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Abstract—In this study, a small-scale customised drone was
developed to automate the procedures of cleaning explosive
devices. It was instrumented with innovative intelligent auto-
mated techniques and magnetometer sensor technologies. Its
performance was assessed in field t ests. T he r esults, obtained
in the open-air minefieldsa ndt he b enchmark assessments,
verify the viability of the technologies, methods, and approaches
employed in this research for the efficient d etection o f legacy
landmines and IDE/UXO.

Index Terms—Landmine detection, airborne demining, Aerial-
supported detection of landmines, UAV-supported detection of
landmines, Magnetometer.

I. INTRODUCTION

All around the world, there are approximately 100 million
buried landmines [1] due to the low-cost manufacturing [2]
and simplicity of deployment across wide regions. More than
1,000 deminers have lost their lives or suffered injuries while
performing demining operations between 1999 and 2012 [3].
61 states worldwide are severely impacted [4] by the slow
demining process [5]; these include, but are not limited to,
Croatia ( [6]), Bosnia and Herzegovina, Serbia, Afghanistan,
Montenegro, Libya, Syria, Iraq, and most recently, the war-torn
regions of the west of Ukraine and Azerbaijan. By the end of
2005, Bosnia and Herzegovina declared that there was a pos-
sibility that over 4% of their territory was contaminated with
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landmines [7]. In 1997, two years after the war ended, 23%
of Croatian territory was thought to be mine-suspected [7].
10.413 people in Colombia, one of the nations most affected
by landmines worldwide, lost their lives to landmines between
1990 and 2013 [[8]. Over 35,000 amputees in Cambodia have
been impacted by a landmine explosion [3|]. The average
number of people killed or maimed annually is 26,000 [9]]
and 80% of this figure is children [4]]. Ten mines are placed
for every mine removed, despite recent efforts to reduce their
use [|10]. The precise locations of legacy landmines that have
been buried are unknown, and landmines can shift slightly
depending on the features of the land and the time they were
buried. Using conventional methods to remove millions of
landmines/IDE/UXO would take more than a century [/11]]
with potential risks and high costs [12], which will have a
long-term, significant impact on these nations in a variety
of ways. Their presence continuously puts communities in
danger, obstructs economic growth, and makes it difficult
for infrastructure, agriculture, and resettlement to have safe
access to land [13]]. The development of a landmine/UXO/IDE
detection system that is quick, safe, and economical is urgent.
Land-based vehicles face a number of challenges, including
accurate navigation over rough terrain despite being supported
by various mechanisms like wheeled, legged, and dragged
robots [14]]. Furthermore, it takes a while to scan larger



terrain with those slow, heavy vehicles. Autonomous drones
have recently been deployed to accomplish a diverse range
of missions (e.g. logistics [15[], smart cities [16], agricul-
ture [[17]]), due to their efficient and effective use. Drones can
expedite surveying and provide better access to challenging
terrain with tough and hard-to-reach topography and thick
vegetation [18]], [19], [20]. Unmanned Aerial Vehicles (UAVs)
suited to covering a large area for the purpose of easing labour-
intensive mine clearance have been used in numerous studies
with different detection approaches [21]. Thanks to cyber-
physical systems (CPSs) and enhanced Artificial Intelligence
(AD) techniques, recent years have seen an increase in the
intelligence of the “everyday things” in our environments
considering Internet of Everything (IoE) [22], [23] enabling
them to make decisions with an increasing degree of autonomy
and little to no help from humans, leading to the development
of advanced robotics systems.

The effectiveness of drones equipped with magnetometers
in detecting buried metallic explosives was demonstrated in
various studies [24], [25]. In this work, a bespoke, low-cost,
small footprint, easy-to-use, and autonomous robotic drone
(Fig. — integrated with magnetometer sensor modalities
(Fig. [T), the so-called MagnoUAS, was developed to detect
landmines/IDE/UXO locations rapidly and safely. Low mass,
small size, and lightweight UAS with low energy consumption
is capable of inspecting fields at low altitudes through pre-
programmed routes with extreme height precision and terrain
following mode for revealing the probable landmine/UXO/IDE
spots.

II. METHODOLOGY

We planned to use a small single-board computer (SBC) on
MagnoUAS to process the internal management of its parts as
well as the sensor components. Arduino and Raspberry Pi are
both suitable to our design and development objectives. In this
application, the Arduino board was selected to execute simple
sensing operations from the sensors wher e i) it is cheaper
than the Raspberry Pi, which helps us to accomplish one of
our objectives — a bespoke drone as less expensive as possible
and ii) it needs less current than Raspberry Pi does, which is
important for us regarding the battery-constrained MagnoUAS
for the extention of flight time. This section consists of two
subsections (Sections [-B)), i) design and development of
the drone — MagnoUAS — with sensor technologies (Fig. [2)),
and ii) development of the tablet/smartphone application to
manage MagnoUAS and process data streaming from Mag-
noUAS to locate landmines/IDE/UXO.

