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“Since such a guide is lost, what other now,

Deserving to succeed, can take the reins?

Or should the stars rebel, who can restore

Them to their course, and bind with closer ties

Their wandering ways?...”

— Jeremiah Horrox

Abstract

The formation and evolution of the central regions of barred galaxies are the sub-

ject of significant ongoing study. Research has indicated that the morphology and

kinematics of stellar populations are dependent on their age. Simulations suggest

that this dependence occurs because populations are separated by the bar. Popula-

tions with varying radial velocity dispersions evolve differently in the presence of a

growing bar, a process termed kinematic fractionation.

Using star-forming simulations of barred galaxies which undergo kinematic frac-

tionation, we have reproduced the observed trends of metal-rich and metal-poor

Milky Way bulge main-sequence stars observed with the Hubble Space Telescope.

The old and young stellar populations in the models were born before and after the

bar, respectively. As each population traces varying bulge structures with different

bar strengths, their kinematics project onto distinct observed motions as seen from

the heliocentric perspective. The predictions from these models allow us to propose

follow-up observations to test the kinematics of differently-aged populations in fields

away from the bulge minor axis.

To trace structures in the Milky Way using stellar ages, we explore new data

from the Gaia satellite. We define and characterise a clean sample of Mira variables

using data-motivated cuts on their relative frequency error and variability amplitude,

maximising their separation from SRVs. Mira candidates were found to follow the

expected trends of age in their spatial and kinematic distributions when separated

by variability period. However, we determined that a larger sample of Miras is

iii



needed to better constrain the Milky Way bar. Nevertheless, we were also able to

characterise the effects of the large variability amplitude of Miras on astrometric

and photometric solutions within Gaia, allowing us to make recommendations for

future study and observation of these stars.

We have identified barred galaxies in the TNG50 cosmological simulation and

defined a method based on kinematics to find those which form a box/peanut bulge.

By studying the evolutionary history of bar and box/peanut strength, we can deter-

mine their formation epoch. This method is also able to distinguish between box/-

peanut bulges formed through strong buckling or those which form through slower

resonance heating or weak buckling. Our results show that TNG50 reproduces a

similar dependence of box/peanut fraction with stellar mass but does not have as

high a fraction at high mass. However, in TNG50, we find the same characteristic

upturn to higher fractions of box/peanuts from low mass to high mass.

Having a large self-consistent sample of barred galaxies from TNG50, we study

kinematic fractionation in a fully cosmological context. We find that the spatial

distribution of kinematic quantities of populations in the bar, such as the in-plane

anisotropy, can trace the bar strength as measured by the density of that population.

We also find that populations within the bar of the galaxy retain the dynamical mem-

ory of the bar formation epoch. Studying box/peanut bulges in TNG50 galaxies, we

find the separation of the density bimodality increases as a function of decreasing

age.
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3.8 Top left-hand panel: the positions of the six fields of interest within

the model’s bulge from the heliocentric perspective. The coloured

squares correspond to the sizes used in our simulated fields to capture

enough star particles. Black contours follow the log density of all

bulge stars. Top right-hand panel: the six fields of interest presented

in a top-down view of the model’s bulge. The bar major axis is

indicated by the dashed line. Black contours follow the log density

of all bulge stars. Bottom panel: average longitudinal proper motion

rotation curves and the separation for the fields of interest. The

field names and FOV are labelled at the top right-hand side. The

number of star particles in both populations is also listed along with

the calculated separation amplitude, ξ. . . . . . . . . . . . . . . . . 84

3.9 Projections of the galactocentric intrinsic velocities onto µl in the
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while the right-hand column shows those of the old. The top row
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motions, the bottom row shows the projection of galactocentric radial

velocities ⟨vR⟩ onto longitudinal proper motions. Yellow contours
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dashed lines outline distances 6 kpc, 8 kpc and 10 kpc, while the white

straight dashed lines mark longitudes between 20◦ and −20◦ in 10◦
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3.10 The contributions of galactocentric ⟨vR⟩ (dashed lines) and ⟨vϕ⟩ (dot-

ted lines) to the average longitudinal proper motion rotation curves

for young (blue lines) and old stars (red lines) for the simulated Field
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apparent magnitudes convolved with C18 uncertainties of σmag,Y =

0.119 and σmag,O = 0.153. Middle bottom panel: the same as above

but with both populations convolved with the width of the RC,

σmag,RC = 0.17. Bottom panel: the calculated error for each field

when applying the RC magnitude uncertainties. . . . . . . . . . . . 92

3.12 Average longitudinal proper motion rotation curve for young and old

stars, and the separation between them using magnitude bins for four

key fields in the bulge. The rotation curves and separation from the
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top right-hand of each panel. The coloured squares correspond to the
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3.13 Top panel: the radial profile of the A2 Fourier amplitude at time

t = 10 Gyr of the fiducial model and Model 2. Bottom panel: the

change in phase angle of the m = 2 mode with radius at t = 10 Gyr.

Vertical green lines indicates where A2 reaches its half maximum value

and |∆ϕ| > 10◦ for each model. Averaging these two values results

in bar radial extents of 4.85 ± 0.55 kpc and 4.80 ± 0.90 kpc for the
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been convolved with a Gaussian of width σ = 0.17 mag to represent
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3.17 Top panel: density distribution of bulge stars in Model 2. Blue and

red contours follow young and old population densities, respectively.

Middle panel: separation amplitude, ξ, for each pixel representing a

1 × 1 deg2 field. Bottom panel: model uncertainty on the separa-

tion amplitudes for each field. In the bottom two panels, the yellow

contours follow the density of all bulge stars. . . . . . . . . . . . . . 110
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as the difference in ⟨µl⟩ between the young and old populations at

∼ 8 kpc. Middle top panel: the same as above but with young and

old stars apparent magnitudes convolved with C18 uncertainties of

σmag,Y = 0.119 and σmag,O = 0.153. Middle bottom panel: the same

as above but with both populations convolved with the width of the

RC, σmag,RC = 0.17. Bottom panel: the calculated error for each field
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4.1 The period-age relations for Milky Way Mira variables from Grady

et al. (2019, red), Nikzat et al. (2022, green), Sanders et al. (2022,

blue), Trabucchi & Mowlavi (2022, magenta) and Zhang & Sanders

(2023, orange). Uncertainties in the relations have not been plotted

but can be significant (see Trabucchi & Mowlavi 2022). We use the

vertical black dashed lines later in section 4.6.2 to define relatively

young and old Miras in the Milky Way. . . . . . . . . . . . . . . . . . 114
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4.2 Epoch RP spectra of the O-rich Mira star T Aqr (top panel, pulsa-

tion period of 203 days) and the C-rich Mira star RU Vir (bottom

panel, pulsation period of 425 days) coloured by the various phases

of their pulsation cycle. The horizontal axis represents an arbitrary,

dimensionless pseudo-wavelength covering the 640 to 1100 nm wave-

length range. Image credits: ESA/Gaia/DPAC, Nami Mowlavi, Is-

abelle Lecoeur-Täıbi, Maria Süveges, Thomas Lebzelter, Francesca De

Angeli, Laurent Eyer, Dafydd Evans, Michal Pawlak, and the Gaia

CU7 Geneva and CU5 Cambridge teams. . . . . . . . . . . . . . . . . 121

4.3 Left: the distribution of ∆A, the difference between variability am-

plitudes calculated via the Fourier model (Amodel) and via standard

deviation of the FoV magnitude (σFoV
G ) (Eqn. 4.3) for LPV sources.

The vertical orange line denotes the mean difference, ⟨∆A⟩, between

amplitude metrics, and the vertical dashed orange lines denote the

region between ±5σ∆A of ⟨∆A⟩ (Eqn. 4.4). Right: the distribution

of Amodel against σFoV
G . The orange and dashed lines trace the same

regions as in the left panel. Sources with differences beyond 5σ are

plotted as magenta points. . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4 Left: comparison between G-band mean magnitude measurements

for LPVs. Right: the difference between the G-band mean magnitude

measurements as a function of the FoV mean magnitude. Both panels

are coloured by the standard deviation of the FoV magnitude. . . . . 127

4.5 Left: the comparison between the square root of the signal variance

(Eqn. 4.5 labeled as Amp, and the amplitude of the model quoted in

the vari long period variable table. Right: the comparison

between the std dev mag g fov defined in the vari summary ta-

ble and model amplitude. Both panels are coloured by the mean mag g fov.129
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4.6 Comparisons between stellar variability amplitude estimates with axis

labelled by their Gaia archive entry from the vari summary and

vari long period variable tables for the Milky Way LPV sam-

ple. The std flux over mean flux refers to the square root

of the signal variance (Eqn. 4.5). All points are coloured by their

weighted mean magnitude. . . . . . . . . . . . . . . . . . . . . . . . . 130

4.7 Distributions of uncertainties of astrometric parameters as a function

of stellar variability amplitude for LPV sources in the Milky Way.

Points in each panel are coloured by their FoV mean magnitude. . . . 131

4.8 The distribution of ruwe as a function of stellar variability amplitude

for LPV sources in the Milky Way. Points are coloured by their FoV

mean magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.9 The 2MASS Ks-band apparent magnitudes of LPV sources in the

LMC. Variability tracks are visible and labelled following Spano et al.

(2011) and Lebzelter et al. (2023). Points are coloured by the stan-

dard deviation of the FoV magnitude (σFoV
G , variability amplitude).

The Mira track (Track C) is identifiable by the large variability am-

plitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.10 The 2MASS Ks-band apparent magnitudes of LPV sources in the

LMC plotted as grey points with the period-luminosity relation of

O-rich Miras from Yuan et al. (2017) plotted as the red line. Blue

points are those geometrically close to this relation (we purposefully

allow for a wider area to be captured as we refine our selection of

Miras using other methods). . . . . . . . . . . . . . . . . . . . . . . . 136
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4.11 The log relative frequency error, log(eν), as a function of log period,

log(P ), for LMC LPVs on the Mira track (Track C, left-hand panel)

and those which are not (right-hand panel). Points are coloured by

the variability amplitude, σFoV
G . The black dashed line is a linear fit

to the stars not on Track C (right-hand panel) to get the gradient of

the relation between log(eν) and log(P ) calculated to be log(eν) =

0.882 log(P ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.12 Left: results from KS tests for varying values of the log(eν)-log(P )

relation intercept. The dashed black line denotes the initial linear fit

to the LMC LPVs excluding Track C (right-hand panel of Fig. 4.11).

The vertical dashed magenta line shows the location of the minimum

KS statistic (D), where we find the optimal intercept to be c = −3.18.

Right: the black points show the LMC log(eν), log(P ) distribution for

all LPVs. The log(eν), log(P ) distribution for Track C are coloured

by σFoV
G . The black dashed line is a linear fit to the stars, not on

Track C. The magenta dashed line is the linear fit with optimal inter-

cept (identified in the left-hand panel, Eqn. 4.9). The magenta line

separates low-amplitude SRVs from the fundamental variables below

this line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
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4.13 The normalised distributions of variability amplitude, σFoV
G , for the

low and high relative frequency error regimes (left-hand axis, green

and red histograms, respectively) for stars on Track C in the LMC.

The mean square contingency coefficient (rϕ) calculated at each value

of σFoV
G is presented as the black line (right-hand axis). The vertical

black dashed line shows the location of the maximum value of rϕ, giv-

ing the critical amplitude. The confusion matrix between definitions

based on σFoV
G and relative frequency error for the critical amplitude

(σFoV
G = 0.282 mag.) is presented in the top right-hand corner. . . . . 142

4.14 The log relative frequency error, log(eν), as a function of log period,

log(P ), for Milky Way LPVs. Points are coloured by the variabil-

ity amplitude σFoV
G . The magenta dashed line is the log(eν)-log(P )

relation (Eqn. 4.9) derived in Section 4.5.2 for the LMC. . . . . . . . 144

4.15 The normalised distributions of variability amplitude, σFoV
G , for the

low and high relative frequency error regimes (green and red his-

tograms, respectively) for the Milky Way LPV sources. The ver-

tical black dashed line shows the critical amplitude defined from

the LMC (Section 4.5.3). The confusion matrix between definitions

based on σFoV
G and relative frequency error for the critical amplitude

(σFoV
G = 0.282 mag.) is presented in the top right-hand corner. . . . . 145
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4.16 The number density distributions of distances derived from the un-

corrected (for extinction) period-luminosity relation against distances

derived from parallax (left-hand panel), Bayesian inference of the par-

allax solution (middle panel) and Bayesian inference of the parallax

and photometry (right-hand panel). The Pearson correlation coeffi-

cients (ρ) for each combination are presented in the top right-hand

corner of each panel. The green line denotes the 1:1 relation, whereas

the dashed green lines show the 2:1 and 1:2 relations. . . . . . . . . . 147

4.17 The same as Fig. 4.16 but for distances derived from the dust cor-

rected period-luminosity relation (Eqn. 4.11). . . . . . . . . . . . . . 147

4.18 The spatial distribution in galactocentric projections of the Milky

Way Miras sample (left-hand panels) and the distribution of Milky

Way Miras with radial velocity measurements (right-hand panels).

The orange point and orange dashed lines represent the solar position

(x, y, z)⊙ = (−8.232, 0.0, 0.0). . . . . . . . . . . . . . . . . . . . . . . 149

4.19 The spatial distribution in galactocentric projections of long-period

Miras (young, left-hand panels) and short-period Miras (old, right-

hand panels). The orange point and orange dashed lines represent

the solar coordinates solar position (x, y, z)⊙ = (−8.232, 0.0, 0.0). . . . 150
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4.20 Top: a Toomre diagram of the Milky Way Miras RV sample coloured

by the period, log(P ). The black dashed lines denote the region

where |V − V⊙| = 100 km s−1 and |V − V⊙| = 180 km s−1 for the

inner and outer lines, respectively. The black dotted line defines

the region of a purer halo population with |V − V⊙| > 250 km s−1

(Koppelman & Helmi 2021). Bottom: the normalised distribution

functions (f) of periods for Galactic stellar components defined in

the Toomre diagram, the thin disc (orange), thick disc (magenta)

and halo (green lines) where the dotted line follows the pure halo

definition from above. . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.1 The distribution of stellar mass at z = 0 for all disc galaxies (disc

sample – 608 galaxies, blue line), for all galaxies in the disc sample

with bars (a2,max > 0.2, 266 galaxies, orange line) and for the galaxies

in the disc sample without bars (342 galaxies, green line) at z = 0.

The red line shows the distribution for all bars within the disc sample

with Rbar ≥ 2.6 kpc (191 galaxies, see Section 5.3). The vertical

dashed lines show the median stellar masses in each group. . . . . . . 163

5.2 Bar formation time identification for two TNG50 barred galaxies. The

horizontal green dashed line shows the a2,max threshold and the green

points show a2,max values at each timestep. The solid red line shows

log(Abar) at each step. The thick red vertical lines indicate the time

of bar formation, defined in Section 5.4. The galaxies are labelled

with their TNG50 Subhalo IDs. . . . . . . . . . . . . . . . . . . . . . 165
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5.3 Example of a buckling galaxy, Subhalo ID 574037, before, at and

after its buckling redshift, z = 0.18. Top row: stellar surface density

in the (x, z)-plane. Middle row: unsharp mask of the surface density

in the (x, z)-plane. Bottom row: smoothed h4 profiles along the bar

major axis. Columns represent, from left to right, z = 0.26, 0.18 and

0.0. The bar radius is indicated by the vertical red dashed lines. The

black dashed line shows h4 = 0 for reference. Each panel uses the cut

|y| < 0.3Rbar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.4 h4 profiles along the bar major axis (bottom panels) for three galaxies

at z = 0: a buckled BP galaxy (left column), a galaxy with a BP

but which has no major buckling episode (middle column) and a

barred galaxy without a BP (right column). The top panels show

the stellar surface density in the (x, z) plane (vertical scale is shown

as z/Rbar). All panels are shown for |y| < 0.3Rbar. The smoothed

profiles are shown in solid red lines. The bar radius is indicated

by the vertical red dashed lines. The two deep minima detected by

the BP algorithm (blue vertical dot-dash lines) are present in the

buckling galaxy, shallower ones in the weak/non-buckling galaxy, and

the galaxy without a BP has a profile with shallow valleys. The green

horizontal lines represent the mean valley and peak h4 levels. The

galaxies are labelled with their TNG50 Subhalo IDs. . . . . . . . . . . 170
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5.5 Examples of the evolution of the h4 profiles along the bar major axis

for three representative galaxies, a BCK (left panel), WNB (middle

panel) and non-BP barred (right panel) galaxy. Time progresses up-

wards towards the darker colours, and we plot every other redshift

from z = 1.5 for clarity. We apply a constant offset to separate the

profiles vertically and every fifth time step, we label the redshift in

blue. The profiles in solid black lines are those at the time of BP

formation (Section 5.8). The galaxies are labelled with their TNG50

Subhalo IDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.6 The cumulative distribution of Rbar for all barred galaxies (those with

a2,max > 0.2 but with no cut in Rbar) (brown dot-dashed line), and

BP galaxies amongst them (blue solid line). To show details at small

radius, the x-axis limit is set to ∼ 5 kpc. The vertical dashed red line

marks our bar cut, Rbar = 2.6 kpc. . . . . . . . . . . . . . . . . . . . . 172

5.7 The distribution of barred galaxy samples in the (log(M⋆/M⊙), Rbar)-

plane at z = 0, identifying BCK, WNB and non-BP galaxies. The

side panels represent cumulative distributions of the parameter on

the respective axis, with their median shown in vertical (top) and

horizontal (right) panels. We overlay in light blue circles observational

data from Erwin (2018), with a cut on log(M⋆/M⊙) ≥ 10.0 to match

the TNG50 sample (but without a cut on Rbar ≥ 2.6 kpc). For

these data, Rbar is the deprojected semi-major axis length of the bar.

For the (Erwin 2018) data, to match the TNG50 sample, we show

cumulative lines only for Rbar ≥ 2.6 kpc. The horizontal black dashed

line represents Rbar = 2.6 kpc. . . . . . . . . . . . . . . . . . . . . . . 174
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5.8 Distribution of log(M⋆/M⊙) for the BP (blue) and control (dotted

black) samples at z = 0 and for comparison, all barred galaxies with-

out BPs (orange). A good match between BP and control samples

is achieved with a two-sample KS test having p = 0.38, signifying

negligible difference in their distributions. . . . . . . . . . . . . . . . 176

5.9 The distributions of the median of B for the last five time steps,

B̃5, for the BP (blue) and non-BP samples (orange) (left axis). The

black line (right axis) shows rϕ, the ‘phi coefficient’ of Yule (1912);

Matthews (1975), a correlation coefficient between the binary classi-

fications methods, as a function of B̃5 which is used for the threshold

value of BP classification. The confusion matrix in the top right cor-

ner is a comparison of the visual and quantitative classifications using

the Bcrit (maximum rϕ) value indicated by the vertical dashed line. . . 177

5.10 BP strength B for four galaxies, one buckling, two WNB and one non-

BP galaxy. The black dashed horizontal line shows Bcrit. Green points

are those which meet our contiguity and threshold requirements for

a BP, red those which do not (Section 5.8). The blue vertical dashed

line marks tBP, the time of BP formation (by definition, the non-BP

galaxy has no BP at z = 0). The red dashed vertical line marks the

time of buckling. The redshifts where the algorithm calculates no B
value are shown by the orange points along the x axis, and we mark

B = 0 with a dotted black horizontal line. The galaxies are labelled

with their TNG50 Subhalo IDs. . . . . . . . . . . . . . . . . . . . . . 180
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5.11 Dependence of the BP fraction on stellar mass at z = 0 for the sam-

ple of 191 barred galaxies (solid blue) in A23 (their figure 1). They

split the BP population into the BCK (red) and WNB (green) popula-

tions. The fractions next to each point show the number of BP galax-

ies/number of barred galaxies in each mass bin. The blue dashed line

represents a generalized logistic regression (GLR) fit to the data for

all TNG50 BPs. The orange stars and dot dashed line represent the

logistic regression fit to the observational data of EDA23 (restricted

to bars of radius ≥ 2.6 kpc to match our selection, and limited to

the same mass range as in this paper’s barred sample). Error bars

are the 68% (1σ) confidence limits from the Wilson (1927) binomial

confidence interval. TNG50 appears to significantly under-produce

BP bulges, particularly at higher mass. . . . . . . . . . . . . . . . . . 183

6.1 The CDF of bar ages in TNG50, derived as described in Section 5.4 of

Chapter 5 (Appendix A of A23). The dashed line denotes the median

Abar while the dotted lines denote the 25th and 75th percentiles. The

earliest bars formed ∼ 11 Gyr ago at z ≈ 3. . . . . . . . . . . . . . . 190

6.2 The cumulative distribution of stellar particle ages within the bar

region of the TNG50 galaxy 414917 at z = 0. Black points denote

the mean age of each sub-population. The green vertical line indicates

the age of the bar in this galaxy. . . . . . . . . . . . . . . . . . . . . 192
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6.3 The distributions of average ages for each labeled sub-population (A-

H) of each of the 191 barred galaxies (lower panel). Each row is the

distribution of 191 sub-populations formed in the same quantile from

all of the galaxies. For example, row ‘A’ shows the spread of the

youngest 12.5% of stellar particles within the bar region of the 191

galaxies. The distribution of Abar is also shown in the upper panel

for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.4 Bottom: The distribution of δτ , the difference between the time of

bar formation and its sub-populations’ (A-H) ages, for all 191 barred

galaxies. Top: The number of sub-populations for all barred galaxies

in bins of δτ ignoring their ordering (summing vertically across A-H).

Therefore the total area under the histogram is equal to 191 galaxies×
8 sub-populations = 1528. The vertical green line denotes δτ =

0, or populations born at the time of bar formation and have ages

Apop = Abar. Note that distributions are not symmetric about δτ = 0,

indicating that, on average, galaxies’ central regions are dominated by

populations older than the bar. The bins of the histogram presented

in the top panel of this figure are used in the analysis presented in

Fig. 6.17 only (see Section 6.5.2). . . . . . . . . . . . . . . . . . . . . 195

6.5 Top: the rotation curves of TNG50 barred galaxies as a function of

the radius for the 191 barred galaxies. Bottom: The gradient of the

rotation curves. Lines are coloured by the total stellar mass of each

galaxy within 10Reff . The rotation curves are largely flat between

1.5 ≤ R/Rbar ≤ 2.0 (vertical dot-dashed red lines). . . . . . . . . . . 197
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6.6 The (x, y) and (x, z) density distribution of galaxy 414917 for all star

particles (top and bottom left-hand panels) and each sub-population

(right-hand panels) A-H, labeled in the top left-hand corner of each

panel. The relative age with respect to the bar age of each sub-

population, δτ (Eqn. 6.1), is given in the lower caption of each panel.

Only stars within the bar radius, R < Rbar and |z|/Rbar < 0.5 (white

dashed lines), are included in the analysis of this work. Note the

disc beyond Rbar in the youngest sub-population (A), justifying the

measurement of bar strength within this radius. White dotted lines in

the (x, z)-projections denote the lower limits of height |z|/Rbar > 0.1

used when determining the BP density bimodality in section 6.5.2. . 200

6.7 Left: The distributions of Abar,i and the scaled Abar,i (see Eqn. 6.2) as

a function of δτ , the time delay between the time of bar formation and

that of a sub-population (see Eqn. 6.1). The solid black line shows

the median Abar,i where the dotted and dashed black lines represent

the 25th/75th and 16th/84th percentiles, respectively. The horizontal

dotted line in the lower panels donates Abar,i = 1 and a2max,i = 1.

Right: the same as the left panels but for a2max,i and the scaled

a2max,i. The vertical green line denotes δτ = 0, or populations born

at the time of bar formation and have ages Apop = Abar. . . . . . . . 202

6.8 The same as the right-hand panel of Fig. 6.7 with the values of five

random TNG50 barred galaxies overlaid. . . . . . . . . . . . . . . . 203
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6.9 The face-on polar projection of stellar surface density (left-hand columns),

average radial velocity (middle columns) and average tangential ve-

locity (right-hand columns) for sup-populations B (top rows) and H

(bottom rows) from Subhalo ID 414917. The radial and azimuthal

bins in each panel are used to calculate the m = 2 Fourier amplitude

as described in Eqn. 6.3. The panels beneath each polar projection

present the m = 2 Fourier amplitude for each quantity as a function

of radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.10 The same as Fig. 6.7 but for the distributions of a2(V
∗)max (top)

and a2(V
∗)max (bottom) for V ∗ ∈ [v∗R, v

∗
ϕ, v

∗
z ] (left, middle and right,

respectively) as a function of δτ . . . . . . . . . . . . . . . . . . . . . 207

6.11 The same as Fig. 6.7 but for the distributions of a2(σV ∗)max (top) and

a2(σV ∗)max (bottom) for σV ∗ ∈ [σ∗
R, σ

∗
ϕ, σ

∗
z ] (left, middle and right,

respectively) as a function of δτ . . . . . . . . . . . . . . . . . . . . . 210

6.12 The same as Fig. 6.7 but for the distributions of a2(σ
∗
α/σ

∗
β)max (top)

and a2(σ
∗
α/σ

∗
β)max (bottom) for σϕ

∗/σR
∗, σz

∗/σR
∗ and σz

∗/σϕ
∗, as a

function of δτ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.13 The strongest four correlations of scaled kinematic bar strengths ver-

sus scaled density bar strengths. The Spearman rank correlation

coefficient (rs) for each combination of variables is given in the upper

left-hand corner of each panel. All correlations presented here have

high significance (p < 0.01). . . . . . . . . . . . . . . . . . . . . . . . 213

6.14 The distributions of Bi as a function of δτ , the difference between the

time of bar formation of a galaxy and a sub-population’s average age

(see Eqn. 6.1) for the 106 BP galaxies (A23). . . . . . . . . . . . . . 216

xxxiii



6.15 The same as Fig. 6.14 but for the distribution of Rvalley,i, and Rvalley,i

(left) and for RBP,i, and RBP,i (right) and as a function of δτ . The

horizontal dotted black line denotes Rvalley,i = 1 and RBP,i = 1, where

the BP radius of a sub-population is the same as the radius when

measuring all the populations in a galaxy’s bar together. . . . . . . . 218

6.16 Left-hand column: average profiles of the h4 moment of the vertical

velocity distribution along the bar major axis of the sub-populations

from Subhalo ID: 117259. Right-hand column: average profiles of

normalised density between 0.1 < |z|/Rbar < 0.5 along the bar major

axis of the sub-populations from the same galaxy. Each row represents

a sub-population A-H, with the top row presenting all populations

within the bar radius. The vertical grey dashed lines denote the

Rvalley,i and RBP,i for the left and right columns, respectively. The red

line shows the profiles whereas the black line shows the profiles after

smoothing with a Butterworth low-pass filter (Butterworth 1930). . 221

6.17 Left-hand column: average profiles of the h4 moment of the vertical

velocity distribution along the bar major axis of the sub-populations

from BP galaxies. Right-hand column: average profiles of normalised

density between 0.1 < |z|/Rbar < 0.5 along the bar major axis of the

sub-populations from BP galaxies. The shaded regions outline the

16th and 84th percentiles of the profiles. Each row represents a bin in

δτ for values of δτ = {−4,−2, 0, 2, 4} Gyr with a bin width of 2 Gyr

(see top panel of Fig. 6.4). Vertical black dashed lines denote the

median Rvalley,i and RBP,i for the left and right columns, respectively.

The vertical black dotted lines denote the 16th and 84th percentiles of

Rvalley,i and RBP,i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

xxxiv



6.18 Top: the variation of RBP,i with δτ for sixe randomly chosen BP

galaxies in TNG50 labeled by their IDs (note RBP,i is scaled by the

bar radius). The corresponding coloured dashed lines are individual

linear regression fits to each galaxy. Middle left-hand panel: The dis-

tribution of gradients from the linear fits. We only perform a linear

fit to a galaxy if we measure three or more bimodal density distribu-

tions (RBP,i) from the sub-populations (95 out of the 106 BP galaxies,

90%). Middle right-hand panel: the distribution of intercepts from

the same linear fits. In the middle panels, the vertical dashed line

indicates the location of the median. The vertical dotted lines indi-

cate the location of the 25th and 75th percentiles of the distributions.

Bottom panel: the yellow line shows the median fit to the RBP,i vs.

δτ relation of the BP galaxies. Each black line represents the linear

fit of each BP galaxy. . . . . . . . . . . . . . . . . . . . . . . . . . . 225

6.19 The median-stacked slices (|y|/Rbar ≤ 0.25) of the (x, z)-projections

for the stellar parameters of normalised log surface density (log ⟨Σ⋆⟩,
top row), unsharp-masked density (middle row) and age (⟨A⋆⟩, bot-

tom row) for the Control (left-hand column), WNB (middle column)

and BCK (right-hand column) samples of galaxies in TNG50 scaled

by the bar radius. Contours from the (x, z) unsharp-masked density

are overlaid on the top four rows. . . . . . . . . . . . . . . . . . . . . 227

xxxv



6.20 Top and right-hand axes: The Spearman rank correlation coefficients

between different Apop, δτ , density measurements of bar strength

(Abar,i and a2max,i) and kinematic measurements of bar strength,

(a2(vR
∗)max,i, a2(vϕ

∗)max,i etc.). Strong correlations (rs > 0.7) are

highlighted with a black border. Statistically insignificant correla-

tions (p > 0.01) are masked out as black squares. The bottom and

left-hand axes show the same metrics but for the scaled quantities

(Eqn. 6.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

A.1 (Left) Comparison of the Roman Galactic Bulge Time Domain Survey

field (black mosaic outline, 1.53◦ × 1.5◦) with the field of view of a

proposed LSST Deep Drilling Field (blue circle with a 3.5◦ diameter,

Street et al. 2018). Note that the LSST survey strategy is still being

refined and could be adjusted to include a Roman field at the Galactic

Centre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

A.2 (Top) The face-on density distribution of a Milky Way-like barred

galaxy from the Auriga Project (Grand et al. 2017). (Bottom) The

magnitude-distance distribution of synthetic red clump stars from the

model. See Section A.3 for further details. . . . . . . . . . . . . . . . 281

xxxvi



“Perhaps, the future is predetermined

by the character of those who shape it.”

— Davos

Acknowledgements

First and foremost, thanks must be given to Prof. Victor P. Debattista for your pa-

tience, encouragement, wisdom, and guidance for the last seven years. Working on a

small project measuring the size of a BP bulge during one summer of my undergrad-

uate, I could never have imagined making it all the way to the end of a PhD, and

it would not have been possible without your support. It seems almost fitting that

one of the chapters of this thesis covers that same project and serves as a reminder

of how far we have progressed. Thank you is not enough for getting me through

this incredible journey. I will forever be grateful for your faith and perseverance in

having me as your student for so long. You have shaped me into the best scientist

I could have possibly become, so know if you ever have to review one of my papers,

it will be your own fault.

Second thanks go to my second supervisor Dr Mark Norris who has continuously

supported me throughout my time at UCLan and kept my observational skills sharp

and my paperwork (mostly) on time. I am beyond appreciative of the opportunities

you gave me at Alston to develop as a science communicator.

Also, I want to acknowledge the old and new members of the Galaxy Dynamics

Research Group at the Jeremiah Horrocks Institute: Stuart Anderson, Dr Tigran

Khachaturyants, Dr Leandro Beraldo e Silva, Dr João Amarante, David Liddicott,

Ilin Lazar, Luismi San Martin Fernandez, Karl Fiteni, Dr Chiara Buttitta, Prof.

xxxvii



Joseph Caruana, Maria Aquilina, Dr Virginia Cuomo, Dr Adam Clarke and Dr Sam

Earp who all have been instrumental in my growth both as a researcher and a person.

Thank you to Prof. Cristina Popescu and Dr Francesca Fragkoudi for the fantastic

discussion and their constructive evaluation of this thesis.

I am also grateful for my research colleagues and collaborators who have encouraged,

challenged and inspired me to pursue the projects presented here in this thesis and

beyond: Dr William Clarkson, Dr Oscar Gonzalez, Dr Min Du, Dr Peter Erwin, Dr

Laurent Eyers, Dr Rachel Street and Dr Dimitri Veras.

Furthermore, I am grateful to everyone, both staff and students at the JHI, for their

support, advice and guidance from my first open day as a prospective student all the

way to this moment. Still, I would also like to name those I am particularly thankful

to: Prof. Derek Ward-Thompson, Dr Megan Argo, Dr Joanne Pledger, Prof. Don

Kurtz, Dr Karen Syres, Dr Tim Mercer, Dr Simon Ebo, Dr Adam Fenton, Char-

lotte Proverbs, Alexia Lopez, Dr Adam Hutchinson, Dr Callum Mackinnon, Joshua

Stanway, Ruth Hyndman, Janik Karoly, Amelia Sharp, Amar Rambukwella-Gill,

Dr Jordan Cole, Dr David Glass, Dr Daniel Johnson, Jamie Banister, Matthew

Teasdale, Ethan Carter, Dr Jordan Thirlwall, Dr Daniel Gass, David Capstick, Rick

Collins, Dr Dimitris Stamatellos, Dr Daniel Lee, Dr Dominic-Frederick Bowman, Dr

Steve McCann, Dr Daniel Brown, Dr David Glass, Zak Meyers, William Robinson,

Anne Harkness and Nuala Jones. I cannot think of a better place to have studied

and worked for the last eight years.

To my wider colleagues and friends at UCLan, UCLan Students’ Union, 53 Degrees,

UCLan/Ri Young Scientists Centre, Preston Guild Hall and Charter Theatre: Daniel

xxxviii



Smith, Phillip Price, Sujata Patel, Dr Jo Brown, Joshua Pearson, James Gelson,

Dave Weeks, John Wojturski, Rowan Fox, Samantha Fogg, Abbie Tutt, Jon Russ,

Matt Smith, Alex Wynn, Kristie Staley, Lorri Millar, Anthony Worswick, Megan

Critchley, Aaron Brown, Ian Blease, Sarah Thompson, Luke Fitzgerald, Joseph

Bigland, Aaron Anderson, Phoebe Liptrot, Sophie Millar, Ste Ashurts Perryman

who provided invaluable experience, fun, laughter and a wealth of opportunity to

experience beyond my academic studies. There are so many memories I will cherish

for the rest of my life.

I am truly honoured to have been supported throughout my PhD by the Moses

Holden Studentship. The decedent of this inspirational figure, Patrick Holden, has

bestowed me this opportunity to contribute new science and continue the legacy of

the ‘diffusion of useful knowledge’ to Preston and beyond.

xxxix



Dedication

This thesis is dedicated to my family, who have stuck by me on my prolonged jour-

ney through university. Your insatiable love and support provide an eternal port

in stormy seas. Who would have guessed a childhood of Thomas the Tank Engine,

Power Rangers, Stargate and Mythbusters could have led to a PhD in astrophysics?

Yet here we are, and it would not have been possible without you all: my parents,

grandparents, aunties, uncles, siblings, cousins and my extended family. Also, I

cannot forget my furry therapists, Teddy, Champ and Lex.

Finally, to Xeng, you are the person I wish to wake up to every morning and sleep

dreaming of every night. There is nothing I can write here that could express my

gratitude for your love, compassion and support. Every day I have with you is a

gift, and thankfully, we have forever and many days.

xl



Chapter 1

Introduction

1.1 Galactic Structure

Early astronomers observed not only individual stars but also nebulae, which were

thought to be clouds of gas and dust within our own Milky Way Galaxy. With the

invention and development of the telescope, some such nebulae appeared to have a

spiral shape. The German philosopher Immanuel Kant first used the term ‘island

universes’ in the 18th century proposing that the Milky Way Galaxy was just one

of many ‘island universes’ scattered throughout the observable sky (Curtis 1988).

However, it wasn’t until the early 20th century that astronomers were able to confirm

the existence of other galaxies beyond our own. American astronomer Edwin Hubble

made a groundbreaking discovery that significantly changed our understanding of

the Universe. He observed these ‘spiral nebulae’ using the most powerful telescope

of his time. He discovered that they were not located in the Milky Way, as previ-

ously thought, but were indeed independent galaxies located far beyond our Galaxy

(Hubble 1929). Hubble’s work revolutionised our understanding of the cosmos and

paved the way for many more discoveries in the years to come.

Hubble began visually classifying galaxies into different morphological groups

based on several key features, constructing the Hubble sequence (Hubble 1936), a
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Figure 1.1: Hubble - de Vaucouleurs diagram for galaxy morphology featuring ellip-

ticals, lenticulars, spirals, intermediate spirals, barred spirals, and irregulars. Image

credit: Antonio Ciccolella and M. De Leo (2016).

system still used by astronomers today. Further classifications have expanded on

the Hubble sequence, such as the work of de Vaucouleurs (1959). As telescope

and computing technology developed, astronomers, citizen scientists and machine

learning algorithms have defined and characterised galaxies in considerable detail

(e.g., Masters & Galaxy Zoo Team 2020), providing insights into their formation and

evolution. The Hubble - de Vaucouleurs diagram of galaxy morphology is presented

in Fig. 1.1. There are two primary types of galaxies: ellipticals and spirals.

Elliptical galaxies (left-hand side of Fig. 1.1) are rounded in shape and lack

the distinct disc structure of spiral galaxies. They are made up of older stars and

have a sparse interstellar medium (ISM) with small amounts of cold gas. Elliptical

galaxies range in size from small dwarf galaxies to massive giants. Unlike spirals,

elliptical galaxies do not have a pattern of star formation and appear redder due to

the predominance of older stars. Ellipticals are further divided into subgroups based
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on the ellipticity of their light distribution, from elliptical (E7) to circular (E0).

Lenticular galaxies, also known as S0 galaxies, are a type of intermediate form

between spiral and elliptical galaxies. They have a central bulge like elliptical galax-

ies but also a disk of stars like spiral galaxies. Lenticular galaxies are characterised

by their lack of spiral arms and their smooth, featureless appearance.

Spiral galaxies, on the other hand, have a cold, diffuse interstellar medium of

stars, gas and dust in a disc morphology. Many have a dense central bulge region

surrounded by spiral arms that extend outward (the upper track in the right-hand

side of Fig. 1.1). The arms are dense regions populated by young stars, star-forming

gas, and dust, while a central bulge contains older stars. Spiral galaxies often have a

distinctive pattern of star formation along their spiral arms, which gives them a char-

acteristic blue colour. The classification of spiral galaxies from ‘a-d’ distinguishes

between how tightly wound their spirals are, with tightly wound spiral galaxies hav-

ing the most prominent bulge or central spherical region (a). Loosely wound spirals

have the smallest bulges (d). Spiral galaxies have three further sub-divisions: non-

barred, weakly barred and strongly barred (SA, SAB and SB, respectively). These

stellar bars are straight features through the galaxy centres that appear to rotate

as a ridged body and commonly connect with spiral features. The same subclas-

sifications of ‘a-d’ also describe the spiral windings and bulges of barred galaxies.

Examples of spiral galaxies include the Milky Way (SBbc, Gerhard 2002) and the

Andromeda galaxy (SAb de Vaucouleurs et al. 1991).

Irregular galaxies are unique in their shape and structure. They are typically the

result of galaxy interactions or the merging of multiple galaxies (Masters & Galaxy

Zoo Team 2020). They can share characteristics and features of spiral and elliptical

galaxies, but they typically do not fit their distinct regular shape. Some irregular

galaxies can have spiral features but have strongly distorted tails and warped discs.

Many can appear as disc-like structures or chaotic collections of stars and gas, often
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with clumps and pockets of intense star formation. These galaxies can come in

various sizes, from small dwarfs (including compact dwarf spheroidals) to massive

objects.

Many astronomers referred to elliptical galaxies as ‘early-type’ and spiral galax-

ies as ‘late-type’, as the assumption was that galaxies evolve from left to right or

elliptical through lenticular to spirals on the Hubble sequence1.

Subsequent work studying distant galaxies suggests that galaxy evolution does

not follow this simple sequence. Due to technological constraints, studying the very

early Universe with large statistical samples is challenging. Mortlock et al. (2013),

who used 1 188 massive (M⋆ ≥ 1010 M⊙) galaxies at redshift z > 2 from the Ultra

Deep Survey (UDS) region of the Cosmic Assembly Near-infrared Deep Extragalac-

tic Legacy Survey (CANDELS) field, showed that irregular galaxies were dominant

in the early Universe. They also found many spheroidal galaxies and negligible disc

populations. Other studies also showed an increasing fraction of irregular and inter-

acting galaxies for increasing redshift (Abraham et al. 1996; Conselice et al. 2000;

Guo et al. 2015; Huertas-Company et al. 2016). Many early disc galaxies contain

large stellar clumps (e.g., Guo et al. 2015), which may lead to misclassifications if

not resolved fully. Emerging results from the James Webb Space Telescope (JWST)

including those from the Cosmic Evolution Early Release Science (CEERS) survey

(Finkelstein et al. 2023) have found that very high mass galaxies (M⋆ ≥ 1010.5 M⊙)

have undisturbed disk-like morphologies as early as z ∼ 5 (Ferreira et al. 2023).

In the currently favoured picture of galaxy formation, present-day ellipticals

formed due to mergers between these early galaxies. Lenticular galaxies may also

be evolved spiral galaxies, whose gas has been stripped, quenching star formation.

Spiral galaxies that survive to the present epoch have typically done so with fewer

interactions and merger events, while those that do not survive have evolved away

1Although Hubble clarified that the naming conventions and the relative positions of classifica-

tions should not be interpreted as an evolutionary sequence (Hubble 1927).
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from spirals forming ellipticals and lenticulars (e.g., Schawinski et al. 2014).

1.1.1 Density Distribution of Galactic Discs

The surface density profiles of disc galaxies as a function of radius can typically be

described with a single exponential profile, i.e.:

Σ(R) = Σ0e
−R/hR , (1.1)

where Σ0 is the surface density at the galaxy centre and hR is the disc scale length

or the radius at which Σ(hR) = Σ0/e. Many disc galaxies also exhibit discs with

broken exponential functions (e.g., Erwin et al. 2008).

The vertical profiles of disc galaxies also follow similar exponential or double

exponential functions. Photometricly galactic discs appear to have two distinct

vertical components, the thin and thick discs, seen in edge-on external galaxies and

first described by Burstein (1979) and Tsikoudi (1979). The origins of the two discs

are still a matter of ongoing research. Within the ΛCDM framework (Section 1.2),

one scenario of disc formation is the ‘upside-down’ mechanism. Stars form in the

gas as it collapses into the protogalaxy and retain their vertical height distribution,

with later star formation occurring closer in the plane.

We also observe high mass stellar clumps in high redshift galaxies, which from

simulations, have been shown to strongly scatter old stars, converting in-plane mo-

tion to vertical motion, giving origin to a thick disc from an initially thin disc (Bour-

naud et al. 2009; Clarke et al. 2019; Beraldo e Silva et al. 2020). The formation of

thick discs can also have contributions from merger events.

Typically the thin disc is younger and metal-rich. In contrast, the thick disc

is older and metal-poor, allowing the discs to be defined chemically rather than

geometrically (e.g. in the Milky Way, Hayden et al. 2017). We can define the density

distributions of the thin and thick discs as first identified in the Milky Way by Yoshii
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(1982) and Gilmore & Reid (1983):

ζ(z|R) =
1 − β

2hz,thin

e−|z|/hz,thin +
β

2hz,thick

e−|z|/hz,thick , (1.2)

where hz,thin, hz,thick are the thin and thick scale heights respectively. Here, β is a

free parameter such that:

ζ(0|R) =
1 − β

2hz,thin

+
β

2hz,thick

, (1.3)

where ζ(0|R) is the mid-plane density at a given radius.

At the Solar radius of the Milky Way (R⊙ = 8.2 kpc, Bland-Hawthorn & Gerhard

2016), the thin disc has a scale height of hz,thin ≈ 0.3 kpc, whereas the thick disc

has a scale height of hz,thick ≈ 0.9 kpc and both discs having a scale length of

hR = 2.5±0.4 kpc (Bland-Hawthorn & Gerhard 2016). However, Bovy et al. (2012)

showed that scale lengths and heights, as measured by mono-abundance populations,

change as a function of age. Older populations have larger scale heights and smaller

scale lengths.

1.2 Formation of Disc Galaxies in ΛCDM

Considering the formation of galaxies, we concentrate on the ΛCDM model of cos-

mology. Also commonly referred to as the standard model of cosmology, ΛCDM

has three major components: dark energy (Λ), cold dark matter (CDM) and ‘ordi-

nary’ (baryonic) matter whilst assuming that general relativity is the correct theory

of gravity on cosmological scales (Faber & Gallagher 1979). Several observations

suggest that our Universe is geometrically flat and dominated by dark matter and

dark energy accounting for about ∼ 95% of the energy density (Planck Collabora-

tion et al. 2020). Standard model particles, baryons, make up for the remaining

∼ 5% (Planck Collaboration et al. 2020). The ΛCDM framework assumes that dark

matter is cold, with negligible random motions when decoupled from other matter

6



CHAPTER 1

and is collisionless. Dark energy drives the accelerated expansion of the Universe

(Lonappan et al. 2018).

Several space-based missions, such as the Cosmic Background Explorer (COBE,

Smoot et al. 1990), RELIKT-1 (Klypin et al. 1992), the Wilkinson Microwave

Anisotropy Probe (WMAP, Bennett et al. 2003), and the more recent Planck satel-

lite (Planck Collaboration et al. 2020), have detected subtle fluctuations in the den-

sity and temperature of the cosmic microwave background. For example, although

the cosmic microwave background appears nearly uniform in all directions, temper-

ature variations of order ∼ 1 in 105 or RMS ≈ 20 µK was measured by Planck. If

the cosmic microwave background were perfectly uniform, there would be no galax-

ies, which we do observe. On even larger scales, galaxies form in clusters and Mpc

sheet-like structures, separated by voids containing few galaxies (Geller & Huchra

1989). Looking for the origin of these observed structures, we theorise that the

Universe began in a hot, dense, nearly uniform state approximately ≈ 13.8 Gyr ago

(Freedman 2021). The large-scale variations in the cosmic microwave background

were born from tiny quantum fluctuations in the Universe’s initial state, which were

‘inflated’.

The Universe was dominated by radiation in its early stage (Karttunen et al.

2017). As a result, baryonic matter, which interacts with electromagnetism, could

not cool; however, dark matter could begin to collapse under gravity forming the

seeds of halos and filaments (the ‘cosmic web’) into which the baryons could later

fall. The Universe was expanding rapidly and therefore cooling, allowing for the

formation of protons and neutrons and primordial elements (Big Bang nucleosyn-

thesis), which were fully ionised into nuclei and free electrons again due to the high

temperature. As the Universe cooled, small quantities of deuterium, helium and

lithium nuclei were created. Finally, 0.5 Gyr after the Big Bang, the Universe be-

came cool enough for the nuclei to capture negatively charged electrons, forming
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neutral atoms.

This baryonic matter then began collapsing under the gravity of its own mass

and that of dark matter, which had already generated dense regions and voids which

funnelled this primordial gas, creating the first generation of stars and protogalaxies.

Galaxies then form in groups and clusters, creating the large structures observed

today, often called hierarchical structure formation (e.g., Lacey & Cole 1993).

