers tend to feel unsure about what

they are doing when attempting to write programs, and harbour such significant levels of fear

that, in some cases, they have essentially given up trying to learn to program. In addition,

while extreme movers may have higher levels of motivation than stoppers, extreme movers

 71

tend to become emotionally distant from the task and often try to move on to the next task in

order to avoid an issue they simply cannot fix.

Although Perkins et al. (1986) do not perform any analysis of the relationship between

students’ behaviour when faced with an issue and course performance, it is reasonable to

assume that students’ who are classified as stoppers or extreme movers are more likely to

perform worse as both neglect to address any issues or misconceptions that they develop.

Further research is required to identify what factors can be used to predict whether a student

is likely to be a stopper, a mover or an extreme mover. However, Ramalingam and

Wiedenbeck’s (1998) Computer Programming Self-Efficacy scale was considered to be

useful for the present research programme as it provides an insight into students’ estimation

of their own abilities.

An additional measure that may provide insight into programming efficacy is Cacioppo and

Petty’s (1982) concept of “Need For Cognition”. Need For Cognition is explained by

Cacioppo and Petty (1982) as being “the tendency for an individual to engage and enjoy

thinking” (p. 116), which potently makes it useful for determining students who are likely to

become stoppers or extreme movers (Perkins et al., 1986), as both of these categories relate

to students exerting less mental effort in attempting to develop solutions to problems. The

Need For Cognition scale originally advanced by Cacioppo and Petty consisted of 34

questions, which were validated over a series of four separate studies (Cacioppo & Petty,

1982), with a shortened version of the scale consisting of only 18 questions later being

produced and confirmed as equally valid to the original 34 question scale (Cacioppo et al.,

1984). This shortened scale lends itself perfectly for use within an aptitude test, and although

Need For Cognition has not previously been applied in the context of introductory

programming, it may provide additional insight into students’ tendencies to seek out answers

to problems, which in turn may help predict course performance.

An additional factor that has previously been seen to be directly related to cognitive task

performance is cognitive load (Morrison et al., 2014). Cognitive load is discussed in detail in

Section 2.4, however, it can be summarised here as the amount of load that performing a

particular task poses on a person’s cognitive system (Sweller, 1994). Paas and Van

Merriënboer (1994) describe two primary techniques for measuring cognitive load, that is,

psychophysiological indices, such as pupil diameter and heart rate, and subjective indices,

 72

which primarily take the form of mental effort rating scales. Naturally, the

psychophysiological indices would not be appropriate for an aptitude test designed to be

given to all first year computer science students upon entry to their course. Instead, previous

research has shown that a 9-point Likert scale ranging from very, very low mental effort (1)

to very, very high mental effort (9) is a highly reliable measurement of mental effort and in

turn, cognitive load (Paas et al., 1994), making it a viable factor for inclusion within the

present aptitude test design.

3.2.3 Working Memory Capacity and Spatial Ability

It has been suggested that because of its complex nature, programming poses a high demand

on students’ working memory and therefore increases the probability of cognitive overload

(Yousoof et al., 2007; see Section 2.4). Due to the widespread application of the concept of

working memory capacity, ranging from measures of intelligence to expanding theories of

Alzheimer’s disease and reading disabilities (Redick et al., 2012), various techniques have

been developed to measure a person’s working memory capacity. For example, in their

seminal paper, Engle et al. (1999) presented a number of standardised techniques for

measuring working memory capacity, which included the following:

Reading Span (SPAN) – Participants are presented with sentences that have an unrelated

capitalised word at the end. Participants are tasked with reading the sentence and then the

capitalised word aloud. When the participant reads the capitalised word aloud the screen

is immediately changed to the next sentence-word combination. This sequence is repeated

between two and six times (with three trials of each size) until three question marks are

displayed, at which point participants are required to recall and write down all of the

capitalised words which have been displayed in the set in the correct order. An example

set can be seen below.

For many years, my family and friends have been working on the farm. SPOT

Because the room was stuffy, Bob went outside for some fresh air. TRAIL

We were fifty miles out at sea before we lost sight of the land. BAND

???

 73

After participants record the words, they are asked a random comprehension question

such as “Did Bob go outside?”. Participants with comprehension scores less than 85% are

removed from any further testing.

Counting Span (CSPAN) – Participants are shown a display of randomly arranged dark

blue circles, dark blue squares and light blue circles. Participants are tasked with counting

the total number of dark blue circles aloud and repeating the digit corresponding to the

final tally. For example, when there are three dark blue circles a participant should say

“one, two, three, three”. The light blue circles and dark blue squares act as distractors.

When the participant repeats the final tally, the display is changed to the next set. After

between 2 and 8 sets, the message RECALL is displayed on the screen, and the

participant must recall and write down all of the tallies which have been displayed since

the last RECALL prompt in the correct order. The number of target shapes (dark blue

circles) varies between three and nine for each set, whilst the number of distractor

variables also varies with there being one, three, five, seven or nine dark blue squares and

between one and five light blue circles being displayed. Any participant whose error rate

is greater than 15% is removed from any further testing.

Operation Span (OSPAN) – Participants are presented with individual operation-word

strings and a math problem which they must read aloud. For example, “Is (8/4) - 1 = 1?”

The participant should answer aloud if the equation is correct or not by answering “yes”

or “no”. The participant then reads aloud an additional word (e.g., “bear”), which prompts

the next operation string to be displayed. Similar to the Reading Span method, this

sequence is repeated between two and six times, with three trials of each. At the end of

each set, three question marks are displayed, prompting participants to recall and write

down the words that followed the operation strings in the correct order. An example set

can be found below.

Is (8/4) - 1 = 1? bear

Is (6 X 2) - 2 = 10? beans

Is (10 X 2) - 6 = 12? dad

???

 74

Participants who have an error rate on the equations greater than 15% are removed from

further testing.

Although these popular techniques proposed by Engle et al. (1999) offer a relatively simple

method for measuring working memory capacity, they would not be appropriate for use

within an aptitude test in their current form due to the fact that they require students to read

aloud. Furthermore, as these measures of working memory capacity take at least an hour to

administer (Engle et al., 1999) they would greatly increase the time needed to complete the

aptitude test and are therefore unsuitable for this investigation.

An alternative measurement technique that is potentially more suited to use within an

aptitude test is the Corsi Block Test (Corsi, 1973). Kessels et al. (2000) describe the Corsi

Block Test as a widely used measurement of visuospatial short-term memory, which is a

component of working memory. As there are several variations of the Corsi Block Test that

all differ in their implementation, a standardised testing procedure is provided by Kessels et

al. (2000) and is as follows. A set of 9 black cubes measuring 30 x 30 x 30 mm are mounted

on a black board (225 x 205 mm). Each cube has a number between one and nine printed on

its side so only the examiner can see it. The examiner taps blocks in a sequence, initially

consisting of two blocks, which the participant then repeats. A second sequence of the same

length is then demonstrated, and the participant is again given the opportunity to repeat it. If

the participant successfully repeats at least one of these sequences, then the next two trials of

sequences of an increased length are administered. Cubes are tapped at a rate of

approximately one cube per second, and the test is terminated if the participant fails to

reproduce two sequences of equal length (Kessels et al., 2000). Kessels et al. (2000) also note

that the Corsi Block Test can either be completed forwards, where the participant repeats the

sequence in the same order as the examiner, or backwards with the participant reversing the

examiner’s sequence, although this has been suggested to place additional load on the

participant’s working memory (Claessen et al., 2015). The relative simplicity of the Corsi

Block Test, combined with its short administration time and the fact that it has already been

adapted into an electronic format (Berch et al., 1998; Claessen et al., 2015; Vandierendonck

et al., 2004) makes it a potentially useful measure for inclusion within the aptitude test.

 75

In addition to working memory capacity, another cognitive factor that has been found to have

an apparently strong relationship with programming skill, which could potentially be

evaluated within the aptitude test, is students’ spatial ability (Jones & Burnett, 2008;

Margulieux, 2020; Parkinson, 2022; Parkinson & Cutts, 2018). Halpern (as cited in Jones &

Burnett, 2008) defined spatial ability as being a measure of a person’s ability to conceptualise

the spatial relations between objects. It is believed that spatial ability is an important factor in

determining a person’s capacity to comprehend programs due to the fact that skills similar to

that of navigation are required to visualise program operations (Cox et al., 2005).

Students’ spatial abilities can be measured by means of them performing a series of mental

rotation tasks (Jones & Burnett, 2008; Vandenberg & Kuse, 1978), such as the mental

rotation tests posed by Vandenberg and Kuse (1978) and Shepard and Metzler (1971).

Vanderberg and Kuse’s (1978) test was originally designed to be conducted on paper and

requires participants to identify two correct rotations of a 3D object from a list of four

possible rotations. The test consists of 20 items in five sets of four and requires both correct

rotations to be identified in order to be marked as correct. Shepard and Metzler’s (1971)

mental rotation test is somewhat simpler than Vanderberg and Kuse’s test (1978) as only two

3D objects are displayed side-by-side, with the original implementation stipulating that

participants should pull levers to indicate whether the two images are of different objects, or

if they are of the same object in different rotations (Shepard & Metzler, 1971). The simplistic

nature of both tests lend them well to being converted into computerised versions such as

Strong’s (2000) implementation of Vanderberg and Kuse’s (1978) test and Wright et al.'s

(2008) version of Shepard and Metzler’s (1971) test, both of which are viable candidates for

inclusion within the aptitude test.

 76

3.3 Predictive Model Considerations
Although the main focus of the second phase of this investigation is the development of a

predictive model to answer RQ 3, it is important that potential approaches are considered

prior to the development of the aptitude test, which acts as the primary data collection

mechanism for the model. Two closely related fields of research whose methodologies and

techniques are appropriate for developing a model capable of identifying students who are

likely to require support are Learning Analytics (LA) and Educational Data Mining (EDM).

Learning Analytics is seen to be a new and expanding field, which utilises expertise from

computer science, sociology and psychology to develop and apply predictive models that

provide actionable information to educators, allowing them to tailor curriculums and

educational interventions to support both the individual learner and cohorts as a whole

(Avella et al., 2016; Siemens, & Baker, 2012; Siemens, 2012). Similar, to Learning

Analytics, Educational Data Mining is also a relatively new area of research, which brings

together researchers from computer science, learning science and psychology amongst others

(Siemens & Baker, 2012), and is also focused on developing a better understanding of

students and how they learn by exploring the unique types of data that are produced in

education settings (Avella et al., 2016). However, EDM places a greater focus on automated

discovery, with the models that are produced often being used within automated systems such

as intelligent tutoring systems (Siemens & Baker, 2012). Siemens and Baker (2012) provide a

brief comparison of both EDM and LA, which is presented in Table 3.1.

 77

Table 3.1

Comparison between Learning Analytics and Educational Data Mining (derived from

Siemens & Baker, 2012)

Focus Learning Analytics Educational Data Mining

Discovery Leveraging human judgment is key;

automated discovery is a tool to

accomplish this goal.

Automated discovery is key; human

judgment is a tool to accomplish this goal.

Reduction and

Holism

Stronger emphasis on understanding

systems as wholes, in their full

complexity.

Stronger emphasis on reducing to

components and analysing individual

components and relationships between

them.

Origins Stronger origins in semantic web,

“intelligent curriculum”, outcome

prediction and systemic interventions.

Stronger origins in educational software

and student modelling, with a significant

community in predicating course

outcomes.

Adaptation and

Personalisation

Greater focus on informing and

empowering instructors and learners.

Greater focus on automated adaption (e.g.,

by the computer with no human in the

loop).

Techniques and

Methods

Social network analysis, sentiment

analysis, influence analytics, discourse

analysis, learner success prediction,

concept analysis, sensemaking models.

Classification, clustering, Bayesian

modelling, relationship mining, discovery

with models, visualisation.

Bienkowski et al. (2014) provided a useful summary of the differences between EDM and

LA by stating that the focus of EDM is on the development of new tools for discovering

patterns, whereas LA focuses on applying the tools and techniques at scale. Consequently,

the outputs of each field differ somewhat, with EDM being positioned to answer questions

such as “What sequence of topics is most effective for a specific student?” or “What student

actions indicate satisfaction, engagement and learning progress?”, whereas LA is most suited

to answering questions such as “When are students falling behind in a course?” or “What

grade is a student likely to get without intervention?” (Bienkowski et al., 2014).

Although both EDM and LA are interested in predicting students’ performance in some shape

or form and as such use broadly similar data analysis techniques, there are some techniques

that are predominately restricted to their respective fields. For example, Social Network

 78

Analysis is used within LA to examine the relationships between instructors and learners in

order to identify influencers or disconnected students (Avella et al., 2016; Bienkowski et al.,

2014). Alternatively, Discovery with Models is a concept primarily used in EDM to support

in-depth analysis of different factors (e.g., intelligent tutoring system design, types of student

behaviour, etc.), by developing a model of a phenomenon through processes such as

prediction or knowledge engineering, which can then be validated and fed into further

analysis (Baker & Yacef, 2009).

Despite there being some techniques that are field-specific, LA is able to take advantage of

many of the popular EDM techniques when analysing large datasets (Avella et al., 2016).

The techniques used in EDM often differ from traditional data mining techniques due to the

need to account for (and where possible exploit) the multi-level hierarchy and non-

independence in education-related data and, as such, psychometric-based models are not

uncommon in EDM research (Baker, 2010; Baker & Yacef, 2009). Baker (2010) provides a

comprehensive overview of the techniques commonly used within EDM, which are set out

below.

Prediction

The aim of predictive models is to be able to estimate reliably a value (predicted variable) by

using a combination of other variables in the dataset (predictor variables; Avella et al., 2016;

Baker, 2010). Baker (2010) lists the three main types of prediction that are used within EDM

as being classification, regression, and density estimation. Classification is used when

attempting to predict binary or categorical data, with common methods including decision

trees, logistic regression and support vector machines (Avella et al., 2016; Baker, 2010).

Classification techniques are not suitable for predicting continuous variables therefore,

regression methods such as linear regression, neural networks, and support vector machine

regression are employed (Baker, 2010). Finally, density estimation can be used to predict

both continuous and categorical variables using a probability density function (Baker, 2010).

Clustering

Clustering is used to split datasets by identifying datapoints that naturally group together,

which makes it useful when analysing datasets without predefined categories (Avella et al.,

2016; Baker, 2010). Baker (2010) describes how clustering algorithms such as K-Means

(with randomised restart) can start either with no pre-existing hypothesis or can take into

 79

account hypotheses that have been developed through prior research, such as with the

Expectation Maximization algorithm, thus giving researchers flexibility in their analyses.

Relationship Mining

Relationship mining is used to uncover relationships between variables in large datasets

(Avella et al., 2016; Baker, 2010). Baker (2010) describes how different techniques can be

used to identify different types of relationships within the data. One such technique is

association rule mining, which is used to identify “if-then” relationships based on the premise

that if a specific set of variable values is found, another variable will have a particular value,

with Baker (2010) giving an example of such as rule:

{student = frustrated AND student goal of learning > student goal of performance} →

{student frequently asks for help}

Correlation mining, on the other hand, attempts to identify any positive or negative linear

correlations within the data, whereas sequential pattern mining attempts to find temporal

associations between events, such as what type of behaviour leads to a student losing interest

in a course (Baker, 2010). The final method that Baker (2010) lists is casual data mining.

This is focused on attempting to find out whether one event was caused by another, which is

determined by either measuring their covariance or by using information about how each of

the events is triggered.

Discovery with Models

As noted above, Discovery with Models is utilised within EDM research to develop models

using automated methods such as prediction and classification, or in some cases, using

human judgment through knowledge engineering. The resulting models are then applied in

further analysis (Avella et al., 2016; Baker, 2010).

Distillation of Data for Human Judgment

Distillation of Data for Human Judgment offers EDM researchers an alternative to purely

automated analysis, as by displaying data with appropriate visualisation techniques, it is

possible for humans to make valid inferences that may have otherwise been missed by

automated techniques (Avella et al., 2016; Baker, 2010). This method of analysis is used

 80

within EDM for either identification or classification, with Baker (2010) giving the example

of visualising students’ performance on a learning curve.

The development of prediction models has been the focus of many EDM investigations

(Baker, 2009). However, the nature of the present research programme limits some of the

techniques that can be reliably applied. This is due to the relatively small amount of data that

are available for analysis, as data will be collected from voluntary participation in aptitude

tests as opposed to the log files obtained from intelligent tutoring systems that are used by

entire classes, which are commonly deployed in EDM research. Nevertheless, a reliable,

predictive model developed around students’ responses to an aptitude test specifically

designed for evaluating their potential for grasping the fundamental concepts of programming

should still be possible.

In both the fields of EDM and LA, numerous methods have been developed to evaluate and

predict students’ programming performance. A popular approach has been to analyse

snapshots of students’ code that are collected each time they attempt to compile their

programs. Among others, this approach was taken by Blikstein et al. (2014) and Fernandez-

Medina et al. (2013), who attempted to analyse the snapshots to shed light on students’

behaviour during their introductory programming modules. Additionally, code-snapshot

analysis has been incorporated into the development of algorithms designed to evaluate

students’ performance, such as Jadud’s Error Quotient (Jadud, 2006) and the Watwin

Algorithm (Watson et al., 2013).

The Error Quotient evaluates students’ performance by producing a score based on the

number of persistent errors (i.e., errors that are still present after the student is first

confronted with the error) within their programs. Students’ progress is tracked through an

extension to the BlueJ IDE on a university computer and an overall score between 0 and 1 is

computed by averaging the scores from their successful compilations during the session

(Jadud, 2006). Jadud (2006) notes that a score of 0 does not represent a student making no

mistakes, rather, it indicates that a student’s program did not contain the same mistake for

more than one compilation in a row. However, a score of 1 would indicate that every

compilation included an error.

 81

The Error Quotient was initially found to be a weak predictor of performance (Jadud, 2006).

However, Rodrigo et al. (2009) claim to have been the first to demonstrate that the Error

Quotient can successfully predict students’ achievement on their midterm exam, when using

a more constrained dataset as opposed to the one used in Jadud’s (2006) original study.

Additionally, Rodrigo et al. (2009) believe that students with high Error Quotient scores may

be exhibiting Stopper or Extreme Mover tendencies as defined by Perkins et al. (1986).

Although the apparent success of the Error Quotient is encouraging, Watson et al. (2013)

noted a significant methodological flaw in Jadud’s (2006) approach. Watson et al. (2013)

state that Jadud’s (2006) approach is predicated on the assumption that students only work in

a single source file or if they are using multiple source files, this is done so linearly. Watson

et al. (2013) claim that students do not work this way as they often switch between files, thus

compromising Jadud’s (2006) approach.

Watson et al. (2013) present their own “Watwin” algorithm, which incorporates a scoring

system that penalises students based upon how long it takes them to resolve specific types of

error compared to their classmates. Like the Error Quotient (Jadud, 2006), the Watwin

algorithm analyses compilation snapshots. However, the Watwin algorithm constructs a set of

compilation pairs for each file a student has worked on during the session, with compilation

events associated with each file being ordered by timestamp, thus accounting for any students

working on multiple files simultaneously (Watson et al., 2006).

When compared using the same dataset, the Watwin algorithm significantly outperformed the

Error Quotient when attempting to predict students’ performance, with the Watwin algorithm

explaining 30% of the variance in performance on average, and 42.4% by the end of the

course, compared to 14% and 19%, respectively, for the Error Quotient (Watson et al., 2013).

Watson et al. (2013) also applied their pairing pre-processing method to the Error Quotient,

thus negating the methodological deficiencies, which resulted in a slight increase in the R2

value, albeit with this value still being much smaller than the values obtained from the

Watwin algorithm.

Other approaches to predicting programming abilities within the fields of EDM and LA have

utilised methods such as neural networks, support vector machines, decision trees and

clustering techniques such as K-medoids, which is a variant of the K-means clustering

 82

algorithm (Britos et al., 2008; Costa et al., 2017; ElGamal, 2013; Piech et al., 2012).

Additionally, a method that features heavily within EDM research into Intelligent Tutoring

System design – despite predating the field by over a decade – is Bayesian Knowledge

Tracing (Baker et al., 2008; Corbett & Anderson, 1994), which could potentially be adapted

for use in the design of a predictive algorithm.

Corbett and Anderson’s (1994) Bayesian Knowledge Tracing (BKT) originated from their

work with their Cognitive Tutor, which was used to teach Lisp and Prolog in introductory

programming classes at Carnegie Mellon University, as well as to teach Pascal at a Pittsburgh

high school. BKT was introduced in response to a number of students floundering during the

course, in order to provide a means of monitoring students’ changing states of knowledge

while they are practicing a particular topic (Corbett & Anderson, 1994).

BKT examines students’ knowledge as a latent variable and assumes that skills (knowledge

components) can be represented in a binary fashion by being either mastered (learned) or not

(not learned; Corbett & Anderson, 1994; Yudelson et al., 2013). This approach to modelling

students’ knowledge can be represented as a Hidden Markov Model as seen in Figure 3.1

(Baker, 2020).

Figure 3.1

Bayesian Knowledge Tracing Hidden Markov Model

Note. From “Big Data and Education” by R. Baker, 2020, University of Pennsylvania

Not

Learned

Learned

𝑝𝑝(𝐿𝐿0)

𝑃𝑃(𝑇𝑇)

Correct Correct

𝑃𝑃(𝐺𝐺) 1 − 𝑃𝑃(𝑆𝑆)

 83

BKT utilises four parameters in order to model students’ knowledge (Baker, 2020; Corbett &

Anderson, 1994):

• 𝑃𝑃(𝐿𝐿0) – the initial probability that a student knows a particular skill.

• 𝑃𝑃(𝐺𝐺) – the probability that a student does not know a skill but guesses the answer

correctly.

• 𝑃𝑃(𝑆𝑆) – the probability that a student does know a skill but has made a small error (a

slip).

• 𝑃𝑃(𝑇𝑇) – the probability that a student will learn the skill and transition from the not

learned state to the learned state. This is assumed to be a constant value.

As students practice each skill the estimated probability of them knowing the skill,𝑃𝑃(𝐿𝐿), is

updated by first calculating the probability of whether the student knew the skill before

answering the question using either Equation 3.1, where they answered correctly, or Equation

3.2, where they answered incorrectly, and then accounting for the possibility that the student

has learned the skill whilst completing the task using Equation 3.3 (Baker et al., 2008).

3.1) 𝑃𝑃(𝐿𝐿𝑛𝑛−1|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛) = 𝑃𝑃(𝐿𝐿𝑛𝑛−1)∗(1−𝑃𝑃(𝑆𝑆))
𝑃𝑃(𝐿𝐿𝑛𝑛−1)∗�1−𝑃𝑃(𝑆𝑆)� + �1−𝑃𝑃(𝐿𝐿𝑛𝑛−1)� ∗ (𝑃𝑃(𝐺𝐺))

3.2) 𝑃𝑃(𝐿𝐿𝑛𝑛−1|𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛) = 𝑃𝑃(𝐿𝐿𝑛𝑛−1)∗(𝑃𝑃(𝑆𝑆))
𝑃𝑃(𝐿𝐿𝑛𝑛−1) ∗ 𝑃𝑃(𝑆𝑆) +�1−𝑃𝑃(𝐿𝐿𝑛𝑛−1)� ∗ (1−𝑃𝑃(𝐺𝐺))

3.3) 𝑃𝑃(𝐿𝐿𝑛𝑛|𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐼𝐼𝑛𝑛) = 𝑃𝑃(𝐿𝐿𝑛𝑛−1|𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐼𝐼𝑛𝑛) + �(1 − 𝑃𝑃(𝐿𝐿𝑛𝑛−1|𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐼𝐼𝑛𝑛)� ∗ 𝑃𝑃(𝑇𝑇))

The initial values for the four parameters can be established using the Expectation

Maximization algorithm (Pardos & Heffernan, 2010). However, work by Beck and Chang

(2007) has revealed that different combinations of the four parameters can fit the data equally

well yet yield significantly different predictions. They termed this issue the identifiability

problem.

Beck and Chang (2007) proposed an alternative method for fitting the parameters using

Dirichlet Priors in order to overcome the identifiability problem, although issues have also

been found with this approach. Baker et al. (2008) demonstrated that Beck and Chang’s

 84

method (2007) suffers from model degeneracy, which is where guess (G) and/or slip (S)

parameters are initialised to values greater than 0.5 and are, therefore, deviating from the

theoretical concept of BKT, which is that correct performance generally implies that a

student knows the relevant skill. By having a guess parameter greater than 0.5 it is implied

that a student who does not know a skill is more likely to get the answer correct than

incorrect. Likewise, a slip parameter greater than 0.5 also implies that a student who knows

the skill is more likely to get the answer incorrect than correct (Baker et al., 2008). Baker et

al. (2008) proposed an extension to BKT that overcomes both the identifiability problem and

model degeneracy, by contextually estimating whether a student has guessed or slipped using

the responses to the two subsequent questions (n+1 and n+2) in order to provide a more

comprehensive evaluation of the student’s response at time n. Baker et al., (2010) also

proposed a brute-force approach to fitting the four BKT parameters, which they believe

allows for better fits to be achieved for the parameters than were possible with previous

approaches. In order to avoid issues relating to model degeneracy, parameter estimates for

guess and slip were bounded to be below 0.3 and 0.1 respectively (Baker et al., 2008).

Further extensions to BKT have also been proposed, such as student-specific parameter

values (Yudelson et al., 2013) or the inclusion of additional parameters to account for

students’ forgetting material either immediately after being taught it or on separate days, as

traditional BKT assumes students do not forget a skill once it has been learnt (Qiu et al.,

2011). BKT has also been adapted from its original intended use with Intelligent Tutoring

Systems for use with Massive Open Online Courses (MOOCs), which do not facilitate real-

time processing of students’ responses and therefore require adaptations to be made to BKT

in order to evaluate students’ learning (Pardos et al., 2013).

Despite these latter extensions, traditional BKT is still the most popular implementation

within Intelligent Tutoring Systems (Yudelson et al., 2013), as many of the extensions often

work well with certain datasets, but not others (Baker, 2020). Although BKT is not designed

for use with aptitude tests, Pardos et al. (2013) have already demonstrated that it can be

adapted for use in contexts other than Intelligent Tutoring Systems. BKT is likely to offer a

useful insight into students’ understandings of fundamental programming concepts when

analysing their responses to the aptitude test. It can be used to provide an estimate of the

probability that a student holds an appropriate mental model for a given concept, thus

allowing for how students’ mental models develop, as per RQ 1, to be analysed. The

 85

estimates produced by BKT are also ideal for inputting into a predictive model in order to

represent students’ understandings of core programming concepts.

3.4 Aptitude Test Design

3.4.1 Section Outline

Drawing on the original methodology posed by Dehnadi (2006), the aptitude test designed for

this investigation was intended to be used for both the research data collection that would

later be used for development of the predictive model, and also as a means for identifying

future students who are likely to need support in combination with the proposed model.

As such, it was important to consider the limited amount of time available for students to

complete the test and also what platform should be used to distribute the test to students when

deciding on what factors to include from Section 3.2.

During the research investigation the aptitude test was designed to be issued twice to first

year Computing students at the University of Central Lancashire (UCLan), once at the start of

their course and once at the end of the first semester (September – December). This would

allow for students’ progress to be analysed alongside their introductory programming

module, which runs during the first semester.

In order to allow greater flexibility with question design and to ease distribution and result

collation, it was decided to distribute the aptitude test to students online, as opposed to

Dehnadi’s (2006) paper-based method. The survey platform Qualtrics

(http://www.qualtrics.com/) was chosen due to the fact that custom HTML questions can be

created, thus allowing for measures of working memory and spatial ability (discussed later in

this section) to be easily integrated into the test.

This section presents an overview of the aptitude test design process, which is informed by

the research questions at the heart of this investigation, and how it has been validated prior to

commencement of the primary data collection.

3.4.2 Initial Aptitude Test Design

The initial version of the aptitude test was devised to assess the suitability of various question

designs in order to ensure the appropriateness of the questions and to evaluate whether it is

feasible for students to complete the aptitude test within a one-hour timeslot, as whilst

http://www.qualtrics.com/

 86

participation was voluntary, time was made available for students to complete the aptitude

test. However, if the aptitude test was found to be too long, students may become disengaged

or may not be able to fully complete it within the available time. Therefore, the initial version

of the aptitude test was trialled with all components that were being considered for inclusion

in the final test, which could then be refined as required. As such, the initial version of the

aptitude test consisted of the following sections:

Section 1: Student Details

This section collates a number of factors relating to the student’s background, which could

potentially assist with predicting a student’s performance, and aids in answering RQ 2. These

factors included:

• Gender

• If the student had previously studied computer science (or computing) at any level

(yes/no)

• If the student had studied any post-16 mathematics-based subjects such as

mathematics, engineering, physics, etc. (yes/no)

• Whether the student had any prior programming experience (yes/no)

• Whether the student considered themselves to be a “self-taught programmer”

(strongly agree – strongly disagree)

• Whether English was the student’s first language. (yes/no)

A number of additional questions were also included within this section, which draw from

prior research into students’ motivation and comfort levels (Bergin & Reilly, 2005a, 2005b;

Curzon & Rix, 1998):

• If the student intends on working in software engineering/programming after

graduating from university (yes/no/undecided)

• How difficult they expect their degree to be (1 – 10)

• How difficult they expect learning to program will be (1 – 10)

• Whether they fear learning to program (yes/no)

 87

Students’ university ID numbers were also recorded in order to allow for their aptitude test

results to be compared to their introductory programming module grades. It is important to

stress that participation in this study was optional, and all responses are anonymised in

accordance with the ethical approval obtained for this research. Students were incentivised to

take part by being able to be entered into a prize draw for one of five £10 Amazon gift cards,

as well as being able to receive feedback on their answers.

Section 2: Modified Programming Self-Efficacy Scale

The second section of the aptitude test consists of a slightly modified version of

Ramalingam and Wiedenbeck (1998) Computer Programming Self-Efficacy Scale.

The original scale analyses students’ programming self-efficacy using a series of 32

questions relating to object-orientated C++, with a focus on “meaningful programming tasks:

designing, writing, comprehending, modifying and reusing programs” (Ramalingam &

Wiedenbeck, 1998, p. 369). Given its widespread use (Zingaro, 2014), Ramalingam and

Wiedenbeck’s (1998) scale provides a firm foundation for assessing students’ self-efficacy

levels related to programming in general. However, Bandura (2006) states, one measure does

not fit all scenarios, meaning a number of small modifications are required to make

Ramalingam and Wiedenbeck’s (1998) scale suitable for use within the aptitude test.

Ramalingam and Wiedenbeck (1998) partitioned their original scale questions into four

factors:

Factor 1: Independence and persistence

Factor 2: Complex Programming Tasks

Factor 3: Self-Regulation

Factor 4: Simple Programming Tasks

Given that the aptitude test is focused towards assessing students’ fundamental programming

skills, it was decided to omit the Complex Programming Task (Factor 2) questions as the

majority of the questions bared no relevance to the objectives of the aptitude test.

Additionally, several of the Factor 2 questions related to object-orientated programming, but

as this is not currently taught until much later in the introductory programming module that

students are studying, it would be inappropriate to measure their self-efficacy on this topic.

The remaining questions were presented in the same order as Ramalingam and Wiedenbeck’s

 88

(1998) original scale, with one minor alteration being made through the removal of any

specific references to C++ and replaced with “any programming language” in order to make

the aptitude test language independent. The full list of questions can be found in Section 2

within Appendix A.

Additionally, Ramalingam and Wiedenbeck (1998) provided the following instructions to

students when completing the scale, which have been replicated in this study, without

referring to a specific programming language.

Rate your confidence in doing the following C++ programming related tasks using a

scale of 1 (not at all confident) to 7 (absolutely confident). If a specific term or task is

totally unfamiliar to you, please mark 1. (Ramalingam & Wiedenbeck, 1998, p.6)

The inclusion of the modified Programming Self-Efficacy scale in the aptitude test allows for

students’ confidence associated with programming to be examined directly, thus providing

support in answering RQ 2.

Section 3: Spatial Ability Measurement

Given the purported links between students’ spatial abilities and success within their

programming courses (Jones & Burnett, 2008), two different styles of mental rotation test

designs were considered for inclusion within the aptitude test based on those used by

Vandenberg and Kuse (1978) and Shepard and Metzler (1971), respectively. Unfortunately,

due to a lack of availability of high-resolution versions of the testing materials, Vandenberg

and Kuse’s (1978) version of the mental rotation test was unable to be implemented within

the aptitude test.

A mental rotation test in the style of Shepard and Metzler’s (1971) original test was created

using Ganis and Kievit's (2015) 3D object dataset. The mental rotation test was built using

JavaScript in order to allow it to be integrated into the Qualtrics environment. The test

followed Ganis and Kievit’s (2015) procedure by displaying the 3D objects side-by-side, to

which respondents must indicate if the images are of the same object (see Figure 3.2 for an

example) by pressing the “B” key on their keyboard, and the “N” key if they are different.

Students had a maximum of 7.5 sec (as specified by Ganis and Kievit, 2015), to provide an

answer for each of the 48 trials, of which half included the same image in different rotations.

 89

Trials occurred in a random order with no more than three trials of four possible rotations of a

given object occurring consecutively. Unlike Ganis and Kievit (2015), a second block of 48

trials was not included due to the limited amount of time being available for students to

complete the aptitude test.

Figure 3.2

Example of Objects Used in Mental Rotation Test

Before students started the mental rotation test, they were presented with written instructions

specifying what the task involved, what keys to use and that they had 7.5 sec to provide an

answer for each pair of images. They were then given the opportunity to perform twelve

practice trials using images that were not included in the main test and were given feedback

as to whether they had answered correctly or incorrectly. Upon completion of the mental

rotation test the student’s error rate was passed back as an embedded variable using the

Qualtrics JavaScript API (Qualtrics, n.d.). Due to the nature of the Mental Rotation Test, any

student who specified they required a screen reader or other visual aid was permitted to skip

this task.

After completing the Mental Rotation Test students were prompted to record how much

mental effort they felt was required to identify which of the pairs of images were the same

shape using a 9-point Likert scale ranging from very, very low (1) to very, very high mental

effort (9), as this has previously been shown to be a reliable measurement of mental effort

(Paas et al., 1994). This allowed for the identification of any significant relationships that

 90

exist between the measurement of students’ spatial abilities, the amount of mental effort

required and their programming abilities, thereby indicating students who are more likely to

experience cognitive overload.

Section 4: Need For Cognition Scale

As discussed previously, the Need For Cognition Scale, both in its original and revised

formats (Cacioppo et al., 1984; Cacioppo & Petty, 1982) has not previously been applied to

the context of introductory programming. However, the abstract nature of programming

requires students to be actively seeking out solutions to problems, and there is a risk that

students who are unable to do so, the stoppers and extreme movers (Perkins et al., 1986), will

be at a greater risk of falling behind in their course. The Need For Cognition Scale could

potentially identify students who are likely to become stoppers or extreme movers, which

links to RQ 2, hence the inclusion of the revised eighteen question version (Cacioppo et al.,

1984) in the aptitude test.

Section 5: Working Memory Capacity

Given the reported demands that programming places on a student’s working memory

(Yousoof et al., 2007), a custom implementation of the Corsi Block Test (Corsi, 1973) was

used to measure students’ Working Memory capacities. The Corsi Block Test was chosen

due to its relative simplicity, ease of administration and short administration time. A number

of electronic versions of the Corsi Block Test already exist (Berch et al., 1998; Claessen et

al., 2015; Vandierendonck et al., 2004), which were used to guide its development in the

present research.

The Corsi Block Test implementation was constructed using JavaScript in order to allow it to

be embedded within the Qualtrics environment. Following Vandierendonck et al.'s (2004)

description of their implementation, nine white blocks were placed in the approximate

standardised locations as dictated by Kessels et al. (2000), whilst allowing for differences in

screen size and resolution, on a dark blue background (see Figure 3.3).

 91

Figure 3.3

Corsi Block Test Implementation Screenshot

The test sequence was triggered by the student pressing a button labelled “Start” on the left-

hand side of the window. This initiated a five sec countdown being displayed after which, the

first sequence was presented to the student. As in Vandierendonck et al. (2004), blocks turned

black for 1 sec with an inter-block time of 0.5 sec and with each block turning black for 0.2

sec after being clicked. However, instead of using a sound to signify the end of the

presentation, a green “GO” sign was used to prompt the student to replicate the sequence, as

headphones/speakers could not be guaranteed to be available for every student completing

the test. A student indicated that they had finished replicating the sequence by clicking a

button labelled “Done” on the left-hand side window. If the student entered the correct

sequence a green “Correct” sign was displayed in the bottom-left portion of the window and a

red “Incorrect” sign was displayed if an incorrect or incomplete sequence was entered. There

was a gap of 2 sec between the student signifying they had completed the sequence and the

start of the next presentation.

Before beginning the Corsi Block Test students were presented with instructions on how to

complete the test and then were given a chance to practice with randomly generated

sequences consisting of two and three blocks. After completing the demonstration students

began the actual test, which used sequences from lengths of three to eight. As per Kessels et

al. (2000), students had the chance to replicate two sequences for any given length. If the

student successfully replicated at least one of these sequences, they were allowed to proceed

 92

to the next sequence length. If neither of the sequences was replicated the test ended.

Only the forward direction version of the Corsi Block Test was implemented within the

aptitude test due to time restrictions.

Once the student had completed the Corsi Block Test, the Qualtrics JavaScript API

(Qualtrics, n.d.) was used to pass the student’s score (the last completed sequence length) as

an embedded data variable, allowing it to be included with the student’s responses to the

other sections in the overall test. After completing the Corsi Block Test, students were also

asked to record how much mental effort they felt was required to complete the task in order

to attempt to identify students who are likely to experience cognitive overload (Yousoof et

al., 2007). Any students who specified that they required screen readers or other visual aids

were able to skip this section in addition to the Mental Rotation Test.

Section 6: Programming Diagnostic

The Programming Diagnostic portion of the aptitude test posed a series of questions on a

number of key topics that students will encounter as part of their introductory programming

module. These questions were designed to identify any misconceptions held by students and

would subsequently allow for estimates of how likely they are to be holding appropriate

mental models for each of the concepts being examined using Bayesian Knowledge Tracing

(see Section 4.3). The questions within the Programming Diagnostic can therefore be seen to

be supporting both RQ 1 and RQ 3.

The main topics covered in the Programming Diagnostic within the initial version of the

aptitude test included: Variable Assignment, Conditional Statements, Iteration and Recursion.

However, additional areas that may cause misconceptions were also examined alongside the

main topics, including Program Flow (parallelism misconception), Output Statements, and

whether the names of variables affect what they can hold. The questions for each of the main

topics were contained within their own sub-sections, which also included questions on how

much mental effort students felt was needed to answer the questions as well as how many

they felt they had answered correctly.

In order to ensure that the aptitude test is language-independent, pseudocode based on the

OCR GCSE Pseudocode Guidelines (OCR, 2015) was used for all questions within the

aptitude test, as the test places more emphasis on students’ abilities to logically deduce

 93

answers rather than their understanding of the syntax of a particular language. The variable

assignment sub-section was comprised of six questions derived from Dehnadi’s (2006)

original study. The questions included both single assignment operations (Figure 3.4) and

multiple assignment operations (Figure 3.5), thus allowing for the examination of

misconceptions relating to the direction of the assignment (=) operator and also students’

understandings of how variables function.

Figure 3.4

Example of Single Assignment Operation Question

The variables ‘A’ and ‘B’ are initialised in the lines of code below.

A = 10

B = 20

What are the values of ‘A’ and ‘B’ after carrying out the following operation?

A = B

 94

Figure 3.5

Example of Multiple Assignment Operations Question

Although the assignment questions themselves are similar to those of Dehnadi (2006),

students were not presented with a list of answers to choose from in the way Dehnadi did.

Instead, students were prompted to input their own values for each of the variables after the

statement had been executed.

As Pea and Kurland (1984) state, conditional statements in the form of “if” statements are a

major part of programming that, if misunderstood, are likely to cause students’ significant

difficulties when writing programs of their own. As such, the second sub-section consisted of

eight multiple choice questions which were designed to highlight whether a student is holding

misconceptions relating to “if” statements, Boolean operators (AND, OR and NOT) (Grover

& Basu, 2017) and parallelism (Pea, 1986). Simple hints were included to explain any

elements of syntax that students might have been unfamiliar with.

The variables ‘A’, ‘B’ and ‘C’ are initialised in the lines of code below.

A = 5

B = 3

C = 7

What are the values of ‘A’, ‘B’ and ‘C’ after carrying out the following operation?

A = C

B = A

C = B

 95

Figure 3.6

Example of “If” Statement Question

For example, Figure 3.6 would have the following options:

A) You have passed with a combined score of: 50

B) You have passed with a combined score of: 110

C) You have failed

D) There would be no output

Any student who selected either C or D would be demonstrating a potential inability to

correctly trace the execution of an “if” statement. Additionally, students who selected D may

also not fully understand the function of output statements, which in this scenario, are

indicated with the keyword “print”. Students who selected either A or B are demonstrating

that they can correctly trace an “if” statement, with option A being the correct answer.

However, if a student chose option B, they would be demonstrating that they potentially hold

the parallelism misconception by not recognising that programs flow linearly from top to

What is the output of the following code?

Hint: ‘>=’ represents ‘Greater than or equal to’

Module1 = 30

Module2 = 20

PassMark = 100

Total = Module1 + Module2

if Total >= PassMark then

 print ‘You have passed with a combined score of: ‘

 print Total

else

 print ‘You have failed’

Module3 = 60

Total = Module1 + Module2 + Module3

 96

bottom. Following on from the questions on conditional statements, the two subsequent sub-

sections examine students’ understandings of iteration in the form of “for” and “while” loops.

Misconceptions relating to the concept of iteration were identified using multiple choice

questions, with two questions focusing on “for” loops and two focusing on “while” loops, as

shown in Figures 3.7 and 3.8.

Figure 3.7

Example of “For” Loop Question

Figure 3.8

Example of “While” Loop Question

What is the output of the following code?

Hint: ‘++’ increments a variable by 1

Hint: ‘<’ represents ‘Less than’

for i = 0; i < 4

 print i

 i++

What is the output of the following code?

Hint: ‘++’ increments a variable by 1

Hint: ‘<=’ represents ‘Less than or equal to’

i = 0

while i <= 5

 print i

 i++

 97

The available answers for both “for” and “while” loop questions account for students failing

to recognise that code contained within the loop is repeated as well as whether a student

misidentifies when a loop should begin or terminate. The questions on iteration also allow for

students’ understandings of the flow of control within the program to be examined, for

example, the subsequent question to that shown in Figure 3.8 is exactly the same but the

statement “i++” is placed above “print i” instead of below it as shown in Figure 3.8. If a

student correctly understands the flow of control, then they will recognise that i is now being

incremented before being outputted and as such, produces an answer of “1 2 3 4 5 6” as

opposed to “0 1 2 3 4 5” for the original question. Students who hold the parallelism

misconception will fail to recognise the difference and, assuming they correctly understand

iteration, would answer “0 1 2 3 4 5” for both questions.

A single recursion question was included in the aptitude test, as shown in Figure 3.9.

Recursion is an advanced topic not covered within the introductory programming module that

students taking part in this experiment were studying. However, it was included within the

aptitude test to investigate claims of its relationship with iteration (Kessler & Anderson,

1986).

 98

Figure 3.9

Example of Recursion Question

Following on from the question shown in Figure 3.9, the same question was posed to students

using a “for” loop, thus allowing their answers for both iteration and recursion to be

compared. Students were also asked whether they found either the iteration or recursion

question easier to answer, the mental effort required, as well as which (if either) question they

felt they answered correctly.

In order to assess the aptitude test design a pilot study was conducted with first year

Computing students. Thirty six students volunteered to take part and although this sample

size is too low to draw strong conclusions, it did allow for the questions and proposed

analysis technique to be evaluated.

3.4.3 Subsequent Modifications

A number of changes were made to the aptitude test following the first pilot study, the most

notable being how students’ misconceptions were to be analysed. The original intended

What would the result of the following function be when n = 4?

Hint: A function is a block of code which can be re-used without the need for it to be

rewritten.

Hint: ‘<=’ represents ‘Less than or equal to’

Hint: ‘return’ is used to exit the function at a specific point and pass back the result. i.e.

‘return 3’ will exit a function with a result of 3

Hint: ‘*’ represents multiplication

n = 4

function fun1(n)

 if (n <= 1)

 return 1

 else

 return n * fun1(n-1)

 99

analysis method was based on Dehnadi’s (2006) mental model approach, where the intention

was to an establish students’ “dominant mental model” for each concept; essentially how the

student usually approaches a particular topic. However, it was felt that this approach was too

restrictive as it does not take into account students who may be exhibiting more than one

misconception. Instead, it was decided to measure the frequency that each misconception is

demonstrated by a student, thus allowing for a more complete picture of students’ difficulties

to be established. Bayesian Knowledge Tracing can be used to assess the likelihood of

students holding appropriate mental models for each concept by examining the

misconceptions students demonstrate on a question by question basis (see Section 4.3). A list

of all misconceptions examined as part of the final version of the aptitude test can be found in

Appendix B.

It should be noted that it is possible for a student to exhibit more than one misconception in a

single question. For example, in a question focusing on variable assignment, such as the

question shown in Figure 3.5, a student can exhibit misconceptions relating to the direction of

the assignment operator, as well as not correctly carrying values forward when performing

multiple assignment operations.

In addition to the change in analysis approach, a number of changes to the aptitude test were

identified as being required. These included replacing the “fear of programming” yes or no

option with a 1 to 10 scale to allow for a more detailed review of how much students fear

learning to program. It was revealed that students were spending a significant amount of time

completing the Mental Rotation Test and as such it was decided to remove it from the

aptitude test to allow more time to be allocated to identifying students’ programming

misconceptions.

As a result of the removal of the Mental Rotation Test the number of variable assignment

questions was able to be expanded from six to nine, and also included questions which

examined whether students mistakenly believe, through a misconception which is similar in

nature to Pea’s (1986) Intentionality bug, that the variable names affect the values they can

hold. For example, a student could mistakenly believe that a variable called “largest” will

always hold the largest value (Kaczmarczyk et al., 2010; Qian & Lehman, 2017) as shown in

Figure 3.10. Each of the questions that examines whether a student believes variable names

influence the values they can hold has an identical counterpart question, which uses single

 100

character variable names, therefore, allowing for students’ answers to be compared in order

to establish whether students hold this misconception.

Figure 3.10

Example of Variable Assignment with Inferred Meaning Variables Question

The pilot study also revealed that the multiple-choice conditional statement questions were

potentially too easy, as almost all students answered the questions in this section correctly.

Therefore, it was decided to make the questions open-ended rather than multiple-choice to

prevent students’ responses being influenced by the presented options, as well as to allow any

new misconceptions to be identified. The number of conditional statements and iteration

questions were expanded to take advantage of the removal of the Mental Rotation Test, with

questions on iteration also being presented as open-ended to allow for additional

misconceptions to be uncovered.

A second pilot study was conducted in order to evaluate the alterations to the aptitude test.

Again, the pilot study was open to all first year Computing students, as well as second year

students studying the Advanced Programming module. Students in the second year were able

to choose the modules that they were studying so, as such, weaker programming students

were likely to avoid this module. However, it was decided that opening up the pilot study to

The variables ‘smallest’, ‘middle’ and ‘largest’ are initialised in the lines of code below.

smallest = 1

middle = 8

largest = 11

What are the values of ‘smallest’, ‘middle’ and largest after carrying out the following

operation?

largest = smallest

middle = largest

smallest = middle

 101

second year students would allow for a more comprehensive evaluation of the aptitude test,

as such students should be more familiar with the concepts being examined, and would also

enable further insight to be gained into the prevalence of the different misconceptions.

As in the first pilot study, students were offered the chance to be included in a prize draw for

one of five £10 Amazon vouchers, as well as being offered feedback on their answers.

In total 29 first year students and 20 second year students took part and although the low

participant number limits the nature of any detailed analyses, it was noted that second year

students predictably displayed less misconceptions relating to variable assignment and

conditional statements than first year students. However, the majority of the first year and a

small number of second year students demonstrated difficulty with iteration questions,

suggesting this is likely to be a troublesome topic.

The second pilot study revealed a number of additional changes that needed to be made to the

aptitude test before the commencement of the actual data collection, the most notable being

the need for the aptitude test length to be reduced further in order to allow it to be completed

well within an hour timeslot. This was achieved by slightly reducing the overall number of

programming question and the removal of the Need For Cognition scale and the Corsi Block

Test.