A. Integration of MagnoUAS With Sensors

The incorporation of the internal software and hardware
components with the sensors into the bespoke UAS is ex-
plained in this section. Fluxgate magnetometer sensors were
used to detect MF generated by the metallic parts of land-
mines, UXO or IDE. Magnetometer sensors should be inte-
grated with MagnoUAS appropriately concerning the magnetic
interferences relating to onboard electronics as elaborated

TABLE I: Properties of Fluxgate sensor — HWT3100-485.

Sr.No. Features Properties

1 Output MF and heading angle

2 MF range -800uT—+800uT

3 Heading angle range | -180—+180

4 Sensitivity 13nT/LSB

5 Return rate can be adjusted between 0.2-
100Hz

6 Components Built-in sensor chips: 2*Sen-
XY-f(pn13104) and 1*Sen-Z-
f(pn13101) geomagnetic mod-
ule; 1*Magl2C(pnl3156) con-
trol chip

7 Resolution 16 bits for each axis

8 Voltage 5V—36V

9 Current <10mA

10 Volume 83mm*25mm*25mm

11 Data interface 485 serial port (the specific level
depends on the selection, the
baud rate

12 Casing Waterproof — and  vibration-
resistance aluminium casing
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Fig. 1: Fluxgate sensor with three-axis MF output. Model:
HWT3100-485.

in [26], [27], [28] even though the small electronics of
MagnoUAS help reduce the interferences significantly. The
magnetometers were integrated below a lightweight drone
to minimise magnetic interferences, specifically, caused by
MagnoUAS. The properties of the magnetometer sensors
shown in Fig. [T] are presented in Table [ Two fluxgate
sensors — magnetometers — are connected to Arduino using
the serial port via the Modbus multiple connections. One of
the magnetometers is placed on MagnoUAS to collect MF data
via the Z direction and the other is placed to collect via the X
direction. The sampling rate was adjusted to 10 Hz in order
to reduce the noise.

MF (uT) = (Maggyrawdata * Sensitivity) /1000;
where Sensitivity = 13nT /LS B;

1
—800uT' < Maggyrawdata < +800uT’ M

1000 converts nT unit to uT (micro — Tesla);
M&w:mmM@+Mﬁ+M@yQ)

where MF is the magnetic field with respect to axis.
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Fig. 2: Outer design of MagnoUAS.

Maggyneading (degrees) = atan2(magy, mags) * (180/pi);
where mag, and mag, are the magnetic field strength
values in the r and y axes respectively;(3)

180/pi converts radians to degrees;

Each full battery can perform up to 4 min 30 sec at low speed
flying (i.e. 1 m/s). An altimeter was incorporated into Mag-
noUAS to make the flights accurate under 1 meter, enabling
reliable terrain-following flight. The “position mode” is the
easiest to fly with the centre stick configuration. MagnoUAS
uses a distance sensor (i.e. altimeter) for “position hold”
below 1 m altitude. In “altitude mode”, MagnoUAS will
drift with the wind and is sensitive to control input. The
“transmitter timer” is set to 4 min and will start to beep to
notify “low battery”. By integrating wireless communications
with antennas using telemetry radios for remote control, WiFi
for real-time data transmission using a 5G Netgear Router
and a drone flight controller for precise navigation — we can
implement a provision of real-time data which opens up many
operational advantages as elaborated in next subsection [[I-B}
X, Y and Z component directions of the magnetometers are
processed as formulated in Egs. [T} [2] [B) to result in the total
magnetic strength/intensity. A Gaussian low-pass filter as well
as a high-frequency pass filter are applied to the acquired
signals to suppress the background noise and accomplish a
satisfactory signal-to-noise ratio (SNR) (Figs. [§), which help

detect small-scale MF caused by the targeted explosives with
metallic objects. The autopilot control system of the drone was
optimised for flight close to the ground, integrating a radar
altimeter into the drone to enable terrain following flight at a
distance between 50 cm and 1 m above the ground to maximise
the sensor performance.