The ΛCDM model is able to reproduce the observed large-scale distribution of

galaxies, clusters, voids (Springel et al. 2006), and when fit to the cosmic microwave

background (Planck Collaboration et al. 2020, and following works by the collab-

oration). It also consistent with the observed abundances of primordial elements

across these large structures. However, considering individual galaxies, the highly

nonlinear mechanisms of baryonic physics, gas heating and cooling, star formation

and feedback add further complications.

For disc galaxies specifically, in the early stages of formation, gas collects under

gravity at a high temperature embedded in a dark matter halo; these gas coronae

begin to cool and collapse into the potential well forming a protogalaxy (Ferreras

2019). The gas experiences external torques, and the cooling process is isotropic

(angular momentum is conserved when collapsing), thus rotating and flattening the

protogalaxy into a disc as it contracts. Once sufficient density is reached, star

formation begins in the central regions, building an early central stellar mass. Star

formation then continues in the gas at larger radii and higher angular momentum,

which develops into a stellar disc at later times, a process referred to as inside-out

formation (Kepner 1999; Nelson et al. 2012; Patel et al. 2013). Older stars, therefore,

are typically formed close to the galactic centre and the outer disc is comprised of

younger stars. The accretion of gas and stars through merger events and interactions

also drives disc growth through hierarchical assembly, (e.g. Martel & Richard 2020).
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1.3 Chemical Evolution

Observationally, the ages of stars are challenging to determine. One of the most

common proxies for stellar age is their chemical abundance. We describe here an

overview of how different elements are generated in the Universe.

1.3.1 Big Bang Nucleosynthesis

The early Universe was hot enough for protons and neutrons to transform into each

other easily, and their abundance ratio was determined only by their relative masses

with one neutron to seven protons (though some neutrons decay into protons). Once

the Universe cooled enough, the neutrons quickly bound with equal protons to form

molecular hydrogen (2H), then helium-4 (4He), resulting in a Universe that is ∼ 74%

H and ∼ 24% He by mass (Steigman 2007).

In the first twenty minutes after the Big Bang, when the temperature and density

of the Universe were high enough to allow nuclear fusion to occur, the fusion of

protons and neutrons formed the lightest elements, such as hydrogen, helium, and

lithium. As a result, primordial nucleosynthesis is responsible for the formation

of most of the Universe’s helium as the isotope helium-4 (4He), along with small

amounts of the hydrogen isotope deuterium (2H), helium-3 (3He), and a minimal

amount of the lithium isotope lithium-7 (7Li) (Steigman 2007). Elements heavier

than lithium are subsequently formed as a product of stellar evolution.

1.3.2 Elemental Abundance

We can track the chemical enrichment of stars through metallicity, defined as the

logarithmic ratio of the mass fraction of iron (Fe) to hydrogen (H). We can also

define the chemical abundance of any two elements (i, j) using the Sun as a reference
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following Eqn. 1.4 where Ni is the number of atoms of an element i per unit volume:

[i/j] = log10

(
Ni

Nj

)

⋆

− log10

(
Ni

Nj

)

⊙
. (1.4)

Here ⋆ is a given star’s abundance, and ⊙ refers to the Solar abundance. For

example, the Solar iron to hydrogen ratio, log10(NFe/NH)⊙ = −2.752 (Asplund

et al. 2009) and therefore, stars with [Fe/H] > 0 have a higher abundance of iron

than the Sun, and we would consider them to be ‘metal-rich’. Thus ‘metal-poor’

stars with [Fe/H] < 0 are those with metallicity below the Solar abundance.

We can also consider the ratios of iron abundance to α-elements2 so-called as

they have isotopes that are integer multiples of the mass of a helium nucleus, the α-

particle. The stable α-elements are C, O, Ne, Mg, Si and S. Commonly, the chemical

space studied in galaxies is the [O/Fe]-[Fe/H] (α-Fe) plane.

1.3.3 Stellar Nucleosynthesis

The first generation of stars was born in the primordial gas without any contami-

nating elements heavier than lithium, referred to in the literature as population III

stars (Heger & Woosley 2002)3. Observations of such stars have not been achieved

to date but are postulated to have stellar masses hundreds of times that of the Sun

(Schlaufman et al. 2018). These stars begin stellar nucleosynthesis by fusing hydro-

gen into helium and then into heavier elements up to iron. Many theoretical stellar

models show that most high-mass stars rapidly exhaust their fuel (see Table 1.1)

and explode in extremely energetic supernovae, synthesising even heavier elements.

Such explosions disseminate their material into the surrounding (ISM), enriching the

gas with heavier elements to be integrated into later generations of stars. This rapid

destruction of population III stars suggests that none of them would be observable

2The α-alpha process elements: 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, and

56Ni of which many are unstable isotopes.
3In discussing populations of stars, we adopt the naming conventions of Baade (1944).
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by the current epoch since most are theorised to form at masses ∼ 20 − 130 M⊙

(Umeda & Nomoto 2003).

Population II are stars with a relatively low abundance of elements heavier than

helium (low metallicity) and are so-called metal-poor (Caputo 1998). This gen-

eration was still formed during the early Universe and is commonly found in old

structures such as the Milky Way stellar halo. The central bulge of the Milky Way

also contains population II stars, though they are slightly younger and thus are less

metal-poor (e.g., Reggiani et al. 2020). Globular clusters are comprised entirely of

population II stars (van Albada & Baker 1973; Caputo 1998). Despite the lower

metallicity, they often have higher proportions of α-elements relative to iron than

younger stars.

Population I stars are metal-rich with the highest metallicities and are found in

regions of current active star formation, such as the spirals of disc galaxies (Kart-

tunen et al. 2017). These population descriptions provide broad categories for gen-

erations of stars but are not necessarily discrete; therefore, their definitions overlap.

1.3.4 Stellar Evolution

The fate of a star’s evolution is determined by its mass. Low-mass stars form slowly

and fall onto the stable main-sequence (core hydrogen burning), where they can

remain there for several Gyr (the timescales of stellar evolution for different masses

are summarised in Table 1.1). Once hydrogen fuel in the core is exhausted, stars

begin burning hydrogen in their outer layers and evolve into the Giant phase, where

they expand their outer layers but their cores contract. Giant (post-main-sequence)

stars eject the material in their outer layers as high-energy stellar winds driven

by radiation pressure, releasing mass back into the ISM (Karttunen et al. 2017).

Intermediate mass stars (2.3 ≤ M/ M⊙ ≤ 8) have a central temperature which is

high enough to fuse helium. Once the central helium fuel runs out, outer layers of
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helium and hydrogen can burn in shells. However, in low- and intermediate-mass

stars, shell burning produces radiation pressure in the loosely bound outer layers

causing them to expand, forming a planetary nebula. What remains is a carbon-

oxygen white dwarf i.e. the stellar core.

High-mass (> 9 M⊙) stars form rapidly and only remain on the main-sequence

for ∼ 10Myr. High-mass stars can ignite carbon or oxygen fusion in their cores and,

in some cases, destabilise the star causing a supernova. The most massive stars

(> 15 M⊙) can fuse elements up to iron in shells. As fuel runs out in the core, it

no longer has sufficient pressure to prevent collapse and implodes. The star’s outer

layers explode in a supernova, leaving behind the stellar core.

1.3.4.1 Final Stages

Stellar cores with masses lower than the Chandrasekhar mass (MCh = 1.4 M⊙,

Chandrasekhar 1935) will exhaust all of their fuel and become a white dwarf, no

longer fusing material and thermally radiating heat away to cool and contract. This

is typically the fate of low-mass stars after the outer layers create a planetary nebula.

If such low-mass cores are part of a close binary system, the white dwarf can accrete

material from its companion and increase its mass. If a white dwarf accretes mass,

it will heat as it approaches the Chandrasekhar limit until it reaches the ignition

temperature for carbon fusion. Then, the white dwarf undergoes a runaway reaction

and unbinds the star in a supernova explosion, named a type Ia supernova. The

spectra of such supernovae typically present strong singly ionised silicon (Si II)

emission lines (Hillebrandt & Niemeyer 2000). The fact that the spectra of Type

I supernovae are hydrogen poor is consistent with the fact that low-mass white

dwarves have almost no hydrogen.

If a stellar core has a mass larger than the Chandrasekhar limit but lower than

the Oppenheimer-Volkoff mass (MOV = 2.0 M⊙, Oppenheimer & Volkoff 1939),
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its final stable state is a stellar core which is entirely degenerate, i.e. a neutron

star. The most massive stellar cores above the Oppenheimer-Volkoff mass overcome

degeneracy pressure and nuclear forces that support the neutron star and continue

collapsing to form a black hole. The rapid implosion of core collapse also removes

pressure support of the star’s outer layers causing it to collapse and heat rapidly.

The collapse is reversed by neutron degeneracy, and the energy of outwards force is

sufficient to disrupt outer layers and accelerate them, forming a supernova explosion.

In addition, the exceptionally high temperatures and pressures allow for a brief

period of high-energy fusion, producing elements heavier than iron. Named type II

supernovae, they are distinguished from other types of supernovae by the presence

of hydrogen in their spectra from the outer regions of the star (Doggett & Branch

1985).

Type Ia supernovae occur in all classifications of galaxies and therefore do not

occur in specific populations of stars. However, type II supernovae are not observed

in elliptical galaxies and originate from high-mass stars, which rapidly evolve and

therefore are coincident with population I stars in the active star-forming regions of

galaxies. This distinction adds different timescales and abundances to the enrich-

ment of chemical elements in galaxies.

1.3.5 Age Metallicity Relations

The combined effects of stellar winds and supernovae act to increase the abundance

of heavier elements in each generation of stars. Young populations of stars have

higher metallicities and lower α-abundance, with the opposite being true for old

stars. We, therefore, expect chemical abundance to correlate with stellar ages pro-

ducing an age-metallicity relation (AMR) and follow similar distributions within a

galaxy.

Various methods exist for determining estimates of the ages of stars, each with its
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Figure 1.2: Edge-on and face-on distribution maps of the stellar surface density

(top left-hand panel), average age (top right-hand panel), ⟨[Fe/H]⟩ (bottom left-

hand panel) and ⟨[O/Fe]⟩ (bottom right-hand panel) of a star-forming simulation

739HF after 10 Gyr of evolution, presented as simulation M1 c b in Fiteni et al.

(2021). The white contours follow isophotes of log density.
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own advantages and shortcomings (Soderblom 2010). Estimates of stellar ages and

their chemical abundance allow for the construction of age-metallicity distributions,

giving insight into the formation histories of galactic structures (e.g., Haywood et al.

2013; Bernard et al. 2018).

In Fig. 1.2, we present the face-on and edge-on maps of an isolated star-forming

simulation which forms a disc galaxy and implements prescriptions for chemical

enrichment (see Chapter 2). From the density distribution (upper left-hand panel),

the central bar and bulge region is evident along with the outer disc, where we

observe faint spiral features. As this is a simulation, we know the precise ages of

the stellar particles (stars), and we can show their distribution in maps. Indeed,

as expected, we find old stars close to the galactic centre and younger stars in the

spirals of the disc. There is also a clear vertical gradient of age, with young stars

occupying a thin disc while older populations are found out of the plane at greater

heights. Considering the above chemical evolution theory, we expect the abundance

distributions of iron and oxygen to follow those of age, which we observe in the

model.

We present in Fig. 1.3, the relationships between iron and oxygen abundance

with stellar age for all stars in the same model. There is a clear correlation be-

tween chemical abundance and age, with a steep gradient between the oldest and

intermediate-age stars in the model. However, the gradient flattens for younger

populations. Age appears to have stronger correlations with [O/Fe] than [Fe/H].

In the α-Fe plane (bottom panels of Fig. 1.3), there appears to be a dense lower

track with low [O/Fe] across a range of metallicities, with further tracks at higher

[O/Fe] values. Again knowing the stellar ages, we can colour this space by the

average age and see that the young stars of the thin disc have low [O/Fe] with a

range of [Fe/H] values. On the other hand, old stars have larger [O/Fe] and extend

to lower [Fe/H]. The distinction between the lower and upper tracks of the α-Fe
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Figure 1.3: The age relation of [Fe/H] (top left-hand panel) and [O/Fe] (top right-

hand panel) for all stars in the model. The α-Fe plane is presented in the bottom

left-hand panel, and the same chemical space coloured by the average stellar age is

shown bottom right-hand panel for the same simulation presented in Fig. 1.2. The

white contours in the bottom right-hand panel follow lines of log density from the

bottom left-hand panel.
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plane is thought to be due to the delayed onset of Type Ia supernovae which require

white dwarfs to have formed. Type II supernovae, which produce large amounts of

α-elements, occur from high-mass stars which form rapidly (Table 1.1).

This view of chemical enrichment would imply that there should be a simple

relationship between stellar age and chemical abundance –however, gaseous regions

mix, diffusing heavy metals across the galaxy. External factors can also compli-

cate the AMR (Ferreras 2019). The early accretion of smaller satellites is common

in ‘bottom-up’ theories of galaxy formation. Dwarf gas-rich companions of larger

galaxies with different chemical evolutionary histories are sources of infalling gas,

mixing with the gas of the progenitor. Infalling cold primordial gas along cosmic fil-

aments also contributes to the disc prompting star formation as it accretes, forming

young stars with lower iron abundance. In addition to gas inflows, galactic out-

flows have been observed in elliptical galaxies and spirals with active galactic nuclei

(AGN), which heat the gas in the disc. This heated gas could then ‘evaporate’ into

the intergalactic medium (IGM) or fall back onto the disc.

The redistribution of gas broadens the AMR of a galaxy. Nevertheless, the

general trends of such relations can still be observed in galaxies such as the Milky

Way (e.g., Ness et al. 2016b). Observationally, only the chemical abundances of

stars are typically available to us. Therefore structures, such as the thick and thin

discs, are typically defined chemically (e.g., Bensby et al. 2014; Nidever et al. 2014).

Stellar ages, which are challenging to measure precisely and for large samples, are

still the ideal way to untangle the dynamical history of galaxies.

1.4 Dynamics of Disc Galaxies

One of the earliest questions about disc galaxies was how they rotate. The motions

of planets around a star are governed by Newton’s and Kepler’s laws which assert

a constant mass interior to the orbit where orbital velocities decrease with radial
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distance from the centre. If galaxies followed similar laws, stars in the outer disc

would rotate slower than those close to the centre (Vcirc(R) =
√
GMenc/R, where

Menc is the mass enclosed within the orbit).

However, observations of external disc galaxies have shown that the circular

velocities increase from small radii before peaking and remaining roughly constant

at large radii beyond several scale lengths of the disc (Babcock 1939; Schmidt 1957;

van de Hulst et al. 1957; Volders 1959; Rubin & Ford 1970; Corbelli & Salucci

2000). Considering the fact that the stellar discs of galaxies follow exponential

profiles (Eqn. 1.1), the stellar mass can not account for the fast rotation curves at a

large radius. This result would suggest that more mass is present in a galaxy than is

visible in the baryonic matter, and this ‘dark’ matter contributed more than 50% to

the total galaxy mass (Rubin et al. 1980). This result was the first indirect evidence

of dark matter playing a role in the dynamics of disc galaxies. Indeed in current

models of disc galaxies, dark matter dominates the outer regions of the gravitational

potential, whereas the stellar component dominates the inner regions.

As an example, in the left-hand panel of Fig. 1.4, we show the rotation curve

of an N -body simulation of a disc galaxy with the individual contributions of the

stars and dark matter components to the rotation curve of the total potential4. The

stellar component, as expected, has a decreasing gradient beyond ∼2 kpc. The dark

matter component of the model has a rising rotation curve which begins to dominate

beyond 10 kpc, a factor of four times larger than the stellar disc scale length. The

combined effect of both components is a rotation curve that is flat beyond ∼ 2 kpc.

4Calculated from the midplane gravity of interior mass using the PYTHON package PYNBODY

(Pontzen et al. 2013).
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Figure 1.4: Left: the rotation curve (circular velocity) of model 741CU, an N -body

simulation of a disc galaxy after 5 Gyr of evolution presented as model CU in De-

battista et al. (2017) (see Section 1.7). The thick black line is the rotation curve of

the total potential which is the addition in quadrature of the stellar and dark matter

components (dashed and dotted lines, respectively). Right: the lines of co-rotation

and Lindblad resonances. An example pattern speed is drawn as the horizontal

dashed line intersecting the rotation frequencies.
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1.4.1 Orbits in Discs

When considering motions through an axisymmetric disc, stars on nearly circular

orbits with small radial and vertical (perpendicular to the plane) excursions can

be treated as simple harmonic oscillators. The frequency of these motions can be

described as epicycles about a guiding radius (Rg) which follows a circular path

at that radius within the gravity potential of the galaxy. Using the notation of

Binney & Tremaine (2008), the radial and vertical epicycles are denoted as κ and

ν, respectively. The rotation frequency of a star is denoted as Ω. Completing one

cycle through 2π radians, the radial and azimuthal periods can be expressed as:

Tr =
2π

κ
; Tϕ =

2π

Ω
, (1.5)

respectively.

In the vertical direction, stars act as harmonic oscillators decoupled from the

in-plane motions. Assuming the density is approximately constant, close to the

plane of the disc, the vertical frequency depends on the density (ρ) at the guiding

radius, i.e., ν2(Rg) ≈ 4πGρ(Rg). As discs have exponential vertical profiles, this

relationship only holds for orbits that do not stray far from the mid-plane (e.g.,

zmax ≤ 0.1 kpc, Binney & Tremaine 2008).

We present a schematic of the epicycle approximation in Fig. 1.5 from the face-on

and side-on view of a simple disc. While the epicycle approximation only applies to

small radial and vertical excursions, it provides a good description of the majority

of stellar motions in a disc.

If we place ourselves in the reference frame that rotates with an angular frequency

of Ωp, the frame changes its azimuthal angle (ϕp) with respect to the azimuthal angle

of the star (ϕ⋆) as a function of time (t) following:

ϕp = ϕ⋆ − Ωpt , (1.6)
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Figure 1.5: A schematic diagram of a star orbiting in a disc with small radial and

vertical excursions around a guiding centre Rg, with azimuthal, radial and vertical

frequencies of Ω, κ and ν, respectively. The left-hand image is from the face-on

perspective, whereas the right-hand image is from the side-on perspective.
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which for one radial period (Eqn. 1.5) can be expressed as the increase in the az-

imuthal angle of the frame and star as:

∆ϕp = ∆ϕ⋆ − ΩpTr . (1.7)

We can define a value of Ωp, which allows the orbit of the star to form closed loops

in the rotating reference frame. Orbits close such that ∆ϕp = 2πn/m where n and

m are integers. Therefore closed orbits can be approximately expressed from the

epicycle approximations from above, giving:

Ωp = Ω − nκ

m
. (1.8)

As Ω changes for any given star as a function of radius, no single value of Ωp would

allow orbits at all radii to close. Indeed even at a single radius, some orbits are

closed, and some with large radial oscillations are not. Closed orbits are resonant

orbits in the rotating frame.

1.4.2 Disc Stability

Discs are rotationally supported, and their evolution is driven by angular momen-

tum transport (Lynden-Bell & Kalnajs 1972; Kormendy 2013). More specifically,

energy spreads outwards, causing the inner regions to contract, increasing density

and expanding the outer regions, which grow more diffuse (Tremaine 1989). How-

ever, a rotating disc with no radial random motions is susceptible to axisymmetric

instabilities, similar to the Jeans instability of collapsing gas clouds. Toomre (1964)

derived a stability criterion (Q) for stellar discs where a disc is stable to axisymmetric

perturbations when:

Q ≡ σRκ

3.36GΣ
> 1 , (1.9)

where σR is the radial velocity dispersion, κ is the radial epicyclic frequency, G is

the gravitational constant and Σ is the stellar surface density. We can use Q to
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measure how kinematically ‘hot’ a stellar disc is. Discs with large radial velocity

dispersions (large σR) would be considered ‘hot’ and therefore have large values of Q.

Conversely, a ‘cool’ stellar disc would have low values of Q and σR, and completely

‘cold’ discs have zero values for both. Rotationally-supported discs where Q > 1 are

typically stable to all axisymmetric perturbations.

However, thin rotationally supported discs with differential rotation are notori-

ously unstable to non-axisymmetric perturbations that produce density waves ap-

pearing as spirals (shown in N-body simulations by Hohl 1971; Sellwood 1981, 1985;

Sellwood & Moore 1999).

Most observed spirals are trailing; however, a small number have leading arms

(e.g., Buta et al. 1992, 2003). An m = 2 (bi-symmetric) density perturbation

commonly causes instabilities that grows within the disc. This perturbation will

rotate about the galaxy with an angular frequency referred to as a pattern speed

(Ωp). This perturbation will interact with the stellar disc, and stars with rotational

frequencies (Ω) that match that of the perturbation Ω = Ωp are said to ‘co-rotate’

with the perturbation. The perturbation can exchange energy with closed orbits

in the rotating frame (Binney & Tremaine 2008). From Eqn. 1.8, there are closed

orbits also where n/m = ±1/2, which are named Lindblad resonances after Swedish

astronomer Bertil Lindblad.

1.5 Stellar Bars

Toomre (1981) demonstrated that any leading spirals are unwound, becoming straight,

then trailing spirals. In this process, the amplitude of the spiral is amplified in a

process termed swing amplification. Spirals, which are commonly trailing, can prop-

agate inwards through the centre of the disc, emerging as leading waves that prop-

agate outwards. These new leading waves are again unwound and swing amplified

(Toomre 1981). Spirals propagating outwards can experience a partial reflection at
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the corotation resonance (the radius at which the spiral pattern speed intercepts the

corotation curve).

So long as the pattern speed of the spiral, Ωp, remains above that of the inner

Lindblad resonance (ILR, Ω− κ/2)5, a feedback loop of trailing spirals propagating

and emerging through the centre as leading spirals that unwind, are swing ampli-

fied and reflect off corotation, continues (Goldreich & Lynden-Bell 1965; Julian &

Toomre 1966; Drury 1980; Toomre 1981; Lin & Bertin 1985; Sellwood & Wilkinson

1993). For example, in the right-hand panel of Fig. 1.4, we present the rotation

frequencies of the same disc galaxy model as a function of radius, with a hypothet-

ical spiral of a given pattern speed Ωp = 40 km s−1 kpc−1 marked as a horizontal

line. As this spiral’s pattern speed is above the maximum frequency of the ILR, it

can propagate through to the centre; slower pattern speeds would mean the spiral

reflects off or is absorbed by the ILR. As the density in the galaxy’s centre increases,

the circular velocity also increases, allowing a disc to build an ILR and cutting off

the feedback loop of swing amplification (Sellwood & Wilkinson 1993).

Therefore the origin of bars seen in galaxies is that spirals that propagate through

the centre straighten between the centre and the approximate location of the corota-

tion resonance. This radial extent in which we expect to find bars is also measured

observationally (Sellwood 1981; Combes & Sanders 1981). An example of a strongly

barred galaxy, NGC 1300, is presented in Fig. 1.6. From their straight morphology,

one can assume that the pattern speed along bars is constant as they do not wind.

More than half of the galaxies in the local Universe host a stellar bar (Eskridge

et al. 2000; Menendez-Delmestre et al. 2007; Barazza et al. 2008; Aguerri et al.

2009; Gadotti 2009) including the Milky Way, which had been hypothesised as early

as the 1950s (Johnson 1957; de Vaucouleurs 1959).

5The Outer Lindblad resonance (OLR) is defined where Ωp = Ω+ κ/2).
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Figure 1.6: NGC 1300, an SB(rs)bc barred spiral galaxy. Credit: NASA, ESA, and

The Hubble Heritage Team (STScI/AURA) Acknowledgment: P. Knezek (WIYN).

1.5.1 Orbits in Bars

Bars being linear structures that rotate almost like a rigid body, we can approximate

their gravitational potential (Φ) as a uniformly rotating non-axisymmetric density

distribution. If we put ourselves in the frame rotating with the bar, we can define

an effective potential as:

Φeff = Φ − Ω2
bR

2

2
, (1.10)

where Ωb is the pattern speed of the bar (Binney & Tremaine 2008). In a rotating

non-axisymmetric potential, specific energy (E) and angular momentum (J) are

not conserved; however, Jacobi’s integral is conserved and is typically expressed as

EJ = E − ΩpJ . Following the conventions of the effective potential, EJ can be

expressed as:

EJ =
|v|2
2

+ Φeff , (1.11)

where v is the velocity of a star.

There are five points within the effective bar potential where ∇Φeff = 0, called

Lagrange points (L1 → L5, Binney & Tremaine 2008). We highlight their position
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Figure 1.7: An example of a 2D bar potential presented in Jung & Zotos (2016) with

the bar major axis aligned horizontally along the x-axis. The grey lines follow the

contours of the effective potential. The five Lagrange points (L1 → L5) are labelled

on the potential. Image is adapted from Jung & Zotos (2016).
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within a simple bar potential in Fig. 1.7. Lagrange points L1, L2 and L3 lie along

the major axis of the bar with L3 being at the centre of the potential (the minimum

of Φeff). L1 and L2 are saddle points. The L4 and L5 Lagrange points are coincident

with the maximum of Φeff . It is possible for a star to orbit on a circular path in the

rest frame at the L1, L2, L4 and L5 Lagrange points whilst appearing to be stationary

in the rotating frame. Orbits at these points with the same rotational velocity are

said to corotate with the potential. We can discern the regions in which stars with

given Jacobi energies can occupy from Eqn. 1.11. Regions where Φeff > EJ are

forbidden to the star of that energy (Binney & Tremaine 2008).

1.5.1.1 Regular Bar Orbits

We can consider closed orbits within a rotating frame as described in Section 1.4.1

in exploring orbits in a bar. Closed orbits retrace their path through the potential

and are periodic (Sellwood & Wilkinson 1993; Binney & Tremaine 2008). However,

numerical analysis of stars in bar potentials commonly shows that many orbits are

not precisely periodic but liberating close to the path of a closed orbit. Such nearby

orbits are referred to as regular or quasi-periodic (Valluri et al. 2016; Abbott et al.

2017). Stars on quasi-periodic orbits tend to oscillate about a ‘parent’ periodic orbit

similar to a guiding radius. Therefore it is still helpful to explore the characteristics

of periodic orbits to understand those which follow their distributions closely.

We adopt the naming conventions of Contopoulos when discussing periodic orbit

families within the bar (e.g. Contopoulos & Papayannopoulos 1980; Contopoulos &

Grosbol 1989). While the number of named orbits is extensive (Wang et al. 2022),

we highlight only the primary families contributing to bar structure. Typical orbits

within the bar follow a 2:1 ratio of radial to azimuthal excursions and are known as

the xi family of orbits where i ∈ [1, 4].

The ‘main’ family, elongated parallel (with high eccentricity) to the bar major
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axis (the x-axis in Fig. 1.7), is the x1 family, the parent orbit supporting most

stars contributing to the bar (Contopoulos & Papayannopoulos 1980; Contopoulos

& Grosbol 1989; Athanassoula 1992; Skokos et al. 2002a,b). Non-periodic orbits that

occupy the same region of the bar but are not bound by the x1 orbit have higher

energies and explore more extensive regions of the potential (Shen & Sellwood 2004).

From their more rectangular paths in the rotating frame, they are commonly called

‘box’ orbits, though some librate close to x1 family orbits (‘boxlets’) (Valluri et al.

2016).

The x2 orbit is a stable orbit elongated perpendicular to the bar major axis,

though it is close to circular, occupying a region between the galaxy centre and the

ILR (Valluri et al. 2016). The existence of this family implies that for x2 orbits to be

stable, the disc’s central density and bar pattern speed should be such that an ILR

is present. The x3 family, which is similar to yet more eccentric than the x2 family,

are always unstable and rarely found in the numerical modelling of bars (Valluri

et al. 2016; Abbott et al. 2017). The retrograde x4 family are highly circular with a

slight elongation perpendicular to the major axis.

Within the bar potential, orbits around the L4 and L5 Lagrange points can be

stable. Orbits close to the Lagrange point are energetic short-period orbits (SPO)

which orbit like a radial epicycle where the Lagrange point is the guiding centre

(Valluri et al. 2016). Long-period orbits (LPO) make larger excursions from L4 and

L5 towards L1 and L2 but do not cross the major axis (Valluri et al. 2016). While

SPOs and LPOs do not directly support the bar, they play other roles in shaping

the central regions of discs, such as in the formation of lenses and rings (Kormendy

& Kennicutt 2004).
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Figure 1.8: M104 (the Sombrero galaxy), an SA spiral galaxy. Credit: NASA, ESA,

and The Hubble Heritage Team (STScI/AURA).

1.6 Bulges

Thus far, we have focused primarily on the in-plane motions of stars. However,

while most of the energy and motions of stars in a disc are within the plane, we

cannot ignore a disc galaxy’s vertical structure and kinematics. Observations of

edge-on galaxies have shown that the bulges of disc galaxies have diverse morpholo-

gies (Gadotti & Sánchez-Janssen 2012). A common morphology observed in many

disc galaxies is a ‘smooth’ spheroidal bulge often named in the literature as a ‘clas-

sical’ bulge, with a prominent example being the Sombrero galaxy M104 seen with

the Hubble Space Telescope (HST) in Fig. 1.8.

These spheroidal bulges have smooth isophotes sharing many characteristics of

elliptical galaxies. Their brightness profiles follow Sérsic (1968) functions defined

as:

log I(r) ∝ r−1/n , (1.12)

where I is the light intensity, r is the radius from the centre, and n is the Sersic

index which, for spheroidal bulges like M104, have values of n ≥ 2. The kinematics

of these bulges suggest that although they have some rotation, they have large
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velocity dispersions meaning they are more pressure supported (Cappellari et al.

2007). From our understanding of disc formation through hierarchical assembly,

this component of a galaxy would likely be formed by early merger activity (Gadotti

2009). Their similarity to elliptical galaxies, which undergo major mergers, supports

this conclusion.

1.6.1 Box/Peanut Bulges

The spheroidal-shaped bulge was thought to be the primary morphology for the

central regions of disc galaxies. As the quality of galaxy observations improved, other

distinct structures with different kinematic properties became clear (Kormendy &

Illingworth 1982; Davies & Illingworth 1983).

The second common bulge morphology is aptly named the box/peanut or ‘X’-

shaped bulge (commonly shortened to BP or BPX). The earliest reference in the

literature to such a bulge was in Burbidge & Burbidge (1959) with an image of

NGC 128 as one of “Three unusual S0 galaxies.” In Fig. 1.9, we present their

photographic plate alongside more modern images from the Sloan Digital Sky Survey

(SDSS) presented in Ciambur & Graham (2016). In this galaxy, the bulge is not

protruding out of the centre and is not spherical, resembling a peanut- or ‘X’-shape

instead.

The kinematics of box/peanut bulges display cylindrical rotation similar to that

of discs and bars, contrary to the pressure-supported elliptical galaxies which spheri-

cal (‘classical’) bulges resemble (Kormendy 1993; Kuijken & Merrifield 1995; Bureau

& Freeman 1999). The link between stellar bars and box/peanut bulges was theo-

rised in observations (e.g., Kormendy & Illingworth 1982) and later reinforced with

numerical modelling (Combes et al. 1990; Sellwood 1993; Athanassoula & Misirio-

tis 2002). Box/peanut bulges are now thought to be produced through the secular

evolution of bars.
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Figure 1.9: Left: Photographic plate from the 82-inch Otto Struve reflector at

McDonald Observatory (University of Texas) presented in Burbidge & Burbidge

(1959) of NGC 128 as one of “Three unusual S0 galaxies”. Describing its bulge

shape as “..unusual, as its maximum extent perpendicular to the major axis occurs

not at the centre but at two points symmetrically spaced on either side of the centre.

At the widest parts of the nuclear region there are four bulges of about equal size,

coming out of the nucleus itself like a cross”. This publication is the first noted

description of a box/peanut or ‘X’-shaped bulge. Middle: A combined igr -image

of NGC 128 from the Sloan Digital Sky Survey (SDSS DR14) clearly shows that

this galaxy is a box/peanut galaxy and has some indication of a double box/peanut

structure. Right: SDSS r- band image of NGC 128 with iso-contours of luminosity,

adapted from Ciambur & Graham (2016) where the authors concluded that NGC 128

likely has a second nested box/peanut structure in its inner regions slightly offset

from outer formed from a second bar.
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Early numerical models of barred galaxies showed that strong box/peanut fea-

tures can appear as an X-shape when the bar is viewed edge-on, with its major axis

perpendicular to the line of sight (LOS, Athanassoula & Misiriotis 2002; Athanas-

soula 2005). Observing the bar end-on (the major axis parallel to the LOS), box/-

peanut bulges can appear weakly boxy or round, potentially being mistaken as a

‘classical’ bulge.

The key difference between classical and box/peanut bulges is that the former

form early in a galaxy’s evolution through early accretion and merger events; the

latter form secularly (through internal dynamics) from the bar (see the reviews by

Kormendy & Kennicutt 2004; Fisher & Drory 2016).

Observations of galaxies with their discs inclined to the LOS (not perfectly edge-

on or face-on) offer insight into both their in-plane and vertical morphologies. For

example, Erwin & Debattista (2017) showed that bars in inclined galaxies with box/-

peanut bulges exhibit a ‘box-spur’ morphology from the projections of their bar and

bulge to the LOS light distribution, further demonstrating their connection. In the

local Universe, we find that the frequency of box/peanut bulges in barred galaxies

depends on galactic parameters such as mass (Erwin & Debattista 2017). Box/-

peanut bulges appear in up to 80% of local high mass (log(M⋆/M⊙) ≳ 10.4) barred

galaxies, a fraction which declines rapidly at lower masses (Erwin & Debattista

2017).

1.6.1.1 Buckling Instabillity

The large radial motions along a bar’s major axis (such as those produced by the

x1 family of orbits) create large radial velocity dispersions. However, the disc and

bar being initially thin compared to their radius means the vertical dispersion is

low. Therefore the bar creates a largely anisotropic system and makes it susceptible

to the buckling or ‘fire hose’ instability seen in other physical systems (e.g., Collier
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2020). The name comes from the analogy of a hose pipe at high pressure spraying

water in one direction. If the end of the hose is untethered, small angles of flow

direction are amplified, and the hose begins to bend and shake.

Numerical simulations have shown that buckling is common in bars (e.g. Raha

et al. 1991; Debattista et al. 2005; Martinez-Valpuesta et al. 2006; Collier 2020), with

cases of strong buckling being distinctive as their initial bending is not symmetric

about the plane when viewed side-on. We present an example of strong buckling

from the IllustrisTNG project (Pillepich et al. 2018b; Springel et al. 2018; Nelson

et al. 2018; Naiman et al. 2018; Marinacci et al. 2018) in Fig. 1.10. In this galaxy,

asymmetric features of the bar about the plane appear between redshift 0.17 ≤ z ≤
0.2 as the bar buckles. Sometime after the buckling event, the remaining distribution

appears more symmetric about the plane in a box/peanut morphology. Buckling

is typically a rapid, violent process experienced by strong bars (Raha et al. 1991;

Merritt & Sellwood 1994; Debattista et al. 2006; Martinez-Valpuesta et al. 2006;

Collier 2020;  Lokas 2020). As buckling depends on anisotropy, thin discs and bars

with low vertical velocity dispersion are more susceptible to buckling.

1.6.1.2 Resonant Trapping

The second mode of bar thickening is via the trapping of stellar orbits on vertical

resonances, which occurs over longer timescales than buckling (Combes & Sanders

1981; Combes et al. 1990; Pfenniger & Friedli 1991; Skokos et al. 2002a; Quillen

2002; Quillen et al. 2014; Debattista et al. 2006).

A bar rotating with a pattern speed of Ωb creates a vertical perturbation in the

disc. Stars respond in phase with the vertical perturbing force of the bar when they

have vertical and circular frequencies which satisfy:

ν ≥ 2(Ω − Ωb) , (1.13)

where the right-hand term can also be expressed as 2Ωx, the oscillation frequency
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Figure 1.10: The edge-on projection of the bar region from a buckling barred galaxy

(Subhalo ID 574037) from the TNG50 simulation (Nelson et al. 2019a; Pillepich

et al. 2019). In the left-hand column, we present the stellar surface density, and the

right is an unsharp mask of the same distribution. Time moves towards the current

epoch as we move down through each row. The corresponding redshift of each

snapshot is shown in the top left-hand corner of each image. Note the asymmetric

features about the plane present between redshift 0.17 ≤ z ≤ 0.2 as a characteristic

of the buckling event.
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along the bar’s major axis in the rotating bar frame. The resonance where ν = 2Ωx

is referred to as the vertical-ILR (vILR). Bars can slow down by transferring angular

momentum to the galaxy’s dark matter halo (Weinberg 1985; Debattista & Sellwood

1998, 2000; Athanassoula 2002; O’Neill & Dubinski 2003). The slowing of the bar

causes the location of corotation and the vILR to move outwards. With time, this

‘sweeping’ of the vILR would heat more populations at greater radii.

A comparison of three mechanisms for bar thickening was presented by Sellwood

& Gerhard (2020). The first mechanism is the buckling instability, whereas the

second two rely solely on the 2:1 vertical resonance. Stars can be heated as they

pass over the vILR on short timescales (and remain heated), or the vILR can ‘trap’

stars at the resonance for extended periods (Quillen et al. 2014). The results of

Beraldo e Silva et al. (2023) found, using numerical analysis of bar orbits in self-

consistent simulations of barred galaxies, that stars rapidly pass the vILR whilst

developing a long-lasting box/peanut morphology.

Recent work by Li et al. (2023) has demonstrated the close connection between

the 2:1 vertical resonance and buckling in galaxies. They found stars being trapped

by the resonance are coincident with a break in the vertical symmetry of the bar in

their N -body simulation, i.e. the resonant excitation of stars triggers the buckling

instability.

1.7 Kinematic Fractionation

1.7.1 The Milky Way Bulge

Studying the stellar populations within the bulges of external galaxies is challenging

as we can only observe the integrated properties along the line of sight, rather than

individual stars though it can still be inform understanding of galaxy dynamics

(e.g., Gadotti et al. 2020). Observing the Milky Way allows us to study in detail
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the various components of a galaxy’s bulge (such as a bar) by resolving individual

stars. Though observing deep into the centre of our galaxy has its own challenges of

dust obscuration and crowded fields, the Milky Bulge provides unique insights into

the dynamics of galactic bulges.

A bar at the centre of the Milky Way was detected in early infrared studies from

the Cosmic Background Explorer (COBE) satellite (Blitz & Spergel 1991; Dwek et al.

1995; Binney et al. 1997; Fux 1997, 1999). Photometric studies of stellar populations

in the Milky Way bulge have found that it is primarily composed of stars older than

10 Gyr (Ortolani et al. 1995; Kuijken & Rich 2002; Zoccali et al. 2003; Ferreras et al.

2003; Sahu et al. 2006; Clarkson et al. 2008, 2011; Brown et al. 2010; Valenti et al.

2013; Calamida et al. 2014) with a small fraction of intermediate or young ages

(e.g., Bensby et al. 2011, 2013). A population of old, metal-poor RR Lyrae stars

which trace an axisymmetric (or potentially weakly barred) distribution has been

measured, suggesting the Milky Way has an accreted bulge component (Dékány

et al. 2013; Du et al. 2020b).

In addition, many studies have traced the Milky Way bar and bulge using red

clump (RC) giant stars as standard candles (e.g., Stanek et al. 1994, 1997; Nikolaev

& Weinberg 1997; Babusiaux & Gilmore 2005; Benjamin et al. 2005; Nishiyama

et al. 2005; Rattenbury et al. 2007; Cao et al. 2013; Wegg & Gerhard 2013; Wegg

et al. 2015; Clarke et al. 2019; Sanders et al. 2019). The RC spatial distribution

within the bulge exhibits a bimodal distribution as a function of apparent magnitude

(heliocentric distance) when observing latitudes away from the plane due to their

box/peanut (X-shaped) morphology (McWilliam & Zoccali 2010; Nataf et al. 2010;

Saito et al. 2011; Wegg & Gerhard 2013; Gonzalez et al. 2015). Kinematic data

from spectroscopic surveys such as Bulge Radial Velocity Assay (BRAVA, Rich

et al. 2007), Abundances and Radial velocity Galactic Origins Survey (ARGOS,

Freeman et al. 2013) and Apache Point Observatory Galactic Evolution Experiment
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(APOGEE, Zasowski et al. 2013), show that the Milky Way bulge is cylindrically

rotating (Howard et al. 2008; Ness et al. 2013b, 2016a), which we expect for a bar

and box/peanut bulge.

A vertical metallicity gradient close to the minor-axis (Galactic longitude, l ∼ 0)

has been measured in the Milky Way bulge (Zoccali et al. 2008; Gonzalez et al. 2011;

Johnson et al. 2011, 2013). Metal-poor (old) populations are centrally concentrated

with an axisymmetric spatial distribution. In contrast, the metal-rich population

has a boxy distribution, consistent with an edge-on bar, and does not extend to

large latitude (e.g., Zoccali et al. 2017). The superposition of these populations

produces a vertical metallicity gradient (see Fragkoudi et al. 2017c, and references

therein). The box/peanut bulge also appears differently for chemically separated

stellar populations. The bimodal density distribution appears strongly in more

metal-rich populations than in metal-poor, where the density appears only weakly

bimodal or at most a single density peak (Ness et al. 2012; Uttenthaler et al. 2012;

Rojas-Arriagada et al. 2014; Lim et al. 2021).

Kinematic differences between stellar populations were suggested by Babusiaux

et al. (2010), who found that metal-poor stars have velocities consistent with a

spheroidal distribution. Metal-rich stars have motions typically associated with

a bar morphology and high-velocity streaming motions. The velocity dispersions

of both metal-rich and metal-poor populations decrease with increasing Galactic

latitude. Metal-poor stars have larger velocity dispersions than metal-rich stars

at low latitudes; however, the opposite is true at large latitudes (Babusiaux 2016;

Zoccali et al. 2017).

The chemodynamical observations of the Milky Way bulge have also been re-

produced in models (e.g., Di Matteo 2016; Fragkoudi et al. 2018). These results

have been interpreted to indicate that the Milky Way has a compound bulge, i.e.
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a superposition of both a secularly built box/peanut bulge and an accreted ‘classi-

cal’ bulge component (Babusiaux et al. 2010; Hill et al. 2011; Zoccali et al. 2014)

which can explain some observational trends such as the vertical metalicity gradient

(Grieco et al. 2012). Compound bulges are also observed in external galaxies (e.g.,

Méndez-Abreu et al. 2014; Erwin et al. 2015).

1.7.2 Bar Driven Evolution

Disentangling the dynamical history of a bulge like the Milky Way’s is challenging

from a theoretical perspective. As we showed above, the bar is a strong perturbing

force within a galaxy’s central regions. Box/peanut bulges are formed through

secular processes in which stellar populations respond in phase with a bar’s forcing.

Debattista et al. (2017) explored how populations with varying initial velocity

dispersion respond to the bar (see also Athanassoula et al. 2017; Fragkoudi et al.

2017b). They found that stellar populations with the same spatial distribution but

different initial in-plane kinematics separate due to the presence of the bar, referring

to this behaviour as kinematic fractionation.

To demonstrate kinematic fractionation, Debattista et al. (2017) used an N -body

simulation comprised of five superposed stellar discs with different initial kinematics.

Each stellar disc was co-spatial with the same radial and vertical density profiles but

different in-plane kinematics, where the radial velocity dispersions are a function of

radius:

σ2
R(R) = σ2

R,0 exp(−R/Rσ) , (1.14)

where Rσ is a scaling factor and σR,0 is the central velocity dispersion. Because the

vertical density profile was the same for each disc, their vertical velocity dispersion,

σz, was also the same. The authors referred to these discs as D1→D5, with D1

being the ’hottest’ kinematically (largest σR,0).

From these five discs, Debattista et al. (2017) produced a compound disc with an
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equal combination of the original five to approximate a galaxy with a uniform star

formation rate through its evolution, denoted as model CU (compounded uniformly,

referenced earlier in this work as 741CU). The compound disc was evolved for 5 Gyr,

forming a bar and a box/peanut bulge.

Considering each population during their co-evolution in the compounded disc,

the coolest (D5) grows a bar thus, its radial velocity dispersion rapidly increases. As

a result, the bar strength increases until it buckles, rapidly increasing the vertical

height and vertical velocity dispersion and simultaneously decreasing the radial ve-

locity dispersion and bar strength. Disc D1 (the hottest disc) shows the most rapid

increase in average vertical height as the bar forms but forms the weakest bar. All

five populations increase their height and vertical velocity dispersion in exchange for

bar strength and radial velocity dispersion; however, the absolute change in these

quantities is larger for the coolest populations. We present the final distributions of

each population in Fig. 1.11.

Bar strength is seen to anti-correlate with initial radial velocity dispersion. These

results showed that the evolution of a population is heavily dependent on the initial

radial velocity dispersion. For example, suppose a disc comprises both kinemati-

cally ’hot’ and ’cold’ populations. The hot component will thicken more rapidly to

greater heights forming only a weak bar. Conversely, the cold component forms a

stronger bar and increases radial velocity dispersion. As a result, the strong bar

leads to the later thickening of cooler populations into box/peanut morphologies.

This work showed that the initial radial velocities of stellar populations determine

the populations’ final bulge structure.

Debattista et al. (2017) also showed kinematic fractionation in a high-resolution

star-forming simulation, which forms a barred spiral galaxy entirely from gas (de-

scribed in detail in Chapter 3). This simulation forms a disc galaxy from a hot gas

corona, eventually forming a strong bar, a nuclear disc and a box/peanut-shaped
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Figure 1.11: The face-on (left column) and edge-on (middle column) stellar surface

density distributions of each individual population in model 741CU from Debattista

et al. (2017) (their figure 4). The right column shows unsharp masks of the edge-on

distributions. From top to bottom, each row shows the initially radially hot popu-

lation, D1, to the coolest population, D5. As the initial radial velocity dispersion

decreases, the thinner the disc, the stronger the bar and the more pronounced the

box/peanut bulge morphology observed.
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bulge (Cole et al. 2014; Ness et al. 2014; Debattista et al. 2015, 2017). The model

did not undergo strong buckling; however, its box/peanut bulge formed through a

combination of weak buckling and resonant trapping. Stars in the model continu-

ously form in the cold gas in the disc, producing a correlation between stellar age

and birth radial velocity dispersion. Young stars are born with cooler kinematics

than the older populations, which have heated.

From the same star-forming model after 10 Gyr of evolution, we split the popula-

tions into five equal quantiles of stellar age (Q1→Q5) and present their distributions

in Fig. 1.12. Following the convention of Debattista et al. (2017), Q1 represents

the oldest (hottest) population in the model, whereas Q5 represents the youngest

(coolest). Qualitatively the trends between the N -body and star-forming models

agree with old populations forming round bulges and weak bars due to being kine-

matically hot populations. Kinematically cooler and young populations form strong

bars and box/peanut morphologies. The most striking difference between the N -

body model and the star-forming model is that the latter forms a nuclear disc where

young stars (bottom row of Fig. 1.12) can form from gas trapped on x2 orbits within

the bar (Cole et al. 2014).

Debattista et al. (2017) also showed using the star-forming model, which includes

prescriptions for chemical enrichment (see Chapter 2), that there are relationships

between initial radial velocity dispersion with age, metallicity and α-abundance

before the bar formed. Therefore populations characterised by their chemical abun-

dance or age as presented in Fig. 1.12 would exhibit different morphologies and

would thus be kinematically fractionated.

