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Abstract 
 

Facial signs are associated with people’s health and general fitness. Among different 

facial signs, the facial landmark is one of the essential appearances of facial 

characters, which can be linked with people’s emotions, state of consciousness and 

health. Facial landmark detection can be used for recognising people’s expressions, 

monitoring the conscious status of people’s faces, or diagnosing neurological 

diseases. Recent advances in imaging technology and ever-increasing computing 

power have opened up the possibility of automatic facial landmark analysis and 

assessment. Facial landmark detection algorithms play an important role in facial 

analysis tasks, such as expression recognition, face swapping and medical auxiliary 

diagnosis. As a result, the accuracy of the facial landmark localisation directly 

impacts the reliability of facial landmark-based tasks.  

 

The purpose of this project is to conduct a comparative study of existing vision-

based methodologies for detecting facial landmarks and to identify appropriate ones 

that could overcome the challenges, such as pose variation and exaggerated 

expression. Three effective facial landmark detection methodologies were selected 

and implemented in this project, including Deep Convolutional Neural Network 

(DCNN) Cascade, Deep Alignment Network (DAN), and Stacked Dense U-nets 

(SDU). In order to provide a thorough evaluation, three publicly available datasets 

were used for the benchmarking, such as Multi-PIE, 300W and Menpo, which 

contain a large number of facial images with the variations in illumination, pose and 

expression as well as the occlusion. Through the evaluation based on different 

datasets, SDU was considered to have the best performance, and it was adopted 

and implemented into a real-time facial analysis system that contains landmark 

detection and assessment.  
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1.Introduction 
 

1.1 Background 

While the human face is an important medium that can directly reflect people’s 

emotions, state of consciousness and health, facial Landmarks can be used to 

extract the features for facial analysis and assessment. The commonly used 

landmarks are at the eyebrow arcs, ear lobes, eye corners, nose tip, chin, and mouth 

corners. 

 

With the recent development and enhancement of computer hardware, facial 

analysis has been receiving an increasing amount of attention for research, where 

facial landmark plays a vital role, such as expression recognition (Mohammad et al., 

2022), face swapping (Ding et al., 2019) and medical auxiliary diagnosis (Ding et al., 

2021). Here, three landmark-dependent tasks are detailed below: 

• Expression recognition: Human facial expressions play an essential role in 

social communication because the channel of non-verbal communication and 

human emotions could support spoken to transform messages. (Michael et al., 

2021). Fuzail (2020) utilized facial landmarks to calculate the Euclidean 

distances between the corner points in each organ, which can generate the 

input feature vectors of a neural network and then classify the six different 

emotions. Mohammad (2022) presents a lightweight algorithm to classify 

different emotions and recognise facial expressions in a real-time system. In 

this algorithm, the facial landmarks of each face need to be detected and then 

extract the input feature based on the angles in each attribute. 

 

• Face swapping: This task refers to swapping a face with the face of another 

person or an animal object between the images or in a video. For example, 

we can select funny images and swap them with other images, or face 

swapping can be used to keep people private in the live stream. In OpenCV, 

face-swapping technology utilises facial landmarks to calculate the affine 

matrix to warp one face to the other face.  
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• Medical Auxiliary Diagnosis: Traditional medical auxiliary diagnosis refers to 

building a prior rule from the result of the invasive medical examination to aid 

doctors in diagnosis. For example, facial stroke is a common disease that can 

rely on the analysis of facial asymmetry in diagnosis. Compared with the 

traditional methods, automatic analysis of facial asymmetry provides the 

possibility of a non-invasive medical assessment to master primary disease 

indication and investigate the patient’s status thoroughly. The key to achieving 

the automatic analysis of facial asymmetry based on two-dimensional 

photogrammetry can assess based on the angle and distance between the 

feature lines (Choi, 2015). Facial landmarks can be used to calculate the 

Euclidean distances and angles between the feature lines. 

 

From the perspective of human vision, the task of identifying facial landmarks, such 

as the centre of an eye, is instinctive and natural. However, this simple task becomes 

challenging in the field of computer vision. The challenge is caused by the variability 

of facial appearances, which can be divided into two factors (Celiktutan et al., 2013). 

The challenge details that explain these influence factors are as follows: 

 

The discrepancy of facial appearances can be divided into two parts: the intrinsic 

factor has a great deal of variability between individuals’ facial shape, texture, and 

colour. The other one is the extrinsic factor which has several confounding factors, 

such as extreme illumination, exaggerated expression, partial occlusion, and the 

resolution of the camera. The current facial landmark detection algorithms still do not 

work well since facial landmarks may sometimes be partially occluded, such as hand 

movements, extreme head rotations or occlusions of hair. Furthermore, facial 

expression and illumination conditions are also the main variations, which lead to 

significant errors in facial detecting accuracy. As shown in Figure 1.1, the images 

demonstrate the faces' variations, consisting of different expressions, illumination, 

and occlusion conditions.  
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(a) (b) (c) 

Figure 1.1 A illustration of face variation (a) expression, (c) illumination, and (c) 

occlusion 

 

1.2. Aim of the Research 

This research project aims to conduct a comparative study of the existing image-

based algorithms of facial landmark detection and identify appropriate ones with 

robust performance that could overcome the challenge, including exaggerated 

expression and partial occlusion.  