Upon examination of the results from the pilot study, a significant moderate correlation was

observed between the Need For Cognition Scale and the modified Computer Programming

Self-Efficacy scale rs = .49, p < .001, N = 49. A Spearman’s rank coefficient was utilised for

this analysis as although responses on the Need For Cognition scale were revealed to be

normally distributed by a Shapiro-Wilk test (W(49) = 0.97, p = .330), scores on the modified

Computer Programming Self-Efficacy scale were not normally distributed (W(49) = 0.91, p =

.007). Despite being the longer of the two scales, the modified Computer Programming Self-

Efficacy scale explicitly measures factors relating to students’ programming abilities and has

previously been shown to be a reliable predictor of students’ performance, whereas the Need

For Cognition scale is a general scale that has not previously been applied in the context of

programming. This made it appropriate for the modified Computer Programming Self-

Efficacy scale to be retained in the aptitude test and for the Need For Cognition scale to be

removed.

 102

Additionally, the Corsi Block Test was also removed due to the amount of time required for

students to complete it and a lack of variation in the data. However, the data collected during

the pilot study would appear to validate this implementation of the Corsi Block Test for use

in a future study as the block span results (M = 6.41, SD = 0.99) are comparable to Kessels et

al.'s (2000) results (M = 6.20, SD = 1.30).

Further to the need to reduce the overall length of the aptitude test, a number of other changes

were also identified as being necessary. First, a number of questions on iteration required

small modifications to allow them to be more easily mapped to the misconceptions set out in

Appendix B. Furthermore, the conditional statement questions were redeveloped to allow for

a more direct evaluation of students comprehension of the AND, OR and NOT operators

using multiple choice questions based on Grover and Basu's (2017) assessment design, as

shown in Figure 3.11.

Figure 3.11

Example of Boolean Operator Question

A minor alteration was also made to the pseudocode style used within the questions, with the

inclusion of “braces” to denote the scope of statements. Although this is a departure from the

OCR guidelines (2015), it was decided that their inclusion would make the questions more

comprehensible, particularly those including iteration as shown in Figure 3.12. Hints were

also removed in favour of making the code easier for students to logically deduce the

meaning of statements, for example, by replacing i++ with i = i + 1.

Which of the following words starts with a ‘d’ OR ends with an ‘e’?

Select all words this applies to.

☐ dance

☐ delicious

☐ soccer

☐ share

 103

Figure 3.12

Example of Addition of “Braces” to Questions

Additionally, it was decided to remove the recursion question from the aptitude test due to

the fact the majority of students struggled with this topic that is beyond the scope of first year

programming, which consequently made it difficult to accurately map students’ answers to

specific misconceptions. The questions included within the final version of the Programming

Diagnostic section can be found in Section 3 within Appendix A.

In previous versions of the aptitude test, questions had been grouped together by topic.

However, students commented that this made the test feel overly repetitive and therefore,

questions on different topics were mixed together to negate this. Additionally, students were

asked to rate how confident they were that they had answered each question correctly using a

0 – 100 scale to provide a more comprehensive evaluation of levels of confidence for each

concept to aid in answering RQ 2. This is as opposed to using techniques such as Duran et

al’s (2019) self-evaluation instrument, which focuses on specific concepts, as students’

confidence will be measured throughout the aptitude test, as discussed below. Given these

changes it was necessary to move the mental effort questions to the end of the aptitude test,

with students being asked to rate the amount of mental effort they felt was required to answer

questions on each of the concepts. Examples of questions for each of the concepts were

provided to aid students in making their estimations.

Aside from the alterations made to the Programming Diagnostic portion of the aptitude test, a

question was added to Section 1 asking students to rate how difficult they find mathematics

Examine the following code.

What would be outputted on the screen when it is run?

i = 0

while i <= 5 {

 print i

 i = i + 1

}

 104

using a 1 – 10 scale, given the purported link between programming abilities and

mathematics (Bergin & Reilly, 2005b; Byrne & Lyons, 2001; Gomes et al., 2006; Wilson &

Shrock, 2001). The aptitude test was also renamed as the “Programming Checkup” to

alleviate any negative connotations towards the word “test” from the students.

Due to the limited number of students who took part in the two pilot studies, it is not possible

to draw any statistically reliable conclusions from the results. However, a number of key

findings within the data encouraged the commencement of the main data collection once the

changes discussed above had been made. These included how having prior programming

experience appeared to improve student confidence and also corresponded to a lower number

of misconceptions being demonstrated, although previously studying computer science did

not appear to have the same effect. Students who had studied a mathematics-based subject

after finishing school also appeared to be more confident in their abilities. Furthermore, there

was evidence to suggest a relationship between students’ levels of confidence; particularly

their Self-Efficacy levels, and the number of misconceptions that they demonstrate when

answering questions. As has been mentioned previously, students appear to have significant

difficulties understanding the concept of iteration (recursion also was identified as causing

significant difficulty, which was why it was ultimately removed from the Programming

Checkup), regardless of whether students had prior programming experience or not. Second

year students who took part in the second pilot study demonstrated significantly less

misconceptions that first year students, which is to be expected given they have had more

time to develop appropriate mental models of the concepts, although misconceptions

associated with iteration were still present in some students’ responses. This provides an

indication of students’ mental model development progressing over time, the assessment of

which, is incorporated into the main data collection process.

Commencing in September 2019, for a period of three years, the Programming Checkup was

presented to all first year Computing students at the University of Central Lancashire

(UCLan) during the first week (T1) of their degree through an introductory video that set out

the purpose of the study, what the Programming Check Up involved, and how they could take

part. It was stressed to students on multiple occasions that participation in the research

investigation was optional, with the chance to be entered into a draw to win one of five £10

Amazon vouchers as well as being able to receive feedback on their answers serving as

encouragement for taking part.

 105

The Programming Checkup was also released to students towards the end of the first

semester (T2), which was approximately 10 weeks after T1, thus allowing for students’

progress to be evaluated over the course of the semester in a similar fashion to Ramalingam

and Wiedenbeck's (1998) pre and post self-efficacy tests. Students were, again, offered the

chance to win an Amazon voucher, as well as to receive feedback on their answers.

A full account of all questions included within the version of the Programming Checkup used

for data collection is presented within Appendix A. Subsequently, an analysis of students’

responses to the Programming Checkup is discussed within Chapter 5.

 106

3.5 Overview of Machine Learning Algorithms
As mentioned previously, regression is a technique commonly used to estimate a numerical

outcome (i.e., a dependent variable), based on the values of one or more independent

variables (Maulud & Abdulazeez, 2020). Therefore, predicting students’ assessment grades is

a task naturally suited to regression (Nasiri et al., 2012; Strecht et al., 2015; Tomasevic et al.,

2020; Wakelam et al., 2020) as it provides staff with a tangible estimation of what result the

student is likely to achieve.

An alternative approach to predicting an exact mark for a student using regression

techniques, is to predict a categorical outcome using a branch of machine learning referred to

as “Classification” methods (Dietrich et al., 2015; Kotsiantis, 2007). The outcomes predicted

by classification methods can be either binary or multinomial (Russell & Norvig, 2020;

Tomasevic et al., 2020) and as such, it is possible to develop models to predict whether a

student passes or fails an assessment (binary classification), or the grade band they are likely

to achieve (multinomial classification) (Castro-Wunsch et al., 2017; Tomasevic et al., 2020).

Although classification lacks the granularity of regression, the categorical output reduces the

need for interpretation of the results by teaching staff, which could be beneficial when

directing students towards support interventions. As such, binary classification methods were

chosen to be evaluated as opposed to multinomial methods in order to maximise the

interpretability of the outputs.

In sum, both regression and classification approaches to predicting students’ Assessment 1

results were considered in the present research in order to allow for future pedagogic

interventions to be developed that may benefit from either the clear-cut nature of binary

classification, or the more granular predictions produced by regression models.

As this is the first time that the different factors examined by the Programming Checkup have

been brought together to produce a prediction of students’ abilities, it was felt that a wide

selection of classification and regression methods should be explored. By drawing on

previous research within the fields of Educational Data Mining and Learning Analytics

(Baker & Yacef, 2009; Jacob et al., 2016; Rastrollo-Guerrero et al., 2020; Romero &

Ventura, 2010; Strecht et al., 2015), a comprehensive analysis and assessment could be

undertaken to establish what machine learning algorithms work well with the data produced

 107

by the Programming Checkup. The following section provides a description of the different

classification and regression algorithms which were included in the analysis and assessment,

the process and results of which, is presented within Chapter 4.

OLS (Linear) Regression

Ordinary Least Squares (OLS) Regression utilises a linear function in order to make

predictions, as seen in Equation 3.4 (Dietrich et al., 2015; El Aissaoui et al., 2020; James et

al., 2013):

3.4)

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑃𝑃𝑋𝑋𝑃𝑃

The Scikit-Learn (Pedregosa et al., 2011; Scikit-Learn, n.d.-o) implementation of OLS

Regression was utilised within this investigation. It aims to establish a plane to model the

multidimensional nature of the data when using multiple predictors. Establishing such a plane

aims to minimise the sum of squared residual (RSS) between the observed and predicted

responses, as can be seen in Equation 3.5 (Kuhn & Johnson, 2013):

3.5)

𝑅𝑅𝑆𝑆𝑆𝑆 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖 = 1

Although the simplicity of OLS Regression allows for the effective modelling of linear

relationships between predictors, it naturally struggles to account for nonlinear relationships

within the data. Furthermore, it is also suspectable to being influenced by outlying

observations that do not follow general trends in the data and therefore, have exceptionally

large residuals, resulting in the model having to be adjusted to account for them (Kuhn &

Johnson, 2013).

Ridge, Lasso and Elastic Net Regression

Complex OLS Regression models has a tendency to overfit the training data, whereby they fit

the training data very well, but do not generalise effectively when attempting to make

predictions with new, unseen data (Claesen & De Moor, 2015; Kuhn & Johnson, 2013).

Therefore, a number of penalisation techniques have been developed to improve performance

 108

on unseen data compared to OLS Regression by making a bias-variance trade-off (Zou &

Hastie, 2005).

Within machine learning, bias is the error between the predictions made by the model and

true values (James et al., 2013; Kuhn & Johnson, 2013). For example, the assumption of a

fully linear relationship made by OLS Regression is likely to be an oversimplification of the

relationships between the variables and as such, results in high bias and errors in prediction

that cannot be accounted for by increasing the number of samples in the training dataset

(James et al., 2013).

Variance refers to the variability of the error in the predictions made by the model if a

different training set is used, as a model with high levels of variance will overfit the current

training data and will likely struggle when applied to new unseen data (Bruce & Bruce, 2017;

James et al., 2013). The bias-variance trade-off therefore relates to balancing the complexity

of the model, as a highly complex model will experience a high level of variance and overfit

the data, whereas an overly simplistic model will show strong levels of bias and underfit the

data (Claesen & De Moor, 2015).

One example of a penalisation technique that attempts to improve on the performance of OLS

Regression is Ridge Regression (Zou & Hastie, 2005). Ridge Regression attempts to negate

the tendency to overfit data, as seen in OLS Regression (Kuhn & Johnson, 2013; Zou &

Hastie, 2005) by reducing the variance of the model at the expense of bias (Zou & Hastie,

2005), which consequently often has the effect of reducing the overall error exhibited by the

model when compared to OLS Regression (Kuhn & Johnson, 2013). Ridge Regression

reduces variance by adding an 𝐿𝐿2 squared magnitude of coefficients penalty to the parameter

estimates, which has the effect of only allowing the individual regression parameters to

become large if there is a proportional decrease in RSS (Kuhn & Johnson, 2013). The size of

the penalty applied to the parameters is represented with the hyperparameter 𝜆𝜆, as seen in

Equation 3.6 (Kuhn & Johnson, 2013), which is referred to as “alpha” within the Scikit-Learn

documentation (Scikit-Learn, n.d.-ab) due to lambda being a reserved keyword in Python:

 109

 3.6)

𝑅𝑅𝑆𝑆𝑆𝑆𝐿𝐿2 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖 = 1

 + λ � 𝛽𝛽𝑗𝑗2
𝑝𝑝

𝑗𝑗 = 1

The values of hyperparameters can have significant impacts on the performance of a model,

for example, 𝜆𝜆 = 0 would make Ridge Regression equivalent to OLS Regression, whereas

larger values shrink parameter estimates towards 0 (Claesen & De Moor, 2015; Kuhn &

Johnson, 2013). In order to find the optimal hyperparameter values that minimise the error

produced by the model it is necessary to examine how different configurations of

hyperparameter values effect a model’s performance. This process is referred to as

“Hyperparameter Tuning”, which essentially involves trialling a range of values for each

hyperparameter in the models and identifying the combination that results in the lowest

amount of error. However, the testing dataset must remain isolated from this process and

cannot be used to evaluate the different hyperparameter values (Bengio & Grandvalet, 2004;

Claesen & De Moor, 2015; Mantovani et al., 2015).

Instead, K-Fold Cross Validation is applied to the training dataset, which involves repeatedly

splitting the dataset K times, with 1/K of the data being reserved for testing (formally, the

validation dataset) and the remaining data being used to train the model until each subset has

been used as the validation set (Bengio & Grandvalet, 2004; Kuhn & Johnson, 2013; Vabalas

et al., 2019; Wong & Yeh, 2020). Although this is a computationally expensive process, it

allows for average performance to be estimated. This average performance is formally

referred to as the Expected value of Predication Error (EPE) of the model with a given set of

hyperparameter values. The EPE can be computed and subsequently compared with alternate

hyperparameter configurations, allowing for an optimal configuration to be identified

(Bengio & Grandvalet, 2004).

Within this investigation, hyperparameter tuning is implemented using Grid Search, which

exhaustively searches through all possible hyperparameter combinations within a pre-

determined parameter space (Mantovani et al., 2015). Although there are less

computationally expensive hyperparameter tuning methods available, in this investigation

Grid Search – and specifically, SciKit-Learn’s GridSearchCV (Scikit-Learn, n.d.-k) –

 110

remains a very popular technique, thus making it an appropriate choice as the size of the

training dataset is not likely to result in excessive processing times (Mantovani et al., 2015).

Given that GridSearchCV (Scikit-Learn, n.d.-k) incorporates K-Fold Cross Validation, a

value of 10 was set for K, as this has been shown through empirical studies to produce error

rate estimates that experience neither high levels of bias or variance (James et al., 2013; Kuhn

& Johnson, 2013), with a range of values on a log-10 scale from 10e-5 to 100 being evaluated

in order to find the optimal value for 𝜆𝜆.

Additionally, when evaluating techniques such as OLS Regression which do not require

hyperparameter tuning, traditional K-Fold Cross Validation is used in place of Grid Search

using SciKit-Learn’s cross_val_score function (Scikit-Learn, n.d.-d).

One of the drawbacks to Ridge Regression is that it is unable to create a “parsimonious”

model, meaning that whilst Ridge Regression is able to shrink parameter estimates towards 0,

it cannot set them to absolute 0 and therefore, retains all predictors in the model and does not

perform feature selection by removing any which are unimportant (Kuhn & Johnson, 2013;

Zou & Hastie, 2005). A common alternative to Ridge Regression which is able to create a

parsimonious model is Least Absolute Shrinkage and Selection Operator (lasso) which can be

seen in Equation 3.7 (Kuhn & Johnson, 2013; Tibshiranit, 1996; Zou & Hastie, 2005).

 3.7)

𝑅𝑅𝑆𝑆𝑆𝑆𝐿𝐿1 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2 + 𝜆𝜆 ��𝛽𝛽𝑗𝑗�
𝑝𝑝

𝑗𝑗 = 1

𝑛𝑛

𝑖𝑖 =1

Lasso is fundamentally very similar to Ridge Regression as it allows parameter estimates

towards 0 however, as the 𝐿𝐿1 penalty is being applied to the absolute value of the magnitude

of coefficients thus allowing parameter estimates to be set to absolute 0 (Kuhn & Johnson,

2013; Zou & Hastie, 2005). This ability to set parameter estimates to absolute 0 allows Lasso

to perform feature selection and produce simpler, sparse models (James et al., 2013; Kuhn &

Johnson, 2013).

 111

Like Ridge Regression, Lasso is sensitive to values of 𝜆𝜆, as an excessively large value will

result in more parameter estimates to be set to 0, whereas too smaller value of 𝜆𝜆 would

prevent unimportant variables from being removed from the model (Kuhn & Johnson, 2013).

Hyperparameter tuning is employed in the same as Ridge Regression in order to

obtain an optimal value of 𝜆𝜆, which is also denoted as “alpha” within the Scikit-Learn

documentation for the Lasso function (Scikit-Learn, n.d.-n).

Additionally, a middle ground between Ridge Regression and Lasso can be found within

Elastic Net Regression which combines both the 𝐿𝐿1 and 𝐿𝐿2 penalties; as seen in Equation 3.8,

which has been shown to be more effective at dealing with multicollinearity amongst

predictor variables (Kuhn & Johnson, 2013; Zou & Hastie, 2005).

3.8)

𝑅𝑅𝑆𝑆𝑆𝑆 𝐸𝐸𝑛𝑛𝐸𝐸𝐸𝐸 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2 + 𝜆𝜆1 � 𝛽𝛽𝑗𝑗2 +
𝑝𝑝

𝑗𝑗 = 1

 𝜆𝜆2 ��𝛽𝛽𝑗𝑗�
𝑝𝑝

𝑗𝑗 = 1

𝑛𝑛

𝑖𝑖 =1

As with both Ridge Regression and Lasso, Elastic Net requires hyperparameter tuning to be

carried out in order to find an optimal value of 𝜆𝜆 (alpha). There is an additional

hyperparameter; “l1_ratio”, which acts as a mixing parameter for the 𝐿𝐿1 and 𝐿𝐿2 penalties

where a value of 0 indicates only a 𝐿𝐿2 penalty is applied, a value of 1 indicates a 𝐿𝐿1 penalty is

applied, and any value in between 0 and 1 is a combination of both penalties and therefore,

requires tuning in order to find an optimal model (Scikit-Learn, n.d.-h).

Bayesian Ridge Regression

The regression methods described thus far can be considered frequentist methods as

predictions are made in the form of single values, as opposed to Bayesian methods which

make predictions based upon a probability distribution (Wakefield, 2013).

As part of the model evaluation process, the Bayesian variant of Ridge Regression was

implemented which, unlike traditional Ridge Regression, does not require GridSearchCV to

be utilised to find the optimal hyperparameter values. Instead, the SciKit-Learn

implementation of Bayesian Ridge Regression (Scikit-Learn, n.d.-c) estimates

hyperparameter values during the fitting process, as per the method posed by MacKay (1992)

 112

in the description of the algorithm in Appendix A of Tipping (2001), and as such, only

standard K-Fold Cross Validation is required when comparing Bayesian Ridge Regression to

the other methods being evaluated.

Ridge Classification

Scikit-Learn also includes a classification variant of Ridge Regression wherein binary target

variables are converted to {-1, 1} and then treated as a standard Ridge Regression problem

(Scikit-Learn, n.d.-ac). Consequently, the Ridge Classifier has the same hyperparameters as

the Ridge Regressor and are therefore trained in the same way as described previously.

Logistic Regression

Logistic Regression is an example of a Generalised Linear Model (GLM) which extends

traditional linear (OLS) regression into new contexts (i.e., classification tasks), therefore

making Logistic and OLS Regression akin to each other with the exception that Logistic

Regression produces a binary outcome (Bruce & Bruce, 2017; Kuhn & Johnson, 2013). A

GLM is characterised by two main components: a probability distribution; which in the case

of Logistic Regression is a binomial distribution, and a link function to map the response to

the predictors, which for Logistic Regression is a Logit function (Bruce & Bruce, 2017, p.

187). Logistic Regression is fit using Maximum Likelihood Estimation (MLE); as opposed to

least squares used by OLS Regression which iteratively evaluates parameter estimates until

the model no longer improves and is said to have “converged” (Bruce & Bruce, 2017; Miles

& Shevlin, 2001).

As with the methods discussed previously, the Scikit-Learn implementation of Logistic

Regression (Scikit-Learn, n.d.-r) has a number of hyperparameters, which can be tuned to

optimise performance. In order to reduce the likelihood of overfitting the data the “penalty”

hyperparameter can be used to determine what regularisation penalty is applied (𝐿𝐿1, 𝐿𝐿2,

elastic net or none), with the strength of the penalty being controlled with the “C”

hyperparameter, where smaller values indicate stronger regularisation (Scikit-Learn, n.d.-r;

Vabalas et al., 2019).

An additional hyperparameter, “solver”, specifies the optimisation algorithm to use whilst

training the Logistic Regression model (Scikit-Learn, n.d.-r). Although it is possible to use

GridSearchCV to compare different solver methods, the solver “liblinear” has been chosen as

 113

it works well with small datasets however, liblinear is not compatible with the elastic net

penalty and as such, cannot be included in the parameter grid (Scikit-Learn, n.d.-r; Vabalas et

al., 2019). It should be noted that GridSearchCV utilises stratified K-Fold Cross Validation

when applied to a binary classification problem, which ensures that the distribution of the

classes is the same in each fold (Scikit-Learn, n.d.-k).

Support Vector Machines

Support Vector Machines (SVMs) are a set of highly adaptable modelling techniques

originally developed by Vapnik (2000) as a classification method and were later expanded to

allow them to also be applied to regression tasks (Kuhn & Johnson, 2013; Vapnik, 2000).

Briefly, the concept of a Support Vector Machine Classifier (SVC) revolves around the

concept of a “margin”, which in the context of classification, refers to the distance between

the decision boundary (hyperplane) that separates two classes and the closest data points

(Kotsiantis, 2007; Kuhn & Johnson, 2013).

By maximising the margin (i.e., finding the maximum distance between the decision

boundary and the data points on either side), the generalisability of the model can be

improved (Bishop, 2006; Kotsiantis, 2007; Kuhn & Johnson, 2013). However, it may not

always be possible for a decision boundary to be established due to misclassified instances

(Kotsiantis, 2007). This issue can be accounted for through the use of a “soft margin”, which

allows some misclassifications of the training data to be accepted (Bishop, 2006; Kotsiantis,

2007). The soft margin is another example of the bias-variance trade off and is controlled

using the regularisation hyperparameter “C”, where lower values allow for as wide a margin

as possible by allowing more misclassifications, and higher values tighten the margin and

reduce the number of misclassifications being accepted (Bishop, 2006; Hsu et al., 2008;

Kotsiantis, 2007; Scikit-Learn, n.d.-ae).

One of the advantages of Support Vector Machines is their ability to produce extremely

flexible decision boundaries through the use of the “kernel trick” (Kuhn & Johnson, 2013).

The kernel trick works by mapping the original “input space” data into a higher dimensional

(possibly infinite) “transformed feature space”, thus allowing for an appropriate decision

boundary to be established (Hsu et al., 2008; Kotsiantis, 2007; Kuhn & Johnson, 2013).

 114

This therefore allows SVMs to handle the complexities in relationships between variables,

which often occur in real-world data and would otherwise make it impossible for a linear

decision boundary to be established (Kotsiantis, 2007).

Numerous kernel functions are available to transform the data into a higher dimensional

space (Hsu et al., 2008). However, for this investigation only two kernel functions will be

evaluated. The first is the Linear Kernel Function, assumes that the classes are linearly

separable. However, the second kernel function, the Radial Basis Function (RBF) does not

make any assumptions about the classes being linearly separable and is therefore able to

handle nonlinear relationships between classes, making it a popular choice for use with

SVMs (Hsu et al., 2008).

Both kernels require the C hyperparameter. However, RBF requires an additional

hyperparameter, 𝛾𝛾. This dictates how far each training example’s influence on the decision

boundary reaches, with lower values of 𝛾𝛾 meaning examples that are further away can

influence the decision boundary, whereas high 𝛾𝛾 values indicate that only examples that are

close can influence the decision boundary (Scikit-Learn, n.d.-z, n.d.-ae). In order to optimise

the model’s performance on new data, values for both C and 𝛾𝛾 should be established using

cross-validation.

Support Vector Regression (SVR) follows the same principles as Support Vector

Classification and is designed to be less affected by outliers than OLS by penalising any

training examples that fall outside of the margin, hence being referred to as the 𝜖𝜖-tube (Awad

& Khanna, 2015; Kuhn & Johnson, 2013; Zhang et al., 2014). In essence, SVR allows

predictions to be made within a range of tolerance and as such, requires an additional

hyperparameter 𝜖𝜖 to be tuned, which dictates the width of the 𝜖𝜖-tube (Scikit-Learn, n.d.-af).

Like SVC, during the current model evaluation process both Linear and RBF kernels will be

employed with SVR, with the LinearSVC (Scikit-Learn, n.d.-p) and LinearSVR (Scikit-

Learn, n.d.-q) implementations being used to trial the Linear kernel, as opposed to the

standard SVC and SVR, due to the increased performance that is offered (Scikit-Learn, n.d.-

ad).

 115

K-Nearest Neighbor

K-Nearest Neighbor (KNN) is a simplistic machine learning algorithm with both

classification and regression variants (Batista & Silva, 2009; Bruce & Bruce, 2017; Dudani,

1976; Kuhn & Johnson, 2013). KNN classification works on the premise that data-points that

are determined to be close together using a distance metric will share the same classification

(Batista & Silva, 2009; Bruce & Bruce, 2017; Dudani, 1976). Numerous distance metrics are

available, with the SciKit-Learn implementation of KNN using the Minkowski metric

(Equation 3.9) with a power (p) value of 2 by default (Scikit-Learn, n.d.-l, n.d.-m). This is

equivalent to Euclidean distance, which is one of the most commonly used distance metrics

(Kuhn & Johnson, 2013).

3.9)

��|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑝𝑝
𝑛𝑛

𝑖𝑖 = 1

�

1
𝑝𝑝

The parameter 𝑘𝑘 represents the number of “neighbors” that, according to the distance metric,

are closest to the element being classified, with its class being established by finding the

majority class amongst the neighbors (Bruce & Bruce, 2017; Chomboon et al., 2015; Kuhn &

Johnson, 2013). Similarly, for regression tasks, the average value of the 𝑘𝑘 closest neighbours

to the datum are used to make predictions.

It is therefore important that an appropriate value for 𝑘𝑘 (n_neighbors within the SciKit Learn

documentation; Scikit-Learn, n.d.-l, n.d.-m) is selected through cross-validation in order to

produce an optimal model and minimise the chance of overfitting the data by selecting a

value of 𝑘𝑘 which is too small, or underfitting by selecting a value of 𝑘𝑘 which is too large

(Batista & Silva, 2009; Kuhn & Johnson, 2013). Within the standard implementation of KNN

all of the 𝑘𝑘 closest neighbors are weighted equally (uniform weighting), regardless of how far

away they are from the datum being classified or predicted (Dudani, 1976). Alternatively,

Distance-Weighted KNN accounts for the distance of the neighbors by applying a weight

such that closer neighbours have a greater weight and therefore exert a greater influence

when making the classification or prediction (Batista & Silva, 2009; Dudani, 1976). Within

SciKit-Learn the “weights” hyperparameter dictates whether unform or distance weighting

functions are applied, with the distance weight function weighing points by the inverse of

 116

their distance (Scikit-Learn, n.d.-l, n.d.-m). Both variants will be evaluated as part of this

investigation.

Decision Tree, Bagging Decision Trees and Random Forests

Tree-based methods are a popular family of machine learning algorithms, which can be

applied to both classification and regression problems (Bruce & Bruce, 2017; Kuhn &

Johnson, 2013). Decision Trees are the most basic form of tree-based models, which aim to

establish smaller and more homogenous groups within the training data by partitioning the

data into multiple nested if-then statements (Kuhn & Johnson, 2013). This approach enables

complex relationships to be uncovered within the data, whilst also allowing for a highly

interpretable model to be produced that can be plotted visually, making decision trees

extremely useful for carrying out exploratory data analysis (Bruce & Bruce, 2017; Kuhn &

Johnson, 2013; Myles et al., 2004).

There exist multiple algorithms for constructing Decision Trees, with SciKit-Learn’s

implementation using an optimised version of the CART (Classification and Regression Tree;

Scikit-Learn, n.d.-g). Trees are constructed through recursive partitioning in which the data

are repeatedly partitioned to create increasingly homogeneous segments by a predictor, which

is found to provide the best separation at that level of the tree (Bruce & Bruce, 2017; Myles

et al., 2004). This therefore requires a measure of homogeneity, or class impurity, in order to

establish the most appropriate predictor to perform the partition. The SciKit-Learn Decision

Tree Classifier allows for one of two different measures of class impurity to be used when

creating partitions; Gini Impurity (Equation 3.10) and Entropy of Information (Equation

3.11), where 𝑝𝑝 is the proportion of misclassified results for a partition 𝐴𝐴 (Bruce & Bruce,

2017; Scikit-Learn, n.d.-f).

 3.10)

𝐼𝐼(𝐴𝐴) = 𝑝𝑝(1 − 𝑝𝑝)

 3.11)

𝐼𝐼(𝐴𝐴) = 𝑝𝑝 𝑙𝑙𝐶𝐶𝑙𝑙2(𝑝𝑝) − (1 − 𝑝𝑝) 𝑙𝑙𝐶𝐶𝑙𝑙2 (1− 𝑝𝑝)

 117

The method to be used is specified using the “criterion” hyperparameter, with Gini being the

default choice that will subsequently be used within this investigation. For Regression Trees,

the default splitting criterion is the squared error of each sub-partition (Bruce & Bruce, 2017;

Kuhn & Johnson, 2013; Scikit-Learn, n.d.-g).

One of the major drawbacks of the basic Decision Tree is that by default, the tree will grow

to an extent where it will likely account for the variation within the training set and the

partitioning rules being used have become overly complex and generally only reflect noise

within the data. This therefore means the tree has overfit the training data and will as such

struggle to generalise to new data (Bruce & Bruce, 2017; Kuhn & Johnson, 2013; Myles et

al., 2004).

There are two ways to minimise the potential for overfitting when training a Decision Tree.

The first method is to arbitrarily limit the tree’s growth using hyperparameters such as:

max_depth (maximum tree depth), min_samples (minimum number of samples required to

split an internal node) and min_samples_leaf (minimum samples needed to be a leaf node)

(Bruce & Bruce, 2017; Scikit-Learn, n.d.-f, n.d.-g), the values of which are established using

hyperparameter tuning such as GridSearchCV.

The second approach, which is generally accepted to be a better (Myles et al., 2004), is to

allow the tree to grow unimpeded and then “pruned back” to produce an overall smaller tree

that is more generalisable (Bruce & Bruce, 2017; Kuhn & Johnson, 2013; Myles et al., 2004).

Pruning within Scikit-Learn is achieved through a process known as Minimal Cost-

Complexity Pruning where, as shown in Equation 3.12, a complexity parameter α is used to

calculate the cost-complexity, 𝑅𝑅𝛼𝛼(𝑇𝑇) for a given tree 𝑇𝑇 with �𝑇𝑇�� representing the number of

terminal nodes (i.e., leaves), in the tree 𝑇𝑇, and 𝑅𝑅(𝑇𝑇) representing the total misclassification

rate of the terminal nodes (Hastie et al., 2009; Kiran & Serra, 2017; Scikit-Learn, n.d.-e).

 3.12)

𝑅𝑅𝛼𝛼(𝑇𝑇) = 𝑅𝑅(𝑇𝑇) + 𝛼𝛼�𝑇𝑇��

 118

Furthermore, Equation 3.13 demonstrates how the cost-complexity can be calculated for an

internal node, that is, all nodes which are not terminal leaf nodes or a root node (Kiran &

Serra, 2017; Scikit-Learn, n.d.-e).

3.13)

𝑅𝑅𝛼𝛼(𝐶𝐶) = 𝑅𝑅(𝐶𝐶) + 𝛼𝛼

SciKit-Learn provides the hyperparameter ccp_alpha, which allows the value of α to be set.

Trees are then pruned by removing a subtree with the largest cost-complexity that is also

smaller than the value of α (Scikit-Learn, n.d.-e). Consequently, an optimal value for the

ccp_alpha hyperparameter should be found using a method such a GridSearchCV (Bruce &

Bruce, 2017; Kuhn & Johnson, 2013).

In addition to the issues relating to overfitting, Regression Trees may have higher error rates

than other types of regression models, with Kuhn (2013) stating:

By construction, tree models partition the data into rectangular regions of the

predictor space. If the relationship between the predictors and the outcome is not

adequately described by these rectangles, then the predictive performance of a tree

will not be optimal. (p. 181)

This is a fundamental drawback of Regression Trees, as only a finite number of terminal leaf

nodes can be constructed, limiting the tree’s ability to fully reflect trends within the data.

To overcome the issue of high variance leading to poor performance on unseen data,

ensemble techniques, which combine predictions from multiple models (Kuhn & Johnson,

2013), have been developed in an attempt to produce tree-based models that have lower

levels of variance and as such perform better on unseen data. One such technique is Bootstrap

Aggregation, commonly referred to as Bagging, which attempts to reduce variance by using

bootstrapping to construct an ensemble of trees, although bagging can be applied to any

classification or regression algorithm (Bruce & Bruce, 2017; Dietterich, 2000; James et al.,

2013; Kuhn & Johnson, 2013).

 119

Bootstrapping works by taking a random sample of the data with replacement (Efron &

Tibshirani, 1986) wherein a data point can be selected to be part of the bootstrap sample, and

still be available to be selected again (Efron & Tibshirani, 1986; Kuhn & Johnson, 2013).

This selection process is repeated until the sample is the same size as the original dataset,

which consequently means that some data-points will occur multiple times within the

bootstrap sample, whereas others will not be included (Efron & Tibshirani, 1986; Kuhn &

Johnson, 2013). The subset of data-points not selected for inclusion in the bootstrap is

referred to as the “out-of-bag” sample (Kuhn & Johnson, 2013).

Each of the individual Decision Trees within the ensemble will be fit to a different bootstrap

sample, with the number of trees being controlled by the n_estimators hyperparameter within

SciKit-Learn (Bruce & Bruce, 2017; Kuhn & Johnson, 2013; Scikit-Learn, n.d.-a, n.d.-b).

When making predictions, each individual tree will make its own prediction, which will then

be averaged in order to produce a prediction for the entire ensemble. This therefore decreases

the variance of predictions as each of the trees will have a different structure as they will have

been fit using a different bootstrap sample. However, the individual trees within a bagging

model are not fully independent of each other as all predictors are available when fitting.

With a relatively large dataset, this can lead to “tree correlation”, where trees exhibit similar

structures, particularly at higher levels, due to the underlying relationships within the data

(Kuhn & Johnson, 2013).

The second ensemble technique, Random Forest, overcomes the issue of tree correlation, and

therefore reduces the variance further as opposed to Bagging, by using a random subset of the

available predictors in addition to a bootstrap sample when fitting each tree (Bruce & Bruce,

2017; Kuhn & Johnson, 2013). The SciKit-Learn implementation of Random Forest

considers the square root of the number of available predictors by default when partitioning

data (Scikit-Learn, n.d.-x, n.d.-y).

Like Bagging, Random Forest requires the number of trees in the forest to be specified using

the n_estimators hypermeter (Scikit-Learn, n.d.-x, n.d.-y), with an optimal number being

determined with GridSearchCV. Furthermore, hyperparameters such as max_depth,

min_samples_split and min_samples_leaf can be used to optimise the individual trees in the

forest. Additionally, the max_features hyperparameter can be used to control the number of

 120

features being considered when identifying the best split during the tree growing process

(Scikit-Learn, n.d.-x, n.d.-y).

Random Forests are more computationally efficient than Bagging on a tree-by-tree basis as

only a subset of the available predictors need to be evaluated at each partition (Kuhn &

Johnson, 2013). However, both techniques sacrifice the interpretability of individual Decision

Trees in favour of a decrease in variance.

Gradient Boost and XGBoost

Gradient Boost, like Bagging and Random Forests, is an ensemble method commonly used

with decision trees (Bruce & Bruce, 2017), which can be applied to both classification and

regression problems. Briefly, Gradient Boost is an additive model that utilises “weak

learners” in the form of decision or regression trees for their respective problems (Kuhn &

Johnson, 2013; Ye et al., 2009). The model starts with a “best guess” of the target variable,

which consists of a single leaf, and the mean of the target variable for regression problems.

For classification problems, the log odds of the target variable, which can be converted into a

probability using a logistic function, which is the inverse of the logit function. Subsequently,

the pseudo-residuals are calculated, as this is for an individual tree as opposed to the entire

ensemble, and a new tree is fit to the pseudo-residuals as opposed to the target variable

(James et al., 2013; Kuhn & Johnson, 2013). This process repeats until the specified number

of iterations has been completed with each successive tree minimising the error of the

previous one through the use of Gradient Decent. Within SciKit-Learn the maximum number

of iterations is determined using the n_estimators hyperparameter (Scikit-Learn, n.d.-i, n.d.-

j).

Gradient Boost can be considered a Greedy algorithm as the optimal weak learner is selected

at each stage such that the overall ensemble cannot be guaranteed to be optimal, which can

also lead to overfitting (Kuhn & Johnson, 2013). However, the potential for overfitting can be

reduced by constraining the learning rate through the use of a regularisation parameter, which

is represented by the hyperparameter learning_rate within SciKit-Learn (James et al., 2013;

Kuhn & Johnson, 2013; Scikit-Learn, n.d.-i, n.d.-j). Furthermore, it is common to constrain

the size of trees using the max_depth hyperparameter, which also aids in reducing overfitting

(Scikit-Learn, n.d.-i, n.d.-j).

 121

Stochastic Gradient Boost follows the same process as Gradient Boost with the addition of

taking a random sample of the training data when training each individual tree (Kuhn &

Johnson, 2013). XGBoost (eXtreme Gradient Boost) is one of the most widely used

implementations of Stochastic Gradient Boost due to its scalability and efficiency (Bruce &

Bruce, 2017; Chen et al., 2018). XGBoost is highly tuneable with a large number of

hyperparameters, which can be adjusted to optimise performance using GridSearchCV. Two

particularly significant hyperparameters are “subsample”, which specifies the proportion of

the training data to be sampled, and “eta”, which controls the learning rate and helps to

prevent overfitting (Bruce & Bruce, 2017; XGBoost, n.d.).

Neural Networks

Neural Networks are one of the most popular and flexible machine learning algorithms,

which have been a focus for researchers dating back to the 1940’s, with modern advances in

computing power allowing for larger, more complex neural networks to be developed

(Awad & Khanna, 2015; Russell & Norvig, 2020). Briefly, Neural Networks are modelled on

the biological brain and comprise a series of nodes (neurons), which have been aggregated

into layers (Karsoliya, 2012; Russell & Norvig, 2020; Tomasevic et al., 2020). Layers are

connected together by directed links between nodes, which all travel in the same direction

within a feedforward Neural Network (Russell & Norvig, 2020), with each link having an

associated weight which determines the strength of the connection (Russell & Norvig, 2020).

Neurons within a biological brain receive and process signals; similarly, the nodes within the

Neural Network sum the weights from all of the incoming links, which with the addition of a

bias, are applied to an activation function (Awad & Khanna, 2015; Russell & Norvig, 2020).

Numerous types of activation functions are available to suit different network configurations

(Awad & Khanna, 2015), but they all serve the same purpose, which is to “activate” the

connected node(s) in the subsequent layer in the network when a given threshold is exceeded.

There are three main types of layer within a Neural Network (Awad & Khanna, 2015; Géron,

2022; Karsoliya, 2012):

• Input layer - External data are presented to the network via the input layer. Every

node represents an independent variable that can influence the output of the network.

• Output layer – This outputs the results from the network to the external world. The

number of nodes is proportional to the output of the network (see below).

 122

• Hidden layer(s) – The hidden layers lie in between the input and the output layers and

are where nodes perform different transformations on the input data through the use

of the activation functions. There is no theoretical basis for the optimal number of

hidden layers nor the number of nodes, as each network is application-specific and

must therefore be developed through trial and error (Awad & Khanna, 2015).

However, the weights and bias within a network can be optimised using

backpropagation (backwards propagation of error), which utilises the error from the

output layer and gradient decent in order to maximise the performance of the network

(Awad & Khanna, 2015; Géron, 2022).

Karsoyila (2012) states that one or two hidden layers are sufficient to solve most complex

non-linear problems and therefore in the present investigation the Scikit-Learn Neural

Network implementations for classification (MLPClassifier) (Scikit-Learn, n.d.-t) and

regression (MLPRegressor) (Scikit-Learn, n.d.-u) will be used to find an optimal network

topology.Although alternative Neural Network libraries such as Keras (Chollet, 2015) allow

for greater customisation of complex networks, which goes beyond the focus of this

investigation, SciKit-Learn makes it easy to compare different basic network configurations

using the hidden_layer_sizes hyperparameter, which can be optimised using GridSearchCV

(Scikit-Learn, n.d.-t, n.d.-u). Activation functions for the hidden layers can be set using the

activation hyperparameter, with ReLU being the default option. The optimizer can also be

configured using the solver hyperparameter (Scikit-Learn, n.d.-t, n.d.-u). Furthermore, the

lbfgs solver will be used for this investigation as it as it has been shown to perform well on

smaller datasets and the alpha hyperparameter can be used to apply 𝐿𝐿2 regularisation in order

to minimise the chance of the networks overfitting the data (Scikit-Learn, n.d.-t, n.d.-u).

 123

3.6 Summary and Methodology Reflection
This chapter provides an account of the methodological approach to data collection within

this investigation, which culminates in the development of the Programming Checkup as a

means of collecting data to aid in answering the research questions, and to also support the

development of the predictive model. An overview has also been provided of the different

machine learning algorithms that form the basis of the analysis presented within the

following chapter.

As this investigation sits firmly within the realms of quantitative research, it is also important

to acknowledge the educational context of the investigation and how this influences the

research design. Reflection, which is defined as “deliberation, pondering, or rumination over

ideas, circumstances, or experiences yet to be enacted, as well as those presently unfolding or

already passed” (Alexander, 2017, p. 308), is an important process within the field of

education as a means of improving practices. Reflection alone does not always translate into

changes in teaching practice (Feucht et al., 2017). Feucht et al. (2017) argue that the process

of reflexivity, which is broadly defined as an internal dialogue leading to transformative

actions within a classroom (Archer, 2012; Feucht et al., 2017), may support the ideas that

emerge during reflection being acted upon.

Subsequently, the processes of reflection and reflexivity can be applied to this research

investigation in a similar way to how they are applied within classrooms. Kamler and

Thomson (2014) state that a reflective researcher applies the same critical stance towards

their own work as they do with their research data. However, reflexivity takes this process

one step further by analysing the researcher’s role in the investigation and challenges the

perspectives and assumptions of both the researcher and the wider world that the

investigation is being conducted in (Palaganas et al., 2017; Parahoo, 2014). Reflexivity is

seen as a continuous process which permeates every aspect of the research investigation and

allows for the researcher’s values and beliefs, which inevitably influence the research

process, to be made transparent. Additionally, the researcher’s interactions with the

participants can be detailed from the first point of contract until the end of the study, thus

enabling the results to be understood not only in terms of what was discovered, but also in

terms of how it was discovered (Etherington, 2007; Hertz as cited in Etherington, 2007;

Parahoo, 2014).

 124

Palaganas et al. (2017) claim that a researcher’s personality does not exist independently of

the research process, nor does it completely determine it, and should therefore be viewed as a

dialogue for challenging perspectives and assumptions. Nevertheless, the personality or

rather, the “personal epistemology”, a person’s cognitions about the nature of knowledge and

the process of knowing (Pintrich, 2002) undoubtedly influence the research investigation.

However, the overall quality and validity of the research can be improved by engaging in the

process of reflexivity and acknowledging the limitations of the knowledge being produced

(Etherington, 2007).

In order to ensure the integrity of this research investigation, it is important to acknowledge

my own personal epistemology and interactions with participants, thus allowing for a

complete understanding of the methodological decisions which have been made, as well as

any factors that may influence the outcomes of this research.

It should be noted that I have a background in computer science and as such, was previously

unaccustomed to conducting in-depth research in an education setting. This has undoubtedly

influenced the methodology of this investigation, with a primarily quantitative approach

being taken to the research design, although this is supported by previous more qualitative-

focused research of others, particularly relating to the discovery of students’ misconceptions.

Although as a science-based researcher I am expected to remain as objective as possible, this

investigation draws heavily on my own experiences with programming, to the extent that I

can be considered a “relative insider” (Griffiths, 1998) for two primary reasons:

1. I studied a previous version of the introductory programming module that students are

currently studying, making me familiar with some of the difficulties of learning to

program first-hand. However, the experience I had gained in programming prior to

starting university aided me in my learning, so my own personal experiences do not

necessarily reflect those of all students, particularly those who come to university

having never programmed before.

2. I also contribute to the teaching of the introductory programming module that

participants are studying, and subsequently became the module leader during the

second year of data collection.

 125

Being a relative insider allows me, to an extent, to understand students’ perspectives on

learning to program. In addition, my involvement in teaching them to program provides me

with valuable insight into the difficulties that they face, particularly when I can observe

students demonstrating misconceptions while completing their work. However, it raises the

issue of how my involvement with the participants influences this research, particularly

relating to the dual personalities that I must project to students (Etherington, 2007), as both a

researcher and as an educator. I personally view myself as a practitioner-researcher, whereby

as the research I am conducting is within my own work setting, a symbiotic relationship

exists where my research informs my teaching, and my experiences in the classroom inform

my research direction. However, my students must always remain my main priority on a day-

to-day basis.

In order to carry out a rigorous and credible investigation, I feel I must adopt a clear,

unbiased and analytical persona towards the participants taking part in the investigation in

order to prevent my own personal biases from influencing the outcomes of the research.

Furthermore, it is important that I make students aware that their participation is completely

voluntary, and all responses are treated with the strictest confidence. However, by being

involved with the delivery of the introductory programming module to students, I feel that I

must also project a sense of approachability to students, making it known to them that I am

there to support them during their weekly classes, as well as outside of the lesson if required.

I have regular contact with the entire first year Computing cohort through lectures,

programming labs and also an optional support lecture, supporting the perceived persona that

I am the person for students to turn to if they are struggling with their programming work.

Although these two personas do appear to be polar opposites, a series of compromises were

made throughout the course of this investigation, which both ensured the integrity of the

research, as well allowing students to be appropriately supported.

The first issue that arose was the potential for students to feel compelled to take part in the

study due to the fact that I am a member of the teaching staff, and that not taking part may

negatively affect their grades. Equally, some students; particularly those who are the least

confident with programming, may be reluctant to take part due to a lack of confidence in their

abilities. To alleviate these issues students were told throughout the investigation that

participation was completely voluntary and would in no way affect their grades. Students

were also told that their responses would be confidential and that they would only receive

 126

feedback if they requested it. Given that sizeable numbers of students opted not to participate

in the investigation, I am confident that efforts to inform students that the Programming

Checkup was not a mandatory exercise were successful. However, from experience, students

who are often the most in need of support are also those who do not engage with additional

activities, such as the Programming Checkup, meaning potentially important data may have

been missed.

The question of how much the results from students’ first attempt at the Programming

Checkup should influence my teaching, prior to the students attempting it for a second time

was also raised during the investigation. An external researcher would be able to collect data

from participants at the two time points with little or no additional contact with students.

However, by having regular contact with students there is a greater opportunity for students

to ask questions about the research. Any general questions about the research process were

answered as clearly as possible but a number of students had more in-depth questions relating

to the underlying theories behind the research. Providing students with a detailed description

of how the Programming Checkup works prior to the completion of data collection could

potentially influence their responses, and therefore, students were promised an in-depth

explanation in one of the optional programming support lectures during the second semester,

thus allowing the data collection to be completed without interference, while also not taking

up any lesson time in the lead-up to the students’ assessments. Additionally, there is also the

issue of whether the misconceptions students demonstrate in their first attempt at the

Programming Checkup should be addressed. Making students explicitly aware of their

misconceptions may potentially increase the probability of them overcoming them relative to

what would be the case without intervention.

As examining the probability of a student overcoming their misconceptions with or without

intervention is beyond the scope of this project, withholding support from students could be

deemed unethical from a teaching perspective, as students’ misconceptions can become more

deeply engrained over time if they are not addressed. In order to account for this, students

who requested feedback on their first attempt at the Programming Checkup were given

generalised feedback for each concept they demonstrated difficulty with. Furthermore,

students were advised to attend the optional support lecture where the concepts that had been

introduced in the main lecture were reinforced through additional examples and in-depth

explanations. However, the misconceptions identified within the Programming Checkup were

 127

not explicitly mentioned during these explanations, although, after completing their second

attempt at the Programming Checkup, students were provided with additional feedback that

explicitly addressed their misconceptions in both their direct feedback, and in the support

lecture.

Students were generally happy with the approach taken for the provision of feedback from

the Programming Checkup, with a number of students commenting that their main motivation

for taking part was the feedback that they would receive. The generalised feedback given

after students completed the Programming Checkup for the first time successfully prompted a

large number of students to regularly attend the optional support lecture. The Programming

Checkup results also informed my discussions with struggling students who requested one-to-

one support by allowing me to have an understanding of where the students were likely to be

struggling prior to meeting with them, which reaffirms my intentions for implementing the

Programming Checkup, in conjunction with the predictive model, as a formal part of the

introductory programming module upon completion of this investigation.