The differences in final morphology between populations of varying initial radial

velocity dispersion embed gradients of correlated stellar parameters within the cen-

tral regions of disc galaxies, as seen in maps of the galaxy centre (for Milky Way
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Figure 1.12: The face-on (left column) and edge-on (middle column) stellar surface

density distributions of each age quantile in the star-forming model 708main from

Debattista et al. (2017) after 10 Gyr of evolution. The right column shows unsharp

masks of the edge-on distributions. From top to bottom, each row shows the oldest

population, Q1, to the youngest, Q5.
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predictions, see figure 22-25 of Debattista et al. 2017). The work presented in De-

battista et al. (2017) showed that bars are drivers of secular evolution within disc

galaxies and are responsible for large-scale redistributions of matter within a galaxy.

Complementary to velocity dispersions, angle-action variables provide insights

into the dynamics of gravitational potentials. However, they are typically only

defined for axisymmetric (integrable) systems (Binney & Tremaine 2008). In the

context of Hamiltonian mechanics, an action variable (J) represents a constant of

motion quantifying the magnitude of a periodic motion, while the angle variable

(θ) represents the phase of the motion. Orbits with fixed action-angle variables

are regular orbits. Angular momentum and actions are conserved in integrable

potentials, while angle variables increase linearly with time.

Debattista et al. (2020) calculated the initial actions of stars in an N -body

simulation of a disc galaxy and mapped the distributions of initial actions in the

morphology of the galaxy after 5 Gyr of evolution. Despite the potential of the

galaxy substantially changing as it forms spirals, bars and a box/peanut bulge, the

initial actions of stars reliably predicted where they ended up in the galaxy by the

final timestep.

For example, Debattista et al. (2020) presented the vertical profiles of average

initial radial (⟨JR,0⟩) and vertical (⟨Jz,0⟩) actions within the central region of their

model for the first and final timestep, which we present here as Fig. 1.13. In the

initial conditions, ⟨Jz,0⟩ increases with vertical height out of the plane, whereas the

profile of ⟨JR,0⟩ was primarily flat. By the final timestep, these relationships had

reversed. By the final timestep, the ⟨Jz,0⟩ profile had flattened, and ⟨JR,0⟩ increased

linearly with absolute height. These results show that stars with the largest radial

actions rise to the largest heights in the presence of a bar, confirming the results of

Debattista et al. (2017).

Considering the chemical distribution of the Milky Way bulge, Debattista et al.
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Figure 1.13: The change in the vertical profiles of ⟨JR,0⟩ (top row) and ⟨Jz,0⟩ (second

row) in model 2 of Debattista et al. (2020), an extract of their figure 9. The initial

distributions at t = 0 are shown as (red) filled circles while the final distribution

(t = 5) is shown as (black) filled squares (computed within Rd = 2.4 kpc).
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(2020) argued that, in a system in which the in-plane random motions are a function

of age by the time the bar forms, radial metallicity gradients would become vertical

gradients seen in the bulge. The main driver of this mechanism is ⟨JR,0⟩; however,

they demonstrate that this one component alone can not explain all trends observed

in the Milky Way. All three action coordinates play a role in shaping the final

distribution of stellar populations in the central structures of the galaxy (see also

work by Di Matteo et al. 2015, 2019b; Di Matteo 2016; Fragkoudi et al. 2018).

1.8 Thesis Context

In simulations, stellar bars have been shown to separate stellar populations secularly

(kinematic fractionation) within the central regions of disc galaxies (Debattista et al.

2017, 2019; Fragkoudi et al. 2018). This separation implies that different stellar

populations with varying ages (and therefore chemical abundances) would exhibit

different morphologies and kinematics. Distinct kinematics between populations has

been shown observationally in the Milky Way (e.g., Zoccali et al. 2017; Clarkson

et al. 2018; Queiroz et al. 2021) and using simulations we can offer a theoretical

interpretation of such observations and make predictions for future studies.

Constraining the bar in different populations within the Milky Way has led to

contention on the age of the bar and how well these populations trace its structure.

Previous studies have attempted to measure the bar length, strength, and orientation

within bulge stellar populations, such as RR-Lyrae and red clump stars with different

metallicities (Dwek et al. 1995; Binney et al. 1997; Stanek et al. 1997; Fux 1999;

Bissantz & Gerhard 2002; Rattenbury et al. 2007; Cao et al. 2013; Wegg & Gerhard

2013; Wegg et al. 2015; Simion et al. 2017; Dékány et al. 2019; Du et al. 2020b).

One challenge of studying galactic evolution observationally is the non-trivial

relationship between stellar age and chemical abundance. However, variable stars

such as Miras have been shown to exhibit period-age relationships (Merrill 1923;
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Feast 1963; Feast & Whitelock 2000). In this work, we study the utility of using Mira

variables as age indicators for studying galaxy dynamics in the Milky Way. Previous

studies have shown that Mira variables of different periods follow different structures

within the Galactic centre (Grady et al. 2020a). Upcoming all-sky surveys, such as

the Vera Rubin Observatory’s Legacy Survey of Space and Time and future data

releases from the Gaia satellite, open up opportunities for exploring large samples

of variable stars. We study the latest Gaia data release (Gaia DR3) to define and

characterise a sample of Mira variables in the catalogue.

The use of self-consistent, high-resolution and cosmological zoom simulations of

disc galaxies has been shown to realistically capture the internal evolution of stellar

bars (Kraljic et al. 2012; Scannapieco & Athanassoula 2012; Bonoli et al. 2016;

Debattista et al. 2017, 2019, 2020; Fragkoudi et al. 2018, 2020; Buck et al. 2018, 2019;

Di Matteo et al. 2019; Gargiulo et al. 2019; Walo-Mart́ın et al. 2022). Simulations

of isolated galaxies give us an unprecedented view of their internal dynamics at high

resolutions. Fully cosmological simulations are instrumental in exploring the global

properties of galaxy populations due to their large statistical samples. However, with

larger volume sizes comes a compromise on the resolution of a simulation. Large-

volume fully cosmological simulations are now reaching resolutions where they also

realistically capture the dynamics of barred galaxies in a large sample size (e.g., Du

et al. 2020a; Zhao et al. 2020; Rosas-Guevara et al. 2022).

We utilise the latest generation of simulations in this work to study the secular

evolutions of bars in a cosmological context. This allows us to compare the simula-

tion to observations of the local Universe and understand the Milky Way in context.

For example, ex situ populations are expected to be found within the Milky Way

bulge but may be indistinguishable from old in situ populations (e.g., Bonaca et al.

2017; El-Badry et al. 2018). Isolated simulations suggest that an ex situ population

represents a small fraction of the bulge mass (Shen et al. 2010; Debattista et al.
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2017). Using cosmological simulations, we can study the role ex situ populations

play in forming box/peanut bulges to help constrain their contribution to the Milky

Way.

We also use such simulations in this work to explore if the kinematics of stellar

populations in a barred galaxy, observed at the current epoch (z = 0), can help

constrain the evolutionary history of that galaxy. Using a statistically significant

sample of barred galaxies, we also explore if stellar populations retain the dynamical

memory of their bar formation epoch. In other words, is it possible to determine

the epoch of bar formation only by observing the stellar populations at the current

epoch?
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Numerical Methods

In the 17th century, Newton’s Philosophiae Naturalis Principia Mathematica firmly

established the laws of gravitation between two objects, forming the foundation of

classical mechanics. It also elegantly explains Kepler’s laws of planetary motion,

where two bodies orbit about their common centre of mass. However, a three-

body system of point masses moving under mutual gravitation, such as the Sun,

Earth and Moon, is not analytically solvable and became known as the ‘three-body

problem’. Solutions only appear under specific assumptions, such as one of the

three bodies having negligible mass compared to the other two bodies (such as a

spacecraft moving between the Sun and the Earth). Determining motions in N > 2

systems without these assumptions relies on numerical integration. While not a

perfect solution, numerical integration can achieve accurate enough solutions to

many astrophysical problems.

The first direct gravitational simulations were carried out by Erik Holmberg

(Holmberg 1941) at the Lund Observatory. He presented a method for determining

the forces between stars in encountering galaxies using the mathematical equivalence

between the inverse square laws of light intensity and gravitational interaction. The

stellar ‘particles’ of each ‘nebula’ (galaxy) were represented by 37 light bulbs at

the positions of the stars. The force of gravity was calculated by equating it to
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the measured fluxes of each star by a photocell. In remarkable resemblance to

modern simulations, Holmberg (1941) studied the tidal tails of and spiral arms

the galaxies developed during their encounter. von Hoerner (1960) ran the first

completely computational N -body simulation using a direct summation scheme of

N = 16 particles.

The earliest simulations investigated the dynamics of mass under gravity, study-

ing the assembly of massive clusters (White 1976), and the development of large-

scale structure (Aarseth et al. 1979; Efstathiou & Jones 1979). Simulations of ΛCDM

systems match predictions of the large-scale distribution of dark matter. Modern

simulations reach numbers of particles on the order of several trillion (∼ 1012, Potter

et al. 2017).

2.1 Gravitational Force Calculations

Many numerical methods exist for calculating gravitational forces in dynamical sys-

tems, and here we outline three approaches from this work. Vogelsberger et al.

(2020) presented a comprehensive and more complete review of numerical methods

for galaxy formation in cosmological simulations.

2.1.1 Direct Summation

To integrate the motions of particles in a system numerically, we must first numeri-

cally compute the forces acting on the particles. A simple method is to calculate the

gravitational force between particles using Newton’s law. The gravitational force on

a particle, α (with mass mα), in a system of N bodies can be calculated as the direct

summation of the forces from all other bodies considered in the system (β ∈ [2, N ],

α = 1) as:

Fα = mα

∑

β ̸=α

Gmβ
rβ − rα
|rβ − rα|3

, (2.1)
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where mβ is the mass of each body considered, rα and rβ are the position vectors of

the corresping bodies. Due to the equivalence of opposite forces between two bodies

(Fβα = −Fαβ), the number of total evaluations of Eqn. 2.1 requires 1
2
N(N − 1)

computations for all particles in the system and therefore scales as O(N2) where

O denotes the computational time complexity of the operation. Solving systems

directly is now commonly referred to as particle-particle (PP) schemes. For small

systems such as stellar clusters, this direct approach is not notably less efficient than

other algorithms and is sufficient for small problems.

2.1.2 Tree Codes

As the number of particles in simulations increased from tens of particles to higher or-

ders of magnitude, the O(N2) cost of direct summation made it unfeasible, even with

the improvements in computing technology. Considering the gravitational forces on

a particle, α, from two distant particles in similar directions and at similar distances

from α (β1 and β2, respectively), the distance between β1 and β2 is small compared

to their distance to α. Therefore, their combined force on α is similar to a point

mass equal to the combined mass of both particles (β1+2), located at their combined

centre of mass, i.e.:

Fα = Fαβ1 + Fαβ2 ≈ Fαβ1+2 . (2.2)

This assumption forms the basis of the tree algorithm. For example, for the dis-

tribution of particles in a simulation, one can define a cube which encompasses all

particles (the root). This root cube can then be subdivided into eight equal ‘children’

cubes (branches). Then each branch is subdivided iteratively until branches only

contain one particle, making them a ‘leaf’, forming an oct-tree. Therefore consider-

ing any branch with more than one leaf within it, we can approximate the contained

mass as the sum of the individual components acting at the centre of mass of the

branch. Once the oct-tree is constructed (an O(N lnN) process), it is relatively

51



CHAPTER 2

efficient to query this structure. Considering forces on a particle α, traversing the

oct-tree, we can define a condition on the ratio between the size of a branch (l) and

the distance between α and the branch centre of mass (D) as:

l/D < θ , (2.3)

where θ is a dimensionless parameter called the opening angle. If the condition of

Eqn. 2.3 is satisfied, all children of the branch are merged into a ‘pseudo-leaf’ and

treated as a single particle. If the condition is not satisfied, the children of the branch

are then considered iterating down the tree until the condition is again satisfied.

This algorithm allows for fewer direct summation force calculations, especially in

systems of large dynamic ranges and is adaptable to multiple system problems such

as merging galaxies. Tree algorithms were first pioneered by Appel (1985) and

Barnes & Hut (1986), with the latter being still a popular method implemented

in modern simulation codes. The tree scheme improves the computational time

complexity to O(N logN).

The introduction of these algorithmic improvements to numerical force calcu-

lation allowed for a drastic increase in the number of simulated particles. Model

741CU presented (with N ≈ 107) above was evolved using the tree code pkdgrav

(Stadel 2001)1.

2.1.3 Particle-Mesh (PM) Codes

For particle-mesh schemes, we build a regular mesh (grid) of Nc cubic cells in a

spatial box. The box is then filled with NP particles. Creating a mesh, simi-

lar to building a tree structure, has some computational overhead which scales as

O(Nc lnNc). An appropriate mesh would be large enough to encompass all particles

for the duration of the simulation and have sufficiently small cell sizes to capture

gradients sufficiently, such as a galaxy’s vertical density distribution.

1pkdgrav implements a kd-tree structure similar to the oct-tree.
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The true distribution of particle masses is assigned to the surrounding points

on the mesh using algorithms such as the ‘Cloud-In-Cell’ (CIC) method. Instead of

simply finding the nearest mesh point and adding a particle’s mass, the CIC method

assumes a particle has a volume the size of a cell and finds the nearest eight (in 3D

implementations) mesh points. It then assigns a weighted part of the total particle

mass from the particle’s volume fraction in each neighbouring cell.

With densities assigned for each point on the mesh, the PM scheme then solves

the discretised Poisson equation using a discrete Fourier transform to produce an

algebraic expression of the potential and, therefore, the force at each point on the

mesh. The acceleration of each particle can then be interpolated from the mesh grid

to the particle’s actual position. The position and velocities of all particles can then

be advanced using numerical integration.

The challenge of PM schemes is that the mesh resolution is fixed, and systems

with large dynamic scales would struggle to achieve high efficiency and high reso-

lution in dense regions concurrently. Therefore, in some implementations, adaptive

mesh approaches are used where a second higher-resolution mesh is defined in dense

regions to capture the dynamics better.

A common implementation is to use large-scale PM schemes, such as cosmological

volumes or galaxy clusters, and combine them with other gravity solvers, such as tree

codes, in dense regions. For example, tree-particle-mesh (TreePM) codes have been

successfully implemented in large-volume high-resolution cosmological simulations

such as IllustrisTNG (see Chapter 5) using the simulation code arepo (Springel

2010).

2.1.4 Force Softening

Stellar particles in galaxy and cosmological simulations typically have particle masses

several orders of magnitude greater than real stars, due to computational limitations.
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However, this can lead to unphysical interactions between massive particles during

close passages. If two particles approach closely, the denominator of Eqn. 2.1 ap-

proaches zero, and the force between them diverges to substantial values. To better

approximate the smooth potential of a real galaxy, it is common to add a ‘softening’

to the force calculation.

Because each particle represents a distribution of bodies, we can use the simple

approximation of the particle having the potential of a Plummer sphere with scale

length ϵ, referred to as a ‘softening length’. Therefore the softening kernel takes the

form:

S(r) = − 1√
r2 + ϵ2

, (2.4)

where r = |rβ − rα|. Thus for r ≫ ϵ, the solution tends back to Eqn. 2.1. However,

the force tends smoothly to a constant for r ≤ ϵ. The choice of a value for ϵ is

a trade-off between preventing unphysical interactions of particles and maintaining

numerical resolution.

2.2 Numerical Integration

The integration of particle motion in simulations relies on numerically integrating

differential equations of position and velocity of the form:

ai =
dvi

dt
=

d2xi

dt2
, (2.5)

where ai, vi and xi are a particle’s acceleration, velocity and position, respectively,

at a given time step i. In stellar systems such as galaxies, the acceleration depends

only on the mass distribution and can be calculated from the force using the methods

above.

A typical integration scheme called leapfrog integration updates positions (drifts)

and velocities (kicks) at staggered time intervals, ‘leapfrogging’ over each other. The

’kick-drift-kick’ form of the leapfrog integrator updates the positions and velocities
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from step i to i + 1 through a time step, ∆t, with the following algorithm:

vi+1/2 = vi +

(
ai ·

∆t

2

)
−Kick

xi+1 = xi +
(
vi+1/2 · ∆t

)
−Drift

vi+1 = vi+1/2 +

(
ai+1 ·

∆t

2

)
. −Kick

(2.6)

Leapfrog integrators are used in many of the numerical methods outlined above.

2.3 (Magneto)-Hydrodynamics

The N -body gravity solvers above describe well the motions of dark matter and

stars in the Universe. However, while dark matter and dark energy are the dominant

components, we observe only the visible components, which are made up of baryonic

matter. This baryonic matter was originally in the form of gas until the first stars

were born.

On relatively small scales, baryonic matter not only follows motions due to grav-

ity but must also satisfy hydrodynamical conditions. Therefore, more physics is

required to capture their contributions to systems such as galaxies accurately. Sev-

eral hydrodynamical schemes attempt to solve such physical processes in simulations

numerically. For example, gas in simulations is typically described as inviscid ideal

gases following the Eulerian equations. We outline two common schemes here.

2.3.1 Smooth Particle Hydrodynamics (SPH)

The first approach is a mesh-free Lagrangian method introduced by Gingold &

Monaghan (1977) and Lucy (1977) where the continuous gas distribution is traced

with particles of a given mass. The physical parameters of any particle are computed

over a kernel function by summing the relevant properties of Nsmooth particles that

lie within 2h (where h is the ‘smoothing length’); thus, changing Nsmooth allows
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for the resolution to be adjusted. In systems such as galaxies, we are interested in

both the gravity and hydrodynamics of matter within them; thus, the particle-based

nature of smooth particle hydrodynamics (SPH) allowed for easy integration into

gravity force solvers mentioned above.

Because the hydrodynamical computations are calculated over nearest neigh-

bours, it works well in systems with large-density contrasts. SPH schemes have

been developed and applied to large cosmological simulations such as Romulus25

(Tremmel et al. 2017) run using the Tree+SPH code ChaNGa (Menon et al. 2015).

2.3.2 Moving Mesh Finite Volume (MMFV)

Hydrodynamical systems can be numerically integrated using a mesh-based ap-

proach. Some of the most common approaches include finite volume, finite dif-

ference and finite element methods. However, the large dynamic range needed in

galaxy and cosmological simulations typically requires adaptive meshes, leading to

the development adaptive-mesh-refinement schemes. Nevertheless, this also leads to

another problem that mesh codes face. In fixed mesh schemes, computational time

is spent in regions of very low density; therefore, allowing the mesh to move with

high-density regions also can make the methods more efficient.

Moving meshes can also be deformed from their Cartesian structure to allow for

the change in particle density (e.g., Gnedin 1995). Modern moving mesh schemes

have used unstructured meshes, such as a mesh generated from the Voronoi tessel-

lation of a set of discrete points (Springel 2010). This approach allows the mesh to

deform without twisting, thereby continuously adjusting its resolution to the particle

density.

The Voronoi cells of the mesh track conserved quantities of the hydrodynamical

fluid such as mass, momentum and energy. In cases where the simulation integrates

magnetic fields (i.e. magneto-hydrodynamics) the average field strength can also
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be calculated within the Voronoi cells. Moving mesh schemes can also operate in

conjunction with gravity solvers.

The magneto-hydrodynamics code Arepo (Springel 2010) implemented a moving-

mesh finite-volume approach with a tree+PM gravity solver and was used to produce

the large-scale and relatively high-resolution cosmological simulations of the Illus-

trisTNG project (Pillepich et al. 2018b; Springel et al. 2018; Nelson et al. 2018;

Naiman et al. 2018; Marinacci et al. 2018).

2.4 Sub-Grid Physics

Simulations typically do not resolve individual stars or gas clouds. Therefore they

do not resolve physical processes which occur in individual stars, such as their birth,

evolution, and eventual death. To compensate, we define sub-resolution (sub-grid)

implementations to approximate astrophysical processes.

Gas in different phases, such as cold and dense, warm and diffuse, and ionised

states dissipates its internal energy through cooling processes such as collisional exci-

tation and ionisation, inverse Compton, recombination, free-free emission and metal

line cooling. These processes are typically expressed as analytical approximations.

Stars form out of cold and dense gas, represented in simulations as gas parti-

cles. Therefore gas particles transform a portion of their mass into collisionless star

particles (star-formation), representing a single stellar population (SSP) described

by an adopted initial stellar mass function and the chemical abundance of the gas

particle. The fraction of the gas particle mass converted into a stellar particle, Mf ,

is a tunable parameter that can control the star formation rate. Criteria for star

formation commonly apply limits to the density and temperature of the gas particle

(usually restricting gas to the molecular phase), which also has to be part of a con-

verging flow (i.e. ∇ · v < 0, Stinson et al. 2006). A probabilistic sampling scheme

converts eligible gas into stars, making most star-forming simulations stochastic in
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nature. The probability, p, of forming a stellar particle in a time step, ∆t, can be

formulated as:

p = Mf (1 − e−c∗∆t/tdyn) (2.7)

where c∗ is a constant factor as a parameter for ‘star-forming efficiency’, and tdyn is

the dynamical time (Stinson et al. 2006).

Stellar particles in simulations are typically not removed once formed. How-

ever, as explored in Section 1.3, stellar evolutionary processes such as stellar winds

and supernovae return mass, energy and heavy elements to the gaseous interstel-

lar medium. This ‘feedback’ of energy heats and redistributes the gas, regulating

star formation. The stellar feedback is generally assigned from tabulated mass and

metal yields derived from stellar evolution models. Typically supernovae are short-

lived processes and are not captured correctly within the cadence of galaxy simu-

lations. Therefore prescriptions for feedback are implemented at the sub-grid level

where surrounding gas is prevented from cooling for a period of time or the gas is

heated probabilistically. Supermassive black hole feedback also injects energy into

the galactic environment and, combined with stellar feedback, can drive galactic

scale outflows.
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Bulge Proper Motion Rotation

Curves

The following chapter is a paper published in the Monthly Notices of the Royal As-

tronomical Society as Gough-Kelly et al., 2022, MNRAS, 509, 4829-4848. entitled:

Predicted Trends in Milky Way Bulge Proper Motion Rota-

tion Curves: future Prospects for HST and LSST

presented by the following authors:

Steven Gough-Kelly1, Victor P. Debattista1, William I. Clarkson2, Oscar A. Gonzalez3,

Stuart R. Anderson1, Mario Gennaro4, Annalisa Calamida4, Kailash C. Sahu4

1Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE, UK

2Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dear-

born, MI 48128, USA

3UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK

4Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
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Abstract

We use an N -body+smoothed particle hydrodynamics simulation of an isolated

barred galaxy to study the age dependence of bulge longitudinal proper motion (µl)

rotation curves. We show that close to the minor axis (|l| ∼ 0◦) the relatively young

stars rotate more rapidly than the old stars, as found by Hubble Space Telescope

in the Milky Way’s (MW’s) bulge. This behaviour would be expected also if the

MW were unbarred. At larger |l| a different behaviour emerges. Because younger

stars trace a strong bar, their galactocentric radial motions dominate their µl at

|l| ∼ 6◦, leading to a reversal in the sign of ⟨µl⟩. This results in a rotation curve

with forbidden velocities (negative ⟨µl⟩ at positive longitudes, and positive ⟨µl⟩ at

negative longitudes). The old stars, instead, trace a much weaker bar and thus their

kinematics are more axisymmetric, resulting in no forbidden velocities. We develop

metrics of the difference in the ⟨µl⟩ rotation curves of young and old stars, and

forbidden velocities. We use these to predict the locations where rotation curve re-

versals can be observed by HST and the Vera Rubin Telescope. Such measurements

would represent support for the amplitude of the bar being a continuous function

of age, as predicted by kinematic fractionation, in which the bar strength variations

are produced purely by differences in the random motions of stellar populations at

bar formation.

3.1 Introduction

More than half of the galaxies in the local Universe host a bar (Eskridge et al. 2000;

Menendez-Delmestre et al. 2007; Barazza et al. 2008; Aguerri et al. 2009; Gadotti

2009). Bars play an important role in driving the dynamics and structural properties

within the central regions of galaxies via secular processes, including the formation of

bulges (see the review by Kormendy 2013). Two bar-driven processes can vertically
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thicken a bar. The higher radial velocity dispersion due to orbital motion along the

bar’s major axis makes the bar susceptible to the buckling instability (Raha et al.

1991; Merritt & Sellwood 1994; Debattista et al. 2006; Martinez-Valpuesta et al.

2006; Collier 2020;  Lokas 2020). The buckling instability causes the bar to thicken

very rapidly. The second mode of vertical thickening is via the trapping of orbits

on vertical resonances (Combes & Sanders 1981; Combes et al. 1990; Pfenniger &

Friedli 1991; Quillen 2002; Skokos et al. 2002a; Debattista et al. 2006; Quillen et al.

2014). This symmetric form of vertical thickening has recently been demonstrated

explicitly in N -body simulations (Sellwood & Gerhard 2020). Unlike the buckling

instability, heating by orbit trapping is a slow process.

In both mechanisms, the resulting bulge morphology is boxy or peanut shaped.

Such bulges are commonly referred to as boxy/peanut- (B/P) or X-shaped bulges.

Stronger features can appear as an X-shape when the bar is viewed edge-on, with

its major axis perpendicular to the line of sight (LOS) (Athanassoula & Misiriotis

2002; Athanassoula 2005). B/P bulges appear in up to 80 per cent of local high mass

(i.e. those with characteristic stellar mass log (M⋆/M⊙) ≳ 10.4) barred galaxies, a

fraction that declines rapidly at lower masses (Erwin & Debattista 2017). This

characteristic mass appears to have remained unchanged since redshift z ∼ 1 (Kruk

et al. 2019).

The in situ separation of different populations within a B/P bulge as presented

in Debattista et al. (2017) demonstrates that co-spatial populations with varying ini-

tial radial velocity dispersions evolve separately in a growing bar. As a result, kine-

matically cooler populations form a strong bar and strongly peanut-shaped bulge,

whereas hotter populations form a weaker bar, and are more vertically heated. They

termed this process kinematic fractionation. Correlations between kinematics and
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stellar properties such as age and metallicity during bar formation then result in gra-

dients developing in the final morphology of the B/P bulge and bar (see also Fragk-

oudi et al. 2018; Debattista et al. 2019). Gonzalez et al. (2017) demonstrated that

the metallicity distribution of NGC 4710 is more peanut-shaped than the density,

as predicted by kinematic fractionation. An alternative mechanism for producing a

vertical metallicity gradient relies on the transition between a metal-rich thin disc

and a metal-poor thick disc (Bekki & Tsujimoto 2011; Di Matteo 2016). This led Di

Matteo et al. (2019) to argue that, in addition to the radial velocity dispersions, the

vertical dispersion also played a key role in the vertical thickening of populations.

However, Debattista et al. (2020) showed vertical thickening is a monotonic func-

tion of the initial radial action of a given stellar population. Consequently, a thick

disc can produce a vertical gradient largely because it has a higher radial velocity

dispersion.

The Milky Way (MW) is now understood to host a B/P bulge. Early evidence

for this shape was the bimodal density distribution of red clump (RC) stars in the

bulge (McWilliam & Zoccali 2010; Saito et al. 2011) along the line of sight (LOS)

to the Galactic Centre. This bimodality is produced by the two arms of an X-

shape. This structure can be seen directly in the infrared by observing towards

the Galactic Centre with Wide-field Infrared Survey Explorer (Ness & Lang 2016).

Various lines of evidence for kinematic fractionation having occurred in the MW

have been obtained. Ness et al. (2012) demonstrated that the double RC is only

traced by metal-rich stars, which was later confirmed with data from Gaia-ESO

DR1 and VISTA Variables in Via Lactea (VVV, Rojas-Arriagada et al. 2014) and

more recently by Lim et al. (2021) in the Blanco DECam Bulge Survey (BDBS).

The behaviour of the RC is the Solar-perspective equivalent of the strongly peanut-

shaped metallicity distributions found in external galaxies. Zoccali et al. (2017)

showed that the 3D density distributions of MW metal-rich and metal-poor stars
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are boxy and spheroidal, respectively. Catchpole et al. (2016) demonstrated an age

dependence of the bar strength by considering Mira variables of different periods,

showing that the younger Miras trace a stronger bar. Grady et al. (2019) also found

a similar dependence of bulge morphology on stellar age, with the youngest Miras

showing a strong bar with a peanut distribution, which is not seen in the oldest

stars. Grady et al. (2019) estimated that the bar formed ∼ 8 − 9 Gyr ago, roughly

5 Gyr after the MW formed.

Kinematic studies of the bulge have shown indications of bar streaming motions

at low latitudes in both LOS velocities and proper motions (Babusiaux et al. 2014).

The correlation between the two components, as measured by vertex deviation,

indicates the presence of elongated stellar orbits (Babusiaux et al. 2010; Hill et al.

2011; Vásquez et al. 2013). Measurements of the vertex deviation in Baade’s Window

show clear non-zero values in metal-rich stars, indicating their stronger bar structure

(Portail et al. 2017; Debattista et al. 2020). The dependence of bulge kinematics on

chemistry is also seen in the radial velocity dispersion. Metal-rich stars have lower

dispersion than metal-poor stars (Zoccali et al. 2017) except close to the plane

(b ≲ 1◦), which has been attributed to the central density peak observed by Valenti

et al. (2016). The radial velocity dispersion of metal-rich stars decreases steeply

away from the centre whereas the gradient in metal-poor stars is much shallower

(Kunder et al. 2012; Ness et al. 2013b). For a review of the chemodynamics of

the MW bulge, see Barbuy et al. (2018) and references therein. These kinematic

differences have been interpreted as further evidence of kinematic fractionation in

the bulge (Debattista et al. 2017, 2019), although the metal-poor stars require a

contribution from the stellar halo to explain the observations completely.

Clarkson et al. (2018, hereafter C18) studied proper motions in the well-observed

Sagittarius Window Eclipsing Extrasolar Planet Search (SWEEPS) field (see also

Sahu et al. 2006; Clarkson et al. 2008) imaged by the Hubble Space Telescope (HST).
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C18 used proper motions calculated by Calamida et al. (2014) from observations col-

lected over a 10-year baseline with the Advanced Camera for Surveys/Wide Field

Camera (ACS/WFC) onboard HST and derived photometric parallaxes for main-

sequence stars. They also used photometry from the Bulge Treasury Survey (BTS,

Brown et al. 2010) to tag photometric metallicities to the stars within the field, al-

lowing them to construct a metal-rich and a metal-poor population of main-sequence

stars. They found that the longitudinal proper motion rotation curves (i.e. ⟨µl⟩ as a

function of distance) were distinct for the two populations. Metal-rich stars exhib-

ited larger amplitude proper motions, with a steeper gradient through the zero point

in distance (approximately the Galactic Centre). C18 suggested that this could be

the signature of orbital differences as predicted by kinematic fractionation.

Proper motion rotation curves therefore have the ability to constrain the different

kinematic states of bulge populations, and therefore the formation of the bulge.

The study of C18 represents a deep ‘pencil-beam’ along a single LOS close to the

bulge’s minor axis, but provides little insight into how the proper motion rotation

curves vary across the entire bulge. Therefore, in this paper, we explore the trends

expected for proper motion rotation curves of different populations in the bulge.

We study the proper motions in a star-forming simulation which forms a B/P bulge

to predict and interpret trends in the rotation curves across the MW’s bulge. The

model we use is the same as that in Debattista et al. (2017) which they showed had

experienced kinematic fractionation. Therefore, our study will predict the expected

trends for proper motion rotation curves if this mechanism has been the main process

responsible for the distribution of the MW’s stellar populations.

The paper is organized as follows. We describe the model used in this study

in Section 3.2. In Section 3.3, we explore the separation of rotation curves in the

SWEEPS field along with a metric we define for quantifying the separation am-

plitude and present an interpretation of the observed trends with galactocentric
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velocity maps. In Section 3.4, we explore the SWEEPS field in greater detail and

compare our results with MW observational data to test the robustness of our sepa-

ration amplitude measurement. We also provide predictions for the rotation curves

in key lines of sight within the MW bulge. In Section 3.5, we explore how galac-

tocentric velocities project onto longitudinal proper motions and define a second

measurement of kinematic separation between populations. Section 3.6 presents our

comparison to a second model with a weaker bar and B/P. Finally, in Section 3.7,

we discuss the implications of our findings and predictions for future work.

3.2 Simulation

We analyse a high-resolution N -body+smoothed particle hydrodynamics (SPH)

star-forming simulation which forms a barred spiral galaxy from a hot gas corona

embedded in a live dark matter halo. The model has been described numerous times

in earlier works where it has been compared to both the MW and external galax-

ies (Cole et al. 2014; Gardner et al. 2014; Ness et al. 2014; Gonzalez et al. 2016,

2017; Debattista et al. 2017). Debattista et al. (2017) demonstrated that the model

underwent kinematic fractionation, and has different bulge (and bar) properties for

older (metal-poor) and younger (metal-rich) populations. The resulting trends are

comparable to those seen in the MW.

The initial conditions are comprised of a hot gas corona inside a dark matter halo.

The dark matter halo is comprised of 5 million particles having a force softening of

ϵ = 103 pc, virial radius r200 = 198 kpc and virial mass M200 = 9.0 × 1011 M⊙. The

gas corona consists of 5 million gas particles with a force softening of ϵ = 50 pc. The

gas corona has angular momentum Lz ∝ R with spin λ ≈ 0.041.

The simulation is evolved using the N -body+SPH code gasoline (Wadsley et al.

2004) with a base time step of 10 Myr. The gas in the corona cools and settles to the

centre forming a disc. The formation of a stellar particle happens when gas reaches
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densities greater than 100 amu cm−3 with a temperature of T < 15 000 K. 10% of gas

in this state forms stars with 35% the mass of the initial gas particles, corresponding

to ≈ 9.4× 103 M⊙. Gas particles in this state will continue to trigger star formation

until their mass falls to below 21% of their initial mass. Then the remaining mass is

redistributed to its nearest neighbours, and the gas particle is removed. Each stellar

particle is a representation of a Miller & Scalo (1979) initial mass function. Feedback

from type Ia and type II supernovae is modelled using the blastwave prescription

of Stinson et al. (2006). Stellar winds of asymptotic giant branch stars using the

theoretical yields for iron and oxygen from Woosley & Weaver (1995) also enrich

the interstellar medium. This simulation does not include the diffusion of metals

between gas particles (Loebman et al. 2011) producing the undesirable effect of

forming low metallicity stars at all ages, broadening the metallicity distribution.

After 10 Gyr of evolution ∼ 11 million star particles have formed, with a total

mass of ∼ 6.5 × 1010 M⊙. The resulting disc has a scale length Rd ≈ 1.7 kpc

(Cole et al. 2014). The bar forms between 2 − 4 Gyr, after which it continues to

grow secularly. We define the bar radius, rbar, as the mean of the radii where

the amplitude of m = 2 Fourier moment reaches half its peak value (Debattista &

Sellwood 2000) and that where the m = 2 phase angle changes by 10◦ from constant.

At 10 Gyr, rbar ∼ 3 kpc (Cole et al. 2014).

3.2.1 Comparing With the Milky Way

As shown by Debattista et al. (2017), this model provides insights into trends in

the MW, and makes predictions which can be tested against current and future

observations. By scaling the t = 10 Gyr time-step as in Debattista et al. (2017), we

can produce a bar of about the right size with roughly the correct kinematics. Here

we describe how we scale the model and qualitatively compare to the MW.

66



CHAPTER 3

We spatially scale up the simulation by a factor of 1.7, in line with recent mea-

surements for the MW’s bar length, rbar = 5.0 ± 0.2 kpc (Wegg et al. 2015). After

rescaling, the model’s bar length is rbar = 4.85 ± 0.55 kpc. The velocities are scaled

by 0.48 to match the velocity dispersion in the MW bulge (see Debattista et al.

2017). We place the observer at 8 kpc from the galactic centre in the mid-plane

with the bar aligned to 27◦ from the LOS of the observer to the galactic centre

(Wegg & Gerhard 2013; Qin et al. 2018), with the near side of the bar at positive

longitude.

In order to increase our resolution in the bulge region, we assume the simulation

to have mid-plane symmetry; therefore, we project stars below the plane onto above

the plane with an inverted vertical velocity (z′ = −z; v′z = −vz, for z < 0). We

then calculate galactic longitude, latitude, and LOS distance (l, b,D) along with

longitudinal proper motions (µl) for each star from the solar perspective, in the

galactic rest frame. Coordinate transformations in this work were computed using

the PYTHON package GALPY (Bovy 2015).

We define the bulge region as follows: |l| ≤ 20◦, 2◦ ≤ |b| ≤ 10◦, and 5.75 ≤
D/ kpc ≤ 10.25. This is larger than previous studies which usually constrain longi-

tude to |l| < 10◦. Considering that the bar is inclined by 27◦, at l = +20◦, we sample

∼ 3.5 kpc along the near side of the bar encapsulating a larger extent of the B/P

component. Our range is also larger than the proposed footprint of the Vera Rubin

Observatory, Legacy Survey of Space and Time (LSST) bulge observations allowing

for predictions for this and additional future survey missions (see Section 3.7.1).

The lack of chemical mixing in this model results in an excess of stars with

low metallicities at all ages. Debattista et al. (2017) circumvented this problem by

considering stellar populations defined by age, rather than by metallicity. Likewise,

here we also define populations based on stellar ages. The cumulative distribution

of ages within the model’s bulge is shown in Fig. 3.1. Using this distribution, we
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define a young population as those stars with age < 7 Gyr (mean age = 5.8 Gyr)

and an old population with stellar ages > 9 Gyr (mean age = 9.6 Gyr). This results

in a sample of 361 131 relatively young stars and 1 341 922 old stars within our

defined bulge region, representing 14 and 51 per cent of all bulge stars, respectively.

Since the simulation was run for only 10 Gyr the majority of ages are lower than

would be expected for the MW; none the less, the ordering of the stellar ages would

remain intact. These age ranges allow us to qualitatively compare the simulation

with populations separated by metallicities in the SWEEPS field (Bernard et al.

2018) and the MW bulge in general. We also note that the distribution of ages in

this model is consistent with the picture of a largely old bulge in the MW (Kuijken

& Rich 2002; Zoccali et al. 2003; Clarkson et al. 2008, 2011; Brown et al. 2010;

Valenti et al. 2013; Renzini et al. 2018), as discussed in Debattista et al. (2017).

The model also has a similar fraction of stars younger than 5 Gyr observed in the

MW (∼ 3% of the bulge population Renzini et al. 2018). While we refer to a young

population in the model’s bulge, we mean this in a relative sense: even excluding

that the model is only evolved for 10 Gyr, a large majority of the young stars are

old with ∼ 50% of them formed during the bar’s formation.

We verify that the vertical structure of our rescaled model is a reasonable ana-

logue of the MW’s B/P bulge by considering the variation of the distance bimodality

as a function of latitude, as viewed from the Sun. In particular, we consider the

double RC as a function of latitude. Following the similar prescription of Gonzalez

et al. (2015) and Debattista et al. (2017), we assume that the RC stars follow the

same density as the model in general. We therefore set the absolute magnitude

of all stars to the average of the RC, MK = −1.61, and convert this to apparent

magnitudes, mK , based on their distance from the solar position (8 kpc). We then

convolve each mK with a Gaussian kernel of σ = 0.17 mag to approximate the

width of the RC magnitude distribution (Gerhard & Martinez-Valpuesta 2012). We
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Figure 3.1: The cumulative distribution of ages within the model’s bulge region at

t = 10 Gyr. The spatial cuts used are given at the top left-hand side. We define

the young (blue) and old populations’ (red) age cuts as 7 and 9 Gyr, respectively.

The mean ages for the two populations (vertical black dashed lines) are 5.8 = and

9.6 Gyr, respectively.
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Figure 3.2: Unextincted apparent magnitude distributions of simulated RC stars

along the LOS within |l| < 4◦ for |b| = 4◦ (left-hand panel), 5◦ (middle panel)

and 6◦ (right-hand panel) with δ|b| = 0.25◦. Young (age < 7 Gyr) and old (age

> 9 Gyr) stars are represented by the blue and red histograms, respectively. The

magnitude distributions have been convolved with a Gaussian of width σ = 0.17 mag

to represent the width of the RC. As in the MW, a bimodality is first evident at

|b| ≃ 5◦.

present the magnitude distribution of simulated RC stars split by our age cuts in

Fig. 3.2. The distribution of young stars is single peaked at |b| = 4◦ and bimodal

above that, in agreement with the bimodality found by Ness et al. (2012). The old

population is single peaked at all latitudes.

3.3 Separation of Rotation Curves

The combined field from SWEEPS+BTS data studied in C18 was approximately

3.4×3.4 arcmin2 centred at (l, b)J2000.0 ≈ (+1.26◦,−2.65◦). We compare the rotation

curves of young and old stars in the model’s equivalent of the SWEEPS+BTS field,
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Figure 3.3: Left-hand panel: Average longitudinal proper motion rotation curves for

metal-rich and metal-poor main-sequence stars of the SWEEPS+BTS field, centred

on (l, |b|) = (+1.26◦, 2.65◦) with an FOV of 0.05×0.05 deg2 (C18). The vertical green

shaded region show the range of estimates of R⊙ from the GRAVITY consortium.

Right-hand panel: Average longitudinal proper motion rotation curves for young

and old stars, and the separation between them, of the simulated S-SWEEPS field,

centred on (l, |b|) = (+1.26◦, 2.65◦) with an FOV of 0.5◦ × 0.5◦. The number of star

particles in each population is listed in the legends.
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hereafter S-SWEEPS1. Although the model has a large number of star particles,

the overall number is still small compared to the real MW; therefore our field of

view (FOV) is increased to 30 × 30 arcmin2 to increase the number of particles.

As mentioned in Section 3.2.1, we constrain our distance measurements within the

bulge to between 5.75 to 10.25 kpc. Taking bins along the LOS, we calculate the

mean longitudinal proper motion for young and old stars, ⟨µl⟩Y and ⟨µl⟩O, within

each bin, with the standard error given by

e⟨µl⟩ =
σµl√
n⋆

. (3.1)

The rotation curve separation between the young and old populations is then simply

∆µl = ⟨µl⟩Y − ⟨µl⟩O in each bin and the uncertainty, e∆µl
, is propagated through

addition in quadrature.

We explore the SWEEPS+BTS data using the same binning as described above.

The left-hand panel of Fig. 3.3 presents the sample from C18 (their figure 8), showing

the average longitudinal proper motion as a function of LOS distance for their metal-

rich versus metal-poor main-sequence populations. The distances are estimated from

photometric parallax, using as reference the median distance modulus (m−M)0 =

14.45 of the SWEEPS+BTS field main-sequence (Calamida et al. 2014), which,

taken literally, corresponds to a physical distance of D0 = 7.76 kpc. This is the

distance of the median well-measured population that survives their kinematic cut

for bulge objects (µl < −2 mas yr−1), and thus naturally lies closer to the observer

than the Galactic Centre. The offset between the proper motion zeropoints µl = 0 in

the two panels arises because the SWEEPS+BTS proper motions are measured

relative to the median well-measured (majority-bulge) stellar population in the FOV

(with median distance closer than 8 kpc; see C18 and Calamida et al. 2014 for more

on this issue), whereas for our simulated samples, µl = 0 at the galactic centre by

1We use the prefix “S-” throughout this paper to denote simulated equivalents of observed HST

fields.
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construction. This offset in proper motion zeropoint does not impact our results in

any way.

The identification of photometric parallax with physical distance gains some

support when we consider the distance at which the ‘metal-rich’ and ‘metal-poor’

rotation curves cross, which is approximately the same as the recent measurement

of the Galactic Centre distance by the GRAVITY experiment, at R⊙ ≈ 8.156 −
8.308 kpc (Gravity Collaboration et al. 2019, 2021), shown as the green shaded

region in the left-hand panel of Fig. 3.3.

The rotation curves from the S -SWEEPS field are shown in the right-hand panel

of Fig. 3.3. For both the simulation and observations we show the rotation curve

separation, ∆µl below each panel. In both the young and old populations, |⟨µl⟩|
rises on either side of the galactic centre. The peak value of |⟨µl⟩| on the near side is

larger than that on the far side, by a factor of about 2 for both populations, which

is expected because of perspective. The ratio of peak amplitude of young stars to

old stars is also ∼ 2. The largest ∆µl is at ∼ 1 kpc from the galactic centre. These

results are qualitatively similar to those of C18 for the metal-rich vs. metal-poor

main-sequence populations shown in the left-hand panel.

3.3.1 Separation Amplitude

Given that the model matches the trends found by C18, we consider the behaviour

of the rotation curves of young and old stars across the model’s bulge, to predict

trends that can be tested in future studies.

The top panel of Fig. 3.4 shows, in Galactic coordinates (l, |b|), the density

distribution of stars in the two populations. The distribution of young population

(blue contours) is more pinched at high latitude, resembling a peanut, whereas

the old population (red contours) appears more boxy. The young stars are also

more concentrated to the mid-plane, demonstrating there are fewer young stars at
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Figure 3.4: Top panel: fractional distribution of young to old stars within the bulge

of the model. Blue and red contours follow young and old population densities,

respectively. Middle panel: separation amplitude, ξ, for each pixel representing a

1 × 1 deg2 field. Bottom panel: uncertainty on ξ for each field. In the bottom two

panels, the yellow contours follow the density of all bulge stars. Black pixels are

fields for which ξ could not be measured reliably.
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higher latitudes, similar to the metallicity distributions (Zoccali et al. 2017) and the

distribution of long-period (young) Miras (Grady et al. 2019) within the MW.

To quantify the separation between the young and old rotation curves, we inte-

grate the separation along the LOS, to obtain a separation amplitude. Binned by

distance, we define the separation amplitude ξ, as the LOS integral of ∆µl(D) =

⟨µl⟩Y (D) − ⟨µl⟩O(D) as

ξ = δD ·
d2∑

D=d1

∆µl(D), (3.2)

where D is each distance bin centre with width δD = 0.5 kpc and ξ has units of

kpc · mas yr−1. We set d1 = 6 kpc, d2 = 10 kpc, respectively, as the limits of the

model’s bulge region.

We map ξ across the entire bulge of the model, using fields of 1 × 1deg2. This

represents a much larger FOV than those sampled by deep bulge fields in the MW,

but is necessary to attain reasonable particle numbers at higher latitudes. For each

(l, |b|) bin, we repeat the analysis applied to the S-SWEEPS field, producing ⟨µl⟩
rotation curves for the young and old populations using the same binning along each

LOS.

The middle panel of Fig. 3.4 shows a map of ξ(l, |b|) for the model. We focus

on the region |b| > 2◦ to avoid the thin disc and the nuclear disc found below this

latitude in our model (Cole et al. 2014; Debattista et al. 2015, 2018). Along the

minor axis, |l| ≲ 5◦, ξ is mostly positive up to large latitudes with relatively low

amplitudes, 0 < ξ/ kpc · mas yr−1 < 0.5. These rotation curves have qualitatively

similar separation profile to the S-SWEEPS field (Fig. 3.3) which is more or less

antisymmetric with distance from the galactic centre, resulting in relatively small

ξ values. The small positive values of ξ on the minor axis arise largely because of

perspective.

As we show below, some rotation curves of fields away from the minor axis are

not anti-symmetric, resulting in separation profiles that are everywhere positive or
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negative; for these rotation curves, ξ will be larger. Almost all fields with longitudes

l < 5◦ have positive ξ values, whilst for longitudes l > 5◦ ξ has mostly negative

values. Away from the minor axis, there is a slight vertical gradient with higher

amplitude ξ values at low latitude which decreases with increasing latitude.