 

To be able to achieve the project goal, the following three stages need to be 

completed. Firstly, the classic facial landmark detection algorithms, publicly available 

datasets and appropriate landmark configurations should research and review, which 

can be used for this project. The available public datasets should have intrinsic 

factors, including various face shapes, textures, and colours, while they also need 

extrinsic factors, such as different expressions, illumination, and occlusion conditions. 

Then, according to the existing approaches for facial landmark detection, the widely 

used approaches are reviewed to investigate how to implement the three classic 

selected algorithms. Third, the three algorithms are compared based on the intrinsic 

and extrinsic challenges of the selected datasets. 
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1.3. Research Contribution 

The original contributions of the research study provided by this thesis are 

summarised as follows: 

• A review of the automatic facial landmarking methods can be divided into 

three categories: holistic methods, constrained local methods, and regression-

based methods. The publicly available datasets are selected, including Multi-

PIE (Gross et al., 2008), 300W (Sagonas et al., 2013), and Menpo (Deng et 

al., 2019), while the landmark configuration is called ‘Multi-PLE’ landmark 

configuration. 

 

• Implementation of facial landmark detection methods based on three classic 

deep learning-based algorithms, including Deep Convolutional Neural 

Network (DCNN) Cascade (Zhou et al., 2013), Deep Alignment Network (DAN) 

(Kowalski et al., 2016), and Stacked Dense U-nets (SDU) (Guo et al., 2018). 

 

• Comparative study between the three classic methods under publicly 

available datasets to analyse the intrinsic and extrinsic factors and a 

discussion of the main trends and current shortcomings in these methods for 

the utilisation in various applications of face analysis. 
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1.4. Thesis Structure 

Chapter 1: an introduction of the whole project is provided, including the research 

background, research plan, aim of the research, and research contribution. 

 

Chapter 2: a literature review is presented to discuss the classic facial landmarking 

methods in the three main categories, including the holistic methods, constrained 

local methods, and regression-based methods. 

 

Chapter 3: a description of the relevant publicly available two dimensions (2-D) and 

three dimensions (3-D) facial datasets for facial landmark detection and a selection 

of the landmarks’ configuration. 

 

Chapter 4: implementation of three classic facial landmark detection algorithms, 

each of which comprises three stages, including data pre-processing, model training, 

and model testing. 

 

Chapter 5: the training detail of each algorithm is introduced and is followed by the 

description of the performance metrics for the intrinsic and extrinsic factors. At last, a 

comparison result of three algorithms in each dataset is presented. 

 

Chapter 6: a conclusion of the research study is stated, and the development of a 

real-time facial landmarking system can detect facial landmarks. 
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2. Literature Review 
 

Facial landmarks detection algorithms can be applied to identify the landmark 

location using facial characteristics. Facial characteristics generally refer to face 

shape patterns and facial appearance. The face shape patterns are represented by a 

set of annotated coordinate points. The facial appearance is defined as texture 

variation, which observes the patterns of pixel colours or intensities across the face 

image or around the facial landmarks. 

 

In the aspect of facial characteristics, the facial landmark detection algorithm is 

divided into three main categories of methods, including holistic methods, 

constrained local methods, and regression-based methods (Wu et al., 2018), as 

shown in Figure 2.1.  

 

Figure 2.1 Main categories of facial landmark detection Methods 

 

As shown in Table 2.1, there is an explanation based on their shape and appearance 

why the methods should be divided into three categories and compare their accuracy 

and the cost time of model inference. The holistic method adopts global shape 

patterns with explicit parameters and the whole facial appearance. The constrained 

Local Method (CLM) refers to the explicit holistic facial patterns and explicit local 

facial appearances. The regression-based method jointly utilises the appearance 
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information around the whole face region or local image patch and may implicitly 

embed the facial shape patterns with implicit parameters. In general, the regression-

based methods have recently shown better accuracy in landmark detection, which 

will be described later.  

Table 2.1 Comparing three main categories of methods 

 

2.1 Holistic Methods 

The holistic methods are built up by explicit shape patterns and appearance 

information for facial landmark detection. One of the wide usages and most classic 

methods was the active appearance model (AAM) (Cooter et al., 2001) in holistic 

methods. Before understanding other facial landmark detection algorithms, it is 

essential to be familiar with the traditional holistic method. Furthermore, there is an 

extended discussion in the last. 

 

Cootes et al. (2001) designed an active appearance model (AAM) to match the facial 

images, which explicitly utilised the whole facial shape variation and appearance 

variation. In Figure 2.2, a redrawn workflow of the AAM obtained from Cootes et al. 

