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Background: Biofortified Zinc Flour to Eliminate Deficiency in Pakistan (BiZiFED)
is a nutritional research program that evaluates the impact of consuming
zinc biofortified wheat flour on zinc status and associated health outcomes
of vulnerable communities in northwest Pakistan. Measuring zinc status from
blood samples is fraught with problems. This feasibility study evaluated whether
metabolite changes in tear biofluids could be used to understand zinc status.

Methods: Zinc deficiency is particularly prevalent amongst the female
population in Pakistan. Therefore, a crossover trial was developed in which 25
women of reproductive age received standard, wheat flour, and another 25
received zinc-biofortified wheat flour for 8 weeks. At the end of this period, the
nutritional intervention was switched between the groups for another 8 weeks.
Tear biofluid was collected using Schirmer strips at baseline and after 8 and
16 weeks. Metabolomic analysis was conducted using the MxP® Quant 500 kit
on the tear biofluid from a subset of the study participants.

Results: Two metabolites had a significantly negative correlation with plasma
zinc concentration: tiglylcarnitine and valine. Compared to baseline metabolite
concentrations, acetylcarnitine, glutamine, two lysophosphatidylcholines
(lysoPC a C16:0 and lysoPC a C18:1), and four sphingomyelins (SM (OH) C16:1,
SM C16:0, SM C16:1, and SM C24:0) were all significantly decreased post-zinc
intervention, whilst a ceramide (Cer(d18:1/18:0) was significantly increased.

Conclusion: These results highlight the potential of using tear biofluids as an
alternative source for metabolomic biomarkers, both for the assessment of
the zinc status of individuals enrolled in nutritional studies and for indicating
physiological changes that arise from nutritional supplementation.
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Introduction

Micronutrient deficiencies affect approximately one-third of
the global population (Pingault et al., 2017), with significant
inequities in the burden of this ‘hidden hunger’, which particularly
affects children and pregnant women in low- and middle-income
countries (Wessells and Brown, 2012; Kassebaum et al., 2014;
Micha et al., 2020). Amongst the micronutrients, zinc deficiency
is well documented in Pakistan, with an average of 22.1% of
women at reproductive age reported as being zinc deficient
(Pakistan, 2019). Some of the well-documented negative impacts
of zinc deficiency are slowed cognitive development, reduced
immune competence, and complications during pregnancy and
childbirth (Lowe, 2016), along with stunting of physical growth
during development. These factors have been shown extensively
in one marginalised rural community of Pakistan, the Peshawar
community, where there is an above-average level of zinc deficiency
in women of reproductive age (Brazier et al., 2020; Pakistan and
UNICEF, 2020). The Peshawar community in Khyber Pakhtunkhwa
have the highest proportion of children under 5 years of age with
stunted growth (Pakistan and UNICEF, 2020), and there is also a
correlation between the deficiency in plasma zinc concentration
(PZC) and stunting in adolescent girls (aged 16–19 years old) of this
community (Liere et al., 2017).

Strategies to improve zinc nutrition need to be developed, and
work is ongoing to find solutions in the form of supplementation,
dietary diversification, fortification, and biofortification. Of these
options, fortification and biofortification appear to be the most
likely strategies to gain traction as supplementation is often
used as a therapeutic rather than a preventative strategy, and
dietary diversification would require significant investment and
programme development to support changes in food choices and
behaviour that are limited by affordability (e-Pact Consortium,
2019; Gupta et al., 2020). Mass fortification involves the addition
of micronutrients to food during processing. Fortification of flour
with micronutrients (including zinc) at large commercial roller
mills has been trialled in Pakistan, but success was limited because
half of the population purchases their flour from local mills
known as “Chakkis” rather than the large mills that are enrolled
in the fortification initiative, thus severely limiting the reach of
the program (e-Pact Consortium, 2021).

Biofortification of staple crops can be achieved through either
transgenic techniques or conventional breeding to select varieties
with naturally high micronutrient content, which can be combined
with the addition of micronutrient fertilizer directly to the crop or
soil to enhance the micronutrient content of the edible portion.
Biofortification has the advantage that, once a high micronutrient
variety has been developed, the farmer can retain a portion of
the yield each year to use as seed for the following year. Thus,
biofortification has the potential to have an impact onmicronutrient
deficiencies on a population scale. To date, six varieties of zinc
biofortified wheat have been released onto the market in Pakistan.
The first, known as Zincol-2016, was released in 2016 and was
the variety evaluated in the Biofortified Zinc Flour to Eliminate
Deficiency in Pakistan (BiZiFED) research program (Lowe et al.,
2018, Lowe et al., 2020; Lowe et al., 2022), designed to explore the
potential for zinc biofortified wheat to improve dietary zinc and
iron intake for, and whether this correlates to functional alterations

in the micronutrient status of women of reproductive age and
adolescent girls (Lowe et al., 2020).