The number of young stars decreases rapidly with increasing height, and above

|b| ≳ 8◦ some fields have too few young stars to measure a reliable rotation curve.

We calculate the uncertainty of the separation amplitudes, eξ, for each field as

eξ = δD ·
(

d2∑

D=d1

e∆µl
(D)2

)1/2

, (3.3)

where δD = 0.5 kpc is the bin width.

The distribution of eξ, presented in the bottom panel of Fig. 3.4, loosely traces the

density distribution of young stars (blue contours in the top panel), highlighting that

the number of star particles along an LOS is a limiting factor in this measurement.

The uncertainties are lowest on the minor axis and on the near side of the bar.

3.3.2 Galactocentric Velocities

In order to interpret the ξ map, including the asymmetries between positive and

negative longitudes, we consider the difference in the bulge’s intrinsic (galactocentric

cylindrical) kinematics, i.e. the galactocentric radial velocity, vR and galactocentric

tangential velocity, vϕ. Fig. 3.5 first presents the vertically averaged heliocentric

longitudinal proper motions for the bulge’s young and old populations in the (X, Y )

plane, along with the corresponding galactocentric cylindrical velocities. We only

consider stars in the vertical slice 0.5 < |z|/ kpc < 1.0, equivalent to 4◦ < |b| < 7◦

at 8 kpc, to avoid the effect of the nuclear disc as discussed in Section 3.3.1 and

regions where the uncertainty in ξ is largest. The left-hand and middle columns of

Fig. 3.5 show the velocity distributions of the young and old populations respectively.

The right-hand column shows the difference between the young and old velocity
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Figure 3.5: Average velocity fields in the (X, Y ) plane for stellar particles at

0.5 < |z|/ kpc < 1.0. The left-hand column presents the kinematics of the young

population while the middle column shows those of the old. The difference in the

velocity fields between young and old stars is shown in the right-hand column. The

top row shows heliocentric longitudinal proper motions, the middle row shows galac-

tocentric radial velocities and the bottom row shows galactocentric tangential ve-

locities. Yellow contours follow log densities of the corresponding population. Black

contours indicate where each velocity component equals zero. White circular dashed

lines outline distances 6, 8 and 10 kpc, while the white straight dashed lines mark

longitudes between 20◦ and −20◦ in 10◦ intervals. The observer is at X = −8 kpc

in this figure.
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distributions. Within each panel, a thick black contour traces the zero amplitude

line of each velocity component and where the difference between populations is

also zero. The density of the two populations, indicated by the yellow contours

in the left-hand and middle panels, shows that the young stars trace a strongly

barred morphology, which has two peaks on either side of the galactic centre. The

peaks are the lower layer of the X-shape in the B/P bulge, as also seen in the MW

(Sanders et al. 2019, their figure 19). The old population, instead, is considerably

less elongated, supporting only a weak bar, as shown by Debattista et al. (2017).

Panels (a) and (b) show that as a result of the much stronger bar in the young

population, their average heliocentric proper motions (⟨µl⟩Y ) exhibit a stronger lon-

gitudinal variation relative to the Sun than those of the old stars. The ⟨µl⟩Y dis-

tribution has two high-amplitude regions along the l = 0◦ direction, 1 kpc in front

of, and 1 kpc behind the galactic centre. The black contour in the ⟨µl⟩Y profile

is twisted towards the bar major axis, away from the d⊙ = 8 kpc line, unlike the

⟨µl⟩O = 0 contour which traces the 8 kpc line more closely at central longitudes.

Fig. 3.5(c) shows the difference in the distribution of ⟨µl⟩ between the two popula-

tions. This panel shows that most of the signal in ∆⟨µl⟩ comes from regions where

the amplitude of ⟨µl⟩Y peaks, close to l = 0◦. The near peak has a tail towards

negative longitude whereas the far peak has a tail to positive longitude. A field

close to the minor axis will intersect both the near and far peaks of ∆⟨µl⟩ which

have positive and negative values respectively, resulting in ξ ∼ 0. From the (X, Y )

perspective, we can see that lines of sight away from the minor axis only intersect

one of these ∆⟨µl⟩ peaks, and therefore have larger |ξ| values.

We then turn to the intrinsic kinematics in galactocentric cylindrical coordinates,

which is the natural frame of the bar, removing the effects of perspective. In the

middle row of Fig. 3.5 we present the distributions of galactocentric radial velocity,

⟨vR⟩. The young population (Panel d) exhibits a quadrupole pattern, with zero
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velocity lines (black contours) aligned with the bar major and minor axes. The am-

plitude of ⟨vR⟩ peaks at ∼ ±45◦ relative to the bar indicating bar-aligned motions

along either side of the galactic centre. The old population has no quadrupole pat-

tern and near-zero ⟨vR⟩ values, reflecting its weaker bar morphology. The resulting

difference map, ∆⟨vR⟩ (Panel f), therefore also has a strong quadrupole pattern.

The bottom row of Fig. 3.5 presents the distribution of the galactocentric tan-

gential velocity, ⟨vϕ⟩. For the old population (Panel h), the distribution of ⟨vϕ⟩O
is mildly elongated along the bar. In contrast, the ⟨vϕ⟩Y distribution (Panel g), is

elongated more strongly whilst also exhibiting a complex inner structure. The lower

levels of the X-shape, identified by the density contours, coincide with regions of low

⟨vϕ⟩ positioned approximately 3 kpc along the bar major axis. The lowest values of

⟨vϕ⟩Y are at the very centre. Peak values of ⟨vϕ⟩Y are along the bar’s minor axis, as

expected for streaming motions in a highly elongated population. Consequently, the

difference between the two populations, ∆⟨vϕ⟩ (Panel i), exhibits two peaks along

the minor axis. Regions of ∆⟨vϕ⟩ < 0 appear slightly beyond 2 kpc along the bar

major axis, where the young stars are reaching the apocentre of their elongated

orbits and the old population has comparable or larger velocities.

Taken as a whole, these differences in the intrinsic kinematics are as expected

for the two populations, one strongly tracing the bar (the young one) and one

that traces it weakly (the old one). From the Solar perspective, the proper motion

rotation curves are then a position-dependent combination of these two motions.

The differences between the velocity distributions can be understood largely in terms

of the different bar strengths, which themselves are a result of the different random

motions of stars at the time of the bar’s formation (Debattista et al. 2017).
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Figure 3.6: LOS profiles of galactocentric ⟨vϕ⟩ (left-hand panel) and ⟨vR⟩ (right-hand

panel) for the S-SWEEPS field in the model.

3.4 Interpretation of the SWEEPS Field

We now explore the simulated S-SWEEPS field (Fig. 3.3) in greater detail. Us-

ing Eqn. 3.2 we calculate the separation amplitude of the S-SWEEPS field to be

ξ = 0.05 ± 0.48 kpc · mas yr−1, commensurate with the regions surrounding this

LOS in Fig. 3.4. We use the insight derived from Fig. 3.5 to interpret this value

in terms of the intrinsic velocities and the resulting rotation curves. Furthermore,

we directly compare our model with MW data to test the level of confidence of our

model as an approximation of the MW.

For the S-SWEEPS LOS, Fig. 3.6 shows the distance profiles of galactocentric

tangential ⟨vϕ⟩ and galactocentric radial ⟨vR⟩ velocities using the same distance

bins as the rotation curves. Both populations have their lowest ⟨vϕ⟩ close to 8 kpc,

increasing away from the centre. At almost every distance bin, the young population

has the higher ⟨vϕ⟩. In Fig. 3.5, we showed that the young population has a stronger

bar and kinematics consistent with elongated bar orbits; the peaks of ⟨vR⟩ seen

in the right-hand panel of Fig. 3.6 support this, and indicate stars moving away
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from the galactic centre. The old population has low values of ⟨vR⟩ along the

LOS, which reflects their more axisymmetric distribution. These profiles show that

the differences in rotation curves between the young and old populations are a

consequence of differences in both ⟨vϕ⟩ and ⟨vR⟩ because only the young population

is strongly barred.

3.4.1 Monte Carlo Simulation of MW Data

To compare the separation amplitude of the S-SWEEPS field with observational

data, we apply our methodology to the SWEEPS+BTS data presented in C18. We

note here that the populations within the model represent the ends of the age dis-

tribution (see the coloured regions in Fig. 3.1), whereas C18 split the photometric

metallicity distribution within their data using auto-GMM clustering. The esti-

mated mean metallicities of the ‘metal-rich’ and ‘metal-poor’ samples are [Fe/H]0 ≈
−0.24 and [Fe/H]0 ≈ +0.18, respectively (see section 3.5 of C18). As a consequence

of their methodology and the nature of separating by metallicity, the age distribu-

tions of their sub-samples may partially overlap.

We use the C18 data, which the authors used to produce their Fig. 8, showing

that metal-rich stars have higher amplitude ⟨µl⟩ rotation curves than metal-poor

stars. For their metal-rich and metal-poor populations, we bin the data in distance

following the prescriptions in Section 3.3 and calculate the separation amplitude

using the same method as we used for the model.

To determine the effect of observational uncertainties on the calculated values

and the robustness of the uncertainty estimates (eξ), we run a Monte Carlo (MC)

simulation of our separation amplitude measurement. We assume that the uncer-

tainty of the observed longitudinal proper motion to be σµl
= 0.08 mas yr−1 (Fig.

17 of C18). The photometric parallax used in the distance determination has an

estimated uncertainty of 0.119 and 0.153 mag for the metal-rich and metal-poor
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Figure 3.7: Results of the Monte Carlo runs to calculate the separation amplitude

for the SWEEPS+BTS data from C18. Thick red lines show the mean ξ and eξ

values. Red dashed lines denote 1σ deviation. At this field, the fiducial model

predicts ξ = 0.05 ± 0.48 kpc · mas yr−1.

sample, respectively (Table 11 of C18). For each run of the MC, we add random

errors to the magnitudes and proper motions of each star in the SWEEPS+BTS

sample, assuming the error distributions are Gaussian. We then recalculate ξ and eξ

for each run. Our MC of 200 000 runs produces the distributions of ξ and eξ shown

in Fig. 3.7. The mean separation amplitudes and errors from the MC runs are

⟨ξ⟩ = 0.41 kpc · mas yr−1 and ⟨eξ⟩ = 0.384 kpc · mas yr−1. The value of ⟨eξ⟩ is rela-

tively large as in the model, however it is well constrained with a standard deviation

of σeξ = 0.007 kpc · mas yr−1. The definition of eξ from Eqn. 3.3 corresponds to the

sum in quadrature of the uncertainties for each distance bin, where the uncertainty

in each bin is given by the proper motion dispersion and the number of stars in the

bin. Since the number of stars within the whole distance range (5.75 − 10.25 kpc)

does not change substantially between MC iterations, and the µl uncertainty is low

overall, this leads to ⟨eξ⟩ being well constrained, with a small standard deviation.

Comparing the ξ values of the observational data to our model, we can see that
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they agree within the uncertainty. Although this is a comparison for a single field

on the minor axis, it demonstrates that our metrics can applied to observational

data and the model provides a reasonable basis for comparing to the MW. For the

SWEEPS+BTS field, the profile is antisymmetric resulting in a low value of ξ. Our

model has a value of ξ closer to zero and a larger associated error than the MW

data. We stress, however, that there are many differences between the observational

and simulated measurements so we limit our comparisons to qualitative trends.

3.4.2 Other Fields

We now expand our analysis to fields for which data are available from HST-BTS

observations. The three remaining BTS fields that can be used for a study similar to

that of C18 are Stanek’s Window, Baade’s Window and the OGLE29 field (Brown

et al. 2010; Renzini et al. 2018). We explore comparable fields within our model,

which we refer to as S-Stanek’s Window, S-Baade’s Window and the S-OGLE29 field.

We also suggest three further regions of interest, which sample areas of negative ξ

away from the minor axis and large latitude; we refer to these as Field A, Field B and

Field C. We increase the field size in regions of larger statistical uncertainty, allowing

us to sample sufficient number of star particles to provide reasonable predictions.

The on-sky positions and sizes of each region of interest are shown in the top panel of

Fig. 3.8. For each field, we produce ⟨µl⟩ rotation curves, following the same method

as above. The results are presented in the bottom panels of Fig. 3.8.

The two BTS fields close to the S-SWEEPS field, S-Stanek’s Window and S-

Baade’s Window, only a few degrees apart, have similar ξ values, with anti-symmetric

profiles, as in the S-SWEEPS field. Both S-Stanek’s Window and S-Baade’s Win-

dow have ⟨µl⟩ profiles with increasing amplitude away from the galactic centre, and

have similar peak young/old, and a near/far ratio of ∼ 2.

The S-OGLE29 field is at the highest latitude of the BTS fields and is further
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Figure 3.8: Top left-hand panel: the positions of the six fields of interest within the

model’s bulge from the heliocentric perspective. The coloured squares correspond

to the sizes used in our simulated fields to capture enough star particles. Black

contours follow the log density of all bulge stars. Top right-hand panel: the six

fields of interest presented in a top-down view of the model’s bulge. The bar major

axis is indicated by the dashed line. Black contours follow the log density of all

bulge stars. Bottom panel: average longitudinal proper motion rotation curves and

the separation for the fields of interest. The field names and FOV are labelled at

the top right-hand side. The number of star particles in both populations is also

listed along with the calculated separation amplitude, ξ.
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away from the minor axis in a region where ξ > 0. This field has a different

separation profile: while the rotation curve of the old population remains similar to

those previously described, the rotation curve of the young stars crosses the ⟨µl⟩ = 0

line beyond 8 kpc. The minimum separation between the young and old population

occurs in the furthest distance bins. We can understand this behaviour by referring

back to the top row Fig. 3.5. Along longitude l ≈ −7◦ the nearest distance bins pass

through the region where young stars have high positive ⟨µl⟩ values, where they are

streaming at high velocity along the bar edge. The direction of the velocity here is

closer to perpendicular to the LOS, which results in the higher ⟨µl⟩ peak. At the

furthest distance bins, we are observing the far end of the bar. The direction of

the velocities here are angled more closely parallel to the LOS; therefore, younger

stars have a lower ⟨µl⟩ amplitude, comparable to the value for old stars in the same

region. This results in a ξ value larger than the other three BTS fields.

We define Field A to explore the asymmetry in ξ. Its location is mirrored across

the minor axis from the S-OGLE29 field, at the same latitude and with the same

FOV, within a region where ξ < 0. Again the old stars have a rotation curve of

increasing ⟨µl⟩ from the galactic centre. The young stars in this field show little

separation in the nearest and furthest distance bins. However, at 7.5 kpc, the young

population’s rotation curve crosses the ⟨µl⟩ = 0 line and decreases to negative ⟨µl⟩
more steeply than the older stars, and converges to that of the older population

beyond 9 kpc. At this longitude, the nearest distance bins are within the central bar

region, but beyond ∼ 8 kpc the LOS passes through the far edge of the bar, where

stars are streaming towards negative longitude. Both the S-OGLE29 field and Field

A demonstrate the effect of observing the proper motions of an angled bar, which

we explore further in Section 3.5.

Field B also explores an area where ξ < 0 but at larger latitude and longitude.

At these higher latitudes, eξ is larger due to the limited vertical extent of the young
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population, requiring us to increase the field size considerably. A largely linear

profile is seen in both young and old population rotation curves. However, between

8 and 9 kpc the young population deviates to more negative ⟨µl⟩, similar to Field

A. We attribute this deviation to the same effect discussed for Field A, but the

separation is smaller here due to being located further away from the minor axis

and at higher latitude.

Field C covers a region of high latitude on the minor axis. We see an antisym-

metric profile similar to the S-SWEEPS field; however the young stars have a flatter

profile away from the galactic centre. The young stars still have a higher amplitude

⟨µl⟩ with a steeper gradient through the galactic centre. The central bins have very

few young stars, since the young population is peanut shaped. The ξ value is much

larger here due to the effect of perspective.

3.5 Projection of Intrinsic Velocities

The rotation curves of the S-OGLE29 field and Field A demonstrate the clear effect

of a non-axisymmetric structure within the bulge region. To illustrate how the

galactocentric radial and tangential velocities project onto the observed longitudinal

proper motions we now project each galactocentric velocity component individually

onto l̂, the unit vector in the direction of increasing longitude, i.e. the tangential

direction to the LOS from the Sun. Lines parallel to l̂ follow concentric circles

centred on the Sun. As these velocity projections are position dependent, not all

regions of high-amplitude galactocentric velocity contribute to large proper motions.

We present the projections onto l̂ in the (X, Y ) plane in Fig. 3.9. We denote the

vR and vϕ projections, respectively, as

µl,R = α
vR
D

sin(ϕ− l)

cos b
, (3.4)

µl,ϕ = α
vϕ
D

cos(ϕ− l)

cos b
, (3.5)
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Figure 3.9: Projections of the galactocentric intrinsic velocities onto µl in the (X, Y )

plane for star particles at 0.5 < |z|/ kpc < 1.0. The left-hand column column

presents the kinematics of the young population while the right-hand column shows

those of the old. The top row shows the projection of galactocentric ⟨vϕ⟩ onto lon-

gitudinal proper motions, the bottom row shows the projection of galactocentric

radial velocities ⟨vR⟩ onto longitudinal proper motions. Yellow contours follow log

densities of the corresponding population. Black contours indicate where each ve-

locity component equals zero. White circular dashed lines outline distances 6 kpc,

8 kpc and 10 kpc, while the white straight dashed lines mark longitudes between 20◦

and −20◦ in 10◦ intervals. The observer is at X = −8 kpc in this figure.

87



CHAPTER 3

where α ≈ 0.210 kpc s km−1 and ϕ is a star’s cylindrical polar angle in the galacto-

centric frame.

Unsurprisingly, ⟨vϕ⟩ contributes to ⟨µl⟩ of both the young and old populations

as seen in Panels (a) and (b) of Fig. 3.9. In an axisymmetric disc, this would be

the only contribution to ⟨µl⟩ because then ⟨vR⟩ = 0. The ⟨vϕ⟩ contribution to the

old population’s proper motions, shown in Fig. 3.9(b), has a distribution not much

different from that of an axisymmetric disc. Conversely, the young population has

stronger rotation closer to the galactic centre, with pronounced twists in the ⟨µl,ϕ⟩
contours. The regions of low ⟨vϕ⟩ manifest in the young stars’ ⟨µl,ϕ⟩ distribution

as deviations of the velocity contours from being parallel to l̂. In an axisymmetric

system, the general trend of increasing velocity dispersion of stellar populations

with age would give rise to a separation of the rotation curves purely from ⟨vϕ⟩,
with no contribution from ⟨vR⟩. However, a stationary axisymmetric system cannot

produce a non-zero ⟨µl,R⟩. Instead, a bar produces a quadrupolar ⟨vR⟩ distribution,

and hence peaks in ⟨µl,R⟩ as seen in the bottom left-hand panel of Fig. 3.9. Moreover,

the orientation of the MW’s bar is such that two of the regions of large ⟨vR⟩ project

almost perfectly into the l̂ direction, at positive longitude on the near side and

at negative longitude on the far side of the galactic centre. In these regions, the

observed longitudinal proper motion has a strong contribution from ⟨vR⟩. The other

two high amplitude ⟨vR⟩ regions lie at |l| ≲ 2◦ and therefore ⟨vR⟩ in these regions

projects only a small component in the l̂ direction. Comparing Panels (a) and (c)

of Fig. 3.9, it is evident that the main peaks in ⟨µl,R⟩ contribute to the total ⟨µl⟩
with opposite sign to the ⟨µl,ϕ⟩ for the young population. For example, the peak of

negative ⟨vR⟩Y centred near (X, Y ) = (−0.5, 0.5) kpc in Panel (c) is within a region

of positive ⟨vϕ⟩Y in Panel (a). The old population has everywhere relatively low

⟨vR⟩; therefore, its longitudinal proper motion is everywhere dominated by ⟨vϕ⟩. The

young population, having a strong bar, has a strong quadrupolar ⟨vR⟩. Consequently,
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Figure 3.10: The contributions of galactocentric ⟨vR⟩ (dashed lines) and ⟨vϕ⟩ (dotted

lines) to the average longitudinal proper motion rotation curves for young (blue

lines) and old stars (red lines) for the simulated Field A (left-hand panel) and the

OGLE29 field (right-hand panel). We plot the sum of the two young components,

the total observed ⟨µl⟩Y as a black line. The old population has no substantial ⟨vR⟩
contribution therefore the ⟨µl⟩O line would lie on top of the ⟨µl,ϕ⟩O line; we thus do

not display it. The coloured squares correspond to the field locations indicated in

Fig. 3.8.

the effect of the bar will be most evident in the kinematics of the young population

in the regions where |⟨vR⟩| peaks.

The competing effects of the ⟨vR⟩ and ⟨vϕ⟩ contributions to the ⟨µl⟩ rotation

curves give rise to interesting behaviours. We now demonstrate how these two

components project onto the rotation curves of the S-OGLE29 field and Field A.

In the left-hand panel of Fig. 3.10 we can see that the ⟨µl,ϕ⟩ component of both

populations in Field A follow an antisymmetric profile. However, for the young

stars, ⟨µl,R⟩Y provides a substantial negative contribution slightly short of 8 kpc.

This contribution acts in opposition to the positive contribution from ⟨µl,ϕ⟩; as
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a result, the total ⟨µl⟩Y for Field A (black line) crosses ⟨µl⟩ = 0 at ∼ 7.5 kpc.

Therefore, the radial contribution leads to a sign reversal in the proper motions

of young stars and a rotation curve with ‘forbidden’ velocities. We term non-zero

velocities at the galactic centre as forbidden because they would not be present in

an axisymmetric system. Our usage echos the use of the term for describing gas

kinematics at the Galactic Centre (e.g. Weiner & Sellwood 1999)

The young stars in the S-OGLE29 field also have a rotation curve with forbidden

velocities but with a sign reversal from negative to positive. The radial contribution

comes somewhat beyond the galactic centre, where the ⟨vϕ⟩ component is negative,

and the ⟨vR⟩ velocities are positive. The total ⟨µl⟩Y rotation curve crosses ⟨µl⟩ = 0

at ∼ 8.25 kpc.

The young stars in both of these fields reverse the sign of their proper motions

due to the contribution of the radial velocity. The age dependence of bar strength

and their resulting velocity profiles demonstrated above are a prediction of kinematic

fractionation, where younger populations with lower initial in-plane random motions

are less vertically heated, form a stronger bar and a more peanut-shaped bulge

(Debattista et al. 2017).

3.5.1 Quantifying the Effect of Kinematic Fractionation

We now develop a second metric to quantify the signature of kinematic fractiona-

tion within the bulge which is less reliant on deep observations with highly accurate

distance determinations. We define a large spatial bin located at D = 8 kpc with a

width of 1 kpc, allowing for larger distance uncertainties, then calculate the differ-

ence in ⟨µl⟩ between the young and old populations, i.e.

δµl = ⟨µl⟩Y,8 kpc − ⟨µl⟩O,8 kpc. (3.6)

Large positive values of δµl correspond to rotation curves where the young popula-

tion have larger positive ⟨µl⟩ than the old population within this central bin, which
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are forbidden velocities at negative longitude. We use δµl to measure forbidden

velocities in the bulge whilst also taking into account the expected observational

distance uncertainties. Following from our previous analysis, we expect to mea-

sure positive δµl values in the direction of the OGLE29 field and negative values

in the direction of Field A. We assume every star in the model is an RC star with

absolute magnitude MK = −1.61, and calculate their apparent magnitudes as we

did in Section 3.2.1 to more closely approximate observations. We assume extinc-

tion to be uniform across the bulge region for simplicity. Reproducing this work

observationally would rely on extinction corrections being made for the tracer pop-

ulations used. We then define the magnitude range equivalent to 8± 0.5 kpc, which

is 12.75 − 13.05 mag, a bin width of 0.3 mag. We present δµl in the (l, |b|) plane in

Fig. 3.11, under three different assumptions for the distance uncertainty, σmag: no

uncertainty, SWEEPS field uncertainties and RC uncertainties. For the SWEEPS

uncertainties, we assume the metal-rich and metal-poor magnitude uncertainties

from C18 apply to our young and old populations respectively, σmag,Y = 0.119 and

σmag,O = 0.153. For the RC uncertainties, we apply the width of the RC distri-

bution, as in Section 3.2.1, σmag,RC = 0.17 to both populations. To estimate the

uncertainty in δµl, we add in quadrature the ⟨µl⟩ uncertainty for the young and old

populations.

In the top panel of Fig. 3.11, we present δµl across the bulge assuming no magni-

tude uncertainties. The distribution of δµl has a left/right asymmetry with negative

values for fields l > 0◦ and positive values at l < 0◦. The peaks in the amplitude

of δµl occur around (|l|, |b|) = (6◦, 5◦). Along the minor, axis we expect δµl ∼ 0 as

there is only a small contribution from galactocentric radial velocities in this region.

Away from the minor axis, close to the locations of the OGLE29 field and Field A,

we find large values |δµl|. Regions with δµl > 0 are present near the OGLE29 field

at negative longitude, while regions of δµl < 0 surround a large area around Field
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Figure 3.11: Top panel: the δµl distribution in the bulge region defined as the differ-

ence in ⟨µl⟩ between the young and old populations at ∼ 8 kpc. Middle top panel:

the same as above but with young and old stars apparent magnitudes convolved

with C18 uncertainties of σmag,Y = 0.119 and σmag,O = 0.153. Middle bottom panel:

the same as above but with both populations convolved with the width of the RC,

σmag,RC = 0.17. Bottom panel: the calculated error for each field when applying the

RC magnitude uncertainties.
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A, at positive longitude. Regions of positive δµl at high latitude on the minor axis

are due to the bin centre being at a cylindrical radius closer than the galactic centre

at this latitude, worsened by large bin width used.

With increasing distance uncertainties, as in the two middle panels of Fig. 3.11,

the peaks near (|l|, |b|) = (6◦, 5◦) become weaker, with smaller δµl values in general.

The overall distributions still retain a left/right asymmetry but with more fields

having small δµl indistinguishable from δµl = 0. In all panels, the negative δµl

region is larger and has higher amplitude than the positive one, due to the bar’s

orientation. In the direction of the OGLE29 field and Field A typical values of

|δµl| > 0.5 mas yr−1 at 8 kpc correspond to ≈ 20 km s−1 difference in heliocentric

tangential velocities.

We present the eδµl
map for the RC magnitude uncertainties in the bottom panel

of Fig. 3.11. The variation in eδµl
between the three levels of magnitude uncertainties

is minimal and retains the general trends. Similar to eξ, the eδµl
distribution is

peanut shaped with the region of the largest uncertainty at high latitude on the

minor axis, again because of the lower number of young stars there.

The map of δµl is in good agreement with the map of ξ, in as much as large

separations in velocities are observed in regions away from the minor axis. We

have demonstrated here that large amplitude values of δµl are a result of rotation

curves with forbidden velocities (see Fig. 3.10), which are the result of radial velocity

contributions from bar supporting orbits.

3.6 Comparison With a Weaker B/P Model

We briefly explore a second model (hereafter Model 2) which forms a bar later in

its evolution; the bar is weaker and produces a weaker B/P bulge than the fiducial

model. The initial conditions from Section 3.2 remain the same; however, Model 2

has different subgrid physics and forms a bar of length ∼ 2.5 kpc between 4− 6 Gyr
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(versus ∼ 3 kpc, forming at 2−4 Gyr). To directly compare with the fiducial model,

we scale and align Model 2 following the same procedures outlined in Section 3.2.1

but with a spatial scaling factor of 2 instead of 1.7. Owing to the stochasticity

inherent in bar evolution (Sellwood & Debattista 2009), the two bars do not evolve

in the same way. The bar length at 10 Gyr in Model 2 after scaling is rbar =

4.80 ± 0.90 kpc, and the double RC appears only weakly at |b| = 6◦ as a result of its

more limited B/P growth compared to the fiducial model. We plot the radial profiles

of the m = 2 Fourier moment amplitude and phase along with the evolution of the

global bar amplitude for both models in Appendix A. The cumulative distribution

of ages within Model 2’s bulge reveals that it has a lower star formation rate at the

beginning of the simulation; our cut of old stars at age > 9 Gyr therefore represents a

smaller fraction of the bulge population. The selection of young stars (age < 7 Gyr)

samples a higher fraction of stars born before and during the formation of the bar

(85%), which lowers the overall bar strength of this population.

We measure our metrics of kinematic separation, ξ and δµl, across the bulge of

Model 2, which we present in Appendix A. Our measurements show the same global

trends as in the fiducial model. The map of ξ is asymmetric about the minor axis

with ξ < 0 at positive longitudes and ξ > 0 at negative longitudes. The amplitudes

of ξ are lower than in the fiducial model with a steeper decreasing gradient with

increasing latitude. Model 2 has similar values of the uncertainty, eξ, however, its

distribution is less peanut shaped. The map of δµl also matches the general trends

of the fiducial model’s with a left-right asymmetry, δµl < 0 at positive longitude

and δµl > 0 at negative longitude but also has generally lower amplitude values.

The eδµl
distribution is also more box shaped.

We present a comparison of each model’s rotation curves for the simulated S-

SWEEPS and S-OGLE29 fields along with Field A and Field C in Fig. 3.12, where

now we have used magnitude bins of 0.3 mag. instead of distance. We use the
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Figure 3.12: Average longitudinal proper motion rotation curve for young and old

stars, and the separation between them using magnitude bins for four key fields in

the bulge. The rotation curves and separation from the fiducial model are plotted

as dotted lines whereas Model 2 is plotted as solid lines. The field name, location,

and FOV are labelled in the top right-hand of each panel. The coloured squares

correspond to the field locations indicated in Fig. 3.8.
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Field Model ξ eξ δµl eδµl

S-SWEEPS Fiducial 0.005 0.091 -0.073 0.068

S-SWEEPS Model 2 0.188 0.093 -0.065 0.084

Field C Fiducial 0.217 0.055 0.435 0.293

Field C Model 2 0.117 0.037 0.295 0.118

Field A Fiducial -0.177 0.064 -0.776 0.192

Field A Model 2 -0.092 0.068 -0.322 0.111

S-OGLE29 Fiducial 0.245 0.076 0.439 0.183

S-OGLE29 Model 2 0.226 0.076 0.398 0.117

Table 3.1: Calculated values of ξ and eξ (with units of kpc ·mas yr−1), δµl, and eδµl

(with units of mas yr−1) for the simulated S-SWEEPS, S-OGLE29, Field A, and

Field C in the fiducial model and Model 2.

magnitude range equivalent to span 5.75− 10.25 kpc to present predictions of ξ and

δµl simultaneously for these key fields (i.e. δµl is the ⟨µl⟩ difference in the central

bin at 12.9 mag.). This also allows us to test our metrics using a methodology closer

to MW observations. ξ and δµl for these fields are shown in Table 3.1.

Although now binning in magnitude, the rotation curve profiles in both models

qualitatively match those presented in Fig. 3.8. Here, we discuss only the differences

between the two models.

In the S-SWEEPS fields, the amplitudes of ⟨µl⟩ are lower for both the young

and old populations in Model 2 than the fiducial model. However, considering the

separation profile, Model 2 has similar separation on the near side but has weaker

separation beyond the galactic centre resulting in a larger ξ value. As expected for

a central longitude, the S-SWEEPS field has very low δµl in both models.

Field C in Model 2 also has lower ⟨µl⟩ amplitudes. The old population rotation

curves in the two models overlap each other. However, there is a large difference

between the rotation curves of the young populations in the two models: in the
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fiducial model, the rotation curve is steeper at the galactic centre. Model 2 also

has lower separation in the nearest bins resulting in a lower ξ. Field C is at a

large latitude on the minor axis and as a result there is a small perspective effect

contributing to δµl. At this latitude, the central (8 kpc) bin is located in front of

the galactic centre by ∼ 0.16 kpc, which results in both populations crossing the

⟨µl⟩ = 0 line beyond the central bin, and thus a positive δµl results. This effect is

also seen in the bottom right-hand panel of Fig. 3.8.

Field A in both models has similar rotation curves with the main difference being

in the degree of deviation into forbidden velocities. Model 2 has lower separation at

the central bin resulting in lower ξ and δµl values. The two models differ very little

in the S-OGLE29 field, with a slightly larger δµl in the fiducial model.

The combined effects of later bar formation and the weaker bar and B/P in

Model 2 result in longitudinal proper motion rotation curves that are qualitatively

similar in profile but have lower separations and forbidden velocities as measured

by both the ξ and the δµl metrics. Thus, the separation amplitudes and the global

trends of ξ and δµl provide important information on the relative bar strength of

each population and may be useful in constraining the MW’s bar and bulge.

3.7 Discussion

Kinematic differences between different populations in the MW’s bulge have been

explored in many studies. Metallicity is most often used to separate bulge stellar

populations. Metal-rich bulge stars typically have higher radial velocity dispersion

than metal-poor stars (Rich 1990; Sharples et al. 1990; Minniti 1996) and the metal-

poor population has a shallower velocity dispersion gradient with latitude (Ness

et al. 2013a,b, 2016b; Zoccali et al. 2017). Observations at Baade’s Window have

shown that metal-rich stars have non-zero vertex deviation, whereas that of the

metal-poor stars is nearly zero (Soto et al. 2007; Babusiaux et al. 2010; Hill et al.
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2011; Vásquez et al. 2013). Even amongst the (old) RR Lyrae (RRL), metallicity

separates different populations. Du et al. (2020b) and Kunder et al. (2020) found

that metal-rich RRL trace a (weak) bar and have angular velocities slightly larger

than metal-poor RRL, which do not trace any bar. Populations can also be separated

by their α-abundance. Queiroz et al. (2021) explored the chemo-dynamics of the

bulge using APOGEE and Gaia data. They found two distinct components when

considering the vϕ vs Galactocentric radius distribution. One component is a low-α

population with high rotational velocities and the other has high-α concentrated at

small radii and with near-zero or negative vϕ. However, the single chemical track

of the bulge implies that separating populations by the α−abundance is similar to

separating by metallicity.

In summary, these observational results point to stronger barred streaming mo-

tions in metal-rich stars, which is borne out by models and simulations (Portail

et al. 2017; Debattista et al. 2020). However, the origin of each component within

the bulge is still a matter of debate. Whilst it is possible for (part of) the metal-

poor component to be a classical bulge formed through mergers, most of it may also

have formed in situ. Indeed, using the same fiducial model as here, Debattista et al.

(2017) showed that the velocity dispersions of stars separated by age qualitatively

match the above trends in the ARGOS data provided a halo-like population was

added to the very oldest, most metal-poor stars. Observationally stars with metal-

licity [Fe/H] < −1 represent only ∼ 5% of all bulge stars (Ness & Freeman 2016),

with no more than 1/3 of stars with metallicity [Fe/H] ≤ −0.8 potentially being

an accreted population (Horta et al. 2021). Recent studies of zoom-in simulations

of MW-like galaxies by Fragkoudi et al. (2020) suggest that the bulge contains a

negligible fraction of accreted stars (see also Buck et al. 2019). Isolated simulations

also showed that such a component could not be larger than ∼ 8% of the disc mass

(Shen et al. 2010).
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An efficient way to probe the kinematics of bulge stellar populations as a function

of distance was presented by C18 for a sample of just under ten thousand main-

sequence stars in a deep HST field combining SWEEPS and BTS data. Separating

these by relative photometric metallicity, C18 produced longitudinal proper motion

rotation curves of ‘metal-rich’ and ‘metal-poor’ samples. They found that metal-

rich stars have larger amplitude longitudinal proper motions. In this paper, we have

simulated the SWEEPS+BTS field (S-SWEEPS) using an isolated, star-forming

model scaled to approximate the MW. Our young and old populations match the

trends of the MW metal-rich and metal-poor main-sequence stars in as much as the

young (metal-rich) stars having a larger amplitude ⟨µl⟩ along the LOS than the old

(metal-poor) ones. The amplitude between the young and old populations differs

by roughly a factor of 2, in good agreement with the observations of C18. Thus

we conclude that the trends in the rotation curves of the bulge can be reproduced

without the need for an accreted population.

To help prepare for future studies, we have quantified the difference between the

rotation curves of the two populations by defining a separation amplitude, ξ, as the

sum of the difference between averages of longitudinal proper motion in distance bins

along an LOS. We have demonstrated, using Monte Carlo resampling to account for

distance and velocity uncertainties, that ξ is similar between our model and the

SWEEPS+BTS C18 data, despite the differences in sample selection between the

model and observations. We have measured ξ across the entire bulge region covering

|l| ≤ 20◦, 2◦ ≤ |b| ≤ 10◦, and 5.75 ≤ D/ kpc ≤ 10.25. Both the distribution of ξ

within the bulge and the rotation curves of key fields indicate that the rotation

curve profiles change with longitude and latitude. We interpret these variations as

differences in the intrinsic velocity distributions of the two populations.

The galactocentric cylindrical velocities of (relatively) young stars match the

expected signature of stars on strongly barred orbits; in contrast, the old stars trace
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a weaker bar. Here we have selected stars based on their age. While not a perfect

match for metallicity, our results suggest that the bar should be more metal-rich than

the rest of the bulge population. The different velocity profiles reflect the underlying

density distributions and relative bar strengths of the populations. Recent studies

have indeed shown that the bar is more metal-rich than the off-bar regions (Wegg

et al. 2019; Queiroz et al. 2021) (but see Bovy et al. 2019, for a different view).

We have studied how the intrinsic velocities of stars on bar orbits project onto

longitudinal proper motions by considering the radial as well as tangential velocity

components separately in both galactocentric and heliocentric coordinates. We find,

in the young population, regions of high galactocentric radial velocities in the (X, Y )

plane as a quadrupole rotated by ∼ 45◦ relative to the bar axes. With the MW bar

inclination angle of ∼ 27◦, two of these regions project onto longitudinal proper

motions at lines of sight away from the minor axis (|l| ≈ 6◦). Fields which intersect

these regions have rotation curve profiles quite different to those of the SWEEPS field

and other fields on the minor axis. The galactocentric radial velocity contribution

is in the opposite direction to the contribution from the galactocentric tangential

velocity, resulting in a rotation curve with ‘forbidden velocities’: negative ⟨µl⟩ at

positive longitudes, and positive ⟨µl⟩ at negative longitudes. The S-OGLE29 field

is one such case, and as a result, the young stars have a rotation curve that changes

sign (crosses the ⟨µl⟩ = 0 line) beyond 8 kpc. The old population shows no such

deviations as a result of much lower galactocentric radial velocities produced by their

weaker bar. Since the forbidden velocities would not be present in an axisymmetric

system, they are the best probe of the variation of the bar strength. Thus the

minor axis is not the ideal probe of the bar in proper motion rotation curves. We

have analysed only two bar models; therefore we defer a deeper quantification of the

relationship between intrinsic kinematics and bar strength to a future study.
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3.7.1 Future Prospects

We have predicted the lines of sight which have rotation curves with large galacto-

centric radial velocity contributions acting in opposition to galactocentric tangential

velocity in the same region, resulting in forbidden velocities. These regions provide

clear indications of kinematic differences due to a stronger bar in the relatively

young populations. We consider the difference in velocities between model young

and old stars within a magnitude bin equivalent to 1 kpc at R⊙ = 8 kpc, denoted

as δµl, assuming the stars have fixed absolute magnitude. We find regions centred

near (|l|, |b|) = (6◦, 5◦) show the largest separation, with higher amplitudes of |δµl|
at positive longitude (owing to the bar orientation). These would be very fruitful

targets for future observations.

The predictions in this study provide a framework for the observational testing

of evolutionary pathways of the MW bulge and bar, such as the time of bar forma-

tion. While the separation of populations in these models has used stellar ages, a

similar separation can be achieved in chemical ([Fe/H]) space, as demonstrated in

the SWEEPS field by C18. The remaining HST-BTS fields offer an opportunity to

test the predictions in Fig. 3.8 and Fig. 3.12. Proper motions are publicly avail-

able for the remaining fields, and we plan to use the same method adopted by C18

for the SWEEPS field to determine the photometric metallicity and distances for

main-sequence stars in the OGLE29, Stanek’s and Baade’s windows (Clarkson et

al. in preparation). The derived rotation curves for populations split by metallicity

will be compared to those in this paper for the relatively young and old stars. The

comparison of the OGLE29 window would be the most critical test of the results

presented here as it has a distinct rotation curve profile with forbidden velocities.

Although we find stronger signals at positive longitude in field A (see Fig. 3.11),

the OGLE29 field presents an opportunity to test our predictions with data already

available.

101



CHAPTER 3

The Nancy Grace Roman Space Telescope (RST) promises to provide high-

precision astrometry for ∼ 100 million stars within the bulge (WFIRST Astrometry

Working Group et al. 2019). A shallow, multiepoch survey with RST directed at

the key fields identified in this paper would be very useful to constrain the bul-

ge/bar rotation curves. On the other hand, an All-Sky near-IR astrometric space

mission (GaiaNIR, Hobbs et al. 2021) would provide homogeneous proper motions,

parallaxes, and NIR magnitudes down to the Main Sequence Turn-Off (MSTO) in

regions close to Galactic plane, thus facilitating the study of proper motion rotation

curves as presented in this work, as probes for the formation of the bulge, and its

dynamical evolution.

Future ground-based spectroscopic surveys (e.g. APOGEE-2, MOONS, 4MOST)

(Zasowski et al. 2017; Gonzalez et al. 2020; Bensby et al. 2019) will collect high-

resolution spectra for millions of bulge red giant stars, measuring metallicity, ele-

mental abundances, and radial velocities. These large samples, when combined with

the 2D motions from extensive photometric surveys such as VVV and Gaia, have

the potential to facilitate the investigation of rotation curves of chemically distinct

populations. It is thus critical that surveys deliver sufficiently large samples in key

lines of sight for the measurement of statistically significant kinematic separations,

after decomposing in chemical and distance space.

The Vera C. Rubin Observatory/LSST has the potential to produce a one-of-a-

kind synoptic data set to test the predictions presented in this study. In particular,

a multiepoch survey of the Galactic bulge region, deep enough to reach the MSTO,

would provide the ideal data set to measure both ages and proper motions (Gonzalez

et al. 2018, LSST bulge white paper) and apply the methods used here. A key output

of LSST data would be a homogeneous, wide-field map of these properties (similar

to the map in Fig. 3.4 and Fig. 3.11). This ‘definitive map’ would allow us to

characterize the morphologies of different stellar populations of the bulge and bar in
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unprecedented detail, answering fundamental questions about the formation of the

MW bar.

3.7.2 Summary

We summarize our main conclusions as follows:

1. We have shown that the longitudinal proper motion rotation curves of old

and (relatively) young stars are distinct, with the rotation curves of young

stars generally having larger amplitudes. Our results are in agreement with

observations of the SWEEPS field within the MW, which showed that the

metal-rich population has a higher amplitude proper motion rotation curve

than the metal-poor one (C18). This result does not require the presence of

an accreted population (see Section 3.3).

2. We have presented maps of the intrinsic kinematics of each population to

help understand the observations. The galactocentric cylindrical velocities of

young stars are consistent with bar aligned orbits, in contrast to the nearly

axisymmetric velocity distributions of old stars, which reflect their respective

underlying density distributions. We demonstrate how the intrinsic velocities

project onto longitudinal proper motions. Large galactocentric radial velocity

contributions (in the young populations) produce rotation curves with forbid-

den velocities, which would not be present in an axisymmetric system (see

Section 3.3.2).

3. We have defined two metrics to quantify the difference between the rotation

curves of young and old populations, and predict their variation across the

bulge. We show that the rotation curves of young and old populations in fields

which intersect the bar away from the minor axis have non-antisymmetric

separation profiles. These effects are due to the large galactocentric radial
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velocities of young stars which, along these lines of sight, project into forbidden

proper motions (see Sections 3.3.1 and 3.5.1).

4. We have demonstrated that the rotation curve separations can be explained

by the distinct kinematics of populations separated by an evolving bar, as pre-

dicted by kinematic fractionation (Debattista et al. 2017), without the need

for an accreted component. However, rotation curve separation would also

naturally be present in an axisymmetric system because of the increasing

asymmetric drift with population age. Therefore, it is the longitudes with

forbidden velocities, which probe the variation of the bar’s strength with age.

(See Section 3.5.)

5. Finally, we present predictions of our two metrics and the profiles of rotation

curves for key fields within the MW Bulge (see Section 3.6). These will allow

for follow-up study with HST-BTS data (Clarkson et al. in preparation) along

with future survey missions such as RST and LSST. We recommend deep

observations of fields away from the minor axis, close to the regions of (|l|, |b|) =

(6◦, 5◦) where we have demonstrated rotation curves have forbidden velocities.
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3.8 Appendix A: Separation of Kinematics in Model

2

Here, we present the properties of Model 2, a simulation with the same initial

conditions to our fiducial model but different subgrid physics to those outlined in

Section 3.2.1. The following figures compare the properties of the bar and bulge pop-

ulations of Model 2 with those of the fiducial model. We also present the equivalent

maps of our ξ and δµl metrics for Model 2.
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Figure 3.13: Top panel: the radial profile of the A2 Fourier amplitude at time

t = 10 Gyr of the fiducial model and Model 2. Bottom panel: the change in phase

angle of the m = 2 mode with radius at t = 10 Gyr. Vertical green lines indicates

where A2 reaches its half maximum value and |∆ϕ| > 10◦ for each model. Averaging

these two values results in bar radial extents of 4.85 ± 0.55 kpc and 4.80 ± 0.90 kpc

for the rescaled fiducial model and Model 2 respectively.
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Figure 3.14: The global bar amplitudes of the fiducial model and Model 2 versus

time. The major growth period for the fiducial model is between 2 and 4 Gyr, and

4 and 6 Gyr for Model 2.
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Figure 3.15: The cumulative distribution of ages within Model 2’s bulge region, de-

fined at top left-hand side, and our definition of the young (blue) and old population

(red). The average age for the two populations (vertical black dashed lines) is 5.4

and 9.6 Gyr, respectively.
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Figure 3.16: Unextincted apparent magnitude distributions of simulated RC stars

along the LOS within |l| < 4◦ for |b| = 4◦ (left-hand panel), 5◦ (middle panel) and 6◦

(right-hand panel) with δ|b| = 0.25◦ in Model 2. Young (age < 7 Gyr) and old (age

> 9 Gyr) stars are represented by the blue and red histograms, respectively. The

magnitude distributions have been convolved with a Gaussian of width σ = 0.17 mag

to represent the width of the RC. In the fiducial model (Fig. 3.2), a bimodality is

first evident at |b| ≃ 5◦ whereas in Model 2 the distribution is only split at |b| ≃ 6◦.
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Figure 3.17: Top panel: density distribution of bulge stars in Model 2. Blue and

red contours follow young and old population densities, respectively. Middle panel:

separation amplitude, ξ, for each pixel representing a 1×1 deg2 field. Bottom panel:

model uncertainty on the separation amplitudes for each field. In the bottom two

panels, the yellow contours follow the density of all bulge stars.
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Figure 3.18: Top panel: the δµl distribution in the bulge region of Model 2 defined

as the difference in ⟨µl⟩ between the young and old populations at ∼ 8 kpc. Middle

top panel: the same as above but with young and old stars apparent magnitudes

convolved with C18 uncertainties of σmag,Y = 0.119 and σmag,O = 0.153. Middle

bottom panel: the same as above but with both populations convolved with the

width of the RC, σmag,RC = 0.17. Bottom panel: the calculated error for each field

when applying the RC magnitude uncertainties.
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Gaia dR3 Ages from Variables for

galactIc Dynamics (GRAVID)

4.1 Introduction

Stellar variability refers to changes in the brightness of a star over time. Over their

lifetimes, stars pass through various phases of variability as they age. For this work,

we focus primarily on long-period variables (LPVs), referring to the group of stars

that vary periodically (or quasi-periodically) on timescales from tens of days up to

thousands of days. LPVs are thermally-pulsating cool (red) giants or supergiants

that lie on the red giant brand (RGB) and asymptotic giant branch (AGB) of the

Hertzsprung–Russell diagram. Therefore, they typically have low- to intermediate-

mass (0.5 – 8 M⊙). AGB stars have depleted the hydrogen in their cores and are

in the later stages of their evolution. As a result, the star expands and contracts

during the pulsation cycle, causing its outer layers to cool and heat up, leading to

periodic brightness and colour changes.