(2001) is presented. Since it was a generative model based on statistics, there were 

a small number of coefficients to control both face shape and appearance. In 

processing model construction, AAM conducted a combinational model, including the 

global shape model and the global appearance model, using Principal Component 

Analysis (PCA) (Pearson et al., 1901). Then, the AAM search model updated the two 

models’ parameters based on the image reconstruction error. In the detection 

processing, the position of facial landmarks was identified by matching the achieved 

Methods 
Shape 

pattern 
Appearance Accuracy Speed  

Holistic Method 
Parameter 

explicit 
Whole face 

Poor 

generalisation/Good 
Slow 

Constrained Local 

Method (CLM) 

Parameter 

explicit 
Local Patch Good Slow/Fast 

Regression-based 

Method 

Parameter 

implicit 

Whole face / 

Local Patch 
Good/Very Good 

Fast/Very 

Fast 
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shape and appearance models to the testing images. There are a few steps for AAM 

to build the global shape model and the global appearance mode. 

 

Figure 2.2 A diagram of the AAM model, redraw from Cootes et al. (2001) 

 

2.1.1 Global Face Shape Model 

For constructing a global shape model, it was required a set of landmark annotated 

images for training. In general, people must manually annotate landmarks on the 

images where corresponding landmarks are defined as the main features. Following 

image annotation, the next step is to align the set of landmarks by using Procrustes 

Analysis (Gower, 1975). The affine transformation was applied to generate the 

normalised face shape 𝐱′ based on the small displacements in scale, rotation, and 

translation. Then, the output is denoted by: 

𝐱𝑖
′ = 𝑐𝐑2𝑑(𝜃)(𝐱𝑖) + 𝒕 (2.1) 

 

where 𝑐 is the factor of scale, 𝐑2𝑑(𝜃) defined as the matrix of rotation, and 𝒕 is an in-

plane translation.  
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Given the normalised face shape 𝐱′, PCA was utilised to learn mean shape 𝐬0, a set 

of orthogonal bases 𝐏𝑠 which can extract the shape variations, as shown in Figure 

2.3. Based on the mean shape and a set of learned orthogonal bases 𝐏𝑠 , the 

normalised face shape could be represented by a set of shape coefficients 𝐛𝑠. 

𝐱′ = 𝐬0 + 𝐏𝑠 ⋅ 𝐛𝑠      (2.2) 

 

 

Figure 2.3 Learned shape variation from the AAM model, adapted with Cootes et al. 

(2001) 

 

2.1.2 Global Face Appearance Model 

For constructing a global face appearance model, each training image must be 

wrapped so that the landmarks can match the mean shape. The normalised facial 

appearance image is denoted as 𝐋𝑖(𝑊(𝐱
′)) , where 𝑊(⋅)  indexes the warping 

operation. The normalised facial appearance image identifies the image region of the 

normalised face shape, which is covered by the mean shape. Afterwards, PCA was 

used again to learn the mean appearance 𝒈 and a set of appearance orthogonal 

bases 𝐏𝑔  from the normalised facial appearance image, as shown in Figure 2.4. 

According to the facial appearance vectors 𝐏𝑔 , the mean appearance, any 

normalised facial appearance image can be represented by the appearance 

coefficients 𝐛𝑔 as: 

  𝐋𝑖(𝑊(𝐱
′))  = 𝒈 + 𝐏𝑔 ⋅ 𝐛𝑔   (2.3) 

 

 

Figure 2.4 Learned appearance variation from the AAM model, adapted with Cootes 

et al. (2001) 
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2.1.3 Active Appearance Model Search 

In the previous section, the two models can obtain the shape coefficients 𝐛𝑠  and 

appearance coefficients 𝐛𝑔 by applying (2.2) and (2.3), which can be used to 

represent any example of mean shape and appearance. Furthermore, there is an 

optimal model that can apply PCA to learn the correlations between the shape 

coefficients 𝐛𝑠 and appearance coefficients 𝐛𝑔. 

 

During the process of landmark detection, AAM calculates the shape coefficients 𝐛𝑠 

and appearance coefficients 𝐛𝑔  to match the reconstructed image as closely as 

possible, which can determine the position of landmarks. The matching process is an 

optimisation problem, which can be formulated by minimising the difference between 

the normalised face-testing image 𝐩′ and the reconstructed image 𝑊(𝐩′). The error 

distance 𝛥𝐼 can be minimised, 

𝛥𝐼(𝐛𝑠, 𝐛𝑔) = 𝐷𝑖𝑓𝑓(𝐩
′,𝑊(𝐩′)) (2.4) 

 

Model coefficients are then updated prediction in an iterative manner, which 

computes the error distance based on the two current models’ coefficients. 

𝐛𝑠
∗, 𝐛𝑔

∗ = 𝑎𝑟𝑔 min
𝐛𝑠,𝐛𝑔

∆𝐼(𝒃𝑠, 𝒃𝑔)   (2.5) 

Certainly, AAM can search for the most suitable shape and appearance coefficients 

𝐛𝑠and 𝐛𝑔. As shown in Figure 2.5, Edwards et al. (1998) presented the image within 

the reconstructed face on the left side as the image within the original face is shown 

on the right side. 