Zincol-2016 wheat grain, grown with the addition of zinc
fertilizer to the soil and leaves, had a significantly elevated zinc
concentration compared to standard (control) grain, resulting in a
significant increase in the daily zinc intake from the flour compared
with control flour, of between 3 and 6 mg per day for white and
whole grain flour, respectively. However, it should be noted that this
increase in zinc intake did not have a sustained impact on plasma
zinc concentration or on fatty acid desaturase and elongase activity
(FADS1 and 2), which has been explored as a putative biomarker of
zinc status (Knez et al., 2017; Lowe et al., 2022).

Therefore, an alternative, sensitive biomarker is required
to monitor better the physiological and biochemical impact
of small changes in dietary zinc, such as those achievable
through biofortification strategies to overcome these global health
challenges. One such source of biomarkers is the tear fluid,
which is increasingly being investigated as a non-invasive, cheap,
physiologically relevant source of circulating biomarkers.

One of the first exclusive characterisations of the human
tear metabolome employed a standard clinical method for tear
collection coupled with an analytical platform to characterize the
global repertoire of human tear metabolites (Chen et al., 2011). In
this study, tears of healthy individuals were collected using the
clinically utilized Schirmer strips, separated by ultra-fast liquid
chromatography (LC), and analysed by quadrupole time-of-flight
tandem mass spectrometry (Q-TOF MS/MS). This set a precedent
for what could be achieved in tear metabolome studies, but it
was clear that this method did not measure some well-known
metabolites (e.g., measurement of glucose and ascorbic acid was
affected by background interference).

Very few lipid species were identified, but within the literature,
others have identified several classes of lipids using targeted
analysis. These include free cholesterol (Borchman et al., 2007),
phosphatidylcholines (Borchman et al., 2007; Saville et al., 2010),
sphingomyelins (Borchman et al., 2007; Saville et al., 2010),wax esters
(Borchman et al., 2007; Lam et al., 2013), lysophosphatidylcholine
(Rantamäki et al., 2011; Dean and Glasgow, 2012), triacylglycerides,
ceramides, and phosphatidylethanolamines (Dean and Glasgow,
2012).Afurther study investigated lipidcompositionduringcollection
withSchirmer stripsusinguntargetedanalysis (Lam et al., 2014).Tears
were collected by capillary tube or Schirmer strip, and extracted lipids
were analysed using HPLC-MS. Over 600 lipid species across 17 lipid
classes were detected, most categorized as wax or cholesteryl esters.

Schirmer strip collections yield the highest absolute amounts
of lipids and are routinely employed in the clinic. Interestingly,
the strips act as a chromatographic system for lipid metabolites
(Rantamäki et al., 2011; Lam et al., 2014), whereby the aqueous
fraction of the tear travels further along the strip than the non-polar
lipids. The strips can accurately represent the lipidomic profile of
tears and their relative concentrations when compared to spiking
with artificial tear solutions (Lam et al., 2014).

As reviewed elsewhere (Khanna et al., 2022), tear samples
appear to be a reasonable reservoir of metabolites. Their collection
is non-invasive, and the samples are easy to handle and cheap to
transport. These factors indicate that tear sampling could become
a reliable source of metabolic markers for ophthalmic and systemic
diseases (Cicalini et al., 2019; Valencia et al., 2022;Wen et al., 2023).
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The aims of this study were threefold: first, to explore the
feasibility of using tear biofluid as a source of metabolite biomarkers
for human studies and the impact of transport and storage on sample
viability; second, to assess whether metabolites in tear biofluid
correlate with traditional zinc biomarkers; and thirdly, to assess the
response of tear metabolites to small changes in dietary zinc intake
across subgroups within a dietary zinc intervention program.

Materials and methods

Study location and design

This study was nested within the BiZiFED program, which
included adouble-blind, individually randomised, placebo-controlled
study with cross-over design (Lowe et al., 2018; Ohly et al., 2019).
The study was in a community close to the city of Peshawar in the
provinceofKhyberPakhtunkhwa innorthwestPakistan.This is a rural
community where zinc deficiency is widespread and where the plant-
baseddiethasa lowzincbioavailability.Thetrialwasregisteredwiththe
ISRCTNregistry,studyIDISRCTN83678069andundertakenbetween
October 2017 and February 2018. The lead university (University
of Central Lancashire; ethics reference no. STEMH 697 FR) and
the collaborating institution in Pakistan, Khyber Medical University,
granted ethical approval. The full study protocol has been previously
described in detail (Lowe et al., 2022). In brief, 50 households, with
at least one 16–49-year-old woman who was neither pregnant nor
breastfeeding nor consuming additional nutritional supplementation,
were randomly selected for the study. The selected households
were provided with either freshly milled Zincol-2016/NR-421 grain
(genetically and agronomically Zn-biofortified) or Galaxy-2013 grain
(control), with the intention that these were the only flours to be
consumed for the duration of the study. A 2-week baseline period was
established with control flour before the households were randomly
separated into two groups for the purposes of the study (Figure 1),
one which received Zincol-2016/NR-421 grain for 8 weeks and then
Galaxy-2013 control grain for 8 weeks (study arm 1 (SA1)), whilst
the other received Galaxy-2013 control grain for 8 weeks followed by
Zincol-2016/NR-421 grain (study arm 2 (SA2)) (Lowe et al., 2018).