 128

4. Predictive Model Development

4.1 Model Objectives
The second phase of this investigation was the development of a predictive model which, as

RQ 3 states, can be used to predict students’ introductory programming assessment results.

Previous research into developing predictive models of programming performance have used

students’ results in their introductory programming module (sometimes referred to as CS1) as

the outcome variable to be predicted. For example, in their study of motivation and comfort-

level, Bergin and Reilly (2005a) were able to produce a regression model which was able to

account for 60% of the variance in students’ overall performance in their introductory

programming module. An alternative approach taken by some researchers has been to

dichotomise students’ results into “pass” and “fail” categories, with some placing the

decision boundary at 50% (Castro-Wunsch et al., 2017) and others at 40% (Liao et al., 2019;

Tomasevic et al., 2020). Furthermore, an important area of study within both Educational

Data Mining and Learning Analytics is “Latent Knowledge Estimation”, wherein students’

knowledge of specific skills is assessed by their pattern of correctness (Baker & Siemens,

2014) using methods such as Bayesian Knowledge Tracing; as described in Section 3.3.

Although the assessments undertaken by students differ across institutions, it was decided

that the most appropriate dependent variable for this investigation would be the results

students achieve on their first introductory programming assessment (Assessment 1), which

is completed at the end of the first semester. This assessment was chosen rather than the

overall module grade as it focuses on evaluating students’ core programming skills (use of

variables, text input/output, conditional statements, loops, and functions) all of which; with

the exception of functions, are examined within the Programming Checkup. Furthermore, the

grades students achieve in their first assessment are significantly correlated with that of their

second assessment, which is undertaken at the end of the module, rs = 0.509 p = < .001. This

therefore makes the results students achieve in their first assessment indicative of their future

performance and as such, will allow for students who are likely to require support to be

identified through their responses to the Programming Checkup at the beginning of the

academic year (T1).

 129

Previous research has shown that students who lack the appropriate mental models of

fundamental programming concepts will generally find the learning process more difficult

(Ben-Ari, 1998; Sorva, 2013). As such, during the model development process I aimed to

evaluate the use of Bayesian Knowledge Tracing to estimate the likelihood of students

holding appropriate mental models for core programming concepts. This evaluation was done

in conjunction with the other factors examined within the Programming Checkup. The use of

Bayesian Knowledge Tracing was therefore implemented to support the analysis of students’

mental models when answering RQ 1, as well as the identification of students who are likely

to require support by making predictions based on their responses to the Programming

Checkup. Having students complete the Programming Checkup at the earliest available

opportunity would allow for future interventions to be developed and implemented in the

early stages of a course to directly support students in the construction of their mental

models; which may otherwise be more difficult at a later stage due to the misconceptions that

can develop (Omer et al., 2021; Omer & Farooq, 2020; Winslow, 1996). What form these

interventions might take is outside the scope of the present investigation; however, they are

being considered for future research stemming from this work.

Data were collected over the course of three years in the form of responses to the

Programming Checkup at both T1 and T2 together with students’ Assessment 1 results, with

70% of the data being randomly selected to be used to train and develop the model and the

remaining 30% being reserved as a testing holdout set (James et al., 2000, p. 176). Using a

separate testing dataset allows for the model to be evaluated independently of the data used to

train it, thus giving a closer estimate of the real-world performance of the model (Russell &

Norvig, 2020). The total dataset contained 285 responses after removal of students who did

not complete Assessment 1 or who skipped 25% or more of the Programming Diagnostic

questions within the Programming Checkup, therefore resulting in a training and testing

dataset sizes of 200 responses and 85 responses, respectively.

It should be noted that Assessment 1 was changed from a written exam to a practical

assignment after the first year of data collection, due to a change in assessment policy which

was outside the control of this investigation. The practical assignment which was completed

by subsequent year groups was written to assess the same learning outcomes as the written

exam, which tests students’ abilities to construct a structed solution to a simple problem,

explain the importance of code readability and maintainability, and check the robustness of

 130

code using an appropriate testing strategy. A Kruskal Wallis test confirmed that there was no

significant difference between the results of students who completed the written exam during

Year 1 of data collection (M = 69.81, SD = 22.57) and those who completed the practical

assignment in the subsequent years of data collection (Year 2, M = 69.29, SD = 21.87, Year

3, M = 69.85, SD = 14.22), H(2) = 2.43, p = .296, η2 = .009.

Using a model to predict students’ Assessment 1 results based on their responses to the

Programming Checkup at the beginning of the academic year allows teaching staff to provide

dedicated support to aid them with constructing appropriate mental models before moving on

to more complex topics, which are typically covered in the second semester of teaching. The

subsequent sections of this chapter intend to detail the steps taken during the development

and validation of the predictive model in aid of answering RQ 3.

 131

4.2 Data Pre-Processing
A wide variety of potential regression and classification models have been described within

the section 3.5, each with their own advantages and disadvantages. Although many of these

models have been utilised in the previously mentioned EDM-based research investigations, it

is difficult to pre-empt which models will perform the best when attempting to predict

students’ Assessment 1 results, hence the need to explore a range of potential models.

Before any machine learning models can be applied to the dataset there are several stages of

pre-processing that must first take place. This section will describe how the raw output from

the Programming Checkup needs to be prepared in order to allow both classification and

regression methods to make predictions. It should be noted that the analysis carried out in this

section was done before and separate to the in-depth analysis of results presented within

Chapter 5. This was in order to prevent the holdout testing set from having any influence on

the decisions made during the development of the predictive model. As such, any statistics

presented within this section only apply to the training dataset.

Stage 1 – Preparation of Data Exported from Qualtrics

As the Programming Checkup was being distributed via a Qualtrics survey, the first step was

to extract the required data from the raw export file generated by Qualtrics. In order to reduce

the potential for human error affecting the dataset, a Python script was utilised to automate

the extraction process. Much of the data could be extracted directly from the export file,

including students’ background details, previous experiences, estimations of difficulty, and

mental effort levels. However, some aspects of the dataset required additional processing

before they could be included in the final dataset. For example, students’ average values

needed to be calculated for their confidence level for each of the question concept categories

(i.e., Variable Assignment, Conditional Statements, and Iteration), as well as for each of the

three self-efficacy factors examined within the Programming Checkup as described in

Section 3.4.

Additionally, students’ answers to the Programming Diagnostic questions needed to be

“coded” in order to indicate what misconceptions students were exhibiting based on their

answers. This approach was based upon the work conducted by Dehnadi (2006), where a set

of pre-defined answers for each question was developed using the literature discussed in

 132

Section 3.4, to capture one or more misconceptions arising for each question (see Appendix

A, Section 3). Where a student’s response matched one of the pre-defined answers, the

student’s response to the question was coded with the corresponding misconception(s).

If no matching answer could be found then the answer was coded as “NA” and the student’s

entire response to the Programming Checkup was flagged for review, meaning that the

unmatchable answer could be investigated. These unexpected answers could range from

formatting issues (i.e., a student included commas in their answer when none were expected),

to genuine answers, which did not correspond to any expected misconceptions. Although

these types of answers were generally infrequent, an attempt was made to determine how the

student had arrived at their answer and map it to an appropriate misconception (or multiple

misconceptions, if appropriate). However, if no reasonable mappings could be made, the

answer was coded as “NA”. To ensure consistency, any mappings made to unexpected

answers were recorded to ensure that any other responses that included the same answer were

also coded with the same misconception(s). Additionally, if a student did not answer a

question, it was coded as “SK” for skip. The VN (Variable Naming) and PL (Parallelism)

misconceptions also required some extra processing in order to be coded, as both require

comparisons to be made between two questions, as explained in Section 3.4. Where

appropriate, the misconception code for VN or PL was appended to any other misconceptions

already identified within the student’s response.

Aside from ensuring that answers were coded consistently, the script also enabled Bayesian

Knowledge Tracing to be used to evaluate whether students held appropriate mental models

(see Stage 3), by recording if a student had demonstrated a misconception associated with the

mental model(s) being examined within each question, as shown in Table 4.1. If the student

demonstrated the misconception, then the response for that question was coded as a 0, thus

showing that the student made an error in answering that particular question and, therefore,

may not be in possession of an accurate mental model. If a student answered the question

correctly then the question was coded as 1. However, if the student skipped or provided an

answer which could not be mapped to a specific misconception (NA) then the response was

coded as 0. This information was necessary in order for Bayesian Knowledge Tracing to

evaluate whether a student held an appropriate mental model or not, as well as for training the

initial hyperparameters for each mental model.

 133

Table 4.1

Associated Misconceptions of Each Mental Model

Mental Model Associated Misconceptions

AND AND

Conditional Statements AND, OR, NOT, IF

IF IF

Iteration ET, LT, NI, SE, SM, SP

NOT NOT

Output OP

OR OR

Parallelism PL

Variable Assignment AD, EX, MA, NC, REV, SW

Variable Naming VN

By using the script to process responses to the Programming Checkup, students’ anonymity

was protected by replacing students’ University ID numbers with participant numbers.

However, this means it was necessary for students to enter their ID numbers correctly at both

T1 and T2 in order for their responses to be linked. A text file was used to store each

student’s ID and participant number, which were checked when processing each response; if

a matching ID was found then the corresponding participant number was applied to the

response, otherwise a new number was assigned. Only the participant number of the students

was used within the dataset with the only record of students’ identity being the text file the

script used to keep track of existing ID/participant number pairs.

Prior to the development of the automated marking script, the responses to the first data

collection in September 2019 were initially manually coded. In order to verify the coding

technique an external marker, who had no prior involvement with the development of the

Programming Checkup, was asked to independently mark 10% of the responses collected so

far. This external marker was provided with a list of examples of correct answers and a non-

exhaustive list of incorrect answers, which indicated particular misconceptions for each

question, complemented by a description of these misconceptions (see Appendix B). Whilst

these examples were derived from the previously discussed literature relating to students’

misconceptions and the answers provided by students, it is likely that they will have been

unavoidably influenced by my own epistemological viewpoint, particularly when dealing

 134

with unexpected answers. Likewise, the coding being carried out by the external marker

would also be influenced by their own viewpoint.

Time constraints did not allow for a sufficient number of students to be interviewed about

their responses in order to make any generalisable conclusions about whether the coded

misconceptions completely reflected the issues they were experiencing. However, this

approach did still allow for a perception to be established of the mistakes that students were

making. Going forward, interviews and code walkthroughs should be an essential part of

future work stemming from this investigation as discussed further in Section 6.4 below.

An interrater reliability analysis between myself and the external marker was conducted on

each question using the Kappa statistic and was found to be between .67 (p < .001) and 1.0 (p

< .001). According to Landis and Koch (1977), these Kappa statistics can be interpreted as

ranging from substantial agreement to almost perfect agreement. Additionally, the outputs

from the automated marking script were continually checked to ensure the consistency of the

mapping, as well as to handle any unexpected answers from students. However, it was not

possible to use Kappa to provide an interrater reliability analysis in this case, as the

assumption of independence was violated because the script simply matched answer and

misconception combinations that were provided.

Stage 2 – Dataset Splitting

In order to effectively evaluate the real-world predictive power of any potential models, the

next stage involved extracting 30% of the data at random to form the holdout test set (Kuhn

& Johnson, 2013; Raschka, 2018; Russell & Norvig, 2020). This data subset was completely

isolated from the training process and was only used to test the final models, thus simulating

their real-world performance, and making it possible to identify any models which overfitted

the training data.

The holdout test set was extracted using SciKit-Learn’s train_test_split method (Scikit-Learn,

n.d.-ag). It was decided to use a randomly selected subset rather than using the results from a

single academic year in order to produce an un-biased test set that takes into account nominal

variations in teaching and assessments as well as any effects of the Covid-19 pandemic that

occurred during data collection.

 135

Stage 3 – Bayesian Knowledge Tracing Calculations

The next step in the data preparation process involved calculating the probabilities of students

having appropriate mental models of each of the programming concepts being examined

using Bayesian Knowledge Tracing. As mentioned in Section 3.3, it was necessary to

establish the initial values of the four hyperparameters for each of the different programming

concepts: L0, G, S and T, which was achieved using a tool provided by Baker et al. (2010),

which takes a brute force approach to fitting the hyperparameters. Baker et al.’s tool was

chosen given the lead author’s prevalence within the field of Educational Data Mining

(including the use Bayesian Knowledge Tracing; BKT), as well as because of the way that

the tool provides a simplistic method for establishing the initial values of the

hyperparameters, which can then be applied to the BKT calculations. Nevertheless, fitting the

BKT models for each programming concept is a manual process, so future work could

explore how newer methods such as pyBKT (Badrinath et al., 2021) could be utilised in order

to streamline the model development process.

To establish the initial hyperparameter values, the binarized responses for each mental model,

which were mentioned in Stage 1, were converted to a compatible format to be used with

Baker et al.’s (2010) tool. However, only responses contained within the training dataset

were used to establish the initial values for each of the programming concepts, thus keeping

the testing set completely isolated from the training process. Furthermore, any student who

skipped 25% or more of the Programming Diagnostic questions was removed to prevent them

from introducing bias into the dataset.

After the initial values for the hyperparameters had been found, the BKT equations shown in

Section 3.3 were used to calculate the probability that a student had an appropriate mental

model for each of the programming concepts, with the binarized responses being used to

indicate whether the student answered questions relating to each concept correctly. The

responses to each question were ordered in the same way that they were presented to the

students during the Programming Checkup. This ensured that an appropriate estimation of

students’ mental models was established. The dataset was also checked for multiple

responses, ensuring that only the first complete response was retained.

Equation 3.3 within the BKT calculations, accounts for the possibility that a student has

learned a task whilst answering a question. It was debated whether to exclude this part of the

 136

calculation, as when compared to intelligent tutoring systems, where BKT is typically

employed, the Programming Checkup does not offer students any feedback on their answers.

However, it was ultimately decided to remain consistent with the original BKT procedure and

retain Equation 3.3. This decision was based on Corbett and Anderson's (1994) assumption

that a student can make the transition from being in an unlearned state to being in a learned

state at any opportunity where they can apply their knowledge, which, in this case, relates to

their metal models of the concepts being examined.

Stage 4 – Dataset Preparations

Following the mental model estimations being incorporated into the dataset, several pre-

processing steps were required prior to starting the model training process. These included:

Handling of missing data – Missing data are an unavoidable issue in real-world datasets

(García et al., 2015; Kotsiantis et al., 2006). As mentioned previously, any student who had

skipped 25% or more of the Programming Diagnostic questions was removed from the

dataset. Furthermore, if a student did not provide a response to any of the other sections of

the Programming Checkup and/or their assessment results were unavailable, they were also

removed from the dataset. Although it is possible to predict missing values through methods

such as “Most Common Feature Value” or “Mean Substitution” (García et al., 2015;

Kotsiantis et al., 2006), it was felt that given the variability in students’ backgrounds and

behaviours, it would not be appropriate to attempt to estimate missing values. Additionally,

the Programming Checkup requires students to provide answers to many of the sections

before they can progress, meaning the number of responses being removed for having

missing values was relatively low.

Data encoding – In order for different machine learning algorithms to process categorical

features stemming from questions that could only be answered with either a “yes” or “no”

(e.g., whether a student has previously studied a math-based subject), the responses needed to

be binarized with 0 representing “no” and 1 representing “yes”. However, when questioning

whether students intended to work in a software engineering role after university, three

answers were possible: “yes”, “no” or “undecided”. Therefore, in order to avoid introducing a

potentially invalid ordering to the variable, one-hot encoding was used to split responses into

three separate binarized variables, each representing one of the possible answers (Bruce &

Bruce, 2017).

 137

Feature Normalisation – A number of machine learning algorithms, such as K-Nearest

Neighbour and Support Vector Machines, are significantly influenced by the scales of the

input features (Hsu et al., 2008; Kotsiantis et al., 2006). Therefore, features are “normalised”

using the MinMaxScaler (Scikit-Learn, n.d.-s) which converts all features into the range 0 to

1 whilst maintaining their original distributions (Esposito & Esposito, 2020; García et al.,

2015).

Dependent Variable Preparation – As both regression and classification algorithms were

being trialled, it was necessary at this point to duplicate the dataset to allow the dependent

variables to be prepared for use with the different types of algorithms. As the Semester 1

assessment result was already a percentage, then no further processing was required for use

with regression models. However, classification algorithms require continuous variables to be

dichotomised into groups, and as binary classification was being carried out as part of this

investigation, only two groups were possible – 0 and 1.

In order to binarize the assessment results, a threshold must first be established. A natural

choice would be 40%, as was done so by Tomasevic et al. (2020), as this represents the

minimum pass mark for the assessment. However, given the distribution of the assessment

results (as shown in Figure 4.1), 50% was chosen as a more appropriate threshold. This is

because the intended model was designed towards identifying students who are likely to

require support, rather than to identify students who are likely to pass an assessment.

Nevertheless, this still leaves a strong imbalance within the classification dataset, the

consequences of which are discussed in Section 4.4.

 138

Figure 4.1

Assessment 1 Grade Distribution within the Training Dataset

Feature Selection – The Programming Checkup collects data on a wide variety of factors.

However, in order to reduce the likelihood of overfitting the training data, it is important to

remove features that do not aid in generating predictions, thus reducing the dimensionality of

the dataset and allowing for the algorithms to operate more effectively (Jovic et al., 2015;

Kotsiantis et al., 2006).

Numerous automated methods of feature selection exist (Jovic et al., 2015; Kotsiantis et al.,

2006; Kuhn & Johnson, 2019), but given that a core part of this research investigation was to

explore how different aspects of the Programming Checkup contribute towards the predictive

models, an approach was adopted that was inspired by the work of Tomasevic et al. (2020),

whereby features are placed into categories which are trialled in different combinations to

find the optimal model. The categories are as follows:

 139

• Background Factors (BF) – Students’ gender, prior experiences, whether they intend

to work in software engineering, whether they consider themselves to be self-taught.

• Confidence (CO) – Estimations of how difficult students believe learning to program

to be, how difficult they believe their degree to be, how difficult they find

mathematics, how much they fear learning to program, their programming self-

efficacy levels, how confident students are in their answers and their mental effort

levels.

• Mental Models (MM) – Estimates of holding appropriate mental models of each

concept established using Bayesian Knowledge Tracing.

Nevertheless, it was still necessary to remove any features that did not appear to be of benefit

to the model. This was achieved by carrying out a series of statistical tests to examine the

relationships between each of the individual features and the Assessment 1 results. However,

this required tests to be carried out on pre-processed datasets for both classification and

regression, as detailed below, due to the fact the Assessment 1 results were binarized for the

classification dataset. Figures 4.2 to 4.4 present the distributions of each of the features

within each category. These plots confirmed that the features were generally not normally

distributed, and therefore, require the use of non-parametric statistical tests when analysing

data.

 140

Figure 4.2

Distributions of Results Relating to Students’ Background Factors

Figure 4.3

Distributions of Results Relating to Students’ Confidence Factors

 141

Figure 4.4

Distributions of Results Relating to Students’ Mental Model Estimates Established Using

Bayesian Knowledge Tracing

The Bonferroni correction was considered when conducting these tests, but given its

overconservative nature, and following Cabin and Mitchell's (2000) recommendations, it was

decided not to include the correction as to do so would likely exclude most features from the

model. Most “Background Factors” are dichotomous features, including the one-hot encoded

“Work in Software Engineering” responses, therefore, a chi-squared test can be utilised to

examine the relationships between these features and the binarized Assessment 1 results for

the classification dataset, as shown in Table 4.2. Naturally, a chi-squared test would not be

appropriate for the regression dataset and therefore, Mann Whitney U tests were employed

given the non-parametric nature of the data, as shown in Table 4.3.

 142

Table 4.2

Chi-Squared Test Between Binarized Assessment 1 Results and Dichotomous Background

Factors

Feature X2 p V

Prior programming experience 0.80 .777 0.02

Previously Studied computer science 0.68 .410 0.06

Previously Studied mathematics-based

subject

2.45 .117 0.11

Intend to work in software engineering –

No

0.20 .653 0.03

Intend to work in software engineering –

Undecided

2.96 .085 0.12

Intend to work in software engineering –

Yes

3.58 .058 0.13

Note. The Chi-squared tests have been performed on the training dataset.

* “English is student’s first language” violates Chi-Squared expected count assumption

(Bruce & Bruce, 2017) therefore, a Fisher’s Exact Test is performed yielding a result of p =

.999.

* df = 1

 143

Table 4.3

Mann Whitney U Tests Between Assessment 1 Results and Dichotomous Background Factors

Feature U z p r

Prior programming experience 3752.00 -1.82 .068 0.13

Previously Studied computer science 3515.00 -1.63 .104 0.12

Previously Studied mathematics-based

subject

3977.00 -2.25 .024 0.16

Intend to work in software engineering –

No

883.00 -1.26 .207 0.09

Intend to work in software engineering –

Undecided

1800.50 -2.12 .207 0.15

Intend to work in software engineering –

Yes

2807.50 -2.67 .034 0.19

English is student’s first language 2265.00 -0.98 .330 0.07

Note. The Mann Whitney U tests have been performed on the training dataset.

Students were also asked within the Programming Checkup to state how strongly they agreed

or disagreed with considering themselves as being a “self-taught programmer” using a Likert

scale. Subsequently, a Jonckheere-Terpstra test confirmed a significant relationship between

how strongly a student agreed/disagreed that they were a self-taught programmer and their

Assessment 1 result within the classification training dataset, TJT = 2770.00, z = 2.19, p =

.029, r = 0.15. This was then further confirmed within the regression training dataset with a

significant correlation of rs = .32, p < .001 being identified.

In order to maintain consistency, both classification and regression models used the same set

of features, and therefore the results from both sets of tests needed to be taken into account

when deciding what features to drop. Upon reviewing the analysis of the Background Factors

tests a rather surprising result was that prior programming experience did not appear to have

a significant influence on the Assessment 1 results. This could be due to the fact only 33.50%

of students within the training datasets indicated they did not have prior programming

experience, although several other factors including assessment design and amount of prior

experience could also affect this result.

 144

Furthermore, 71% of students stated that they had previously studied computer science.

Although data were not collected on exactly what students had studied previously, it is

possible that the high proportion of students previously studying computer science – and as

such gaining experience in programming – was due, in part, to the resurgence of computer

science within schools, as most students within the training set were born after the year 2000

(see Figure 4.5). As such, these students would have been in secondary school when the new

computer science curriculum was introduced (Brown et al., 2014).

Figure 4.5

Year of Birth Distribution within the Training Dataset

However, the fact that most students within the training set had previously studied computer

science and/or had prior programming experience, diminished the predictive powers of these

features and, as such, meant that they were not included in the model.

More detailed information was required to draw any definitive conclusions as to whether the

new computer science curriculum is directly influencing students’ success at university level.

However, questions about whether students have studied computer science at GCSE and/or A

Level could easily be added to the Programming Checkup. It would also be prudent to ask

 145

students to rate how much experience they have with studying computer science and

programming on a scale, as opposed to simply answering “yes” or “no”.

Interestingly, how strongly students considered themselves to be self-taught did appear to be

a useful predictor and, as such, was retained for use within the model. Additionally, whether

a student had previously studied a math-based subject post school level appeared to be a

useful predictor given its relationship with the continuous Assessment 1 results. This supports

claims that experience in mathematics aids students when learning to program (Bergin &

Reilly, 2005b; Byrne & Lyons, 2001; Gomes et al., 2006; Wilson & Shrock, 2001), and was

therefore retained for use within both the classification and regression models, despite the

non-significant chi-squared test on the binarized assessment results. This was done to

maintain consistency between the models.

Students’ gender was deemed not to significantly influence their assessment results through a

Kruskal Wallis test performed with the regression training set, H(2) = 3.03, p = .220, η2 =

.005, as well as a Fisher’s Exact Test (p =.543), which was performed with the classification

training set given the violation of the Chi-Squared expected count assumption (Bruce &

Bruce, 2017). However, as 90% of students within the training set were male, it is difficult to

make any reliable conclusions on the influence of gender on students’ assessment results.

Similarly, it was not possible to draw any reliable conclusions regarding the influence of

students’ first language on their assessment results, as only 15% of students within the

training set indicated that English was not their first language. As such, neither of these two

features were chosen to be included within the model. However, future studies being

conducted with larger numbers of students, potentially from institutions in different countries,

should seek to explore the impacts of gender and native language on programming abilities,

as previous research has highlighted the additional difficulties that non-native English

speaking students face when attempting to learn to program (Guo, 2018; Raj et al., 2017), as

well as how female students have been observed to outperform males, despite generally

having lower levels of self-efficacy (Lishinski et al., 2016; Quille et al., 2017).

As mentioned previously, the responses for “Work in Software Engineering” were one-hot

encoded in order to avoid introducing a potentially invalid ordering to the variable,

consequently resulting in three separate features for each of the responses – “yes”, “no” and

 146

“undecided”. Both the features representing “yes” and “undecided” appeared to be useful

predictors, whereas the feature representing “no” did not. However, “no” was not removed

from the model given that this would “break the symmetry of the original representation and

therefore induce a bias” into the model (Scikit-Learn, n.d.-v).

To summarise, the features included within the Background Factors category were:

• Whether students have studied a mathematics-based subject after leaving school.

• Whether students intended to pursue a career in software engineering (all associated

features).

• How strongly students considered themselves self-taught programmers.

The features within the Confidence category all yielded continuous results, and therefore

Mann Whitney U tests could be utilised for examining relationships within the classification

training set (Table 4.4) and Spearman’s Rank correlation tests could be used with the

regression training set (Table 4.5).

 147

Table 4.4

Mann Whitney U Tests Between Binarized Assessment 1 Results and Confidence Factors

Feature U z p r

Estimation of how difficult learning to

program is

1699.00 -1.83 .068 0.13

Estimation of how difficult they find

mathematics

1374.50 -3.04 .002 0.21

Estimation of how difficult their degree is 2164.50 -0.09 .930 0.01

How much they fear learning to program 1391.50 -2.97 .003 0.21

Self-Efficacy Factor 1 (Independence and

Persistence)

1931.00 -0.95 .343 0.07

Self-Efficacy Factor 3 (Self-Regulation) 1708.50 -1.78 .076 0.13

Self-Efficacy Factor 4 (Simple

Programming Tasks)

1364.00 -3.04 .002 0.21

Confidence – Variable Assignment 1654.00 -1.97 .048 0.14

Confidence – Conditional Statements 1554.00 -2.34 .019 0.17

Confidence – Iteration 1571.50 -2.28 .023 0.16

Confidence – All Questions 1538.00 -2.40 .016 0.17

Mental Effort – Variable Assignment 1562.00 -2.12 .034 0.15

Mental Effort – Conditional Statements 1664.00 -1.73 .084 0.12

Mental Effort – Iteration 1930.00 -0.70 .484 0.05

Note. The Mann Whitney U tests have been performed on the training dataset.

 148

Table 4.5

Spearman’s Rank Correlation Tests Between Assessment 1 Results and Confidence Factors

Feature rs p

Estimation of how difficult learning to

program is

-.16 .028

Estimation of how difficult they find

mathematics

-.14 .052

Estimation of how difficult their degree is .03 .673

How much they fear learning to program -.31 <.001

Self-Efficacy Factor 1 (Independence and

Persistence)

.24 <.001

Self-Efficacy Factor 3 (Self-Regulation) .15 .031

Self-Efficacy Factor 4 (Simple

Programming Tasks)

.42 <.001

Confidence – Variable Assignment .32 <.001

Confidence – Conditional Statements .31 <.001

Confidence – Iteration .39 <.001

Confidence – All Questions .38 <.001

Mental Effort – Variable Assignment -.11 .123

Mental Effort – Conditional Statements -.03 .728

Mental Effort – Iteration -.04 .584

Note. The Spearman’s Rank tests have been performed on the training dataset.

Upon reviewing the results within Tables 4.4 and 4.5, the vast majority of features appeared

to be potentially useful predictors, although several features stood out as being prime

candidates for removal. For instance, students’ estimation of how difficult their degree is

going to be, performed poorly with both the classification and regression training datasets

and as such was removed from the model.

 149

Features which measure different aspects of students’ confidence in programming were

observed to have a strong relationship with performance within the Semester 1 assessment,

thus supporting previous claims that students’ anxiety levels surrounding learning to program

can have a significant impact on their performance (Bergin & Reilly, 2005b; Wilson &

Shrock, 2001). Students’ estimations of how difficult they find mathematics also appeared to

be a useful predictor, adding further support to the claimed relationship between mathematics

and programming (Bergin & Reilly, 2005b; Byrne & Lyons, 2001; Gomes et al., 2006;

Wilson & Shrock, 2001).

In order to help reduce the dimensionality of the model, it was decided to drop the category-

specific confidence estimates in favour of an overall estimate, given its good performance

with both the classification and regression datasets. Additionally, students’ estimations of the

amount of mental effort required to answer each of the categories of questions within the

Programming Diagnostic portion of the Programming Checkup did not appear to be a very

strong predictor, particularly for the Conditional Statement and Iteration categories.

Consequently, the mental effort estimations were removed from the model. However, it

should be noted that the poor performance may be due to the fact that students were only

asked to estimate their mental effort after completing all of the questions rather than after

each individual question, as was done with their confidence ratings. The features included in

the Confidence category were therefore:

• Estimation of how difficult learning to program is

• Estimation of how difficult they find mathematics

• How much they fear learning to program

• Self-efficacy Factor 1 (Independence and Persistence)

• Self-efficacy Factor 3 (Self-Regulation)

• Self-efficacy Factor 4 (Simple Programming Tasks)

• Confidence (all questions)

As both Tables 4.6 and 4.7 show, most mental model estimations calculated using Bayesian

Knowledge Tracing appeared to have strong relationships with the Semester 1 Assessment

results for both the classification and regression dataset. However, in order to reduce the

dimensionality of the model it was decided to drop the individual estimations for AND, OR,

 150

NOT and IF and retain the estimation for Conditional Statements in their place as this

accounts for each of the individual concepts within a single mental model. Therefore, the

features included within the Mental Model category were as follows:

• BKT – Conditional Statements

• BKT – Iteration

• BKT – Output

• BKT – Parallelism

• BKT – Variable Assignment

• BKT – Variable Naming

Table 4.6

Mann Whitney U Tests between Binarized Assessment 1 Results and Mental Model Estimates

Established Using Bayesian Knowledge Tracing

Feature U z p r

BKT – AND 1611.50 -2.31 .021 0.16

BKT – Conditional Statements 1109.50 -3.98 <.001 0.28

BKT – IF 1470.00 -2.66 .008 0.19

BKT – Iteration 1389.00 -3.18 .001 0.22

BKT – NOT 1760.50 -1.60 .109 0.11

BKT – Output 1469.00 -2.67 .008 0.19

BKT – OR 1339.50 3.16 .002 0.22

BKT – Parallelism 1413.50 -2.87 .004 0.20

BKT – Variable Assignment 1271.50 -3.45 <.001 0.24

BKT – Variable Naming 1617.50 -2.22 .026 0.16

Note. The Mann Whitney U tests have been performed on the training dataset.

 151

Table 4.7

Spearman’s Rank Tests Between Assessment 1 Results Mental Model Estimates Established

Using Bayesian Knowledge Tracing

Feature rs p

BKT – AND .30 <.001

BKT – Conditional Statements .40 <.001

BKT – IF .33 <.001

BKT – Iteration .49 <.001

BKT – NOT .29 <.001

BKT – Output .41 <.001

BKT – OR .30 <.001

BKT – Parallelism .43 <.001

BKT – Variable Assignment .47 <.001

BKT – Variable Naming .23 <.001

Note. The Spearman’s Rank tests have been performed on the training dataset.

 152

4.3 Model Evaluation and Testing
After completing the pre-processing stages described in the previous section it was then

possible to begin the model evaluation process. As mentioned previously, the approach taken

to identify the best classification and regression models was inspired by the work of

Tomasevic et al. (2020), wherein different combinations of feature categories are trialled in

order to find an optimal model. However, in addition to the previously described pre-

processing steps, it was also necessary to address the imbalance within the classification

training set. To account for the class imbalance, SMOTE (Synthetic Minority Over-sampling

Technique; (Chawla et al., 2002) was utilised to artificially generate instances of the minority

class (I.e., students who scored less than 50% on the Semester 1 assessment). SMOTE works

by randomly selecting an existing instance of the minority class to form the basis of the new

synthetic instances. Subsequently, several nearest neighbors that are of the same class are

selected and used in combination with the original instance to perform a randomised

interpolation in order to generate the new synthetic instances (Bruce & Bruce, 2017;

Fernández et al., 2018).

In addition to oversampling the minority class using SMOTE, under-sampling is also

performed through the removal of Tomek Links. These are pairs of instances on either side of

the decision boundary that are nearest neighbors of each other (Batista et al., 2004; Ramentol

et al., 2012). These are removed to improve the separability between the classes and to

reduce the chance of overfitting (Batista et al., 2004; Ramentol et al., 2012).

This hybrid approach of performing both over-sampling and under-sampling was

implemented using the SMOTETomek class within the Imbalanced-Learn Library (Lemaître

et al., 2017). It should be noted that in order to prevent data leakage SMOTETomek along

with the MinMaxScaler were implemented using pipelines (Imbalanced-learn, n.d.-a; Scikit-

Learn, n.d.-w), thus ensuring that models were only trained using the training data.

Furthermore, in order to ensure consistency when training models, an integer seed was used

in order to set the random_state hyperparameter of SMOTETomek (Imbalanced-learn, n.d.-

b).

 153

Ten-fold cross validation was utilised when training the regression and classification models

as shown in Tables 4.8 and 4.9, respectively. The performance of the regression models

shown in Table 4.8 was measured using Root Mean Squared Error (RMSE), which is one of

the most common metrics for comparing regression models (Bruce & Bruce, 2017). RMSE

uses the same units as the variable being predicted, meaning an RMSE of 0.177 would equate

to 17.7 marks once multiplied by 100, therefore, models which have a lower RMSE are

performing better than those with a higher RMSE.

A Receiving Operating Characteristic (ROC) curve is commonly used to summarise the

performance of a classification algorithm across a range of thresholds, which trade-off

between the true positive and false positive rates (Bruce & Bruce, 2017; Chawla et al., 2002;

Swets, 1988). However, ROC curves do not offer a single measurement of performance that

would allow for direct comparison between algorithms (Bruce & Bruce, 2017). Instead, the

Area Under the Curve (AUC) metric uses the total area under the ROC curve to evaluate the

performance of an algorithm.

The AUC of a model represents the probability of accurately identifying the correct classes

arising when the model is presented with random examples of both classes, thus allowing for

direct comparisons of performance to be made between different models (Baker, 2020).

Therefore, an AUC of 1.0 represents a perfect classifier whereas an AUC of 0.5 indicates that

the classifier is unable to distinguish between the two classes. This metric was subsequently

used to evaluate the classification algorithms presented in Table 4.9.

 154

Table 4.8

10-Fold Cross Validation Scores of Regression Models (RMSE)

 Feature Combinations
Regression Model

BF CO MM BF + CO BF + MM CO + MM
BF +

 CO + MM
OLS Linear Regression 0.1925 0.1862 0.1821 0.1859 0.1829 0.1849 0.1864
Elastic Net 0.1923 0.1856 0.1796 0.1850 0.1791 0.1788 0.1791
Lasso Regression 0.1923 0.1862 0.1813 0.1859 0.1816 0.1822 0.1828
Ridge Regression 0.1924 0.1857 0.1799 0.1852 0.1796 0.1796 0.1801
KNN Regressor – Uniform Weighting 0.1967 0.1894 0.1779 0.1898 0.1828 0.1796 0.1770
KNN Regressor – Distance Weighting 0.2077 0.1885 0.1909 0.1889 0.1855 0.1799 0.1776
Bayesian Linear Regression 0.1930 0.1857 0.1802 0.1857 0.1797 0.1794 0.1795
SVR - RBF 0.1906 0.1850 0.1772 0.1822 0.1788 0.1790 0.1783
SVR - Linear 0.1919 0.1854 0.1816 0.1831 0.1802 0.1817 0.1834
Regression Tree 0.1927 0.1855 0.1868 0.1855 0.1868 0.1965 0.1965
Random Forest Regressor 0.1872 0.1817 0.1779 0.1841 0.1786 0.1773 0.1782
Bagging Decision Tree Regressor 0.2053 0.1981 0.1966 0.1918 0.1935 0.1900 0.1902
Gradient Boost Regressor 0.1919 0.1869 0.1868 0.1871 0.1863 0.1847 0.1850
XGBoost Regressor 0.1917 0.1867 0.1782 0.1855 0.1774 0.1784 0.1791
MLPRegressor 0.1931 0.1892 0.1797 0.1868 0.1796 0.1790 0.1822

Note. Lower RMSE values (highlighted green) represent better performance.

BF = Background Factors, CO = Confidence, MM = Mental Models

 155

Table 4.9

10-Fold Cross Validation Scores of Classification Models (AUC)

 Feature Combinations
Classification Model

BF CO MM BF + CO BF + MM CO + MM
BF +

 CO + MM
Logistic Regression 0.6585 0.7211 0.7454 0.6779 0.7476 0.7420 0.7258
Ridge Classifier 0.6440 0.6980 0.7250 0.6732 0.7209 0.7252 0.7139
SVC - Linear 0.6585 0.7065 0.7275 0.6799 0.7167 0.7363 0.7147
SVC - RBF 0.6665 0.7002 0.7355 0.6822 0.7288 0.7317 0.7150
Decision Tree 0.6572 0.6663 0.6840 0.6284 0.7185 0.7011 0.7185
Bagging Decision Tree 0.5621 0.5841 0.6786 0.6038 0.7252 0.6811 0.7350
Random Forest 0.7167 0.7533 0.7341 0.7297 0.7211 0.7771 0.7783
KNN - Uniform Weighting 0.5779 0.6552 0.7612 0.6733 0.6454 0.7515 0.6529
KNN - Distance Weighting 0.5357 0.6449 0.7459 0.6954 0.6348 0.7438 0.6560
Gradient Boost 0.6551 0.7271 0.7114 0.6688 0.7289 0.7464 0.7663
XGBoost Classifier 0.6474 0.7058 0.7346 0.7096 0.7258 0.7020 0.6951
MLPClassifier 0.6022 0.6715 0.7002 0.6770 0.7025 0.7217 0.6956

Note. Higher AUC values (highlighted green) represent better performance.

BF = Background Factors, CO = Confidence, MM = Mental Models

 156

The results presented in Table 4.8 range from an RMSE of 0.2077 (KNN Regressor –

Distance Weighting, Background Factors) to 0.1770 (KNN Regressor – Uniform Weighting,

Background Factors, Confidence and Mental Models). Furthermore, the results of the

classification models shown in Table 4.9 range from an AUC of 0.5357 (KNN Distance

Weighting, Background Factors) to 0.7783 (Random Forest, Background Factors, Confidence

and Mental Models). A variety of feature combinations resulted in optimal performance for

each of the models with almost all of the best performing models incorporating students’

mental models as input features, with a significant number of models also including measures

of confidence and/or students’ background factors. However, it was necessary to estimate the

real-world performance of the models using the testing dataset before any firm conclusions

could be made (Russell & Norvig, 2020). This was because the hyperparameter tuning

process may have produced models that overfitted the training data and, as such, would not

perform well with new, unseen data.

In order to prevent the test dataset from being overfitted by repeatedly testing different

models, a single classification model and a single regression model were selected, along with

a corresponding feature combination, using the training results presented in Tables 4.8 and

4.9. The classification model chosen to be applied to the testing dataset was Random Forest

with a Feature Combination of Background Factors, Confidence and Mental Models, given

that this produced the best performance on the training dataset. Additionally, as Random

Forest is an ensemble method it is less prone to overfitting (Dietrich et al., 2015; James et al.,

2013), as described in Section 4.2, therefore making it an appropriate choice for testing with

the holdout test set.

The regression model which performed the best on the training dataset was the KNN

Regressor using Uniform Weighting and a combination of Background Factors, Confidence

and Mental Models features, which produced an RMSE of 0.1770. However, two other

models exhibited similar levels of performance, namely, Support Vector Regressor using the

RBF Kernel and Mental Model features (0.1772) and Random Forest Regressor using a

combination of Confidence and Mental Model features (0.1773). Owing to the closeness in

performance on the training dataset, it was felt that Random Forest Regressor using a

combination of Confidence and Mental Models features, was the most appropriate choice in

order to minimise the potential for overfitting, as explained previously, especially given the

fact that the dataset for this investigation was relatively constrained in size.

 157

To evaluate the performance of the models on the test set, the chosen regression and

classification models were trained on the entire training dataset (i.e., not having a split for the

validation set), using the optimal hyperparameters that were previously identified by

GridSearchCV. The same random_state value for SMOTETomek as used previously was

used again and, as before, SMOTETomek was only applied to the training data and not to the

test set. Once the models were trained, they could then be tested on the unseen data held

within the holdout test set, by attempting to make predictions for the samples within the test

set and comparing the results. Given the random nature of Random Forests this process is

repeated three times in order to obtain an averaged measure of the performance of the

models. The results were as follows:

Random Forest Regressor (Confidence and Mental Models)

Average Training RMSE: 0.1686 SD: 0.0007

Average Testing RMSE: 0.1687 SD: 0.0009

Random Forest Classifier (Background Factors, Confidence and Mental Models)

Average Training AUC: 0.7400 SD: 0.0084

Average Testing AUC: 0.6595 SD: 0.0131

As can be seen, the average training AUC for the Random Forest classifier after being trained

on the entire training dataset fell from 0.7783 to 0.7400. The performance of the Random

Forest Regressor, however, improved from an RMSE of 0.1773 to 0.1686 when trained on

the entire training dataset.

Both the classification and regression models experienced a drop in performance when they

were evaluated using the unseen data held within the testing dataset as compared to the

training dataset. Although a drop in performance is to be expected (Géron, 2022), there may

be a degree of overfitting of the training set taking place, particularly for the Random Forest

Classifier. However, the results do demonstrate a reasonable level of generalisability for both

the classification and regression models, which would likely be improved by additional data

being included in both the training and testing datasets.

 158

The Scikit-Learn implementations of the Random Forest Regressor and Classifier allow for

the evaluation of how much each feature contributes to the performance of the model through

the use of the “Feature Importance” attributes (Scikit-Learn, n.d.-y, n.d.-x). As such, Figures

4.6 and 4.7 present the feature importance plots for each of the classification and regression

models respectively.

Figure 4.6 Random Forest Regressor Feature Importance Plots

Figure 4.7 Random Forest Classifier Feature Importance Plots

 159

The importance scores for each model are normalised, subsequently meaning that the

combined importance scores for all features are equal to 1. As such, features with higher

importance scores are seen to be having a larger effect on the model (Scikit-Learn, n.d.-y,

n.d.-x).. However, it is important to note that whilst the feature importance plots provide

useful insight into which features are contributing to the performance of the models, they are

specific to a given model and do not allow for any conclusions to be established pertaining to

the relationship between the feature and the variable being predicted. Given the random

nature of Random Forests, the level of importance for each feature differs between each trial

of the model, hence the need for averaging the performance results. However, a number of

features were seen to be consistently important to the models. For the Random Forest

Regressor (Figure 4.6), students’ mental model estimates for Conditional Statements and

Iteration, as well as their levels of Self-Efficacy pertaining to completing simple

programming tasks (Factor 4), were consistently shown to be important features across all

three trials of the model. Additionally, the feature importance plots for the Random Forest

Classifier (Figure 4.7) indicate a substantial reliance on students’ estimates for holding an

appropriate mental model of Conditional Statements within the classification models.

Students’ levels of Self-Efficacy associated with completing simple programming tasks also

appear to relatively important to the classifier models. However, the degree of overfitting

which has been observed limits the usefulness of the model and the data presented within

Figure 4.7.

4.4 Summary
This chapter has described the process by which the classification and regression models

were developed in response to RQ 3. The steps that were required to take the raw output from

the Programming Checkup and prepare the data for use in developing the models have been

systematically detailed in order to aid reproducibility. Furthermore, a selection of regression

and classification methods have been described and subsequently evaluated using the training

data, which ultimately culminated in the selection of Random Forest for use in both the

regression and classification models. The estimate of the real-world performance of the final

models, produced by using the hold-out test set to test the final models, suggested a

reasonable level of generalisability, the implications of which, in relation to RQ 3, will be

discussed in Section 6.2.

 160

5. Programming Checkup Analysis

5.1 Analysis Scope
In the previous chapter, the testing set was completely isolated from any statistical analysis to

enable it to inform the model-development process. However, in order to gain a full

understanding of the trends in students’ responses to the Programming Checkup as well as to

aid in answering the research questions upon which this investigation was based, the test set

that was previously isolated from any analysis will now be included with the rest of the data.

After the removal of any students who skipped 25% or more of the questions within the

programming diagnostic section of the Programming Checkup, the remaining dataset

available for analysis consisted of 285 students.

The analysis presented in this chapter will first involve an examination of how students’

responses changed between T1 and T2. Subsequently, an examination will be reported of

how students’ responses relate to their Assessment 1 results, as this is the outcome variable

being predicted by the model developed in the previous chapter. In addition, an examination

of students’ Assessment 2 results will be reported as a comparison dataset to investigate how

students’ responses to the Programming Checkup related to later performance in their

introductory programming module. It should be noted that all analyses presented in this

chapter were carried out after the model development process described in the previous

chapter to prevent any of the results from influencing the decisions being made.

5.2 T1 and T2 Comparison
Out of the 285 students who completed the Programming Checkup at T1 at the start of the

academic year, 119 students also completed the Programming Checkup at T2 at the end of

the first semester. The comparison between students’ performance at T1 and T2 will form the

focus of the analysis in this section.

5.2.1 Analysis of Students’ Understandings of Core Programming Concepts

Figure 5.1 present the frequency that each misconception was demonstrated by students at T1

and T2, respectively (refer to Appendix B for a description of each misconception). To aid in

the visualisation of the prevalence of each misconception, students were divided into three

groups based on the number of times they had demonstrated a particular misconception, that

is, one occurrence, two occurrences or three or more occurrences. This categorisation

 161

therefore provides an indication of the strength of students’ misconceptions, as a strong and

more engrained misconception would likely be demonstrated multiple times when answering

questions.

Figure 5.1

 Distribution of Misconceptions and the Frequency of Occurrences Per Student (Who

Completed Both Programming Checkups) at T1 and T2

It is important to note that it is not possible to statistically compare the frequency of each

misconception due to the variability in the number of opportunities to demonstrate each

misconception. For example, it is only possible for a student to demonstrate the Multiple

Assignment (MA) misconception in seven of the nine variable assignment questions, whereas

the Output (OP) misconception could be demonstrated in almost all of the questions included

within the Programming Diagnostic section of the Programming Checkup. This is due to

questions being repeated to examine different misconceptions, such as repeating a Variable

Assignment question and changing the names of the variables to MAX and MIN to examine

the Variable Name (VN) misconception. Concepts such as Program Output form a key part in

the overall design of questions, leading to more opportunities for the associated

misconception (OP) to be demonstrated than others. However, the design of the

Programming Diagnostic section ensures each misconception is examined a minimum of five

times in order for estimations to be made about students’ mental models using Bayesian

Knowledge Tracing.

When comparing the distributions of misconceptions at T1 and T2 within Figure 5.1, it is

clear that there has been an overall decrease in the number of misconceptions being exhibited

 162

by students. However, prior to any in-depth statistical tests taking place, Shapiro-Wilk tests

were used to examine the frequency distribution of the misconception occurrences, the results

of which confirmed that none of the misconception occurrences were normally distributed.

Therefore, in order to identify whether there had been any significant changes between T1

and T2, a series of Wilcoxon Signed-Rank tests were carried out, as shown in Table 5.1.

Table 5.1

Wilcoxon Signed Rank Comparison of Misconception Occurrences at T1 and T2

Misconception z p r

AD -0.81 .414 0.08

AND -2.56 .010 0.24

ET -0.57 .572 0.05

EX -1.73 .083 0.16

IF -3.75 <.001 0.34

LT -0.22 .826 0.02

MA -5.52 <.001 0.51

NC -2.59 .010 0.24

NI -2.19 .029 0.20

NOT -2.14 .032 0.20

OP -4.59 <.001 0.42

OR -2.45 .014 0.22

PL -3.03 .002 0.28

REV -0.93 .355 0.09

SE -0.28 .782 0.03

SM -4.04 <.001 0.37

SP -0.20 .839 0.02

SW -2.71 .007 0.25

VN -2.32 .020 0.21

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .003 (i.e., .05 divided by 19) were deemed to be reliable for the purposes of

interpretation.