 

Figure 2.5 Example of an original face image and a reconstructed face image, 

adapted with Edwards et al. (1998) 
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2.1.4 Extensions of AAM 

In the aspects of feature representation, AAM methods had other extensions. It is 

obvious to know that the AAM model had the lack ability to generalisation since the 

AAM model was difficult to match unseen face variations, including illumination, 

occlusion, etc. (Gross et al., 2004; Cross et al.,2005). The pattern of raw pixel 

intensities or colours that are used as features is one of the main reasons for the 

limitation. In order to solve this problem, some researchers employ more robust 

image features. For example, Hu et al. (2003) used wavelet features to construct the 

facial appearance model instead of raw pixel intensities. Furthermore, instead of the 

global appearance, the local appearance features were adapted to improve the 

robustness to illumination and occlusion. Jiao et al. (2003) used the Gabor wavelet 

with the Gaussian Mixture model to construct the local appearance features, which 

could search local points faster. 

 

In addition, given the test image, the searching procedure is usually very slow 

because each iteration needs to calculate both shape and appearance coefficients 

𝐛𝑠, 𝐛𝑔, by using Jacobin and Hessian matrices (Jones et al., 1998). To solve this 

problem, Baker et al. (2002) presented a popular algorithm, the Inverse 

Compositional (IC) algorithm. IC (Baker et al., 2002) warped back onto the 

coordinate of the reconstructed image by minimising the squared error between the 

input and reconstructed images. Firstly, the algorithm estimates the input image and 

reconstructed image to compute the warped coefficients by using the gradient 

descent algorithm. Then, the warped shape coefficients 𝐛𝑠 and appearance 

coefficients 𝐛𝑔 can jointly update until the error converges. Moreover, Gross et al. 

(2005) provided that PIC is computationally expensive but more robust.  

 

However, a single AAM model may not give a high performance due to the linear 

relationship between the face shape and appearance. There were many different 

methods to solve the problem using ensemble models. One particular direction was 

to use the ensemble model that includes independent ensemble AAMs and coupled 

sequential AAMs to improve accuracy. The independent ensemble AAMs employed 

the different perturbed model coefficients in independent models. Compared with 

independent ensemble AAMs, the coupled ensemble AAMs generated the perturbed 
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data in the later training level based on the learned prediction model of the first few 

levels. For instance, Patrick Sauer and Taylor (2011) presented the sequential 

regression AAM model. The model utilised a series of AAMs to construct a 

sequential model for matching in a cascaded manner. In the first few levels, the 

model paid attention to the large variations (e.g., expression, pose) while those 

match the small variations in the next level. In this further work, Saragih et al. (2009) 

and Sauer et al. (2011) used the coupled ensemble model, which formulas the 

searching problem as an optimisation problem with a stochastic gradient descent 

solution. It can learn the linear model from the training data in the first few iterations 

and then update the perturbed model coefficients for the next iteration in a cascaded 

manner. There are different training data at different levels, which Saragih et al. 

(2009) and Sauer et al. (2011) applied to be avoided to trap in local minima. All 

methods mentioned above can improve the accuracy of the AAM method. 

 

2.2 Constrained Local Methods 

Compared to the holistic methods, the face characteristics in the CLM methods 

referred to the global shape pattern and the local appearance, which can be more 

robust to occlusion and illumination. CLM (Cristinacce and Cootes, 2006; Saragih et 

al., 2011) predicted the position of landmarks, including two main components. The 

first component was the face shape model, which captured the global shape pattern. 

The second component was the local appearance model, which used an 

independent local appearance around each landmark within the image, followed by 

an optimisation strategy to update landmark locations. Hence, CLM can utilise local 

appearance variation to replace global appearance variation, which can overcome 

the drawback of holistic methods, such as the sensitivity of the lighting and the effect 

of ambiguity. 

 

For instance, the CLM search algorithms are shown in Figure 2.6 (Cristinacce and 

Cootes, 2006, p.5). The global face shape model and local appearance model are 

used to generate a set of CLM templates by the initial points. Then the optimisation 

strategy is utilised to update the shape parameter until the points converge. The two 

models were built to train the dataset separately while they jointly predicted landmark 

locations during landmark detection. Sections 2.2.1, 2.2.2, and 2.2.3 will discuss 
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each component and how to predict landmark location through the optimisation 

strategy jointly. 

 

Figure 2.6 Illustration of CLM search algorithm, adapted with (Cristinacce and 

Cootes, 2006, p.5) 

 

2.2.1 Face Shape Model 

The face shape model captures information on global face shapes, which can 

constrain the landmark location search. There are two directions: the first direction is 

a deterministic method, and another is a probabilistic method. 

 

In the deterministic view, the face shape model can capture the face shape, which 

assigns low errors to regular face shapes and penalise irregular face shapes in a 

global sense. Zhu and Ramanan (2012) utilised a pose-dependent tree structure to 

build a face-shape model that can capture the local non-linear relationship in which 

each node is an independent landmark. Hsu et al. (2015) improved the method 

based on Zhu and Ramanan (2012) to construct two levels tree structure that can 

use different numbers of landmarks with different resolutions. However, Baltušaitis et 

al. (2012) do not use 2-D facial shapes, and they embed facial shape patterns into 

the 3-D deformable model, which could overcome the head pose and expression 

variations. The method learns the coefficient of the 3-D deformable model and the 

parameter of head pose separately during training. 