Participant information

At baseline, the characteristics of the study participants
were recorded, including socio-economic status indicators and
household demographics. In addition, dietary assessment was
carried out using 24-h recalls throughout the 18-week study
period using the multiple pass method, and detailed recipes for
composite meals were collected for accurate curation of ingredients
into an appropriate nutrient database. Thorough methodologies
and results summarising demographic (Brazier et al., 2020) and
dietary results (Lowe et al., 2022) have previously been published.

Where possible, blood was also collected from the study
participants at the three time points, to determine plasma
zinc concentrations pre- and post-dietary zinc intervention.
Briefly, whole blood was collected into trace-element-free
anticoagulant tubes and blood plasma was separated through
centrifugation. Elemental concentrations of zinc were determined

using inductively coupled plasma-mass spectrometry (ICP-MS) and
reported recently (Brazier et al., 2020).

Tear collection

Where possible, tears were collected on Schirmer tear test
strips (4701001, Haag-Streit UK Ltd., Essex, UK) from both
eyes of the study participants at all three time points. Briefly,
the Schirmer strips were folded at the notch, before resting the
rounded notch in the inferior conjunctival fornix (inside the
lowereyelid) (Supplementary Figure S1A).Participantsweregiven the
option to close their eyes. The Schirmer strips were removed when
the strips became saturated with tear fluid or once 5 min had passed,
whichever came first. The strips were air dried, sealed in an envelope,
placed in a Ziploc bag, shipped to Queen’s University Belfast (QUB)
at ambient temperature, and stored at −80°C before analysis.

Sample selection

To conduct a metabolomics feasibility and viability assessment
from the tear samples obtained as part of the BiZiFED study,
five samples were selected randomly from individuals who were
initially enrolled on the study program but could not provide tear
samples at all three time points. These were compared to freshly
collected tear samples obtained from two in-house researchers
simultaneously, with one sample collected from each eye from each
person. Tears were collected in the same manner as those in the
BiZiFED study. Once the tears were collected, the Schirmer strips
were air-dried overnight at room temperature before metabolite
extraction alongside the five randomly selected stored samples from
the BiZiFED participants.

Of the remaining BiZiFED samples, a subset was selected
for metabolomics analysis based on the following steps: 1)
tear samples from individuals who could provide samples at
all three time points were identified (n = 33); 2) tear samples
from study participants were selected based on their plasma
zinc status at baseline (n = 10). Plasma zinc concentration
(PZC) is the most commonly used marker of zinc status
(Abdulla, 1983) and a value of 660 μg/L was used as the
threshold below which a participant was categorized as zinc-
deficient (Brown et al., 2004). The methods and results to
determine the PZC of BiZiFED study participants have previously
been published (Brazier et al., 2020); 3) for LC-MS sample
processing, a further 16 were randomly selected from the
remaining 23 participants using a random number generator, to
provide additional numbers inassessing whether tear metabolites
responded to dietary zinc intervention in a larger cohort of
individuals.

Initial metabolite extraction and LC-MS
procedure for assessing feasibility and
viability of targeted metabolomics on
stored tear fluid

To set up the protocol for metabolite extraction, two
4 mm punches were taken from each Schirmer strip
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FIGURE 1
Schematic representation of the sampling schedule used to collect tear samples in a three-step process from families provided with a diet
supplemented with flour derived from either Zincol-2016/NR-241 (intervention) grain or Galaxy-2013 (control) grain. SA–study arm.

(Supplementary Figure S1B), using a custom-made tool as per
Dammeier et al. (Dammeier et al., 2018). Amino acids and
acylcarnitines were extracted according to the manufacturer’s
instructions using the MassChrom® kit (57000/F, ChromSystems
Instruments & Chemicals, Munich, Germany). Once prepared for
analysis, the material was reconstituted in 2.5 mM ammonium
acetate in 25% methanol (aq) to analyse amino acids, after
which the material was further dried down at 60°C and
reconstituted in 2.5 mM ammonium acetate in 75% methanol
(aq), to analyse lipids. Amino acids were injected through a
MicroLC system coupled to a QTRAP 6500 mass spectrometer
(AB Sciex, MA, United States), and lipids were analysed using
flow injection analysis. Data analysis was carried out using
the Morpheus web application (https://software.broadinstitute.
org/morpheus/).