One of the earliest LPVs to be identified in the late 16th century was named ‘Mira’

by Johannes Hevelius and pulsated with a primary period, changing brightness by a
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whole magnitude. Subsequent observations by fellow astronomers Ismail Bouillaud

and Johannes Holwarda estimated the period to be ≈ 330 days. Mira variables

are named after the prototype star Mira and represent LPVs with large variability

amplitudes. However, they can also exhibit long secondary periods (e.g., Nicholls

et al. 2009; Pawlak 2023).

Other classifications of LPVs include semi-regular (SRVs) and irregular variables,

small amplitude red variables (SARV) and OGLE1 small amplitude red giants (OS-

ARGs), which all have secondary periods (first, second, or third overtones) or are

less periodic. Many of the less regular LPVs pulsate in more than one mode.

4.1.1 Period Relations

Early observations of Mira variables in the Large Magellanic Cloud (LMC) demon-

strated that they follow a tight period-luminosity relation (e.g. Glass & Evans 1981;

Wood et al. 1999; Groenewegen 2004), allowing them to be used as standard can-

dles. The period-luminosity relation is typically calibrated empirically using Mira

variables in the LMC (see recent work by Yuan et al. 2017; Bhardwaj et al. 2019;

Iwanek et al. 2021). However, few theoretical models of stellar evolution reproduce

the observed period-luminosity relations of fundamental mode pulsation (Trabucchi

et al. 2021a,b) and further work is needed to constrain these relations further.

In the Solar Neighbourhood, empirical studies, such as those of Merrill (1923)

and Feast (1963), found that Miras with short periods have hotter kinematics (larger

velocity dispersions) and larger vertical extents out of the plane (Feast & Whitelock

2000). This relation is usually interpreted as the period correlating with the age of a

Mira variable where short periods (and hotter kinematics) are associated with older

stellar populations and the opposite for long-period Miras. We present in Fig. 4.1

four empirically derived period-age relations from recent studies of Mira Variables

1Optical Gravitational Lensing Experiment (OGLE).
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Figure 4.1: The period-age relations for Milky Way Mira variables from Grady

et al. (2019, red), Nikzat et al. (2022, green), Sanders et al. (2022, blue), Trabucchi

& Mowlavi (2022, magenta) and Zhang & Sanders (2023, orange). Uncertainties in

the relations have not been plotted but can be significant (see Trabucchi & Mowlavi

2022). We use the vertical black dashed lines later in section 4.6.2 to define relatively

young and old Miras in the Milky Way.

in the Milky Way. It is clear that there is a considerable disagreement between the

ages of Miras for a given period. Indeed the uncertainties (not shown) predicted in

the relations from Trabucchi & Mowlavi (2022) can be significant. Using theoretical

pulsation models, the authors found there is a 3 Gyr range of ages for Miras with a

350 day period. Despite this uncertainty and contention between relations (Fig. 4.1),

populations of Miras with varying periods can still be used as age indicators within

the Milky Way and in external galaxies (e.g., Catchpole et al. 2016; Grady et al.

2019, 2020a).

This chapter introduces key surveys of variables stars in the Milky Way in Sec-

tion 4.2. Then, in Section 4.3, we summarise the contents of Gaia Data Release 3
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(DR3) and present the methods of extracting LPVs from the catalogue. We also

highlight the effects of large variability amplitude on photometric and astrometric

solutions within Gaia and other multi-epoch surveys in Section 4.4. Next, we define

a sample of LPVs in the LMC and present methods for extracting Mira candidates

in Section 4.5. We then apply these methods to a Milky Way LPV sample in Sec-

tion 4.6, exploring the spatial and kinematic distributions of Mira candidates as

a function of the period after applying dust corrections to obtain 5D coordinates

for the Milky Way sample and 6D coordinates for a subset with radial velocities.

Finally, we summarise our findings in Section 4.7.

4.2 Variable Star Surveys

Surveys that revisit the same regions of the sky are naturally able to detect stel-

lar variability. However, the periods they can resolve are limited by the cadence

(the frequency of repeat observations) as well as the length of the mission. Sev-

eral large-scale multi-epoch surveys have been conducted since the 1990s, providing

significant leaps in our understanding of stellar evolution and variability, namely,

the All-Sky Automated Survey (ASAS, Pojmanski 1997), the Optical Gravitational

Lensing Experiment (OGLE, Udalski et al. 1992), the Panoramic Survey Telescope

and Rapid Response System (Pan-STARRS, Chambers et al. 2016), the Zwicky

Transient Facility (ZTF, Bellm et al. 2019), the Massive Compact Halo Objects

Project (MACHO, Cook et al. 1992) and the VISTA Variables in the Via Lactea

Survey (VVV, Saito et al. 2012). In addition, modern observatory facilities dedi-

cated to detecting exoplanets through the transit method, such as the Wide Angle

Search for Planets (WASP, Pollacco et al. 2006), Kepler (Borucki et al. 2010), and

Transiting Exoplanet Survey Satellite (TESS, Ricker et al. 2014), produce data sets

suitable for measuring and detecting variable stars. All-sky astrometric surveys also

provide multi-epoch data on a large sample of stars over large timescales (Eyer &
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Mowlavi 2008). We outline two important missions here.

4.2.1 Hipparcos

One of the early and most extensive surveys of variable stars was carried out by the

European Space Agency (ESA), HIgh Precision PARallax COllecting Satellite or,

more commonly, Hipparcos (Perryman 1986). Launched in 1989, Hipparcos measured

the parallax of ∼ 120 000 bright stars in the solar neighbourhood. The mission’s

primary goal was to measure the parallax of stars with an unprecedented precision of

2 milli-arc-seconds (mas). Hipparcos was also able to determine the proper motions

of stars with an accuracy of 2 mas yr−1, achieved by measuring each star on average

100 times during the mission lifespan of over three years. A by-product of repeating

measurements of the same stars was that it provided the light curves of variable

stars with periods as short as one hour. Many new periodically variable stars were

discovered as a result of the Hipparcos mission.

4.2.2 Gaia

The successor to the Hipparcos mission, the Gaia satellite, is also an ESA mission

(Gaia Collaboration et al. 2016). Its goal is to create the most extensive, most pre-

cise three-dimensional map of the Milky Way by surveying ∼ 1% of the Galaxy’s

∼ 200 billion stars. Gaia was launched in 2013 with routine operations commencing

in July of 2014 and is expected to operate until 2025. The spacecraft is designed

for astrometry: measuring stars’ positions, distances and motions with an unprece-

dented sub-milliarcsecond (<mas) precision.

Gaia targets objects brighter than 20.7th mag. in a broad photometric band

(G) that covers the extended visual range between near-UV and near-infrared. The

astrometry instrument (Astro) precisely determines the positions of stars and - by

combining the measurements for each individual star over the five-year mission -
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determines their parallax. Therefore its distance and proper motion (the velocity of

the star projected on the plane of the sky) can also be measured.

In addition to the broad white light photometric G-band, there is the spectro-

photometer (BP/RP). The blue and red spectro-photometry, BP and RP, respec-

tively, help determine stellar properties such as temperature, mass, age and colour.

In addition, prisms provide low-resolution spectra2.

The Radial-Velocity Spectrometer (RVS) is primarily used to determine the ve-

locity of objects along the line of sight by acquiring high-resolution spectra in the

spectral band 847 − 874 nm (field lines of calcium ion). The RVS reveals a star’s

velocity along the line of sight by measuring the Doppler shift of absorption lines

in a ‘high-resolution’ (λ/∆λ ∼ 11 500) spectrum for stars brighter than apparent

magnitudes of 17.5. Radial velocities are measured with precisions between 1 km s−1

(V = 11.5 mag.) and 30 km s−1 (V = 17.5 mag.), though there are more significant

uncertainties for large amplitude LPVs and fainter sources (see Section 4.4).

Given all the aforementioned attributes, Gaia is particularly suited to conduct

an all-sky survey of Mira variables in the Milky Way and Local Group galaxies.

4.3 Gaia DR3

The initial set of data released as Gaia Early Data Release 3 (EDR3) (Gaia Col-

laboration & et al. 2021) on December 3rd, 2020, included observations of G-band

magnitudes for ≈ 1.8 billion sources with GBP and GRP magnitudes for ≈ 1.54 bil-

lion and ≈ 1.55 billion sources, respectively. A full astrometric solution: positions

on the sky (α, δ), parallax (ϖ), and proper motions (µα, µδ) for approximately 1.46

billion sources were also included with a limiting magnitude of G ≈ 21 mag. and

a bright limit of G ≈ 3 mag. The astrometric solution had several new quality

2The BP-band covers wavelengths from 330 to 680 nm, while the RP-band covers 640 to 1050

nm over ≈ 25 pixels and ≈ 30 pixels, respectively.
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indicators discussed in Section 4.4.2.

The full Gaia DR3 complemented the above data set with new products released

on June 13th, 2022 (Gaia Collaboration et al. 2022). Gaia defined a celestial reference

frame, allowing us to account for our motion through the Galaxy with ≈ 1.61 million

reference frame sources included in DR3 (Gaia-CRF3). In addition, astrometric

cross-matches between Gaia (E)DR3 sources and other Milky Way surveys such as

Hipparcos, Two Micron All Sky Survey (2MASS) Point Source Catalog and Extended

Source Catalog (PSC & XSC), the Sloan Digital Sky Survey (SDSS), the Pan-

STARRS were also included (Marrese et al. 2019).

These products also included object classifications for 1.59 billion sources and as-

trophysical parameters (e.g., effective temperature, chemistry, extinction, distance)

from BP/RP spectra for 470 million objects. Other astrophysical parameters from

the BP/RP spectra for smaller subsets of the sources include mass, age and spec-

tral types. In addition, Gaia DR3 released mean RVS spectra for 1 million objects,

mean radial velocities for 33 million stars and mean magnitudes for 32 million ob-

jects with GRVS ≲ 14 mag. with effective temperatures (Teff) in the range of ∼ 3 100

to 14 500 K.

Variability analysis of the epoch photometry for ≈ 10.5 million sources provided

additional parameters for measuring the sources’ brightness variation and classified

them into 24 variability classes. The Gaia team performed detailed variability anal-

ysis on several classes, and the results were published in separate data sets (Eyer

et al. 2022). Candidate LPVs from the Specific Object Study (SOS) have published

generalised Lomb–Scargle periods and Fourier amplitudes for their primary period if

it lies in the range of 35 day to 1039 days3. The Gaia DR3 release included 1 720 588

long-period variable sources, providing a remarkable and unique data set to study

the Milky Way’s structure, kinematics and the Galaxy’s evolutionary history.

3The duration of the Gaia mission at the DR3 release.
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Data for this work were extracted from the University of Heidelberg Gaia TAP

service as part of the Data Processing and Analysis Consortium (DPAC) using

TOPCAT (Taylor 2005)4. In Table 4.1, we summarise common quantities from the

Gaia DR3 archive used in this chapter.

4.3.1 Gaia DR3 LPV Sample

We describe here the prescriptions we impose to select a clean sample of LPVs from

the Gaia archive.

We are interested in studying LPVs that are not part of binary or multiple

systems. Therefore, we use the condition non single star = 0 from the

gaia source table. We also ensure quality data is included by removing duplicate

sources (duplicated source = ’FALSE’) from the same table.

We extract LPVs using the classifier results of the variability pipeline (Lebzel-

ter et al. 2023) by specifying sources that have the highest classification score to

be LPV from the vari classifier result table, conditioning the parameter

best class name = ’LPV’. The sources must also appear in the

vari long period variable table5. From the LPV table, we also require that

the frequency has been modelled successfully and therefore frequency IS NOT

NULL).

Carbon-rich LPVs have a period-luminosity relation that is more uncertain than

their oxygen-rich counterparts (e.g., Whitelock et al. 2008). Lebzelter et al. (2023)

describe a method to distinguish between the two classes by utilising the low-

resolution RP spectra. The surface chemical signatures between carbon-rich (C) and

oxygen-rich (O) LPVs have distinct C/O ratios, resulting in fundamentally different

spectra. Spectra of O-rich red giants (top panel of Fig. 4.2) have wide absorption

features due to high abundances of TiO (Titanium Oxide). However, the spectra

4With particular thanks to Mark Taylor and Jon Juaristi Campillo.
5i.e., vari long period variable.source id IS NOT NULL
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Figure 4.2: Epoch RP spectra of the O-rich Mira star T Aqr (top panel, pulsation

period of 203 days) and the C-rich Mira star RU Vir (bottom panel, pulsation

period of 425 days) coloured by the various phases of their pulsation cycle. The

horizontal axis represents an arbitrary, dimensionless pseudo-wavelength covering

the 640 to 1100 nm wavelength range. Image credits: ESA/Gaia/DPAC, Nami

Mowlavi, Isabelle Lecoeur-Täıbi, Maria Süveges, Thomas Lebzelter, Francesca De

Angeli, Laurent Eyer, Dafydd Evans, Michal Pawlak, and the Gaia CU7 Geneva

and CU5 Cambridge teams.
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of C-rich giants (bottom panel of Fig. 4.2) show wide absorption features due to

the presence of CH (Methylidyne) and C2 (Diatomic Carbon). Therefore, the width

of the absorption features is larger for C-rich stars, while O-rich stars show more

absorption features. From these low-resolution spectra of each LPV, the pseudo-

wavelength separation between the two highest flux peaks detected in the spectrum,

∆λRP, i at each epoch i, is taken as a proxy for the spectral absorption width. For

each LPV the median separation is computed, ⟨∆λRP ⟩ where Lebzelter et al. (2023)

define C-rich LPVs as those with ⟨∆λRP ⟩ > 7. Thus O-rich LPVs have lower sepa-

ration with ⟨∆λRP ⟩ ≤ 7. When the automated routines cannot distinguish between

the two classifications, the is cstar flag in the vari long period variable

table is set to ’NULL’. Therefore, to extract only confident O-rich LPVs, we use

the condition is cstar = ’False’.

We also require infrared photometric measurements acquired from the 2MASS

PSC (Skrutskie et al. 2006) using the cross-matching algorithm (Marrese et al. 2019)

provided by Gaia DPAC6. Finally, we combine the above conditions to construct the

following ADQL query, which we used to extract single star and oxygen-rich LPVs

from the Gaia DR3 archive:

SELECT gs.*,lpv.*, claslpv.*, n.*, j.*, tmass.*

FROM gaiadr3.gaia_source AS gs

JOIN gaiadr3.vari_classifier_result

AS claslpv USING (source_id)

JOIN gaiadr3.vari_long_period_variable

AS lpv USING (source_id)

JOIN gaiadr3.tmass_psc_xsc_best_neighbour

AS n USING (source_id)

6The naming conventions for external catalogues, extcat.twomass, are unique to the Uni-

versity of Heidelberg Gaia TAP service.
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JOIN gaiadr3.tmass_psc_xsc_join

AS j USING (clean_tmass_psc_xsc_oid)

JOIN extcat.twomass AS tmass

ON j.original_psc_source_id = tmass.mainid

WHERE gs.non_single_star = 0

AND gs.duplicated_source = ‘FALSE’

AND (claslpv.best_class_name = ‘LPV’

OR lpv.source_id IS NOT NULL)

AND lpv.frequency IS NOT NULL

AND lpv.is_cstar = ‘FALSE’

where the above query returns 321 581 LPV sources7.

Further selection criteria beyond this point were applied to the results of running

the ADQL query above. Conceivably, the following selections can be joined to a

larger query8.

For our analysis, we require the 2MASS Ks-band and H-band magnitudes, thus

removing an additional 45 sources where values of magnitudes are ’NULL’. To also

ensure we use the best possible cross-matched sources, we also filter on the following

parameters:

xm_flag = 8

number_of_neighbours < 2

number_of_mates < 1

found in the tmass psc xsc best neighbour table. These conditions filter

sources with multiple matches with the 2MASS catalogue, removing 4 124 sources.

Finally, we separate Milky Way LPVs from satellites and Local Group galaxies using

7A query with the same selection conditions but not including the cross-match with 2MASS

PSC returns 322 751 sources (1 170 additional sources).
8Applying all of the selections in one query causes the request to time out.
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Satellite Number of LPV Sources

LMC 12 325

SMC 1 485

M31 32

M33 14

Fornax dSph 5

NGC 6822 9

Total 13 870

Table 4.2: The number of Gaia DR3 LPV sources associated with Milky Way satel-

lites and Local Group galaxies.

the definitions from Gaia Collaboration et al. (2021) (their table C.2) and Lebzelter

et al. (2023) (their section 2.1) with the number of sources associated with each

satellite presented in Table 4.3.1 below. Therefore, we are left with a sample of

303 542 Gaia DR3 Milky Way single star, oxygen-rich LPV sources with good cross-

matching with the 2MASS PSC.

4.3.2 LPV Variability Amplitudes

When studying LPVs, we consider the Field-of-View (FoV) magnitude, GFoV, which

is calculated without a weighting procedure (mean mag g fov, see Eyer et al.

2022). We define the amplitude of variability for LPVs to be the standard devi-

ation of the GFoV mean magnitude, σFoV
G , (std dev mag g fov) defined in the

vari summary table.

The variability and SOS pipelines implemented in Gaia DR3 use a Fourier de-

composition approach, assuming the light curve is mono- or multi-periodic (Eyer

et al. 2022) fitting a single period and amplitude to light curves. The amplitude

of the model (Amodel) quoted in vari long period variable table is calculated
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Figure 4.3: Left: the distribution of ∆A, the difference between variability ampli-

tudes calculated via the Fourier model (Amodel) and via standard deviation of the

FoV magnitude (σFoV
G ) (Eqn. 4.3) for LPV sources. The vertical orange line denotes

the mean difference, ⟨∆A⟩, between amplitude metrics, and the vertical dashed

orange lines denote the region between ±5σ∆A of ⟨∆A⟩ (Eqn. 4.4). Right: the

distribution of Amodel against σFoV
G . The orange and dashed lines trace the same re-

gions as in the left panel. Sources with differences beyond 5σ are plotted as magenta

points.

as the half peak-to-peak magnitude of the light curve. In signal processing (Smith

1999), the peak-to-peak amplitude (App) of a sine wave relates to the standard

deviation of the variability, σ, as:

App = 2σ
√

2 . (4.1)

Therefore comparing the model amplitude, Amodel (App/2) with the standard devia-

tion of the FoV magnitude, σFoV
G in a noise-free environment, we expect to find the

following relation:

Amodel/
√

2 = σFoV
G . (4.2)

We know, however, that there is noise in the observations, and thus σFoV
G is
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the sum of σsignal + σnoise which leads to an overestimate of the amplitude. In the

right-hand panel of Fig. 4.3, we show the relation between Amodel/
√

2 and σFoV
G for

the LPVs, which follows the 1:1 relation closely but has an apparent vertical offset.

Furthermore, we show the difference between the two metrics:

∆A = σFoV
G − Amodel/

√
2 , (4.3)

in the left-hand panel of Fig. 4.3. We calculate a mean difference of ⟨∆A⟩ = 0.012

mag. and a standard deviation of σ∆A = 0.16 mag., indicating good agreement

between the amplitude measurements. We find that the model amplitude is slightly

larger than the σFoV
G validating the empirical relation between metrics. However,

we also find several sources with substantial values for Amodel in comparison to σFoV
G

highlighted in the right-hand panel of Fig. 4.3. Therefore we examine the light

curves of extreme cases where:

|∆A− ⟨∆A⟩ | > 5σ∆A . (4.4)

The primary reason for this discrepancy is that the data coverage of the maxima

and minima is sparse for these sources. The fitting procedures of the light curves

struggle to determine the true amplitude of variability because the light curve is

incomplete, and σFoV
G underestimates the total variance of the brightness. However,

reasonable periods may still be identified by the Fourier model. Therefore we exclude

sources with the above condition (Eqn. 4.4) from further analysis.

4.4 Effects of Large Variability Amplitude

Observations of stars typically combine multiple images to achieve greater signal-to-

noise, to measure motions on the sky, or to measure parallax. In the case of Gaia,

it attempts to do all three. Multiple pointings are typically averaged to achieve

higher signal-to-noise in measurements, weighting by the uncertainties from each
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Figure 4.4: Left: comparison between G-band mean magnitude measurements for

LPVs. Right: the difference between the G-band mean magnitude measurements as

a function of the FoV mean magnitude. Both panels are coloured by the standard

deviation of the FoV magnitude.

image. This procedure improves the quality of measurements for most standard

(non-variables) sources. However, large amplitude oscillators vary their brightness

considerably, image to image, and thus the assumed uncertainties also change, bi-

asing weighting procedures. Here we explore the effects of large variability ampli-

tude on the uncertainties of different photometric and astrometric parameters in

Gaia DR3.

4.4.1 Photometry

There are several estimators of the mean magnitude for different objects of interest in

the Gaia archive. For the LPVs, there are two: gaia source.phot g mean mag

and vari summary.mean mag g fov. The first is the weighted mean G-band

flux on the CCD, converted into magnitude. The second is the G-band flux converted

to magnitudes and the unweighted mean magnitude (Field-of-View, FoV).

The light curves of large amplitude variables change their brightness by up to
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3 mag., and when weighting each observation by the uncertainty of the flux9, more

weight is given to the fainter data points leading to an underestimate of the mean

magnitude of the variable.

We demonstrate this effect for LPVs in Fig. 4.4. LPVs with low variability am-

plitude (standard deviation of the FoV magnitude, σfov
G ) follow the 1:1 relation of

phot g mean mag to mean mag g fov. However, large amplitude LPVs have

larger values of phot g mean mag than mean mag g fov, resulting in them ap-

pearing above the 1:1 relation in the left-hand panel. We highlight this effect in

the right-hand panel of Fig. 4.4 by presenting the difference between mean magni-

tude metrics as a function of the FoV magnitude and colouring by σfov
G . For the

largest amplitude LPVs, differences between the mean magnitudes reach 1.0 mag.

with phot g mean mag again underestimating the brightness of the source.

These biases for sources with large variability amplitude also impact estimates

of the amplitude itself. In the literature, the amplitude is estimated by calculating

the square root of the signal variance, e.g.:

Amp =
√
Nobs

σF

F
, (4.5)

where Nobs is the number of observations, and F is the weighted mean flux (e.g.,

Belokurov et al. 2017; Deason et al. 2017; Mowlavi et al. 2018; Iorio et al. 2018;

Grady et al. 2020a). In Gaia DR3 this is calculated using the phot g n obs,

phot g mean flux error and phot g mean flux fields from the

gaia source table, therefore F in Eqn. 4.5 becomes IG.

In Fig. 4.5, we present comparisons between three metrics of variability amplitude

Amp, σfov
G and Amodel. It is clear that there is a strong bias visible in the square root

of the signal variance as an estimate for amplitude. We showed in Section 4.3.2 that

σfov
G correlates strongly with the model amplitude, and here we see no relationship

with the mean magnitude. However, bright and large amplitude LPV sources have

9Calculated as 1/uncertainty2, where uncertainty is Poisson noise, i.e. σ =
√
flux.
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Figure 4.5: Left: the comparison between the square root of the signal vari-

ance (Eqn. 4.5 labeled as Amp, and the amplitude of the model quoted in

the vari long period variable table. Right: the comparison between the

std dev mag g fov defined in the vari summary table and model amplitude.

Both panels are coloured by the mean mag g fov.

their amplitude underestimated by the square root of the signal variance (Eqn. 4.5).

Therefore, such a parameter is not a suitable amplitude proxy for LPVs.

We also show that other measured parameters of the unweighted magnitudes

(FoV), such as the range mag g fov, correlate well with the model amplitude and

highlight the bias of using the square root of the signal variance. Finally, we present

the comparisons between metrics in Fig. 4.6. We find good correlations with the

model amplitude for the parameters: std dev mag g fov, range mag g fov

and trimmed range mag g fov.

4.4.2 Astrometric Solution

Sources with large variability can have more significant uncertainties for their astro-

metric solution for the same reason as having larger biases in their mean magnitude.
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Figure 4.6: Comparisons between stellar variability amplitude estimates with

axis labelled by their Gaia archive entry from the vari summary and

vari long period variable tables for the Milky Way LPV sample. The

std flux over mean flux refers to the square root of the signal variance

(Eqn. 4.5). All points are coloured by their weighted mean magnitude.
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Figure 4.7: Distributions of uncertainties of astrometric parameters as a function

of stellar variability amplitude for LPV sources in the Milky Way. Points in each

panel are coloured by their FoV mean magnitude.

Weighting positions based on their uncertainty, typically derived from their bright-

ness at each epoch, can lead to biases as a variable star oscillates. This results in an

increase of uncertainties for the Right Ascension and Declination (α, δ), on-sky Right

Ascension and Declination proper motions (µα, µδ), parallax (ϖ) and radial velocity

(for those LPVs with RV measurements). We present the distributions of astromet-

ric uncertainties as a function of stellar variability amplitude std dev mag g fov

in Fig. 4.7. We find a clear increasing trend in astrometric uncertainty in each

component with increasing variability amplitude. As expected, vertical gradients of

increasing astrometric uncertainty for fainter sources are also evident.

The ruwe parameter released as part of Gaia DR3 can be used as a proxy for the
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combined error of the astrometric solution. Initially described in DPAC document

code GAIA-C3-TN-LU-LL-124-01 (see also Lindegren et al. 2018) is a Re-normalised

version of the Unit Weight Error (UWE). Single star sources with good astrometric

solution are expected to have a UWE close to 1.0. However, this is not the case

for bright sources and those with extreme colour index, which have exaggerated

uncertainties for stars such as those on the red giant branch (like Miras). Re-

normalising UWE by accounting for the magnitude and colour of the source allows

for a single parameter selection for good sources. This quantity helps identify sources

with observations consistent with a five-parameter astrometric solution, indicating a

well-defined position and uniform motion across the sky. We can also remove sources

whose observations are not consistent with such a solution, where the discrepancy

could, for example, be binary or multiple systems. This single quantity encapsulates

the effects of uncertainty in the astrometric solution.

We present the distribution of ruwe as a function of stellar variability amplitude

in Fig. 4.8 for the Milky Way LPVs (see Section 4.6). The combined effect of

variability amplitude on the uncertainties of individual parameters does not seem

to introduce strong dependencies on the value of ruwe; however, there is still some

indication that high amplitude LPVs have larger ruwe values on average. Although

less clear than in the individual components, vertical gradients of increasing ruwe

for fainter sources are also evident.

4.5 Mira Variables in the LMC

We require a large sample at a fixed distance to define a method for separating Mira

Variables from other LPVs. Therefore, we consider the 12 325 LPVs in the direction

of the LMC. In Section 4.3.1, we cut the LMC solely with on-sky positions to ensure

they are completely removed from the Milky Way sample of LPVs. Here, we take the

spatially selected LMC LPVs and refine this cut by performing the proper motion
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Figure 4.8: The distribution of ruwe as a function of stellar variability amplitude for

LPV sources in the Milky Way. Points are coloured by their FoV mean magnitude.
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selections presented in section 2 of Gaia Collaboration et al. (2021) (see also Gaia

Collaboration et al. 2018), removing 493 stars. We also apply the above amplitude

difference cut (Eqn. 4.3), leaving 11 803 stars in the final LMC LPV sample.

4.5.1 Identifying Track C

In Fig. 4.9, we present the period-magnitude plane for the LMC LPVs, where we

find the variability tracks clearly identifiable. We identify the tracks by comparing

them to previous studies of the LMC (Spano et al. 2011; Lebzelter et al. 2023) and

label them accordingly. Miras are large amplitude oscillators; therefore, we can

identify the Mira track by colouring this plane by the variability amplitude, σFoV
G ,

which highlights Track C.

We use the empirical period-luminosity relation of O-rich Miras from Yuan et al.

(2017) to calculate the expected absolute magnitudes (MKs) of the LPVs:

MKs = −6.9 − 3.77 × (log(P ) − 2.3) − 2.23 × (log(P ) − 2.3)2 − 0.17 , (4.6)

where P is the period of variability. Applying the distance modulus equation, assum-

ing a distance to the LMC to be d = 50 kpc, we calculate the apparent magnitude

as:

mKs = MKs + 5 log(d) + 10 . (4.7)

The expected apparent magnitudes of the LPVs as a function of the period also trace

the Mira track. We use this period-luminosity relation as a guide and select stars

that lie reasonably close to it10, which we present in Fig. 4.10. We knowingly allow

some over-spill onto the neighbouring tracks to capture as many Mira candidates as

possible.

10Determined using the PYTHON package SHAPELY to calculate the geometric distance (S) of LPVs
from Eqn. 4.6 in the mKs

− P plane where |S| < 1.2.
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Figure 4.9: The 2MASS Ks-band apparent magnitudes of LPV sources in the LMC.

Variability tracks are visible and labelled following Spano et al. (2011) and Lebzelter

et al. (2023). Points are coloured by the standard deviation of the FoV magnitude

(σFoV
G , variability amplitude). The Mira track (Track C) is identifiable by the large

variability amplitudes.
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Figure 4.10: The 2MASS Ks-band apparent magnitudes of LPV sources in the LMC

plotted as grey points with the period-luminosity relation of O-rich Miras from Yuan

et al. (2017) plotted as the red line. Blue points are those geometrically close to

this relation (we purposefully allow for a wider area to be captured as we refine our

selection of Miras using other methods).
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4.5.2 Relative Frequency Error

Miras oscillate mono-periodically compared to the multi-periodic oscillations of

SRVs. Typically, separations between Miras and SRVs rely on amplitude-based

cuts to distinguish between them. Trabucchi et al. (2021a) showed that SRVs with

strong fundamental modes could also be used as distance indicators. Therefore, a

more physically appropriate criterion to select fundamental mode oscillators should

also include separations based on pulsation periods. Along Track C, we expect to

find Mira variables and SRVs, with SRVs typically having larger amplitude sec-

ondary periods. As the Gaia variability pipeline only fits a single frequency model

to the light curve, stars that oscillate with a strong fundamental mode will have

a better fit than those with more significant secondary modes. Therefore we use

the error generated by the frequency model to distinguish Mira variables and SRVs

with only small amplitude secondary frequencies. We define a dimensionless relative

frequency error, eν , as:

eν = σν/ν, (4.8)

where σν and ν are defined in the Gaia vari long period variable table as

frequency error and frequency, respectively. We plot log(eν) as a function

of log(P ) where P is the period (1/ν) of the models frequency in Fig. 4.11.

Sources with higher log(eν) as a function of their period will also be sources

where the single frequency modelling of the Gaia variability pipeline will return

larger uncertainties in the frequency estimate, seen as a track in the right-hand

panel of Fig. 4.11. Fundamental mode oscillators like Miras (which also have a large

variability amplitude) occupy lower regions of this space, shown by the distribution

on the left-hand panel of Fig. 4.11.

To find a quantitative threshold between the low and high relative error regimes,

we fit a straight line to the distribution of the LMC LPVs, excluding Track C, to get

the relation between log(eν) and log(P ) calculated to be log(eν) = 0.882 log(P ). We

137



CHAPTER 4

2.0 2.5 3.0

log(P ) [days]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

lo
g(
e ν

)

Track C

2.0 2.5 3.0

log(P ) [days]

Other Tracks

0.0

0.1

0.2

0.3

0.4

0.5

σ
F

oV
G

[m
ag

.]

Figure 4.11: The log relative frequency error, log(eν), as a function of log period,

log(P ), for LMC LPVs on the Mira track (Track C, left-hand panel) and those

which are not (right-hand panel). Points are coloured by the variability amplitude,

σFoV
G . The black dashed line is a linear fit to the stars not on Track C (right-hand

panel) to get the gradient of the relation between log(eν) and log(P ) calculated to

be log(eν) = 0.882 log(P ).
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use this gradient and consider LPVs on Track C, iterating through intercept values

and defining two samples above and below the intercept (i.e., high and low relative

frequency error). We then apply a two-sample Kolmogorov–Smirnov (KS) test to

the two sample distributions of σFoV
G for that intercept (presented in the left-hand

panel of Fig. 4.12). We attempted to find an intercept value that best separates

the distributions into low and high variability amplitude. The null hypothesis of

the two-sample KS test is that both distributions were sampled from populations

with identical distributions. Thus tests for any violation of that null hypothesis –

indicate that the distributions are different. We find a minimum in the KS statistic

D where the two samples have the most significant difference. This results in an

intercept value of c = −3.18 being the best separator of low and high amplitude

variables on Track C.

Therefore we select fundamental mode variables in the LMC to be those stars

on Track C where:

log(eν) < 0.882 × log(P ) − 3.18, (4.9)

In the right-hand panel of Fig. 4.12, we show that the intercept defined above follows

the lower edge of the LMC log(eν)-log(P ) relation from Tracks excluding Track C.

Therefore, stars on Track C, also above this line, have a relative frequency error no

smaller than other SRVs. We note some contamination from stars with low relative

frequency error and low variability amplitude. We find fewer sources with large

amplitude and high relative frequency error. Therefore, relying on a classification

based solely on this metric is insufficient.

4.5.3 Mira Amplitude Distinction

As we shown in Fig. 4.13, there is still some overlap in the distributions of σFoV
G

for the low and high relative frequency error regimes. Therefore, it is also prudent

to also apply a threshold on variability amplitude to obtain a clean sample of Mira
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Figure 4.12: Left: results from KS tests for varying values of the log(eν)-log(P )

relation intercept. The dashed black line denotes the initial linear fit to the LMC

LPVs excluding Track C (right-hand panel of Fig. 4.11). The vertical dashed ma-

genta line shows the location of the minimum KS statistic (D), where we find the

optimal intercept to be c = −3.18. Right: the black points show the LMC log(eν),

log(P ) distribution for all LPVs. The log(eν), log(P ) distribution for Track C are

coloured by σFoV
G . The black dashed line is a linear fit to the stars, not on Track C.

The magenta dashed line is the linear fit with optimal intercept (identified in the

left-hand panel, Eqn. 4.9). The magenta line separates low-amplitude SRVs from

the fundamental variables below this line.
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stars. Canonically, Mira variable definitions have relied on cuts in amplitude and

colour. Since we can determine the variability tracks in the LMC and have defined a

threshold between the low and high relative frequency error regimes, we can also find

a variability amplitude cut that best separates Miras from SRVs. We must find the

crossover region of the largest amplitude variables with high relative frequency error

and the lowest amplitude fundamental mode oscillators (low relative frequency er-

ror). Taking the classification from relative frequency error as the ‘truth’ of whether

a star is a Mira or a SRV (Eqn. 4.9), we can consider a varying threshold cut in

amplitude, σFoV
G to make a ‘predictive’ classification of each star with Miras having

larger amplitudes.

For each value of a threshold σFoV
G , we calculate the mean square contingency

coefficient, rϕ
11 which is a measure the correlation of binary classification methods

(Yule 1912; Matthews 1975). We then find the maximum value, which results in

the closest match to the relative frequency error classification. The rϕ value for

each threshold value is also presented as the right-hand axis in Fig. 4.13. We find

a critical value of σFoV
G = 0.282 mag. resulting in an rϕ value of 0.835 and overall

accuracy (number of true positives and negatives as a fraction of all classifications)

of 93.3% at reproducing the relative frequency error classification. The confusion

matrix using this critical value is presented in the top right of Fig. 4.13.

While we expect to find good agreement between relative frequency error and

amplitude cuts from the distributions presented in Fig. 4.12, we apply both cuts to

the LMC LPVs, resulting in a sample of 966 LMC Mira variables, representing 8.2%

(966 / 11 803) of the LMC LPV sample.

11rϕ = [(TP × TN) − (FP × FN)]/
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN), where

TP = number of true positives, TN = number of true negatives, FP = number of false positives

and FN = number of false negatives for each value of σFoV
G evaluated.
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Figure 4.13: The normalised distributions of variability amplitude, σFoV
G , for the low

and high relative frequency error regimes (left-hand axis, green and red histograms,

respectively) for stars on Track C in the LMC. The mean square contingency coeffi-

cient (rϕ) calculated at each value of σFoV
G is presented as the black line (right-hand

axis). The vertical black dashed line shows the location of the maximum value of

rϕ, giving the critical amplitude. The confusion matrix between definitions based

on σFoV
G and relative frequency error for the critical amplitude (σFoV

G = 0.282 mag.)

is presented in the top right-hand corner.
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4.6 Milky Way Mira Variables

We start with the base sample of 303 542 LPVs from the Gaia DR3 catalogue with

the satellites removed (section 4.3.1). Then, we apply some further quality cuts in

defining a Milky Way sample. The first is gaia source.ruwe < 1.4 (Lindegren

et al. 2021b), which is applied to remove 22 859 sources with bad astrometric solu-

tions12. We also apply the same method presented in Section 4.3.2 to remove sources

with large differences (|∆A− ⟨∆A⟩ | > 5σ∆A) in variability amplitude between the

model amplitude and σfov
G for Milky Way LPVs. These quality cuts result in a clean

sample of Milky Way LPVs of 283 063 sources.

We apply the relative frequency cut defined for the LMC (Section 4.5.2, Eqn. 4.9)

to the Milky Way LPVs to separate fundamental mode oscillators from SRVs pre-

sented in Fig. 4.14. As a result, the large amplitude Mira candidates in the Milky

Way clearly have lower relative frequency error and sit below the main distribution

of SRVs.

In Fig. 4.15, we show the distributions of σfov
G for the low and high relative fre-

quency error LPVs in the Milky Way. We again use the same definition of the

critical amplitude from the LMC σfov
G ≥ 0.282, which separates these two distribu-

tions in the Milky Way. Therefore, Mira variables are LPV sources with low relative

frequency and large amplitudes, which from the confusion matrix in the top right-

hand corner of Fig. 4.14 gives a sample of 45 075 Miras in Gaia DR3. A further 4 306

sources have amplitudes above the critical value but also have significant secondary

periods resulting in larger relative frequency error, and 6 047 LPVs have low relative

frequency error but amplitudes below the critical value.

12We discussed in Section 4.4.2 the dependence of variability on the astrometric solution, which

could bias us away from large-amplitude long-period Miras if a more stringent cut in ruwe is

applied.
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Figure 4.14: The log relative frequency error, log(eν), as a function of log period,

log(P ), for Milky Way LPVs. Points are coloured by the variability amplitude

σFoV
G . The magenta dashed line is the log(eν)-log(P ) relation (Eqn. 4.9) derived in

Section 4.5.2 for the LMC.
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Figure 4.15: The normalised distributions of variability amplitude, σFoV
G , for the low

and high relative frequency error regimes (green and red histograms, respectively)

for the Milky Way LPV sources. The vertical black dashed line shows the critical

amplitude defined from the LMC (Section 4.5.3). The confusion matrix between

definitions based on σFoV
G and relative frequency error for the critical amplitude

(σFoV
G = 0.282 mag.) is presented in the top right-hand corner.
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4.6.1 Distance Estimates For Dust Correction

To determine the spatial distribution of Miras in the Milky Way, we must first correct

their apparent magnitudes for dust. Using the same period-luminosity relation from

Section 4.5.1 (Eqn. 4.6), we can calculate an absolute magnitude without correcting

for dust and determine a distance (in kpc) using the distance modulus:

DPL = 10

(
mKs

−MKs
5

−2
)
, (4.10)

where mKS
is the 2MASS KS-band measured apparent magnitude and MKs is the

absolute magnitude calculated from the period of the Mira variable. We explore

independent distance metrics to correct for the 3D dust distribution that would af-

fect this relation. In Fig. 4.16, we present the distributions of distance from the

period-luminosity relation against three other distance metrics. The first being the

most straightforward approach of taking the inverse of parallax (1/ϖ)13 which, as

expected, does not show clear a monotonic relationship beyond a few kpc away from

the Sun. The second two distances are derived from Bayesian inference of the par-

allax solution (r med geo) and Bayesian inference of the parallax and photometry

(r med photogeo) from Bailer-Jones et al. (2021).

From these comparisons, it is clear that although there is only a weak correlation

between period-luminosity distance and r med photogeo (ρ = 0.35), the latter

represents the best independent measure of distance. We use this quantity to query

3D maps of the dust extinction in the Milky Way. For the Miras, we calculate

the magnitude of extinction in the Ks-band, EKs , using the combined19 dustmap

(Drimmel et al. 2003; Marshall et al. 2006; Green et al. 2019) of the PYTHON package

MWDUST (Bovy et al. 2016) and Bailer-Jones et al. (2021) parallax and photometry

distance estimates.

Therefore the corrected distances, D∗
PL, are calculated using the absolute mag-

nitude from the period-luminosity relation (see Eqn. 4.6, Yuan et al. 2017) and the

13Calculated after applying parallax zero-point correction from Lindegren et al. (2021b).
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Figure 4.16: The number density distributions of distances derived from the un-

corrected (for extinction) period-luminosity relation against distances derived from

parallax (left-hand panel), Bayesian inference of the parallax solution (middle panel)

and Bayesian inference of the parallax and photometry (right-hand panel). The

Pearson correlation coefficients (ρ) for each combination are presented in the top

right-hand corner of each panel. The green line denotes the 1:1 relation, whereas

the dashed green lines show the 2:1 and 1:2 relations.
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Figure 4.17: The same as Fig. 4.16 but for distances derived from the dust corrected

period-luminosity relation (Eqn. 4.11).
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distance modulus equation now including the Ks-band extinction:

D∗
PL = 10

(
mKs

−EKs
−MKs

5
−2

)
. (4.11)

From Fig. 4.17, we can see an improvement in the correlations between the distances

derived from the period-luminosity relation and those from parallax and photometry

Bayesian inference. The distribution of Miras shifts downwards and towards the

1:1 relation in the figure, showing that without the dust corrections, the period-

luminosity relation is overestimating their distances.

We are therefore left with 45 075 Mira variables in the Milky Way with 3D spa-

tial coordinates (α, δ,D∗
PL) and 2D on-sky Right Ascension and Declination proper

motions, (µα, µδ) and therefore a 5D coordinate solution. We find that 3 231 Mi-

ras in our sample also have radial velocity measurements14, so they have full 6D

coordinates (RV sample).

4.6.2 Spatial and Kinematic Distributions

We now conduct a brief exploration of the Miras sample within the Milky Way. In

Fig. 4.18, we show the distribution of Miras in galactocentric coordinates where the

Sun is positioned at x⊙ = −8.232 kpc (Gravity Collaboration et al. 2019, 2021). The

bar within the Milky Way is visible as a large over-density at the Galactic centre

orientated clockwise away from x-axis (the line of sight between the Sun and the

Galactic centre). The near side of the bar is seen at positive Galactic longitude. In

the (x, z) and (y, z) projections, the effect of crowding and extinction in the plane is

apparent, with fewer sources observed at low Galactic latitudes. The radial velocity

sample (RV) is smaller than the full Milky Way sample as expected, but we still

obtain coverage across the Galaxy, including the bulge and disc.

Referring back to the period-age relations presented in Section 4.1.1, we can

determine period ranges to sample the extreme ends of the age distribution of Miras

14gaia source.radial velocity
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Figure 4.18: The spatial distribution in galactocentric projections of the Milky Way

Miras sample (left-hand panels) and the distribution of Milky Way Miras with radial

velocity measurements (right-hand panels). The orange point and orange dashed

lines represent the solar position (x, y, z)⊙ = (−8.232, 0.0, 0.0).

regardless of the relation employed. Relatively old and young Miras are selected as

those with periods, P < 200 days and P > 400 days, respectively. We present the

distribution of old and young Miras in Fig. 4.19 where we can observe the bar in

long-period (young) Miras, which are also constrained to the plane. In contrast, the

short-period Miras are centrally concentrated and are at greater vertical heights in

the disc. In the (y, z)-projection, we can also see a more box-shaped central region

in the young Miras compared to the more roundly distributed old Miras consistent

with the findings of Grady et al. (2020a) and expected when considering the spatial

distributions of differently aged populations in the Milky Way (e.g. Debattista et al.

2017; Fragkoudi et al. 2017c).

However, in the (x, z) projection, we do not see a clear ‘X’ or peanut shape. This

may be due to a combination of the selection function of Gaia DR3 and uncertainties

on the distance estimate, broadening the distribution of Miras towards the bulge.
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Figure 4.19: The spatial distribution in galactocentric projections of long-period Mi-

ras (young, left-hand panels) and short-period Miras (old, right-hand panels). The

orange point and orange dashed lines represent the solar coordinates solar position

(x, y, z)⊙ = (−8.232, 0.0, 0.0).

Adjusting the selection to more favourable criteria, such as increasing the period

threshold selecting younger Miras and spatially selecting those close to the y-axis

(i.e., P > 500 days and |y| < 0.5) results in too few Miras to observe the BP bulge

within their distribution.

We use a Toomre diagram to determine Mira populations’ contributions to differ-

ent structures within the Milky Way, which we present in the top panel of Fig. 4.20.

Here, vR, vϕ and vz are the cylindrical galactocentric velocities calculated using the

coordinate transformation routines of GALPY (Bovy 2015) for the RV sample. Such

diagrams have been widely used to distinguish between structures in the Milky Way

by defining them kinematically (e.g., Venn et al. 2004; Altmann et al. 2004; Qu et al.

2011; Yan et al. 2019), through the stellar populations’ relative velocity compared

to the Local Standard of Rest (LSR). Stars in the Milky Way thin disc typically

have velocities such that |V−V⊙| < 100 km s−1 (e.g., Venn et al. 2004; Bensby et al.
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Figure 4.20: Top: a Toomre diagram of the Milky Way Miras RV sample coloured

by the period, log(P ). The black dashed lines denote the region where |V − V⊙| =

100 km s−1 and |V − V⊙| = 180 km s−1 for the inner and outer lines, respec-

tively. The black dotted line defines the region of a purer halo population with

|V − V⊙| > 250 km s−1 (Koppelman & Helmi 2021). Bottom: the normalised dis-

tribution functions (f) of periods for Galactic stellar components defined in the

Toomre diagram, the thin disc (orange), thick disc (magenta) and halo (green lines)

where the dotted line follows the pure halo definition from above.
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2014; Limberg et al. 2021) where V is the total velocity and of a star V⊙ is the Solar

tangential velocity (V⊙ ≈ 220 km s−1). Thick disc stars are defined in the interval

100 < |V−V⊙|/ km s−1 < 180 and stars with velocities beyond |V−V⊙| > 180 km s−1

are typically associated with the halo, but still contain over 15% of stars with thick

disc kinematics. (e.g., Amarante et al. 2020).