 

In the probabilistic view, the face shape model assigns higher probabilities to feasible 

face shapes that satisfy the anthropological constraint. Valstar et al. (2010) and 

Martinez et al. (2013) proposed a generative Boosted Regression and Graph Models 

based method (BoRMaN) based on the Markov Random Field. Each node 
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represents the corresponding positions of three points, and the method can model 

the combined relationships for all landmarks. In Wu et al. (2013) and Wu and Ji 

(2015), a discriminative deep face shape model constructed based on the Restricted 

Boltzmann Machine model is proposed. The facial shape can be divided into the 

head pose and expression-related parts, which can explicitly overcome handle head 

pose and expression variation. Compared to the holistic facial shape model, it is 

better to handle facial expressions and pose. However, facial occlusion is still an 

unsolved issue. 

 

2.2.2 Local Face Appearance Model 

The local face appearance model learns local appearance information based on the 

searched patches from the face shape model and can be divided into two categories: 

classifier-based local appearance models and regression-based local appearance 

models. 

 

In the classifier-based local appearance models, they use classifiers to discriminate 

the positive patches that are located at the centre of landmark locations and negative 

patches that are far away from the centre of landmark locations. Different features 

descriptor and classifiers are used. The original CLM (Cristinacce and Cootes 2006) 

applied the raw image patch to build a classifier, while Zhu and Ramanan (2012) 

used the Histogram of Oriented Gradients (HOG) feature descriptor. Moreover, 

Belhumeur et al. (2011) used SIFT (Scale-invariant feature transform) feature 

descriptor and Support Vector Machine (SVM) classifier to learn the local 

appearance model, while Cristinacce and Cootes (2007) used the Gentle Boost 

classifier.  

 

In the process of training, regression-based local appearance models are used to 

estimate the offset vector, which is the error distance between the position of any 

pixel and the position of the landmark in the searched patches using regression 

models.  During detection, the regression model can be used for the prediction of 

offset value at a different location in the patches, which is added to the current 

landmark’s location to calculate landmark prediction. Different features descriptor 

and regressors are used. Cristinacce and Cootes (2007) employed the Gentle Boost 

as the regressor. Furthermore, Cootes (2012) extended the method and used the 
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random forests as the regressor, which was able to demonstrate an increase in 

performance. Valstar et al. (2010) selected the Adaboost feature descriptor and SVM 

regressor to learn the regression function. 

 

Both Classifier-based and Regression-based methods have a common drawback: it 

is unclear which feature and classifier or regressor to employ. In addition, the 

prediction results of the regression-based local appearance model may have a 

significant error when the positions of the current landmarks are far away from the 

target because the model performs a one-step prediction. 

 

2.2.3 Joint Optimisation Methods 

Having the face shape model and local appearance model introduced above, CLMs 

jointly infer landmark locations during landmark detection. One issue with the local 

appearance model was that it could not be directly analysed and computed using the 

learned facial feature. For this reason, it would cause the solution to trap into the 

local optimum. The joint optimisation strategy aims to solve the issue. 

 

In order to tackle the challenge, there are some optimisation methods to find a 

strategy to combine the prediction result from the local patches of each point with the 

local face shape model, which can join infer. Saragih et al. (2011) proposed a 

Regularised landmark mean-shift (RLMS) to determine the probability of each 

prediction result within a patch. Furthermore, the author compared other optimisation 

methods, such as the Isotropic Gaussian Model (Cootes et al., 1995) and Gaussian 

Mixture Model (Gu and Kanade, 2008).  

 

2.3 Regression-Based Methods 

The regression methods infer the landmark coordinates using the mapping from the 

facial appearance to the landmark positions. It differs from the holistic or constrained 

local methods, which explicitly utilise the pattern of face shape and appearance 

variation to generate the most probability or determinacy of the synthetic face. 

Instead of the two methods, regression-based methods implicitly embed the 

constrained face shape, showing superior performance. Furthermore, the 

performance has been increased significantly by the cascade manner and the use of 
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Convolutional Neural Networks (CNN). Hence, the regression-based methods of 

landmark detection are into three categories: direct regression methods, cascaded 

regression methods, and deep Learning-based methods.  

 

2.3.1 Direct Regression Methods 

The direct regression methods can infer the landmark location in one step, which 

learns the direct mapping from facial appearances to the landmark location, without 

any pre-processing step for landmark location. The methods can further be 

categorised into local and global approaches in terms of shape and appearance. 

Since the local approaches employ the local patch, the global approaches utilise the 

global facial appearance. 

 

The local approaches extract different facial regions as the local patches and 

perform the offset vectors based on the regression models. The vectors need to add 

the location of the current local patch to present all landmark positions jointly. The 

local approaches predict all points simultaneously since it differs from the local 

appearance model in the CLM that predicts each point independently. For instance, 

Dantone et al. (2012) used conditional regression forests to learn a mapping from 

the random extracted patches in the face region to update the face shape. Therefore, 

the performance was impacted by the attribute’s prediction. There was a significant 

drawback with local regression methods: global shape estimation may not convey all 

feature information from the extracted local patches in the occlusions condition. 