Metabolite extraction and LC-MS
procedure for targeted metabolomics

Based on the successful but variable results obtained from
the punches, we deemed it necessary to extract metabolites
from the Schirmer strip until the tear front was reached. As
a first step, metabolites were extracted from tears collected at
all three time points from one study participant. These were
pooled together to assess whether the MxP® Quant 500 kit

and the AB SCIEX Triple Quad 5500+ mass spectrometer were
feasible methods for targeted metabolomics. In the following
experiments, one Schirmer strip from each participant (n = 26)
at the three time points (n = 78) was cut into 5 mm pieces
until the tear front was reached and placed into sterile tubes.
A length-adjusted volume of ice-cold 80% methanol was added
to each tube (500 µL per 46 mm Schirmer strip). Strips were
vigorously vortexed in the extraction solution for 2 min before
centrifugation at 15,700 relative centrifugal force (RCF) at 4°C. The
supernatant was transferred to a fresh, clean tube and stored at
−80°C before analysis.

Targeted metabolomics profiling was performed using a
commercially available kit, MxP® Quant 500 kit (Biocrates
Life Science AG, Innsbruck, Austria), which quantifies up
to 624 metabolites/lipids from 26 analyte classes. All frozen
tear samples (−80°C) were thawed on ice before preparation.
According to the instruction from the kit manufacturer, 10 µL
of phosphate-buffered saline (PBS), calibrators, quality controls
(QCs), and 10 µL of tear samples were added to a 96-well
plate which contains isotopic-labelled internal standards, dried
under nitrogen at room temperature for 30 mins, followed by
adding 50 µL of phenylisothiocyanate (PITC) to derivatise amino
acids and biogenic amines. After a further 20-min incubation at
room temperature, samples were dried under nitrogen for 1 h.
Ammonium acetate (3 mM) was added, and the plate was shaken
at room temperature for 30 min and centrifuged for 2 min at
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500 RCF. For LC-MS analysis, each well had 150 µL of extracts
transferred to a 96-deep-well plate and an equal volume of dH2O.
Metabolite separation was performed using an AB SCIEX ExionLC
system (Foster, California, United States) with a reversed-phase
MxP® Quant 500 UHPLC column and analysed using an AB
SCIEX Triple Quad 5500+ mass spectrometer (Foster, California,
United States) operating in the multiple reaction monitoring
(MRM) mode. The injection volume is 5 µL. All the other
metabolites (acylcarnitines, hexoses, glycerophospholipids, and
sphingolipids) were quantified using the same mass spectrometer
without column separation by the flow injection analysis (FIA)
operating in MRM mode. A total of 10 µL of extract was
mixed with 490 µL of FIA solvent in another 96-well plate at
room temperature for 5 min. The injection volume is 20 µL.
LC and FIA data were imported directly into the BIOCRATES
software, MetIDQ Oxygen, and quantified for quantitation.
Metabolite concentrations were calculated and expressed as
micromoles (μM).

Data analysis

Data clean-up was performed to select metabolites above
the detection limit accurately (>LOD) for further analysis.
Metabolites that fell between the upper and lower limits of
quantification (ULOQ and LLOQ) were also identified and
were classed as valid metabolites (upplementary Figure 2). To
understand whether there were any differences in the metabolites
found in tear biofluid from the participants in the BiZiFED
study, dependent on dietary Zincol-2016 supplementation, it was
important to determine the PZC of the individuals included in
the metabolomics analysis. Blood plasma zinc concentrations
for each individual were determined by ICP-MS and reported
elsewhere (Brazier et al., 2020).

Metabolite concentrations were calculated, and a linear mixed
effects model was used to correlate each participant’s PZC at
each time point to the paired tear metabolite concentrations.
Here, we used time point (categorical) as a repeated measure and
PZC (continuous) as a covariate of the metabolite concentration
(continuous) as the dependent variable. Participant ID was
applied as a random effect, and the β-coefficient prediction for
the change in metabolite level per unit change in the levels
of PZC was calculated using SPSS v29.0.0.0. Subsequently, to
determine whether metabolite concentrations in tears responded
to dietary zinc intervention, metabolite concentrations were
normalised to the PZC of each participant at each time point
and are expressed as micromoles per individual plasma zinc
concentration (μM/[PZC]). Graphs of individual metabolites
were plotted using GraphPad Prism software (v10.2.2). For
analysis comparing metabolite concentrations pre- and post-
zinc intervention, outliers were removed from each dataset
following the ROUT method of outlier identification (Q = 1%).
Statistical analysis of metabolite concentrations in Zn-deficient
participants compared toZn-efficient participantswas done through
one-way Brown-Forsythe and Welch ANOVA comparison with
Dunnett’s T3 multiple comparisons testing. All other comparisons
were through a pairwise t-test, or Wilcoxon signed rank test