We find an ordering of increasing average period and distribution of the Milky

Way RV Miras as we consider the structures of decreasing relative velocity, halo→thick

disc→thin disc. Considering the average period of these structures, they follow what

is expected from period-age relations but also highlight the evident uncertainty in

this relation as there is much overlap in the distribution functions (bottom panel

of Fig. 4.20). We define a purer sample of Mira halo stars following Koppelman &

Helmi (2021) (|V − V⊙| > 250 km s−1), which has a more prominent short-period

peak in the bottom panel of Fig. 4.20. However, there is still considerable overlap

in the period distribution of the thin and thick discs.

4.7 Conclusions

We have successfully extracted a sample of oxygen-rich LPVs from Gaia DR3 cross-

matched with the 2MASS PSC. We utilise a sample of LPVs in the LMC to define

novel methods for extracting Mira candidates using data-motivated cuts on their

relative frequency error and variability amplitude, minimising contamination from

SRVs. We have justified our cut on amplitude by deriving the threshold between

Miras with high relative frequency error and low amplitude SRVs with low relative

frequency error. The lowest amplitude Miras in our sample may be classified as

SRVs, yet to be included in our sample; they must have strong fundamental mode

oscillations and amplitudes larger than the rest of the SRVs in the LPV sample.

We then apply these methods to a Milky Way LPV sample to generate a cat-

alogue of 45 075 Mira variables with dust corrections and 5D coordinates (full 6D
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for 3 231 sources). Exploring the spatial and kinematic distributions of these Mira

candidates as a function of the period, we find they follow expected trends for the

distributions of the differently aged populations within the Milky Way. Therefore,

Mira variables are good tracers for Galactic dynamics.

Our brief exploration of the kinematics of our Milky Way Miras sample highlights

their utility in studying Galactic dynamics in the disc. However, there are still many

challenges in studying the Milky Way bar and bulge. Such studies with older data

releases of Gaia have begun to constrain properties of the bar, such as its age, using

Mira variables (e.g., Grady et al. 2020b). Recent studies have shown that large

statistical samples of stars with varying chemistry (and inferably age) are able to

confirm predictions from theoretical models, such as those presented in Chapter 3

(Marchetti et al. 2023). The more limited statistics of Miras within the bulge make

similar kinematic signatures harder to detect. Further work will explore how this

sample can be used to explore the dynamics of the Milky Way bulge and to prepare

for future data releases of the Gaia mission.

Looking beyond the bar and bulge of the Milky Way, the Miras sample offers

insight into the ages of stars in the outer disc. Stars in this region are a combination

of stars formed at that radius and those that have migrated to that radius through

secular processes, resulting in complex age and metallicity distribution functions

(Roškar et al. 2008; Kubryk et al. 2013; Di Matteo et al. 2013; Grand et al. 2015;

Loebman et al. 2016). The radial distribution of Miras of varying periods can also

provide a novel approach to understanding the migration of stars in the Milky Way

(Fiteni et al. 2024, in prep.).

From these samples, we have also characterised the effect of large variability

amplitude on increasing the uncertainty in photometric and astrometric solutions

within Gaia with implications for other multi-epoch surveys. This work has high-

lighted the importance of custom data pipelines for LPV sources and understanding
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the photometric, astrometric and variability models for large amplitude variables.

Future Gaia data releases will also include fits of multi-periodic solutions to the light

curves of LPVs, allowing for a more sophisticated approach to separating Miras from

SRVs.
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Box/Peanut Bulges in

Cosmological Simulations

The following chapter is comprised of extracts of contributions to a paper submitted

to the Monthly Notices of the Royal Astronomical Society as Anderson et al. (2023),

entitled:

The interplay between accretion, downsizing and the forma-

tion of box/peanut bulges in TNG50

presented by the following authors:

Stuart Robert Anderson,1, Steven Gough-Kelly,1 Victor P. Debattista,1,2 Min Du,3,

Peter Erwin,4,5 Virginia Cuomo,6 Joseph Caruana,7,2 Lars Hernquist8 and Mark

Vogelsberger9

1Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE, UK

2Institute of Space Sciences & Astronomy, University of Malta, Msida MSD 2080, Malta

3Department of Astronomy, Xiamen University, Xiamen, Fujian 361005, China

4Max-Planck-Insitut für extraterrestrische Physik, Giessenbachstrasse, 85748 Garching, Germany
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5Universitäts-Sternwarte München, Scheinerstrasse 1, D-81679 München, Germany

6Instituto de Astronomı́a y Ciencias Planetarias, Universidad de Atacama, Avenida Copayapu 485,

1350000 Copiapó, Chile

7Department of Physics, Faculty of Science, University of Malta, Msida MSD 2080, Malta

8Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

9Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts

Institute of Technology, Cambridge, MA 02139, USA

5.1 Introduction

The stellar bar of disc galaxies are key drivers of secular evolution (Weinberg 1985;

Debattista & Sellwood 1998; Athanassoula 2002; Athanassoula & Misiriotis 2002;

Athanassoula 2003; Kormendy & Kennicutt 2004; Holley-Bockelmann et al. 2005;

Debattista et al. 2006; Ceverino & Klypin 2007; Dubinski et al. 2009). Box/peanut

bulges (BPs) are the vertically extended regions of galactic bars and are common in

barred galaxies such as the Milky Way (Erwin & Debattista 2017, hereafter ED17).

Stellar populations in the Milky Way that form over a range of ages trace barred and

box/peanut-shaped structures in the bulge. Red clump stars within the Milky Way

bulge exhibit a bimodal distribution as a function of apparent magnitude (distance)

through the box/peanut bulge (McWilliam & Zoccali 2010; Nataf et al. 2010; Saito

et al. 2011; Wegg & Gerhard 2013; Gonzalez et al. 2015).

In external galaxies, ED17 studied 84 local barred galaxies from the Spitzer

Survey of Stellar Structure in Galaxies (S4G, Sheth et al. 2010), finding the fraction

of BPs amongst barred galaxies to be a strong function of stellar mass, and that

above a stellar mass log(M⋆/M⊙) ≃ 10.4, approximately 79% of barred galaxies host

BP bulges. In context, the Milky Way has a mass of log(M⋆/M⊙) = 10.69 − 10.86

(Licquia & Newman 2015); therefore is not unusual to have a BP bulge.

Furthermore, Gadotti et al. (2020) found a fraction of 62% BPs in a sample of 21
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massive barred galaxies from the Time Inference with MUSE in Extragalactic Rings

(TIMER) project (Gadotti et al. 2019). Marchuk et al. (2022) also found an upturn

in BP fraction at log(M⋆/M⊙) ≃ 10.4 in their sample of 483 edge-on galaxies from

the Dark Energy Spectroscopic Instrument (DESI, DESI Collaboration et al. 2016)

survey.

The formation and evolution of BP bulges have been studied in detail using nu-

merical simulations (e.g., Raha et al. 1991; Athanassoula & Misiriotis 2002; Berentzen

et al. 1998; Bureau & Athanassoula 2005; Martinez-Valpuesta et al. 2006; Saha &

Gerhard 2013; Fragkoudi et al. 2017b; Debattista et al. 2017; Saha et al. 2018;  Lokas

2019; Ciambur et al. 2021; Anderson et al. 2023). As discussed in Section 1.6.1 of the

thesis introduction, we find there are two mechanisms for forming as BP bulges, the

buckling instability (Raha et al. 1991; Merritt & Sellwood 1994; Martinez-Valpuesta

& Shlosman 2004; Smirnov & Sotnikova 2019) and the heating of stars by vertical

resonances (Combes & Sanders 1981; Combes et al. 1990; Pfenniger & Friedli 1991;

Skokos et al. 2002a; Quillen 2002; Quillen et al. 2014; Debattista et al. 2006; Sell-

wood & Gerhard 2020) and potential combinations of the two (see also Li et al.

2023).

Work on BP bulges in a cosmological context has been conducted using Zoom

simulations. Examples of BP have been found in the Auriga suite of Milky Way-Like

models (Grand et al. 2017, 2019) by Blázquez-Calero et al. (2020) and Fragkoudi

et al. (2020) who found BP fractions of 19% and ∼ 30% of barred galaxies respec-

tively. These fractions are considerably lower than what is observed in the local

Universe.

For this work, we use the highest resolution run of the IllustrisTNG (Pillepich

et al. 2018b; Springel et al. 2018; Nelson et al. 2018; Naiman et al. 2018; Marinacci

et al. 2018) suite of simulations. We define and extract disc galaxies from the TNG50

simulation (Nelson et al. 2019a,b; Pillepich et al. 2019) to investigate galaxies with
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bars and BPs at z = 0. TNG50 offers an unrivalled opportunity to investigate BP

galaxies with reasonably high resolution but for a significantly larger self-consistent

sample of BP galaxies than has previously been possible. In this work, we define

novel metrics for determining the BP strength of a galaxy and use them to discern

the BP formation mechanism. From these methods, we are also able to determine

the time of bar and BP formation.

5.2 TNG50

IllustrisTNG (Pillepich et al. 2018b; Springel et al. 2018; Nelson et al. 2018; Naiman

et al. 2018; Marinacci et al. 2018) is a suite of advanced cosmological simulations

within the ΛCDM framework that employs magneto-hydrodynamics described in

detail in Weinberger et al. (2017) and Pillepich et al. (2018a). TNG50 simulated

2× 21603 dark-matter particles and gas cells within a volume of side-length 35/h or

∼ 50 c Mpc. Alongside a baryonic mass resolution of 8.5×104 M⊙ and gravitational

softening length for stellar particles of ϵ = 288 pc (1 ≥ z ≥ 0) the simulation also

achieves gas cell sizes as small as 70 pc in dense star-forming regions. This results

in a large statistical sample of galaxies at ‘zoom’-like resolution including many disc

galaxies (Nelson et al. 2019b; Pillepich et al. 2019).

Dark matter halos within IllustrisTNG are identified using the friends-of-friends

algorithm (Davis et al. 1985); subhalos within each halo were identified using the

SUBFIND algorithm (Springel et al. 2001; Dolag et al. 2009). Gravitationally bound

stellar masses within a halo or subhalo are defined as Galaxies. We extract all the

bound particles within a (sub)halo associated with a galaxy and place the centre

of the potential at the origin. We align the angular momentum vector within two

effective radii (2Reff) of the stellar disc with the z-axis, resulting in the stellar disc

being in the (x, y)-plane. For each galaxy, we extract the main leaf progenitor branch

(Rodriguez-Gomez et al. 2015) to study their evolutionary history.
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Symbol Description

Reff Cylindrical radius containing half the total stellar mass.

M⋆ Stellar mass of a galaxy (within a spherical radius r ≤ 10Reff).

Krot Measure of the fraction of kinetic energy attributed to rotational mo-

tion, defined in Section 5.3 (within cylindrical radius R ≤ 30 kpc)).

B ‘Strength’ of the BP bulge, measured as described in Section 5.5.

tbar(zbar) Time (redshift) of bar formation, assessed as described in Section 5.4.

tBP(zBP) Time (redshift) of BP formation, assessed as described in Section 5.8.

tbuck(zbuck) Time (redshift) of buckling, assessed as described in Section 5.5.1.

Table 5.1: Summary of notation used in this chapter.

For the purpose of our study, we seek barred-disc galaxies at the current epoch

(i.e. z = 0). We do not consider galaxies which may have been disc or barred

at earlier epochs that do not survive until z = 0. To ensure our sample is re-

solved enough with sufficient stellar particles, we restrict our sample to galaxies

with log(M⋆/M⊙) ≥ 10.0. For the reader’s convenience, we present a list of the

notation we use in this chapter for various metrics and parameters of the galaxies

in Table 5.1.

5.3 Barred Galaxies

Disc galaxies were selected at z = 0 following the method used by Zhao et al. (2020)

with TNG100: we select those galaxies with stellar masses M⋆ ≥ 1010 M⊙ within

a spherical radius of 30 kpc. We align the galaxy onto the (x, y)-plane using the

angular momentum vector as described in Section 5.2. Disc galaxies are those with

stellar kinematics dominated by ordered rotation using the Krot parameter (Sales
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et al. 2010):

Krot =
1

M

∑

k

mkv
2
ϕ,k

v2x,k + v2y,k + v2z,k
, (5.1)

where the sum is over all stellar particles k within the 30 kpc sphere, and M is the

total stellar mass within the sphere. Krot measures the fraction of stellar kinetic

energy committed to in-plane rotation. Disc galaxies are defined as those having

Krot ≥ 0.5 (Zhao et al. 2020). These cuts result in a sample of 608 disc galaxies at

z = 0. We refer to this as the ‘disc sample’. For this sample, the number of stellar

particles within 10Reff is (1.7−96.0)×105 (median 4.0×105) and the number of gas

particles ranges from just 221 to 2.0 × 106 (median 2.1 × 105) at z = 0. From this

point on, metrics are computed with a spherical radius of 10Reff unless otherwise

noted.

Since a bar is a bisymmetric deviation from axisymmetry, we define the global

bar strength, Abar, as the amplitude of the m = 2 Fourier moment of the stellar

particle surface density distribution, projected onto the (x, y)-plane. We calculate

the global bar amplitude as:

Abar =

∣∣∣∣
∑

k mke
2iϕk

∑
k mk

∣∣∣∣ , (5.2)

where ϕk and mk are the azimuthal angle and mass of each star particle. We compute

the radial profile of a bar’s amplitude as:

a2(R) =

∣∣∣∣∣

∑
k,R mke

2iϕk

∑
k,R mk

∣∣∣∣∣ , (5.3)

where now the sum runs over all stellar particles within a given cylindrical annulus

of radius R. We also calculate the phase of the m = 2 Fourier moment within

each annulus. Within the region where the m = 2 phase is constant to within

10◦, we define the maximum of a2(R) as a2,max. We consider a galaxy to be barred

if a2,max > 0.2. This results in a sample of 266 barred galaxies (44% of the disc

sample).
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Many methods have been devised for measuring bar lengths, each having advan-

tages and disadvantages (e.g. Aguerri et al. 2000; Athanassoula & Misiriotis 2002;

Erwin 2005; Michel-Dansac & Wozniak 2006; Cuomo et al. 2021). At each time

step in the simulation for each barred galaxy identified above, we compute the bar’s

radius, Rbar, as the average of the cylindrical radius at which the amplitude of the

m = 2 Fourier moment reaches half its maximum value (so a2,max/2) after its peak,

and the cylindrical radius at which the phase of the m = 2 component deviates

from a constant by more than 10◦ beyond the peak in a2(R) (the median of half the

difference between the two measures is ∼ 20% of the bar radius).

While TNG50 has a large number of galaxies modelled, the large force soften-

ing means that the force resolution is comparable to the disc thickness. Therefore

density and bending waves (such as those involved in the buckling instability) are

not well resolved (Merritt & Sellwood 1994). Hence dynamical processes are not

fully resolved for small bars. Hence, we restrict our attention to those BPs whose

extent is at least twice the softening length (288 pc at z = 0) to be secure in our

recognition of BPs. In their study of 84 moderately inclined local barred galaxies

ED17 found that the range of sizes of the BP as a fraction of the bar radius is

0.25− 0.76 (see also Lütticke et al. 2000). In ED17, the authors determined the BP

‘extent’ visually from sky-plane density isophotes, taking it as the radius beyond

which spurs, rather than boxy, isophotes dominate. To determine a minimum bar

radius cut with respect to the softening length of the simulation, we assume BPs in

TNG50 would manifest isophotes in the same manner, hence that we can use the

same ratio. Hence, we require a minimum bar radius of ∼ 2 kpc, and so we exclude

galaxies with Rbar < 2 kpc. We argue in Section 5.5.2 for a more stringent cut of

Rbar < 2.6 kpc. This more stringent cut eliminates 75 of the 266 barred galaxies,

resulting in a final sample of 191 barred galaxies out of 608 (∼ 31%) disc galaxies.

We refer to this as the ‘barred sample’. We emphasize that it includes only those
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galaxies with bars at z = 0, whose radius is ≥ 2.6 kpc, having a2,max > 0.2, and not

those which may have formed bars which dissolved (or shrank to a radius < 2.6 kpc

or weakened to below a2,max = 0.2) before z = 0.

Rosas-Guevara et al. (2022) studied barred galaxies in TNG50 with total stellar

mass log(M⋆/M⊙) ≥ 10, defined as the mass enclosed within 10Reff . Disc particles

were defined as those with circularity parameter1 ε ≥ 0.7, and disc galaxies were

defined as those with disc/total mass fraction > 50%. Using this method, and a

different bar length cutoff criteria than used in this study (RG used a bar radius limit

based on softening length), they found 349 discs and 105 (30%) bars, compared to

this study’s 608 discs and 191 (31%) bars. The method used in this paper captures

the same fraction of bars, but in greater numbers, and to enhance statistics, we

retain the use of Krot to identify disc galaxies.

Fig. 5.1 shows the stellar mass distributions at z = 0 for the disc (608 galaxies),

all barred (266 galaxies), barred with Rbar ≥ 2.6 kpc (191 galaxies) and unbarred

galaxies. The stellar mass distribution of the barred sample is similar to the mass

distribution of all (i .e. including those with Rbar < 2.6 kpc) barred galaxies.

5.4 Time of Bar Formation

Following Algorry et al. (2017), we track the evolution of the m = 2 Fourier ampli-

tude for the barred sample, and set the threshold of bar formation at a2,max = 0.2.

We consider the bar to have formed when we detect at least four consecutive snap-

shots with a2,max > 0.2, taking the formation time as the first step where this occurs.

We denote this time as tbar. Once this is identified, we compare with the evolution

of Abar. Since during bar formation the bar amplitude grows exponentially, after

1ε = Jz/J(E), where Jz is the specific angular momentum of the particle around the z-axis,

and J(E) is the maximum specific angular momentum possible at the specific binding energy of a

stellar particle.
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Figure 5.1: The distribution of stellar mass at z = 0 for all disc galaxies (disc sample

– 608 galaxies, blue line), for all galaxies in the disc sample with bars (a2,max > 0.2,

266 galaxies, orange line) and for the galaxies in the disc sample without bars (342

galaxies, green line) at z = 0. The red line shows the distribution for all bars within

the disc sample with Rbar ≥ 2.6 kpc (191 galaxies, see Section 5.3). The vertical

dashed lines show the median stellar masses in each group.
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the instability has saturated we expect to see, at most, a slower secular growth.

Therefore, we inspect the evolution of Abar for each galaxy as a check on the reason-

ableness of the derived tbar. Examples of this procedure are shown in Fig. 5.2, where

Abar stabilises within two or three snapshots after tbar. This Figure also shows that

bars can continue to grow after tbar.

This method works well in 161 (84%) of the 191 barred galaxies, as confirmed by

visual inspection of the density profiles. However, in 30 (16%) barred galaxies, the

evolution of Abar and a2,max is too noisy to find tbar within the algorithm’s rules. In

these cases, we inspect the (x, y) density distributions at each redshift and set tbar

manually. Note that 14 (7%) of the bars have tbar earlier than z = 2.

5.5 Quantification of BP Strength

The strength of a BP is a challenging concept to define, but is important for our

analysis. Previous methods of determining the BP strength have included using the

median height (e.g., Fragkoudi et al. 2020), mass excesses when modelling the bulge

as a spheroidal component (e.g., Abbott et al. 2017) and m-fold deviations from a

pure ellipse in edge-on views (e.g. Ciambur et al. 2021).

In this work we measure the fourth order Gauss-Hermite moment of the vertical

velocity distributions (Gerhard 1993; van der Marel & Franx 1993) along the bar’s

major axis. The fourth order term in this series, h4, measures how peaked the

distribution is compared to a Gaussian. If the distribution has h4 > 0 at a particular

point, then it is more sharply peaked than a Gaussian. If h4 < 0 then the distribution

is flatter than a Gaussian. Debattista et al. (2005) demonstrated that a BP bulge,

when viewed face-on, produces two deep minima in the h4 profile, on either side of

the galactic centre along the bar major axis. This was confirmed observationally by

Méndez-Abreu et al. (2008) in NGC 98. The minima appear because the vertical

velocity distribution of stars is broadened by the presence of a BP. As did Debattista
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Figure 5.2: Bar formation time identification for two TNG50 barred galaxies. The

horizontal green dashed line shows the a2,max threshold and the green points show

a2,max values at each timestep. The solid red line shows log(Abar) at each step. The

thick red vertical lines indicate the time of bar formation, defined in Section 5.4.

The galaxies are labelled with their TNG50 Subhalo IDs.
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et al. (2005), in addition to the h4 profile, we also examined the fourth order Gauss-

Hermite moment of the height distribution along the bar major axis (d4), but found

this to be noisier and more challenging to constrain than h4. Thus for our BP

strength metric we rely solely on h4.

We calculate the h4 profile of vz along the bar major axis (we continue to use a cut

of |y| ≤ 0.3Rbar) for each barred galaxy at every redshift, and identify the minima in

h4 on either side of x = 0, if present. A high signal-to-noise (S/N) ratio is required

to compute accurate Gauss-Hermite moments. To achieve this, we bin along the bar

major axis with an adaptive number of bins (found by experimentation) based on the

particle count within the cut. We compute the S/N ratio as
√

Np, where Np is the

particle count within each bin (Du et al. 2016). If we find minima in the resulting h4

profile, we broaden the bins until we reach S/N ≥ 50 at the location of the minima.

To aid in detecting the peaks and valleys, we smooth the resulting h4 profiles using

a second order Butterworth filter (Butterworth 1930) and interpolate using a cubic

spline. We use the SIGNAL module of the PYTHON SCIPY library to search for peaks

and valleys in the profiles, setting a limit λ on the number of extrema per kpc in the

profile, rejecting any profile which has too many peaks or valleys per kpc as being

too noisy. After some experimentation we set λ = 1.75 kpc−1. A profile without

a valley on each side of x = 0 is deemed to be a non-BP profile. We avoid valley

locations too close to the galactic centre (within 10% of the bar radius from the

centre), and too close to the end of the bar (within 10% of the end). Selecting the

deepest valley on each side of x = 0, we compute their mean, and denote this as

h4,valley. We take the peak in h4 between these two valleys, denoted as h4,peak, and

use the difference as the peak−valley amplitude B:

B = h4,peak − h4,valley . (5.4)

We use this dimensionless quantity as the BP strength metric, akin to its prominence.

Its growth indicates large vertical excursions along the bar region, i.e. a BP bulge.
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We use the term ‘prominence’ as one can observe BP bulges which are large in

physical size (radius) but appear as a weakly defined peanut, or smaller BPs in

radius but with strongly defined ‘X’ shapes. So B measures how well-defined the BP

is. Hereafter, we use the term ‘BP strength’ throughout, on the understanding that

this is a strength metric based on kinematics. Debattista et al. (2005) demonstrated

a strong correlation between the 4th-order moment of the velocity and density, so

we are satisfied with its suitability as a measure of BP strength. Uncertainties on

B are computed using the differences between the raw and smoothed h4 profiles at

the valleys and peak, added in quadrature.

Many bars without BPs have no detectable valleys in their h4 profiles, and there-

fore have B = 0.

5.5.1 Buckling Versus Weak/Non-Buckling BPs

It is generally accepted that BPs can form via two principal mechanisms. The first

is the most morphologically obvious – the buckling instability (Raha et al. 1991;

Merritt & Sellwood 1994; Martinez-Valpuesta & Shlosman 2004; Erwin & Debattista

2016; Smirnov & Sotnikova 2019), a large deviation from vertical symmetry, followed

by a rapid rise in vertical thickness in the inner regions of the bar. Li et al. (2023)

showed that the buckling instability results in the resonant trapping of planar and

vertical stellar orbits. The second pathway is a BP which grows also via the resonant

trapping of stars, albeit more gradually (Combes & Sanders 1981; Combes et al.

1990; Quillen 2002; Sellwood & Gerhard 2020). This can be difficult to distinguish

from weak buckling. However, it is possible that some galaxies can form and grow

their BP bulge through a mixture of buckling and resonant trapping which is difficult

to disentangle. We distinguish those BP bulges which experienced a strong buckling

episode in their history and those which did not. In isolated simulations, buckling

happens rather rapidly, in ∼ 0.5−1 Gyr (e.g. Martinez-Valpuesta & Shlosman 2004;
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Figure 5.3: Example of a buckling galaxy, Subhalo ID 574037, before, at and after

its buckling redshift, z = 0.18. Top row: stellar surface density in the (x, z)-plane.

Middle row: unsharp mask of the surface density in the (x, z)-plane. Bottom row:

smoothed h4 profiles along the bar major axis. Columns represent, from left to

right, z = 0.26, 0.18 and 0.0. The bar radius is indicated by the vertical red dashed

lines. The black dashed line shows h4 = 0 for reference. Each panel uses the cut

|y| < 0.3Rbar.

Martinez-Valpuesta et al. 2006;  Lokas 2019; Cuomo et al. 2022; Li et al. 2023). This

seems consistent with observations (e.g. Erwin & Debattista 2016). The minimum,

maximum and median difference between snapshots in TNG50 from z = 2 to 0

are 87, 236 and 159 Myr, respectively, thus providing good temporal resolution for

detecting strong buckling. We note that strong buckling is obvious in (x, z) density

distributions and unsharp mask images. It is accompanied by a strong signature in

the h4 profile (two deep valleys appear on either side of x = 0), and hence a rapid

increase in the BP strength, B.

For each galaxy with a BP at z = 0, we examine unsharp mask images and

density plots, noting if vertical asymmetry in the (x, z)-plane surface density map
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appears suddenly at any time, alongside the development of an asymmetric ‘X’

shape in the unsharp masks. If it does, and this is accompanied by the prompt

formation of two deep valleys in the h4 profile, and a steep rise in the evolution of

B, then we deem the galaxy to have experienced strong buckling. We label the time

at which this occurs as tbuck and denote these galaxies as the ‘BCK sample’. An

example is shown in Fig. 5.3 where the vertical asymmetry of galaxy 574037, at

the time of buckling, stands out in the stellar density, and the ‘X’ shape is visible in

the unsharp mask. Note the evolution of the h4 profile (bottom row) where we see

the clear formation of two deep valleys on either side of x = 0 at buckling. After

buckling, there is a reduction in the depth of the valley in h4.

We investigated the use of other buckling indicators, such as Abuck (Debattista

et al. 2006) and A1z (Li et al. 2023), but found these to be very noisy in TNG50,

unlike in isolated simulations. In TNG50, we found a sharp increase in B (see the

example in the top left panel of Fig. 5.10) to be a much more reliable indicator of

buckling, because it is insensitive to small misalignments of galaxy inclination (up

to ∼ 30◦).

While strong buckling is obvious, we may miss examples of weak buckling, pos-

sibly classifying BPs which had weak (possibly recurrent) buckling episodes in their

history as having formed via resonant capture. We define those BPs where we did

not detect strong buckling as the weak/non-buckling (‘WNB’) sample.

Fig. 5.4 shows three h4 profiles at z = 0 which we identify as BCK, WNB and

non-BP barred galaxies. Note the deep minima with h4 < 0 in the BP galaxy which

has undergone buckling (consistent with the findings of Sellwood & Gerhard 2020).

The minima in the WNB galaxy are not as deep, but still prominent. The non-BP

h4 profile still has some peaks and valleys, but is considerably flatter in the central

regions than the BP galaxies.

We illustrate the evolution of the h4 profiles, from redshift z = 1.5 to z = 0, in
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Figure 5.4: h4 profiles along the bar major axis (bottom panels) for three galaxies

at z = 0: a buckled BP galaxy (left column), a galaxy with a BP but which has no

major buckling episode (middle column) and a barred galaxy without a BP (right

column). The top panels show the stellar surface density in the (x, z) plane (vertical

scale is shown as z/Rbar). All panels are shown for |y| < 0.3Rbar. The smoothed

profiles are shown in solid red lines. The bar radius is indicated by the vertical red

dashed lines. The two deep minima detected by the BP algorithm (blue vertical

dot-dash lines) are present in the buckling galaxy, shallower ones in the weak/non-

buckling galaxy, and the galaxy without a BP has a profile with shallow valleys. The

green horizontal lines represent the mean valley and peak h4 levels. The galaxies

are labelled with their TNG50 Subhalo IDs.
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Figure 5.5: Examples of the evolution of the h4 profiles along the bar major axis for

three representative galaxies, a BCK (left panel), WNB (middle panel) and non-BP

barred (right panel) galaxy. Time progresses upwards towards the darker colours,

and we plot every other redshift from z = 1.5 for clarity. We apply a constant offset

to separate the profiles vertically and every fifth time step, we label the redshift

in blue. The profiles in solid black lines are those at the time of BP formation

(Section 5.8). The galaxies are labelled with their TNG50 Subhalo IDs.
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Figure 5.6: The cumulative distribution of Rbar for all barred galaxies (those with

a2,max > 0.2 but with no cut in Rbar) (brown dot-dashed line), and BP galaxies

amongst them (blue solid line). To show details at small radius, the x-axis limit is

set to ∼ 5 kpc. The vertical dashed red line marks our bar cut, Rbar = 2.6 kpc.

Fig. 5.5 for representative BCK, WNB and non-BP barred galaxies. In the BCK and

WNB galaxies, clear minima in h4 are present after the BP forms, while the non-BP

galaxy shows no such feature. The minima in buckling galaxies appear suddenly,

and are deeper than in the WNB profiles.

5.5.2 Rbar Cut Refinement

Our initial bar radius cut was 2 kpc, based on arguments presented in Section 5.3.

Fig. 5.6 shows the cumulative distribution of Rbar for BP and non-BP bars, which

includes all bars with a2,max > 0.2. We see that a cut of 2.6 kpc marks the radius

where both cumulative fractions begin to rise linearly in a reasonably consistent

way. Therefore, we select those bars with a2,max > 0.2 and Rbar ≥ 2.6 kpc as the

barred sample. Compared to using a cut at Rbar ≥ 2 kpc, this eliminates a further

58 barred and 5 BP galaxies.
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Recent work by Frankel et al. (2022) concluded that TNG50 bars appear in

general to be too short.

Observational data from the Spitzer Survey of Stellar Structure in Galaxies (S4G,

Sheth et al. 2010), taken from Erwin (2018), is a distance- and magnitude-limited

sample of barred galaxies. From the images, the bar radius is determined from its

deprojected semi-major axis length. We exclude galaxies in the S4G sample with

log(M⋆/M⊙) < 10.0 to match the TNG50 sample. In Fig. 5.7 (Figure 17 in A23), we

present the (log(M⋆/M⊙), Rbar)-plane at z = 0 for the TNG50 sample and overlay

in blue circles the S4G sample.

From this figure, it is clear that at z = 0, TNG50 does not produce excessively

long bars compared to the observations. In TNG50 at z = 0, the median Rbar =

3.5+1.5
−0.8 kpc after the exclusion of bars smaller than 2.6 kpc, and 3.0+1.6

−0.8 kpc without

excluding small bars (16th and 84th percentiles). The observational sample has bar

lengths 4.0+2.1
−1.0 kpc after the exclusion of bars smaller than 2.6 kpc, and 2.7+2.3

−1.1 kpc

for all bars. However, as mentioned above, TNG50, with its limited resolution, may

not accurately capture the dynamics of small bars. Therefore, we maintain our cut

of 2.6 kpc and we apply the same limits when comparing to observational samples.

After this cut, the visual inspection and BP strength determination results in a

population of 106 BPs out of 191 galaxies in the barred sample (∼ 55%) at z = 0. We

refer to those galaxies with a BP at z = 0 as the ‘BP sample’, while the remaining

barred galaxies without BPs at z = 0 constitute the ‘non-BP sample’ (85 galaxies).

5.6 Control Sample

To help investigate the conditions which lead some barred galaxies to form BPs and

others not, we produce a sample of non-BP barred galaxies which match the stellar

mass distribution of our BP sample. For each BP galaxy, we select a barred but

non-BP galaxy which is closest in terms of total stellar mass at z = 0. Although the
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Figure 5.7: The distribution of barred galaxy samples in the (log(M⋆/M⊙), Rbar)-

plane at z = 0, identifying BCK, WNB and non-BP galaxies. The side panels

represent cumulative distributions of the parameter on the respective axis, with their

median shown in vertical (top) and horizontal (right) panels. We overlay in light

blue circles observational data from Erwin (2018), with a cut on log(M⋆/M⊙) ≥ 10.0

to match the TNG50 sample (but without a cut on Rbar ≥ 2.6 kpc). For these data,

Rbar is the deprojected semi-major axis length of the bar. For the (Erwin 2018)

data, to match the TNG50 sample, we show cumulative lines only for Rbar ≥ 2.6

kpc. The horizontal black dashed line represents Rbar = 2.6 kpc.
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matching is rather simple, it helps illuminate key differences in galaxy parameters,

giving us insight into why those barred galaxies without BPs do not form them.

To construct the control sample, for every galaxy in the BP sample, we iterate

through every galaxy in the non-BP barred sample to form combinations of each BP

and a non-BP galaxy. For each combination, we calculate ∆M⋆/M⋆, the fractional

difference between the stellar masses at z = 0. These combinations are then sorted

in ascending order by ∆M⋆/M⋆ for matching. Since we have 84 non-BP galaxies

(we exclude one which is in the process of buckling at z = 0), and 106 BP galaxies,

we must pair some controls with more than one BP. To maximize the match in

stellar mass, we allow each control to be used up to twice, i .e. pairing is done with

replacement. 60 of 84 (71%) unique control galaxies are paired amongst the BP

galaxies. We refer to the population of control galaxies as ‘the control sample’.

Fig. 5.8 shows the distribution of M⋆ for BP and control galaxies. The BP

galaxy and control stellar mass distributions have a two-sample KS test p-value

of 0.38, signifying negligible differences between the two distributions. There are

much larger differences between the BP sample and the population of non-BP bars

(p = 0.008). Using this approach, 14 controls are paired once, 46 twice. The median

fractional difference in M⋆ between BP galaxies and controls is 0.99%. We find 96%

of BP galaxies have a fractional difference in stellar mass with their control of less

than 5%. Thus, when comparing BP and control galaxies, M⋆ is reasonably well

controlled for.

5.7 BP Sample Validation

We use the BP strength metric, B, to perform a quantitative test of the BP sample

obtained through visual inspection, since B may be noisy, for example in cases of

galaxies which experience interactions. We calculate the median of B in the final

five snapshots for each galaxy, B̃5, for the BP and non-BP samples and present their
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Figure 5.8: Distribution of log(M⋆/M⊙) for the BP (blue) and control (dotted black)

samples at z = 0 and for comparison, all barred galaxies without BPs (orange). A

good match between BP and control samples is achieved with a two-sample KS test

having p = 0.38, signifying negligible difference in their distributions.
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Figure 5.9: The distributions of the median of B for the last five time steps, B̃5,

for the BP (blue) and non-BP samples (orange) (left axis). The black line (right

axis) shows rϕ, the ‘phi coefficient’ of Yule (1912); Matthews (1975), a correlation

coefficient between the binary classifications methods, as a function of B̃5 which is

used for the threshold value of BP classification. The confusion matrix in the top

right corner is a comparison of the visual and quantitative classifications using the

Bcrit (maximum rϕ) value indicated by the vertical dashed line.
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distributions in Fig. 5.9 (left axis). As expected, non-BP galaxies have near zero

values of B̃5, with a tail to larger values (some galaxies have transient large values

of B). The BP sample clearly has overall larger values of B̃5 than the controls, with

a large range. However, the distributions overlap. Using a single critical value of B
to classify barred galaxies as BP or non-BP would therefore introduce confusion in

the classifications. We compare the visual and quantitative classifications based on

applying a threshold Bcrit, taking the visual classification to be the ‘truth’. We use

the Bcrit value to make a ‘predictive’ classification of each galaxy solely using each

galaxy’s value of B̃5 (a BP being present if B̃5 ≥ Bcrit).

We compute the mean square contingency coefficient2, rϕ, a correlation coeffi-

cient between binary classification methods (Yule 1912; Matthews 1975), as a func-

tion of Bcrit, then finding the value which results in the closest match to the visual

classification. The rϕ value for each threshold value is also presented in Fig. 5.9

(right axis, black line). We find that a critical value of B̃5 = 0.040 results in an rϕ

value of 0.735, and an overall accuracy (number of true positives and negatives as a

fraction of all classifications) of 86.9% at reproducing the visual classification. The

confusion matrix using this critical value is presented in the top right of Fig. 5.9.

This demonstrates that the B metric captures the BP component of the bulge well,

with some uncertainty in the individual values as well as uncertainty in our visual

classifications. While comparing BP classifications between authors gives minimal

disagreement, this test demonstrates the challenge of identifying BPs with an auto-

mated routine even in simulations.

2rϕ = [(TP × TN) − (FP × FN)]/
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN), where

TP = number of true positives, TN = number of true negatives, FP = number of false positives

and FN = number of false negatives for each value of Bcrit assessed.
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5.8 Measuring the Time of BP Formation

We use the BP strength B to determine the time of BP formation. We calculate

B at each time step, and set a threshold of Bcrit = 0.040 found in Section 5.7,

considering that a BP is present when B > Bcrit. We find the earliest time step with

no more than four subsequent consecutive time steps with B below the threshold

(or no value for B). We consider this to be the time when the BP formed, which

we denote as tBP. The constraint on the reasonably contiguous nature of B avoids

early transient signals (perhaps caused by interactions) and spurious signals caused

by poor alignment. It sets tBP at an epoch around which a BP is firmly established.

That is, a few ‘missing’ time steps with B < 0.040 would not cause us to discount a

time step being tBP, unless this condition were protracted.

Fig. 5.10 shows examples of the evolution of B for an example buckling (BCK)

galaxy, two WNB galaxies and a non-BP galaxy, with their identified tBP. We mark

in green those points sufficiently contiguous in B (and larger than Bcrit) for us to

consider them a suitable measure of BP strength. We see a sudden, rapid increase in

B at tbuck followed by a period of approximately linear decline in the buckled galaxy

whose BP formed ∼ 1 Gyr before buckling. The decline in B is typical of buckling

galaxies in TNG50, but varies across the sample. Sellwood & Gerhard (2020) noted

an initially negative h4 value immediately after buckling in their N -body models,

which increased to around zero by the end of the evolution. The evolution of B in

the BCK galaxies is consistent with their result.

The evolution of B in the WNB sample is more varied, as exemplified by the two

WNB panels. Some exhibit an evolutionary pattern in B similar to buckling galaxies

(although in the unsharp masks and density we were unable to see evidence of any

strong buckling in them), others show a steady increase in B with time. Still others

show a steady decrease in B after an initial rise at tBP, highlighting the difficulty

in disentangling weak buckling from resonant capture-built BPs. We also verify
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Figure 5.10: BP strength B for four galaxies, one buckling, two WNB and one non-

BP galaxy. The black dashed horizontal line shows Bcrit. Green points are those

which meet our contiguity and threshold requirements for a BP, red those which do

not (Section 5.8). The blue vertical dashed line marks tBP, the time of BP formation

(by definition, the non-BP galaxy has no BP at z = 0). The red dashed vertical

line marks the time of buckling. The redshifts where the algorithm calculates no B
value are shown by the orange points along the x axis, and we mark B = 0 with a

dotted black horizontal line. The galaxies are labelled with their TNG50 Subhalo

IDs.
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the reasonableness of tBP by visually inspecting the (x, z) density distributions and

unsharp masks, ensuring a BP is discernible at this time.

For the non-BP galaxies, there is usually no pattern in the evolution of B, and

often no value could be calculated owing to a lack of a substantial h4 peak−valley

structure. Three controls do have some periods of contiguous evolution of B before

z = 0, but B < Bcrit at z = 0. They have indications of having had BPs in the

past, but no longer at z = 0. Five controls have contiguous values of B > Bcrit up

to z = 0 but no discernible BPs in the density plots and unsharp masks.

We check the consistency of tBP and tbar, checking those galaxies where tBP

was more than 1 Gyr before tbar. This occurs in 3 galaxies and we reinspect these

galaxies’ h4 and density plots. We amend tBP forward manually a few time steps in

these cases.

5.9 Summary and Conclusions

We have defined a sample of 608 disc galaxies with log(M⋆/M⊙) ≥ 10.0, in the

TNG50 run of the IllustrisTNG simulation suite at z = 0. We have examined these

galaxies for the presence of bars and box/peanut (BP) bulges and summarised our

findings in Table 5.2. From the disc sample, we find 191 (32%) have bars with

Rbar ≥ 2.6 kpc at z = 0 (Section 5.3). Of these, 106 (55%) have BPs at z = 0.

We have identified bars using a canonical metric, the m = 2 Fourier moment of the

stellar surface density. We have tracked the bar strengths temporally to determine

the epoch of bar formation. To identify BP bulges we have studied the fourth-order

Gauss-Hermite moments (h4) of the stellar vertical velocity distributions along the

bar’s major axis. We use a metric derived from the profile of h4 to measure a BP’s

‘strength’ (how well-defined it is), which we can also measure through time. This

allows us to determine the time of BP formation and the time of major buckling if

it occurs. These quantitative metrics are also reinforced by the inspection of images
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Classification Number

Disc galaxies 608

↪→ All barred galaxies (incl. short bars) 266

↪→ Barred galaxies (Rbar ≥ 2.6 kpc) 191

↪→ BP galaxies 106

↪→ Strongly buckling galaxies (BCK) 52

↪→ Weak/non-buckling galaxies (WNB) 54

Table 5.2: Sample sizes of TNG50 galaxy classifications.

of the stellar surface density and unsharp masks.

We are able to discern between formation mechanisms of a BP by studying their

evolutionary history to find 52 (49%) have strongly buckled in the past, and 54

(51%) have never strongly buckled.

We identify one galaxy which appears to be in the process of buckling at z = 0

(Subhalo ID 608386). We also find five galaxies that appear to have buckled but

do not have a BP at z = 0 but remain barred. Another two galaxies did not buckle

strongly but had a BP that is no longer discernible by z = 0, yet also remain barred.

A detailed analysis of the redshift evolution of disc, barred and BP galaxies is outside

the scope of this work but is certainly worth further study.

In A23, we studied the variation of BP fraction in barred galaxies (fBP) as a

function of stellar mass. We found a similar dependence to that of observations of

local galaxies such as those of ED17 and Erwin, Debattista & Anderson (submit-

ted; hereafter EDA23) studying local barred galaxies from the Spitzer Survey of

Stellar Structure in Galaxies (S4G, Sheth et al. 2010). The BP fraction in TNG50

is low in low-mass galaxies, similar to the results of ED17. However, as shown by

Fig. 5.11, we see a rapid increase of fBP for increasing M⋆ until the fraction plateaus

at log(M⋆/M⊙) ∼ 10.5 at a fraction of ∼ 0.6. Observations also show a platue but
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Figure 5.11: Dependence of the BP fraction on stellar mass at z = 0 for the sample of

191 barred galaxies (solid blue) in A23 (their figure 1). They split the BP population

into the BCK (red) and WNB (green) populations. The fractions next to each point

show the number of BP galaxies/number of barred galaxies in each mass bin. The

blue dashed line represents a generalized logistic regression (GLR) fit to the data

for all TNG50 BPs. The orange stars and dot dashed line represent the logistic

regression fit to the observational data of EDA23 (restricted to bars of radius ≥ 2.6

kpc to match our selection, and limited to the same mass range as in this paper’s

barred sample). Error bars are the 68% (1σ) confidence limits from the Wilson

(1927) binomial confidence interval. TNG50 appears to significantly under-produce

BP bulges, particularly at higher mass.
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they tend to saturate at fBP = 1 at high mass (log(M⋆/M⊙) ≳ 11.2 in ED17 and

log(M⋆/M⊙) ≳ 10.6 in EDA23).

While applying a cut on the bar size in this work will artificially increase the

fraction of BPs by mass, for both the TNG50 results and observations, A23 showed

that these small barred-galaxies typically have low stellar mass. This bias will affect

our measured values for the transition mass and the platue value of the BP fraction

quantitatively, but not the qualitative comparison and conclusions of this work.

Having the bar sizes of galaxies from an observational sample, we are able to make

the same cut, and thus make a direct comparison with TNG50 with this bias applied

to both.

A23 concluded that the low fBP at low M⋆ could be attributed to the youth of the

bars, which is a consequence of downsizing. At high mass, the plateau value being

∼ 60% compared to 100% saturation in observations is due to excessive heating in

TNG50 from merger activity and the numerical effects of lower resolutions. As a

result, the main driver of whether a bar hosts a BP in TNG50 is not the galaxy

mass, but how long and strong the bar is.
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Kinematic Fractionation in

TNG50 Barred Galaxies

6.1 Introduction

Galactic bars are non-axisymmetric structures commonly found in massive disc

galaxies. Bars, which started forming as early as z = 2 (see Guo et al. 2023;

Le Conte et al. 2023), are important drivers of secular evolution (Kormendy &

Kennicutt 2004, and references therein). The kinematics of the bars and their ver-

tically thickened bulge regions have been explored in detail in isolated simulations

(Debattista et al. 2017; Fragkoudi et al. 2017b, 2018; Di Matteo et al. 2019; Debat-

tista et al. 2020), cosmological zoom simulations (Kraljic et al. 2012; Scannapieco

& Athanassoula 2012; Bonoli et al. 2016; Buck et al. 2018, 2019; Debattista et al.

2019; Gargiulo et al. 2019; Fragkoudi et al. 2020; Walo-Mart́ın et al. 2022) and in the

highest-resolution fully-cosmological volumes (Rosas-Guevara et al. 2022; Anderson

et al. 2023).

The in situ separation of different populations within a barred galaxy presented

in Debattista et al. (2017) demonstrates that initially co-spatial populations with
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varying initial radial velocity dispersions (and therefore initial radial action, Debat-

tista et al. 2020) evolve separately in a growing bar: kinematically cooler populations

form a strong bar and a strongly boxy/peanut-shaped (BP) bulge, whereas hotter

populations form a weaker bar, and are more vertically thickened. They termed

this behaviour kinematic fractionation. Since hotter populations are older, and age

correlates with chemistry, bar evolution results in gradients of these properties in

the final morphology of the bar and BP bulge (see also Athanassoula et al. 2017;

Fragkoudi et al. 2017b,c, 2018, 2020; Buck et al. 2019). Such spatial variations of

stellar properties must also be reflected in the kinematics of different populations

(e.g., Gough-Kelly et al. 2022). Thus relatively young populations must have more

eccentric orbits in order to support a stronger bar, while older populations have less

rotational support and are more dispersion dominated, producing a rounder distri-

bution. Evidence of such variations was shown in the Milky Way by Queiroz et al.

(2021) for populations split by metallicity and α-abundance.

In principle, these variations in the density and kinematics of different stellar

populations within a bar may provide clues about the age of a bar. Because bars

grow by trapping stars from the disc, their stellar populations include stars that are

both older and younger than the bar itself. This makes measuring the age of bars

difficult. One fruitful approach to constraining bar ages is to measure the ages of

stars in their nuclear discs, which form because bars drive gas to the centre (e.g.

Gadotti 2009; Kim et al. 2012; Cole et al. 2014; Sormani et al. 2015; Emsellem et al.

2015, and references therein). Since the formation of a nuclear disc or ring follows

that of the bar’s formation, the age of the nuclear disc (when one is present) provides

a lower limit on that of the bar (Gadotti et al. 2015; Baba & Kawata 2020; de Sá-

Freitas et al. 2022). How delayed nuclear disc formation is once a bar is formed is

not well known but is thought to depend in part on the central concentration of

the density (Baba & Kawata 2020). Similarly, the formation of a BP bulge follows
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that of the bar and might also be used to constrain the bar’s age (e.g., Pérez et al.