The global approaches directly learn the mapping from the global image to the 

landmark position. Compared with the local approaches, the whole shape and 

appearance convey more information for landmark estimation. However, it is more 

challenging to learn facial features information from the global facial appearance to 

landmark location because of dramatic variation in the global facial appearance. Sun 

et al. (2013) and Zhang et al. (2014) used deep-learning methods to conflict the 

problem of learning facial features from the global facial appearance, which we will 

introduce in Section 2.3.3.  
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2.3.2 Cascaded Regression Methods 

Compared with direct regression methods that build without pre-processing step, 

Cascaded regression methods convert the initial landmark location (e.g., Mean face 

shape), and they update the landmark location with different regression functions in 

different stages. In the sequence of regression functions, the model could learn the 

facial features from shape-index appearance to the landmark location, where local 

appearance is sampled from the current landmark. The learned model parameters in 

the early stage can employ to update the training data in the next stage.  

 

Different shape-index appearances and regression models are used. Cao et al. 

(2014) applied the pixel intensity of the shape index to facial features, which were 

defined as the relative position to the current landmarks. In addition, Ren et al. (2014) 

independently applied the regression forests to learn their binary feature within each 

landmark. During training, a linear regression function was utilised to convert the 

binary feature for learning the joint facial features from shape-index appearance to 

shape updates. Furthermore, Kazemi and Sullivan (2014) used regression trees as 

the model for face alignment. Among different functions, a parallel method of 

cascaded linear regression in Asthana et al. (2014) gained superior performance, 

which only relied on the statistics information from the previous level. From the 

above methods, Deng et al. (2015) showed the cascade regression method can 

improve the performance based on multi-component, including multi-view, multi-

scale, and multi-component. The method employed six-component deformable 

models as a facial detector to classify and group the training shape into three 

categories, including left, right, and front profile views, which reduced the 

perturbation of each view set. 

However, there is an issue with the cascade manner, which must be a fixed number 

of cascaded stages. We cannot change the cascaded stages or judge the landmark 

prediction stability for different images in the testing stages. Therefore, it is a case of 

prediction trapped in local minima, and the iteration continues. In other cases, it is 

possible that the prediction is near the optimal solution, but we still do not know 

when to stop the iteration best. 
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2.3.3 Deep Learning-Based Methods 

In last ten years, the use of deep learning methods has gained more popularity in the 

field of computer vision; what is more, it is a trend to change the traditional statistics 

methods to deep learning-based methods in the aspect of facial landmark detection 

or tracking. Another case of deep learning methods becoming a popular tool is many 

publicly available datasets and a wide range of high-performance and computational 

hardware such as graphics processing units (GPU). Hence, CNN is the most 

influential model for facial detection, landmark detection, or recognition, which also 

follow the principle of direct regression or cascade regression. 

 

A perceptron is a simple basic form to explain the convolution neural network within 

the convolution operation: 𝑸 = 𝐈 ∗ 𝐖+ 𝐛  where 𝐈  are the input images by 

corresponding a set of initial weights 𝐖 and basis 𝐛 (Goodfellow et al., 2016), as 

shown in Figure 2.7. Hence, the backpropagation algorithm (Hecht-Nielsen, R., 1989) 

can be applied to optimise 𝐖,𝐛 by calculating the error from the given loss function. 

Thus, the convolutional layer forms a set of automatic feature extractors which can 

implicitly learn facial features from global or local shapes and appearances within 

facial images. Compared with the other two methods, CNN can directly predict the 

location of landmarks based on facial images rather than utilise manually 

handcrafted features such as HOG and SIFT. In addition, CNN is powerful for 

improving the model’s performance while more data has been added to the training 

sets.  

 

Figure 2.7 The architecture of a simple convolutional neural network 

 

In the early work of deep learning, the cascaded coarse-to-fine structure was 

commonly used to design facial landmark detection, where serval different CNNs 

levels are linked sequentially to predict the final landmarks. Sun et al. (2013) built up 

three-level of structures in a cascaded manner that the CNNs of each level predict 
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five facial landmarks using a facial image, and the configurations are shown in 

Figure 2.8.  

 

Figure 2.8 5 landmarks configurations.  

 

Sun et al. constructed three levels of CNNs, which produced the approximate 

position of five facial landmarks. The first level input an image of the bounding box 

region, which involves the whole facial. Thus, the CNNs of the first level predicted 

each landmark within the image of corresponding regions. The mean value of each 

prediction landmark position was calculated since the CNNs predicted each 

landmark two or three times. Then, the coarse prediction can be redefined in the 

local image patch as the input of the convolutional stage of the second level and the 

third level. The CNNs’ input of the second level is the patches of the eyes and noses, 

and the input of the third level is the patches of the noses and mouths. The refined 

prediction was computed by multiple landmark positions produced from the CNNs in 

the second and third levels. 