*n = 119

 163

The misconception that showed the most change between T1 and T2 was the Multiple

Assignment (MA) misconception, z = -5.52, p < .001, r = 0.51, suggesting that whilst this is a

significant issue at the beginning of the course, most students are able to overcome this

misconception by the time they reach T2. However, as Figure 5.1 indicates, the vast majority

of students who still exhibit the MA misconception at T2 do so three or more times,

suggesting that these students have developed a deeply engrained misconception which

would require direct intervention to overcome. The other misconceptions associated with

Variable Assignment do experience a drop between T1 and T2, although none are as

significant as MA. However, a small number of students do appear to be exhibiting the

Reverse (REV) misconception, with some demonstrating it three or more times at both T1

and T2. Although the REV misconception may not be widespread, students who do exhibit it

frequently might require additional support to overcome it.

The occurrence of the IF misconception also showed a significant decrease between T1 and

T2, z = -3.75, p < .001, r = 0.34. Furthermore, half of the students who demonstrated this

misconception at T2 only did so on one occasion. There also did not appear to be any

significant change in the occurrences of misconceptions associated with Boolean Logic,

AND, OR and NOT, between T1 and T2, with the occurrences of OR and NOT remaining

particularly high, giving further credence to Grover and Basu's (2017) claims that Boolean

Logic is a topic of difficulty for students.

All misconceptions associated with the concept of Iteration did not change significantly

between T1 and T2, with the exception of Summation (SM), which dropped significantly

between T1 and T2, z = -4.04, p < .001, r = 0.37. This may indicate that some struggling

students were beginning to grasp the idea that all lines within the loop are repeated. However,

the observed improvement may in fact be related to students developing a better

understanding of program output, as the occurrence of students demonstrating

misconceptions relating to what is produced by the output statements within the code

examples (i.e., outputting a variable name instead of the value) decreased significantly

between T1 and T2 (OP, z = -4.59, p = <.001, r = 0.42). The occurrence of SM

misconceptions was significantly, albeit weakly, correlated with that of OP at both T1 (rs =

.19, p = .001) and T2 (rs = .33, p < .001) after a Bonferroni correction had been taken into

account, which reduced the significance threshold to p < .025. Interviews and think aloud

 164

exercises should be conducted as part of a future investigation in order to establish a clearer

picture as to why students struggle with iteration and exhibit particular misconceptions, as the

results thus far suggest that iteration is a difficult concept for students to grasp.

There was also a significant drop in the number of occurrences of the Parallelism (PL)

misconception, wherein students demonstrated a misunderstanding of the flow of control

within a program, with the majority of students only exhibiting it once at T2. However,

almost a third of students demonstrated PL three or more times, indicating that some students

may have been struggling to overcome this misconception.

In addition to the changes in the occurrences of misconceptions, a significant drop in the

occurrence of incorrect answers that could not be mapped to a specific misconception

(recorded as NA) was observed and confirmed with a Wilcoxon Signed Rank Test, z = -5.32,

p < .001, r = 0.49. Although it is possible that some of the unmappable answers provided by

students were genuine mistakes, they do demonstrate that some students initially struggled to

appropriately comprehend some of the concepts being examined within the Programming

Diagnostic questions. This view is supported by the significant reduction in unmappable

answer occurrences by T2, as although some students might still have been struggling to fully

grasp the concepts being examined, they were at least making progress towards establishing

an appropriate mental model.

No significant differences were found in the number of questions being skipped by students

at T1 and T2, z = -1.58, p = .115, r = 0.01. However, this may be due in part to the fact that

students who skipped 25% or more of the Programming Diagnostic questions were removed

from the analysis process.

Aside from examining the frequencies of individual misconception occurrences, it is possible

to obtain a more direct estimation of whether students hold appropriate mental models of

each of the concepts examined within the Programming Checkup (see Table 4.1) through the

use of Bayesian Knowledge Tracing (BKT). As described in the previous section, BKT was

utilised to provide estimates of students’ mental models at T1 in order to be used within the

classification and regression models. The same process was used here to produce estimates of

students’ appropriate mental models at T1, and subsequently at T2. It should be noted that the

same hyperparameter values for L0, G, S and T were used at both T1 and T2 in order to

 165

provide a consistent basis for comparison between the two tests. Furthermore, T2 was treated

independently from T1, meaning that in terms of the BKT calculations, the first question at

T2 was treated as n = 0, rather than continuing on from T1.

It is believed that this is the first time BKT has been utilised to analyse an aptitude test (or

similar) in this way. A future study could investigate how estimates of the appropriateness of

students’ mental models are affected by examining combined responses at T1 and T2 whilst

possibly incorporating some of the more recent extensions to BKT such as the KT-Forget

parameter as suggested by Qiu et al. (2011). The latter parameter accounts for the possibility

that students forget previously learned knowledge after several days between interactions

with an intelligent tutoring system. Although the time between T1 and T2 was several weeks,

during which the concepts being examined were introduced and reinforced, it would be a

worthwhile exercise to explore if KT-Forget can be adapted for use in such a context.

Furthermore, a future study could also examine mental model development throughout the

course of a full academic year.

Figure 5.2 show the proportion of students who are deemed likely (green) or unlikely (red) to

hold an appropriate mental model of each concept, given a threshold of 0.5, at T1 and T2.

Additionally, a series of Wilcoxon Signed Rank tests were carried out on the raw

probabilities established by BKT in order to confirm the significance of any changes between

T1 and T2, as presented in Table 5.2.

 166

Figure 5.2

Estimates of Whether Students Hold Appropriate Mental Models at T1 and T2, Established

Using Bayesian Knowledge Tracing with a Threshold of 0.5

Table 5.2

Wilcoxon Signed Rank Comparison of Mental Model Estimates Established using Bayesian

Knowledge Tracing at T1 and T2

Mental Model z p r

AND -0.70 .481 0.07

Conditional Statements -2.63 .008 0.24

IF -0.09 .929 0.01

Iteration -5.25 <.001 0.48

NOT -0.90 .371 0.08

Output -3.15 .002 0.29

OR -0.51 .613 0.05

Parallelism -1.61 .107 0.15

Variable Assignment -5.10 <.001 0.47

Variable Naming -1.62 .106 0.15

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .005 (i.e., .05 divided by 10) were deemed to be reliable for purposes of

interpretation.

*n = 119

One of the most significant changes between T1 and T2 was Variable Assignment (VA), with

over half of the students being estimated as being unlikely to hold an appropriate mental

 167

model. However, by T2 over 75% of students were estimated to hold an appropriate mental

model, suggesting that many students had been able to overcome their difficulties, in

particular with the MA misconception, with the significant change being confirmed by the

Wilcoxon Signed Rank Test as shown in Table 5.2. Additionally, a significant change was

identified within the estimates produced by BKT for the Output (OP) mental model.

However, this is likely to indicate the strengthening of students’ models rather than a

transition from an inappropriate model to an appropriate one, given that the percentage of

students who are estimated not to be holding an appropriate model only falls from 17% at T1

to 10% by T2.

Variable Assignment and Output are two mental models that students utilise in almost every

program they write, so it is not surprising to see that the vast majority of students had

developed an appropriate mental model by T2. However, those who had not developed an

appropriate model, particularly for VA, would be likely to require direct support to overcome

their issues. Additionally, the majority of students were estimated to have an appropriate

model for Variable Naming (VN) at both T1 and T2, with most students demonstrating a

potential misconception only once, as per Figure 5.1. The Wilcoxon Signed Rank test within

Table 5.2 for VN did not reveal a change between T1 and T2.

The probability estimates of students holding appropriate mental models for AND, OR and

NOT, as well as If Statements, did not change significantly between T1 and T2, with OR

having one of the highest proportions of students estimated to be unlikely to hold an

appropriate model. As shown in Table 4.1, the Conditional Statements mental model (CO)

combines all Conditional Statement questions together, thus providing a broader estimate of

students’ models by encompassing each of the individual concepts within a single mental

model. The change in the probability estimates of students holding an appropriate model for

CO approached significance after applying the Bonferroni Correction. However, 39% of

students were still estimated to be unlikely to hold an appropriate model for CO. These

estimates further support claims that Boolean Logic is a difficult concept for students to grasp

(Grover & Basu, 2017), with OR appearing to the main point of confusion.

A significant change was observed in the estimates that students hold an appropriate model

for Iteration (IT) between T1 and T2. However, a substantial number of students were still

classified as being not likely to hold an appropriate model at T2, with 67% at T2 being

 168

classified as unlikely to hold an appropriate model due to their estimated probability being

less than 0.5, compared to 81% at T1. Although this indicated that only a relatively small

number of students had improved their models sufficiently to cross the 0.5 threshold, students

did appear to be improving their models but were still struggling with misconceptions, as

indicated in Figure 5.1. Additionally, there did not appear to be a significant change in the

estimates of students’ Parallelism (PL) model. Although there was a drop from 53% being

classified as being unlikely to have an appropriate mental model at T1 to 41% at T2, some

students appeared to be consistently struggling with this concept, as shown in Figure 5.1,

suggesting direct support may be needed for them to develop an appropriate model.

To summarise, there was evidence of the development in students’ mental models between

T1 and T2, with students quickly acquiring appropriate models for concepts such as Variable

Assignment. However, other concepts, such as Iteration, appeared to be more troublesome for

students to grasp and develop an accurate model.

5.2.2 Influence of Prior Experiences on Likelihood of Holding Appropriate Mental

Models

Given that data collection for T2 took place at the end of the first semester, students were not

expected to have fully accurate models for all concepts at this stage. For many students, this

was their first time learning to program and they were therefore constructing their models

using what they believed to be relevant information, that is, their “pre-programming

knowledge”, as termed by Bonar and Soloway (1985). Over half (i.e., 63%) of students who

participated in both T1 and T2 indicated that they had prior programming experience.

However, 70% of students stated that they had previously studied computer science, whilst

39% of students considered themselves “self-taught programmers” prior to starting their

degrees. Interestingly, 14% of students indicated that they had previously studied computer

science, but did not have any prior programming experience, whereas only 7% of students

indicated that they had prior programming experience but did not previously study computer

science. As programming is a core component of computer science courses it would be useful

for a future study to fully explore students’ prior experiences with studying computer science

and learning to program, especially with greater numbers of students now passing through the

new computer science curriculum. It should also be noted that as only 23% of students

 169

indicated that English was not their first language, then the sample size is insufficient to

produce any statistically significant results in relation to this factor.

Tables 5.3 and 5.4 show whether there were significant differences at both T1 and T2 in the

mental model estimates amongst students who had indicated that they had prior programming

experience or had previously studied computer science. Perhaps not unsurprisingly, the

average probability of having an appropriate mental model for each individual model at T1

was higher amongst students who had previous programming experience, as shown in Table

5.5.

Although having prior experience of programming had a substantial influence over students’

mental models at T1, it did appear to decrease by T2 as the vast majority of mental models

being evaluated by the Mann Whitney U test showed a slight decrease in influence at T2

when compared to the corresponding T1 result. However, interestingly, the influence of prior

programming experience appeared to be significant on the NOT mental model at T2, as an

increase in significance to the point which surpasses the corrected significance threshold was

observed when compared to the T1 result.

When considered as independent factors, the influence of previously studying computer

science on the estimates of students holding appropriate mental models for the concepts

examined within the Programming Checkup was broadly similar to that of prior

programming experience, as shown in Table 5.5. However, previously studying computer

science appeared to have less influence on students’ mental models than having prior

programming experience, which is reflected in the effect sizes of the Mann Whitney U tests

presented in Table 5.4.

 170

Table 5.3

Mann Whitney U Tests Between Prior Programming Experience (Yes/No) and Mental Model

Estimates Established using Bayesian Knowledge Tracing at T1 and T2

Mental Model
T1 T2

U z p r U z p r

AND 1262.00 -2.39 .017 0.22 1281.50 -2.27 .023 0.21

Conditional Statements 855.50 -4.37 <.001 0.40 1093.00 -3.07 .002 0.28

IF 1037.00 -3.41 <.001 0.31 1216.50 -2.44 .015 0.22

Iteration 897.00 -4.40 <.001 0.40 962.50 -3.87 <.001 0.36

NOT 1189.00 -2.59 .010 0.24 1131.00 -2.92 .003 0.27

Output 797.50 -4.71 <.001 0.43 1233.00 -2.32 .020 0.21

OR 1106.00 -3.01 .003 0.28 1120.00 -2.95 .003 0.27

Parallelism 892.50 -4.18 <.001 0.38 1011.50 -3.55 <.001 0.33

Variable Assignment 794.00 -4.83 <.001 0.44 1285.00 -2.176 .030 0.20

Variable Naming 1293.50 -2.06 .040 0.19 1274.00 -2.29 .022 0.21

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .003 (i.e., .05 divided by 20) were deemed to be reliable for purposes of

interpretation.

*n = 119

 171

Table 5.4

Mann Whitney U Tests Between Previously Studying Computer Science (Yes/No) and Mental

Model Estimates Established using Bayesian Knowledge Tracing at T1 and T2

Mental Model
T1 T2

U z p r U z p r

AND 1281.00 -1.23 .218 0.11 1021.50 -2.93 .003 0.27

Conditional Statements 1008.50 -2.69 .007 0.25 1038.00 -2.52 .012 0.23

IF 1234.50 -1.39 .166 0.13 1158.00 -1.86 .063 0.17

Iteration 972.00 -3.11 .002 0.29 951.00 -3.10 .002 0.28

NOT 1149.50 -1.90 .057 0.17 1041.00 -2.56 .011 0.23

Output 1060.00 -2.40 .016 0.22 1030.00 -2.91 .004 0.27

OR 1137.00 -1.95 .051 0.18 1092.00 -2.26 .024 0.21

Parallelism 956.50 -3.01 .003 0.28 976.50 -2.90 .004 0.27

Variable Assignment 844.00 -3.74 <.001 0.34 1092.50 -2.38 .017 0.22

Variable Naming 1305.50 -1.01 .315 0.09 1033.00 -2.82 .005 0.26

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .003 (i.e., .05 divided by 20) were deemed to be reliable for purposes of

interpretation.

*n = 119

 172

Table 5.5

Comparison of Prior Programming Experience, Previously Studying Computer Science and Average Estimates of Having an Appropriate

Mental Model at T1 and T2

Mental Model

T1 T2

Prior

Programming

Exp. - No

Prior

Programming

Exp. - Yes

Studied CS -

No

Studied CS -

Yes

Prior

Programming

Exp. - No

Prior

Programming

Exp. - Yes

Studied CS -

No

Studied CS -

Yes

AND .903 .928 .912 .922 .826 .905 .761 .924

Conditional Statements .290 .633 .335 .577 .451 .696 .479 .659

IF .824 .908 .863 .883 .797 .872 .747 .885

Iteration .071 .278 .116 .237 .156 .456 .140 .430

NOT .762 .832 .776 .818 .641 .816 .605 .812

Output .663 .926 .687 .888 .869 .918 .807 .939

OR .349 .522 .338 .508 .318 .569 .334 .535

Parallelism .306 .611 .345 .862 .410 .663 .411 .635

Variable Assignment .268 .615 .290 .568 .678 .842 .650 .836

Variable Naming .634 .854 .691 .806 .762 .892 .678 .913

 173

Additionally, Table 5.6 presents the results from a series of Spearman’s Rank correlation

tests between students’ levels of agreement in considering themselves “self-taught

programmers” at the beginning of the course, and their estimates of having appropriate

mental models. The results indicate that at T1, higher levels of agreement significantly

correlate with students’ being more likely to hold a number of mental models, with strongest

correlation being with estimates for holding an appropriate model of iteration. However, as

with prior programming experience, the influence of students’ initially considering

themselves to be self-taught programmers appeared to reduce by T2, with only estimates for

Iteration continuing to show a significant effect.

The results presented in Table 5.7 indicate that there was no significant relationship between

whether students had previously studied a mathematics-based subject after leaving school,

and the probability of students holding appropriate mental models for each concept at both

T1 and T2. From the results presented thus far, it can be concluded that when considered as

independent factors, studying mathematics-based subjects prior to starting their degree does

not significantly impact the probabilities of students having appropriate mental models of

concepts examined within the Programming Checkup.

On the other hand, two factors that have been identified as significantly supporting students

with their mental models at the start of their course were found to be having prior

programming experience and considering themselves to be a “self-taught programmer”.

However, the influence of these two factors appeared to be less significant as time

progressed, given that all students were gaining experience as part of their course. The results

also suggest that previously studying computer science did exert a degree of influence over

students’ mental models.

 174

Table 5.6

Spearman’s Rank Correlation Test Between Students’ Agreement in Considering Themselves

“Self-Taught Programmers” at the Start of Their Course and Mental Model Estimates

Established Using Bayesian Knowledge Tracing at T1 and T2

Mental Model
T1 T2

rs p rs p

AND .10 .273 -.04 .689

Conditional Statements .34 <.001 .15 .100

IF .32 <.001 .14 .144

Iteration .43 <.001 .34 <.001

NOT .14 .126 .18 .048

Output .36 <.001 .24 .008

OR .21 .021 .14 .132

Parallelism .42 <.001 .19 .038

Variable Assignment .38 <.001 .23 .013

Variable Naming .21 .022 .05 .622

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .003 (i.e., .05 divided by 20) were deemed to be reliable for purposes of

interpretation.

*Self-taught agreements range from Strongly Disagree (1) to Strongly Agree (7)

*n = 119

 175

Table 5.7

Mann Whitney U Tests Between Previously Studying a Mathematics-Based Subject (Yes/No)

and Mental Model Estimates Established Using Bayesian Knowledge Tracing at T1 and T2

Mental Model
T1 T2

U z p r U z p r

AND 1680.00 -0.41 .680 0.04 1722.00 -0.16 .871 0.01

Conditional Statements 1406.00 -1.84 .067 0.17 1682.00 -0.36 .720 0.03

IF 1359.50 -2.10 .036 0.19 1577.70 -0.94 .349 0.09

Iteration 1416.00 -1.91 .057 0.18 1544.00 -1.12 .262 0.10

NOT 1704.50 -0.24 .809 0.02 1519.50 -1.25 .210 0.11

Output 1494.00 -1.37 .172 0.13 1537.50 -1.14 .253 0.10

OR 1657.00 -0.50 .621 0.05 1619.00 -0.70 .202 0.06

Parallelism 1582.00 0.62 .370 0.06 1512.50 -1.27 .483 0.12

Variable Assignment 1494.00 -1.40 .162 0.13 1641.50 -0.62 .533 0.06

Variable Naming 1678.50 -0.40 .693 0.04 1557.50 -1.13 .257 0.10

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .003 (i.e., .05 divided by 20) were deemed to be reliable for purposes of

interpretation.

*n = 119

5.2.3 Analysis of Students’ Levels of Confidence

Students’ confidence levels have previously been shown to be a useful predictor of their

performance within an introductory programming module (Bergin & Reilly, 2005b;

Ramalingam & Wiedenbeck, 1998; Wilson & Shrock, 2001) and as such, provide additional

insight into whether a student is likely to struggle with learning to program. Table 5.8

presents the results of a series of Wilcoxon Signed Rank tests conducted on the different

confidence related factors examined within the Programming Checkup, thus allowing for any

significant changes between T1 and T2 to be identified.

 176

Table 5.8

Wilcoxon Signed Rank Comparison of Confidence Factors at T1 and T2

Factor z p r

Estimation of how difficult learning to program is -0.12 .905 0.01

Estimation of how difficult they find mathematics -1.61 .107 0.15

Estimation of how difficult their degree is -1.04 .296 0.10

How much they fear learning to program -1.92 .054 0.18

Self-Efficacy Factor 1 (Independence and Persistence) -5.95 <.001 0.55

Self-Efficacy Factor 3 (Self-Regulation) -3.23 .001 0.30

Self-Efficacy Factor 4 (Simple Programming Tasks) -8.51 <.001 0.78

Confidence – Variable Assignment -5.73 <.001 0.53

Confidence – Conditional Statements -3.08 .002 0.28

Confidence – Iteration -5.84 <.001 0.54

Confidence – All Questions -5.47 <.001 0.50

Mental Effort – Variable Assignment -2.48 .013 0.23

Mental Effort – Conditional Statements -1.19 .233 0.11

Mental Effort – Iteration -3.44 <.001 0.32

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .004 (i.e., .05 divided by 14) were deemed to be reliable for purposes of

interpretation.

*n = 119

Students’ difficulty estimations relating to their degree, to mathematics and to learning to

program, did not change significantly between T1 and T2, nor did how much they fear

learning to program. However, each of Ramalingam and Wiedenbeck's (1998) self-efficacy

factors that were examined within the Programming Checkup showed a significant change

between T1 and T2. Students’ average levels of confidence that they had answered the

questions correctly for each of the question categories, and for all questions, also showed a

significant change between T1 and T2. Students’ mental effort estimates did not change

significantly for Variable Assignment and Conditional Statement questions but did for

Iteration.

Tables 5.9 through to 5.12 explore whether students’ backgrounds significantly influenced

their confidence levels at T1 and T2. Having prior programming experience significantly

 177

benefitted students’ confidence levels at T1, as shown in Table 5.9, with responses to self-

efficacy Factors 1 and 4 from students with prior programming experience being significantly

higher than those without. Students with prior programming experience recorded an average

rating of 4.65 out of 7 (SD = 1.33) for Factor 1 (Independence and Persistence), and an

average rating of 4.96 out of 7 (SD = 1.41) for Factor 4 (Simple Programming Tasks).

Subsequently, students without prior programming experience demonstrated lower self-

efficacy levels with an average rating of 3.32 out of 7 (SD = 1.58), being recorded for Factor

1 and average rating of 2.78 out of 7 (SD = 1.57) for Factor 4. There was also evidence of a

substantial difference in responses to Factor 3 (Self-Regulation), which is nearing the

Bonferroni corrected threshold (with experience, M = 4.25 SD = 1.25, without experience, M

= 3.51 SD = 1.32).

Furthermore, there was also a significant difference in students’ confidence in their answers

being correct at T1 when comparing those with and without prior programming experience,

as students with prior experiences recorded higher average levels of confidence for questions

focusing on Variable Assignment (with experience, M = 73.54, SD = 26.70, without

experience, M = 46.88, SD = 30.59), Conditional Statements (with experience, M = 82.69, SD

= 19.97, without experience, M = 67.46, SD = 25.14), Iteration (with experience, M = 65.71,

SD = 29.33, without experience, M = 35.70, SD = 27.70) and for all questions combined

(with experience, M = 75.93, SD = 22.96, without experience, M = 53.63, SD = 23.66).

Like self-efficacy, students with prior programming experience had more confidence in their

answers than those without. However, the influence of having prior experience showed

evidence of decreasing by T2 in a similar way to how it affected the likelihood of students

having appropriate mental models, given that students were progressing through their course

and building their confidence levels. This is reflected in the reduction in the effect sizes

between T1 and T2 for responses to both the self-efficacy scale and in students’ confidence in

their answers, as can be seen in Table 5.9. Furthermore, the differences at T2 between

students with and without prior experience are no longer significant at the corrected

significance threshold for self-efficacy Factor 1 (with experience, M = 5.22, SD = 1.07,

without experience, M = 4.73, SD = 1.17) and Factor 3 (with experience, M = 4.19, SD =

1.30, without experience, M = 4.59, SD = 1.29) and their confidence in their answers for

Variable Assignment (with experience, M = 85.83, SD = 24.61, without experience, M =

69.79, SD = 33.94) and Conditional Statements (with experience, M = 85.83, SD = 24.61,

 178

without experience, M = 69.79, SD = 33.94). However, self-efficacy Factor 4 (Simple

Programming Tasks) did still show a significant difference at T2, with students who had prior

programming experience recording an average rating of 5.78 out of 7 (SD = 1.05), whereas

those without recorded an average rating of 5.04 out of 7 (SD = 1.28). Despite the relatively

large gap when compared to the other two self-efficacy factors, there was an increase in the

efficacy levels of students who did not have prior programming experience across all factors

related to self-efficacy, with the largest being in Factor 4.

 179

Table 5.9

Mann Whitney U Tests Between Prior Programming Experience (Yes/No) and Confidence

Factors at T1 and T2

Confidence Factor
T1 T2

U z p r U z p r

Estimation of how difficult
learning to program is

1176.50 -2.64 .008 0.24 1056.50 -3.30 <.001 0.30

Estimation of how difficult
they find mathematics

1561.50 -0.50 .620 0.05 1620.00 -0.17 .867 0.02

Estimation of how difficult
their degree is

1480.50 -0.96 .336 0.09 1394.50 -1.46 .145 0.13

How much they fear
learning to program

1222.50 -2.38 .017 0.22 917.00 -3.77 <.001 0.35

Self-Efficacy Factor 1
(Independence and
Persistence)

867.50 -4.31 <.001 0.40 1193.00 -2.17 .030 0.20

Self-Efficacy Factor 3
(Self-Regulation)

1129.50 -2.87 .004 0.26 1358.00 -1.24 .217 0.11

Self-Efficacy Factor 4
(Simple Programming
Tasks)

531.50 -6.16 <.001 0.56 1001.00 -3.23 .001 0.30

Confidence –
Variable Assignment

826.00 -4.54 <.001 0.42 1159.50 -2.77 .006 0.25

Confidence –
Conditional Statements

982.00 -3.68 <.001 0.34 1173.00 2.66 .008 0.24

Confidence –
Iteration

756.50 -4.92 <.001 0.45 1067.50 -3.22 .001 0.30

Confidence –
All questions

775.00 -4.82 <.001 0.44 1050.00 -3.31 <.001 0.30

Mental Effort –
Variable Assignment

1287.50 -2.01 .044 0.18 1066.00 -1.17 .243 0.11

Mental Effort –
Conditional Statements

1292.50 -1.99 .047 0.18 1143.50 -0.63 .528 0.06

Mental Effort –
Iteration

1273.00 -2.10 .036 0.19 1101.00 -0.92 .356 0.08

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .002 (i.e., .05 divided by 28) were deemed to be reliable for purposes of

interpretation.

*n = 119

 180

Significant differences were also identified at T2 in students’ average confidence in their

answers for Iteration focused questions (with experience M = 76.40, SD = 28.89; without

experience M = 57.46, SD = 34.37) and their average confidence across all questions (with

experience M = 83.62, SD = 24.92; without experience M = 67.39 SD = 32.62) surpassing the

Bonferroni corrected threshold. However, whilst no longer surpassing the corrected

threshold, the difference in students’ confidence in their answers for questions focusing on

Variable Assignment (with experience, M = 85.84, SD = 24.92; without experience, M =

69.80 SD = 33.94) and Conditional Statements (with experience M = 83.96, SD = 24.92;

without experience M = 71.80, SD = 33.22) is still at a near-significant level, indicating that

there still is a sizeable gap between students with and without prior programming experience.

The results thus far demonstrate that having prior programming experience does give

students an additional boost in confidence. However, the difference between those with and

without prior experience begins to reduce over time as students progress through the module

and gain confidence with the new concepts. This, therefore, appears to support Wiedenbeck

et al.'s (2004) claims that having prior programming experience will eventually lose its

predictive value, owing to students’ more recent experiences with programming being the

more important influence on their confidence levels. Nevertheless, the difference in

confidence with answering questions on iteration at T2, as well as the differences in mental

model estimates (see Table 5.2) suggests that having prior experience is still benefiting

students at T2 on a concept that appears to be troublesome for them to grasp.

The insight that having prior programming experience gives students also appears somewhat

to reduce their anxiety surrounding learning to program , with both estimations of how

difficult learning to program is at T1 (with experience, M = 5.64, SD = 1.90; without

experience, M = 6.59, SD = 1.99) and how much students fear learning to program (with

experience, M = 2.96, SD = 2.28; without experience, M = 4.20, SD = 2.71) demonstrating

substantial differences between those with and without prior programming experience, which

is nearing the Bonferroni corrected threshold. There does not, however, appear to be any

significant difference in how difficult students believe their course to be as a whole (with

experience, M = 6.77, SD = 1.74; without experience, M = 7.04, SD = 1.60), suggesting there

may be common causes of anxiety towards their degrees aside from just concerns with

programming.

 181

A notable increase in the influence of having prior programming experience was, however,

observed between T1 and T2 amongst students’ estimations of how difficult learning to

program is (with experience, M = 5.49, SD = 2.26; without experience, M = 6.91, SD = 1.80)

and how much they fear learning to program (with experience, M = 2.48, SD = 2.10; without

experience, M = 4.11 SD = 2.25), as indicated by the increase in effect size for both factors.

Subsequently, the differences in the responses to both factors now surpass the Bonferroni

adjusted threshold at T2. This potentially indicates a slight widening of the gap between those

with and without prior programming experience in terms of anxiety surrounding learning to

program. Indeed, students without prior programming experience reported a slight increase,

on average, in how difficult they believe learning to program to be, suggesting that for some

struggling students, learning to program continues to get harder as the module progresses.

 182

Table 5.10

Mann Whitney U Tests Between Previously Studying Computer Science (Yes/No) and

Confidence Factors at T1 and T2

Confidence Factor
T1 T2

U z p r U z p r

Estimation of how difficult
learning to program is

1227.00 -1.44 .151 0.13 1186.50 -1.67 .095 0.15

Estimation of how difficult
they find mathematics

1434.50 -0.21 .833 0.02 1435.00 -0.21 .836 0.02

Estimation of how difficult
their degree is

1400.00 -0.42 .674 0.04 1460.00 -0.06 .952 0.01

How much they fear
learning to program

1229.00 -1.42 .155 0.13 1084.50 -2.27 .023 0.21

Self-Efficacy Factor 1
(Independence and
Persistence)

1164.00 -1.79 .074 0.16 1375.00 -0.07 .947 0.01

Self-Efficacy Factor 3
(Self-Regulation)

1313.50 -0.92 .360 0.08 1264.50 -0.74 .461 0.07

Self-Efficacy Factor 4
(Simple Programming
Tasks)

837.00 -3.69 <.001 0.34 1275.00 -0.67 .501 0.06

Confidence –
Variable Assignment

1001.50 -2.74 .006 0.25 907.00 -3.37 <.001 0.31

Confidence –
Conditional Statements

1017.50 -2.64 .008 0.24 1003.50 -2.74 .006 0.25

Confidence –
Iteration

883.00 -3.42 <.001 0.31 911.00 -3.27 .001 0.30

Confidence –
All questions

922.50 -3.19 .001 0.29 884.00 -3.42 <.001 0.31

Mental Effort –
Variable Assignment

1390.50 -0.47 .640 0.04 973.00 -0.58 .564 0.05

Mental Effort –
Conditional Statements

1437.00 -0.19 .846 0.02 925.50 -0.93 .352 0.09

Mental Effort –
Iteration

1424.50 -0.27 .788 0.02 1042.50 -0.06 .955 0.01

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .002 (i.e., .05 divided by 28) are deemed to be reliable for purposes of

interpretation.

*n = 119

 183

Previously studying computer science also appears to aid students’ confidence at T1, which is

evident in students who had previously studied computer science having significantly higher

average levels of confidence in their answers for questions relating to Iteration (studied

computer science, M = 61.17, SD = 31.31; did not study computer science,

M = 38.88, SD = 28.71) and for all questions combined (studied computer science

M = 71.78, SD = 25.95; did not study computer science, M = 57.85, SD = 21.80), as shown in

Table 5.10. Substantial differences were also observed in students’ confidence in their

answers for questions relating to Variable Assignment (studied computer science,

M = 68.07, SD = 31.09; did not study computer science, M = 51.15, SD = 28.15), Conditional

Statements (studied computer science, M = 79.88, SD = 23.03; did not study computer

science, M = 70.28, SD = 22.24) and although these differences did not reach the Bonferroni

corrected threshold, they still provide evidence of increased confidence amongst students

with prior experience of studying computer science. Additionally, students’ levels of self-

efficacy for Factor 4 (studied computer science, M = 4.56, SD = 1.65; did not study computer

science, M = 3.16, SD = 1.81) were significantly higher amongst students who had previously

studied computer science. Although, this is not reflected in the self-efficacy levels for Factor

3 (studied computer science, M = 4.07, SD = 1.25, did not study computer science, M = 3.76,

SD = 1.49) or for Factor 1 (studied computer science, M = 4.35, SD = 1.44; did not study

computer science, M = 3.70, SD = 1.76).

By T2, previously studying computer science demonstrated a negligible level of influence on

students’ responses for all three self-efficacy factors: Factor 1 (studied computer science,

M = 5.04, SD = 1.16; did not study computer science, M = 5.04, SD = 1.05), Factor 3 (studied

computer science, M = 4.41, SD = 1.29; did not study computer science, M = 4.55,

SD = 1.36), Factor 4 (studied computer science, M = 5.54, SD = 1.20; did not study computer

science, M = 5.44, SD = 1.19), clearly indicating that the benefits of previously studying

computer science are short lived in terms of levels of self-efficacy relating to completing

simple programming tasks. However, it is evident that students who had previously studied

computer science remain more confident in their answers at T2, with significant differences

being evident in students’ average confidence in their answers for questions focusing on

Variable Assignment (studied computer science, M = 85.44, SD = 24.09; did not study

computer science, M = 66.62, SD = 36.20), Iteration (studied computer science, M = 74.98,

SD = 29.73; did not study computer science, M = 55.98, SD = 34.51) and for all questions

combined (studied computer science, M = 82.90, SD = 24.53; did not study computer science,

 184

M = 64.94, SD = 34.77). Additionally, the average confidence levels for questions on

Conditional Statement (studied computer science, M = 83.90, SD = 25.83; did not study

computer science, M = 68.81, SD = 36.03) is approaching the Bonferroni Corrected

threshold.

No significant differences were identified amongst estimates of students’ anxiety levels

surrounding their degree and learning to program at T1, although students’ levels of fear of

learning to program do surpass the standard significance threshold of p < .05 at T2, but not

the Bonferroni corrected threshold. This result, however, could likely be accounted for by the

experiences students have gained whilst studying the module.

Students’ level of agreement with the notion of considering themselves “self-taught

programmers" prior to starting their degrees also appeared to influence their confidence

levels, as shown in Table 5.11. Significant correlations were identified at T1 between

stronger levels of agreement in considering themselves to be self-taught and higher levels of

self-efficacy for all three factors examined within the Programming Checkup, with the

strongest correlation being with Factor 4. Students’ confidence in their answers was also

significantly correlated with their levels of agreement in considering themselves to be self-

taught, although correlations with their confidence in answering questions focusing on

conditional statements can only be viewed as approaching the Bonferroni adjusted

significance threshold. Additionally, students’ estimations of how difficult learning to

program is, and their levels of fear surrounding learning to program were significantly

correlated with how strongly they considered themselves to be self-taught programmers at

T1.

The influence of students considering themselves to be self-taught prior to starting their

courses appeared to reduce somewhat by T2, with weaker correlations being observed

between students’ level of agreement of considering themselves to be a self-taught and both

their self-efficacy levels and their confidence in their answers. However, interestingly, an

increase was observed in the strength of the correlations with how difficult they believe

learning to program to be, as well as with how much they fear learning to program, although

not as strongly as the former.

 185

It should also be noted that students’ level of mental effort when answering questions on

Iteration has a significant, albeit weak, negative correlation with their levels of agreement

with being “self-taught programmers” at both T1 and T2. However, the poor strength of the

correlation, combined with the fact that neither students’ mental effort ratings for questions

relating to variable assignment or conditional statements show significant correlations with

how strongly they consider themselves to be self-taught, makes it difficult to draw any

statistically reliable conclusions relating to the broader effects of mental effort.

Additionally, previously studying a mathematics-based subject was found not to aid students’

confidence levels as much as other background factors, as shown in Table 5.12, with none of

the measured confidence factors reaching the Bonferroni corrected threshold at T1 or T2.

Several factors, however, did surpass the standard significance threshold of p < .05, although

the effect sizes suggest a weak level of influence at best.

Students’ initial confidence in their answers and their self-efficacy levels do appear to be

positively influenced by having previous experience of programming and to a lesser extent,

studying computer science, with students who more strongly consider themselves to be self-

taught programmers also showing greater confidence and self-efficacy, although as all

students gain experience as they progress through the course the effect of having this prior

experience on confidence and self-efficacy levels has been seen to decrease. A study

conducted by Wiedenbeck et al.'s (2004) revealed that students with stronger mental models

also had higher levels of self-efficacy due to an increased level of program comprehension.

However, their study analysed students’ mental models of how a given program works rather

than at an individual concept level, as is done in this investigation.

 186

Table 5.11

Spearman’s Rank Correlation Test Between Students’ Agreement in Considering Themselves

“Self-Taught Programmers” at the Start of Their Course and Confidence Factors at T1 and

T2

Confidence Factor
T1 T2

rs p rs p

Estimation of how difficult learning to program is -.32 <.001 -.43 <.001

Estimation of how difficult they find mathematics -.20 .313 -.22 .018

Estimation of how difficult their degree is -.06 .538 -.18 .057

How much they fear learning to program -.32 <.001 -.34 <.001

Self-Efficacy Factor 1 (Independence and Persistence) .49 <.001 .33 <.001

Self-Efficacy Factor 3 (Self-Regulation) .42 <.001 .23 .014

Self-Efficacy Factor 4 (Simple Programming Tasks) .61 <.001 .38 <.001

Confidence – Variable Assignment .31 <.001 .27 .004

Confidence – Conditional Statements .26 .004 .18 .045

Confidence – Iteration .48 <.001 .35 <.001

Confidence – All Questions .37 <.001 .32 <.001

Mental Effort – Variable Assignment -.05 .569 -.02 .863

Mental Effort – Conditional Statements -.10 .296 -.04 .691

Mental Effort – Iteration -.27 .003 -.21 .030

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .002 (i.e., .05 divided by 28) were deemed to be reliable for purposes of

interpretation.

*Self-taught agreements range from Strongly Disagree (1) to Strongly Agree (7)

*n = 119

 187

Table 5.12

Mann Whitney U Tests Between Previously Studying a Mathematics-Based Subject (Yes/No)

And Confidence Factors at T1 and T2

Confidence Factor
T1 T2

U z p r U z p r

Estimation of how difficult
learning to program is

1284.00 -2.52 .012 0.23 1366.50 -2.07 .039 0.19

Estimation of how difficult
they find mathematics

1305.00 -2.42 .016 0.22 1464.00 -1.54 .123 0.14

Estimation of how difficult
their degree is

1582.00 -0.92 .357 0.08 1668.50 -0.45 .656 0.04

How much they fear
learning to program

1259.00 -2.65 .008 0.24 1359.50 -2.10 .036 0.19

Self-Efficacy Factor 1
(Independence and
Persistence)

1340.50 -2.19 .029 0.20 1547.00 -0.82 .414 0.08

Self-Efficacy Factor 3
(Self-Regulation)

1307.00 -2.37 .018 0.22 1438.50 -1.41 .158 0.13

Self-Efficacy Factor 4
(Simple Programming
Tasks)

1471.00 -1.49 .137 0.14 1411.00 -1.56 .118 0.14

Confidence –
Variable Assignment

1557.00 -1.03 .304 0.09 1596.50 -0.84 .403 0.08

Confidence –
Conditional Statements

1617.00 -0.71 .480 0.07 1622.50 -0.68 .496 0.06

Confidence –
Iteration

1527.50 -1.18 .236 0.11 1531.50 -1.17 .244 0.11

Confidence –
All questions

1554.50 -1.04 .298 0.10 1529.00 -1.18 .239 0.11

Mental Effort –
Variable Assignment

1572.00 -0.95 .340 0.09 1121.50 -1.30 .193 0.12

Mental Effort –
Conditional Statements

1576.50 -0.93 .352 0.09 1237.50 -0.52 .600 0.05

Mental Effort –
Iteration

1655.00 -0.51 .611 0.05 1293.50 -0.15 .881 0.01

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .002 (i.e., .05 divided by 28) were deemed to be reliable for purposes of

interpretation.

*n = 119

 188

The three self-efficacy factors examined within the Programming Checkup all yielded similar

results at T1, with responses to Factor 1 (having the highest level on average (M = 4.16, SD =

1.56), closely followed by Factor 4 (M = 4.15, SD = 1.81) and Factor 3 (M = 3.98, SD =

1.32). The average self-efficacy levels for all three factors increased at T2, with Factor 4 now

having the highest average level (M = 5.51, SD = 1.90), followed by Factor 1 (M = 5.04, SD

= 1.28) and with Factor 3 again having the lowest level on average (M = 4.44, SD = 1.31).

The significance of the change in self-efficacy levels is confirmed by the Wilcoxon Signed

Rank tests presented in Table 5.8, although it is not surprising to see such an increase given

the experiences that students gain whilst studying on an introductory programming module –

particularly in completing simple programming tasks that are analysed as part of Factor 4.

Table 5.13 examines the correlations between each of the three self-efficacy factors and the

mental model estimates established using Bayesian Knowledge Tracing at T1. The results

show that for self-efficacy Factor 1, the strength of the correlation ranges from rs = .10, p =

.263 for students’ models of NOT, to rs = .42, p < .001, for their models of Iteration.

Although a number of the correlations surpass the adjusted significance threshold, the

strength of the correlations can be considered moderate at best, with the majority of models

exhibiting weak correlations with Factor 1. Additionally, no models were found to have a

correlation with self-efficacy Factor 3, which surpassed the adjusted significance threshold at

T1. All but two models were deemed to have correlations with self-efficacy Factor 4, which

surpassed the adjusted significance threshold at T1. The standard significance threshold of

.05 was, however, surpassed by the remaining two models. The correlations between the

models and Factor 4 were much more substantial, with the strongest correlation being with

students’ models of Iteration, rs = .71, p < .001. The two models with the weakest correlations

were AND, rs = .21, p = .025, and NOT, rs = .25, p = .007, although, these models along with

OR, rs = .37, p = < .001, can in fact be substituted for the Conditional Statement model,

which encompasses all questions related to Boolean Logic and selection statements, and does

in fact have a moderately strong correlation with self-efficacy Factor 4, rs = .56, p < .001. By

T2, however, the strength of the correlations between mental model estimates and self-

efficacy levels was found to be noticeably weaker than the equivalents at T1, suggesting that

students’ progression with developing appropriate mental models and improving their levels

of self-efficacy does not necessarily progress at the same rate.

 189

Table 5.13

Spearman’s Rank Correlation Tests Between Self-Efficacy Factors and Mental Model Estimates Established Using Bayesian Knowledge Tracing

at T1 and T2

Mental Model

Self-Efficacy Factor 1 (Independence

and Persistence)

Self-Efficacy Factor 3 (Self-

Regulation)

Self-Efficacy Factor 4 (Simple

Programming Tasks)

T1 T2 T1 T2 T1 T2

rs p rs p rs p rs p rs p rs p

AND .12 .188 .09 .342 -.05 .553 .05 .584 .21 .025 .06 .540

Conditional Statements .35 <.001 .27 .004 .23 .013 .14 .125 .56 <.001 .28 .002

IF .32 <.001 .18 .047 .25 .006 .10 .298 .48 <.001 .18 .060

Iteration .42 <.001 .35 <.001 .23 .013 .27 .004 .71 <.001 .46 <.001

NOT .10 .263 .29 .002 .02 .847 .10 .272 .25 .007 .26 .005

Output .37 <.001 .20 .031 .20 .027 .11 .240 .62 <.001 .25 .008

OR .14 .118 .23 .015 .03 .719 .04 .649 .37 <.001 .24 .011

Parallelism .28 .002 .23 .014 .19 .040 .18 .047 .55 <.001 .32 <.001

Variable Assignment .35 <.001 .04 .641 .15 .112 .05 .607 .60 <.001 .05 .583

Variable Naming .07 0.443 .14 .144 .01 .889 .13 .154 .31 <.001 .17 .065

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied to the standard alpha value of .05 to reduce the

chance of Type 1 errors. Only significant differences at p < .003 (i.e., .05 divided by 20 – the number of tests for each Self-Efficacy factor) were

deemed to be reliable for purposes of interpretation.

*n = 119

 190

Students’ average confidence in their answers to all programming questions demonstrates

significant relationships with all mental model estimates at T1, with the majority of

correlations being of moderate strength, as shown in Table 5.14. Again, the strength of these

correlations decreases at T2, except for AND, NOT and Variable Naming, which experience

a marginal increase in strength.

Table 5.14

Spearman’s Rank Correlation Tests Between Average Confidence in Answers for All

Programming Questions and Mental Model Estimates Established Using Bayesian

Knowledge Tracing at T1 and T2

Mental Model
T1 T2

rs p rs p

AND .32 <.001 .33 <.001

Conditional Statements .63 <.001 .46 <.001

IF .54 <.001 .40 <.001

Iteration .65 <.001 .56 <.001

NOT .35 <.001 .37 <.001

Output .65 <.001 .48 <.001

OR .43 <.001 .39 <.001

Parallelism .52 <.001 .48 <.001

Variable Assignment .65 <.001 .35 <.001

Variable Naming .39 <.001 .42 <.001

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .003 (i.e., .05 divided by 20) were deemed to be reliable for purposes of

interpretation.

*n = 119

 191

The average confidence in students’ answers being correct across all questions within the

Programming Diagnostic section of the Programming Checkup has been used thus far, as

multiple models are being assessed in each question. However, the questions can be divided

based on the main concept being examined within the question (Variable Assignment,

Conditional Statements or Iteration) to allow for further analysis of students’ confidence in

their answers for these questions.

Interestingly, the correlations between students’ confidence specifically relating to answering

questions on Variable Assignment and their estimates of having an appropriate mental model

(T1 rs = .63, p < .001; T2 rs = .32, p < .001) are slightly weaker at both T1 and T2 when

compared to their average confidence for all questions. Similarly, students’ confidence when

answering questions on Conditional Statements exhibits a slightly weaker correlation at T1

and an equal strength correlation at T2, when compared with their equivalents across all

questions (T1 rs = .59, p < .001; T2 rs = .46 p < .001).

However, when answering questions on Iteration, the correlations between students’

confidence in their answers and their mental model estimates are stronger at both T1 (rs =

.70, p < .001) and T2 (rs = .63, p < .001) when compared to their average confidence for all

questions. This could be due to the fact that students may find Iteration a much harder topic,

as discussed previously, which is reflected in a lower average confidence level at both T1 and

T2 (T1, M = 54.61, SD = 32.11; T2, M = 69.40, SD = 32.26) when compared to when

students are answering questions on Variable Assignment (T1, M = 63.68, SD = 30.91; T2, M

= 79.90, SD = 29.33), Conditional Statements (T1, M = 77.06, SD = 23.13; T2, M = 79.47,

SD = 29.85) and for all questions combined (T1, M = 67.68, SD = 25.52; T2, M = 77.62, SD

= 28.97). Furthermore, this may also be an indication that the other models being examined

in the questions (i.e., Variable Naming, Parallelism or Output), may be impacting students’

confidence in their answers more for questions focusing on Variable Assignment and

Conditional Statements, than questions on Iteration, where the concept of Iteration itself is

the main factor affecting students’ confidence in their answers.

Given the results presented above, it is possible to conclude that students who are considered

to be more likely to hold appropriate mental models of concepts such as Conditional

Statements, Iteration, Output and Parallelism, are likely to have greater confidence in their

answers and also have higher levels of self-efficacy in relation to completing simple

 192

programming tasks at T1, although the strength of these relationships does decrease by T2.

Model estimates for Iteration exhibit stronger relationships with students’ confidence and

self-efficacy, suggesting that developing an understanding of this key concept significantly

influences students’ overall confidence and self-efficacy levels.

Upon completion of the questions within the Programming Diagnostic portion of the

Programming Checkup, students were required to record how much mental effort they felt

was required when answering questions. As students provided ratings of mental effort for

each of the main question categories (Variable Assignment, Conditional Statements and

Iteration), this allows for an examination of the relationship between students’ mental effort

ratings and their confidence in their answers for each of the categories. As such, students’

mental effort ratings at T1 were found to be significantly negatively correlated (significance

threshold adjusted to p < .008, 0.05/6, due to the Bonferroni correction), with their

confidence in their answers for questions focusing on the corresponding concepts, with

Variable Assignment exhibiting the strongest correlation (rs = -.45, p < .001), followed by

Iteration (rs = -.42, p < .001) and then Conditional Statements (rs = -.41, p < .001). This,

therefore, provides some evidence to suggest that students’ who are less confident in their

answers require more mental effort to answer questions. The correlations remain significant

at T2 (Variable Assignment, rs = -.33, p < .001; Conditional Statements, rs = -.27, p = .006;

Iteration, rs = -.30, p = .002). However, their strength has now decreased, which makes it

difficult to establish any firm conclusions about the relationship between students’

confidence in their answers and the mental effort they exert.