FIGURE 2
Heatmap of relative metabolite abundance in tear fluid obtained from
the lower and upper portion of frozen Schirmer strip samples obtained
from females of reproductive age enrolled on the BiZiFED study. Blue
to red represents increasing metabolite abundance.

to determine significance, dependent on D’Agostino & Pearson
normality testing.

Results

Participant information

As reported elsewhere (Brazier et al., 2020), the average age
of the participating women was 35 ± 7 years, ranging between
22–48 years. Of the 47 participating women who completed the
baseline data collection, all but one were illiterate, none were
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taking contraceptives, and only one woman had reported receiving
medication in the month preceding the study. Additionally, more
than half of thewomenwere overweight or obese (66%), with amean
± SD bodymass index (BMI) at baseline of 27.1 ± 5.6 kg/m2. Further
details of the dietary diversity of the participating individuals can be
found in the corresponding research article (Brazier et al., 2020).

Of the 50 participants who were initially enrolled into the
BiZiFED study, five participants withdrew from the study due to
unwillingness to provide repeat blood samples (n = 2), migration
out of the area (n = 1), or severe illness (n = 2). The remaining 45
participants were all able to provide blood samples at each time point
(Lowe et al., 2022) (Figure 1). Seven participants declined to provide
tear samples at baseline, seven participants declined to provide tear
samples at phase 1, and eight participants declined to provide tear
samples at phase 2 (Figure 1). Overall, 33 participants provided
tear samples at all three time points. The reasons for declining tear
collection at different stages was not recorded.

Targeted metabolomics is feasible from
tear samples subjected to long-term
storage

The first preliminary experiment assessed whether targeted
metabolomics was feasible on tear samples collected in the
field and subjected to long-term storage conditions. Metabolites
extracted from these samples were compared qualitatively to
those extracted from freshly collected tear samples. Using the
MassChrom® kit for targeted metabolomics, we showed that
the abundance of metabolites was qualitatively variable on the
upper portion of the strip between the freshly collected and
stored tear samples (Supplementary Figure S3). This highlighted
that storing tear samples on Schirmer strips provided viable
metabolites upon extraction but should not be directly compared to
freshly collected tear samples.

The second preliminary experiment assessed whether
metabolite extractions should occur from the upper or lower portion
of the Schirmer strip (Supplementary Figure S1B). From five female
participants from the BiZiFED study, upper and lower punches were
analysed using the MassChrom® kit for targeted metabolomics.
Metabolites extracted anddetectedweremore abundant in the upper
portion of the strip (Figure 2), although, somemetabolites had equal
abundance on both the upper and lower portions of the Schirmer
strips (including leucine, butyrylcarnitine (C4-carnitine) and 3-
hydroxy-isovalerylcarnitine (C5OH-carnitine)) (Figure 2). This
indicates that the Schirmer strip does not act as a chromatography
system for all metabolites. We found intra-individual variabilities,
as noted in the range of relative metabolite abundance found
in the eyes of participant ID2 (Supplementary Figure S3A)
and in participant ID1 (Supplementary Figure S3B). Variability
in metabolite levels, such as we found in this study, has
previously reported (Dammeier et al., 2018).

Based on the preliminary results, we determined that extracting
metabolites from the entire Schirmer strip is necessary to provide as
much metabolite coverage as possible in subsequent analysis. Next,
we determined the number of metabolites we could detect in the
BiZiFED samples. We used pooled tear samples (samples from the
three time points) and analysed the metabolites present using the

MxP® Quant 500 kit.This kit can quantify up to 624metabolites, and
we were able to identify 116 metabolites above the limit of detection
(LOD) in the BiZiFED sample (Supplementary Figure S4A).

Next, we evaluated the number of analytes extracted from the
78 Schirmer strips we used from the BiZiFED study participant
samples. We detected 67 metabolites after applying a strict validity
cutoff (≥80% of samples above the metabolite LOD in any one
analysis group (n ≥ 10)) (Supplementary Figure S4A). Overall, 11 of
the 23 available metabolite classes had at least one valid metabolite
for further analysis (Supplementary Figure S4B).