 

Later, there were two directions to improve the design of facial landmark detection 

models. The first direction was to improve the design of the cascaded manner. In the 

work of Zhou et al. (2013) and Fan, Zhou (2016), the three-level cascaded CNN 

model was somewhat similar to the method (Sun et al., 2013), both being produced 

with local facial patches to train and thus refining each individual landmark locally. In 

contrast with Sun, Zhou constructed to predict more landmarks employing 68 

landmarks instead of 5 in a coarse-to-refine manner. In addition, Zhang et al. (2014) 

searched the cascaded manner by using the deep auto-encoder model. Compared 

with training CNNs in a cascaded manner, Trigeorgis et al. (2016) constructed a 
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deep Recurrent Neural Network (RNN) to build an end-to-end facial landmark 

detection mode which can mimic the cascaded manner and append time constraints. 

The second direction was to investigate different methodologies or network designs 

of facial landmark detection to improve performance. Zhang et al. (2014, 2016) and 

Ranjan et al. (2016) described multi-task learning for facial landmark detection, in 

which sharing the same facial features and the relationships of multi-tasks could 

encourage an increase in the performance of the task. For instance, Zhang et al. 

(2014) utilised facial attributes jointly, such as head pose, gender, and facial 

expression, to train a deep CNN, which was shown an advance in accuracy when 

the model transfer to predict dense landmarks. In the work proposed by Randjan et 

al. (2016), a similar framework was constructed to implement face detection, 

landmark detection, pose estimation and gender recognition, which jointly employs 

coarse and fine feature representations from multiple convolution layers.  

In addition, Yang et al. (2017) proposed the stacked hourglass convolution network, 

in which keeping a feature representation copy of output after the convolution layer 

to avoid losing the appearance information, as shown in Figure. 2.9. The network 

can reduce the height and width of an image while increasing the depth as well as a 

traditional CNN. It can also return the original values of the width, height, and depth 

from the feedforward copy of layer output. 

 

Figure 2.9 The structure of the stacked hourglass network, adapted with Yang et al. 

(2017) 

 

In the past six years, some work has improved the CNNs' power by applying the 

facial shape and appearance from the 3-D vision, which produces 3-D shape 

deformable model coefficients and 3-D head poses. As shown in Figure 2.10, the 3-
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D head pose shows more information, such as roll, yaw, and pitch angle; therefore, 

the computer vision projection model can determine the location of 2-D landmarks 

with more accuracy. Instead of directly predicting 2-D landmarks in CNN, the 3-D 

shape deformable model and 3-D head poses are better at handling pose variation 

and facial expression. What’s more, the coefficient parameters and shape 

constraints are explicitly embedded in the final prediction. For instance, Zhu et al. 

(2016) constructed a dense 3-D face shape model in a cascaded manner. Hence, a 

cascaded framework with CNN models was employed to iterate the coefficient of the 

3-D facial model and the parameters of the 3-D head pose in each iteration. Then, 

the 3-D shape is constructed and projected to 2-D as the input of the CNN model to 

regress the prediction. It can still boost performance by adding more data or utilising 

multi-task learning (Ranjan et al. 2016). 

 

Figure 2.10 Diagram of 3-D face model with the head pose parameter (roll, yaw, and 

pitch angles) 

 

Compared with different regression-based methods, cascaded regression methods 

are better than direct ones. What is more, the deep learning-based methods can 

show an increase in performance when applying the model in a cascaded manner. 

Furthermore, the regression-based methods do not need to use explicit parameters 

to build a face shape model, while the face shape patterns implicitly are embedded 

in the model. The drawback of the regression-based method is that the quality of the 

initial face region in the image is sensitive to learning facial features from the facial 

appearance. Therefore, the model could not train the high performance if the initial 

face region is offset. Sagonas et al. (2016) have researched the drawback. 

 

2.4 Summary of the three main categories 

Based on the reviewed paper by Wu et al. (2018), we presented the three main 

categories of facial landmark detection methods: the holistic methods, the CLM 
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methods, and the regression-based methods. Furthermore, we explore and provide 

a more detailed review of the methodologies of deep learning algorithms to enhance 

the comprehensive understanding of this field. 

 

In terms of utilising features, the global shape patterns using explicit parameters are 

adopted to construct face shape model coefficients as in the holistic methods and 

CLM. CLMs have a significant improvement over the holistic methods in that they 

use the local patches and appearances around the landmarks as facial features. 

Compared with the global shape pattern, the shape and appearance model using the 

local patches are more robust under ‘in-the-wild’ conditions, such as facial occlusion 

and illumination. However, the holistic methods or CLM always match the synthetic 

face by updating the model coefficient in an iterative manner since the large face 

offset may be caused by small model coefficient errors. 

 

Compared to the holistic methods and CLMs, the regression-based methods are 

more promising by learning facial features from shape-indexed features. As the 

jointly predicting the shape, the regression-based model can embed the implicit face 

shape pattern constraint and employ the different regression functions in a cascaded 

manner instead of using the explicit face shape model. As a directly predicting, the 

landmark locations can be more accurate than using the model coefficients as in the 

holistic methods and CLMs. 