A similar trend is also evident when comparing students’ mental effort ratings to the

estimates of having an appropriate mental model of the main concepts being examined within

the question. Significant correlations (significance threshold adjusted to p < .008, 0.05/6 due

to the Bonferroni correction) were identified between the corresponding mental effort and

model estimates for Variable Assignment (rs = -.36, p <.001), Conditional Statements (rs = -

.27, p = .003) and Iteration (rs = -.27, p = .003), albeit being much weaker than the equivalent

correlations between the mental model estimates and students’ confidence in their answers, as

discussed previously. There were no significant correlations at T2 (Variable Assignment, rs =

-.15 p = .127; Conditional Statements, rs = -.08, p = .446; Iteration, rs = -0.12, p = .234).

 193

Given that students were only asked to provide ratings of their mental effort at the end of the

Programming Checkup, it may be appropriate for a future study to include a more

comprehensive measurement of students’ levels of mental effort, as has been done with their

levels of confidence in their answers, in order to allow for a more robust investigation into

how mental effort levels relate to students’ prior experiences, their levels of confidence and

their likelihood of holding appropriate mental models of the concepts being examined.

Curzon and Rix (1998), previously reported that one of the main reasons students want to

learn to program at the beginning of their course is so that they can pursue a career as a

professional programmer. However, the number of students still wanting to pursue this career

path decreases as the course progresses, which is likely due to the difficulties students

encounter when learning to program.

At T1, 64 of the 119 students who took part in both rounds of data collection stated they

wished to pursue a career in software engineering, whilst 48 stated they were undecided and

7 stated they did not wish to pursue this career path. However, by T2 the number of students

stating that they did wish to work in software engineering had decreased slightly to 61, with

the number of students who were undecided also decreasing to 41 and those not wanting to

work in software engineering increasing to 17. A Wilcoxon Signed Rank test confirmed the

significance of the change in students’ intentions to work in software engineering between T1

and T2, z = -2.047, p = .041, r = 0.19, which provides a degree of support for Curzon and

Rix's (1998) claims. As the data collection for T2 was carried out at the end of the first

semester it would be interesting to see if as large a drop as reported by Curzon and Rix

(1998) occurs by the time students had completed their first full year.

Students’ intentions for their intended career path upon graduation speaks to their motivation

and determination for learning to program, as Bergin and Reilly (2005a) go on to state how

students who were intrinsically motivated perform better than those who were extrinsically

motivatied. Students who do wish to pursue a career in software engineering at T1, as

opposed to those who are either undecided or do not want to work in software engineering,

were significantly more likely, as confirmed by the Mann Whitney U tests presented in Table

5.15, to have appropriate models at T1 for Conditional Statements (Yes M = 0.60, SD = 0.44;

No/Undecided M = 0.34, SD = 0.45), If statements (Yes M = 0.93, SD = 0.19; No/Undecided

M = 0.81, SD = 0.32), Iteration (Yes M = 0.32, SD = 0.45; No/Undecided M = 0.06, SD =

 194

0.23), Output (Yes M = 0.87 SD = 0.32; No/Undecided M = 0.78, SD = 0.40), Variable

Assignemnt (Yes M = 0.62, SD = 0.46; No/Undecided M = 0.33, SD = 0.43) and also

Parallelism (Yes M = 0.59, SD = 0.40; No/Undecided M = 0.40, SD = 0.36) which is

approaching the corrected significance threshold. However, by T2, there are signs of the gap

reducing between those who do want to work in software eingeering and those who do not, or

are undecided. This is reflected in only estimates for Iteration (Yes, M = 0.47, SD = 0.48;

No/Undecided, M = 0.21, SD = 0.38) and Conditional Statements (Yes, M = 0.72, SD = 0.40;

No/Undecided, M = 0.48, SD = 0.48) continuing to demonstrate significant differences.

Interestingly, the differences in students’ estimates of having an appropriate model for NOT

has become significant at T2 (Yes, M = 0.83, SD = 0.31; No/Undecided, M = 0.67 SD =

0.35), although it is difficult to suggest any conclusive reasons for this increase.

Table 5.15

Mann Whitney U Tests Between Students’ Intentions to Pursue a Career in Software

Engineering (Yes or Undecided/No) and Mental Model Estimates Established Using

Bayesian Knowledge Tracing at T1 and T2

Mental Model
T1 T2

U z p r U z p r

AND 1419.50 -2.03 .042 0.19 1430.50 -2.02 .044 0.19

Conditional Statements 1207.50 -2.95 .003 0.27 1190.00 -3.08 .002 0.28

IF 1167.50 -3.19 .001 0.29 1458.50 -1.69 .092 0.15

Iteration 1084.00 -3.86 <.001 0.35 1141.50 -3.41 <.001 0.31

NOT 1517.50 -1.32 .188 0.12 1047.50 -3.92 <.001 0.36

Output 1150.00 -3.26 .001 0.30 1335.50 -2.33 .020 0.21

OR 1556.50 -1.09 .275 0.10 1303.50 -2.49 .012 0.23

Parallelism 1243.00 -2.77 .006 0.25 1464.50 -1.63 .102 0.15

Variable Assignment 1088.00 -3.67 <.001 0.34 1564.00 -1.18 .237 0.11

Variable Naming 1351.50 -2.28 .023 0.21 1503.00 -1.57 .117 0.14

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .003 (i.e., .05 divided by 20) were deemed to be reliable for purposes of

interpretation.

*n = 119

 195

Furthermore, students who do wish to pursue a career in software engineering are generally

more confident, as shown in Table 5.16, with significant differences being identifited at T1 in

how difficult students believe learning to program to be (Yes, M = 5.30 SD = 2.034;

No/Undecided, M = 6.73, SD = 1.65), how much they fear learning to program (Yes, M =

2.52, SD = 2.085; No/Undecided, M = 4.47, SD = 2.57), their self-efficacy levels for all three

factors (Factor 1, Yes, M = 4.70, SD = 1.50; No/Undecided, M = 3.53, SD = 1.40; Factor 3,

Yes, M = 4.46, SD = 1.13; No/Undecided, M = 3.42, SD = 1.32; Factor 4, Yes, M = 4.68, SD

= 1.73; No/Undecided, M = 3.54, SD = 1.71), and their average confidence in answering

questions on Variable Assignment (Yes, M = 72.07, SD = 28.51; No/Undecided, M = 53.92,

SD = 30.96), Conditional Statements (Yes, M = 82.57, SD = 20.56; No/Undecided, M =

70.64, SD = 24.45), Iteration (Yes, M = 64.37, SD = 30.72; No/Undecided, M = 43.25, SD =

30.13), and for all questions combined (Yes, M = 75.09, SD = 22.77; No/Undecided, M =

59.07, SD = 26.03).

The differences remain significant at T2 between those who do wish to pursue a career in

software engineering and those who are unsure or do not wish to for factors includinng how

much students fear learning to program, self-efficacy Factors 1 (Yes, M = 5.46, SD = 0.90;

No/Undecided, M = 4.60, SD = 1.18) and Factor 4 (Yes, M = 5.85, SD = 0.95; No/Undecided,

M = 5.16, SD = 1.32), and students confidence in their answers (Variable Assignment, Yes,

M = 87.14, SD = 25.19; No/Undecided, M = 72.29, SD = 31.58; Conditional Statement, Yes,

M = 85.39, SD 26.95; No/Undecided, M = 73.234, SD = 31.70; Iteration, Yes, M = 79.39, SD

= 27.023; No/Undecided, M = 58.88, SD = 34.14; All, Yes, M = 85.46, SD = 24.59;

No/Undecided, M = 69.37, SD = 31.07).

The results therefore indicate that students who want to pursue a career in software

engineering are generally more confident in their programming abilities. There is also

evidence to suggest that students who do initially want to work in software engineering are

also more likely to be holding appropriate mental models of a variety of conceptions at the

commencement of their introductory programming module. However, there appeared to be

less of a difference in terms of the liklihood of holding appropriate mental models by T2.

This suggests that students’ intentions for wanting to work in a software engineering role

upon graduation may be influenced, to a greater extent, by how confident they are in their

abilties, rather than how likely they are to actually be holding appropriate mental models.

 196

Table 5.16

Mann Whitney U Tests Between Students’ Intentions to Pursue a Career in Software

Engineering (Yes or Undecided/No) And Confidence Factors at T1 and T2

Confidence Factor
T1 T2

U z p r U z p r

Estimation of how difficult
learning to program is

1096.00 -3.59 <.001 0.33 1322.00 -2.40 .016 0.22

Estimation of how difficult
they find mathematics

1453.50 -1.66 .096 0.15 1509.50 -1.40 .163 0.13

Estimation of how difficult
their degree is

1716.50 -0.24 .811 0.02 1524.00 -1.35 .178 0.12

How much they fear
learning to program

986.00 -4.17 <.001 0.38 833.50 -5.02 <.001 0.46

Self-Efficacy Factor 1
(Independence and
Persistence)

958.50 -4.27 <.001 0.39 959.00 -4.10 <.001 0.38

Self-Efficacy Factor 3
(Self-Regulation)

982.50 -4.15 <.001 0.38 1186.50 -2.86 .004 0.26

Self-Efficacy Factor 4
(Simple Programming
Tasks)

1116.50 -3.43 <.001 0.31 1151.50 -3.05 .002 0.28

Confidence –
Variable Assignment

1141.50 -3.30 <.001 0.30 1051.00 -3.92 <.001 0.36

Confidence –
Conditional Statements

1163.00 -3.19 .001 0.29 1200.50 -3.04 .002 0.28

Confidence –
Iteration

1085.50 -3.60 <.001 0.33 1088.50 -3.63 <.001 0.33

Confidence –
All Questions

1111.50 -3.46 <.001 0.32 1016.50 -4.01 <.001 0.37

Mental Effort –
Variable Assignment

1489.00 -1.46 .145 0.13 1121.50 -1.36 .175 0.12

Mental Effort –
Conditional Statements

1633.00 -0.68 .494 0.06 1089.00 -1.57 .117 0.14

Mental Effort –
Iteration

1552.50 -1.12 .264 0.10 1207.00 -0.79 .432 0.07

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .002 (i.e., .05 divided by 28) were deemed to be reliable for purposes of

interpretation.

*n = 119

 197

5.3 Examination of Relationships with Assessment 1 Results
The analyses conducted so far have focused on the changes in results between T1 and T2.

Unfortunately, however, a large number of students decided not to take part at T2, which

therefore reduces the amount of available data. Although the data collected at T2 are

important for tracking students’ progress across the first semester, the purpose of this

investigation was the development of a predictive model that can be used when students first

start their courses. This means that the relationships between the data collected at T1 and

students’ assessment results are the most important in terms of contributions towards

development of the model.

Section 4.3 presents the feature selection process used to select which features to include in

the model. However, this was carried out with 30% of the data being withheld from the

analysis in order for it to be used later as the test dataset. Although this is a standard practice

in machine learning to allow for the real-world performance of the model to be estimated

(Kuhn & Johnson, 2013; Raschka, 2018; Russell & Norvig, 2020) by fully isolating the test

set from all stages of model development, it does limit the amount of data available for

analysis. Therefore, the following analysis includes all available data at T1 (n = 285) and was

carried out after the model development was completed in order to allow for more robust

conclusions to be drawn, whilst maintaining the integrity of the model development process

as described in Section 4.3.

Although many of the tests below were also carried out during the feature selection process,

they now include all available data, which allows for a much deeper analysis to be carried out

than was done previously. Furthermore, the Bonferroni correction was not applied during the

feature selection process due to the fact that its over-conservative nature would likely lead to

a large number of features being excluded. However, the correction will be applied in this

section in order to reduce the chance of Type 1 errors when drawing conclusions about the

significance of the relationships within the data.

As stated previously, students’ results from their first assessment within their Introductory

Programming module were chosen as the dependent variable of the predictive model as these

results focus on evaluating students’ core programming skills, which ties in closely with the

Programming Diagnostic questions within the Programming Checkup.

 198

Table 5.17 presents a series of Mann Whitney U tests, which repeats the analysis conducted

in Table 4.3, whereby the dichotomous features relating to students’ backgrounds are

examined as to whether they have a significant influence on students’ Assessment 1 results.

These analyses include the one-hot encoded responses to “Work in Software Engineering”,

where students’ responses to “Yes” surpassed the Bonferroni corrected significance threshold

of p < .007. Furthermore a Kruskal Wallis test also confirmed the existence of a significant

difference between students’ assessment results and the three possible responses – Yes (M =

72.98 SD = 18.26), Undecided (M = 65.73 SD = 21.95) and No (M = 64.12 SD = 18.61); H(2)

= 9.270, p = .010, η2 = 0.032. Additionally, students’ level of agreement with how strongly

they considered themselves to be “self-taught programmers” was confirmed also to be

significantly correlated, albeit relatively weakly, with their Assessment 1 results, rs = .285, p

= <.001, when tests were conducted on all available data at T1.

Table 5.17

Mann Whitney U Test Between Assessment 1 Results and Dichotomous Background Factors,

Conducted on All Available Data at T1

Background Factor U z p r

Prior programming experience 7168.50 -2.26 .024 0.13

Previously Studied computer science 7270.00 -1.68 .094 0.09

Previously Studied mathematics-based subject 8083.50 -2.71 .007 0.16

Intend to work in software engineering - No 1762.50 -1.57 .117 0.09

Intend to work in software engineering – Undecided 8007.00 -2.25 .024 0.13

Intend to work in software engineering - Yes 7950.50 -2.95 .003 0.17

English is student’s first language 5108.50 -0.94 .347 0.05

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .007 (i.e., .05 divided by 7) were deemed to be reliable for purposes of

interpretation.

*n = 285

The Background Features, which were retained following the analysis conducted in Section

4.3 were: whether students have studied a mathematics-based subject after leaving school,

whether students intended to pursue a career in software engineering and how strongly

students consider themselves to be self-taught programmers. The results of the analysis

 199

conducted on all available data at T1 support the conclusions drawn in Section 4.3 as to

which background features should be included in the model. Two features which were not

included in the models were whether students have previously studied computer science and

whether students have prior programming experience. However, given that the previously

discussed literature has suggested that prior experience – particularly prior programming

experience – can aid students’ performance, it was felt that it would be appropriate to

examine these factors further.

Previously, when reviewing the results of students who completed the Programming Checkup

at both T1 and T2, having prior programming experience was found to benefit students at T1

in terms of their likelihood of holding appropriate mental models for each of the concepts and

their confidence in general. However, by T2 the differences between those with and without

programming experience decreases for the majority of the factors examined within the

Programming Checkup.

Tables 5.18 and 5.19 repeat the Mann Whitney U tests performed in Tables 5.3 and 5.9 in

order to confirm any significant differences in students’ mental model estimates or

confidence levels at T1 between those who did and did not have prior programming

experience. However, these analyses now focus on all available data at T1.

 200

Table 5.18

Mann Whitney U Tests Between Prior Programming Experience (Yes/No) And Mental Model

Estimates Established Using Bayesian Knowledge Tracing, Conducted on All Available Data

at T1

Mental Model U z p r

AND 6910.00 -2.91 .004 0.17

Conditional Statements 4980.50 -5.67 <.001 0.34

IF 5732.00 -4.52 <.001 0.27

Iteration 4857.00 -6.33 <.001 0.38

NOT 6510.00 -3.33 <.001 0.20

Output 4132.50 -7.02 <.001 0.42

OR 6211.00 -3.77 <.001 0.22

Parallelism 4675.50 -6.17 <.001 0.37

Variable Assignment 4397.00 -6.71 <.001 0.40

Variable Naming 6421.00 -3.61 <.001 0.21

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .005 (i.e., .05 divided by 10) were deemed to be reliable for purposes of

interpretation.

*n = 285

 201

Table 5.19

Mann Whitney U Tests Between Prior Programming Experience (Yes/No) and Confidence

Factors, Conducted on All Available Data at T1

Confidence Factor U z p r

Estimation of how difficult learning to program is 5618.00 -4.73 <.001 0.28

Estimation of how difficult they find mathematics 8521.50 -0.15 .885 0.01

Estimation of how difficult their degree is 8439.50 -0.28 .780 0.02

How much they fear learning to program 6200.00 -3.80 <.001 0.23

Self-Efficacy Factor 1 (Independence and Persistence) 4241.00 -6.83 <.001 0.40

Self-Efficacy Factor 3 (Self-Regulation) 6238.50 -3.71 <.001 0.22

Self-Efficacy Factor 4 (Simple Programming Tasks) 3041.00 -8.70 <.001 0.52

Confidence – Variable Assignment 4664.50 -6.17 <.001 0.37

Confidence – Conditional Statements 5539.50 -4.80 <.001 0.28

Confidence – Iteration 4134.00 -6.99 <.001 0.41

Confidence – All Questions 4429.50 -6.53 <.001 0.39

Mental Effort – Variable Assignment 7422.00 -0.89 .375 0.05

Mental Effort – Conditional Statements 7286.00 -1.11 .266 0.07

Mental Effort – Iteration 6362.50 -2.65 .008 0.16

Note. Given the number of tests being conducted a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .004 (i.e., .05 divided by 14) were deemed to be reliable for purposes of

interpretation.

*n = 285

The Mann Whitney U test in Table 5.17 indicated that having prior programming experience

does exert some level of influence on students’ Assessment 1 results. However, although it

surpasses the standard alpha significance threshold of .05, it fails to surpass the Bonferroni

corrected threshold of p < .006. Similarly, the Mann Whitney U test performed during the

feature selection process in Table 4.3, fails to surpass the standard threshold of .05, which

contributed to prior programming experience not being included in the model.

The likelihood of there being a direct link between having prior programming experience and

success within Assessment 1 appears tentative at best, with students with prior experience

obtaining a slightly higher result, M = 71.45, SD = 19.39, than those without, M = 65.80, SD

= 21.00. However, it has been previously stated that there are a number of factors examined

 202

within the Programming Checkup where having prior programming experience has proven to

cause a significant difference in results.

Prior programming experience may therefore, potentially be indirectly affecting students’

Assessment 1 results by acting as a moderator variable, which according to Baron and Kenny

(1986) “affects the direction and/or strength of the relation between an independent or

predictor variable and a dependent or criterion variable” (p. 1174). Tables 5.20 and 5.21

present a Moderation Analysis conducted between having prior programming experience and

students’ mental model estimates and confidence factors, respectively, using the PROCESS

Macro (Hayes, 2022). However, only mental model estimates and confidence factor ratings

which were deemed to have significant differences between students with and without prior

programming experience (as shown in Tables 5.18 and 5.19), were included in the

moderation analysis. The moderation analysis tables include the full regression results with

students’ Assessment 1 results being the dependent variable. However, it is necessary to

review the “Ind. x Mod. Interaction” row in order to examine whether prior programming

experience does in fact affect students’ assessment results through its influence on each of the

independent variables.

Prior programming experience was revealed to only have one potentially significant

interaction with a mental model (i.e., AND). However, this failed to reach the adjusted

significance threshold. Additionally, a Johnson-Neyman analysis revealed that amongst

students who did not have prior programming experience, there was a significant relationship

between students’ estimates of having an appropriate model for AND and their Assessment 1

results, b = 27.58, t = 3.41, p = < .001. However, the relationship was not significant amongst

those with prior programming experience, b = 4.58, t = 0.64, p = .525. Given this, and the rest

of the evidence presented in Table 5.20, prior programming experience should be generally

viewed as not acting as a moderator on students’ mental model estimates when attempting to

predict their assessment performance.

 203

Table 5.20

Moderation Analysis Between Prior Programming Experience (Yes/No) and Mental Model

Estimates When Predicting Students’ Assessment 1 Results, Conducted on All Available Data

at T1

Mental Model Regression Model b SE t p

AND

R2 = .06

Constant 41.77 7.36 5.68 <.001

Independent Variable 27.58 8.10 3.41 .001

Moderator 25.37 10.10 2.51 .013

Ind. x Mod. Interaction -23.00 10.84 -2.12 .034

Conditional Statements

R2 = .14

Constant 63.06 2.46 25.60 <.001

Independent Variable 9.34 4.87 1.92 .056

Moderator -2.28 3.3297 -0.68 .495

Ind. x Mod. Interaction 8.50 5.73 1.48 .138

IF

R2 = .05

Constant 56.39 5.68 9.92 <.001

Independent Variable 11.96 6.71 1.78 .076

Moderator 2.65 7.51 0.35 .724

Ind. x Mod. Interaction 2.11 8.57 0.25 .806

Iteration

R2 = .09

Constant 65.00 2.11 30.68 <.001

Independent Variable 16.67 9.90 1.68 .093

Moderator 2.79 2.66 1.04 .295

Ind. x Mod. Interaction -2.49 10.44 -0.24 .812

NOT

R2 = .04

Constant 67.37 5.36 12.57 <.001

Independent Variable -2.14 6.76 -0.32 .751

Moderator -6.09 7.01 -0.87 .386

Ind. x Mod. Interaction 14.62 8.57 1.71 .089

Output

R2 = .07

Constant 54.19 3.78 14.35 <.001

Independent Variable 17.34 4.71 3.68 <.001

Moderator 6.20 6.90 0.90 .370

Ind. x Mod. Interaction -5.48 7.64 -0.72 .474

OR

R2 = .09

Constant 62.66 2.68 23.35 <.001

Independent Variable 9.48 5.19 1.83 .069

Moderator 1.79 3.41 0.52 .601

Ind. x Mod. Interaction 4.67 6.11 0.76 .446

 204

Parallelism

R2 = .13

Constant 58.49 2.80 20.93 <.001

Independent Variable 24.33 6.44 3.78 <.001

Moderator 3.32 3.75 0.89 .376

Ind. x Mod. Interaction -8.13 7.34 -1.11 .269

Variable Assignment

R2 = .16

Constant 61.12 2.37 25.81 <.001

Independent Variable 18.92 5.22 3.63 <.001

Moderator 0.34 3.23 0.10 .917

Ind. x Mod. Interaction -2.62 5.95 -0.44 .659

Variable Naming

R2 = .08

Constant 55.28 3.72 14.85 <.001

Independent Variable 16.69 4.90 3.41 <.001

Moderator 6.38 5.52 1.16 .249

Ind. x Mod. Interaction -5.11 6.68 -0.76 .445

Note. Independent Variable is the Mental Model being tested.

Moderator is Prior Programming Experience.

Given the number of tests being conducted, a Bonferroni correction factor was applied to the

standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .005 (i.e., .05 divided by 10) were deemed to be reliable for purposes of

interpretation.

 205

Table 5.21

Moderation Analysis Between Prior Programming Experience (Yes/No) and Confidence

Factors When Predicting Students’ Assessment 1 Results, Conducted on All Available Data

at T1

Confidence Factor Regression Model b SE t p

Estimation of how difficult

learning to program is

R2 = .04

Constant 60.91 8.25 7.38 <.001

Independent Variable 0.73 1.19 0.61 .540

Moderator 20.97 9.19 2.28 .023

Ind. x Mod. Interaction -2.60 1.37 -1.90 .058

How much they fear learning to

program

R2 = .09

Constant 67.87 4.13 16.45 <.001

Independent Variable -0.49 0.84 -0.58 .564

Moderator 11.92 4.68 2.55 .011

Ind. x Mod. Interaction -2.24 1.02 -2.21 .028

Self-Efficacy Factor 1

(Independence and Persistence)

R2 = .07

Constant 66.47 4.75 14.00 <.001

Independent Variable -0.21 1.33 -0.16 .875

Moderator -14.57 6.98 -2.09 .038

Ind. x Mod. Interaction 4.40 1.70 2.59 .010

Self-Efficacy Factor 3 (Self-

Regulation)

R2 = .04

Constant 68.41 5.86 11.67 <.001

Independent Variable -0.72 1.51 -0.48 .634

Moderator -9.66 7.78 -1.24 .215

Ind. x Mod. Interaction 3.68 1.89 1.94 .053

Self-Efficacy Factor 4 (Simple

Programming Tasks)

R2 = .14

Constant 58.60 4.05 14.46 <.001

Independent Variable 2.58 1.26 2.05 .042

Moderator -14.00 6.16 -2.27 .024

Ind. x Mod. Interaction 2.94 1.56 1.89 .060

Confidence – Variable Assignment

R2 = .10

Constant 57.65 3.79 15.20 <.001

Independent Variable 0.17 .068 2.56 .011

Moderator -1.18 5.37 -0.22 .826

Ind. x Mod. Interaction 0.04 0.08 0.42 .672

Confidence – Conditional

Statements

R2 = .08

Constant 54.01 6.43 8.40 <.001

Independent Variable 0.17 0.09 1.94 .054

Moderator -5.90 8.76 -0.67 .501

Ind. x Mod. Interaction 0.11 0.11 1.01 .314

 206

Confidence – Iteration

R2 = .13

Constant 60.27 3.18 18.95 <.001

Independent Variable 0.16 0.07 2.24 .026

Moderator -4.87 4.47 -1.09 .277

Ind. x Mod. Interaction 0.09 0.09 1.09 .277

Confidence – All questions

R2 = .12

Constant 53.28 5.07 10.51 <.001

Independent Variable 0.23 0.09 2.69 .008

Moderator -4.52 6.83 -0.66 .509

Ind. x Mod. Interaction 0.07 0.11 0.68 .495

Note. Independent Variable is the Confidence Factor being tested.

Moderator is Prior Programming Experience.

Given the number of tests being conducted, a Bonferroni correction factor was applied to the

standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .006 (i.e., .05 divided by 9) were deemed to be reliable for purposes of

interpretation.

*n = 285

Similarly, only two interactions between prior programming experience and confidence

factors (how much students fear learning to program and self-efficacy Factor 1), surpassed

the standard significance threshold, but again failed to reach the adjusted threshold. The

Johnson-Neyman analysis revealed that the relationship was significant between students’

fear of learning to program and their Assessment 1 results amongst those with prior

programming experience, b = -2.73, t = -4.78, p = <.001, but not amongst those without prior

programming experience, b = -0.486, t = -0.58, p = .564. Additionally, it was also found that

the relationship between self-efficacy Factor 1 and Assessment 1 results was significant

amongst those with prior programming experience, b = 4.20, t = 3.97, p = <.001, but not

amongst those without prior experience, b = -0.21, t = -0.16, p = .875.

These results suggest that prior programming experience should also not be considered as

acting as a moderator variable between students’ confidence factors and their Assessment 1

results. When taking into account that prior programming experience also does not appear to

be a reliable moderator between students’ mental model estimates and their Assessment 1

results, this supports the decision to not include prior programming experience within the

predictive model.

 207

A similar analysis was also undertaken in order to establish whether previously studying

computer science indirectly affects students’ Assessment 1 results indirectly, given that like

prior programming experience, the likelihood of a direct link does not appear to be very

strong as the Mann Whitney U test performed in Table 5.17 surpasses the standard

significance threshold, but not the adjusted one. Additionally, there was only a small increase

in students’ assessment results between those who did previously study computer science, M

= 71.12, SD = 19.25, and those who did not, M = 66.29, SD = 21.56. It should be noted that

previously studying computer science was not included in the predictive model due to the

Mann Whitney U test performed in Table 4.3, which did not indicate a significant

relationship with students’ Assessment 1 results within the training dataset.

As before, mental model estimates and confidence factor ratings that showed significant

differences between those who did and did not previously study computer science (as shown

in Tables 5.22 and 5.23), were included in the moderation analysis, which is presented in

Tables 5.24 and 5.25.

 208

Table 5.22

Mann Whitney U Tests Between Previously Studying Computer Science (Yes/No) And Mental

Model Estimates, Conducted on All Available Data at T1

Mental Model U z p r

AND 7057.00 -2.20 .028 0.13

Conditional Statements 5537.00 -4.42 <.001 0.26

IF 6485.50 -2.93 .003 0.17

Iteration 5297.00 -5.19 <.001 0.31

NOT 6131.50 -3.53 <.001 0.21

Output 5524.50 -4.46 <.001 0.26

OR 6537.00 -2.85 .004 0.17

Parallelism 5321.00 -4.78 <.001 0.28

Variable Assignment 4982.00 -5.41 <.001 0.32

Variable Naming 7591.50 -1.23 .221 0.07

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .005 (i.e., .05 divided by 10) were deemed to be reliable for purposes of

interpretation.

*n = 285

 209

Table 5.23

Mann Whitney U Tests Between Previously Studying Computer Science (Yes/No) and

Confidence Factors Conducted on All Available Data at T1

Confidence Factor U z p r

Estimation of how difficult learning to program is 5874.00 -3.93 <.001 0.23

Estimation of how difficult they find mathematics 8316.00 -0.01 .991 0.00

Estimation of how difficult their degree is 7992.50 -0.54 .588 0.03

How much they fear learning to program 6447.00 -3.01 .003 0.18

Self-Efficacy Factor 1 (Independence and

Persistence)

5171.50 -5.01 <.001 0.30

Self-Efficacy Factor 3 (Self-Regulation) 6933.50 -2.21 .027 0.13

Self-Efficacy Factor 4 (Simple Programming

Tasks)

3817.50 -7.16 <.001 0.42

Confidence – Variable Assignment 5018.50 -5.25 <.001 0.31

Confidence – Conditional Statements 5655.50 -4.24 <.001 0.25

Confidence – Iteration 4622.00 -5.88 <.001 0.35

Confidence – All Questions 4756.00 -5.66 <.001 0.34

Mental Effort – Variable Assignment 7114.50 -1.03 .304 0.06

Mental Effort – Conditional Statements 7467.00 -0.43 .666 0.03

Mental Effort – Iteration 7611.00 -0.19 .851 0.02

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .004 (i.e., .05 divided by 14) were deemed to be reliable for purposes of

interpretation.

*n = 285

 210

Table 5.24

Moderation Analysis Between Previously Studying Computer Science (Yes/No) and Mental

Model Estimates When Predicting Students’ Assessment 1 Results, Conducted on All

Available Data at T1

Mental Model Regression Model b SE t p

Conditional Statements

R2 = .13

Constant 62.30 2.58 24.13 <.001

Independent Variable 12.95 4.98 2.60 .010

Moderator -0.87 3.38 -0.26 .797

Ind. x Mod. Interaction 3.64 5.80 0.63 .530

IF

R2 = .05

Constant 60.28 6.55 9.21 <.001

Independent Variable 7.27 7.48 0.97 .332

Moderator -3.74 7.94 -0.47 .638

Ind. x Mod. Interaction 9.61 8.96 1.07 .285

Iteration

R2 = .08

Constant 65.14 2.00 29.60 <.001

Independent Variable 18.32 8.96 2.05 .042

Moderator 2.47 2.71 0.91 .362

Ind. x Mod. Interaction -4.13 9.559 -0.43 -.666

NOT

R2 = .02

Constant 60.88 5.30 11.49 <.001

Independent Variable 7.73 6.88 1.12 .262

Moderator 5.00 7.038 0.71 .477

Ind. x Mod. Interaction -1.39 8.72 -0.16 .873

Output

R2 =.08

Constant 53.32 4.21 12.67 <.001

Independent Variable 18.08 5.05 3.58 <.001

Moderator 6.22 6.37 0.98 .329

Ind. x Mod. Interaction -5.33 7.15 -0.75 .456

OR

R2 = .09

Constant 62.06 2.76 22.47 <.001

Independent Variable 12.56 5.23 2.40 .017

Moderator 2.60 3.45 0.75 .452

Ind. x Mod. Interaction 0.67 6.14 0.11 .913

 211

Parallelism

R2 = .12

Constant 59.80 2.96 20.18 <.001

Independent Variable 18.93 6.15 3.08 .002

Moderator 1.22 3.80 0.32 0.75

Ind. x Mod. Interaction -1.24 7.05 -0.18 .860

Variable Assignment

R2 = .15

Constant 61.64 2.51 24.58 <.001

Independent Variable 15.95 4.97 3.21 .002

Moderator -0.50 3.27 -0.15 .879

Ind. x Mod. Interaction 1.05 5.71 0.18 .854

Note. Ind. (Independent Variable) is the Confidence Factor being tested.

Mod. (Moderator) is previously studying computer science.

Given the number of tests being conducted, a Bonferroni correction factor was applied to the

standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .006 (i.e., .05 divided by 8) were deemed to be reliable for purposes of

interpretation.

*n = 285

 212

Table 5.25

Moderation Analysis Between Previously Studying Computer Science (Yes/No) and

Confidence Factors When Predicting Students’ Assessment 1 Results, Conducted on All

Available Data at T1

Confidence Factor Regression Model b SE t p

Estimation of how difficult

learning to program is

R2 = .05

Constant 53.723 9.50 5.65 <.001

Independent Variable 1.88 1.39 1.36 .176

Moderator 28.54 10.26 2.78 .006

Ind. x Mod. Interaction -3.87 1.53 -2.53 .012

How much they fear learning to

program

R2 = .10

Constant 66.5 4.16 15.99 <.001

Independent Variable -0.05 0.88 -0.06 .950

Moderator 13.59 4.70 2.89 .004

Ind. x Mod. Interaction -2.79 1.03 -2.70 .007

Self-Efficacy Factor 1

(Independence and Persistence)

R2 =.06

Constant 63.27 4.82 13.13 <.001

Independent Variable 0.89 1.26 0.70 .483

Moderator -8.83 6.85 -1.29 .198

Ind. x Mod. Interaction 2.78 1.63 1.71 .089

Self-Efficacy Factor 4 (Simple

Programming Tasks)

R2 =.13

Constant 57.01 4.23 13.49 <.001

Independent Variable 3.09 1.23 2.52 .012

Moderator -8.85 5.98 -1.48 .140

Ind. x Mod. Interaction 1.76 1.49 1.18 .240

Confidence – Variable Assignment

R2 =.10

Constant 58.83 4.22 13.94 <.001

Independent Variable 0.15 0.07 2.04 .042

Moderator -2.84 5.47 -0.52 .604

Ind. x Mod. Interaction 0.07 0.087 0.746 .456

Confidence – Conditional

Statements

R2 =.08

Constant 53.28 7.15 7.45 <.001

Independent Variable 0.185 0.10 1.91 .058

Moderator -4.27 9.03 -0.47 .636

Ind. x Mod. Interaction 0.09 0.12 0.74 .458

Confidence – Iteration

R2 =.13

Constant 60.15 3.40 17.71 <.001

Independent Variable 0.17 0.07 2.29 .023

Moderator -4.17 4.50 -0.93 .354

Ind. x Mod. Interaction 0.08 0.09 0.93 .353

 213

Confidence – All Questions

R2 =.12

Constant 53.60 5.59 9.59 <.001

Independent Variable 0.23 0.09 2.45 .015

Moderator -4.42 7.01 -0.63 .529

Ind. x Mod. Interaction 0.07 0.11 0.66 .509

Note. Independent Variable is the Confidence Factor being tested.

Moderator is previously studying computer science.

Given the number of tests being conducted, a Bonferroni correction factor was applied to the

standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .006 (i.e., .05 divided by 8) were deemed to be reliable for purposes of

interpretation.

*n = 285

The moderation analysis revealed no significant interactions were found between students’

mental model estimates and previously studying computer science when attempting to predict

students’ Assessment 1 results. However, two confidence factors (how difficult students

believe learning to program to be and how much students fear learning to program), were

identified as having potentially significant interactions with previously studying computer

science.

The interaction between previously studying computer science and students’ ratings for how

difficult students believe learning to program to be surpassed the standard significance

threshold of .05, but not the adjusted significance threshold. However, a Johnson-Neyman

analysis revealed that a significant relationship existed between those who did previously

study computer science and their rating for how difficult they believe learning to program to

be, b = -1.984, t = -3.081, p = .002. However, this was not significant amongst students who

did not previously study Computer Science, b = 1.884, t = 1.358, p = .176.

The interaction between students’ ratings of how much they fear learning to program and

whether they had previously studied computer science almost reached the adjusted

significance threshold of p < .006. Follow-up analyses using the Johnson-Neyman test

revealed a significant relationship between students’ level of fear of learning to program and

their Assessment 1 results amongst those who did previously study computer science, b = -

2.852, t = -5.191, p = <.001, but not those who did not previously study it, b = -0.055, t = -

0.062, p = .950.

 214

Although previously studying computer science appears to indirectly exert a degree of

influence on students’ Assessment 1 results through the levels of fear associated with

learning to program, the fact that no significant interactions take place with all mental model

estimates and the majority of the confidence factors, supports the decision not to include

whether students have previously studied computer science within the predictive model. Both

prior programming experience and previously studying computer science cannot generally be

considered to be moderator variables when attempting to predict students’ Assessment 1

results. Although both variables have been shown to significantly influence students’

responses to the Programming Checkup at T1, the influence of both variables has been seen

to decrease by T2 and subsequently, their influence over students’ Assessment 1 is also

limited given that this takes place within a few weeks of the T2 data collection.

Students who exhibit high levels of anxiety towards learning to program and low levels of

self-confidence in their abilities have been shown to encounter an “almost physical barrier” to

learning to program (Rogerson & Scott, 2010, p.167). The results presented in Table 5.26

depict the relationships between each of the confidence factors examined within the

Programming Checkup at T1 and students’ Assessment 1 results. This repeats the analysis

conducted during the feature selection process, as shown in Table 4.5, where the following

features were retained within the predictive model:

• Estimation of how difficult learning to program is

• Estimation of how difficult they find mathematics

• How much they fear learning to program

• Self-efficacy Factor 1 (Independence and Persistence)

• Self-efficacy Factor 3 (Self-Regulation)

• Self-efficacy Factor 4 (Simple Programming Tasks)

• Confidence (all questions)

 215

Table 5.26

Spearman’s Rank Correlation Tests Between Assessment 1 Results and Confidence Features,

Conducted on All Available Data at T1

Confidence Factor rs p

Estimation of how difficult learning to program is -.15 .012

Estimation of how difficult they find mathematics -.09 .133

Estimation of how difficult their degree is .04 .493

How much they fear learning to program -.29 <.001

Self-Efficacy Factor 1 (Independence and Persistence) .22 <.001

Self-Efficacy Factor 3 (Self-Regulation) .13 .025

Self-Efficacy Factor 4 (Simple Programming Tasks) .39 <.001

Confidence – Variable Assignment .34 <.001

Confidence – Conditional Statements .29 <.001

Confidence – Iteration .39 <.001

Confidence – All Questions .38 <.001

Mental Effort – Variable Assignment -.12 .046

Mental Effort – Conditional Statements -.09 .119

Mental Effort – Iteration -.10 .113

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .004 (i.e., .05 divided by 14) were deemed to be reliable for purposes of

interpretation.

*n = 285

The results of the tests conducted on the full dataset are analogous to those of the tests

conducted during Feature Selection, whereby students’ ratings for how difficult they believe

their degrees to be as well as their ratings of mental effort when answering questions on

Conditional Statements and Iteration, showed no significant relationship with their

Assessment 1 results and, as such, were not included in the predictive model. Although

students’ mental effort ratings for answering questions on Variable Assignment surpassed the

standard significance threshold of p < .05 (but not the adjusted threshold), the original

decision not to include any mental effort ratings in the predictive model is felt to still be

justified, given that the correlations between students’ mental effort ratings for Conditional

Statements and Iteration did not surpass the standard significance threshold.

 216

Students’ estimations of how difficult they find mathematics was retained in the model due to

a strong relationship being identified with the dichotomised assessment results used for

classification, as shown in Table 4.4, despite a non-significant relationship being identified

with the continuous assessment result used for the regression models. In order to ensure

consistency, the same features were used for both classification and regression models.

The link between mathematics and programming is evident in the literature (i.e. Bergin &

Reilly, 2005b; Byrne & Lyons, 2001; Gomes et al., 2006; Kaufmann & Stenseth, 2021;

Wilson & Shrock, 2001), and a near-significant difference (when applying the Bonferroni

correction) in Assessment 1 results between students who did or did not previously study a

mathematics-based subject, has already been identified within the full T1 dataset. However,

the results in Table 5.26 confirmed that the relationship between students’ estimations of how

difficult they find mathematics and their Assessment 1 results was not significant. It should

be noted that students’ estimations as to how difficult it is to learn to program was included in

the model was as it surpassed the standard significance threshold of

p < .05 in Table 4.5. However, it fails to reach the adjusted significance threshold when

evaluated on all data available at T1, with the correlation being too weak to reliably state that

there is a substantial relationship between students’ views of how difficult learning to

program will be and their actual performance.

Students’ confidence in their answers for each of the question topics, and for all questions

combined, were revealed to have some of the strongest correlations with the Assessment 1

results. Although the assessment takes place nearer to T2 than T1, these results do indeed

support the link between students’ initial self-confidence and their performance given that

significant relationships between students’ confidence in their answers and their estimates of

having appropriate mental models have previously been identified. Additionally, as per

Rogerson and Scott's (2010) claims, a significant relationship between students’ level of fear

of learning to program and their Assessment 1 results was reported.

Students’ levels of self-efficacy relating to completing simple programming tasks (Factor 4)

also demonstrates a comparatively strong correlation with their Assessment 1 results.

Furthermore, students’ levels of self-efficacy relating to Independence and Persistence also

exhibit a significant correlation with their Assessment 1 results, albeit weaker than that with

 217

Factor 4. However, their self-efficacy levels relating to Self-Regulation (Factor 3) failed to

produce a correlation that surpasses the adjusted significance threshold.

The results in Table 5.26 do therefore, generally support the decisions being made during the

feature selection process, although if only a regression model was being considered it would

be appropriate to not include how difficult students find mathematics within the model. The

strongest correlations with students’ Assessment 1 grades were found to be with features that

directly mapped to students’ confidence in the core content of the module and the assessment

itself, that is, completing simple programming tasks and their understanding of the key

concepts being taught, which are essential for students to be able to do in order to pass the

assignment. It is evident that how much students fear learning to program also links to their

assessment results, suggesting that some students’ learning may indeed be being blocked due

to a lack of confidence by, for example, not feeling confident enough to ask questions when

they are struggling (Bergin & Reilly, 2005a; Rogerson & Scott, 2010).

Wiedenbeck et al. (2004) stated that students “pre-self-efficacy” within their study does not

directly affect their performance; rather, “post-self-efficacy” acts as a mediator variable

whereby it allows performance to be affected by pre-self-efficacy by passing through post-

self-efficacy (Baron & Kenny, 1986; Hayes, 2022; Wiedenbeck et al., 2004). Hayes (2022)

provides a conceptual diagram of the “simple mediation model”, as shown in Figure 5.3,

where X represents an independent variable (i.e., pre-self-efficacy), M represents the mediator

variable (i.e., post-self-efficacy) and Y represents the outcome variable (i.e., performance).

Figure 5.3

Conceptual Diagram of a Simple Mediation Model

Note. From “Introduction to Mediation, Moderation and Conditional Process Analysis: A

Regression Based Approach, Third Edition,” by A. F. Hayes, Guilford Publications, 2022.

X

M

Y

 218

As the diagram shows, there are two paths from X to Y – either the direct path which passes

from X to Y without passing through M, thus showing pre-self-efficacy’s direct effect on

performance, or through the second, indirect, path from X to Y, which passes through M. This

second path demonstrates the indirect effect where the influence of X on Y is indirect and

instead is a result of X’s influence on M, which in turn influences Y (Hayes, 2022). This

captures how Wiedenbeck et al.'s (2004) pre-self-efficacy levels influence post-self-efficacy,

which consequently influences performance. Wiedenbeck et al.'s (2004) pre- and post-self-

efficacy readings are akin to the T1 and T2 Programming Checkup data collections. As such,

the subset of responses which were involved in both rounds of data collection was used to

carry out a Mediator analysis using the PROCESS Macro, in order to evaluate whether self-

efficacy, or any other confidence factor, at T2 is acting as a mediator variable.

The results from the Mediation analysis are presented in Table 5.27, with there being three

possible conclusions for each factor in the analysis: No significant mediation, Partial

meditation (whereby the relationships between mediator and outcome variables are

significant as well as the relationships between the independent and outcome variables), and

Complete Mediation (where the direct relationship between independent and outcome

variables is insignificant). However, Hayes (2022) recommends that the results of mediation

analyses should not be reviewed using these terms given their sensitivity to sample size.

Therefore, any factor that has been concluded as having either partial or complete mediation

will be considered to be significant.

 219

Table 5.27

Mediator Analysis Conducted on Confidence Factors When Predicting Assessment 1 Results

Confidence Factor
Total

Effect

Direct

Effect

Indirect

Effect

Indirect

Effect

CI LB

Indirect

Effect

CI UB

t Conclusion

Estimation of how difficult learning to program is -2.05 -0.47 -1.59 -2.95 -0.332 -2.33 Partial Mediation

Estimation of how difficult they find mathematics -1.65 -1.75 0.10 -1.118 1.505 0.15 No Significant Mediation

Estimation of how difficult their degree is 0.81 1.70 -0.89 -2.412 0.159 -1.35 No Significant Mediation

How much they fear learning to program -2.26 -1.35 -0.91 -2.624 -0.075 -2.50 Complete Mediation

Self-Efficacy Factor 1 (Independence and Persistence) 2.83 0.88 1.95 0.785 3.364 3.01 Complete Mediation

Self-Efficacy Factor 3 (Self-Regulation) 2.79 1.81 0.98 -0.004 2.170 1.79 No Significant Mediation

Self-Efficacy Factor 4 (Simple Programming Tasks) 3.84 2.08 1.76 0.383 3.433 2.28 Partial Mediation

Confidence – Variable Assignment 0.21 0.16 0.05 0.003 0.101 1.81 Partial Mediation

Confidence – Conditional Statements 0.20 0.16 0.04 -0.016 0.119 1.24 No significant mediation

Confidence – Iteration 0.23 0.16 0.07 0.016 0.143 2.21 Partial Mediation

Confidence – All Questions 0.26 0.21 0.06 -0.011 0.136 1.50 No Significant Mediation

Mental Effort – Variable Assignment -0.98 -0.67 -0.31 -0.816 0.018 -1.44 No Significant Mediation

Mental Effort – Conditional Statements -1.00 -0.83 -0.17 -0.664 0.130 -0.86 No Significant Mediation

Mental Effort – Iteration -0.53 -0.34 -0.20 -0.701 0.083 -3.40 No Significant Mediation

Note. Mediation analysis conducted on subset of dataset where participants had taken part in both T1 and T2 data collections

*n = 119

 220

Two of the three self-efficacy factors (Factors 1 and 4) were revealed to be mediated by

students’ responses at T2. Although Factor 3 does not appear to be mediated, this generally

does support Wiedenbeck et al.'s (2004) claims as they did not break down the self-efficacy

ratings into the individual factors. Furthermore, a number of other factors appear to be

mediated by students’ responses at T2 including how difficult students feel learning to

program is, how much students fear learning to program and students’ confidence in their

answers for questions on Variable Assignment and Iteration. Although not every factor

included in the predictive model can be considered to be mediated by students’ responses at

T2, clear relationships between a number of different variables that are related to students’

confidence levels at T1 and success within their first assessment have been established.

All mental model estimates were included within the predictive model, with the exception of

AND, OR, NOT and IF, given that the Conditional Statements model was found to have a

stronger relationship with students’ Assessment 1 results whilst also accounting for each of

the individual concepts within a single model. Table 5.28 presents the Spearman’s Rank

analysis between students’ mental model estimates and their Assessment 1 results using all

available data at T1. Although the strength of the correlations range from weak to moderate

at best, the results do support the original decision to retain the Conditional Statements model

instead of the models associated with each of the individual concepts, given that Conditional

Statements again showed the strongest relationship when compared to the individual

concepts.

A mediation analysis was also carried out in order to examine the causal paths between

students’ estimates of having appropriate mental models at T1 and T2, and their influence on

students’ assessment results, as shown in Table 5.29. Consequently, it was necessary to also

conduct this analysis on the subset of students who completed the Programming Checkup at

both T1 and T2.

 221

Table 5.28

Spearman’s Rank Correlation Tests Between Assessment 1 Grades and Mental Model

Estimates Established Using Bayesian Knowledge Tracing, Conducted on All Available Data

at T1

Mental Model rs p

AND .23 <.001

Conditional Statements .39 <.001

IF .33 <.001

Iteration .47 <.001

NOT .25 <.001

Output .40 <.001

OR .31 <.001

Parallelism .38 <.001

Variable Assignment .43 <.001

Variable Naming .23 <.001

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .005 (i.e., .05 divided by 10) were deemed to be reliable for purposes of

interpretation.

*n = 285

 222

Table 5.29

Mediator Analysis Conducted on Mental Model Estimates When Predicting Assessment 1

Results

Mental Model
Total

Effect

Direct

Effect

Indirect

Effect

Indirect

Effect

CI LB

Indirect

Effect

CI UB

t Conclusion

AND 1.04 0.67 0.37 -1.78 2.60 0.33 No Significant Mediation

Conditional Statements 12.07 8.86 3.21 0.47 6.66 2.03 Partial Mediation

IF 22.67 22.66 0.01 -1.65 0.57 0.01 No Significant Mediation

Iteration 14.65 4.51 10.15 6.15 15.01 4.51 Complete Mediation

NOT 2.86 -0.29 3.15 0.41 8.47 1.48 Complete Mediation

Output 8.27 8.63 -0.36 -1.67 0.26 -0.71 No Significant Mediation

OR 6.46 2.31 4.15 -1.71 10.42 1.36 No Significant Mediation

Parallelism 14.57 11.92 2.65 0.26 5.97 1.81 Partial Mediation

Variable Assignment 11.24 9.79 1.44 0.09 3.68 1.56 Partial Mediation

Variable Naming 14.92 14.71 0.21 -1.33 1.89 0.28 No Significant Mediation

Note. Mediation analysis conducted on subset of dataset where participants had taken part in

both T1 and T2 data collections.