B. Development of the Application

An intelligent tablet/smartphone application was developed
using the Xamarin.Net development platform. The Xamarin
platform enable us to create an application which can run on
both Android- and iOS-based devices. It was fully integrated
with MagnoUAS to i) manage MagnoUAS, ii) process data
streaming from MagnoUAS to locate landmines/IDE/UXO,
iii) perform detailed survey analysis considering varying MF,
and iv) communicate with the landmine/UXO/IDE clearing
team for reporting the exact locations of explosives. From
a technical standpoint, the application establishes an agreed-
upon communication link with MagnoUAS using either a TCP
or UDP connection. Preferably, a UDP connection is suggested
to be used where each data point read by MagnoUAS needs
to be readily displayed on the application without stricter
protocols as in a TCP connection. MagnoUAS can be used
in an automated manner where planned waypoints can be
fed into MagnoUAS using the UgCS system — drone flight
planning software. MagnoUAS transmits MF values with
related information at each data point on its waypoints to the
application. The flight information and MF data are streamed
to the application to be processed and monitored in near
real-time. The streaming of data was coded using Pyrton.
The streaming is communicated through 5G Netgear Router’s
WiFi connection as mentioned earlier. The application readily
processes these values using Eqgs. [T 2] [3| for MF classification
and clustering based on the MF threshold chosen by the user
and shows landmine/UXO/IDE GPS locations on the local
map with abstract information (Figs. [8) as data is streamed
from MagnoUAS. The classification of MF values is carried
out based on the distribution of the MF values obtained
from various landmine/UXO/IDE devices considering the “no
MF” values as exemplified in Section Regarding the
clustering, values below the threshold value are ignored and
clustering is executed based on these values above the selected
threshold. These algorithms are employed to classify the MF
values as “very high MF” represented by “red””” colour, “high
MF’” represented by “orange” colour, “low MF” represented
by “yellow” colour, and ‘“no MF” represented by “green”
colour. This is demonstrated in Section particularly, in
Fig. [8] The use of the application with its functionalities is
explained in Section [[II-B| with real-field implementations.

III. EXPERIMENTAL RESULTS

The functions of the prototype magnetometer-integrated
autonomous drone — MagnoUAS — were improved in the lab
environments with numerous trial iterations and its viability in
realising aforementioned targets was validated in the bench-
mark test fields with benchmark outputs as explicated in the



Fig. 3: Shielded Maggy.

following subsections. How to use the tablet application for
the streamed data and old survey analysis is explained in [29]
with a video.

A. Lab tests with MagnoUAS

In the lab environment, design of sensors and their inte-
gration with the drone components were extensively tested to
find out i) the ideal component integration that avoids extreme
magnetic interferences and ii) ideal configuration that ensures
that subsequent sensor trials are reliable with repeatable and
valid values under similar conditions. The acquired test data
set was used to establish the classification and clustering
algorithms ( [30]) with respect to the chosen MF threshold
value as elaborated in Section [I-Bl

The results obtained from the earlier trials in the lab
environment with 1 m/s, 2 m/s, and 3 m/s flight speeds and 0.5,
1 m, and 2 m altitudes demonstrated that 1 m/s flight speed
and 0.5 m altitude outperformed other parameters, namely,
2 m/s, and 3 m/s flight speeds and 1 m, and 2 m altitudes.
More specifically, the detection accuracy of MF decreases
significantly, primarily, for the explosives with less metallic
parts, as the flight/sensor altitude increases and the flight speed
increases. The MF values of various landmine/UXO/IDE were
measured by MagnoUAS. The change of MF values in the X,
Y, and Z axes with the two magnetometers are demonstrated.
The MF values of the targeted object can be distinctively
noticed when encountered a high MF. MagnoUAS was tested
in real benchmark test fields as explained in Section [[II-B]
after it passed its tests in the lab environment. To summarise,
the test results in the lab environment were instrumented to
determine the ideal parameters for MagnoUAS considering its
design and configuration.

B. Real field tests with MagnoUAS

The drone was covered with a shield as shown to protect the
electronics from bad weather conditions, especially, from rain.
In this way, MagnoUAS can function under rainy conditions.
It is noteworthy to emphasise that MagnoUAS cannot resist
heavy windy conditions due to its lightweight design. Mag-
noUAS operated with 1 m/s flight speed and 0.5 m altitude.
The ability to fly under 1 m altitude and very low speed

Fig. 4: Autonomous use of MagnoUAS in the UCLan land-
mine field. All data points.

[ —

Fig. 5: Landmine locations, until the current scanned point
in the route, shown by user during data streaming while
MagnoUAS is still in operation.
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Fig. 6: All landmine locations, with “very high” MF (red),
shown by the user.

|

Fig. 7: Landmine locations, with “very high” (red) and “high”
(orange) MF, shown by the user.
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increases the magnetometer sensor performance significantly
as explained in Section [[lI-A] MagnoUAS was tested in the
UCLan landmine field and the Latvia test field [1 The results
of these tests are explained in the following subsections.