Metabolites found in tear fluid correlate
inversely with plasma zinc concentrations

A linear mixed effects model was applied to determine whether
there is a correlation between the concentration of metabolites
found in tears and PZC (Figure 3). Two metabolites showed a weak
but statistically significant correlation with PZC. Tiglylcarnitine
(C5:1; N = 45) and valine (N = 40) were negatively correlated with
PZC (β-coefficients = −8.01 × 10−5 and-1.97 × 10−3, respectively;
p = 0.0125 and 0.0409, respectively) (Figures 3A, B, respectively).
A summary of the correlations for the metabolites and PZC can
be found in Supplementary Table S1, including 95% confidence
intervals.

Metabolites found in tear fluid respond to
dietary zinc intervention

We assessed whether dietary zinc intervention affected the
metabolite abundances present in the tear fluid. Metabolite
concentrations were normalised to each individual’s PZC and
then to each individual’s respective baseline tear metabolite
concentration. In total, nine metabolites showed a significant
difference between baseline and post-zinc intervention
(Figures 4A–I). Of these metabolites, acetylcarnitine (C2) (n = 20;
1.87 × 10−4 vs. 1.18 × 10−4 µM/[PZC]) glutamine (n = 23; 3.98
× 10−3 vs. 2.52 × 10−3 µM/[PZC]), two lysophosphatidylcholines
(lysoPC a C16:0 (n = 25; 3.17 × 10−3 vs. 2.26 × 10−3 µM/[PZC])
and lyso a C18:1 (n = 23; 6.21 × 10−4 vs. 4.28 × 10−4 µM/[PZC])),
and four sphingomyelins (SM (OH) C16:1 (n = 16; 1.98 × 10−5

vs. 1.36 × 10−5 µM/[PZC]), SM C16:0 (n = 21; 7.19 × 10−4

vs. 4.19 × 10−4 µM/[PZC]), SM C16:1 (n = 23; 1.98 × 10−5 vs.
1.40 × 10−5 µM/[PZC]), and SM C24:0 (n = 22; 6.71 × 10−5

vs. 4.48 × 10−5 µM/[PZC]) were all significantly downregulated
(Figures 4A–H, respectively), and a ceramide (Cer(d18:1/18:0)
was significantly upregulated (n = 15; 2.29 × 10−5 vs. 3.74 ×
10−5 µM/[PZC]) (Figure 4I).

An additional comparison was made between metabolite
abundances in the tears of all participants that were defined as
having a low PZC (<660 μg/L) at their baselines (as per the iZINCG
threshold (Brown et al., 2004)). Zinc intervention in this group
resulted in significantly decreased concentrations of acetylcarnitine
(C2) (n = 8; 1.92 × 10−4 vs. 8.45 × 10−5 µM/[PZC]) and glutamine
(Gln) (n = 7; 2.43 × 10−3 vs. 8.58 × 10−4 µM/[PZC]) (Figures 5A, B,
respectively).
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FIGURE 3
Scatter plots of tiglylcarnitine (C5:1) (A) and valine (Val) (B) obtained from tears of participants in the BiZiFED study which showed a significant negative
correlation between metabolite abundance and plasma zinc concentration (PZC) (N = 40–45 tear samples, linear mixed effects model (β-coefficient)).

Metabolites found in tear fluid respond to dietary
zinc intervention in a subpopulation of
zinc-deficient individuals

The final set of comparisons were based on whether participants
had PZC below or above the 660 μg/L iZINCG threshold
for zinc deficiency. Four metabolites significantly differed at
baseline (Figure 6). Hypaphorine (TrpBetaine) (n = 10–11; 5.96
× 10−5 vs. 2.55 × 10−5 µM/[PZC]), lauric acid (FA (12:0)) (n
= 11–14; 1.87 × 10−2 vs. 1.53 × 10−2 µM/[PZC]), and indoxyl
sulphate (Ind-SO4) (n = 11–15; 1.38 × 10−4 vs. 1.09 × 10−4

µM/[PZC])had significantly higher abundances (Figures 6A–C,
respectively), whilst ceramide Cer(d18:1/24:1) was found at a
significantly lower abundance (n = 10–12; 2.19 × 10−5 vs. 6.41
× 10−5 µM/[PZC]) (Figure 6D), in the tear fluid of zinc-deficient
participants.

When dietary zinc intervention was provided to the zinc-
deficient participants (<660+Zn), the concentrations of hypaphorine
(n = 10; 5.00 × 10−5 vs. 2.55 × 10−5 µM/[PZC]) (Figure 6A), lauric
acid (FA (12:0)) (n = 11–14; 1.83 × 10−2 vs. 1.53 × 10−2 µM/[PZC])
(Figure 6B), and indoxyl sulphate (Ind-SO4) (n = 11–15; 1.30 × 10−4

vs. 1.09 × 10−4 µM/[PZC]) (Figure 6C) were no longer different
from those that were zinc-efficient at baseline (>660) but ceramide
Cer(d18:1/24:1) remained different (Figure 6D). In addition,
zinc supplementation values (<660+Zn) did not significantly
differ from the metabolite level in zinc-deficient participants
(<660) at baseline (Figures 6A–C). Individual mean concentrations
for these metabolites can be found in Supplementary Table S2
(baseline) and Supplementary Table S3 (post-zinc intervention).
Further studies exploring whether these changes remain in a larger
cohort will be required before the biological mechanism and clinical
relevance of these metabolite changes in response to zinc can be
elucidated.