*n = 119

 223

Figure 5.4

Estimates of Whether Students Hold Appropriate Mental Models at T1 (Using All Available

Data), Established Using Bayesian Knowledge Tracing with a Threshold of 0.5

The strongest correlation presented within Table 5.28 was between students’ Assessment 1

results and their estimates of holding an appropriate model of Iteration (rs = .47). Figure 5.4

incorporates the previously isolated holdout-test set, and subsequently presents similar results

to that of Figure 5.2. Both Figures 5.2 and 5.4 show the vast majority of students were

deemed unlikely to hold an appropriate model for Iteration, which has previously been shown

to be a topic of difficulty for students. Despite this, students’ estimates of having an

appropriate mental model of Iteration at T2 were shown to be a significant mediator between

their T1 estimates and their Assessment 1 results, thereby supporting the notion that

development of an appropriate model of Iteration is an important step in students’ learning.

The next strongest correlation is with Variable Assignment, arguably the most fundamental

of concepts which students are required to develop a model of. Again, a significant portion of

students were considered to be unlikely to hold an appropriate mental model at T1, mostly

due to the MA misconception. However, among students who completed the Programming

Checkup at both opportunities, the vast majority were shown to develop an appropriate

mental model by T2, which is reflected in their T2 estimates also being considered a

significant mediator.

 224

Two further model estimates which showed correlations of reasonable strength (relative to

other mental models) with students’ Assessment 1 results were Conditional Statements and

Parallelism. Both had significant proportions of students who were not considered likely to

have appropriate models at T1, although they did not have quite as large a drop in the number

of students being considered unlikely to hold an appropriate model as Variable Assignment.

However, both were identified as being mediated by students’ responses at T2.

The only other model estimate which was identified as being mediated by students’ estimates

at T2 was NOT. However, it had one of the weakest correlations with students’ Assessment 1

results and was also not included in the predictive model.

Although estimates for other models were not considered to be significant mediators, it is

expected that students’ models will improve over time if students are able to overcome any

misconceptions they are holding. Nevertheless, the estimates of how likely that a student is to

hold an appropriate model for each of the core concepts has previously been shown to aid in

the prediction of students’ assessment results. All the mental models assessed within the

Programming Checkup are required to be used within the assessment students undertake.

However, it is interesting to note that the strongest correlations with students’ Assessment 1

results were with several of the models that significant proportions of students were

considered unlikely to hold at T1.

In addition to the mediation analysis conducted between students’ responses to the

Programming Checkup at T1 and T2, and their Assessment 1 results, an additional mediation

analysis was carried out in order to examine the casual effect between students’ levels of

confidence, their mental model estimates and their Assessment 1 results. Only confidence

factors that were significantly correlated with students’ Assessment 1 results (see Table 5.26)

were included in this mediation analysis. However, as this mediation analysis only requires

students’ responses at T1, all available data were used. From the results presented in Table

5.30 it can be determined that students’ ratings for self-efficacy Factor 3 did not act as a

mediating variable between their estimates of holding appropriate mental models for each of

the concepts being examined and their Assessment 1 results. Furthermore, students’ estimates

of how difficult they believe learning to program to be cannot be considered to be a

mediating variable given that no significant mediation was determined for the majority of the

mental model estimates.

 225

However, the remaining factors, including how much students fear learning to program, self-

efficacy Factors 1 and 4, and students’ confidence in answering questions focusing on

Variable Assignment, Conditional Statements, Iteration, and for all questions combined, can

be considered to be reliable mediator variables. This is because a significant mediation effect

was established between the majority (or all) of the mental model estimates and students’

Assessment 1 results when each of the factors were included as mediators. This, therefore,

provides evidence of a causal link whereby the likelihood of holding appropriate mental

models directly influences these confidence factors, which in turn influence students’

performance. It should, however, be noted that the direct influence of students’ mental model

estimates on their Assessment 1 results remains significant.

 226

Table 5.30

Mediator Analysis Conducted on Confidence Factors and Mental Model Estimates When Predicting Assessment 1 Results

Confidence Factor

(Mediator)
Mental Model

Total

Effect

Direct

Effect

Indirect

Effect

Indirect

Effect

CI LB

Indirect

Effect

CI UB

t Conclusion

Estimation of how

difficult learning to

program is

AND 16.19 15.90 0.29 -1.12 1.88 0.40 No Significant Mediation

Conditional Statements 15.78 15.07 0.72 -0.47 1.98 1.17 No Significant Mediation

IF 14.37 13.29 1.08 0.05 2.74 1.56 Partial Mediation

Iteration 15.27 14.11 1.15 -0.39 2.98 1.15 No Significant Mediation

NOT 8.12 7.15 0.96 -0.12 2.62 1.33 No Significant Mediation

Output 16.09 15.03 1.05 0.08 2.49 1.65 Partial Mediation

OR 13.54 12.64 0.09 -0.02 2.17 0.17 No Significant Mediation

Parallelism 18.21 17.45 0.76 -1.02 2.53 0.86 No Significant Mediation

Variable Assignment 16.71 16.54 0.17 -1.46 1.85 0.21 No Significant Mediation

Variable Naming 14.88 13.99 0.89 0.04 2.18 1.59 Partial Mediation

 227

How much they fear

learning to program

AND 16.19 13.15 3.05 0.64 6.47 2.05 Partial Mediation

Conditional Statements 15.78 13.35 2.43 0.68 4.52 2.47 Partial Mediation

IF 14.37 11.73 2.65 0.71 5.14 2.30 Partial Mediation

Iteration 15.27 12.58 2.68 1.01 4.74 2.80 Partial Mediation

NOT 8.16 6.28 1.84 -0.13 4.57 1.56 No Significant Mediation

Output 16.09 13.26 2.82 1.04 5.31 2.60 Partial Mediation

OR 13.54 10.97 2.57 0.96 4.66 2.69 Partial Mediation

Parallelism 18.21 15.28 2.94 0.73 5.34 2.53 Partial Mediation

Variable Assignment 16.71 14.50 2.22 0.18 4.41 2.04 Partial Mediation

Variable Naming 14.88 12.43 2.45 0.84 4.62 2.54 Partial Mediation

Self-Efficacy Factor 1

(Independence and

Persistence)

AND 16.19 14.48 1.71 -0.45 4.96 1.27 No Significant Mediation

Conditional Statements 15.78 14.39 1.39 0.15 2.98 1.92 Partial Mediation

IF 14.37 12.52 1.85 0.13 4.27 1.74 Partial Mediation

Iteration 15.27 13.29 1.98 0.37 3.98 2.17 Partial Mediation

NOT 8.12 6.06 2.05 0.41 4.51 1.95 Complete Mediation

Output 16.09 14.19 1.90 0.32 4.22 1.87 Partial Mediation

OR 13.54 12.62 0.92 -0.06 2.34 1.48 No Significant Mediation

Parallelism 18.21 16.48 1.74 0.16 3.79 1.87 Partial Mediation

Variable Assignment 16.71 15.44 1.27 -0.66 3.47 1.23 Partial Mediation

Variable Naming 14.88 13.20 1.68 0.28 3.61 1.94 Partial Mediation

 228

Self-Efficacy Factor 3

(Self-Regulation)

AND 16.19 16.36 -0.17 -2.17 1.81 -0.18 No Significant Mediation

Conditional Statements 15.78 15.26 0.52 -0.27 1.61 1.09 No Significant Mediation

IF 14.37 13.36 1.01 -0.21 2.92 1.27 No Significant Mediation

Iteration 15.27 14.56 0.71 -0.25 2.14 1.16 No Significant Mediation

NOT 8.12 7.84 0.28 -0.74 1.90 0.43 No Significant Mediation

Output 16.09 15.68 0.40 -0.64 1.79 0.69 No Significant Mediation

OR 13.54 13.56 -0.02 -0.83 0.81 -0.05 No Significant Mediation

Parallelism 18.21 17.68 0.53 -0.20 1.76 1.05 No Significant Mediation

Variable Assignment 16.71 16.25 0.46 -0.25 1.50 1.04 No Significant Mediation

Variable Naming 14.88 14.40 0.48 -0.27 1.73 0.94 No Significant Mediation

Self-Efficacy

Factor 4 (Simple

Programming Tasks)

AND 16.19 11.02 5.17 1.37 10.19 2.31 Partial Mediation

Conditional Statements 15.78 11.25 4.53 2.21 7.27 3.46 Partial Mediation

IF 14.37 9.84 4.53 1.85 7.97 2.88 Partial Mediation

Iteration 15.27 8.53 6.74 3.66 10.08 4.15 Partial Mediation

NOT 8.12 3.84 4.28 1.38 7.92 2.57 Complete Mediation

Output 16.09 9.78 6.31 3.33 10.11 3.67 Partial Mediation

OR 13.54 9.78 3.76 1.82 6.20 3.35 Partial Mediation

Parallelism 18.21 12.23 5.98 2.56 9.91 3.22 Partial Mediation

Variable Assignment 16.71 12.04 4.68 1.29 8.35 2.63 Partial Mediation

Variable Naming 14.88 9.73 5.16 2.66 8.28 3.60 Partial Mediation

 229

Confidence –

Variable Assignment

Variable Assignment 16.71 13.56 3.16 0.22 6.18 2.05 Partial Mediation

Confidence –

Conditional Statements

Conditional Statements 15.78 13.01 2.77 0.44 5.48 2.18 Partial Mediation

Confidence – Iteration Iteration 15.27 7.50 7.77 4.06 11.72 4.02 Partial Mediation

Confidence – All

Questions

AND 16.19 8.70 7.49 3.44 12.72 3.17 Complete Mediation

Conditional Statements 15.78 10.90 4.89 1.97 7.99 3.18 Partial Mediation

IF 14.37 7.81 6.56 3.38 10.50 3.60 Complete Mediation

Iteration 15.27 8.53 6.74 3.41 10.33 3.86 Partial Mediation

NOT 8.12 3.78 4.34 1.56 8.12 0.94 Complete Mediation

Output 16.09 10.02 6.07 3.01 9.84 1.73 Partial Mediation

OR 13.54 9.00 4.54 2.30 7.28 1.77 Partial Mediation

Parallelism 18.21 12.34 5.88 2.47 9.65 1.35 Partial Mediation

Variable Assignment 16.71 12.22 4.49 1.07 8.21 0.59 Partial Mediation

Variable Naming 14.88 8.83 6.05 3.20 9.69 1.91 Partial Mediation

Note. Mediation analysis conducted on all available data at T1

*n = 285

 230

5.4 Comparison with Assessment 2 Results
The first assignment that students complete as part of their introductory programming module

was chosen as the outcome variable given the fact that it primarily focuses on assessing

concepts which are included within the Programming Checkup. However, given that it is the

first programming-based assessment students complete then it is relatively simplistic in

nature. Students are also required to complete a second assessment at the end of the second

semester (approximately 12 weeks after Assessment 1), which is more complex in nature and

requires the use of more advanced concepts, such as object-orientation, for higher marks. Of

the 285 students who took part in the Programming Checkup at T1 and completed the first

assessment, 244 students also completed their second assessment. Unfortunately, the reasons

as to why 41 students across the three years of data collection did not take part in their second

assessment are not available.

Nevertheless, a significant correlation of moderate strength exists between students’ results in

their first and second assessments, rs = .509 p = < .001. Tables 5.31 – 5.33 utilise the subset

of students who completed both assessments to examine how students’ results for both

assessments relate to their responses to the Programming Checkup at T1. The correlations

between students’ mental model estimates at T1 and their Assessment 1 results, as shown in

Table 5.31, are very similar in strength and significance when compared to their correlations

with students’ Assessment 2 results. This gives credence to the notion of assessing students’

mental models at the beginning of the course, as whilst there is a significant variability in

assessment results, they do appear to be an appropriate indicator of how a student is likely to

progress throughout their course. It is interesting to note how strongly students’ estimates of

having an appropriate model for Iteration correlates with both their assessment results, as this

is a seemingly difficult concept and yet is key to writing effective programs.

Additionally, the correlations between students’ confidence factors in Table 5.32 and their

results in their assessment appear to be relatively consistent between both assessments.

However, students’ estimations of how difficult they find mathematics has a stronger

correlation with Assessment 2, which almost reaches the adjusted significance threshold.

This corresponds to a slight increase in effect size between students who did or did not

previously study a mathematics-based subject, as shown by the Mann Whitney U tests

performed in Table 5.33, between Assessments 1 and 2, although despite the increase,

 231

previously studying mathematics can only be considered to have a small effect on

Assessment 2 results. However, it should be noted that the Mann Whitney U tests that were

performed on the full T1 dataset (as shown in Table 5.17), demonstrated a stronger effect

between previously studying mathematics-based subjects and students’ Assessment 1 results,

than was observed within the tests conducted in Table 5.33, suggesting the need for further

investigation into the relationships between students’ prior mathematics experience and their

performance throughout the course of an introductory programming module.

Wiedenbeck et al. (2004) claimed that students’ experiences prior to them starting their

introductory courses lose their predictive value over time, as students’ more recent

experiences within the course become the more dominant factor in their level of confidence,

which can also be extended to include the likelihood of students’ possessing appropriate

mental models of core concepts that aids their confidence levels. The Mann Whitney U tests

within Table 5.33 revealed a drop in effect sizes in relation to having either prior

programming experience or previously studying computer science between Assessment 1 and

Assessment 2, which does provide some support for Wiedenbeck et al.'s (2004) belief in

terms of students’ computer science and programming related experiences. An additional

data collection point closer to Assessment 2 would help to further verify these claims.

Students’ intentions for wanting to work in software engineering at the start of their course

exhibit a stronger relationship with their Assessment 2 results when analysed with a Kruskal

Wallis test, H(2) = 27.87, p = <.001, η2 = 0.115, compared to Assessment 1 H(2) = 13.56, p

= .001, η2 = 0.056. Students who wish to pursue a career in software engineering may

potentially be more motivated to succussed within their programming module, as previously

discussed, which is evident in the results for both assessments as students indicating they do

wish to work in a software engineering role after graduating had higher results on average

(Ass. 1, M = 76.11, SD = 15.91, Ass. 2, M = 68.28, SD = 24.17) than those indicating that

they were undecided (Ass. 1, M = 68.03, SD = 19.60, Ass. 2, M = 51.73, SD = 24.89) or that

they did not want to pursue this career path (Ass. 1, M = 64.06, SD = 19.22, Ass. 2, M =

57.25, SD = 33.27). Additionally, students’ level of agreement in considering themselves

self-taught programmers has a slightly stronger correlation with students’ Assessment 2

results, rs = .29 p = <.001, than with their Assessment 1 results, rs = .27 p = <.001. However,

the difference is not substantial enough to draw any firm conclusions.

 232

Table 5.31

Spearman’s Rank Correlation Tests Between Assessment Grades and Mental Model

Estimates Established Using Bayesian Knowledge Tracing, Conducted on All Available Data

at T1 Where Students Had Completed Both Assessments

Mental Model
Assessment 1 Assessment 2

rs p rs p

AND .22 <.001 .23 <.001

Conditional Statements .35 <.001 .32 <.001

IF .31 <.001 .31 <.001

Iteration .45 <.001 .45 <.001

NOT .23 <.001 .24 <.001

Output .37 <.001 .30 <.001

OR .26 <.001 .27 <.001

Parallelism .34 <.001 .26 <.001

Variable Assignment .38 <.001 .42 <.001

Variable Naming .24 <.001 .19 <.001

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .003 (i.e., .05 divided by 20) were deemed to be reliable for purposes of

interpretation.

*n = 244

 233

Table 5.32

Spearman’s Rank Correlation Tests Between Assessment Results and Confidence Factors,

Conducted on All Available Data at T1 Where Students Had Completed Both Assessments

Confidence Factor
Assessment 1 Assessment 2

rs p rs p

Estimation of how difficult learning to program is -.20 .002 -.22 <.001

Estimation of how difficult they find mathematics -.07 .249 -.19 .003

Estimation of how difficult their degree is .02 .807 -.04 .520

How much they fear learning to program -.28 <.001 -.32 <.001

Self-Efficacy Factor 1 (Independence and Persistence) .24 <.001 .22 <.001

Self-Efficacy Factor 3 (Self-Regulation) .14 .028 .15 .022

Self-Efficacy Factor 4 (Simple Programming Tasks) .37 <.001 .37 <.001

Confidence – Variable Assignment .32 <.001 .34 <.001

Confidence – Conditional Statements .30 <.001 .28 <.001

Confidence – Iteration .39 <.001 .38 <.001

Confidence – all questions .37 <.001 .37 <.001

Mental Effort – Variable Assignment -.14 .034 -.13 .047

Mental Effort – Conditional Statements -.10 .132 -.12 .073

Mental Effort – Iteration -.16 .011 -.15 .021

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .002 (i.e., .05 divided by 28) were deemed to be reliable for purposes of

interpretation.

*n = 244

 234

Table 5.33

Mann Whitney U Tests Between Assessment Grades and Dichotomous Background Features,

Conducted on All Available Data at T1 Where Students Had Completed Both Assessments

Background Factor
Assessment 1 Assessment 2

U z p r U z p r

Prior programming

experience

4929.50 -2.24 .025 0.14 5388.00 -1.31 .190 0.08

Previously Studied

computer science

5179.50 -1.20 .230 0.08 5454.50 -0.63 .528 0.04

Previously Studied

mathematics-based

subject

6289.00 -1.85 .064 0.12 5609.00 -3.10 .002 0.20

Intend to work in

software engineering –

No

1285.00 -1.98 .048 0.13 1727.00 -0.36 .722 0.02

Intend to work in

software engineering –

Undecided

5619.00 -2.63 .009 0.17 4307.00 -5.08 <.001 0.33

Intend to work in

software engineering –

Yes

5416.00 -3.55 <.001 0.23 4546.00 -5.14 <.001 0.33

English is student’s

first language

3947.50 -0.33 .745 0.02 3930.50 -0.37 .714 0.02

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant

differences at p < .003 (i.e., .05 divided by 14) are deemed to be reliable for purposes of

interpretation.

*n = 244

 235

5.5 Summary
This chapter has presented an in-depth statistical analysis of students’ responses to the

Programming Checkup, through which relationships between factors relating to their

backgrounds, confidence and estimates of holding appropriate mental models have been

explored. Furthermore, the decisions taken during the model development process have been

reinforced through examinations of relationships with students’ Assessment 1 results.

Additionally, students’ results to Assessment 2 have been used to scrutinize how the factors

examined within the Programming Checkup at T1 relate to students’ performance over a

much longer period of time. The subsequent chapter will draw on the results of these analysis

in order to directly answer the research questions at the heart of this investigation.

 236

6. General Discussion and Reflections of Research Outcomes and

Future Work

6.1 Scope of Discussion
This final chapter revisits the research questions that guided the path of this work and

considers the findings of this research programme in relation to these questions. In addition,

this chapter discusses the limitations of the present research that constrain the conclusions

that can be drawn and that also inform future work.

6.2 Responses to Research Questions
This design of this investigation, and the later analysis, was guided by three key research

questions. As such, this section draws on the literature and results presented throughout this

thesis in order to directly address each question.

RQ 1 How do students’ mental models of core programming concepts develop during a

university introductory programming module?

The use of Bayesian Knowledge Tracing (BKT) to estimate the likelihood of students holding

appropriate mental models of core programming concepts has proved to be a useful approach.

It accounts for students making mistakes or guessing answers correctly and produces a

tangible result, which aids in both the analysis of students’ conceptual understanding of

programming and the development of predictive models of student performance.

The estimates produced by BKT have revealed that a significant number of students are

initially not likely to hold an appropriate mental model for Variable Assignment at T1.

Variable Assignment is arguably one of the most fundamental concepts that students must

master in order to be successful within their programming course. Students who are deemed

to be unlikely to hold an appropriate model of Variable Assignment are often demonstrating

the Multiple Assignment (MA) misconception, whereby they refer to the original values of

variables, rather than recognising that the original value is overridden when performing an

assignment operation. This is evident from the observation that MA is the most prevalent

misconception that is associated with Variable Assignment and that the vast majority of

students who demonstrate MA do so three or more times.

 237

However, many of the students who are initially estimated as being unlikely to hold an

appropriate mental model for Variable Assignment do in fact go on to develop appropriate

mental models by the end of the first semester (T2). Again, it appears that students who are

considered to be unlikely to hold an appropriate model of Variable Assignment are often

exhibiting the MA misconception. Although it is clear that the vast majority of students are

able to establish an appropriate model for Variable Assignment by the time they reach T2, it

is evident that it can be a stumbling block for some. If a student is not able to establish an

appropriate mental model for Variable Assignment, they may face greater difficulties when

completing programming tasks, as logical errors could easily be introduced if they do not

have a clear understanding of how variables and their values are handled within a program.

As previously discussed, the Conditional Statements mental model encompasses the models

associated with individual Boolean Logic concepts including AND, OR and NOT, as well as

If Statements. This broader approach to assessing related concepts within a single model has

shown to have a stronger relationship with students’ assessment results as opposed to the

individual concepts. At T1, half of students were estimated as not having an appropriate

Conditional Statements model. It is apparent from the results that the largest area of difficulty

is with students demonstrating an appropriate understanding of the OR operator, which is

reflected in a substantial number of students demonstrating it as a misconception three or

more times, subsequently resulting in more than half of the students being estimated to not

hold an appropriate mental model of OR at T1. A substantial number of students also

demonstrated misconceptions relating to If statements, AND and NOT at T1, although for the

most part, students only demonstrated these misconceptions once or twice, meaning a greater

proportion of students were considered to have appropriate mental models for these concepts.

However, as each of the concepts is accounted for within the Conditional Statements model,

the estimates associated with it are indicative of a more general view of students’ logical

abilities. None of the individual model estimates change significantly between T1 and T2, but

Conditional Statements shows a decrease that is approaching significance, although 39% of

students are still considered to be unlikely to hold an appropriate model at T2. As Grover and

Basu (2017) suggest, Boolean Logic is a difficult topic for students to grasp, with OR

appearing to be one of the main points of confusion for students.

It appears that the concept that students struggle to comprehend the most is Iteration, as 81%

of students were estimated to not be holding an appropriate model at T1, which only reduces

 238

to 67% at T2. Students exhibit a wide range of misconceptions associated with Iteration, the

frequencies of which do not significantly alter between T1 and T2, with the exception of

Summation (SM). The Summation misconception occurs when a student views an iterative

loop as a single element, that is, instead of outputting a series of numbers the student

indicates that only the final number would be outputted. There is a substantial drop in the

number of occurrences of SM between T1 and T2 and although many of the students who

demonstrated SM at T1 did so only once, this may be indicative of the fact that students are

beginning to progress towards more appropriate models by recognising that all lines within

the loop are being repeated.

However, as mentioned previously, this latter finding could also potentially be attributed to

students developing more accurate models of Program Output. Most students were estimated

to be holding an appropriate mental model for program output at T1 and T2, despite the

seemingly high number of students demonstrating misconceptions relating to output, which

can be accounted for by the fact that almost all of the questions included print statements.

There was, however, a significant change in the estimates of how likely students were to be

holding an appropriate model for Output, which could have supported the reduction in the

SM misconception. Further work is required to validate this view. Nevertheless, what is clear

from the evidence is that students generally lack an appropriate mental model for Iteration

prior to beginning their programming course, and although some are able to develop their

models independently, the T2 mental model estimates indicate that a significant proportion of

students are still in need of additional support in order to develop fully accurate models.

An additional area of difficulty for students appears to be with their understanding of flow of

control within a program, which is represented by the Parallelism model. Around half of

students were considered to be unlikely to hold an appropriate model at T1, which reduces to

41% at T2. There is, therefore, still a significant number of students who do not appear to

have a complete understanding of how the ordering of statements within a program affects

the output, which could consequently lead to the student experiencing difficulties when

writing their own programs. These results provide evidence of Pea’s (1986) “parallelism bug”

being encountered by a substantial number of students, and by extension, can be viewed as

also giving evidence of the “Superbug”, which Pea describes as being associated with the

idea that students believe that the programming language is, in some way, intelligent. For the

 239

Parallelism bug, this relates to students’ belief that “different lines in a program can be

somehow known by the computer at the same time, or in parallel” (Pea, 1986, p. 5).

Furthermore, students who may mistakenly believe that the name of a variable affects what it

can hold, could be viewed as holding Pea’s (1986) “Intentionality bug”, which is also

associated with the “Superbug”. However, the majority of students demonstrated that they

held an appropriate mental model associated with Variable Naming and although some

students were still considered to be unlikely to hold an appropriate model at T2, this can

generally be considered not to be a widespread issue. Without conducting detailed

walkthroughs and interviews, it is difficult to ascertain whether students in higher education

have an implicit belief in the intelligence of the programming language, as proposed by Pea’s

(1986) notion of the Superbug in the context of younger students. Following up on this

possibility represents an important avenue for future research.

Students’ mental model estimates have shown to be significantly correlated with the results

they achieve in their assessments. For the most part, these correlations have been relatively

weak. However, students’ estimates of having an appropriate model of Iteration have shown

to exhibit the strongest relationship with students’ assessment results. Iteration could

potentially therefore be seen as a Threshold Concept, which Meyer and Land (2005) define as

being transformative, whereby they change how a student looks at the subject, irreversible,

as they will be difficult for students to forget once they have been mastered, integrative,

through the way that multiple concepts are drawn together, troublesome, as they can be

difficult for a student to grasp and can often act as boundary markers which represent the

limits of a student’s understanding (Boustedt et al., 2007). Previous work has made claims

that potential programming-related threshold concepts could consist of more advanced

concepts such as pointers, object-orientation (Boustedt et al., 2007), or more abstract

principles such as program dynamics, information hiding and object interaction (Sorva,

2010). However, I believe it is also appropriate to consider more fundamental concepts as

threshold concepts. For example, Iteration as a concept clearly fits within Boustedt et al.’s

(2007) criteria and is subsequently one of the core concepts students must master in order to

be successful within their introductory programming module, although, as the results of this

investigation suggest, it is a concept that students struggle with.

 240

Variable Assignment could also be considered to be a Threshold Concept given that it has a

comparatively strong correlation with students’ assessment results, although weaker than

Iteration, and has shown to be potentially troublesome at the beginning of the course. Indeed,

all of the mental models assessed within the Programming Checkup fall into the category of

Threshold Concepts. However, Variable Assignment can be viewed as one of the first

Threshold Concepts students must master in order to progress in their course, whereas

Iteration is one of the main Threshold Concepts students must master in order to write

effective programs and be successful within their assessments. Functions and object-

orientation are not covered within the Programming Checkup, but it is likely they would also

be areas of difficulty for students. Equally, learning to program requires more than simply

developing an understanding of how each of the concepts works, as highlighted by the five

areas of difficulty with learning to program identified by Du Boulay (1986). However, the

findings from this work indicate that Variable Assignment and Iteration are two key concepts

which can be viewed as milestones in students’ development, and which, are essential for

students to develop appropriate mental models for in order to be successful within their

introductory programming module.

RQ 2 Is students’ perception of confidence and their previous experience positively related to

their mental model development as well as their performance within their first introductory

programming assessment?

Although students with previous programming experience have been found to be more likely

to hold appropriate mental models of the concepts examined within the Programming

Checkup, by the time students have reached the end of the first semester the differences

between those with and without prior experience have decreased. Most noticeably, students

with prior programming experience remain significantly more likely to hold appropriate

models for Conditional Statements, Iteration and for the flow of control within a program

(Parallelism). It is not unexpected for the difference between students with and without prior

programming to decrease over time, as all students have the opportunity to develop their

understanding of the concepts. This can be seen most significantly in the improvements

students who do not have prior programming experience make with their models of Variable

Assignment, although some students, particularly those with no prior programming

experience, would benefit from additional support in developing their mental models

surrounding Conditional Statements and Parallelism. Furthermore, it is also clear that many

 241

students require support to develop appropriate models of Iteration – regardless of whether

they have prior programming experience or not.

By having prior programming experience, students were in general initially found to be more

confident, which is reflected in significantly higher self-efficacy levels (for all three factors)

and also in higher levels of confidence in their answers. Students with prior programming

experience also are generally less anxious about learning to program than those without prior

experience, which can be seen in students’ responses to how difficult they believe learning to

program will be, and how much they fear learning to program. However, like the differences

in students’ mental model estimates, the difference between students with or without prior

programming experience generally reduces by the end of the first semester, although a slight

widening of the gap was observed between those with and without prior programming

experience in how much they feared learning to program, and how difficult they believed

learning to program to be. This may indicate that struggling students may be feeling that they

are falling behind, and as such, they become more anxious.

As has been seen with mental model development, by the end of the first semester the

difference between students with or without prior programming experience has begun to

decrease. However, a significant difference remains within students’ levels of self-efficacy

relating to completing simple programming tasks (Factor 4) despite students’ levels of self-

efficacy for all three factors having increased between T1 and T2, regardless of whether they

had previous programming experience or not. The additional experience that students have

gained from programming previously is likely to be the main contributing factor to the

significant difference in students’ levels of self-efficacy associated with completing simple

programming tasks. Although a sizeable gap between students with and without prior

experience remains, there has been a substantial increase in the levels of students with no

prior programming experience from T1, when they had no prior experience of completing

programming tasks to draw upon, whereas students who had programmed before are able to

build on their prior experiences, which helps their confidence to grow further.

Like Factor 4, students’ levels of self-efficacy relating to Independence and Persistence

(Factor 1) and Self-Regulation (Factor 3) also increase by T2. However, whether students

have prior programming experience or not no longer results in a significant difference to their

levels of self-efficacy, as these factors are generally more concerned with students’

 242

approached to working than how confident they feels about performing programming tasks.

Furthermore, a substantial difference still exists in how confident students are in their

answers between those with and without prior programming experience, although it has

begun to reduce by T2 as all students will be becoming more familiar with the different

concepts and as such, building confidence. Nevertheless, it is evident that having experience

of programming prior to starting their university course does still have a positive effect on

confidence levels up until the end of the first semester. The decreasing difference between

students with and without prior programming experience appears to support Wiedenbeck et

al.'s (2004) claims that prior programming experience will eventually lose its predictive

value.

Additionally, the levels of anxiety associated with learning to program, as measured by how

much students fear learning to program and also how difficult they believe learning to

program to be, were found to be substantially higher amongst students who do not have

experience with programming prior to starting their course. Given that the difference in

anxiety levels between students with or without prior programming experience was observed

to increase at T2, it could suggest that struggling students, who have no prior programming

experience, may be becoming more anxious as the module progresses to more difficult topics.

This could ultimately lead to a student becoming disengaged with the module, which

potentially could be mitigated through early interventions to support students in overcoming

their difficulties.

Previously studying computer science has been shown to support students’ initial confidence

levels, although the difference between those who have or have not previously studied

computer science is not as substantial as between those with or without prior programming

experience. By T2, the influence of previously studying computer science does reduce

somewhat, although it can still be seen to be having a positive effect on students’ confidence

in their answers. Furthermore, previously studying computer science has also been shown to

benefit students with the development of appropriate mental models, although it may be

beneficial to establish exactly what students have studied previously, rather than relying on

the dichotomous option currently presented in the Programming Checkup, as there is the

potential that some students may be considering IT-focused courses to be the same as

computer science, when, in fact, they are not, which may also explain the differences

between prior programming experience and previously studying computer science.

 243

Given that programming is contained, either explicitly or implicitly, within all computer

science curricula in the UK and Ireland, with the exception of the Irish Primary Level

Curriculum (Sentance et al., 2022), it is hoped that with the resurgence of computer science

in schools and the additional subject knowledge support now available for teachers (Brown et

al., 2014; Sentance et al., 2022), that students will be able to build a solid foundation for their

mental models of core programming concepts prior to starting university. As such, it would

be useful for a future investigation to obtain as full a picture as possible about each student’s

prior learning, by recording whether they studied computer science at GCSE and/or A Level

prior to their degree, as well as how they have gone about their learning if they consider

themselves to be a self-taught programmer. This is relevant as a significant positive

relationship exists between how strongly students consider themselves to be a self-taught

programmer and how likely they are to hold an appropriate mental model of many of the core

concepts examined within the Programming Checkup at T1. However, this relationship

became non-significant for all models, apart from Iteration, by T2. Furthermore, as how

strongly a student considers themselves to be a self-taught programmer has been shown to be

significantly correlated with a number of confidence factors at T1 (particularly strongly with

self-efficacy Factors 1 and 4), it can be concluded that students who previously taught

themselves to program are likely to be initially more confident in their abilities, although the

strength of the correlations does typically reduce by T2 given that all students are gaining

familiarity with programming.

A similar trend is also evident amongst students who wish to pursue a career in software

engineering, whereby students who state they do wish to pursue a career in software

engineering are typically those who are more confident in their programming abilities.

Additionally, students intending to work in software engineering are found to be more likely

to hold mental models of a number of key concepts, although, the differences between those

wishing to pursue a career in software engineering and those who do not, or are unsure,

decreases by T2. However, it is interesting to note that a significant difference remains in

students’ estimates for holding an appropriate model of iteration.

Both students considering themselves to be self-taught programmers or indicating that they

wish to pursue a career in software engineering speak to the motivations of students. Their

motivations are likely to be intrinsic in nature given that they are indicating programming is a

subject that they wish to engage in, rather than what they are forced to be doing as part of

 244

their course. As Bergin and Reilly (2005a) previously mentioned, intrinsically motivated

students were seen to perform better than students who are extrinsically motivated. This is

reflected in students who wish to pursue a career in software engineering performing better in

their introductory programming assessments than those who did not want to or were unsure

about working in software engineering. Furthermore, how strongly a student considers

themselves to be a self-taught programmer is indicative of their assessment results, as

evidenced by a significant positive correlation, although it is of relatively weak strength. Of

course, it is possible for a student to be intrinsically motivated and neither consider

themselves to be self-taught or to wish to work in a software engineering role. However, the

results presented provide support for the link between students’ motivations and their

performance in their introductory programming module.

There is evidence to suggest that having experience of studying a mathematics-based subject

prior to starting their degree, but after leaving school, can lead to students achieving higher

results within their assessments, thus supporting previous claims that mathematics experience

aids students when learning to program (Bergin & Reilly, 2005b; Byrne & Lyons, 2001;

Gomes et al., 2006; Wilson & Shrock, 2001). However, the Programming Checkup results

revealed that having previous experience of studying a mathematics-based subject after

finishing school, does not appear to significantly aid students in terms of being more likely to

hold appropriate mental models, nor does it substantially aid their levels of confidence when

compared to other background factors.

The limited direct impact of having previously studied a mathematics-based course on the

factors examined within the Programming Checkup, raises questions as to how this previous

experience is actually benefiting students. In particular, there is a lack of any significant

influence on the likelihood of students holding appropriate mental models of core concepts,

so it does not appear to be directly influencing students’ understanding of programming

concepts. Instead, studying mathematics-based subjects allows for the development of skills

such as logical thinking, abstraction and attention to detail, which are precursor to students’

computational thinking abilities (Curzon et al., 2019; Wing, 2008) that subsequently aid

students when completing large, independent tasks such as their assessments within their

introductory programming module (Gomes et al., 2006; Lister et al., 2004).

 245

Furthermore, the effects of previously studying a mathematics-based subject on students’

assessment results within their introductory programming module continue to aid students

much later into their course (i.e., within their second assessment at the end of the academic

year), which suggests that the problem-solving skills gained through the study of

mathematics and mathematics-based subjects such as Engineering and Physics continue to be

of benefit to students. However, having previous experience of programming or studying

computer science exhibit a limited relationships with students’ assessment results, likely due

to the fact that all students are gaining experience with programming throughout the course

of their introductory programming module. In sum, it is likely that previously studying a

mathematics-based course does not directly support students with their understanding of

programming, rather it is likely supporting them solving problems and completing tasks using

programming within their assessments.

As mentioned previously, students’ estimates for holding appropriate mental models of the

concepts examined within the Programming Checkup are significantly correlated with their

assessment results. Furthermore, it is evident that a relationship exists between the likelihood

of students holding appropriate mental models for some of the key concepts examined within

the Programming Checkup, and the confidence students show in their answers, as well as

their levels of self-efficacy relating to completing simple programming tasks (Factor 4).

Notably, Iteration demonstrated the strongest correlations with both students’ average

confidence in their answers, and their self-efficacy levels for Factor 4, thus giving further

credence to Iteration being considered a Threshold Concept for students learning to program.

A number of variables which measure students’ level of confidence in their own abilities, and

their levels of anxiety surrounding learning to program, have consistently been identified as

having a significant positive relationship with students’ assessments results. These included

how much students fear learning to program, self-efficacy Factors 1 (Independence and

Persistence) and 4 (Simple Programming Tasks) and students’ confidence in answering

questions focusing on Variable Assignment, Conditional Statements, Iteration, and for all

questions combined. Each of these variables have been confirmed through a mediation

analysis to be influenced by how likely students are to be holding appropriate mental models

and subsequently, influence students’ performance in their assessments. An overview is,

therefore, provided, of how confident a student is in applying their knowledge of

programming concepts to solve simple tasks, which is key in order to progress within their

 246

assessments. Additionally, the relationship between students’ assessment results and how

much they fear learning to program, suggests that their levels of anxiety surrounding

programming could, as Rogerson and Scott (2010) indicate, be a barrier to their learning, as

students may, for example, not feel confident to ask questions when they are struggling

(Bergin & Reilly, 2005a), which, if a student is struggling to aquire appopriate mental models

of key concepts, will result in the student facing greater difficulties and ultimatly impact upon

their performance in assessments.

RQ 3 Can students’ initial responses to the Programming Checkup be used to make

predictions of students’ introductory programming assessment results?

From the outset of this investigation, the aptitude test, which would ultimately become the

Programming Checkup, was designed with the intention for it to be used to aid in the

prediction of students’ assessment results, which would enable future support interventions to

be developed. Although during the research investigation the Programming Checkup was

issued to students twice, in order to evaluate their progress during their first semester, it was

always envisaged that students’ T1 responses would be used to predict students’ assessment

results as identifying students who would benefit from additional support at the earliest

possible opportunity, allows for interventions to be put in place in order to address

misconceptions and aid students in their mental model development as they progress through

their course (Romero & Ventura, 2019).

As has been discussed previously, a number of the factors examined within the Programming

Checkup revealed significant relationships with the results students achieve within their first

assessment as part of the introductory programming module. Given this is the first piece of

assessment students undertake, it naturally ties in well with the concepts examined within the

Programming Checkup, as well as providing an indication of students’ performance later in

the module. As such, students’ results for their first assessment were chosen to be an

indication of whether they would benefit from additional support.

Chapter 4 described the process through which the responses to the Programming Checkup at

T1 were used to develop methods of predicting students’ assessment results. This culminated

in two potential approaches being explored, a regression-based approach to predicting the

result a student obtains, and a binary classification approach which predicts whether a

 247

student’s result will surpass a threshold of 50% or not. After trialling a number of different

machine learning algorithms, along with different combinations of input variables, the

regression model which was chosen to be evaluated using the hold-out test set utilised the

Random Forest Regressor, with variables pertaining to students’ confidence levels and their

estimates of holding appropriate mental models, which had been established using Bayesian

Knowledge Tracing being inputted into the model. Although this was not the lowest overall

RMSE obtained during tests on the training data, the fact that Random Forests are less

susceptible to overfitting made it an appropriate choice for evaluation on the hold-out test set

when compared to other algorithms of similar performance. This appears to have been an

appropriate decision given that when trained on the whole training dataset, the model

achieved an average RMSE of 0.1686, and an average of 0.1687 when evaluated on the hold-

out test set. These results therefore indicate that the model does not appear to be overfitting

the training set, and when scaled up, represents a predictive error of approximately 17 marks

(17%).

Although 17 marks is a sizeable margin of error, it is important to note that the aim of this

investigation is not to predict the exact mark a student would achieve in their assessment,

rather, it is to provide an indication of whether the student is likely to require additional

support. Given that making predictions about students’ performance at such an early stage

can be difficult due to the wide variety of factors that can potentially influence their results

(López-Zambrano et al., 2021), the margin of error is at a level to be generally acceptable to

be used as a guide for identifying students who are likely to struggle in the assessment, and as

such, would benefit from additional support.

The high level of granularity in the predictions made by the regression model provides

educators with a more nuanced estimation as to whether a student is likely to require support.

However, it does require a degree of interpretation on the part of the educator. Alternatively,

the binary classification approach requires very little interpretation; students who are

predicted a 1 are deemed likely to achieve a mark of 50% or greater, whereas those who are

predicted a 0 are likely to achieve a mark of less than 50%.

The Random Forest classifier, with variables pertaining to students’ background factors,

confidence levels and mental model estimates being utilised as input for the model, was

 248

deemed to be the most appropriate choice to be evaluated using the hold-out test given that it

had the highest AUC out of all model and input combinations being trialled.

The classification model achieved an average AUC of 0.7400 when trained on the entire

training set, which indicates a drop in performance when compared to the average estimate of

performance obtained through cross-validation during the model evaluation process, which

produced an AUC of 0.7783. This reduction in performance despite the increased amount of

training data being available, potentially indicates that the model has high levels of variance

and as such, may be overfitting the training data. The model achieved an average AUC of

0.6595 when evaluated on the hold-out test set, which given the difference between this

result and the average performance on the training set, does indicate a substantial level of

overfitting within the model.

The results from trialling the model on the hold-out test set can be interpreted as there being

approximately a 66% chance of the model correctly predicting two examples that are of

different classes. Although there is still a significant margin for error, the results indicate that

the classification model does perform significantly better than chance at making correct

predictions and could still serve as a useful tool for the identification of struggling students.

It is possible that despite the implementation of both over-sampling and under-sampling

within the training set, the distribution of the Assessment 1 results may be a significant

contributing factor to the classification model overfitting the training data. Indeed, the

threshold of 50% was selected due to the distribution of the results making 40% (the standard

undergraduate pass level) an inappropriate choice. Further work into refining the

classification model would benefit from investigating whether a different threshold would be

more appropriate for classifying students who are likely to require support, while also

allowing for more balanced classes, although this would likely to be both assessment specific

and institution specific.

Work could also be carried out to further improve both the classification and regression

models to enhance their performance by performing additional hyperparameter tuning and

further refining the variables being inputted into the model with the aid of the feature

importance plots obtained from the regression model, as presented in Figure 4.6, which

indicated features, including students’ mental model estimates for Conditional Statements

 249

and Iteration, as well as their levels of Self-Efficacy pertaining to completing simple

programming tasks (Factor 4) as consistently being important contributors to the performance

of the regression model. Unfortunately, the degree of overfitting observed within

classification model limits the usefulness of the associated feature importance plots presented

in Figure 4.7. However, the statistical analysis of the Programming Checkup results presented

within Chapter 5 is, perhaps, a more useful source of information for future refinement of the

models, as feature importance plots are specific to a given model.

Ultimately, more data are needed to support any further substantial gains in performance. It

is, however, interesting to note that the best performing input combinations for all of the

regression models being trialled (with the exception of Regression Trees) as well as all

classification models being trialled, included students’ mental model estimates within their

input combinations. This provides support for the use of Bayesian Knowledge Tracing as a

means of assessing students’ mental models of core concepts and their usefulness in

predicting students’ assessment results.

In sum, both the classification and regression models produced as part of this investigation

have demonstrated that it is possible to make predictions of students’ Assessment 1 results by

using their responses to the Programming Checkup at T1. At present, the regression model

has been found to be the more robust technique, with predictions being made with an

acceptable margin of error for educators to gain an indication as to whether a student is likely

to require additional support or not. The classification model has also been shown to be

capable of making predictions of students’ assessment results. However, the degree of

overfitting which has been observed does indicate that the generalisability of the

classification model in its current state is limited. Nevertheless, this investigation has shown

that there is merit to this approach, which with further refinement and additional data, could

yield a model with improved generalisability.

By demonstrating that it is possible to make predictions of the results students are likely to

achieve in their first assessment based on their responses to the Programming Checkup, the

ability to identify students who are likely to require additional support within their

introductory programming module has been evidenced, with students who are predicted to

achieve low grades likely benefiting the most from the additional support. Although this

 250

capability has been demonstrated at a technical level, consideration must be shown as to how

this could be implemented within a higher education setting.

One proposed method would be to produce an individual report for each student, which

summarises their estimates of holding appropriate mental models for each concept,

confidence levels, and the like, alongside the prediction of their Assessment 1 result. Such a

report would encourage a constructive dialogue between educators and students; however, a

future investigation should explore whether educators have a preference for the binary output

of the classification algorithm, which requires very little interpretation as to whether the

student requires support or not, or the numeric output from the regression model. From a

personal perspective, I would prefer to utilise the output from the regression model, as it

would allow for a more nuanced discussion than would be possible with a simpler binary

output. Discussions around a student’s abilities could also be complemented with other

factors included within the report, particularly the mental model estimates, in order to

determine an individualised support plan for the student.

Although the evaluation of different pedagogic interventions falls outside the scope of the

current investigation, it should be acknowledged that the predictions produced by the models

could be used to direct students towards targeted interventions. For example, at UCLan, the

introductory programming module is complemented by an additional, optional, support

lecture, where concepts are explained in more detail. Attendance of this support lecture could

be made compulsory for students who have been identified as requiring additional support.

Furthermore, techniques such as PRIMM (Sentance et al., 2019) could be integrated into the

support lecture to aid in the development of appropriate mental models. PRIMM stands for

Predict, Run, Investigate, Modify and Make (Sentance et al., 2019) and aims to address the

issue of students writing programs before they are able to read and comprehend them (Parry,

2020; Sentance et al., 2019). As Sentance et al. (2019) state, “PRIMM draws on existing

research in computer science education, particularly four areas of programming research:

Use-Modify-Create (Lee et al., 2011), tracing and reading code before writing (Lister et al.,

2004), the Abstraction Transition Taxonomy (Cutts et al., 2012) and the Block Model

(Schulte, 2008)” (p. 148).

 251

Sentance et al. (2019) describe a typical PRIMM class, which in a higher-education context

would be a practical laboratory session that begins with the Predict and Run phase, where

students are given a short piece of code for which they must predict and write down the

expected output, in much a similar way to many of the questions within the Programming

Diagnostic portion of the Programming Checkup. The predictions students make are

discussed within the class and then, they are subsequently required to download (not copy)

the code and run it to check their answers. During the following Investigate phase, students

undertake scaffolded exercises and answer questions in order to further develop their

understanding of the topic being taught before moving on to the next phase, Modify and

Make where students complete structured tasks to modify the existing program (i.e.,

expanding its functionality or fixing bugs), and subsequently make new programs based on

problem descriptions, thus giving them the chance to apply what they have learnt.

It is believed that PRIMM has not previously been applied as an intervention technique

within higher education. Given the wide range of abilities students have, it would likely not

be appropriate to include PRIMM as a main part of the introductory programming syllabus.

However, it could form a useful part of an intervention to which students are directed to

based on the predictions made from their responses to the Programming Checkup.

6.3 Limitations of this Investigation
Although the three research questions at the heart of this investigation have been successfully

explored, there are nevertheless several factors that limit the conclusions that can be drawn

from this work. Perhaps the most significant limiting factor is the fact that all of the

participating students studied at the same institution, which consequently limits the

generalisability of the results. Although many of the trends observed support those previously

identified in the literature, further work involving different institutions is required in order to

validate the results. A second, key limiting factor relates to the relatively small sample size

with respect to the number of students who successfully completed the Programming

Checkup. This hampers the performance of the predictive models and is most evident in the

observed overfitting of the classification model. An expanded dataset, along with a potential

exploration of differing threshold values for assessment results, as discussed previously,

would help to reduce the likelihood of the classification model overfitting the training set.

 252

Furthermore, additional data would also help to reduce the error seen in the predictions made

using the regression model.

At the outset of this investigation, it was the intention to carry out data collection using the

Programming Checkup at multiple institutions, but with the outbreak of the Covid-19

pandemic, it was ultimately decided to focus on students studying at UCLan. This decision

ultimately impacts on the generalisability of the overall findings, as although the first

administration of the Programming Checkup takes place prior to any teaching, the teaching

and assessment materials are specific to the course students are studying. In particular, the

choice of C++ as an introductory programming language is not common amongst universities

in the UK, with Java being seen as the generally more popular language (Simon et al., 2018).