2017; Buck et al. 2018). Buck et al. (2018), using a Milky Way analogue from

the Numerical Investigation of a Hundred Astronomical Objects (NIHAO) project

(Wang et al. 2015), proposed a method for determining the age of the bar and BP

bulge using the age variation of the separation between the near- and far-side arms of

the bulge along the line-of-sight through the bulge. In the Milky Way, variations in

the separation bimodality produced by BP bulge have been shown to be a function of

metallicity (e.g. Ness et al. 2013a; Gonzalez et al. 2015; Lim et al. 2021). Buck et al.

(2018) also showed that populations contributing to the bar structure and those of

the surrounding disc within the bulge have similar age and chemical distributions,

making them hard to distinguish, except with full kinematic information. This is

not unexpected from a bar which forms within a disc.

Large-volume fully cosmological hydrodynamical simulations are now reaching

resolutions where they begin to capture the secular evolution of disc galaxies within

the larger context, producing large samples of self-consistent barred galaxies (Rosas-

Guevara et al. 2022; Anderson et al. 2023). In this chapter, we use one such simula-

tion to explore whether the stellar populations of barred galaxies retain a dynamical

‘memory’ of the bar formation epoch. We use the highest resolution run of the

IllustrisTNG project (Pillepich et al. 2018b; Springel et al. 2018; Nelson et al. 2018;

Naiman et al. 2018; Marinacci et al. 2018), TNG50 (Nelson et al. 2019a,b; Pillepich

et al. 2019). We study the sample for barred galaxies presented in Anderson et al.

(2023, hereafter A23). In Section 6.2, we briefly describe the TNG50 simulation, the

sample selection of barred galaxies, and in Section 6.3 our method for subsampling

the stellar populations. In Section 6.4, we explore how the bar strength varies as a

function of a stellar population’s age relative to the age of the bar with metrics based

on density and kinematics. In Section 6.5, we investigate signatures of kinematic

fractionation in bulges. Finally, we discuss our results and present our summary in
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Section 6.6.

6.2 TNG50 Sample Selection

The TNG50 run of the gravo-magneto-hydrodynamical cosmological suite of simu-

lations, IllustrisTNG, is its highest resolution realization. The IllustrisTNG simu-

lations are evolved with the moving mesh code AREPO (Springel 2010) within the

ΛCDM framework, including subgrid prescriptions for star formation and chemical

evolution, gas cooling, feedback and black hole formation, and evolution. These

prescriptions are described fully in Weinberger et al. (2017) and Pillepich et al.

(2018b). The free parameters of the model were chosen to reproduce observed inte-

grated trends of galactic properties, particularly their stellar content at z = 0, star

formation rate densities, black hole masses, gas fraction and stellar effective radii.

Because it represents a large cosmological volume, TNG50 produces a large sample

of galaxies at resolutions approaching those of zoom-in and isolated simulations of

individual galaxies. The resolution means that the simulations capture aspects of

the secular evolution of individual disc galaxies. TNG50 achieves a baryonic mass

resolution of 8.5 × 104 M⊙ and gravitational softening length for stellar particles of

ϵ = 0.288 kpc (at z = 0). Gas cell sizes are as small as 70 pc in star-forming regions.

Galaxies bound to dark matter halos (or subhalos) within TNG50 are identified

within the simulation at each timestep using the friends-of-friends (Davis et al. 1985)

and SUBFIND (Springel et al. 2001; Dolag et al. 2009) algorithms. In this work, we

use the sample of TNG50 barred galaxies identified in A23 but focus solely on the

final time step of the simulation (z = 0). These galaxies are centred, and we align

their discs with the angular momentum vector within two effective radii (2Re) along

the z-axis, which places the stellar disc in the (x, y)-plane.

Here we briefly describe the selection criteria for obtaining the barred sample of

galaxies; for full details, see Chapter 5 (Appendix A of A23). First, we impose a
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stellar-mass cut at z = 0 of log(M⋆/M⊙) ≥ 10 within a spherical radius of 30 kpc.

This cut ensures that the galaxies in our sample are traced by a significant number

of particles (N⋆ ≥ 105). We then select disc galaxies by taking a cut on the Krot

parameter, which measures the fraction of kinetic energy committed to in-plane

rotation (Sales et al. 2010). Disc galaxies are identified as those with Krot ≥ 0.5

also within 30 kpc (Zhao et al. 2020).

A23 measured bar length and strength through the Fourier decomposition of the

stellar surface density distribution. The bar being a strong bisymmetric deviation

from axisymmetry implies that the m = 2 amplitude peaks within the bar radius,

where the m = 2 phase is roughly constant (to within 10◦). Therefore we can

quantify the bar strength by the peak amplitude of the m = 2 component as a

function of the cylindrical radius, a2,max. We can also use these profiles to define

the bar radius, Rbar, by taking the mean of the outer radius at which the m = 2

amplitude drops to half the maximum value and the radius at which the phase angle

deviates from constant by more than 10◦. We can also define the bar strength as

the sum of the m = 2 amplitude within the bar radius (Abar). In Section 5.5.2

of Chapter 5 (Appendix A4.2 of A23), we motivate a further cut on bar radius

of Rbar ≥ 2.6 kpc, which removes small bars which are over-produced in TNG50

and are poorly resolved (e.g. Zhao et al. 2020). The final selection criteria for

TNG50 barred galaxies in A23 are log(M⋆/M⊙) ≥ 10, Krot ≥ 0.5, a2,max > 0.2 and

Rbar > 2.6 kpc, resulting in a sample of 191 barred galaxies at z = 0.

The evolution of the bar strength is tracked throughout the evolution of each

galaxy in the sample, allowing us to determine the epoch of bar formation as de-

scribed in Section 5.4 of Chapter 5 (Section A2 of A23). We consider the age of

the bar at the current epoch (z = 0), which we denote as Abar, and present the

cumulative distribution function (CDF) of bar ages in Fig. 6.1; we note bars form

throughout the simulation from z ≈ 3 to the current epoch.
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Figure 6.1: The CDF of bar ages in TNG50, derived as described in Section 5.4 of

Chapter 5 (Appendix A of A23). The dashed line denotes the median Abar while the

dotted lines denote the 25th and 75th percentiles. The earliest bars formed ∼ 11 Gyr

ago at z ≈ 3.
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6.3 Age Dissection

For each galaxy in the barred sample, we construct the CDF of stellar ages (A⋆)

within a cylindrical radius and height equal to the bar radius (R ≤ Rbar and

|z| ≤ Rbar/2). These CDFs differ between galaxies due to the variation in star

formation histories. To account for this variability, we do not attempt to separate

the populations within a galaxy by fixed age bins; instead, we split a galaxy’s CDF

of ages into eight quantiles, each with the same number of star particles. This allows

us to sample the full age range while ensuring quantiles have sufficient particles to

be representative of a population of stars when comparing galaxies. We present an

example of the CDF sub-sampling method applied to galaxy 414917 in Fig. 6.2,

where we split the age CDF into the eight quantiles from young to old, labeled A-H.

Each quantile, referred to hereafter as a ‘sub-population’, contains 12.5 percent of

all stars within the bar region. For galaxy 414917, each sub-population has 141 348

stellar particles from a total of 1 130 784 in the bar region. We then calculate the

mean age of each sub-population, Apop, i, which we use as the single age value to

represent all stars within that sub-population when comparing between galaxies. In

other words, we treat a sub-population as though it were a mono-age population.

We explore the variation in Apop between barred galaxies by comparing the

distributions of sub-populations in order of formation. For example, we explore

the distribution of mean ages in the youngest sub-population, ‘A’, in all the barred

galaxies. Across the sample of 191 barred galaxies, sub-population ‘A’ has a median

age of ⟨Apop,A⟩ = 4.19 Gyr with a lower quartile of 2.26 Gyr and upper quartile

of 5.98 Gyr. The full range of ⟨Apop,A⟩ is 0.24 − 11.34 Gyr, highlighting the wide

variation in stellar assembly history amongst the galaxies in the sample. Fig. 6.3

shows violin plots of the distributions of Apop, i within each labeled sub-population

(A-H) for the barred galaxies. The vertical lines of each violin represent the median,

the 25th and 75th percentiles, and the full range of values. The shaded area of
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Figure 6.2: The cumulative distribution of stellar particle ages within the bar region

of the TNG50 galaxy 414917 at z = 0. Black points denote the mean age of each

sub-population. The green vertical line indicates the age of the bar in this galaxy.
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Figure 6.3: The distributions of average ages for each labeled sub-population (A-H)

of each of the 191 barred galaxies (lower panel). Each row is the distribution of 191

sub-populations formed in the same quantile from all of the galaxies. For example,

row ‘A’ shows the spread of the youngest 12.5% of stellar particles within the bar

region of the 191 galaxies. The distribution of Abar is also shown in the upper panel

for comparison.
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each violin represents the probability density distribution. Note that the overall

broadness of each distribution increases and overlaps the other sub-populations as we

consider younger sub-populations (i.e. moving from populations H to A), reflecting

the inefficient star formation within bars. Thus the youngest populations in old bars

can reach ages ∼ 10 Gyr.

6.3.1 Bar Age Offset

Knowing the age of the bars in the sample allows us to measure the time delay

between the formation of the bar and a stellar population. Therefore we offset the

age of a sub-population, i, within a galaxy by the age of that galaxy’s bar, Abar, i.e.

the time delay between their formations, as:

δτ i = Abar −Apop, i , (6.1)

where positive values of δτ are sub-populations formed after the bar (younger), and

negative values are those formed before the bar (older). As shown in the top panel of

Fig. 6.1, bars form at a wide range of times in TNG50. We present the distributions

of δτ for all sub-populations in the bottom panel of Fig. 6.4. There is significant

overlap between the sub-populations of different galaxies when we offset in this way;

however, there is a sufficient difference between sub-populations much older than

the bar, those born at the epoch of bar formation, and those much younger than the

bar, to allow us to explore general trends in the galaxy evolution across the range

of δτ .

To explore how properties of stellar populations within the bar region vary as

a function of δτ , we consider each sub-population ignoring its order in the stellar

assembly (i.e. ignoring its identifying label A-H) and consider δτ across all galaxies.

We do this as we are more interested in the distribution of ages of a sub-population

relative to the bar’s, rather than the overall stellar assembly histories. Depending
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Figure 6.4: Bottom: The distribution of δτ , the difference between the time of bar

formation and its sub-populations’ (A-H) ages, for all 191 barred galaxies. Top: The

number of sub-populations for all barred galaxies in bins of δτ ignoring their ordering

(summing vertically across A-H). Therefore the total area under the histogram is

equal to 191 galaxies × 8 sub-populations = 1528. The vertical green line denotes

δτ = 0, or populations born at the time of bar formation and have ages Apop = Abar.

Note that distributions are not symmetric about δτ = 0, indicating that, on average,

galaxies’ central regions are dominated by populations older than the bar. The bins

of the histogram presented in the top panel of this figure are used in the analysis

presented in Fig. 6.17 only (see Section 6.5.2).
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on the stellar assembly, periods of high star formation would result in multiple sub-

populations within the same galaxy having very similar Apop and we would not

consider them as very distinct populations from each other.

In the top panel of Fig. 6.4, we bin δτ for the barred sample. A bin in δτ contains

sub-populations from many galaxies with the same age relative to their bar but may

have come from different age quantiles of a galaxy (i.e. have a different label A-H).

If we consider the bin spanning δτ = 0, we can see many sub-populations from

different quantiles (A-H) formed as the bar formed. In the youngest bins in δτ , we

find contributions from sub-populations in the youngest three quantiles (A, B and

C). The oldest quantiles (G and H) all formed before the bar and therefore have

δτ < 0. Also, we note that there are more sub-populations with δτ < 0, indicating

that in TNG50, most bar/bulge regions are predominately older than the bar.

From this point onwards, we do not refer to sub-populations using their quan-

tile label (A-H) and consider population properties as a function of δτ across all

galaxies1.

6.4 Kinematic Fractionation

Debattista et al. (2017) showed that the bar strength of a sub-population is a con-

tinuous function of initial radial velocity dispersion (see also Fragkoudi et al. 2017b;

Athanassoula et al. 2017). As a consequence, bar strength is also a function of

age, with younger populations forming stronger bars and older populations typi-

cally forming weaker bars and kinematically hotter bulges. We explore to what

extent sub-populations retain a ‘memory’ of the evolutionary state of the galaxy

when they formed by exploring their bar properties as a function of δτ . We explore

various morphological and kinematic properties of the different stellar populations.

1Note the binning for the analysis from this point is not restricted to the 5 bins presented in

the top panel Fig. 6.4 except in Section Section 6.5.2.
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Figure 6.5: Top: the rotation curves of TNG50 barred galaxies as a function of the

radius for the 191 barred galaxies. Bottom: The gradient of the rotation curves.

Lines are coloured by the total stellar mass of each galaxy within 10Reff . The

rotation curves are largely flat between 1.5 ≤ R/Rbar ≤ 2.0 (vertical dot-dashed red

lines).

To do this, we define several new quantities, normalisations and scalings of these

different quantities which we summarise in Table 6.1 for the reader’s convenience.

To compare kinematics between galaxies in the barred sample, we first scale the

velocities by the galaxy’s average mid-plane circular velocity beyond the bar radius

(1.5 ≤ R/Rbar ≤ 2.0), which we find to be a good estimate for the flat region of the

rotation curve in the stellar mass range considered, as demonstrated in Fig. 6.5.
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Table 6.1: Summary of quantities and notation used in this chapter.

Symbol Description

Reff The cylindrical radius which contains half the total stellar mass of

the galaxy (the effective radius).

Rbar The bar radius defined from the m = 2 Fourier moment (see Sec-

tion 5.3 of Chapter 5).

Vc(R) The mid-plane circular velocity as a function of cylindrical radius.

Apop Average age of a sub-population of stellar particles within the bar

of a galaxy.

Abar Age of the bar within a galaxy (see Section 5.4 of Chapter 5).

δτ The time delay between the formation of a bar and of a sub-

population of stars within a galaxy.

Xi The over- and under-bars denote the quantity is scaled by the same

metric measured for all bar stars (Eqn. 6.3).

Subscript ‘i’ indicates that the quantity is presented for an individ-

ual sub-population, i.

Abar Total m = 2 Fourier moment of the stellar surface density within

the bar radius.

a2max Peak m = 2 Fourier moment of the stellar surface density within

the bar radius.

V ∗ The asterisk denotes kinematic quantities that are scaled by the

mid-plane circular velocity (Vc) between 1.5 ≤ R/Rbar ≤ 2.0 (see

Section 6.4.1).

a2(V
∗)max Peak m = 2 Fourier moment of the scaled spatially averaged veloc-

ity within the bar radius (Eqn. 6.3).

Continued on next page
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Table 6.1 – continued from previous page

Symbol Description

a2(σV ∗)max Peak m = 2 Fourier moment of the scaled spatially averaged veloc-

ity dispersion within the bar radius (Eqn. 6.3).

B BP strength metric defined from the 4th-order Gauss-Hermite mo-

ment of the vertical velocity distribution (see Section 5.5 of Chap-

ter 5).

Rvalley The location of the minima in the h4 profile of a bar’s vertical

velocity distribution (see Section 6.5.1), scaled by the bar radius.

RBP The BP radius as defined by the bimodal over-density along the

bar major axis (see Section 6.5.2), scaled by the bar radius.

We present an example of a random TNG50 barred galaxy in Fig. 6.6 (Subhalo ID

414917) to demonstrate the trends of bar amplitude with relative age. In the upper

panels, a transition from a strongly barred disc in the youngest sub-populations

to weakly barred and then rounded, centrally-concentrated distributions is evident

for decreasing δτ . In the case of 414917, Abar = 8.69 Gyr, the youngest two sub-

populations (A and B) formed after the bar formed and appear more strongly barred

than the density distribution of all populations (upper left-hand panel). The edge-on

projections are discussed later in Section 6.5.

We measure the bar amplitude (Abar,i) for each sub-population within the bar

radius, Rbar, for all barred galaxies from the m = 2 Fourier component of the surface

density2. To compare galaxies, we scale the bar amplitude of a sub-population by

2Although the youngest sub-populations within the bar have a highly elongated distribution, the

bar amplitude of the youngest sub-population defined over the entire galaxy is low because young

stars preferentially populate the stellar disc and are sparse within the bar itself (see Khoperskov

et al. 2018; George et al. 2019).
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CHAPTER 6

the overall bar amplitude (Abar, tot) for each galaxy, i.e. we compute:

Abar,i =
Abar,i

Abar, tot

, (6.2)

where i ∈ [A,H]3. Values of Abar,i > 1 indicate a sub-population having a bar

strength greater than the bar strength of the bar measured across all sub-populations

of a galaxy, while values of Abar,i < 1 correspond to weaker bars.

We present the resulting distributions of Abar,i and Abar,i as a function of δτ in

the left panels of Fig. 6.7. The trend lines drawn for the median, 25/75 and 16/84

percentiles are calculated with adaptive bins in δτ containing 200 sub-populations

across all 191 barred galaxies.

Abar,i increases with δτ for sub-populations older than the bar (δτ < 0), whereas

for younger populations (δτ > 0) it is relatively constant. The ‘break’ between

populations younger and older than the bar is enhanced when we scale the bar

amplitudes. Abar,i also increases from the very oldest sub-populations up to δτ =

0 Gyr. A break or ‘upturn’ occurs at δτ ≈ −1 Gyr, and then flattens for δτ ≥ 0.

Alternatively, we can define the bar strength using the peak m = 2 Fourier

amplitude within the bar radius. If we quantify the bar strength of each sub-

population this way, a2max,i, we find a similar variation with δτ , as seen in the

right panels of Fig. 6.7, including when we scale a2max,i. As with Abar,i, we find a

break a2max,i at δτ = 0.

In Fig. 6.8, we present the same analysis as Fig. 6.7 but with five random TNG50

barred galaxies overlaid, signifying the tracks individual galaxies trace through this

space. We find the general trends when considering all galaxies capture those of

individual galaxies even though there is large scatter. As seen for TNG50 Subhalo

ID 492876), the youngest populations in barred galaxies can appear to have low bar

strength due to ongoing or recent star formation. Misidentifying the precise time of

bar formation may also add to the horizontal blurring of the combined trends, as

3We clarify that the overline denotes a scaling, not an average.
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Figure 6.7: Left: The distributions of Abar,i and the scaled Abar,i (see Eqn. 6.2) as

a function of δτ , the time delay between the time of bar formation and that of a

sub-population (see Eqn. 6.1). The solid black line shows the median Abar,i where

the dotted and dashed black lines represent the 25th/75th and 16th/84th percentiles,

respectively. The horizontal dotted line in the lower panels donates Abar,i = 1 and

a2max,i = 1. Right: the same as the left panels but for a2max,i and the scaled a2max,i.

The vertical green line denotes δτ = 0, or populations born at the time of bar

formation and have ages Apop = Abar.
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Figure 6.8: The same as the right-hand panel of Fig. 6.7 with the values of five

random TNG50 barred galaxies overlaid.
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may be the case with Subhalo ID 541847).

These figures indicate that the oldest populations in a galaxy form weak bars.

The bar strength increases as we approach ages closer to the bar age. Populations

as old and younger than the bar have the strongest bar strengths as measured by

the m = 2 Fourier moment of the density.

6.4.1 Kinematic Bar Strength

Gough-Kelly et al. (2022) showed that differently-aged populations within the bar

region of a galaxy have distinct kinematic distributions due to forming different

structures. Galactocentric cylindrical velocities, the natural frame for a rotating

bar, of relatively young stars exhibit bar-aligned orbits, in contrast to the nearly

axisymmetric velocity distributions of relatively old stars, which are a consequence

of their respective underlying density distributions as predicted by kinematic frac-

tionation (see Chapter 3). Using simulations, Walo-Mart́ın et al. (2022) also showed

that measures of bar strength derived from the stellar surface density correlate well

with spatial measurements of stellar velocity dispersions and anisotropy.

The m = 2 symmetry of the bar results in quadrupolar kinematics (see Fig. 6.9).

Bar supporting orbits, such as the x1 family, are elongated along the bar major

axis and produce a strong quadrupole in the galactocentric radial velocities, vR;

this quadrupole is offset from the bar major axes by ∼ 45◦ (e.g., Hunt et al. 2020).

Conversely, the largest values of the galactocentric tangential velocity, vϕ, are found

on the bar minor axis on either side of the galactic centre. Towards the ends of the

bar, stars on bar orbits have relatively slow tangential velocities as they reach their

apocentre. The velocity dispersions of the radial and tangential velocities also peak

on the major and minor axes of the bar, respectively. Therefore, stellar populations

with a bar structure have average velocities (vR and vϕ) and dispersions (σR and

σϕ) that exhibit quadrupole patterns in the (x, y)-plane.
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6.4.1.1 Galactocentric Velocities

We define a measure of bar strength using the binned distribution of mean velocities.

We bin each galaxy spatially in cylindrical radius (R) and azimuth (ϕ). Within

each (R, ϕ) bin, (j, k), we calculate the average scaled velocity (scaled by the outer

mid-plane circular velocity, see Fig. 6.5 and Section 6.4) for each sub-population,

⟨V ∗⟩(j,k). We then compute the complex sum of the m = 2 Fourier amplitude as a

function of radius:

a2(V
∗, Rj) =

∣∣∣∣∣

∑
k ⟨V ∗⟩(j,k)eimϕk

Nϕ

∣∣∣∣∣ , (6.3)

where V ∗ is a scaled velocity component (v∗R, v∗ϕ or v∗z), ϕk is the azimuthal angle of

the bin centre, and Nϕ is the number of azimuthal bins. As with the density metric,

a2,max, we can define the kinematic bar strength as the maximum m = 2 amplitude

from Eqn. 6.3 within the bar radius which we denote as a2(V
∗)max. Note that by

binning and computing the average kinematic quantities within each bin, we are

factoring out the density, so the kinematic Fourier moments are purely kinematic.

We present an example of this analysis in Fig. 6.9 for two sub-populations of the

same example galaxy from Fig. 6.6 (414917). Each radial (j) and azimuthal (k)

bin is used to calculate the Fourier amplitude following Eqn. 6.3. By presenting a

relatively young sub-population (B), we can clearly see the bar in the face-on density

and the corresponding m = 2 Fourier amplitude. For the same region, the radial

and tangential velocities also exhibit quadrupolar distributions, which also produce

large m = 2 Fourier amplitudes. In contrast, the oldest sub-population (H) has a

weak bar morphology and no clear peaks in the Fourier amplitudes of the radial and

tangential velocities.

In Fig. 6.10 (top left-hand panel), we present the maximum amplitude of the

galactocentric radial velocities, a2(vR
∗)max,i, as a function of δτ . The distribution is

relatively flat for sub-populations older than the bar. The gradient then increases

rapidly beyond δτ = 0, though with a large scatter. When we scale by the amplitude
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Figure 6.9: The face-on polar projection of stellar surface density (left-hand

columns), average radial velocity (middle columns) and average tangential veloc-

ity (right-hand columns) for sup-populations B (top rows) and H (bottom rows)

from Subhalo ID 414917. The radial and azimuthal bins in each panel are used to

calculate the m = 2 Fourier amplitude as described in Eqn. 6.3. The panels beneath

each polar projection present the m = 2 Fourier amplitude for each quantity as a

function of radius.
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for each bar in the same way as with the density, a2(vR
∗)max,i (see Eqn. 6.2), we find

a linearly increasing profile for δτ ≤ 0, followed by a rapid rise to higher a2(vR
∗)max,i

values (bottom left-hand panel of Fig. 6.10).

Similarly, we present the distributions of maximum m = 2 amplitude of the

galactocentric tangential velocities, a2(vϕ
∗)max,i and a2(vϕ

∗)max,i, in the middle panels

of Fig. 6.10. We find a quite similar behaviour to a2(vR
∗)max,i.

We also examine the age dependence of the vertical kinematics. Bars drive stars

to larger heights based on their initial radial velocity dispersion (Debattista et al.

2017). Yet, vertical structures in barred galaxies such as BPs are typically sym-

metrical about the plane except during a buckling event (e.g., Sellwood & Gerhard

2020) and for some Gyr following (Cuomo et al. 2022). Since vertical velocities at

the current epoch should generally average to zero regardless of whether a BP bulge

structure is present4, any signatures of non-axisymmetric distributions of vertical

kinematics are expected in the velocity dispersions and not in the averaged veloc-

ities. Indeed in the right-hand panels of Fig. 6.10, we find very weak maximum

m = 2 amplitudes of the galactocentric vertical velocities where both profiles of

a2(vz
∗)max,i and a2(vz

∗)max,i appear flat across all δτ .

We conclude that the m = 2 Fourier moments of spatially averaged in-plane

galactocentric velocities (vR and vϕ) depend on δτ , as was the case for the bar

strength of the stellar surface density. Younger populations have asymmetric kine-

matics indicative of strong bars compared to older populations, where more axisym-

metric velocities are measured except in the vertical component. Therefore in-plane

kinematic metrics can be used as a proxy for bar strength. We quantitatively com-

pare kinematic bar strength metrics against those measured via the stellar surface

density in Section 6.4.2.

4Unless the galaxy is currently buckling or there is strong accretion in progress.
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6.4.1.2 Velocity Dispersions

Using the same spatial binning method as for the average velocities, we also calculate

the velocity dispersions in each bin and measure their maximum m = 2 amplitude

(Eqn. 6.3) for the galactocentric velocities.

The distribution of a2(σR
∗)max,i follows qualitatively similar trends to those of

a2(vR
∗)max,i as shown in the left-hand panels of Fig. 6.11. Populations older than

the bar (δτ < 0) have a flat profile of a2(σR
∗)max,i that breaks at δτ = 0, after

which a2(σR
∗)max,i increases linearly. We also observe the same trend when we scale

the values (a2(σR
∗)max,i). Similarly, a2(σϕ

∗)max,i and a2(σϕ
∗)max,i (middle panels of

Fig. 6.11) matches the trend in a2(vϕ
∗)max,iand a2(vϕ

∗)max,i. We do note however a

sharper rise in a2(vϕ
∗)max,i between −1 ≲ δτ/ Gyr ≲ 0 and that the profile is flat

for δτ > 0.

In the right-hand panels of Fig. 6.11, we present the distributions of a2(σz
∗)max,i

which, unlike a2(vz
∗)max,i, shows a mildly increasing trend with δτ like those of

a2(σR
∗)max,i and a2(σϕ

∗)max,i. Although a2(σz
∗)max,i has a weaker dependence on

δτ and shows a weaker upturn at δτ = 0. We also find a weak dependence in

a2(σz
∗)max,i.

The velocity dispersions of the in-plane components of galactocentric velocities

(σR and σϕ) show that the m = 2 Fourier amplitude depends on the relative age

of populations with a break observed for populations formed near the epoch of bar

formation. The vertical velocity dispersion follows a similar trend with δτ but with

a weaker break at δτ = 0. These results indicate that velocity dispersions also

trace the epoch of bar formation but have a weaker dependence than the averaged

velocity. They also show that there is a stronger dependence on δτ in the in-plane

kinematics
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6.4.1.3 Anisotropy

Walo-Mart́ın et al. (2022) showed that the face-on distributions of velocity disper-

sions and of the stellar velocity ellipsoid (σz/σr and σϕ/σr) have strong correlations

with bar strength and size using the Auriga suite of simulations (Grand et al. 2017).

Here we explore these non-axisymmetric distributions of the anisotropy via the

m = 2 Fourier amplitudes of the dispersion ratios a2(σϕ
∗/σR

∗)max,i, a2(σz
∗/σR

∗)max,i

and a2(σz
∗/σϕ

∗)max,i.

The profiles of a2(σϕ
∗/σR

∗)max,i and a2(σϕ
∗/σR

∗)max,i presented in the left-hand

panels of Fig. 6.12 most closely resemble the profiles of Abar,i and a2max,i of all the

kinematic bar measurements we have explored. An increasing gradient of amplitude

with δτ is seen in populations older than the bar (δτ < 0) with an upturn just

before the age of bar formation (δτ = −1 Gyr) where the gradient flattens for the

populations younger than the bar (δτ > 0). The profile of a2(σϕ
∗/σR

∗)max,i has a

more prominent rise just before δτ = 0 when we scale the amplitudes (Eqn. 6.2).

The profiles of a2(σz
∗/σR

∗)max,i and a2(σz
∗/σR

∗)max,i (middle panels of Fig. 6.12)

show a clear increase with δτ , similar to the previously presented bar strength

metrics. However, there is only a weak ‘break’ in δτ as seen in the amplitudes

of velocity dispersions (Fig. 6.11). We find similar trends in the dependence of

a2(σz
∗/σϕ

∗)max,i and a2(σz
∗/σϕ

∗)max,i, which are shown in the right-hand panels of

Fig. 6.12.

These results demonstrate the non-axisymmetric anisotropy distributions in the

(x, y)-planes of barred galaxies. The m = 2 amplitudes of the in-plane and vertical

dispersion ratios depend on a sub-population’s age relative to the bar, with the

in-plane anisotropy having the strongest dependence on the bar formation epoch.
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Figure 6.13: The strongest four correlations of scaled kinematic bar strengths versus

scaled density bar strengths. The Spearman rank correlation coefficient (rs) for each

combination of variables is given in the upper left-hand corner of each panel. All

correlations presented here have high significance (p < 0.01).
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6.4.2 Correlations

We compare the correlations between the different kinematic bar strengths and the

density bar strengths to demonstrate the utility of the kinematic metrics. We do this

by considering every sub-population from every galaxy with their respective scaled

Fourier amplitudes (Eqn. 6.2), calculating the Spearman rank correlation coefficient,

rs between each metric. We present the four comparisons which exhibit the strongest

correlations between the kinematic metrics and density metrics in Fig. 6.135.

We start by comparing the kinematic bar strength measurements from the spa-

tially averaged radial and tangential velocities, a2(vR
∗)max,i and a2(vϕ

∗)max,i (sec-

tion 6.4.1.1). For the radial velocities, a2(vR
∗)max,i correlates well with both Abar,i

and a2max,i, with rs = 0.74 for each, respectively (panels a and b). The tangen-

tial component has slightly weaker correlations, with values of rs = 0.69 in both

comparisons (panels c and d).

The Fourier amplitudes of the velocity dispersion ratios (Section 6.4.1.3) also cor-

relate strongly with density amplitudes, with the in-plane anisotropy, a2(σϕ
∗/σR

∗)max,i

having correlation strengths rs = 0.72 and rs = 0.76 (panels e and f). Correlations

of rs = 0.62 and rs = 0.65 are found for the vertical anisotropy a2(σz
∗/σR

∗)max,i

(panels g and h).

These results show that the m = 2 Fourier amplitudes of the average velocity

(vR and vϕ) are better tracers of the density bar strength than the amplitudes of

velocity dispersion components separately (σR and σϕ). We find stronger correlations

of dispersion ratios (anisotropy) with bar strength than the individual dispersions, as

did Walo-Mart́ın et al. (2022). A complete comparison of the correlations between

all measures of kinematic bar strength (scaled and unscaled) is included in the

Appendix. These correlations also suggest that bar amplitude metrics from both

5Each presented correlation has p < 0.01 therefore, we reject the null hypothesis that there is

no monotonic relation.
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density and kinematics are tracing similar dependencies of the stellar populations’

age relative to the bar and help constrain the epoch of bar formation. We find

the best tracer of bar strength is the spatial distribution of the in-plane anisotropy

(σϕ/σR).

6.5 BP Bulges

A23 identified the 106 barred galaxies in the TNG50 sample with box/peanut (BP)

bulges at z = 0 through a combination of visual inspection and quantitative mea-

surement of the BP ‘prominence’ using the fourth-order Gauss-Hermite moment of

the vertical velocity distribution (h4). Full details of the BP selection are provided

in Chapter 5 (Appendix A4 of A23). In addition, A23 quantified the BP strength,

denoted as B, using the difference between the peak and the valley of the h4 profile

along the bar major axis. This also leaves us with a sample of barred galaxies that

do not have a BP bulge at z = 0 (85, the non-BP sample).

We were able to determine the formation mechanism for the BP bulges by explor-

ing the change of B through a galaxy’s evolution. A rapid increase in B indicates

a buckling event, which usually coincides with asymmetric bending of the bar in

the (x, z)-plane, which A23 confirmed by visual inspection. Gradual increases of B
without asymmetric bending instead are attributed to weak buckling or resonant

trapping (Quillen 2002) though both mechanisms may have their origins in reso-

nant excitation (Li et al. 2023). This allowed A23 to define a buckling sample of 52

galaxies and 54 weak/non-buckling galaxies (denoted BCK and WNB, respectively).

A23 also defined a control sample of barred, non-BP galaxies which matched the

stellar mass distribution of the BP sample (Section 5.6 of Chapter 5). A23 found

that these control galaxies have, on average, shorter and weaker bars, which are key

factors of why they do not form BP bulges. Here we use the same definitions of the

BCK, WNB and control samples to study the properties of BPs.
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Figure 6.14: The distributions of Bi as a function of δτ , the difference between the

time of bar formation of a galaxy and a sub-population’s average age (see Eqn. 6.1)

for the 106 BP galaxies (A23).
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The lower panels of Fig. 6.6 present the side-on view of TNG50 galaxy 414917,

showing the variation of bulge morphology with relative age. The bulge appears

as a well-defined peanut shape in the youngest sub-populations, which weakens to

become boxy and then rounded for decreasing δτ (older populations). The density

distribution of all populations in the bulge appears box-shaped.

6.5.1 BP Strength

We now explore how the BP strength, B, varies as a function of the relative age of

a sub-population for the BP sample of barred galaxies in TNG50. We use the same

methodology described in Section 5.5 of Chapter 5 (A23 Appendix A4) but measure

the h4 profiles for each sub-population at z = 0 separately, to compute their BP

strength, Bi.

Fig. 6.14 presents the BP strength measurements as a function of δτ . Bi in-

creases with increasing δτ for the BP galaxies, with the strongest BP amplitudes

in populations with ages close to the bar’s age, δτ ≈ 0, albeit with a large scatter.

However, the gradient of the trend lines may be underestimated owing to the dif-

ficulty of measuring this quantity for the weaker BP signals in older populations.

Since this technique relies on identifying two minima in the h4 profile, we can only

capture populations in which the algorithm detects two significant minima. Thus in

the oldest populations, the metric may capture only the strongest cases or possibly

spurious signals (see Section 5.7 of Chapter 5).

Along with the BP strength, we also track the location along the bar’s major axis

of the minima (valleys) in the h4 profile (see Debattista et al. 2005; Méndez-Abreu

et al. 2008; Anderson et al. 2023). We explore whether this location, normalised by

the bar radius, Rvalley,i, depends on δτ . We find that the distributions of Rvalley,i

and Rvalley,i are flat across δτ (left-hand panels of Fig. 6.15).
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Figure 6.15: The same as Fig. 6.14 but for the distribution of Rvalley,i, and Rvalley,i
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dotted black line denotes Rvalley,i = 1 and RBP,i = 1, where the BP radius of a

sub-population is the same as the radius when measuring all the populations in a

galaxy’s bar together.
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Across all populations, we find an average Rvalley,i = 0.55+0.16
−0.13 (16th/84th per-

centiles), with a large scatter. When we scale these radii by measuring the h4 valley

location for all bar populations, we find that most values lie close to Rvalley,i = 1, as

can be seen in the lower left-hand panel of Fig. 6.15. The small deviation towards

values of Rvalley,i > 1 in the older populations is likely due to the larger uncertainties

in identifying the minima associated with a weaker BP bulge (Fig. 6.14). Overall

these results indicate that a BP radius defined kinematically is sensitive to the over-

all potential and so results in a common radius for all populations (Rvalley,i ≈ 1).

6.5.2 Separation of Bimodal Density Distribution

In addition to identifying the BP radius kinematically, we can quantify it through

the location of over-dense regions along the bar major axis. A BP bulge produces

a bimodal density distribution above the plane along the bar’s major axis, as seen

in the lower panels of Fig. 6.6. Given this geometry, the separation between the

peaks increases as a function of vertical height. Observational studies have shown

that the separation between the peaks is a function of age and associated stellar

parameters, such as metallicity (e.g. Ness et al. 2012; Uttenthaler et al. 2012; Rojas-

Arriagada et al. 2014; Semczuk et al. 2022) and has been shown in simulations (e.g.,

Athanassoula et al. 2017; Debattista et al. 2017, 2019; Fragkoudi et al. 2017b, 2020;

Buck et al. 2018; Gough-Kelly et al. 2022). To explore the spatial separation of

over-densities produced by the BP bulge, we define a slit along the bar’s major

axis, normalising the spatial dimensions by the galaxy’s bar length to compare

between galaxies in the BP sample. We set the width of the slit to be 0.6Rbar,

(i.e., |y|/Rbar < 0.3) and restrict the vertical height out of the plane along this slit

to between 0.1 ≤ |z|/Rbar ≤ 0.5. Then, we measure the density along the slit for

each sub-population and, using a peak-finding algorithm6, measure the separation

6Using scipy.signal.find peaks.
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between the two peaks (disregarding any central peak close to x/Rbar = 0). We

denote the BP radius computed using this method as RBP,i.

In the right-hand panels of Fig. 6.15, we present the distribution of RBP,i and

RBP,i as a function of δτ for the BP galaxies. We find that populations older than the

bar (δτ < 0) have a relatively flat profile. At δτ = 0, there is a sharp upturn, and for

populations younger than the bar, RBP,i increases with increasing δτ . We find a much

smaller range of BP radius measurements in the density (0.2 ≲ RBP,i ≲ 0.5) than in

the locations of the h4 minima, Rvalley,i. This compares favourably to measurements

for local galaxies, which find a range of RBP/Rbar = 0.26 − 0.58 (mean values of

0.38 ± 0.08 Erwin & Debattista 2013).

In Fig. 6.16 we present the h4 and density profiles for Subhalo ID: 117259,

a galaxy that forms a BP through buckling. In the youngest sub-populations (A

and B), we can identify clear signals of a BP from the deep minima in h4 and the

bimodal density distribution. This demonstrates that the profiles of individual sub-

populations can also be used to characterise the BP in each, even with the reduced

statistics. The deep minima compared to the central peak in h4 also suggest high

BP strength (Anderson et al. 2023). As we move to older sub-populations, the h4

profiles flatten, and the density distribution becomes singularly peaked. At inter-

mediately aged sub-populations, peaks and valleys become challenging to identify,

adding scatter to the combined distributions.

In the top panel of Fig. 6.16, we present the profiles of all stellar populations

with the bar for the same galaxy. The h4 valleys are clearly visible whereas the BP

is difficult to distinguish, only appearing as ‘shoulders’ on the density distribution.

This demonstrates that we were unable to identify the bimodality when considering

the density distribution of all bar populations in aggregate for all galaxies. As

noted by A23, BPs in TNG50 appear weaker than in observations. However, for

27 out of 106 (25%) BP galaxies, we can measure BPs in their overall distribution
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Figure 6.16: Left-hand column: average profiles of the h4 moment of the vertical

velocity distribution along the bar major axis of the sub-populations from Subhalo

ID: 117259. Right-hand column: average profiles of normalised density between

0.1 < |z|/Rbar < 0.5 along the bar major axis of the sub-populations from the same

galaxy. Each row represents a sub-population A-H, with the top row presenting all

populations within the bar radius. The vertical grey dashed lines denote the Rvalley,i

and RBP,i for the left and right columns, respectively. The red line shows the profiles

whereas the black line shows the profiles after smoothing with a Butterworth low-

pass filter (Butterworth 1930).
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and can scale their radii. When we scale the BP radius, RBP,i, we find an overall

increasing profile of BP radius with δτ 7. The oldest populations have RBP,i ≈ 1,

while populations younger than the bar typically have larger values of RBP,i.

In the oldest populations, we only detect the bimodal density signature when they

have large over-densities; the weakest bimodalities may not be detected. Nonethe-

less, we still identify density bimodalities in populations much older than the bar,

even 5 Gyr or more before the bar formed.

We rebin the BP galaxies’ sub-populations in δτ (see top panel of Fig. 6.4) and

construct average profiles of stellar density and h4 in the range −5 ≤ δτ/ Gyr ≤ 5.

Fig. 6.17 shows that the oldest bin (δτ = −4±1 Gyr) has a relatively flat h4 profile,

with a small central peak and very shallow minima located at |x|/Rbar ∼ 0.55 (top

left-hand panel). The density profile in the top right-hand panel for the same bin

has a strong central peak with a slight broadening at small radius (|x|/Rbar ∼ 0.2).

Moving towards δτ = 0, the profiles of h4 develop a larger central peak, and their

valleys deepen. However, the location of the h4 minima remains at |x|/Rbar ∼ 0.5.

Instead, the density distributions separate, losing their central peak and producing

first a flat top, before becoming two distinct peaks with a central valley. In younger

sub-populations, these peaks separate further towards |x|/Rbar ∼ 0.5. The profiles of

the youngest bins are substantially different from those of the oldest. The profile of

h4 commonly associated with a BP (central peak and two deep minima) at |x|/Rbar ∼
0.5 is most evident in the youngest two bins. Similarly, the density profiles of the

same bins are clearly bimodal with a central valley, with peaks at |x|/Rbar ∼ 0.5.

The position of the h4 minima is sensitive to the overall potential along the bar,

so its location does not change as a function of stellar age but moves outwards with

the growth of the bar (Anderson et al. 2023). In contrast, sub-populations form

their over-densities as their host bar grows; therefore, the BP appears to increase in

7Note that there are fewer data points in the lower right-hand panel of Fig. 6.15.
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Figure 6.17: Left-hand column: average profiles of the h4 moment of the ver-

tical velocity distribution along the bar major axis of the sub-populations from

BP galaxies. Right-hand column: average profiles of normalised density between

0.1 < |z|/Rbar < 0.5 along the bar major axis of the sub-populations from BP

galaxies. The shaded regions outline the 16th and 84th percentiles of the profiles.
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width of 2 Gyr (see top panel of Fig. 6.4). Vertical black dashed lines denote the

median Rvalley,i and RBP,i for the left and right columns, respectively. The vertical

black dotted lines denote the 16th and 84th percentiles of Rvalley,i and RBP,i.
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physical radius (as measured by the surface density) as a function of age. This would

indicate that the h4 minima are likely tied to resonant orbits which heat vertically,

such as the vertical Inner Lindblad Resonance (vILR, see Beraldo e Silva et al.

2023). The pattern speed of bars decreases as they grow in length and strength,

and the vILR sweeps outwards in radius. Therefore what we measure in the h4

profile at the current epoch is due to the current potential of the bar and its vertical

resonances. However, sub-populations forming their BPs earlier formed when the

bar was smaller in physical size (a fraction of its size at z = 0). We note, however,

that the orbits which built the early BP can scatter and change with the change of

the potential. A detailed exploration of the orbit evolution in BP bulges is beyond

the scope of this work. Yet, if the BP of a given sub-population does not itself

change its physical size as the bar ages, but younger populations form their BPs at

a larger radius as the bar grows, this could explain the observed trends.

We consider the variation of RBP,i with δτ across each BP galaxy. Approximating

each galaxy’s variation as linear, we fit a linear regression line in each case. Examples

are shown in the top panel of Fig. 6.18. The distributions of the fit gradients and

intercepts are presented in the middle panels of Fig. 6.18. Finally, the fits are shown

in the lower panel of Fig. 6.18 with the median relation highlighted in yellow.

We find a clear peak in the distributions of both the gradient and intercept of

the linear fits, though there is a considerable spread8. The median RBP,i with δτ

relation is found to be:

RBP,i = 0.042+0.034
−0.022 × δτ + 0.336+0.123

−0.100, (6.4)

with uncertainties given as the 16th and 84th percentiles. This relation indicates

that sub-populations born near the time of bar formation have BPs with a measured

radius between RBP,i ≈ 0.24 − 0.46 at z = 0. The gradient of this relation is likely

8We find no statistical difference in the distributions of these parameters when we split the BP

galaxies into the two BP formation mechanisms (WNB and BCK).
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Figure 6.18: Top: the variation of RBP,i with δτ for sixe randomly chosen BP

galaxies in TNG50 labeled by their IDs (note RBP,i is scaled by the bar radius).

The corresponding coloured dashed lines are individual linear regression fits to each

galaxy. Middle left-hand panel: The distribution of gradients from the linear fits.

We only perform a linear fit to a galaxy if we measure three or more bimodal density

distributions (RBP,i) from the sub-populations (95 out of the 106 BP galaxies, 90%).

Middle right-hand panel: the distribution of intercepts from the same linear fits. In

the middle panels, the vertical dashed line indicates the location of the median.

The vertical dotted lines indicate the location of the 25th and 75th percentiles of the

distributions. Bottom panel: the yellow line shows the median fit to the RBP,i vs.

δτ relation of the BP galaxies. Each black line represents the linear fit of each BP

galaxy.
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tied to the growth rate of bars in TNG50.

6.5.3 Population Distributions in BP Bulges

While external galaxies cannot be deconstructed by stellar ages, the separation of

different age populations in the presence of a bar results in age gradients when the

bar is seen side-on. Debattista et al. (2017) predicted that the average age (and

consequently metallicity) distribution would be more pinched than the density dis-

tribution in a BP galaxy. This was demonstrated observationally in the metallicity

distribution of NGC 4710 by Gonzalez et al. (2017). We produce maps of aver-

age stellar parameters for all stars in each galaxy in a slice of the (x, z)-projection

(with the bar viewed side-on and |y|/Rbar ≤ 0.25) scaled by the bar radius for each

galaxy. We then median-stack each map for the three subsamples of galaxies: WNB,

BCK and controls with no weighting procedure (i.e. each galaxy gets equal weight-

ing). Fig. 6.19 shows the distributions of the median stacked normalised log density

(log ⟨Σ⋆⟩) and age (⟨A⋆⟩) for each subsample9.

The average side-on density distribution of the Control (without BP) galaxies

within the bar radius is rounded, thick at the centre, and thin at the ends of the

bar (upper left-hand panel of Fig. 6.19). The distribution of the WNB galaxies

has a clear boxy-shaped bulge where the vertical thickness appears constant within

|x|/Rbar < 0.5 and outside traces a weak peanut shape. For the BCK galaxies, a

similar boxy distribution is seen, with some evidence of pinching close to the galactic

centre. The pinching in the BCK and WNB galaxies is visible in an unsharp mask

map of the average density distributions shown in the second row of Fig. 6.19. We

use the contours from the unsharp masks on the lower panels to draw attention to

the BP regions.

9Note here we are not splitting the galaxies by sub-populations, rather we generate maps using

all the stellar populations within the spatial selection of the bar.
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The average age distributions of all three samples of galaxies (third row of

Fig. 6.19) are more pinched than the density distributions. In all cases, we find

the oldest stars on the minor axis out of the plane. Towards the ends of the bar,

stars are, on average younger in the plane and become older at larger heights. There-

fore the age gradient with height is shallower at the ends of the bar than on the

minor axis. The fact that we find such pinching in control galaxies (which have

no BP) shows that populations are still heated and separated without forming the

over-densities characteristic of a BP. A23 found 7 galaxies which had formed a BP

which was not detectable by z = 0 and therefore ended up classified as a Control

galaxy. This may introduce some pinching, but such galaxies represent only 8% of

the Control sample.