Discussion

Zinc homeostasis is critical for the healthy function of
many biological processes, including, but not limited to,

growth, development, and neurological function or dysfunction.
Importantly, zinc dysregulation has been shown to contribute to the
development of progressive diseases such as age-related macular
degeneration (AMD) and Alzheimer’s disease (AD), and global
health issues arising from micronutrient deficiency (Maynard et al.,
2005; Flinn et al., 2014; Lowe, 2021). Increasing dietary zinc
intake to overcome deficiencies and associated pathophysiological
consequences in these diseases continues to interest researchers
(Age-Related Eye Disease Study Research Group, 2001; Brewer,
2014; Awh et al., 2015; Lowe et al., 2020), and sensitive biomarkers
of zinc status are required. However, biomarker detection
often relies on invasive blood withdrawal, which can be
problematic to obtain, store, and transport in field studies. In
addition, blood zinc concentrations are a poor indicator of
zinc status.

Tear sampling is inexpensive and well-tolerated, and the
resulting samples are easy to handle (Quah et al., 2014).
Tears contain biomarkers that overlap with those detected
in the systemic circulation (Ravishankar and Daily, 2022).
Combined with recent improvements in separation and
detection techniques (Cicalini et al., 2019; Valencia et al.,
2022), it is unsurprising that tear fluid collection is
now becoming a feature of study protocols for global
health studies (Singh et al., 2022).

Our first aim in this study was to assess the feasibility of
collecting, storing, and transporting tear samples, from a field-
based nutrition study, which must be evaluated first by comparing
them to freshly collected tear samples. We found that field-based
samples contained a variety of metabolites (116 metabolites) despite
being collected 1 year before extraction, and they were subjected
to multiple freeze-thaw cycles because they had to be collected,
transported, and stored at multiple locations (Lowe et al., 2018).
When metabolites were extracted from a single Schirmer strip,
the number of metabolites detected was lower (67 metabolites),
suggesting that some low-abundance metabolites might not be
reliably detected from a single strip, a consideration for future
studies. While planning the metabolite extraction from the tears
collected on Schirmer strips, it became apparent that current
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FIGURE 4
Representative bar graphs of metabolites collected from tears in the BiZiFED study that showed a significant difference in abundance between baseline
(before zinc intervention) and post-zinc intervention. Metabolites are: acetylcarnitine (C2) (A), glutamine (Gln) (B), lysophosphatidylcholines (lysoPC a
C16:0 and lysoPC a C18:1) (C,D), respectively, sphingomyelins (SM (OH) C16:1, SM C16:0, SM C16:1, and SM C24:0) (E–H), respectively, and a ceramide
(Cer(d18:1/18:0)) (I) (n = 15–25 tear samples per experimental condition, mean ± S.D.,∗p < 0.05, pairwise t-test (A–C,F–I), respectively or Wilcoxon
signed rank test (D,E), respectively.
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FIGURE 5
Representative bar graphs of metabolites collected from tears in the BiZiFED study that showed a significant difference in abundance between baseline
and post-zinc supplementation in a zinc-deficient population. Metabolites are: acetylcarnitine (C2) (A) and glutamine (Gln) (B) (n = 7-9 tear samples
per experimental condition, mean ± S.D.,∗p < 0.05,∗ ∗p < 0.01, pairwise Wilcoxon signed rank test).

methods are not standardised, with each research article carrying
out unique extraction and detection methods. This increases the
difficulty of making inter-research group comparisons, as different
extraction and detection methods will obtain varying metabolite
classes and abundance of metabolites. The type of Schirmer strip
used (García-Porta et al., 2018), sample handling (Qin et al., 2017),
time to extraction, and extraction volumes (Gijs et al., 2023) can all
influence detected biomarkers that have previously been obtained
clinically. The Tear Research Network has recently been established
to overcome these issues and develop clinically relevant standard
operating procedures (https://tearresearchnetwork.com/).