Although the introductory programming module at UCLan focuses on core concepts, rather

than specific language details, there is the potential for students’ progression to be influenced

by the language being taught. For example, whilst Python is viewed as being an easier

language to learn than the likes of C++ or Java (Simon et al., 2018), there have been

suggestions that the mental models that students construct are insufficient when Python is

taught without explicit instruction pertaining to the notional machine (Dickson et al., 2020;

Johnson et al., 2020). By only carrying out this investigation at a single institution, it is not

possible to identify whether the use of C++ directly impacts on students’ mental model

development, nor their levels of confidence when compared to other languages. Future

studies taking place across different institutions should therefore examine the influence of the

programming language being on taught on students’ development.

Even though data were collected from only a single institution, no two years can be

considered the same due to changes in the teaching and assessment being carried out within

the introductory programming module, which is most notable in the change of assessment

from an exam to an assignment during the second year of data collection. Teaching on the

module has also differed each year, which ranged from standard changes in teaching staff and

updating to content, to classes being carried out online during the pandemic. Although these

yearly changes were unavoidable, the learning outcomes of the module have remained the

same, and no significant differences were identified between the results students achieved on

the exam as opposed to the practical assignment that replaced it. However, any future

investigations involving multiple institutions must consider the differences in the teaching

and assessment of their introductory programming modules, particularly when selecting an

 253

appropriate outcome variable to predict. An ideal solution would be to have an independent,

standardised measure of a students’ programming performance, although this would first

need to be developed and validated. This would also require students to complete extra work,

which may not be practical, hence why using students’ assessment results was deemed to be

an appropriate choice for the outcome variable for this investigation.

Students’ participation within this investigation was voluntary, with a significant number of

students choosing not to take part in the second round of data collection at T2. Although data

were not collected as to why they chose not to take part, it is likely that the proximity of the

second data-collection round to a number of assessment deadlines for other modules

contributed to the lower uptake. Additionally, as there was no requirement to take part,

students who had very low levels of confidence may have chosen not to engage with the

Programming Checkup. Attempts were made to describe the Programming Checkup as an

opportunity for support, rather than a test; however, the Programming Checkup would need

to be made compulsory if it were to be implemented formally within the curriculum, rather

than as part of a research investigation. It was also necessary to constrain what was assessed

within the Programming Checkup, as making it too long to complete would have led to

incomplete responses.

Being a part-time PhD student, whilst working full-time, posed restrictions on the time

available for conducting research. As such, a quantitative methodology was adopted in order

to maximise the amount of data being collected. However, this has meant that whilst derived

from literature, the interpretation of students’ misconceptions is based on my own

epistemological viewpoint, as there was not enough time available to conduct interviews and

walkthroughs with a sufficient number of students in order to make generalisable

conclusions. As such, it would be beneficial to include interviews and walkthroughs with

students as part of a future investigation in order to develop a deeper understanding of the

misconceptions that students possess.

 254

6.4 Future Work
This investigation has always been situated as a starting point for a continuing line of

research. The initial focus has been on examining whether it is at all possible to make

predictions about students’ assessment results from the data collected using the Programming

Checkup, that can be used to help identify students who are likely to require support.

Although the proposed approach to identifying students has been shown to be valid, as

mentioned previously, it is necessary to collect additional data from different institutions in

order to improve the generalisability of the findings and allow for the performance of the

models to be improved.

Following on from this investigation, the natural next step would be to explore how the

Programming Checkup and the predictions made by the models can be formally integrated

into an Introductory Programming module. This could include studies relating to how the

data from the Programming Checkup can be used to inform teaching, which could be

conducted alongside an evaluation to determine whether educators find the outputs from the

regression or classification models more useful. Furthermore, future studies could focus on

evaluating different forms of interventions that could be put in place to aid students who are

identified as being likely to require additional support. As described previously, one potential

example is the use of PRIMM within dedicated classes to aid students in developing

appropriate mental models.

Future areas of research could also focus on further refinement of the Programming Checkup

and of the predictive models. For example, interviews and walkthroughs could be conducted

to examine the processes students go through when answering questions. This approach

would be beneficial as it would allow for students to explain their thought processes in their

own words, and as such, provide a deeper insight into their mental models and any

misconceptions that they hold, without being driven by my own views and interpretations

(Holloway, 2005). Additionally, questions within the Programming Diagnostic section of the

Programming Checkup could be redeveloped, or expanded upon, to focus on individual parts

of a program in an approach similar to Block Analysis (Schulte, 2008). This would, therefore,

allow for more nuanced questions to be used to directly assess students’ mental models of

concepts embedded within larger programs. For example, questions could focus on assessing

 255

concepts contained within specific blocks of code, which could be complemented by

additional questions that would require students to read and comprehend the entire program.

It would also be useful to collect more detailed information about exactly what computer

science course (if any) students have previously studied and how they have gone about

learning to program if they consider themselves to be self-taught, as well as more information

regarding their previous experience of mathematics. It may also be useful to include a

number of questions which assess students’ mathematical problem-solving abilities, similar

to that of Gomes et al. (2006), to allow for a more comprehensive evaluation of how they

relate to their programming abilities. It would also be beneficial for future investigations to

include a third data collection point during the second semester, thus providing an

opportunity to examine how students’ mental models and confidence levels develop over a

longer period of time. Future studies could also focus on factors such as working memory

capacity, which was ultimately dropped from the Programming Checkup and estimating

students’ level of cognitive load, given that the placement of the mental effort questions at

the end of the Programming Checkup failed to allow for any firm conclusions to be drawn.

The emphasis of this investigation was placed on exploring the different types of machine

learning algorithm which could be utilised to predict students’ assessment results, which

culminated in Random Forests being selected for both classification and regression models,

However, with the addition of an expanded dataset, future work could examine methods for

how the performance of these models could be improved. This could include utilising

automated feature selection techniques, such as Recursive Feature Elimination (Scikit-Learn,

n.d.-aa) to identify the optimal combination of features to include in the models, as well as

further hyperparameter optimisation.

As mentioned previously, the issues surrounding the class imbalance when training the

classification model could be tackled by exploring alternate thresholds. Although this

threshold would likely be assessment and institution specific, the process of determining what

the threshold should be could constitute a significant body of work from both a machine

learning and a pedagogic perspective. Furthermore, multinomial classification methods could

also be explored as they would offer a middle ground between binary classification and

regression, which may appeal to educators, although it would be necessary again to determine

appropriate levels in students’ results. It would also be beneficial to explore how newer

 256

methods for establishing the Bayesian Knowledge Tracing parameters, such as pyBKT

(Badrinath et al., 2021), could be used to automate what is currently a manual process.

Furthermore, extensions to Bayesian Knowledge Tracing, such as the Forget parameter (Qiu

et al., 2011), could also be explored. This would be particularly interesting in order to

examine students’ progression between their first and second years, where students may

initially struggle if they had not practiced using their programming skills over the summer

break.

There is also scope for integrating the Programming Checkup into an intelligent tutoring

system, whereby it can be utilised to provide an initial assessment of students’ abilities prior

to them starting the course. The design of such a system and the content within it would

likely constitute a significant amount of work. However, it would be beneficial in the short to

medium term, to develop a web-application version of the Programming Checkup. This

would, therefore, remove the dependency on survey platforms such as Qualtrics, and also

allow for more direct control over the output files. This would help to streamline the process

of identifying students who are likely to require support and the generation of individual

reports for each student that summarise their Programming Checkup responses and include

the estimates of holding appropriate mental models for each concept.

6.5 Self-Reflection and Concluding Remarks
The motivation of this investigation has always been to help struggling students overcome

their difficulties with learning to program. As a lecturer in charge of the introductory

programming module studied by 200+ students, it is a near-impossible task to know the

issues each individual student is facing. Therefore, this investigation set out to explore

whether it was possible to identify students who are likely to require support with learning to

program at the beginning of their course, so that they could be provided with the guidance

they need at the earliest possible opportunity.

As such, the Programming Checkup was developed to allow for an examination of how

students’ background factors, confidence levels and likelihood of holding appropriate mental

models of core programming concepts, related to their assessment results within their

introductory programming module. The data collected by the Programming Checkup were

then used to develop a regression model and a classification model. These models were used

 257

as a means of confirming that predicting students’ first introductory programming assessment

result from their responses to the Programming Checkup at the start of the course is a viable

approach, and as such, could be utilised to identify students who would likely benefit from

additional support.

The investigation provides an original contribution to knowledge through how students’

responses to the factors examined within the Programming Checkup, particularly prior to the

commencement of their course, relate to their performance in their introductory programming

module. Furthermore, the approach of assessing students’ mental models of core concepts

through the use of Bayesian Knowledge Tracing also represents an original contribution to

knowledge, as it is the first time it has been used within the context of an aptitude test, such

as the Programming Checkup. Consequently, this is the first-time students’ mental models of

programming concepts have been assessed in this way.

This investigation has laid the foundations for a significant body of future work, including

how the outputs from the Programming Checkup and the model predictions can be integrated

into the teaching of an introductory programming module, as well as how the predictive

models can be refined to further improve their performance. There is, however, a clear need

for future work to focus on improving the generalisability of the findings through the

inclusion of multiple institutions. Nevertheless, this investigation can be seen as a first step of

many, toward a more individualised learning environment for introductory programming

classes within higher education, where students’ misconceptions can be addressed directly

before they become engrained and hamper progress.

From a personal perspective, I am pleased with the outcomes of this investigation, although

at times it has been challenging to undertake a longitudinal study such as this, whilst

balancing the demands of a full-time academic role, particularly during the Covid-19

pandemic. I do believe that the findings of this investigation highlight the potential in the

proposed approach for identifying students who are likely to require support with learning to

program and give clear directions for future research. As an educator, I believe that all

students, regardless of their previous experience, have the ability to learn to program.

However, the experience I have recently gained as the module leader for introductory

programming at the University of Central Lancashire, has shown me that there is a very

difficult balancing act required within the teaching in order to meet the needs of students who

 258

are completely new to programming, whilst also keeping students who have more experience

engaged. Therefore, any information that can be used to better understand students and guide

them towards the support they need would be beneficial to me as a module leader. It has

always been my intention to utilise the findings from this investigation within the

introductory programming module, both in terms of using the predictions from the

Programming Checkup to identify students who are likely going to struggle, and also

ensuring my teaching directly addresses the misconceptions that may be preventing students

from obtaining appropriate mental models. I am, therefore, hopeful that the implementation

of the findings from this work, and future investigations stemming from it, will help students

to overcome the difficulties they face when learning to program.

 259

References
Al-Radaideh, Q. A., Al-Shawakfa, E. M., & Al-Najjar, M. I. (2006). Mining student data

using decision trees. International Arab Conference on Information Technology

(ACIT’2006), Yarmouk University, Jordan.

Alexander, P. A. (2017). Reflection and reflexivity in practice versus in theory: Challenges of

conceptualization, complexity, and competence. Educational Psychologist.

https://doi.org/10.1080/00461520.2017.1350181

Amineh, R., & Asl, H. (2015). Review of constructivism and social constructivism. Journal

of Social Sciences, Literature and Languages, 1(1), 9–16.

Anderson, J. R. (2015). Cognitive psychology and its implications. Macmillan.

Anderson, J. R., & Jeffries, R. (1985). Novice LISP errors: Undetected losses of information

from Working Memory. Human-Computer Interaction.

https://doi.org/10.1207/s15327051hci0102_2

AQA. (2020). GCSE Computer Science (8525).

https://filestore.aqa.org.uk/resources/computing/specifications/AQA-8525-SP-2020.PDF

Archer, M. S. (2012). The reflexive imperative in late modernity.

https://doi.org/10.1017/CBO9781139108058

Avella, J. T., Kebritchi, M., Nunn, S. G., & Kanai, T. (2016). Learning analytics methods,

benefits, and challenges in higher education: A systematic literature review. Journal of

Asynchronous Learning Network. https://doi.org/10.24059/olj.v20i2.790

Awad, M., & Khanna, R. (2015). Efficient learning machines: Theories, concepts, and

applications for engineers and system designers. In Springer Nature.

https://doi.org/10.1007/978-1-4302-5990-9

Baddeley, A. (1992). Working memory. Science, 255(5044).

https://doi.org/10.1126/science.1736359

Badrinath, A., Wang, F., & Pardos, Z. (2021). pyBKT: An accessible Python library of

Bayesian Knowledge Tracing models. http://arxiv.org/abs/2105.00385

Bahari, S. F. (2012). Qualitative versus quantitative research strategies: Contrasting

epistemological and ontological assumptions. Jurnal Teknologi.

https://doi.org/10.11113/jt.v52.134

Bakar, M., Mukhtar, M., & Khalid, F. (2019). The development of a visual output approach

for programming via the application of cognitive load theory and constructivism.

International Journal of Advanced Computer Science and Applications, 10(11).

 260

Baker, R. (2010). Data mining for education. International Encyclopedia of Education.

https://doi.org/10.4018/978-1-59140-557-3

Baker, R. (2020). Big data and education (6th ed.). University of Pennsylvania.

Baker, R., Corbett, A., & Aleven, V. (2008). More accurate student modeling through

contextual estimation of slip and guess probabilities in bayesian knowledge tracing.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-540-

69132-7-44

Baker, R., Corbett, A., Gowda, S., Wagner, A., MacLaren, B., Kauffman, L., Mitchell, A., &

Giguere, S. (2010). Contextual slip and prediction of student performance after use of an

intelligent tutor. Lecture Notes in Computer Science (Including Subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 6075 LNCS, 52–63.

https://doi.org/10.1007/978-3-642-13470-8_7

Baker, R., & Siemens, G. (2014). Educational data mining and learning analytics. In The

Cambridge Handbook of the Learning Sciences (2nd ed,). Cambridge University Press.

https://doi.org/10.1017/CBO9781139519526.016

Baker, R., & Yacef, K. (2009). The state of educational data mining in 2009: A review and

future visions. Journal of Educational Data Mining.

https://doi.org/http://doi.ieeecomputersociety.org/10.1109/ASE.2003.1240314

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change.

Psychological Review. https://doi.org/10.1037/0033-295X.84.2.191

Bandura, A. (2006). Guide for constructing self-efficacy scales. Self-Efficacy Beliefs of

Adolescents. https://doi.org/10.1017/CBO9781107415324.004

Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social

psychological research: Conceptual, strategic, and statistical considerations. Journal of

Personality and Social Psychology, 51(6), 1173–1182. https://doi.org/10.1037/0022-

3514.51.6.1173

Bartlett, F. (1933). Remembering: A study in experimental and social psychology. Cambridge

University Press.

Batista, G., & Silva, D. F. (2009). How k-Nearest Neighbor parameters affect its

performance. Argentine Symposium on Artificial Intelligence, 2009, 95–106.

Batista, Gustavo, & Ronaldo. (2004). A study of the behavior of several methods for

balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6(1),

20–29.

 261

Beck, J. E., & Chang, K. M. (2007). Identifiability: A fundamental problem of student

modeling. Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-

3-540-73078-1_17

Ben-Ari, M. (1998). Constructivism in computer science education. SIGCSE Bulletin

(Association for Computing Machinery, Special Interest Group on Computer Science

Education). https://doi.org/10.1145/274790.274308

Ben-Ari, M. (2001). Constructivism in computer science education. Journal of Computers in

Mathematics and Science Teaching, 20.1, 45–73.

https://doi.org/10.1145/274790.274308

Bengio, Y., & Grandvalet, Y. (2004). No unbiased estimator of the variance of k-Fold Cross-

Validation. Journal of Machine Learning Research, 5, 1089–1105.

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory programming. ACM

SIGCSE Bulletin, 39(2), 32–36. https://doi.org/10.1145/3324888

Bennedsen, J., & Caspersen, M. E. (2019). Failure rates in introductory programming: 12

years later. ACM Inroads. https://doi.org/10.1145/3324888

Berch, D. B., Krikorian, R., & Huha, E. M. (1998). The Corsi block-tapping task:

Methodological and theoretical considerations. Brain and Cognition.

https://doi.org/10.1006/brcg.1998.1039

Bergin, S., & Reilly, R. (2005a). The influence of motivation and comfort-level on learning

to program. PPIG 17.

Bergin, S., & Reilly, R. (2006). Predicting introductory programming performance: A multi-

institutional multivariate study. Computer Science Education.

https://doi.org/10.1080/08993400600997096

Bergin, S., & Reilly, R. (2005b). Programming: factors that influence success. 36th SIGCSE

Technical Symposium on Computer Science Education, 411–415.

Berglund, A., & Lister, R. (2010). Introductory programming and the didactic triangle.

Proceedings of the Twelfth Australasian Conference on Computing Education-Volume

103, 35–44.

Berry, M., & Kölling, M. (2013). The design and implementation of a notional machine for

teaching introductory programming. Proceedings of the 8th Workshop in Primary and

Secondary Computing Education (WiPSE ’13).

https://doi.org/10.1145/2532748.2532765

Berssanette, J., & De Francisco, A. (2022). Cognitive load theory in the context of teaching

 262

and learning computer programming: A systematic literature review. IEEE Transactions

on Education, 65(3), 440–449. https://doi.org/10.1109/TE.2021.3127215

Bienkowski, M., Feng, M., & Means, B. (2014). Enhancing teaching and learning through

educational data mining and learning analytics: An issue brief. In Educational

Improvement Through Data Mining and Analytics.

Biggs, J. (1996). Enhancing teaching through constructive alignment. Higher Education,

32(3), 347–364.

Biggs, J. (1999). What the student does: Teaching for enhanced learning. Higher Education

Research & Development, 18(1), 57–75.

Biggs, J. (2014). Constructive alignment in university teaching. HERDSA Review of Higher

Education.

Bishop, C. (2006). Pattern recognition and machine learning. In IEEE Transactions on

Information Theory (Vol. 9, Issue 4). Spinger.

Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. (2014).

Programming pluralism: Using learning analytics to detect patterns in the learning of

computer programming. Journal of the Learning Sciences, 23(4), 561–599.

Bonar, J., & Soloway, E. (1983). Uncovering princlples of novice programming. Conference

Record of the Annual ACM Symposium on Principles of Programming Languages.

https://doi.org/10.1145/567067.567069

Bonar, J., & Soloway, E. (1985). Preprogramming knowledge: A major source of

misconceptions in novice programmers. Human-Computer Interaction.

https://doi.org/10.1207/s15327051hci0102_3

Bornat, R. (2014). Camels and humps: A retraction.

Bornat, R., Dehnadi, S., & Simon. (2008). Mental models, consistency and programming

aptitude. Conferences in Research and Practice in Information Technology Series.

Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Sanders, K., &

Zander, C. (2007). Threshold concepts in computer science: Do they exist and are they

useful? SIGCSE 2007: 38th SIGCSE Technical Symposium on Computer Science

Education, 504–508. https://doi.org/10.1145/1227310.1227482

Boyer, N., Langevin, S., & Gaspar, A. (2008). Self direction & constructivism in

programming education. 9th ACM SIGITE Conference on Information Technology

Education , 89–94.

Brehm, L., Guenzel, H., Hinz, O., Humpe, A., & Martius, H. (2019). Collaborative learning

with COZMO to teach programming in scratch and python. IEEE Global Engineering

 263

Education Conference, EDUCON, April-2019, 448–452.

https://doi.org/10.1109/EDUCON.2019.8725037

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the

development of computational thinking. Proceedings of the 2012 Annual Meeting Of.

Britos, P., Rey, E. J., Rodriguez, D., & Garcia-Martinez, R. (2008). Work in progress -

Programming misunderstandings discovering process based on intelligent data mining

tools. Proceedings - Frontiers in Education Conference, FIE.

https://doi.org/10.1109/FIE.2008.4720499

Brown, N. C. C., Sentance, S., Crick, T., & Humphreys, S. (2014). Restart: The resurgence of

computer science in UK schools. ACM Transactions on Computing Education, 14(2).

https://doi.org/10.1145/2602484

Bruce, & Bruce. (2017). Practical statistics for data scientists: 50+ essential concepts using

R and Python. O’Reilly Media, Inc.

Bruce, C., Buckingham, L., Hynd, J., McMahon, C., Roggenkamp, M., & Stoodley, I. (2004).

Ways of experiencing the act of learning to program: A phenomenographic study of

introductory programming students at university. Journal of Information Technology

Education: Research, 3(1), 145–160. https://www.learntechlib.org/p/111446/

Bruce, K. B. (2005). Controversy on how to teach CS 1: A discussion on the SIGCSE-

members mailing list. ACM SIGCSE Bulletin, 36(4).

Byrne, P., & Lyons, G. (2001). The effect of student attributes on success in programming.

Proceedings of the Conference on Integrating Technology into Computer Science

Education, ITiCSE, 49–52. https://doi.org/10.1145/377435.377467

Cabin, R. J., & Mitchell, R. J. (2000). To Bonferroni or not to Bonferroni: when and how are

the questions. Bulletin of the Ecological Society of America, 81(3), 246–248.

http://www.jstor.org/stable/20168454

Caceffo, R., Frank-Bolton, P., Souza, R., & Azevedo, R. (2019). Identifying and validating

Java misconceptions toward a CS1 concept inventory. Annual Conference on Innovation

and Technology in Computer Science Education, ITiCSE, 19, 23–29.

https://doi.org/10.1145/3304221.3319771

Caceffo, R., Wolfman, S., Booth, K., & Azevedo, R. (2016). Developing a computer science

concept inventory for introductory programming. SIGCSE 2016 - Proceedings of the

47th ACM Technical Symposium on Computing Science Education, 364–369.

https://doi.org/10.1145/2839509.2844559

Cacioppo, J. T., & Petty, R. E. (1982). The need for cognition. Journal of Personality and

 264

Social Psychology. https://doi.org/10.1037/0022-3514.42.1.116

Cacioppo, J. T., Petty, R. E., & Kao, C. F. (1984). The efficient assessment of need for

cognition. Journal of Personality Assessment.

https://doi.org/10.1207/s15327752jpa4803_13

Capstick, C. K., Gordon, J. D., & Salvadori, A. (1975). Predicting performance by university

students in introductory computing courses. ACM SIGCSE Bulletin, 7(3), 21–29.

Castro-Wunsch, K., Ahadi, A., & Petersen, A. (2017). Evaluating neural networks as a

method for identifying students in need of assistance. Proceedings of the Conference on

Integrating Technology into Computer Science Education, ITiCSE, 111–116.

https://doi.org/10.1145/3017680.3017792

Chawla, Bowyer, Hall, & Kegelmeyer. (2002). SMOTE: Synthetic minority over-sampling

technique. Journal of Artificial Intelligence Research, 16, 321–357.

Cheah, C. (2020). Factors contributing to the difficulties in teaching and learning of computer

programming: A literature review. Contemporary Educational Technology, 12(2).

Chen, T., He, T., & Benesty, M. (2018). XGBoost: Extreme gradient boosting. R Package

Version 0.71-2, 1–4.

Cheney, P. (1980). Cognitive style and student programming ability: An investigation. AEDS

Journal, 13(4), 285–291.

Chiodini, L., Moreno Santos, I., Gallidabino, A., Tafliovich, A., Santos, A., & Hauswirth, M.

(2021). A curated inventory of programming language misconceptions. Annual

Conference on Innovation and Technology in Computer Science Education, ITiCSE,

380–386. https://doi.org/10.1145/3430665.3456343

Chollet. (2015). Keras.

Chomboon, K., Chujai, P., Teerarassammee, P., Kerdprasop, K., & Kerdprasop, N. (2015).

An empirical study of distance metrics for k-nearest neighbor algorithm. Proceedings of

the 3rd International Conference on Industrial Application, 280–285.

https://doi.org/10.12792/iciae2015.051

Claesen, M., & De Moor, B. (2015). Hyperparameter search in machine learning. MIC 2015:

The XI Metaheuristics International Conference. http://arxiv.org/abs/1502.02127

Claessen, M. H. G., Van Der Ham, I. J. M., & Van Zandvoort, M. J. E. (2015).

Computerization of the standard corsi block-tapping task affects its underlying cognitive

concepts: A pilot study. Applied Neuropsychology: Adult.

https://doi.org/10.1080/23279095.2014.892488

Clancy, M. (2004). Misconceptions and attitudes that interfere with learning to program.

 265

Computer Science Education Research.

Corbett, A. T., & Anderson, J. R. (1994). Knowledge tracing: Modeling the acquisition of

procedural knowledge. User Modeling and User-Adapted Interaction.

https://doi.org/10.1007/BF01099821

Corney, M., Lister, R., & Teague, D. (2011). Early relational reasoning and the novice

programmer : swapping as the “hello world” of relational reasoning. Proceedings of the

Thirteenth Australiasian Computing Education Conference.

http://www.computing.edu.au/acsw2011/

Corsi, P. M. (1973). Human memory and the medial temporal region of the brain.

Costa, E. B., Fonseca, B., Santana, M. A., de Araújo, F. F., & Rego, J. (2017). Evaluating the

effectiveness of educational data mining techniques for early prediction of students’

academic failure in introductory programming courses. Computers in Human Behavior,

73, 247–256. https://doi.org/10.1016/j.chb.2017.01.047

Cox, A., Fisher, M., & O’Brien, P. (2005). Theoretical considerations on navigating

codespace with spatial cognition. PPIG 17.

Curzon, P., Bell, T., Waite, J., & Dorling, M. (2019). Computational thinking. In The

Cambridge handbook of computing education research (pp. 513–546).

Curzon, P., & Rix, J. (1998). Why do students take programming modules? Proceedings of

the Conference on Integrating Technology into Computer Science Education, ITiCSE,

Part F1292, 59–63. https://doi.org/10.1145/282991.283022

Cutts, Q., Cutts, E., Draper, S., O’Donnell, P., & Saffrey, P. (2010). Manipulating mindset to

positively influence introductory programming performance. SIGCSE’10 - Proceedings

of the 41st ACM Technical Symposium on Computer Science Education, 431–435.

https://doi.org/10.1145/1734263.1734409

Cutts, Q., Esper, S., Fecho, M., Foster, S., & Simon, B. (2012). The abstraction transition

taxonomy: Developing desired learning outcomes through the lens of situated cognition.

ICER 2012 - Proceedings of the 9th Annual International Conference on International

Computing Education Research, 63–70. https://doi.org/10.1145/2361276.2361290

Danielsiek, H., Toma, L., College, B., & Vahrenhold, J. (2018). An instrument to assess self-

efficacy in introductory algorithms courses. ACM Inroads, 9(1), 56–65.

https://doi.org/10.1145/3183510

Dehnadi, S. (2006). Testing programming aptitude. PPIG 18, 23–37.

Dehnadi, S., & Bornat, R. (2006). The camel has two humps (working title). Middlesex

University, UK.

 266

Dehnadi, S., Bornat, R., & Adams, R. (2009). Meta-analysis of the effect of consistency on

success in early learning of programming. Proceedings of 21st Annual Psychology of

Programming Interest Group Conference.

Dickson, P., Brown, N., & Becker, B. (2020). Engage against the machine: Rise of the

notional machines as effective pedagogical devices. Annual Conference on Innovation

and Technology in Computer Science Education, ITiCSE, 7(20), 159–165.

https://doi.org/10.1145/3341525.3387404

Dietrich, D., Heller, R., & Yang, B. (2015). Data science and big data analytics:

Discovering, analyzing, visualizing and presenting data. Wiley.

Dietterich, T. (2000). Ensemble methods in machine learning. International Journal on

Multiple Classifier Systems, 1–15.

Doyle, E., Stamouli, I., & Huggard, M. (2005). Computer anxiety, self-efficacy, computer

experience: An investigation throughout a computer science degree. Proceedings -

Frontiers in Education Conference, FIE. https://doi.org/10.1109/fie.2005.1612246

Dreyfus, H., & Dreyfus, S. (1986). Mind Over Machine. Simon and Schuster.

Dreyfus, S. E. (2004). The five-stage model of adult skill acquisition. Bulletin of Science,

Technology and Society. https://doi.org/10.1177/0270467604264992

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational

Computing Research, 2(1), 57–73.

Du Boulay, B., O’Shea, T., & Monk, J. (1999). Black box inside the glass box: Presenting

computing concepts to novices. International Journal of Human Computer Studies.

https://doi.org/10.1006/ijhc.1981.0309

Dudani, S. A. (1976). The distance-weighted k-nearest-neighbor rule. IEEE Transactions on

Systems, Man, and Cybernetics, 4, 325–327.

Duran, R., Rybicki, J., Sorva, J., & Hellas, A. (2019). Exploring the value of student self-

evaluation in introductory programming. ICER 2019 - Proceedings of the 2019 ACM

Conference on International Computing Education Research, 10, 121–130.

https://doi.org/10.1145/3291279.3339407

Duran, R., Sorva, J., & Leite, S. (2018). Towards an analysis of program complexity from a

cognitive perspective. ICER 2018 - Proceedings of the 2018 ACM Conference on

International Computing Education Research. https://doi.org/10.1145/3230977.3230986

Duran, R., Zavgorodniaia, A., & Sorva, J. (2022). Cognitive load theory in computing

education research: A review. ACM Transactions on Computing Education, 22(4), 1–27.

Dweck, C. (2000). Self-theories: Their role in motivation, personality, and development.

 267

Psychology press.

Eckert, D., Timmermann, D., & Kautz, C. (2022). Student misconceptions about loops in

introductory programming courses and the influence of representations. Proceedings -

Frontiers in Education Conference, FIE, 2022-October.

https://doi.org/10.1109/FIE56618.2022.9962545

Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence

intervals, and other measures of statistical accuracy. Statistical Science, 1(1), 54–75.

https://doi.org/10.1214/ss/1177013815

El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El allioui, Y. (2020). A

multiple linear regression-based approach to predict student performance. Advanced

Intelligent Systems for Sustainable Development (AI2SD’2019), 1, 9–23.

https://doi.org/10.1007/978-3-030-36653-7_2

ElGamal, A. F. (2013). An educational data mining model for predicting student performance

in programming course. International Journal of Computer Applications, 70(17), 22–28.

Engle, R. W., Laughlin, J. E., Tuholski, S. W., & Conway, A. R. A. (1999). Working

memory, short-term memory, and general fluid intelligence: A latent-variable approach.

Journal of Experimental Psychology: General. https://doi.org/10.1037/0096-

3445.128.3.309

Esposito, D., & Esposito, F. (2020). Introducing machine learning. Microsoft Press.

Etherington, K. (2007). Ethical research in reflexive relationships. Qualitative Inquiry.

https://doi.org/10.1177/1077800407301175

Evans, A., Wang, Z., Liu, J., & Zheng, M. (2023). SIDE-lib: A library for detecting

symptoms of python programming misconceptions. Annual Conference on Innovation

and Technology in Computer Science Education, ITiCSE, 1, 159–165.

https://doi.org/10.1145/3587102.3588838

Evans, J. (2003). In two minds: Dual-process accounts of reasoning. Trends in Cognitive

Sciences. https://doi.org/10.1016/j.tics.2003.08.012

Fernandez-Medina, C., Pérez-Pérez, J., Álvarez-García, V., & Del Puerto Paule-Ruiz, M.

(2013). Assistance in computer programming learning using educational data mining

and learning analytics. Annual Conference on Innovation and Technology in Computer

Science Education, ITiCSE. https://doi.org/10.1145/2462476.2462496

Fernández, A., García, S., Herrera, F., & Chawla, N. (2018). SMOTE for learning from

imbalanced data: progress and challenges, marking the 15-year anniversary. Journal of

Artificial Intelligence Research, 61, 863–905. https://doi.org/10.1613/jair.1.11192

 268

Feucht, F. C., Lunn Brownlee, J., & Schraw, G. (2017). Moving beyond reflection:

reflexivity and epistemic cognition in teaching and teacher education. In Educational

Psychologist. https://doi.org/10.1080/00461520.2017.1350180

Fincher, S., Jeuring, J., Miller, C., Donaldson, P., Du Boulay, B., Hauswirth, M., Hellas, A.,

Hermans, F., Lewis, C., Mühling, A., Pearce, J., & Petersen, A. (2020). Notional

machines in computing education: The education of attention. Annual Conference on

Innovation and Technology in Computer Science Education, ITiCSE, 20, 21–50.

https://doi.org/10.1145/3437800.3439202

Flowers. (2009). Research philosophies – importance and relevance. European Journal of

Information Systems, 3(2), 112–126.

Ganis, G., & Kievit, R. (2015). A new set of three-dimensional shapes for investigating

mental rotation processes: Validation data and stimulus set. Journal of Open Psychology

Data. https://doi.org/10.5334/jopd.ai

García, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining. In Intelligent

Systems Reference Library. Springer.

George, C. (2000). Experiences with novices: The importance of graphical representations in

supporting mental models. PPIG 12, 33–44.

Géron, A. (2022). Hands-on machine learning with Scikit-learn, Keras, and TensorFlow:

Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, Inc.

Gomes, A., Carmo, L., Bigotte, E., & Mendes, A. (2006). Mathematics and programming

problem solving. 3rd E-Learning Conference–Computer Science Education, 1–5.

Gonzalez, G. (2004). Constructivism in an introduction to programming course. Journal of

Computing Sciences in Colleges, 19.4, 299–305.

Götschi, T., Sanders, I., & Galpin, V. (2003). Mental models of recursion. Proceedings of the

34th SIGCSE Technical Symposium on Computer Science Education.

https://doi.org/10.1145/792548.612004

Griffiths, M. (1998). Educational research for social justice: Getting off the fence. McGraw-

Hill Education (UK).

Grover, S., & Basu, S. (2017). Measuring student learning in introductory block-based

programming: Examining misconceptions of loops, variables, and Boolean logic.

Proceedings of the Conference on Integrating Technology into Computer Science

Education, ITiCSE. https://doi.org/10.1145/3017680.3017723

Guo, P. (2018). Non-native English speakers learning computer programming: Barriers,

desires, and design opportunities. Conference on Human Factors in Computing Systems

 269

- Proceedings, 2018-April. https://doi.org/10.1145/3173574.3173970

Guzdial, M. (2010). Why is it so hard to learn to program. In Making Software: What Really

Works, and Why We Believe It (pp. 111–124). O’Reilly Media.

Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., & Hosking, A. L. (2009). A

multidisciplinary approach towards computational thinking for science majors. ACM

SIGCSE Bulletin. https://doi.org/10.1145/1539024.1508931

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data

mining, inference and prediction (2nd ed.). Springer New York.

https://doi.org/10.1007/978-0-387-84858-7

Hayes, A. F. (2022). Introduction to mediation, moderation, and conditional process analysis.

In the Guilford Press (3rd ed.). Guilford Publications.

Hill, R., & Guzdial, M. (2019). Pondering variables and direct instruction. Communications

of the ACM, 62(4).

Holloway, I. (2005). Qualitative research in health care. McGraw-Hill Education (UK).

Hsu, C., Chang, C., & Lin, C. (2008). A practical guide to support vector classification. BJU

International, 101(1), 1396–1400.

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

Imbalanced-learn. (n.d.-a). Pipeline — Imblearn 0.10.1 documentation. Retrieved May 3,

2023, from https://imbalanced-

learn.org/stable/references/generated/imblearn.pipeline.Pipeline.html

Imbalanced-learn. (n.d.-b). SMOTETomek — Imblearn 0.10.1 documentation. Retrieved May

3, 2023, from https://imbalanced-

learn.org/stable/references/generated/imblearn.combine.SMOTETomek.html

Jacob, J., Jha, K., Kotak, P., & Puthran, S. (2016). Educational data mining techniques and

their applications. Proceedings of the 2015 International Conference on Green

Computing and Internet of Things, ICGCIoT 2015, 1344–1348.

https://doi.org/10.1109/ICGCIoT.2015.7380675

Jadud, M. C. (2006). Methods and tools for exploring novice compilation behaviour. ICER

2006 - Proceedings of the 2nd International Computing Education Research Workshop.

https://doi.org/10.1145/1151588.1151600

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical

learning (Vol. 112). Springer.

Johnson-Laird, Philip N. (2010). Mental models and human reasoning. Proceedings of the

National Academy of Sciences of the United States of America.

 270

https://doi.org/10.1073/pnas.1012933107

Johnson-Laird, Philip Nicholas. (1983). Mental models: Towards a cognitive science of

language, inference, and consciousness (6th ed.). Harvard University Press.

Johnson, F., McQuistin, S., & O’Donnell, J. (2020). Analysis of student misconceptions

using python as an introductory programming language. Proceedings of the 4th

Conference on Computing Education Practice (CEP ’20).

https://doi.org/10.1145/3372356.3372360

Jones, & Burnett. (2008). Spatial ability and learning to program. Human Technology: An

Interdisciplinary Journal on Humans in ICT Environments.

https://doi.org/10.17011/ht/urn.200804151352

Jones, M. G., & Brader-Araje, L. (2002). The impact of constructivism on education:

Language, discourse, and meaning. American Communication Journal.

Jovic, A., Brkic, K., & Bogunovic, N. (2015). A review of feature selection methods with

applications. 2015 38th International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), 1200–1205.

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., & Herman, G. L. (2010). Identifying student

misconceptions of programming. SIGCSE’10 - Proceedings of the 41st ACM Technical

Symposium on Computer Science Education. https://doi.org/10.1145/1734263.1734299

Kahney, H. (1983). What do novice programmers know about recursion. Conference on

Human Factors in Computing Systems - Proceedings.

https://doi.org/10.1145/800045.801618

Kallia, M., & Sentance, S. (2019). Learning to use functions: The relationship between

misconceptions and self-efficacy. SIGCSE 2019 - Proceedings of the 50th ACM

Technical Symposium on Computer Science Education, 752–758.

https://doi.org/10.1145/3287324.3287377

Kamler, B., & Thomson, P. (2014). Helping doctoral students write: Pedagogies for

supervision, second edition. In Routledge. https://doi.org/10.4324/9781315813639

Kanaparan, G., Cullen, R., & Mason, D. (2019). Effect of self-efficacy and emotional

engagement on introductory programming students. Australasian Journal of

Information Systems, 23.

Kansanen, P., & Meri, M. (1999). Didactic relation in the teaching-studying-learning process.

Didaktik/Fachdidaktik as Science (-s) of the Teaching Profession, 2(1), 107–116.

https://doi.org/10.13140/RG.2.1.2646.4726

Karsoliya, S. (2012). Approximating number of hidden layer neurons in multiple hidden layer

 271

BPNN architecture. International Journal of Engineering Trends and Technology, 3(6),

714–717.

Kaufmann, O., & Stenseth, B. (2021). Programming in mathematics education. International

Journal of Mathematical Education in Science and Technology, 52(7), 1029–1048.

https://doi.org/10.1080/0020739X.2020.1736349

Kessels, R., Van Zandvoort, M., Postma, A., Kappelle, L., & De Haan, E. (2000). The Corsi

block-tapping task: Standardization and normative data. Applied Neuropsychology.

https://doi.org/10.1207/S15324826AN0704_8

Kessler, C., & Anderson, J. (1986). Learning flow of control: Recursive and iterative

procedures. Human-Computer Interaction, 2(2), 135–166.

Khalife, J. (2006). Threshold for the introduction of programming: Providing learners with a

simple computer model. 28th International Conference on Information Technology

Interfaces, 2006., 71–76.

Kiran, B., & Serra, J. (2017). Cost-complexity pruning of random forests. Lecture Notes in

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 10225 LNCS, 222–232. https://doi.org/10.1007/978-3-

319-57240-6_18

Konecki, M., & Petrlic, M. (2014). Main problems of programming novices and the right

course of action. Central European Conference on Information and Intelligent Systems,

116.

Kotsiantis, S. (2007). Supervised machine learning: A review of classification techniques.

Emerging Artificial Intelligence Applications in Computer Engineering, 160(1), 3–24.

Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2006). Data preprocessing for supervised

learning. International Journal of Computer Scince, 1(2), 111–117.

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. Spinger.

https://doi.org/10.1007/978-1-4614-6849-3

Kuhn, M., & Johnson, K. (2019). Feature engineering and selection: A practical approach

for predictive models. Chapman and Hall/CRC. https://doi.org/10.1201/9781315108230

Kunkle, W. (2010). The impact of different teaching approaches and languages on student

learning of introductory programming concepts. Doctoral Dissertation, Drexel

University.

Kunkle, W., & Allen, R. (2016). The impact of different teaching approaches and languages

on student learning of introductory programming concepts. ACM Transactions on

Computinig Education. https://doi.org/10.1145/2785807

 272

Kurland, D., & Pea, R. (1985). Children’s mental models of recursive Logo programs.

Journal of Educational Computing Research. https://doi.org/10.2190/jv9y-5pd0-mx22-

9j4y

Kwon, K. (2017). Novice programmer’s misconception of programming reflected on

problem-solving plans. International Journal of Computer Science Education in

Schools. https://doi.org/10.21585/ijcses.v1i4.19

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. (2005). A study of the difficulties of novice

programmers. ACM SIGCSE Bulletin, 37(3), 14–18.

https://doi.org/10.1145/1151954.1067453

Landis, J., & Koch, G. (1977). The measurement of observer agreement for categorical data.

Biometrics. https://doi.org/10.2307/2529310

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., &

Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads, 2(1),

32–37. https://doi.org/10.1145/1929887.1929902

Leeds-Hurwitz, W. (2009). Social construction of reality. In Encyclopedia of communication

theory (Vol. 2, pp. 891–894).

Lemaître, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A python toolbox to

tackle the curse of imbalanced datasets in machine learning. Journal of Machine

Learning Research, 18, 1–5.

Liao, S. N., Zingaro, D., Thai, K., Alvarado, C., Griswold, W. G., & Porter, L. (2019). A

robust machine learning technique to predict low-performing students. ACM

Transactions on Computing Education, 19(3), 18. https://doi.org/10.1145/3277569

Linn, M. (1985). The cognitive consequences of programming instruction in classrooms.

Educational Researcher. https://doi.org/10.3102/0013189X014005014

Lishinski, A., Yadav, A., Good, J., & Enbody, R. (2016). Learning to program: Gender

differences and interactive effects of students’ motivation, goals, and self-efficacy on

performance. 2016 ACM Conference on International Computing Education Research,

211–220.

Lister, R, Adams, E., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R.,

Moström, J., Sanders, K., & Seppälä, O. (2004). A multi-national study of reading and

tracing skills in novice programmers. ACM SIGCSE Bulletin, 36, 119–150.

Lister, R. (2011). Concrete and other neo-piagetian forms of reasoning in the novice

programmer. Conferences in Research and Practice in Information Technology Series,

114, 9–18.

 273

López-Zambrano, J., Torralbo, J., & Romero, C. (2021). Early prediction of student learning

performance through data mining: A systematic review. Psicothema, 33(3), 456–465.

https://doi.org/10.7334/psicothema2021.62

Lowe, T. (2019). Explaining novice programmer’s struggles, in two parts: Revisiting the

ITiCSE 2004 working group’s study using dual process theory. Proceedings of the 2019

ACM Conference on Innovation and Technology in Computer Science Education, 30–

36.

Lu, J., & Fletcher, G. (2009). Thinking about computational thinking categories and subject

descriptors. 40th ACM Technical Symposium on Computer Science Education.

https://doi.org/10.1145/1539024.1508959

Lui, A. K., Kwan, R., Poon, M., & Cheung, Y. H. Y. (2004). Saving weak programming

students: Applying constructivism in a first programming course. In ACM SIGCSE

Bulletin (Vol. 36, Issue 2). https://doi.org/10.1145/1024338.1024376

Luxton-Reilly, A. (2016). Learning to program is easy. 2016 ACM Conference on Innovation

and Technology in Computer Science Education, 284–289.

Luxton-Reilly, A., Simon, Albluwi, I., Becker, B., Giannakos, M., Kumar, A., Ott, L.,

Paterson, J., Scott, M., Sheard, J., & Szabo, C. (2018). Introductory programming: A

systematic literature review. Annual Conference on Innovation and Technology in

Computer Science Education, ITiCSE, 55–106.

https://doi.org/10.1145/3293881.3295779

Ma, L., Ferguson, J., Roper, M., Ross, I., & Wood, M. (2008). Using cognitive conflict and

visualisation to improve mental models held by novice programmers. ACM SIGCSE

Bulletin. https://doi.org/10.1145/1352322.1352253

MacKay, D. (1992). Bayesian interpolation. Neural Computation, 4(3), 415–447.

https://doi.org/10.1162/neco.1992.4.3.415

Mantovani, R., Rossi, A., Vanschoren, J., Bischl, B., & De Carvalho, A. (2015).

Effectiveness of random search in SVM hyper-parameter tuning. Proceedings of the

International Joint Conference on Neural Networks.

https://doi.org/10.1109/IJCNN.2015.7280664

Margulieux, L. (2020). Spatial encoding strategy theory: the relationship between spatial skill

and STEM achievement. ACM Inroads, 11(1), 65–75. https://doi.org/10.1145/3381891

Mason, R., & Cooper, G. (2012). Why the bottom 10% just can’t do it: Mental effort

measures and Implication for Introductory programming courses. Proceedings of the

Fourteenth Australasian Computing Education Conference-, 123, 187–196.

 274

Maulud, D., & Abdulazeez, A. (2020). A review on linear regression comprehensive in

machine learning. Journal of Applied Science and Technology Trends, 1(4), 140–147.

https://doi.org/10.38094/jastt1457

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y., Laxer, C.,

Thomas, L., Utting, I., & Wilusz, T. (2001). A multi-national, multi-institutional study

of assessment of programming skills of first-year CS students. Working Group Reports

from ITiCSE on Innovation and Technology in Computer Science Education, 125–180.

Meyer, & Land. (2005). Threshold concepts and troublesome knowledge (2):

Epistemological considerations and a conceptual framework for teaching and learning.

Higher Education, 49(3), 373–388.

Miles, J., & Shevlin, M. (2001). Applying regression and correlation: A guide for students

and researchers. Sage.

Miller, G. (1956). The magical number seven, plus or minus two: some limits on our capacity

for processing information. Psychological Review. https://doi.org/10.1037/h0043158

Mitchell, N., Danino, N., & May, L. (2013). Motivation and manipulation: A gamification

approach to influencing undergraduate attitudes in computing. 7th European Conference

on Games Based Learning, ECGBL 2013.

Moons, J., & De Backer, C. (2013). The design and pilot evaluation of an interactive learning

environment for introductory programming influenced by cognitive load theory and

constructivism. Computers & Education, 60(1), 368–384.

Morales-Navarro, L., Giang, M., Fields, D., & Kafai, Y. (2023). Connecting beliefs,

mindsets, anxiety and self-efficacy in computer science learning: an instrument for

capturing secondary school students’ self-beliefs. Computer Science Education.

https://doi.org/10.1080/08993408.2023.2201548

Morrison, B., Dorn, B., & Guzdial, M. (2014). Measuring cognitive load in introductory CS:

adaptation of an instrument. ICER 2014: Proceedings of the Tenth Annual Conference

on International Computing Education Research, 131–138.

https://doi.org/10.1145/2632320.2632348

Murphy, L., & Thomas, L. (2008). Dangers of a fixed mindset: Implications of self-theories

research for computer science education. Proceedings of the Conference on Integrating

Technology into Computer Science Education, ITiCSE, 271–275.

https://doi.org/10.1145/1384271.1384344

Myles, A., Feudale, R., Liu, Y., Woody, N., & Brown, S. (2004). An introduction to decision

tree modeling. Journal of Chemometrics, 18(6), 275–285.

 275

https://doi.org/10.1002/cem.873

Nasiri, M., Minaei, B., & Vafaei, F. (2012). Predicting GPA and academic dismissal in LMS

using educational data mining: A case mining. 3rd International Conference on

ELearning and ETeaching, ICeLeT 2012, 53–58.

https://doi.org/10.1109/ICELET.2012.6333365

Norman, D. A. (1983). Some observations on mental models. In Mental Models.

OCR. (2015). OCR GCSE (9-1) Computer Science Pseudocode Guide.

https://www.ocr.org.uk/Images/202654-pseudocode-guide.pdf

OCR. (2020). GCSE Computer Science (9 - 1) - J277.

https://www.ocr.org.uk/Images/558027-specification-gcse-computer-science-j277.pdf

Omer, U., & Farooq, M. S. (2020). Cognitive learning analytics using assessment data and

concept map: A framework-based approach for sustainability of programming courses.

Sustainability, 12(17).

Omer, U., Farooq, M. S., & Abid, A. (2021). Introductory programming course: Review and

future implications. PeerJ Computer Science, 7. https://doi.org/10.7717/peerj-cs.647

Ormerod, T. (2014). Human Cognition and Programming. In Psychology of Programming.

https://doi.org/10.1016/b978-0-12-350772-3.50009-4

Paas, F., Tuovinen, J., Tabbers, H., & Van Gerven, P. (2003). Cognitive load measurement as

a means to advance cognitive load theory. Educational Psychologist.

https://doi.org/10.1207/S15326985EP3801_8

Paas, F., & Van Merriënboer, J. (1994). Instructional control of cognitive load in the training

of complex cognitive tasks. Educational Psychology Review.

https://doi.org/10.1007/BF02213420

Paas, F., Van Merriënboer, J., & Adam, J. (1994). Measurement of cognitive load in

instructional research. Perceptual and Motor Skills.