A noticeable ordering in the amount of pinching of the age distributions increas-

ing from the Control, WNB to BCK samples is most likely due to the same ordering

of increasing bar strength identified in A23 (their figure 10). There is also likely

some contribution from the interplay between stellar discs of different scale heights

and ages (e.g. see Di Matteo et al. 2014; Fragkoudi et al. 2018).

Most strikingly, the BCK galaxies contain very old stars on the minor axis,

possibly indicating that bars in BCK galaxies formed earlier than the other samples.

Also, the pinching of the age distribution in BCK galaxies is quite clear. However,

we must also consider the stellar assembly history of these different subsamples of

galaxies. A23 found that BCK galaxies assembled their stellar mass earlier than the

WNB and Control galaxies, which had half stellar-mass formation times ∼ 1 Gyr

later (see their figure 9). Bars also form on average ∼ 2 Gyr earlier in BCK galaxies

than in WNB and Control galaxies (also figure 9 of A23). This would produce

systematic offsets in the age distributions.

Only in the side-on projection (x, z) do the BP galaxies demonstrate the charac-

teristic signature of strongly pinched age contours superimposed on boxy isophotes
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of density. Therefore greater pinching in stellar parameters such as age is not ex-

clusively evidence for a BP bulge. Nevertheless, the X-shape produced by the BP

in the WNB and BCK galaxies is evident in the middle and right-hand panels of

Fig. 6.19 (fourth row), where stars in this region are younger than in the end-on

projection (fifth row). The young vertical extensions of a bar reduce the vertical age

gradient in the BP region but create a steeper ‘drop’ to older populations beyond

the extent of the BP.

6.6 Discussion

Stellar populations with larger in-plane random motions (corresponding to older

ages) respond weakly to the presence of a bar, with the opposite behaviour for

cooler (younger) populations. This distinction in kinematics as a function of age

causes the populations to separate (they are kinematically fractionated) as shown

in isolated models (Debattista et al. 2017, 2020) and in a cosmological zoom model

(Debattista et al. 2019). Here we reconfirm these results with the largest such study

to date, in a fully cosmological context.

We measure the bar strength from the m = 2 Fourier amplitude of the stellar

surface density for the sub-populations within 191 barred galaxies in TNG50 at

z = 0. By studying these amplitudes as a function of the delay between the time of

formation of a sub-population and of the bar (age relative to the bar, Eqn. 6.1) we

have found an upturn in amplitude for populations born during the bar formation

epoch. Sub-populations older than the bar observed at the current epoch have

bar strengths weaker relative to the total strength of the galaxy. The youngest

sub-populations form stronger bars than their host bar by the current epoch. The

transition in bar strength happens for populations as old as the bar.

We have defined kinematic metrics of bar strength using the m = 2 Fourier

amplitudes of spatially averaged velocities, velocity dispersions and dispersion ratios
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in galactocentric coordinates. These metrics generally correlate well with the usual

metrics derived from stellar surface density (rs ∼ 0.6 − 0.7). We find the strongest

correlations between density bar strength and kinematic bar strength traced by

in-plane galactocentric velocities a2(vR
∗)max,i, a2(vϕ

∗)max,i and in-plane anisotropy

a2(σϕ
∗/σR

∗)max,i (rs = 0.74, 0.69 and 0.76 respectively for correlation with a2max,i).

The vertical anisotropy, a2(σz
∗/σR

∗)max,i, also traces the density bar strength with

a weaker correlation of 0.65 with a2max,i. In agreement with Walo-Mart́ın et al.

(2022), we find metrics based on anisotropy correlate with the usual bar strength

better than individual components of velocity dispersion, and we find that the spatial

distribution of the in-plane anisotropy best captures the measured bar strength. The

‘break’ or ‘upturn’ of the bar amplitude profiles signifies that within the z = 0 stellar

populations is the ‘memory’ of the bar formation epoch in their structure.

We find that measures of the BP strength and radius depend on a population’s

age relative to the bar age. The BP strength, derived from the 4th-order Gauss-

Hermite moment of the vertical velocity distribution (h4) along the bar major axis,

is larger for younger populations. The location of the h4 minima associated with the

BP structure (Debattista et al. 2005) as a fraction of the bar radius is invariant with

stellar age because it is dependent on the total bar potential. However, since bars

grow and slow during their evolution, the location of vertical resonances move out

with time (Beraldo e Silva et al. 2023, and references therin). Therefore the over-

densities produced by the BP structure move outwards for younger populations.

From this effect, we have derived a relation using the age variation of the separation

of the two arms of the BP bulge (Eqn. 6.4). The intercept of this relationship shows

that populations older than the bar can have observed bimodalities and can be used

to estimate the time of bar formation if the ages of populations and the BP radii

are known.

The vertical gradients of stellar age within the final bulge region of BP galaxies
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are shallower than barred galaxies that do not form BPs. While there is a clear

decreasing gradient of age in all barred galaxies (owing to the heating of stellar

discs as they age), bars in BP galaxies reduce the gradient within the bulge region

by heating younger populations out of the plane to greater heights along a bar’s

major axis, as seen in Fig. 6.19.

6.6.1 The Milky Way

In the Milky Way, we can resolve individual stars in the bulge. This makes it pos-

sible to implement the measurements presented in this work. Previous studies have

attempted to measure the bar length, strength and orientation of stellar populations

within the bulge, such as RR Lyrae and RC stars with different metallicities (Dwek

et al. 1995; Binney et al. 1997; Stanek et al. 1997; Fux 1999; Bissantz & Gerhard

2002; Rattenbury et al. 2007; Cao et al. 2013; Wegg & Gerhard 2013; Wegg et al.

2015; Simion et al. 2017; Dékány et al. 2019; Du et al. 2020b; Grady et al. 2020a).

We have presented methods for determining the strength of the bar from the

spatial distribution of average kinematics. This is independent of the underlying

density distribution, which would require large spatial coverage, high completeness

or detailed knowledge of the selection function to measure correctly. Previous stud-

ies have shown distinct kinematic distributions for different populations within the

Milky Way bulge (Queiroz et al. 2021), with theoretical models showing the depen-

dence of kinematics and their bar strength with age (Debattista et al. 2017; Buck

et al. 2018; Gough-Kelly et al. 2022). Therefore, within the Milky Way, we can use

the kinematics of stellar populations to determine the strength of the bar without

a spatially complete sample. These measured kinematic bar strengths also contain

insights into the time of bar formation as, like the density metrics, they also do not

follow linear functions with age but have a distinct break at stellar ages as old as

the bar.
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The Milky Way’s BP varies in size and strength depending on the age (or metal-

licity) of the tracer population (e.g., Ness et al. 2012; Uttenthaler et al. 2012; Rojas-

Arriagada et al. 2014; Lim et al. 2021; Semczuk et al. 2022). Measuring tracer

populations of varying ages within the Milky Way bulge will allow us to constrain

the age of the bar following the methods presented here. For different age stellar

populations in the Milky Way bulge, Semczuk et al. (2022) measured the ratio of BP

radii from the distance between over-densities along the bar major axis. Standard

candles such as RR Lyrae (ages > 11 Gyr, Walker 1989) and red clump (RC) giants

(ages ≲ 10 Gyr, Wan et al. 2017), have BP diameters estimated to be 0.7 kpc and

3.3 kpc, respectively. Scaling these values using the Milky Way bar radius of 5 kpc

(Wegg et al. 2015) gives a BP radius of ∼ 0.07 and ∼ 0.35 for the RR Lyrae and

RC populations, respectively. Using the derived relation in Section 6.5.2 (Eqn. 6.4),

the Milky Way population of RR Lyrae would likely be older than the bar by at

least ≳ 2 Gyr. The BP radius measured in the RC population covers a range of δτ ,

which includes ages as old as the bar. The BP radius would have to be measured

in exclusively young tracer populations to constrain this relation in the Milky Way

and determine the bar and BP age.

6.6.2 Summary

Studying a large sample of barred galaxies from the TNG50 simulation at z = 0,

we have shown, for the first time, a generalised view of bar-driven secular evolution

of stellar populations in a fully cosmological context and demonstrated that stellar

populations are fractionated. Furthermore, we have shown that stellar populations

within the bulge region of barred galaxies retain a dynamical ‘memory’ of the bar

formation epoch in their current (z = 0) spatial and kinematic distributions. There-

fore, by studying stellar populations within the bulge of a barred galaxy at the

current epoch, we can constrain the age of the bar.
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Our main results are:

1. We have shown that sub-populations within the bulges of TNG50 barred galax-

ies are kinematically fractionated, with their bar and BP strengths increasing

for younger populations.

2. Measurements of the bar strength through measuring the m = 2 Fourier mo-

ments of spatially averaged galactocentric velocity, velocity dispersion, and

anisotropy correlate strongly with canonical metrics of the stellar surface den-

sity.

3. We demonstrate that the bar strength of sub-populations in the bulge retains

the ‘memory’ of when the bar formed as there is a clear upturn in bar strength

for sub-populations as old as the bar. Sub-populations older than the bar form

weak bars, and younger sub-populations form strong bars.

4. The strength of a BP bulge as measured by h4 (the 4th order Gauss-Hermite

moment of the vertical velocity distribution) increases for decreasing age. How-

ever, the location of the h4 minima associated with the BP bulge is invariant

with age and, therefore, only traces the total potential of the galaxy.

5. The BP size traced by peaks in the out-of-plane density along the bar major

axis increases for decreasing age. This dependence of the relative age of sup-

populations on BP radius allows for the possibility of deriving the age of a bar

in galaxies hosting a BP bulge.

6. The growth of the BP embeds vertical gradients of age in the side-on projec-

tions of BP galaxies and indeed produces highly pinched distributions of age,

which are more pinched than the density distribution.
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6.7 Appendix A: Bar Strength Correlation Sum-

mary

We summarize in Fig. 6.20 the correlations between sub-population ages (Apop),

ages relative to the bar’s (δτ), and bar strength metrics defined by the stellar surface

density and m = 2 Fourier moments of spatially averaged kinematics for the sample

of TNG50 barred galaxies. Measured values are scaled following Eqn. 6.2. Also

included in this figure are m = 2 amplitudes summed within the bar radius, denoted

as a2(V
∗)bar , distinct from the maximum values used throughout the main text.

These produce similar values and strong correlations with their ‘max’ counterparts.

234



CHAPTER 6

A
p

op δτ

A
b

ar
,i

a
2

m
ax
,i

a
2(
v R
∗ )

b
ar
,i

a
2(
v φ
∗ )

b
ar
,i

a
2(
v z
∗ )

b
ar
,i

a
2(
|v z
∗ |)

b
ar
,i

a
2(
v R
∗ )

m
ax
,i

a
2(
v φ
∗ )

m
ax
,i

a
2(
v z
∗ )

m
ax
,i

a
2(
|v z
∗ |)

m
ax
,i

a
2(
σ
R
∗ )

b
ar
,i

a
2(
σ
φ
∗ )

b
ar
,i

a
2(
σ
z
∗ )

b
ar
,i

a
2(
|σ
z
∗ |)

m
ax

a
2(
σ
R
∗ )

m
ax
,i

a
2(
σ
φ
∗ )

m
ax
,i

a
2(
σ
z
∗ )

m
ax
,i

a
2(
|σ
z
∗ |)

m
ax
,i

a
2(
σ
φ
∗ /
σ
R
∗ )

b
ar
,i

a
2(
σ
φ
∗ /
σ
R
∗ )

m
ax
,i

a
2(
σ
z
∗ /
σ
R
∗ )

b
ar
,i

a
2(
σ
z
∗ /
σ
R
∗ )

m
ax
,i

a
2(
σ
z
∗ /
σ
φ
∗ )

b
ar
,i

a
2(
σ
z
∗ /
σ
φ
∗ )

m
ax
,i

rs (Scaled)

Apop

δτ

Abar,i

a2 max,i

a2(vR∗)bar,i

a2(vφ∗)bar,i

a2(vz∗)bar,i

a2(|vz∗|)bar,i

a2(vR∗)max,i

a2(vφ∗)max,i

a2(vz∗)max,i

a2(|vz∗|)max,i

a2(σR∗)bar,i

a2(σφ∗)bar,i

a2(σz∗)bar,i

a2(|σz∗|)max

a2(σR∗)max,i

a2(σφ∗)max,i

a2(σz∗)max,i

a2(|σz∗|)max,i

a2(σφ∗/σR∗)bar,i

a2(σφ∗/σR∗)max,i

a2(σz∗/σR∗)bar,i

a2(σz∗/σR∗)max,i

a2(σz∗/σφ∗)bar,i

a2(σz∗/σφ∗)max,i

r s
(S

ca
le

d
)

-0.53

-0.55 0.47

-0.60 0.52 0.94

-0.65 0.59 0.73 0.74

-0.72 0.48 0.68 0.68 0.82

0.44 -0.14 -0.20 -0.19 -0.36 -0.44

-0.02 0.25 0.28 0.29 0.18 -0.02 0.18

-0.60 0.57 0.74 0.74 0.93 0.78 -0.33 0.23

-0.67 0.51 0.69 0.69 0.83 0.92 -0.39 0.08 0.84

0.39 -0.14 -0.20 -0.17 -0.29 -0.37 0.82 0.14 -0.26 -0.32

-0.08 0.28 0.31 0.33 0.27 0.09 0.17 0.77 0.33 0.20 0.13

-0.58 0.37 0.48 0.51 0.60 0.62 -0.33 -0.02 0.56 0.57 -0.26 0.06

-0.30 0.41 0.41 0.46 0.42 0.17 -0.08 0.53 0.40 0.24 -0.06 0.42 0.24

-0.02 0.23 0.28 0.31 0.16 -0.05 0.19 0.92 0.20 0.04 0.17 0.69 -0.04 0.60

-0.07 0.13 0.31 0.33 0.14 -0.02 0.16 0.70 0.15 0.03 0.14 0.50 -0.03 0.56 0.85

-0.59 0.27 0.49 0.51 0.56 0.62 -0.40 -0.04 0.54 0.55 -0.34 0.01 0.81 0.20 -0.04 0.01

-0.27 0.42 0.48 0.51 0.50 0.31 0.00 0.48 0.52 0.40 0.01 0.56 0.21 0.70 0.50 0.41 0.11

-0.09 0.28 0.33 0.37 0.25 0.08 0.18 0.75 0.31 0.19 0.14 0.91 0.04 0.47 0.77 0.62 0.01 0.58

-0.10 0.18 0.33 0.37 0.17 0.05 0.16 0.62 0.21 0.11 0.13 0.62 0.03 0.47 0.72 0.78 0.04 0.46 0.78

-0.54 0.52 0.63 0.66 0.67 0.51 -0.18 0.32 0.60 0.51 -0.15 0.31 0.50 0.68 0.35 0.35 0.47 0.62 0.33 0.33

-0.53 0.52 0.72 0.76 0.73 0.62 -0.18 0.32 0.73 0.64 -0.14 0.36 0.53 0.56 0.32 0.29 0.51 0.67 0.37 0.33 0.81

-0.66 0.46 0.68 0.69 0.71 0.68 -0.28 0.27 0.65 0.64 -0.24 0.27 0.67 0.39 0.27 0.29 0.66 0.35 0.29 0.29 0.73 0.70

-0.53 0.43 0.62 0.65 0.65 0.58 -0.19 0.34 0.65 0.59 -0.16 0.39 0.57 0.39 0.31 0.29 0.58 0.41 0.39 0.35 0.65 0.71 0.85

-0.61 0.32 0.48 0.52 0.54 0.57 -0.28 -0.07 0.45 0.48 -0.26 -0.04 0.55 0.30 -0.04 0.05 0.55 0.14 -0.03 0.04 0.51 0.45 0.62 0.48

-0.53 0.27 0.45 0.48 0.45 0.51 -0.28 -0.05 0.41 0.44 -0.25 -0.02 0.53 0.20 -0.04 0.01 0.56 0.09 -0.01 0.05 0.43 0.43 0.57 0.49 0.83

A
p

op

δτ A
b

ar
,i

a
2

m
ax
,i

a
2(
v R
∗ )

b
ar
,i

a
2(
v φ
∗ )

b
ar
,i

a
2(
v z
∗ )

b
ar
,i

a
2(
|v z
∗ |)

b
ar
,i

a
2(
v R
∗ )

m
ax
,i

a
2(
v φ
∗ )

m
ax
,i

a
2(
v z
∗ )

m
ax
,i

a
2(
|v z
∗ |)

m
ax
,i

a
2(
σ
R
∗ )

b
ar
,i

a
2(
σ
φ
∗ )

b
ar
,i

a
2(
σ
z
∗ )

b
ar
,i

a
2(
|σ
z
∗ |)

m
ax

a
2(
σ
R
∗ )

m
ax
,i

a
2(
σ
φ
∗ )

m
ax
,i

a
2(
σ
z
∗ )

m
ax
,i

a
2(
|σ
z
∗ |)

m
ax
,i

a
2(
σ
φ
∗ /
σ
R
∗ )

b
ar
,i

a
2(
σ
φ
∗ /
σ
R
∗ )

m
ax
,i

a
2(
σ
z
∗ /
σ
R
∗ )

b
ar
,i

a
2(
σ
z
∗ /
σ
R
∗ )

m
ax
,i

a
2(
σ
z
∗ /
σ
φ
∗ )

b
ar
,i

a
2(
σ
z
∗ /
σ
φ
∗ )

m
ax
,i

rs (Unscaled)

Apop

δτ

Abar,i

a2 max,i

a2(vR
∗)bar,i

a2(vφ
∗)bar,i

a2(vz
∗)bar,i

a2(|vz∗|)bar,i

a2(vR
∗)max,i

a2(vφ
∗)max,i

a2(vz
∗)max,i

a2(|vz∗|)max,i

a2(σR
∗)bar,i

a2(σφ
∗)bar,i

a2(σz
∗)bar,i

a2(|σz∗|)max

a2(σR
∗)max,i

a2(σφ
∗)max,i

a2(σz
∗)max,i

a2(|σz∗|)max,i

a2(σφ
∗/σR∗)bar,i

a2(σφ
∗/σR∗)max,i

a2(σz
∗/σR∗)bar,i

a2(σz
∗/σR∗)max,i

a2(σz
∗/σφ∗)bar,i

a2(σz
∗/σφ∗)max,i

r s
(U

n
sc

al
ed

)

-0.53 -0.40 -0.39 -0.57 -0.47 0.24 -0.00 -0.67 -0.63 0.28 -0.13 -0.28 -0.11 0.02 0.06 -0.35 -0.22 -0.11 -0.05 -0.25 -0.42 -0.39 -0.47 -0.35 -0.40

0.46 0.50 0.40 0.44 -0.12 0.17 0.46 0.49 -0.17 0.25 0.32 0.30 0.17 0.13 0.41 0.36 0.25 0.17 0.32 0.43 0.33 0.33 0.26 0.26

0.95 0.64 0.69 0.14 0.36 0.70 0.75 0.04 0.40 0.53 0.51 0.37 0.42 0.68 0.63 0.42 0.43 0.61 0.76 0.63 0.66 0.48 0.52

0.61 0.66 0.16 0.42 0.68 0.71 0.09 0.47 0.54 0.57 0.44 0.48 0.70 0.68 0.50 0.51 0.63 0.80 0.62 0.67 0.48 0.52

0.91 0.20 0.24 0.88 0.88 -0.12 0.12 0.80 0.48 0.23 0.27 0.72 0.41 0.10 0.09 0.76 0.75 0.87 0.76 0.82 0.75

0.26 0.33 0.76 0.87 -0.10 0.18 0.84 0.60 0.34 0.37 0.76 0.52 0.18 0.15 0.81 0.75 0.85 0.68 0.79 0.66

0.51 -0.04 0.02 0.72 0.18 0.45 0.49 0.54 0.60 0.21 0.28 0.20 0.29 0.51 0.25 0.46 0.24 0.46 0.30

0.13 0.16 0.29 0.77 0.40 0.73 0.95 0.87 0.32 0.64 0.74 0.68 0.54 0.42 0.46 0.30 0.27 0.12

0.92 -0.15 0.21 0.57 0.30 0.11 0.12 0.67 0.40 0.19 0.16 0.54 0.72 0.68 0.77 0.62 0.68

-0.15 0.20 0.66 0.37 0.15 0.18 0.73 0.45 0.19 0.16 0.61 0.74 0.73 0.77 0.68 0.70

0.20 0.08 0.16 0.32 0.36 0.04 0.14 0.23 0.33 0.14 0.08 0.12 0.15 0.11 0.14

0.17 0.49 0.71 0.61 0.28 0.63 0.93 0.76 0.30 0.37 0.25 0.32 0.05 0.07

0.70 0.42 0.46 0.82 0.50 0.16 0.16 0.85 0.69 0.86 0.64 0.83 0.67

0.75 0.74 0.57 0.82 0.50 0.47 0.83 0.66 0.65 0.42 0.53 0.35

0.93 0.33 0.66 0.76 0.73 0.56 0.42 0.47 0.29 0.27 0.12

0.36 0.62 0.66 0.75 0.59 0.44 0.49 0.31 0.34 0.19

0.53 0.28 0.26 0.72 0.77 0.74 0.70 0.66 0.63

0.65 0.59 0.66 0.72 0.52 0.46 0.34 0.30

0.86 0.30 0.37 0.25 0.32 0.03 0.05

0.30 0.38 0.25 0.33 0.07 0.10

0.83 0.90 0.68 0.79 0.64

0.80 0.80 0.67 0.68

0.83 0.87 0.76

0.71 0.77

0.88

Figure 6.20: Top and right-hand axes: The Spearman rank correlation coefficients

between different Apop, δτ , density measurements of bar strength (Abar,i and a2max,i)

and kinematic measurements of bar strength, (a2(vR
∗)max,i, a2(vϕ

∗)max,i etc.). Strong

correlations (rs > 0.7) are highlighted with a black border. Statistically insignificant

correlations (p > 0.01) are masked out as black squares. The bottom and left-hand

axes show the same metrics but for the scaled quantities (Eqn. 6.2).
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Chapter 7

Conclusions and Future Work

Through the work presented in this thesis, we have studied the central regions of

barred galaxies using isolated simulations, cosmological simulations and observations

of the Milky Way bulge in an effort to understand the evolution of stellar populations

in the presence of a bar. More specifically, we have focused on how differently aged

populations within the bulge respond to the bar, i.e. kinematic fractionation, by

studying their final morphology and kinematics.

7.1 Key Results and Conclusions

7.1.1 Bulge Proper Motions

Studying the stellar on-sky motions (proper motions from the heliocentric perspec-

tive) in the bulge of a star-forming simulation, we determined that the differences

in rotation curves of differently aged populations were due to them tracing different

structures (Chapter 3). We demonstrated that the rotation curve separations can

be explained by the distinct kinematics of populations separated by an evolving bar,

as predicted by kinematic fractionation, without needing an accreted component.

Galactocentric cylindrical velocities of young stars in the model are consistent
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with bar-aligned orbits. Old stars follow axisymmetric velocity distributions, with

both populations reflecting their underlying density distributions. We demonstrated

how these intrinsic velocities project onto longitudinal proper motions. Large galac-

tocentric radial velocity contributions (in the young populations) produce rotation

curves with forbidden velocities1. Differences in longitudinal proper motion rotation

curves on the minor axis could also be present in an axisymmetric structure. There-

fore, we must observe longitudes away from the minor axis to probe the variation of

the bar’s strength with age using tangential motions.

We compared the results of this analysis to Hubble Space Telescope observations

of the Milky Way bulge, where we were able to reproduce observations of main

sequence stars on the minor axis. We also made predictions for further analysis of

archival data from the Hubble Space Telescope and future astrometric surveys of the

Milky Way bulge.

7.1.2 Mira Variables

The observational data in Chapter 3 used metallicities derived from photometry

to separate observed stellar populations in the Milky Way bulge. Mira variables

have been shown to follow period-age relationships and can be useful probes of the

dynamics of the Milky Way bulge. We have extracted Milky Way Mira variables

from the latest data release of the Gaia satellite (Gaia DR3) using a novel approach.

In Chapter 4, we used a sample of long-period variables in the Large Magellanic

Cloud to define methods for extracting Mira candidates using data-motivated cuts on

their relative frequency error and variability amplitude, maximising their separation

from SRVs.

1Negative longitudinal proper motion at positive longitudes, and positive longitudinal proper

motion at negative longitudes.
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We applied these methods to the Gaia DR3 long-period variable sample to gen-

erate a catalogue of 45 075 Milky Way Mira variables with dust corrections and 5D

coordinates (full 6D for 3 231 sources). The spatial and kinematic distributions of

these Mira candidates were found to be a function of their period and follow the

expected distributions of the differently aged populations within the Milky Way.

We reconfirm that Mira variables are good tracers for Galactic dynamics. However,

larger samples are needed towards the central regions to be able to constrain the

bar and bulge of the Milky Way.

We were also able to characterise the effects of the large variability amplitude of

Miras on astrometric and photometric solutions within Gaia. Large variability am-

plitude means standard methods of weighted mean photometry can underestimate

the mean flux or overestimate the mean magnitude. The same effect of weight-

ing procedures also adds uncertainty to the astrometric solution in stars with large

variability amplitude. The reason we are able to define Miras using the error on

oscillation frequency is due to Gaia fitting only one period to the light curves. We

would advocate for multi-period fitting of variable sources.

7.1.3 TNG50 Box/Peanut Bulges

In Chapter 5, we identified 608 high-mass (log(M/ M⊙) ≥ 10.0) disc galaxies in the

high-resolution run of the IllustrisTNG project, TNG50. From those disc galaxies,

we found that 191 had bars with radius Rbar ≥ 2.6 kpc. We studied their density

and kinematic profiles at z = 0 and found that 106 (55%) barred galaxies had box/-

peanut bulges. To measure the box/peanut prominence quantitatively, we developed

a metric using the fourth-order Gauss-Hermite moments of the vertical velocity dis-

tributions along their bars’ major axis. Of these box/peanut galaxies, 52 (49%)

buckled strongly at some stage in their evolution, and 54 (51%) did not, forming

their BPs via resonant trapping, weak buckling or a combination of both. Studying
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the full evolutionary history of this sample, we are able to determine the epoch of

bar and BP formation as well as a buckling event if one occurred.

Using the box/peanut sample, we found that TNG50 matched the fraction of

box/peanut bulges in barred galaxies as a function of stellar mass as observed in

the local Universe. TNG50 reproduces the overall shape of the distribution when

compared with observations with the same characteristic upturn at the transition

mass of log(M/ M⊙) ∼ 10.1; however, it does not reproduce the observed fraction,

with TNG50 underproducing BPs at high mass. Observations would predict that

all high-mass barred galaxies contain box/peanut bulges, yet TNG50 saturates at

≈ 60% above log(M/ M⊙) ∼ 10.5.

7.1.4 Kinematic Fractionation in TNG50

Studying the same sample from TNG50 at z = 0, we showed in Chapter 6 a gener-

alised view of bar-driven secular evolution of stellar populations in a fully cosmolog-

ical context. Stellar populations within the bulge region of barred galaxies retained

the dynamical ‘memory’ of the bar formation epoch in their current (z = 0) spatial

and kinematic distributions. Therefore, by studying stellar populations within the

bulge of a barred galaxy, we can constrain the age of the bar.

We demonstrate that the bar strength has a clear break or upturn considering

populations as old as the bar. Populations older than the bar form weak bars, and

younger populations form strong bars. The strength of a box/peanut bulge increases

for younger populations. However, the location of the h4 minima associated with

the BP bulge is invariant with age at z = 0 and, therefore, only traces the current

total potential of the galaxy.

The BP size traced by peaks in the out-of-plane density along the bar major axis

increases with decreasing age. This dependence of the relative age of populations on

BP radius allows for the possibility of deriving the age of a bar in galaxies hosting
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a BP bulge.

7.2 Further Work

7.2.1 The Next Generation of Surveys and Observatories

All-sky multi-epoch surveys provide astrometric solutions for large quantities of stars

in the Milky Way. While we have studied the results of Gaia DR3, subsequent data

releases (DR4 ∼2026 and DR5 ∼2031) will provide even larger samples of stars

and offer better constraints on stars already in the catalogue. The more extended

baseline of the observations by DR4 will also help characterise long-period variables.

As shown in this thesis, further work can be done to improve the handling of large-

amplitude variable sources when calculating photometric and astrometric solutions

(Eyer & Gough-Kelly in progress).

The soon-to-be-completed Vera C. Rubin Observatory is conducting a ten-year

survey of the Southern sky called the Legacy Survey of Space and Time (LSST),

which will cover the entire observable sky every 3-4 nights. Such a long baseline

and high cadence makes this survey ideal for studying the motions and variability

of large samples of stars. The survey telescope is expected to be commissioned by

2025. Rubin’s survey strategy is still in the process of being refined (The Rubin

Observatory Survey Cadence Optimization Committee 2023). Nonetheless, it is

expected to include long-term monitoring of the Milky Way bulge and therefore

offers an opportunity to study its dynamical history.

Combining astrometric surveys with upcoming wide-field spectroscopic surveys

such as APOGEE-2 and MOONS will allow for chemical abundance and radial

velocity measurements of millions of objects. Complementing the 5D solutions of

astrometric surveys with these new parameters will enable the study of the full

dynamics of Milky Way bulge stars. The chemical abundances will allow us to
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separate such samples of stars by metallicities with greater precision.

The Hubble Space Telescope (HST) can still provide insights into the motions

of stellar populations of the Milky Way bulge. Indeed the predictions presented in

Chapter 3 of individual HST fields can already be tested using archive data (Clarkson

et al. in progress).

However, the extensive extinction in the central regions limits optical observa-

tions of the Galactic bulge. Infrared observations allow for a deeper view of the

Milky Way centre. An All-Sky near-IR astrometric space mission such as GaiaNIR

(Hobbs et al. 2021) would provide homogeneous astrometric solutions in regions

close to the Galactic plane. In addition, the Nancy Grace Roman Space Telescope

(RST) promises to provide high-precision astrometry with deep multi-epoch obser-

vations of the Galactic bulge and Galactic pole, providing insights into the far side

of the bar, Galactic Centre and stellar halo.

Synergies between major observatories and survey efforts can be achieved by

coordinating their observational scheduling, data analysis and metrics to maximise

their science return (see Appendix A).

7.2.2 Further Predictions From Simulations

Models of Milky Way-like galaxies from isolated and cosmological simulations can

be used to inform mock observations and catalogues of observatories. Examples of

such methods have been used for survey telescopes such as Gaia (Hunt et al. 2015;

Lowing et al. 2015; Grand et al. 2018) and have the potential to inform synergies

between observatories, as mentioned above.

From this work, we have defined a large self-consistent sample of barred and

box/peanut galaxies in a fully cosmological context for further study. Large num-

bers of bucking and weak/non-buckling galaxies can facilitate an in-depth study of

the two mechanisms to find differences in their signatures, giving insights into the
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frequency of buckling in the Universe.

In Anderson et al. (2023), we showed that barred galaxies, which form their

box/peanut through strong buckling, appear in galaxies with strong bars that form

early, which subsequently has secondary correlations with galactic properties such

as total stellar mass and disc thickness. While the work presented in Chapters 5 and

6 do not directly demonstrate how the formation of a box/peanut through either

buckling or resonant capture (Sellwood & Gerhard 2020), further work using our

sample of galaxies will attempt to disentangle these mechanisms. Recent work by Li

et al. (2022) has shown that buckling and resonant capture may also be interlinked

and would require detailed orbital analysis of the stars within the bar to uncover

the different ‘channels’ of box/peanut formation.

In our analysis, we found five buckling galaxies where their box/peanut did not

survive all the way to the current epoch. Two other galaxies formed a box/peanut

through weak/non-buckling, but these structures dissolved by z = 0. Finding these

examples also opens the question of the fate of barred galaxies in the early Uni-

verse. What fraction are not bars or even discs by the current epoch? Exploring

beyond the sample defined in our study, we can measure the frequency of discs,

bars and box/peanut bulges as a function of redshift in TNG50. Answering such

questions would help our understanding of emerging results from the James Webb

Space Telescope.

Milky Way analogues in fully cosmological simulations can give us further insights

into the dynamical history of our Galaxy. In our TNG50 sample, we find six Milky

Way-like galaxies that match in their stellar mass (log(M⋆/ M⊙) ≈ 10.8, Licquia

& Newman 2015) and bar size (Rbar ≈ 5 kpc, Wegg et al. 2015)2. Half of these

analogues formed a box/peanut bulge through buckling, while the other half formed

through weak/non-buckling.

2We find 33 galaxies in the Milky Way’s mass range of which 11 galaxies have Rbar > 5.5 kpc

and 16 with Rbar < 4.5 kpc.
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Having the complete histories of these Milky Way analogues allows us to trace

the exsitu populations and merger activity to understand their role in the bulge’s

formation history. Studies of Milky Way and Andromeda (M31) like galaxies in

TNG50 have shown that they typically have low levels of accretion and can be used

to trace accreted populations (Gargiulo et al. 2022; Sotillo-Ramos et al. 2022; Chen

et al. 2023). Future work can focus on these accreted populations in the presence

of a Milky Way-like bar. We can also make predictions for observations of stellar

populations separated by chemistry, as TNG50 has prescriptions for chemical en-

richments. This would allow for more testable constraints of kinematic fractionation

in the Milky Way bulge and estimates for the epoch of the bar formation.
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Dékány, I., Minniti, D., Catelan, M., et al. 2013, ApJ, 776, L19

DESI Collaboration, Aghamousa, A., Aguilar, J., et al. 2016, arXiv e-prints,

arXiv:1611.00036

Di Matteo, P. 2016, PASA, 33, e027

Di Matteo, P., Fragkoudi, F., Khoperskov, S., et al. 2019, A&A, 628, A11
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560, A109

Heger, A. & Woosley, S. E. 2002, ApJ, 567, 532
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Appendix A

Roman Core Community Survey

White Paper

The following extracts are contributions to a whitepaper submitted to the community-

led work of defining the observational strategies for NASA’s Nancy Grace Roman

Space Telescope (RST) Core Community Surveys call and to arXiv1, as:

Maximizing science return by coordinating the survey strate-

gies of Roman with Rubin and other major facilities

presented by the following authors:

Submitting author: R.A. Street, Las Cumbres Observatory

Contributing authors: S. Gough-Kelly, Jeremiah Horrocks Institute, UCLan,

C. Lam, UC Berkeley, A. Varela, M. Makler, International Center for Advanced

Studies, Argentina, E. Bachelet, IPAC, J.R. Lu, N. Abrams, A. Pusack, S. Terry, UC

1arXiv:2306.13792
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Berkeley, R. Di Stefano, CfA Harvard, Y. Tsapras, M.P.G. Hundertmark, Uni Hei-

delberg, R.J.J. Grand, Astrophysics Research Institute, LJMU, T. Daylan, Prince-

ton, J. Sobeck, University of Washington

Abstract

The Nancy Grace Roman Space Telescope will be one of several flagship survey

facilities operating over the next decade, starting ∼2025. The deep near-IR imag-

ing that Roman will deliver will be highly complementary to the capabilities of

other survey telescopes that will operate contemporaneously, particularly those that

can provide data at different wavelengths and messengers or different time inter-

vals. Combining data from multiple facilities can provide important astrophysical

insights, provided the data acquisition is carefully scheduled and careful plans are

made for appropriate joint data analyses. In this White Paper, we discuss the broad

range of science that would be enabled by coordinating Roman observations of the

Galactic Bulge with those of the Vera C. Rubin Observatory. Specifically, we dis-

cuss how Roman’s characterisation of lensing events caused by exoplanets, stellar

systems and stellar remnants can be enhanced by data from Rubin. The same data

will also be highly advantageous for the determination of stellar properties and for

distinguishing exoplanetary transits. It will enable more accurate period-colour-

luminosity relationships to be measured for RR Lyrae throughout the Milky Way

Bulge and Bar, probing Galactic structure and dynamics. But we stress that this

is only a sample of the full potential and advocate for a more complete study to be

made as a joint effort between these major projects. In summary, we recommend:

1. Close coordination between the groups responsible for survey strategy for the

Roman Mission and Rubin Observatory to maximise the scientific return of
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the combined data products.

2. Wherever possible, coordinating the timing of the Roman Bulge observation

seasons with the long-baseline observations of Rubin. In particular, if Rubin

undertakes rolling cadence seasons, these would be most beneficial if they

occurred during the gaps in Roman Bulge seasons. We also highlight the

value of acquiring contemporaneous observations in constraining the masses

of free-floating planet microlensing events.

3. A broader study of the scientific potential of coordinated scheduling and data

analysis from major surveys should be funded, including science by all of the

Roman Core Surveys, and considering a wide range of complementary facilities

and catalogues.

4. The development of metrics designed to evaluate how changes in the strategy

of one survey impact the science return of another. These should be used by

both surveys.

We note that we do not suggest any changes beyond the established Science Re-

quirements for the RGBTDS in terms of survey footprint or filter selection.

A.1 Scientific Motivations

The combination of near-IR timeseries imaging from the Nancy Grace Roman Space

Telescope with multi-band optical imaging from the Vera C. Rubin Observatory’s

Legacy Survey of Space and Time (LSST) will be highly beneficial for numerous

science goals from both flagship missions. Here, we highlight the scientific benefits

of the Roman Galactic Bulge Time Domain Survey (RGBTDS, see White Paper by

Gaudi et al.).
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A.1.1 Stellar Astrophysics and Kinematics

Multiwavelength imaging data will be important in determining stellar spectral types

in the RGBTDS region, as most sources will be too faint for spectroscopy. Photo-

metric metallicities derived from combined optical+NIR bandpasses will enable us

to distinguish between metal-rich and -poor stellar populations that follow different

rotation curves through the Galactic Centre (Clarkson et al. 2018) and which theory

suggests support different Galactic structures (Gough-Kelly et al. 2022). Age esti-

mates determined from isochrone fitting will be a key result, as Roman will reach

the Main Sequence Turn Off at low Galactic latitude.

A.1.2 Stellar Variability

The timeseries data provided by Roman and Rubin will uncover a wealth of stellar

variables, from eclipsing binaries to pulsators of all types. Multi-band timeseries

photometry will reveal the varying depth of stellar-companion eclipses in different

passbands, constraining the spectral type of both companions and enabling them

to be distinguished from planetary transits. Time-variable colour, particularly in

passbands that are widely separated in wavelength, will be a vital parameter in

the accurate classification of variable stars since both Roman and Rubin will probe

fainter limiting magnitudes than previous catalogues and complement Gaia Ivezić

et al. (2015). Colour is also one of the essential terms in the period-colour-luminosity

relationship that allows RR Lyrae to be used as standard candles. A joint analysis

of Roman and Rubin data would be highly beneficial to studies of the Galactic

structure in the “heart of the Milky Way”. Roman GBTDS will be ideal for finding

large populations of Long-Period Variables (LPVs) such as Miras and Semi-Regular

Variables close to the Galactic Centre, and its high cadence timeseries is ideal for

asteroseismology. It’s deep limiting magnitude timeseries data will detect RR Lyrae

and LPVs deep within the Galactic Bulge and Bar and even on the far side, enabling
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us to map the 3D structure of the inner Milky Way, including extinction. Thanks to

Roman’s precise parallax measurements, these stars will be used as standard candles

to underpin cosmological models and probe dust distributions in this region. But

the gaps in Roman’s timeseries are problematic, as LPVs commonly have periods of

100s of days. Rubin’s photometry in the season gaps will constrain the morphology

of the variable light curves and hence improve the measurement of their periodicities.

A.2 Synergies With Other Survey Facilities

Although we have focused on synergies with the Rubin Observatory in this White

Paper, it will not be the only major survey facility with complementary capabilities,

and we recommend a broader review be undertaken to evaluate the benefits of joint

data analyses. For example, the Gaia source catalogue is limited to relatively bright

stars within the RGBTDS field, as the crowding in this region leads to excessive

demands for onboard computations. Roman photometry and astrometry will extend

our view of the Bulge and Bar to regions on the far side of the Galaxy (Fig. A.2).

This promises to offer a goldmine of ages and distance measurements from variable

star lightcurves that will be valuable for Galactic archaeology and dynamics. It will

also help us to better assess extinction and other aspects of Gaia’s selection function,

such as crowding.

A.3 Conclusions

The Roman GBTDS will be groundbreaking not only for exoplanetary science but

for a wide range of stellar astrophysics. That the survey will be in operation at

the same time as other wide-field surveys of similar limiting magnitude, sky area,

and complementary time cadence and wavelength coverage offer us unique scientific

opportunities. In order to maximise the science return from both Roman GBTDS
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Figure A.1: (Left) Comparison of the Roman Galactic Bulge Time Domain Survey

field (black mosaic outline, 1.53◦ × 1.5◦) with the field of view of a proposed LSST

Deep Drilling Field (blue circle with a 3.5◦ diameter, Street et al. 2018). Note that

the LSST survey strategy is still being refined and could be adjusted to include a

Roman field at the Galactic Centre.
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and the LSST, we recommend:

1. That the RGBTDS seasons be scheduled in coordination with the Rubin Ob-

servatory’s LSST, such that Rubin provides, at minimum, daily observations

in at least 3 optical pass bands during the intra-season gaps. These data will

provide alerts of microlensing anomalies that would otherwise be missed, as

well as tighter constraints on the microlensing parallax, and hence the mass of

the lensing objects, than Roman alone can achieve. The same dataset will de-

liver a wealth of additional astrophysics, helping us to characterise RR Lyrae

in the Bulge, etc. We further recommend that opportunities for contempora-

neous observations be explored. This will require close coordination between

the groups responsible for the survey strategy for the Roman Mission and

Rubin Observatory.

2. That a broader study of the scientific potential of coordinated scheduling and

data analysis from major surveys should be funded. Due to space constraints,

we have focused on science from RGBTDS, but the combination of NIR and

Rubin’s optical data will also be highly beneficial for the High Latitude Survey,

for example, in the measurement of photometric redshifts of galaxies, charac-

terising supernovae lightcurves and probing the edges of the Milky Way halo.

Furthermore, there will be other complementary surveys operating within this

timeframe, such as ULTRASAT (Shvartzvald et al. 2023), that can further

extend the wavelength coverage. We advocate for close coordination of the

survey observing strategies, data handling and metrics of the next generation

of Great Observatories and existing catalogues such as those from Gaia.

3. That metrics be developed to evaluate how changes to one survey’s strategy

impact the science return from another as a joint effort between Roman, Rubin,

and other major surveys.
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We note that it would be valuable to have a common framework for writing and

running survey strategy simulations and metrics rather than develop separate code

bases. The Metric Analysis Framework (Jones & Yoachim 2023) is an example of a

project-supported code base that has successfully integrated metric code contributed

from the wider community.

We emphasise that we do not request any changes to the current design of the

Roman GBTDS in terms of changing the footprint or filter selection within a specific

season. Rather, we note the exciting potential benefits of simply coordinating the

scheduling of the existing survey design with other facilities.

Appendix A.a: Rubin Observatory’s Legacy Survey of Space

and Time (LSST)

With a 9.6 sq.deg. field of view, 8.4 m aperture and spatial resolution of 0.2”/pix,

Rubin Observatory can deliver optical (SDSS-u, g, r, i, z, y) imaging that is highly

complementary to that of Roman in the NIR. Rubin’s signature survey, LSST, is ex-

pected to begin in early 2025 and continue for 10 yrs. The details of Rubin’s survey

strategy are currently being refined (The Rubin Observatory Survey Cadence Op-

timization Committee 2023), but the most recent baseline now includes long-term

monitoring of a large region of the central Bulge, fully including the RGBTDS survey

footprint and operating contemporaneously (Fig. A.1). Rubin’s limiting magnitude

in single exposures of the crowded Bulge fields is expected to reach (u: 24.07, g:

24.90, r: 24.40, i: 23.96, z: 23.38, y: 22.49) mag. (Suberlak et al. 2018) and will

probe deeper in high-latitude fields. Our simulations indicate that Rubin will be able

to monitor 47% of stars detected by Roman (Fig. A.1) and that Roman will probe

tens of kpc deeper than Rubin (Fig. A.2). With careful coordination between Roman

and Rubin, LSST could deliver regular, long-baseline monitoring of the RGBTDS
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field that would fill the Roman season gaps. This would provide more precise mea-

surements of the microlensing parallax (both due to Earth’s annual motion and the

satellite parallax due to the separation of the observatories) and provide real-time

alerts of anomalous features. The optical+NIR data will characterise the Spectral

Energy Distribution of the microlensing source stars, a vital step in the estimation

of the source star’s angular radius, which allows the lens mass to be determined. It

will also identify the faintest source stars for future follow-up by Adaptive Optics

imaging once the lens and source stars have separated.

We note that a number of key elements of Rubin’s observing strategy in the

Galactic Plane remain to be decided, in particular, whether a ‘rolling cadence’

strategy would be beneficial. A rolling cadence divides the sky into different spatial

regions. Higher cadence observations can then be performed for one region while

the other(s) is observed at lower cadence. In subsequent years the regions are al-

ternated so that the entire survey footprint eventually receives the same number of

visits. Through close coordination, a Rubin rolling cadence could be applied to a

small region, including the RGBTDS footprint, with the high-cadence (∼1–2 visit-

s/day) phase timed to occur during the inter-season gaps in RGBTDS. This strategy

was proposed as a Rubin survey strategy White Paper in Street et al. (2018).

Appendix A.b: Predicted Depths of Roman and Rubin From

a Simulation

In the top panel of Fig. A.2, we present the face-on density distribution of a Milky

Way-like barred galaxy from the Auriga Project (Grand et al. 2017). The bar

major axis is angled 30◦ from the x-axis. White contours follow lines of constant

log density. The yellow circle shows the location of the approximate Solar position

within the model at X = −8.232 kpc (Gravity Collaboration et al. 2018, 2021).

The cyan and green wedges represent the widths and approximate depths of the
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Roman GBTDS footprint and a Rubin pointing, respectively (see Fig. A.1). The

depth of the Rubin field is limited to a heliocentric distance of D ≲ 12 kpc from

the Solar position. Assuming each stellar particle of the model represents a red

clump star (RC), we assign absolute magnitudes of Mi(RC) = 0.37 ± 0.30 and

MH(RC) = −1.40 ± 0.30 (Plevne et al. 2020) convolved with a Gaussian kernel

(here the H-band serves as a proxy for Roman’s F146 band). Then, by converting

the positions of stellar particles to heliocentric coordinates, we estimate extinction

values using the combined19 dust map of the python package MWDUST (Bovy et al.

2016), allowing us to calculate apparent magnitudes of these mock RC stars. In the

bottom two panels of Fig. A.2, we present the apparent magnitudes in the i- and

H-bands as a function of D, with the red vertical line denoting the Galactic Centre

and the red vertical dashed line in the top panel showing the estimated limiting

depth of the Rubin field. Rubin i-band observations are expected to be limited to

mi ≲ 23.5 mag. (horizontal dashed line) or D ≲ 12 kpc, reaching just beyond the

Galactic Centre. We predict that Roman’s magnitude limit will allow it to probe

far beyond the Galactic Centre.

(Fragkoudi et al. 2017a)
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Figure A.2: (Top) The face-on density distribution of a Milky Way-like barred

galaxy from the Auriga Project (Grand et al. 2017). (Bottom) The magnitude-

distance distribution of synthetic red clump stars from the model. See Section A.3

for further details.
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