Our second aim was to assess the relationship between plasma
zinc concentrations and metabolite levels. Based on the results
from 26 participants, our analysis revealed a significant negative
correlation for two metabolites, tiglylcarnitine (C5:1) and valine,
and PZC (Figure 3). Tiglylcarnitine is related to carnitine and is a
member of the short-chain acylcarnitine group ofmetabolites.These
have been suggested to be themost abundant group of acylcarnitines
in human plasma (Dambrova et al., 2022) and carnitine levels in
tears were associated with hyperosmolarity in dry eye diseases
(Pescosolido et al., 2009). Elevated levels of tiglylcarnitine have
been associated with liver zinc deficiency (Zheng et al., 2013).
Valine concentrations have previously been shown to be increased
in zinc-deficient rats (Hsu, 1977). It appears that our results
agree with those inverse relationships between zinc and specific
metabolites.

The third aim was to determine whether metabolites respond to
dietary zinc intervention in the tear biofluid. First, we combined
all selected participants (n = 26) before zinc intervention and
compared them to those after zinc intervention. We found
that the concentration of acetylcarnitine (C2), glutamine (Gln),
two lysophosphatidylcholines (lysoPC a C16:0 and lysoPC

a C18:1), an hydroxysphingomyelin (SM (OH) C16:1), and
three sphingomyelins (SM C16:0, SM C16:1, and SM C24:0)
significantly decreased, and a ceramide (Cer(d18:1/18:0))
significantly increased, post-zinc dietary intervention (Figure 4).
Next, we analysed metabolic changes in only those zinc deficient
at baseline (PZC <660 μg/L, n = 10). Again, we found that
acetylcarnitine (C2) and glutamine had significantly decreased
following zinc intervention in this subset of study participants
(Figure 5). Comparison of tear samples from participants with
PZC <660 μg/L (n = 10), zinc-sufficient participants with PZC
>660 μg/L (n = 16), and those with PZC <660 μg/L, but after zinc
supplementation, showed no reversal of zinc deficiency-related
metabolic changes (Figure 6). This suggests that metabolic changes
might needmore time to restore to the levels found in zinc-sufficient
participants.

The physiological consequences of the metabolic changes
identified after zinc intervention are not yet clear. However, it
is important to consider that using the PZC to measure zinc
deficiency is fraught with problems as total zinc measurement
may not be a sensitive enough parameter for patient selection
(Lowe et al., 2022). The metabolites that were detected in our
study and showed significant differences pre- and post-zinc
dietary intervention have all previously been detected in tear
metabolomic studies (Borchman et al., 2007; Nakatsukasa et al.,
2011; Rantamäki et al., 2011; Dean and Glasgow, 2012; Glasgow
and Abduragimov, 2018; Du and Huang, 2019), highlighting their
potential use as biomarkers for zinc status.

Importantly, this study showed that it is feasible to use the non-
invasive and inexpensive tear fluid collection to assess changes in
zinc nutrition, which can generate valuable data for monitoring
the effectiveness and impact of interventions designed to improve
dietary intake. Some limitations should be considered. Firstly, this
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FIGURE 6
Representative bar graphs of metabolites collected from tears in the BiZiFED study that showed a significant difference in abundance between
participants with PZC< 660 μg/L at baseline and post-zinc intervention, and those participants with PZC >660 μg/L at baseline. Metabolites are:
Hypaphorine (TrpBetaine) (A), lauric acid (FA (12:0)) (B), indoxyl sulphate (Ind-SO4) (C), and ceramide Cer(d18:1/24:1) (D) (n = 8–15 tear samples per
experimental condition, mean ± S.D.,∗p < 0.05,∗ ∗p < 0.01, ns = not significant, one-way ANOVA with Dunnett’s T3 multiple comparison testing).
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study used tear fluid obtained from a small cohort of individuals
with additional limitations determined by the number of samples
and metabolites that can be studied on the Biocrates MxP®500 kit.
It is also important to consider that using the PZC as a measure of
zinc deficiency may not be a sensitive enough parameter for patient
selection (Lowe et al., 2022).Using the data obtained from this study,
a higher-powered studywith amore targeted approach could be used
to investigate metabolites that showed significant correlations with
PZC or significant differences upon dietary zinc intervention.

In summary, we proved that it is feasible to carry out metabolite
studies in field-based nutrition studies, using historically archived
tear biofluid on Schirmer strips. After modified zinc nutrition
there were significant differences in metabolites in both zinc
sufficient and deficient patients. These might prove to biomarkers
for zinc status in future studies. Given the wide-ranging role zinc
plays in many biological processes (Costa et al., 2023; Shi et al.,
2024), the availability of biomarkers could help refine intervention
strategies. The diagnosis of zinc deficiency is challenging, and the
search for a sensitive and specific biomarker has been ongoing for
several decades. Further studies will help to define whether the
metabolic changes reported here could be added to the list of zinc
status biomarkers to increase sensitivity and specificity (Knez and
Boy, 2023).
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