Palaganas, E., Sanchez, M., Molintas, M., & Caricativo, R. (2017). Reflexivity in qualitative

research: A journey of learning. Qualitative Report.

Parahoo, K. (2014). Nursing research: principles, process and issues. Macmillan

International Higher Education.

Pardos, Z., Bergner, Y., Seaton, D., & Pritchard, D. (2013). Adapting Bayesian knowledge

tracing to a massive open online course in edX. Proceedings of the 6th International

Conference on Educational Data Mining, EDM 2013.

Pardos, Z., & Heffernan, N. (2010). Navigating the parameter space of Bayesian knowledge

tracing models: Visualizations of the convergence of the expectation maximization

 276

algorithm. Educational Data Mining 2010 - 3rd International Conference on

Educational Data Mining.

Parkinson, J. (2022). What does space look like in CS? Mapping out the relationship between

spatial skills and CS aptitude. ICER 2022 - Proceedings of the 2022 ACM Conference

on International Computing Education Research, 2, 46–47.

https://doi.org/10.1145/3501709.3544284

Parkinson, J., & Cutts, Q. (2018). Investigating the relationship between spatial skills and

computer science. ICER 2018 - Proceedings of the 2018 ACM Conference on

International Computing Education Research, 106–114.

https://doi.org/10.1145/3230977.3230990

Parry, A. (2020). Investigating the relationship between programming and natural languages

within the primm framework. Proceedings of the 15th Workshop on Primary and

Secondary Computing Education (WiPSCE ’20).

https://doi.org/10.1145/3421590.3421592

Pea, R. (1986). Language-independent conceptual “bugs” in novice programming. Journal of

Educational Computing Research. https://doi.org/10.2190/689t-1r2a-x4w4-29j2

Pea, R., & Kurland, D. (1984). On the cognitive effects of learning computer programming.

New Ideas in Psychology. https://doi.org/10.1016/0732-118X(84)90018-7

Pearson. (2020). GCSE (9-1) Computer Science.

https://qualifications.pearson.com/content/dam/pdf/GCSE/Computer

Science/2020/specification-and-sample-

assessments/GCSE_L1_L2_Computer_Science_2020_Specification.pdf

Pedregosa, F., Varoquaux, G., Gramfort, A., V, M., B, T., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in

Python. The Journal of Machine Learning Research, 12, 2825–2830.

Perkins, D., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1986). Conditions of

learning in novice programmers. Journal of Educational Computing Research, 2(1), 37–

55.

Piaget, J. (1973). To understand is to invent: The future of education.

Piech, C., Sahami, M., Koller, D., Cooper, S., & Blikstein, P. (2012). Modeling how students

learn to program. SIGCSE’12 - Proceedings of the 43rd ACM Technical Symposium on

Computer Science Education. https://doi.org/10.1145/2157136.2157182

Pintrich, P. R. (2002). Future challenges and directions for theory and research on personal

 277

epistemology. In Personal Epistemology: The Psychology of Beliefs about Knowledge

and Knowing.

Przybylla, M., & Romeike, R. (2014). Physical computing and its scope - Towards a

constructionist computer science curriculum with physical computing. Informatics in

Education, 13(2), 241–254.

Qian, Y., Hambrusch, S., Yadav, A., Gretter, S., & Li, Y. (2020). Teachers’ perceptions of

student misconceptions in introductory programming. Journal of Educational

Computing Research, 58(2), 364–397.

Qian, Y., & Lehman, J. (2016). Correlates of success in introductory programming: A study

with middle school students. Journal of Education and Learning, 5(2), 73–83.

https://doi.org/10.5539/jel.v5n2p73

Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other difficulties in

introductory programming: A literature review. In ACM Transactions on Computing

Education. https://doi.org/10.1145/3077618

Qiu, Y., Ql, Y., Lu, H., Pardos, Z. A., & Heffernan, N. T. (2011). Does time matter?

Modeling the effect of time in Bayesian knowledge tracing. EDM 2011 - Proceedings of

the 4th International Conference on Educational Data Mining.

Qualtrics. (n.d.). Qualtrics JavaScript Question API Class. Retrieved April 25, 2020, from

https://api.qualtrics.com/82bd4d5c331f1-qualtrics-java-script-question-api-class

Quille, K., & Bergin, S. (2018). Programming: Predicting student success early in CS1. A re-

validation and replication study. Annual Conference on Innovation and Technology in

Computer Science Education, ITiCSE, 15–20. https://doi.org/10.1145/3197091.3197101

Quille, K., & Bergin, S. (2020). Promoting a growth mindset in CS1: Does one size fit all? A

pilot study. Annual Conference on Innovation and Technology in Computer Science

Education, ITiCSE, 20, 12–18. https://doi.org/10.1145/3341525.3387361

Quille, K., Culligan, N., & Bergin, S. (2017). Insights on gender differences in CS1: A multi-

institutional, multi-variate study. 2017 ACM Conference on Innovation and Technology

in Computer Science Education, 263–268.

Raj, A., Ketsuriyonk, K., Patel, J., & Halverson, R. (2017). What do students feel about

learning programming using both English and their native language? 2017 International

Conference on Learning and Teaching in Computing and Engineering (LaTICE), 1–8.

Ramalingam, V., & Wiedenbeck, S. (1998). Development and validation of scores on a

computer programming self-efficacy scale and group analyses of novice programmer

self-efficacy. Journal of Educational Computing Research.

 278

https://doi.org/10.2190/C670-Y3C8-LTJ1-CT3P

Ramentol, E., Caballero, Y., Bello, R., & Herrera, F. (2012). SMOTE-RSB*: A hybrid

preprocessing approach based on oversampling and undersampling for high imbalanced

data-sets using SMOTE and rough sets theory. Knowledge and Information Systems,

33(2), 245–265. https://doi.org/10.1007/s10115-011-0465-6

Raschka, S. (2018). Model evaluation, model selection, and algorithm selection in machine

learning. arXiv preprint. http://arxiv.org/abs/1811.12808

Rastrollo-Guerrero, J., Gómez-Pulido, J., & Durán-Domínguez, A. (2020). Analyzing and

predicting students’ performance by means of machine learning: A review. Applied

Sciences (Switzerland), 10(3). https://doi.org/10.3390/app10031042

Redick, T., Broadway, J., Meier, M., Kuriakose, P., Unsworth, N., Kane, M., & Engle, R.

(2012). Measuring working memory capacity with automated complex span tasks.

European Journal of Psychological Assessment. https://doi.org/10.1027/1015-

5759/a000123

Reges, S. (2008). The mystery of “b := (b = false).” ACM SIGCSE Bulletin, 40(1).

https://doi.org/10.1145/1352322.1352147

Robins, A. (2010). Learning edge momentum: a new account of outcomes in CS1. Computer

Science Education, 20(1), 37–71. https://doi.org/10.1080/08993401003612167

Robins, A. (2019). Novice programmers and introductory programming. In The Cambridge

handbook of computing education research (pp. 327–376).

Rodrigo, M., Tabanao, E., Lahoz, M., & Jadud, M. (2009). Analyzing online protocols to

characterize novice java programmers. Philippine Journal of Science.

Rogalski, J., & Samurçay, R. (1990). Acquisition of programming knowledge and skills. In

Psychology of programming (pp. 157–174). Elsevier.

Rogerson, C., & Scott, E. (2010). The fear factor: How it affects students learning to program

in a tertiary environment. Journal of Information Technology Education: Research.

https://doi.org/10.28945/1183

Romero, C., & Ventura, S. (2010). Educational data mining: A review of the state of the art.

IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews,

40(6), 601–618. https://doi.org/10.1109/TSMCC.2010.2053532

Romero, C., & Ventura, S. (2019). Guest editorial: Special issue on early prediction and

supporting of learning Performance. IEEE Transactions on Learning Technologies,

12(2), 145–147. https://doi.org/10.1109/TLT.2019.2908106

Rumelhart, D., & Ortony, A. (2017). The representation of knowledge in memory 1. In

 279

Schooling and the Acquisition of Knowledge (pp. 99–135). Routledge.

https://doi.org/10.4324/9781315271644-10

Russell, S., & Norvig, P. (2020). Artificial intelligence: a modern approach (4th ed.).

Sanders, K., & Thomas, L. (2007). Checklists for grading object-oriented CS1 programs:

Concepts and misconceptions. ITiCSE 2007: 12th Annual Conference on Innovation and

Technology in Computer Science Education - Inclusive Education in Computer Science.

https://doi.org/10.1145/1268784.1268834

Sasse, A. (1997). Eliciting and describing users’ models of computer systems. (Doctoral

dissertation, University of Birmingham).

Schneider, W., & Shiffrin, R. (1977). Controlled and automatic human information

processing: I. Detection, search, and attention. Psychological Review.

https://doi.org/10.1037/0033-295X.84.1.1

Schulte, C. (2008). Block Model: An educational model of program comprehension as a tool

for a scholarly approach to teaching. ICER 2008 - Proceedings of the ACM Workshop on

International Computing Education Research, 149–160.

https://doi.org/10.1145/1404520.1404535

Scikit-Learn. (n.d.-a). BaggingClassifier— scikit-learn 1.2.2 documentation. Retrieved May

18, 2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html

Scikit-Learn. (n.d.-b). BaggingRegressor — scikit-learn 1.2.2 documentation. Retrieved May

18, 2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html

Scikit-Learn. (n.d.-c). BayesianRidge— scikit-learn 1.2.2 documentation. Retrieved May 18,

2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html

Scikit-Learn. (n.d.-d). Cross_Val_Score — scikit-learn 1.2.2 documentation. Retrieved May

18, 2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html

Scikit-Learn. (n.d.-e). Decision trees — scikit-learn 1.2.2 documentation. Retrieved May 18,

2023, from https://scikit-learn.org/stable/modules/tree.html#tree

Scikit-Learn. (n.d.-f). DecisionTreeClassifier — scikit-learn 1.2.2 documentation. Retrieved

May 18, 2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tre

e.DecisionTreeClassifier

 280

Scikit-Learn. (n.d.-g). DecisionTreeRegressor — scikit-learn 1.2.2 documentation. Retrieved

May 18, 2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html

Scikit-Learn. (n.d.-h). ElasticNet — scikit-learn 1.2.2 documentation. Retrieved May 18,

2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html

Scikit-Learn. (n.d.-i). GradientBoostingClassifier— scikit-learn 1.2.2 documentation.

Retrieved May 18, 2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

Scikit-Learn. (n.d.-j). GradientBoostingRegressor— scikit-learn 1.2.2 documentation.

Retrieved May 18, 2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html

Scikit-Learn. (n.d.-k). GridSeachCV — scikit-learn 1.2.2 documentation. Retrieved May 18,

2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

Scikit-Learn. (n.d.-l). KNeighborsClassifier— scikit-learn 1.2.2 documentation. Retrieved

May 18, 2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

Scikit-Learn. (n.d.-m). KNeighborsRegressor— scikit-learn 1.2.2 documentation. Retrieved

May 18, 2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html

Scikit-Learn. (n.d.-n). Lasso — scikit-learn 1.2.2 documentation. Retrieved May 18, 2023,

from https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html

Scikit-Learn. (n.d.-o). LinearRegression — scikit-learn 1.2.2 documentation. Retrieved May

18, 2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

Scikit-Learn. (n.d.-p). LinearSVC — scikit-learn 1.2.2 documentation. Retrieved May 18,

2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

Scikit-Learn. (n.d.-q). LinearSVR – scikit-learn 1.2.2 documentation. Retrieved May 18,

2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html

Scikit-Learn. (n.d.-r). LogisticRegression — scikit-learn 1.2.2 documentation. Retrieved May

18, 2023, from https://scikit-

 281

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Scikit-Learn. (n.d.-s). MinMaxScaler— scikit-learn 1.2.2 documentation. Retrieved May 18,

2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

Scikit-Learn. (n.d.-t). MLPClassifier – scikit-learn 1.2.2 documentation. Retrieved May 18,

2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.

neural_network.MLPClassifier

Scikit-Learn. (n.d.-u). MLPRegressor — scikit-learn 1.2.2 documentation. Retrieved May 18,

2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn

.neural_network.MLPRegressor

Scikit-Learn. (n.d.-v). OneHotEncoder – scikit-learn 1.2.2 documentation. Retrieved May 18,

2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

Scikit-Learn. (n.d.-w). Pipeline — scikit-learn 1.2.2 documentation. Retrieved May 18, 2023,

from https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

Scikit-Learn. (n.d.-x). RandomForestClassifier — scikit-learn 1.2.2 documentation.

Retrieved May 18, 2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Scikit-Learn. (n.d.-y). RandomForestRegressor — scikit-learn 1.2.2 documentation.

Retrieved May 18, 2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

Scikit-Learn. (n.d.-z). RBF SVM parameters – scikit-learn 1.2.2 documentation. Retrieved

May 18, 2023, from https://scikit-

learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

Scikit-Learn. (n.d.-aa). RFE — scikit-learn 1.2.2 Documentation. Retrieved May 18, 2023,

from https://scikit-

learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html

Scikit-Learn. (n.d.-ab). Ridge — scikit-learn 1.2.2 documentation. Retrieved May 18, 2023,

from https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html

Scikit-Learn. (n.d.-ac). RidgeClassifier — scikit-learn 1.2.2 documentation.

Scikit-Learn. (n.d.-ad). Support vector machines — scikit-learn 1.2.2 documentation.

Retrieved May 18, 2023, from https://scikit-learn.org/stable/modules/svm.html

 282

Scikit-Learn. (n.d.-ae). SVC — scikit-learn 1.2.2 documentation. Retrieved May 18, 2023,

from https://scikit-

learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

Scikit-Learn. (n.d.-af). SVR — scikit-learn 1.2.2 documentation. Retrieved May 18, 2023,

from https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

Scikit-Learn. (n.d.-ag). Train_test_split— scikit-learn 1.2.2 documentation. Retrieved May

18, 2023, from https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

Sentance, S., Kirby, D., Quille, K., Cole, E., Crick, T., & Looker, N. (2022). Computing in

school in the UK & Ireland: A comparative study. UKICER 2022: Proceedings of the

2022 Conference on United Kingdom & Ireland Computing Education Research.

https://doi.org/10.1145/3555009.3555015

Sentance, S., Waite, J., & Kallia, M. (2019). Teaching computer programming with PRIMM:

A sociocultural perspective. Computer Science Education, 29(2–3), 136–176.

https://doi.org/10.1080/08993408.2019.1608781

Shabani, K., Khatib, M., & Ebadi, S. (2010). Vygotsky’s zone of proximal development:

Instructional implications and teachers’ professional development. English Language

Teaching, 3(4), 237–248.

Sharmin, S., Zingaro, D., Zhang, L., & Brett, C. (2019). Impact of open-ended assignments

on student self-efficacy in CS1. CompEd 2019 - Proceedings of the ACM Conference on

Global Computing Education, 19, 215–221. https://doi.org/10.1145/3300115.3309532

Shepard, R., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science.

https://doi.org/10.1126/science.171.3972.701

Shephard, K. (2019). Higher Education Peadagogy. In The Cambridge handbook of

computing education research (pp. 276–291).

Shiffrin, R., & Schneider, W. (1977). Controlled and automatic human information

processing: II. Perceptual learning, automatic attending and a general theory.

Psychological Review. https://doi.org/10.1037/0033-295X.84.2.127

Siemens, G. (2012). Learning analytics: Envisioning a research discipline and a domain of

practice. Proceedings of the 2nd International Conference on Learning Analytics and

Knowledge (LAK ’12). https://doi.org/10.1145/2330601.2330605

Siemens, G., & Baker, R. (2012). Learning analytics and educational data mining: Towards

communication and collaboration. Learning Analytics and Educational Data Mining:

Towards Communication and Collaboration. https://doi.org/10.1145/2330601.2330661

 283

Simon. (2011). Assignment and sequence: Why some students can’t recognise a simple swap.

Proceedings - 11th Koli Calling International Conference on Computing Education

Research, Koli Calling’11, 10–15. https://doi.org/10.1145/2094131.2094134

Simon, B., Hanks, B., Murphy, L., Fitzgerald, S., McCauley, R., Thomas, L., & Zander, C.

(2008). Saying isn’t necessarily believing: Influencing self-theories in computing. ICER

2008 - Proceedings of the ACM Workshop on International Computing Education

Research, 173–184. https://doi.org/10.1145/1404520.1404537

Simon, Mason, R., Crick, T., Davenport, J., & Murphy, E. (2018). Language choice in

introductory programming courses at Australasian and UK universities. SIGCSE 2018 -

Proceedings of the 49th ACM Technical Symposium on Computer Science Education,

2018, 852–857. https://doi.org/10.1145/3159450.3159547

Simon, S., Fincher, S., Robins, A., Baker, B., Cutts, Q., Haden, P., Hamilton, M., Petre, M.,

Tolhurst, D., Box, I., de Raadt, M., Hamer, J., Lister, R., Sutton, K., & Tutty, J. (2006).

Predictors of success in a first programming course. Conferences in Research and

Practice in Information Technology Series.

Sirkiä, T., & Sorva, J. (2012). Exploring programming misconceptions: An analysis of

student mistakes in visual program simulation exercises. Proceedings - 12th Koli

Calling International Conference on Computing Education Research, Koli Calling

2012. https://doi.org/10.1145/2401796.2401799

Sleeman, D., Putnam, R. T., Baxter, J., & Kuspa, L. (1986). Pascal and High School

Students: A Study of Errors. Journal of Educational Computing Research.

https://doi.org/10.2190/2xpp-ltyh-98nq-bu77

Smith, J., DiSessa, A., & Roschelle, J. (1994). Misconceptions reconceived: A constructivist

analysis of knowledge in transition. Journal of the Learning Sciences.

https://doi.org/10.1207/s15327809jls0302_1

Sorva, J. (2010). Reflections on threshold concepts in computer programming and beyond.

Proceedings of the 10th Koli Calling International Conference on Computing Education

Research, Koli Calling’10, 21–30. https://doi.org/10.1145/1930464.1930467

Sorva, J. (2012). Visual program simulation in introductory programming education. Aalto

University.

Sorva, J. (2013). Notional machines and introductory programming education. ACM

Transactions on Computing Education. https://doi.org/10.1145/2483710.2483713

Strecht, P., Cruz, L., Soares, C., Mendes-Moreira, J., & Abreu, R. (2015). A comparative

study of classification and regression algorithms for modelling students’ academic

 284

performance. International Educational Data Mining Society.

Strnad, M., Šerbec, I. N., & Rugelj, J. (2009). Programming aptitude and learning success in

the introductory course on programming. 12th International Conference on Interactive

Computer Aided Learning.

Strong, S. (2000). The development of a computerized version of Vandenberg’s mental

rotation test and the effect of visuo-spatial working memory loading. Dissertation

Abstracts International Section A: Humanities and Social Sciences.

Sudol, L., & Jaspan, C. (2010). Analyzing the strength of undergraduate misconceptions

about software engineering. 31. https://doi.org/10.1145/1839594.1839601

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive

Science. https://doi.org/10.1016/0364-0213(88)90023-7

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design.

Learning and Instruction. https://doi.org/10.1016/0959-4752(94)90003-5

Swets, J. (1988). Measuring the accuracy of diagnostic systems. Science Science, 240(4857),

1285–1293. https://doi.org/10.1126/science.3287615

Swidan, A., Hermans, F., & Smit, M. (2018). Programming misconceptions for school

students. ICER 2018 - Proceedings of the 2018 ACM Conference on International

Computing Education Research, 151–159. https://doi.org/10.1145/3230977.3230995

Teague, D., Corney, M., Ahadi, A., & Lister, R. (2013). A qualitative think aloud study of the

early neo-Piagetian stages of reasoning in novice programmers. Proceedings of the 15th

Australasian Computing Education Conference [Conferences in Research and Practice

in Information Technology, Volume 136].

Teague, D., & Lister, R. (2014a). Longitudinal think aloud study of a novice programmer.

Conferences in Research and Practice in Information Technology Series.

Teague, D., & Lister, R. (2014b). Manifestations of preoperational reasoning on similar

programming tasks. Proceedings of the Sixteenth Australasian Computing Education

Conference [Conferences in Research and Practice in Information Technology, Volume

148]. http://crpit.com/Vol148.html

Teague, D., & Lister, R. (2014c). Programming: Reading, writing and reversing. ITICSE

2014 - Proceedings of the 2014 Innovation and Technology in Computer Science

Education Conference, 285–290. https://doi.org/10.1145/2591708.2591712

Tek, F., Benli, K., & Deveci, E. (2018). Implicit theories and self-efficacy in an introductory

programming course. IEEE Transactions on Education, 61(3), 218–225.

https://doi.org/10.1109/TE.2017.2789183

 285

Tew, A. (2010). Assessing fundamental introductory computing concept knowledge in a

language independent manner. Doctoral dissertation, Georgia Institute of Technology.

Tibshiranit, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1), 267–288.

Tipping, M. (2001). Sparse Bayesian learning and the relevance bector machine. Journal of

Machine Learning Research, 1(3), 211–244.

https://doi.org/10.1162/15324430152748236

Tomasevic, N., Gvozdenovic, N., & Vranes, S. (2020). An overview and comparison of

supervised data mining techniques for student exam performance prediction. Computers

& Education, 143, 103676. https://doi.org/10.1016/J.COMPEDU.2019.103676

Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. (2019). Machine learning algorithm

validation with a limited sample size. PLoS ONE, 14(11), e0224365.

https://doi.org/10.1371/JOURNAL.PONE.0224365

VanDeGrift, T., Bouvier, D., Chen, T., Lewandowski, G., McCartney, R., & Simon, B.

(2010). Commonsense computing (episode 6) logic is harder than pie. Proceedings of

the 10th Koli Calling International Conference on Computing Education Research, 76–

85.

Vandenberg, S., & Kuse, A. (1978). Mental rotations, a group test of three-dimensional

spatial visualization. Perceptual and Motor Skills.

https://doi.org/10.2466/pms.1978.47.2.599

Vandierendonck, A., Kemps, E., Fastame, M., & Szmalec, A. (2004). Working memory

components of the Corsi blocks task. British Journal of Psychology.

https://doi.org/10.1348/000712604322779460

Vapnik, V. (2000). The nature of statistical learning theory. Springer.

https://doi.org/10.1007/978-1-4757-3264-1

Veerasamy, A. K., & Shillabeer, A. (2014). Teaching English based programming courses to

English language learners/non-native speakers of English. International Proceedings of

Economics Development and Research, 70(17).

Ventura, P., & Ramamurthy, B. (2004). Wanted: CS1 students. no experience required. ACM

SIGCSE Bulletin, 36(1), 240–244.

Vygotsky, L. (1962). Thought and language. MIT Press.

Vygotsky, L. (1978). Mind in society: Development of higher psychological processes.

Harvard university press.

Wakefield, J. (2013). Bayesian and frequentist regression methods. Springer New York.

 286

https://doi.org/10.1007/978-1-4419-0925-1

Wakelam, E., Jefferies, A., Davey, N., & Sun, Y. (2020). The potential for student

performance prediction in small cohorts with minimal available attributes. British

Journal of Educational Technology, 51(2), 347–370.

https://doi.org/10.1111/BJET.12836

Watson, C., & Li, F. (2014). Failure rates in introductory programming revisited.

Proceedings of the 2014 Conference on Innovation & Technology in Computer Science

Education - ITiCSE ’14. https://doi.org/10.1145/2591708.2591749

Watson, C., Li, F. W. B., & Godwin, J. L. (2013). Predicting performance in an introductory

programming course by logging and analyzing student programming behavior. 2013

IEEE 13th International Conference on Advanced Learning Technologies, 319–323.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U.

(2016). Defining computational thinking for mathematics and science classrooms.

Journal of Science Education and Technology. https://doi.org/10.1007/s10956-015-

9581-5

Wiedenbeck, S. (1989). Learning iteration and recursion from examples. International

Journal of Man-Machine Studies, 30(1), 1–22. https://doi.org/10.1016/S0020-

7373(89)80018-5

Wiedenbeck, S., LaBelle, D., & Kain, V. (2004). Factors affecting course outcomes in

introductory programming. Proceedings of the 16th Workshop of the Psychology of

Programming Interest Group.

Wilson, B., & Shrock, S. (2001). Contributing to success in an introductory computer science

course: A study of twelve factors. ACM SIGCSE Bulletin , 33(1).

https://doi.org/10.1145/366413.364581

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3).

Wing, J. (2008). Computational thinking and thinking about computing. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

https://doi.org/10.1098/rsta.2008.0118

Winslow, L. E. (1996). Programming pedagogy---a psychological overview. ACM SIGCSE

Bulletin. https://doi.org/10.1145/234867.234872

Wong, T., & Yeh, P. (2020). Reliable accuracy estimates from k-fold cross validation. IEEE

Transactions on Knowledge and Data Engineering, 32(8), 1586–1594.

https://doi.org/10.1109/TKDE.2019.2912815

Wright, R., Thompson, W., Ganis, G., Newcombe, N., & Kosslyn, S. (2008). Training

 287

generalized spatial skills. Psychonomic Bulletin and Review.

https://doi.org/10.3758/PBR.15.4.763

XGBoost. (n.d.). XGBoost parameters. Retrieved May 18, 2023, from

https://xgboost.readthedocs.io/en/stable/parameter.html

Yadin, A. (2012). Reducing the dropout rate in an introductory programming course. ACM

Inroads. https://doi.org/10.1145/2038876.2038894

Ye, J., Chow, J., Chen, J., & Zheng, Z. (2009). Stochastic gradient boosted distributed

decision trees. International Conference on Information and Knowledge Management,

Proceedings, 2061–2064. https://doi.org/10.1145/1645953.1646301

Yousoof, M., Sapiyan, M., & Kamaluddin, K. (2007). Measuring cognitive load – A solution

to ease learning of programming. Proceedings of World Academy of Science,

Engineering and Technology, 1(2), 216–217.

Yudelson, M. V., Koedinger, K. R., & Gordon, G. J. (2013). Individualized bayesian

knowledge tracing models. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

https://doi.org/10.1007/978-3-642-39112-5-18

Žanko, Ž., Mladenović, M., & Boljat, I. (2019). Misconceptions about variables at the K-12

level. Education and Information Technologies, 24(2), 1251–1268.

https://doi.org/10.1007/S10639-018-9824-1/TABLES/18

Žanko, Ž., Mladenović, M., & Krpan, D. (2022). Analysis of school students’ misconceptions

about basic programming concepts. Journal of Computer Assisted Learning, 38(3), 719–

730. https://doi.org/10.1111/JCAL.12643

Zhang, H., Chen, L., Qu, Y., Zhao, G., & Guo, Z. (2014). Support vector regression based on

grid-search method for short-term wind power forecasting. Journal of Applied

Mathematics, 2014. https://doi.org/10.1155/2014/835791

Zingaro, D. (2014). Peer Instruction contributes to self-efficacy in CS1. SIGCSE 2014 -

Proceedings of the 45th ACM Technical Symposium on Computer Science Education,

373–378. https://doi.org/10.1145/2538862.2538878

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society. Series B: (Methodological), 67(2), 301–320.

https://doi.org/10.1111/J.1467-9868.2005.00503.X

 288

Appendices
Appendix A

Final Programming Checkup Questions

Section 1: Student Details

1. Please enter your student ID number (located on the back of your UCLan card - i.e. Reg

no. 20627219 / CE).

2. Please enter your year of birth.

3. Please select your gender:

• Male

• Female

• Other (please specify)

4. Have you studied Computer Science (or Computing) at any level prior to beginning this

course?

• Yes

• No

5. Have you studied any Mathematics based subjects after leaving school but prior to

beginning this course (I.e., Mathematics, Engineering, Physics, etc.)?

• Yes

• No

6. Is English your first language?

• Yes

• No

7. Did you have any programming experience prior to starting university?

• Yes

• No

 289

8. Would you consider yourself a self-taught programmer?

• Strongly agree

• Agree

• Somewhat agree

• Neither agree nor disagree

• Somewhat disagree

• Disagree

• Strongly Disagree

9. Do you intend to work in a software engineering/programming role after graduating

university?

• Yes

• No

• Undecided

10. Do you intend to work in a software engineering/programming role after graduating

university?

11. On a scale of 1 to 10 (with 1 being very easy and 10 being very difficult), how difficult

do you expect your degree to be?

12. On a scale of 1 to 10 (with 1 being very easy and 10 being very difficult), how difficult

do you expect learning to program to be?

13. On a scale for 1 to 10 (with 1 being very easy and 10 being very difficult), how difficult

do you find mathematics?

14. On a scale for 1 to 10 (with 1 being no fear and 10 being very fearful), how much do

you fear learning to program?

 290

Section 2: Modified Computer Programming Self-Efficacy Questions

Students were instructed to rate their current confidence using a scale of 1 (not at all

confident) to 7 (absolutely confident).

1. I could write a syntactically correct statement (line of code).

2. I could understand the language structure (of any programming language) and usage of

reserved words.

3. I could write logically correct blocks of code.

4. I could write a program that displays a greetings message.

5. I could write a program that computes the average of three numbers.

6. I could use built-in functions that are available in various libraries.

7. I could write a small program given a small problem that is familiar to me.

8. I could write a reasonably sized program that can solve a problem that is only vaguely

familiar to me.

9. I could debug (correct all the errors) a long and complex program that I have written, and

make it work.

10. I could complete a programming project if someone shows me how to solve the problem

first.

11. I could complete a programming project if I had only the language reference manual for

help.

12. I could complete a programming project if I can call someone for help if I got stuck.

13. I could complete a programming project once someone else helps me get started.

14. I could complete a programming project if I had a lot of time to complete the program.

15. I could complete a programming project if I had just the built-in facility for assistance.

16. I could find ways of overcoming the problem if I got stuck at a point whilst working on a

programming project.

17. I could come up with a suitable strategy for a given programming project in a short time.

18. I could manage my time efficiently if I had a pressing deadline on a programming project.

19. I could find a way to concentrate on my program, even when there are many distractions

around me.

20. I could find ways of motivating myself to program, even if the problem area is of no

interest to me.

 291

Section 3: Programming Diagnostic Questions (with Example Answers)

The example answers provided for each question include the correct answer, as well as a non-

exhaustive list of incorrect answers which demonstrate how the misconceptions described in

Appendix B can influence students’ responses. If necessary, It is also possible to combine

relevant misconceptions when coding students answers.

Only answers which match the specified correct answer can be coded as correct.

1.

The variables 'A' and 'B' are initialised in the lines of code below.

A = 10

B = 20

What are the values of 'A' and 'B' after carrying out the following operation?

A = B

Example Answers Code

A = 20

B = 20
Correct

A = 10

B = 10
REV

A = 20

B = 0
EX

A = 30

B = 20
AD

A = 20

B = 10
SW

A = 10

B = 20
NC

 292

2.

Examine the following code.

What would be outputted on the screen when it is run?

Height = 0

Width = 0

Area = Height * Width

print Area

Height = 5

Width = 3

Example Answers Code

0 Correct

15 PL

Area OP

Height*Width OP

Print OP

 293

3.

Examine the following code.

What would be outputted on the screen when it is run?

Largest = 20

Smallest = 40

print Largest

Example Answers Code

20 Correct

Largest OP

Smallest OP

40 VN

 294

4.

The variables 'A' and 'B' are initialised in the lines of code below.

A = 10

B = 20

What are the values of 'A' and 'B' after carrying out the following operation?

A = B

B = A

Example Answers Code

A = 20

B = 20
Correct

A = 20

B = 10
MA

A = 10

B = 10
REV

A = 0

B = 20
EX

A = 30

B = 50
AD

A = 10

B = 20
NC

A = A

B = B
OP

 295

5.

Examine the following code.

What would be outputted on the screen when it is run?

for i = 0; i <= 3 {

 print i

 i = i + 1

 }

Example Answers Code

0123 Correct

012 ET

i OP

123 SP

12 SP + ET

0 NI

1 NI

01234 LT

1234 SP + LT

3 SM

4 SM + LT

2 SM + ET

 296

6.

The variables 'big' and 'small' are initialised in the lines of code below.

big = 30

small = 70

What are the values of 'big' and 'small' after carrying out the following operation?

big = small

small = big

Example Answers Code

big = 70

small = 70
Correct

If answer is incorrect and different

to Q4

Include VN alongside any other

misconceptions

big = 70

small = 30
MA

big = 30

small = 30
REV

big = 0

small = 70
EX

big = 100

small = 170
AD

big = 30

small = 70
NC

big = big

small = small
OP

 297

7.

Examine the following code.

What would be outputted on the screen when it is run?

for i = 0; i <= 3 {

 print i

 i = i + 1

 }

print "10"

Example Answers Code

012310 Correct

01210 ET

i OP

12310 SP

1210 SP + ET

0123410 LT

123410 SP + LT

0 NI

1 NI

30 SM

0123 SE

10101010 PL

 298

8.

The variables 'A' and 'B' are initialised in the lines of code below.

A = 10

B = 20

What are the values of 'A' and 'B' after carrying out the following operation?

B = A

Example Answers Code

A = 10

B = 10
Correct

A = 20

B = 20
REV

A = 0

B = 10
EX

A = 10

B = 30
AD

A = 20

B = 10
SW

A = 10

B = 20
NC

A = A

B = B
OP

 299

9.

Which of the following words starts with a 'd' AND ends with an 'e'?

Select all words this applies to.

• dance

• delicious

• soccer

• share

Example Answers Code

dance Correct

delicious AND

share AND

soccer AND

10.

Which of the following words starts with a 'd' OR ends with an 'e'?

Select all words this applies to.

• dance

• delicious

• soccer

• share

Example Answers Code

dance, delicious, share Correct

soccer OR

 300

11.

Which of the following words starts with a 'd' AND does NOT end with an 'e'?

Select all words this applies to.

• dance

• delicious

• soccer

• share

Example Answers Code

delicious Correct

dance AND

soccer AND

share NOT

12.

Which of the following words starts with a 'd' OR does NOT end with an 'e'?

Select all words this applies to.

• dance

• delicious

• soccer

• share

Example Answers Code

dance, delicious, soccer Correct

dance OR

delicious OR

share NOT

 301

13.

What is the value of 'Total' after the execution of the following code?

Total = 0

for i = 1; i <= 4 {

 Total = Total + i

 i = i + 1

}

Total = Total + 2

Example Answers Code

12 Correct

8 ET

17 LT

11 SP

0 NI

1 NI

10 SE

Total OP

i OP

1234 OP

 302

14.

Examine the following code.

What would be outputted on the screen when it is run?

num = 0

for i = 0; i <= 4 {

 num = i * 2

 print num

 i = i + 1

}

num = 15

Example Answers Code

02468 Correct

0246 ET

024681012 LT

0 NI

2 NI

15 PL

0246815 PL

2468 SP

20 SM

 303

15.

Which of these words would result in the following program outputting False?

Select all words this applies to.

if word.firstLetter == c AND word.lastLetter == r then {

 print "True"

}

else {

 print "False"

}

• computer

• cycle

• tale

• tear

Example Answers Code

cycle, tale, tear Correct

tale AND

tear AND

cycle AND

computer IF

 304

16.

The variables 'A', 'B' and 'C' are initialised in the lines of code below.

A = 5

B = 3

C = 7

What are the values of 'A', 'B' and 'C' after carrying out the following operation?

A = C

B = A

C = B

Example Answers Code

A = 7

B = 7

C = 7

Correct

A = 7

B = 5

C = 3

MA

A = 7

B = 7

C = 3

MA

A = 3

B = 5

C = 5

REV

A = 0

B = 0

C = 7

EX

A = 12

B = 15

C = 22

AD

 305

A = 3

B = 5

C = 7

SW

A = 5

B = 3

C = 7

NC

A = A

B = B

C = C

OP

17.

Examine the following code.

What would be outputted on the screen when it is run?

i = 0

while i <= 5 {

 print i

 i = i + 1

}

Example Answers Code

012345 Correct

01234 ET

0123456 LT

12345 SP

5 SM

i OP

 306

18.

The variables 'A', 'B' and 'C' are initialised in the lines of code below.

A = 12

B = 4

C = 6

What are the values of 'A', 'B' and 'C' after carrying out the following operation?

C = B

A = C

B = A

Example Answers Code

A = 4

B = 4

C = 4

Correct

A = 6

B = 12

C = 4

MA

A = 4

B = 12

C = 4

MA

A = 6

B = 6

C = 12

REV

A = 0

B = 4

C = 0

EX

A = 22

B = 26

C = 10

AD

 307

A = 6

B = 4

C = 12

SW

A = 12

B = 4

C = 6

NC

A = A

B = B

C = C

OP

 308

19.

Which of these words would result in the following program outputting False?

Select all words this applies to.

if word.firstLetter == r OR NOT word.lastLetter == e then {

 print "True"

}

else {

 print "False"

}

• rain

• rotate

• compute

• cold

• exceed

• space

Example Answers Code

compute, space Correct

rain, rotate, cold, exceed IF

rain OR

space OR

compute OR

rotate OR

cold OR + NOT

exceed OR + NOT

cold, exceed NOT

 309

20.

The variables 'smallest', 'middle' and 'largest' are initialised in the lines of code below.

smallest = 5

middle = 15

largest = 10

What are the values of 'smallest', 'middle' and 'largest' after carrying out the following

operation?

largest = middle

smallest = largest

middle = smallest

Example Answers Code

smallest = 15

middle = 15

largest = 15

Correct

if answer is incorrect and different

to Q18
Include VN alongside any other

misconceptions

smallest = 1

middle = 10

largest = 15

VN

smallest = 10

middle = 5

largest = 15

MA

smallest = 15

middle = 10

largest = 15

MA

smallest = 10

middle = 10

largest = 5

REV

smallest = 0

middle = 15

largest = 0

EX

 310

smallest = 30

middle = 45

largest = 25

AD

smallest = 10

middle = 15

largest = 5

SW

smallest = 5

middle = 15

largest = 10

NC

smallest=smallest

middle=middle

largest=largest

OP

 311

21.

Examine the following code.

What would be outputted on the screen when it is run?

i = 0

while i <= 5 {

 i = i + 1

 print i

}

Example Answers Code

123456 Correct

12345 ET

1234567 LT

012345

(If Q17 has been answered

correctly)

PL

0 NI

1 NI

23456 SP

0123456 SP

6 SM

i OP

Note. If Q17 has been answered incorrectly, and the same answer is provided for this

question, then the response should be coded as PL.

 312

22.

Which of these words would result in the following program outputting False?

Select all words this applies to.

if word.firstLetter == t AND word.lastLetter == s then {

 print "True"

}

else {

 print "False"

}

• tongue

• trains

• goal

• guitars

Example Answers Code

tongue, goal, guitars Correct

goal AND

guitars AND

tongue AND

trains IF

 313

23.

Which of these words would result in the following program outputting False?

Select all words this applies to.

if word.firstLetter == t OR word.lastLetter == s then {

 print "True"

}

else {

 print "False"

}

• tongue

• trains

• goal

• guitars

Example Answers Code

goal Correct

tongue OR

guitars OR

trains OR

tongue, trains, guitars IF

 314

24.

Which of these words would result in the following program outputting False?

Select all words this applies to.

if word.firstLetter == t AND NOT word.lastLetter == s then {

 print "True"

}

else {

 print "False"

}

• tongue

• trains

• goal

• guitars

Example Answers Code

trains, goal, guitars Correct

guitars AND

goal AND

trains AND + NOT

tongue IF

 315

25.

Which of these words would result in the following program outputting False?

Select all words this applies to.

if word.firstLetter == t OR NOT word.lastLetter == s then {

 print "True"

}

else {

 print "False"

}

• tongue

• trains

• goal

• guitars

Example Answers Code

guitars Correct

trains, goals, guitars OR

goal, tongue NOT

goal, trains, tongue IF

 316

26.

Examine the following code.

What would be outputted on the screen when it is run?

A = 5

B = 10

while B >= A {

 B = B - 1

 print B

 }

if A <= B {

 A = 10

 B = 10

}

Example Answers Code

987654 Correct

98765 ET

9876543 LT

10 PL + NI

10976510 SP + PL

9 NI

5 SM

A OP

B OP

 317

27.

The variables 'smallest', 'middle' and 'largest' are initialised in the lines of code below.

smallest = 8

middle = 1

largest = 11

What are the values of 'smallest', 'middle' and 'largest' after carrying out the following

operation?

largest = middle

smallest = largest

middle = smallest

Example Answers Code

smallest = 1

middle = 1

largest = 1

Correct

smallest = 11

middle = 8

largest = 1

MA

If answer is incorrect and different

to Q18
Include VN alongside any other

misconceptions

smallest = 1

middle = 8

largest = 11

VN

smallest = 1

middle = 11

largest = 8

REV

smallest = 0

middle = 1

largest = 0

EX

 318

smallest = 20

middle = 21

largest = 12

AD

smallest = 11

middle = 1

largest = 8

SW

smallest = 8

middle = 1

largest = 11

NC

smallest=smallest

middle=middle

largest=largest

OP

 319

28.

Examine the following code.

What would be outputted on the screen when it is run?

A = 55

B = 65

Val = 100

Total = A + B

if Total >= Val then {

 print "True: "

 print Total

}

else {

 print "False: "

 print Total

}

C = 40

Total = A + B + C

• True: 120

• True: 160

• True: Total

• False: 120

• False: 160

• False: Total

Example Answers Code

True: 120 Correct

True: 160 PL

True: Total OP

False: 120 IF

False: 160 IF + PL

False: Total IF + OP

 320

29.

Examine the following code.

What would be outputted on the screen when it is run?

A = 5

B = 0

for i = 0; i <= 2 {

 B = B + i

 i = i + 1

 print B

}

if B > A then {

 print "Success"

}

else {

 print "Failed"

}

Example Answers Code

013Failed Correct

01Failed ET

0136Success LT

A OP

B OP

Failed OP

Success OP

3Failed SM

13Failed SP

0Failed NI

013 SE

Answer contains incorrect

evaluation of If statement

i.e., B = 6 Failed, B = 1 Success

IF

 321

30.

The variables 'A', 'B' and 'C' are initialised in the lines of code below.

A = 3

B = 2

C = 9

What are the values of 'A', 'B' and 'C' after carrying out the following operation?

B = A

C = B

A = C

Example Answers Code

A = 3

B = 3

C = 3

Correct

A = 9

B = 3

C = 2

MA

A = 2

B = 9

C = 2

REV

A = 3

B = 0

C = 0

EX

A = 17

B = 5

C = 14

AD

A = 3

B = 9

C = 2

SW

 322

A = 3

B = 2

C = 9

NC

A=A

B=B

C=C

OP

 323

31.

Examine the following code.

What would be outputted on the screen when it is run?

MAX = 7

MIN = 0

for i = 2; i <= 4 {

 MIN = MIN + i

 i = i + 1

 print MIN

}

if MIN > MAX then {

 print "Success"

}

else {

 print "Failed"

}

Example Answers Code

259Success Correct

25Failed ET

25914Success LT

MIN OP

MAX OP

Failed OP

Success OP

9Success SM

259 SE

013610 SP

Answer contains incorrect

evaluation of If statement i.e.,

MIN = 9 Failed, MIN = 1 Success

IF

If answer is incorrect and different

to Q29

Include VN alongside any other

misconceptions

 324

32.

Examine the following code.

What would be outputted on the screen when it is run?

A = 30

B = 20

Val = 100

Total = A + B

if Total >= Val then {

 print "True "

 print Total

}

else {

 print "False: "

 print Total

}

C = 60

Total = A + B + C

• True: 50

• True: 110

• True: Total

• False: 50

• False: 110

• False: Total

Example Answers Code

False: 50 Correct

True: 50 IF

True: 110 IF + PL

True: Total IF + OP

False: 110 PL

False: Total OP

 325

Section 4: Mental Effort Ratings

Students were instructed to rate how much mental effort they felt was required on each of the

concepts they had encountered during the Programming Checkup using a scale of 1 (very

very low mental effort) to 9 (very very high mental effort). Examples of questions associated

with each concept were provided.

1. Variable Assignment

e.g.,

B = A

C = B

A = B

2. Conditional Statements

e.g.,

if word.firstLetter == t AND word.lastLetter == s then {

 print "True"

}

else {

 print "False"

}

3. Iteration

e.g.,

for i = 1; i <= 6 {

 num = num + i

 i = i + 1

}

 326

Appendix B

Misconceptions Examined by the Programming Diagnostic Questions Within the

Programming Checkup

Code Misconception Description Concept

AD Addition Right-hand value added to left (a<-a+b; b unchanged)

Can be combined with EX if b becomes 0.

Variable

Assignment

AND AND Statement including AND operator is not evaluated

correctly, i.e., a statement is incorrectly evaluated to be

true when only one operand is true, instead of both

operands.

Conditional

Statements

ET Early

Termination

Loop does not iterate enough times. Iteration

EX Extraction Values extracted from right to left, right value becomes

0 (a<-b; b<-0).

Variable

Assignment

IF If Statement

Evaluation

If/ if else statements evaluated incorrectly. I.e.,

statement is believed to be false when it should be true.

Conditional

Statements

LT Late

Termination

Loop iterates too many times. Iteration

MA Multiple

Assignment

Refers to original variable values instead of carrying

changes across to subsequent lines. Applies to answers

where this has occurred on at least 1 line.

Variable

Assignment

NC No Change No change to original variable values. Variable

Assignment

NI No Iteration Original values returned /statement passed through

once.

Iteration

NOT NOT Statement including NOT operator incorrectly

evaluated, i.e., failure to recognise that the NOT

operator inverts the expression being evaluated.

Conditional

Statements

OP Output Misconception of program outputs - i.e., outputting a

variable name instead of the value or outputting an

incrementor value.

Output

 327

OR OR Statement including OR operator is not evaluated

correctly, i.e., a statement is incorrectly evaluated

to be false despite one of the operands being true.

Conditional

Statements

PL Parallelism Misconception related to the understanding of the

flow of the control within a program. There may be

the assumption that all lines of the program are

continuously being monitored. i.e., not recognising

the difference in output when a variable is

incremented either before or after an output

statement.

Parallelism

REV Reverse Assignment operator applied from left to right. Variable Assignment

SE Scope Error Misunderstanding of how the execution of the

program continues after a loop has been completed.

Iteration

SM Summation Views procedure as single element - i.e., does not

display all iterations - just outputs final result.

Must be > 1 iteration

Iteration

SP Start Point

Error

Iterative loop starts at the wrong index. Iteration

SW Swapping Variables swap values. Variable

Assignment

VN Variable

Naming

Answers are affected by the name of the variable -

i.e., MAX will always hold the largest value.

Variable Naming

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations
	1. Introduction
	1.1 Investigation Rationale
	1.2 Scope of Research
	1.3 Research Questions
	1.4 Thesis Structure
	1.5 Research Contribution

	2. The Issue of Learning to Program
	2.1 Literature Scope
	2.2 The Difficulties of Programming
	2.3 The Mind of a Programmer
	2.4 Programming Cognition
	2.5 Students’ Interpretations of Programming Concepts
	2.6 Summary

	3. Investigation Methodology
	3.1 Investigation Scope
	3.2 Potential Factors for Inclusion in the Aptitude Test
	3.2.1 Aptitude Test Rationale
	3.2.2 Students’ Previous Experience
	3.2.3 Students’ Mental Characteristics
	3.2.3 Working Memory Capacity and Spatial Ability

	3.3 Predictive Model Considerations
	3.4 Aptitude Test Design
	3.4.1 Section Outline
	3.4.2 Initial Aptitude Test Design
	3.4.3 Subsequent Modifications

	3.5 Overview of Machine Learning Algorithms
	3.6 Summary and Methodology Reflection

	4. Predictive Model Development
	4.1 Model Objectives
	4.2 Data Pre-Processing
	4.3 Model Evaluation and Testing
	4.4 Summary

	5. Programming Checkup Analysis
	5.1 Analysis Scope
	5.2 T1 and T2 Comparison
	5.2.1 Analysis of Students’ Understandings of Core Programming Concepts
	5.2.2 Influence of Prior Experiences on Likelihood of Holding Appropriate Mental Models
	5.2.3 Analysis of Students’ Levels of Confidence

	5.3 Examination of Relationships with Assessment 1 Results
	5.4 Comparison with Assessment 2 Results
	5.5 Summary

	6. General Discussion and Reflections of Research Outcomes and Future Work
	6.1 Scope of Discussion
	6.2 Responses to Research Questions
	6.3 Limitations of this Investigation
	6.4 Future Work
	6.5 Self-Reflection and Concluding Remarks

	References
	Appendices