1) Real field tests with MagnoUAS at the UCLan Landmine
Field: The landmines in the UCLAn landmine field were
buried between 15 cm to 50 cm depth. Several off-the-shelf
UAV-mounted sensor modalities such as GPR and magnetome-
ter were already tested by the UCLan ASR team successfully.
In those tests, the MF map of the UCLan landmine field was
constructed. MagnoUAS was deployed in the same landmine
field in an autonomous mode with the previously tracked
waypoints to conclude if the developed approaches considering
all the components of MagnoUAS and their integration with
one another were functioning as desired. The MF formation of
the landmines with metallic objects is demonstrated through
real-time data streaming in the IEEE DataPort [29] with a
video using the earlier version of the application. All scanned

Uhttps://www.sphengineering.com/integrated-systems/test-range-for-
geophysical-sensors

points are displayed in Fig. [d] The “very high MF” locations,
highlighted by red colour, are disclosed in Fig. [6] and “high
MF” locations, highlighted by orange colour, are shown in
Fig. [7|together with the “very high MF” locations. MagnoUAS
was found to be performing satisfactorily in revealing the pre-
mapped MF locations. It is noteworthy to emphasise that “very
high MF” locations (red) are surrounded by “high MF” (or-
ange), which indicates that MagnoUAS can show the hot/red
MF spots inside orange circles when the field is scanned
densely. Fig. [5] shows that the user can disclose the previous
hot spots while MagnoUAS, with multi-processing ability, is in
operation. MagnoUAS accomplished its operational objectives
in these field tests in finding landmines.

2) Real field tests with MagnoUAS at the Latvia Field: The
size of the Latvia test field is 450x70 meters with permanently
installed objects. The MF formation of the field was already
obtained using two different sensor modalities, namely, the
MagArrow magnetometer and metal detector. MagnoUAS can
rapidly scan a large terrain, providing near real-time survey
data. However, MagnoUAS flew a few straight lines over
known targets as displayed at the top of Fig. [§] due to the
battery limit during our flight from the UK to Latvia. The
battery does not last very long. Each full battery can function
for up to 4 min 30 sec at low-speed flying, which restricts
the scanning of larger areas, especially, at the ideal speed of
1 m/s. This testing provided us with data on the system’s
sensitivity to detect objects with various quantities of metal
content, at various depths, in different soil/surface materials.
MagnoUAS was successful in detecting objects in this field as
presented in the middle of Fig.[8] The histograms of MF values
along with those straight lines are shown at the bottom of
Fig. 8] The MF locations can be distinctively noticed in those
graphs. The real-field tests help us understand the abilities as
well as the shortcomings of MagnoUAS in operations to find
out the improvement points in its design and functionalities.
All the datasets related to this work will be uploaded to the
IEEE DataPort [29] for the researchers who would like to
perform similar studies, which will lead to new directions in
this specific field.

I'V. DISCUSSION AND CONCLUSION

This study mainly aims to help in making new fully auto-
mated landmine/UXO/IDE detection systems in a time-and-
cost-efficient manner. Capable of vertical take-off and landing
and flying at very low altitudes with low speed makes easy-to-
use rotary drones, if equipped with effective sensor technolo-
gies and Al with proper configurations, efficient in humanitar-
ian clearing operations. The near real-time data provided by
a UAV-integrated magnetometer system can greatly improve
mine clearance operations. In this direction, the methods
created in this study address the drawbacks of ground-based
operations, such as high operator risk and inefficiency, and
provide a quicker, safer, and more economical substitute for
conventional landmine/UXO/IDE detection techniques. The
developed platform in this work is a small, lightweight drone
that can be rapidly deployed by a demining team to scan a



large area for any magnetic anomalies caused by the presence
of metal in landmine/UXO/IDE. It helps accelerate the speed
of clearing operations across a large and tough terrain or
other hazardous land area, reducing risk, increasing assur-
ance and improving safety for the humanitarian team. More
specifically the compact, lightweight, real-time magnetometer
aerial surveying system can scan for the presence of ferrous
metal, and real-time detection information is displayed on a
tablet/smartphone device. The tablet/smartphone application (
[29]]) overlays detection information on a satellite map image
of the survey site. Highly risky terrains can be surveyed by
cost-effective MagnoUAS to turn the area into low-risky areas
using safer and faster scanning approaches than conventional
methods. The risk to human operators can be reduced sig-
nificantly with MagnoUAS. This research provides the related
research community and industry with fundamental design and
implementation parameters (e.g. flight speed, flight altitude) in
building and using magnetometer-integrated UAS.

In conclusion, while the MagnoUAS study presents a
promising advancement in UAV technology for humanitarian
applications, for future work, it would be beneficial to explore
the implementation of a UAV swarm strategy. Utilizing multi-
ple drones could enhance coverage and efficiency, allowing
for simultaneous scanning of larger areas and potentially
compensating for individual UAV limitations. Furthermore,
optimizing battery performance through improved capacity
or better battery management systems as well as low power
sensors ( [31] could significantly extend mission durations and
enhance operational effectiveness.
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