 

In recent years, deep learning-based methods have shown better performance for 

detection since the deep learning model applies the holistic or local appearance as 

the feature information and embeds the implicit global face shape constraint. Some 

algorithms with advanced design overcome the challenges and limitations in ‘in-the-

wild’ conditions. We will describe the implementation of the deep learning-based 

algorithms in Chapter 4. The first algorithm, called ‘Deep Alignment Network (DAN)’, 

was inspired by the cascade shape regression (CSR) model (Kowalski et al., 2016). 

The second algorithm is called ‘Deep-Convolutional-Neural-Network (DCNN)’, a 

cascaded network in a coarse-to-fine manner (Zhou et al., 2013). The final algorithm 

is called ‘Stacked Dense U-Nets (SDU)’ based upon Hourglass Networks to design a 

novel scale aggregation network topology and channel aggregation block. (Guo et al., 

2018).  
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3. Datasets for facial landmark detection 
 

The study reviews the suitable and public dataset, which can be used for landmark 

detection studies. The appropriate datasets that are crucial for the development of 

facial landmarking algorithms are required to contain rich features within the face 

image since algorithms can capture the relationships between the data during the 

training process. The datasets generally are involved 2-D datasets and 3-D datasets, 

and the detail (e.g., sizes, subjects, the number of annotations and year) are listed in 

Table 3.1 and Table 3.2.  

 

In Table 3.1, some 3-D datasets are detailed in size, the number of annotations and 

the year. Compared with 2-D landmarks, 3D landmarks are defined as the 3-D 

coordinates of the facial landmarks, which contain the depth information of the 3-D 

face. What’s more, 3-D landmarks are determined as the 2-D projections of the 3-D 

facial landmark coordinates in the face plane. The BU-3DFE database contains 100 

subjects, including 56% female and 44% male, with ages from 18 years to 70 years 

old, who are almost from the university. Ethnic includes White, Black, East-Asian, 

Middle east Asian, Indian, and Hispanic Latino. (Yin et al., 2006). The ‘BP4D+’ 

(Zheng et al., 2016) is a Multimodel Spontaneous Emotion Corpus (MMSE) 

containing multi-model datasets. There are 140 subjects, including 58 males and 82 

females, with ages ranging from 18 to 66 years old. Ethnic/Racial Ancestries include 

Black, White, and Asian. AFLW200-3D (Zhu et al., 2016) was constructed by using 

the first 2000 images of AFLW (Koestinger et al., 2011), which contain the 3D face 

with the corresponding 68 3-D landmarks. In addition, Menpo-3D (Deng et al., 2019) 

presents 84 3-D landmarks in order to better 3-D landmark localisation. However, our 

work only focuses on 2-D images because the 2D datasets are more rather than 3-D 

datasets. 
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Name Sizes Subjects Landmarks Year Description 

BU-3DFE 8000 

 

100 83 2006 Each subject has seven expressions, 

including happiness, disgust, fear, angry, 

surprise, neutral and sadness. Each 

expression includes four levels of intensity. 

BP4D+ 50000 

 

140 83 2016 Each subject has both 2-D and 3-D video to 

track spontaneous facial expressions in 

a diverse group of young adults 

AFLW2000-

3D 

2000  

 

Unknown 68 2016 The first 2000 images of AFLW, annotated 

with 68-point 3-D facial landmarks 

Menpo-3D 11836 

 

Unknown 84 2017 The images of AFW, LFPW, Helen, IBUG, 

and 300W(private), annotated with 84-point 

3-D facial landmarks 

Table 3.1 Overview of the public 3-D face datasets 

 

In Table 3.2, the 2-D datasets can be compromised into two categories: datasets 

which are collected under controlled conditions and datasets which are collected 

under ‘in-the-wild’ conditions without any control. The controlled datasets collected 

several images from a few subjects in the experiment using the camera. One or 

more control conditions, including different facial expressions, variation in head 

posture, occlusion, and illumination, can set up the experiment to generate various 

images, such as XM2VTS (Messer et al., 1999) and Multi-PLE (Gross et al., 2008). 

The uncontrolled datasets are collected from social media or websites such as 

facebook.com, flickr.com and google.com, in which the images are called ‘in-the-wild’ 

images. The ‘in-the-wild’ images provide more reliable and challenging datasets, 

which contain rich facial feature information, including LFPW (Peter et al., 2011), 

Helen (Le et al., 2012), AFLW (Koestinger et al., 2011), AFW (Zhu et al., 2012), 

300W (private), IBUG (Sagonas et al., 2013), COFW (Burgos-Artizzu et al., 2013), 

Menpo-2D (Liu et al., 2015), and WFLW (Sagonas et al., 2017). Compared with the 

controlled dataset, it is easier to build an uncontrolled dataset within a larger number 

of ‘in-the-wild-face’ images. However, they need to manually annotate the landmark’s 

location in the images. 
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Name Sizes Subjects Landmarks Year Description 

XM2VTS 2360 

 

295 68 1999 Controlled images with expressionless faces 

captured during a speech in the same light.  

Multi-PIE 755,370 

 

337 68 2008 Controlled images that face different facial 

expressions, occlusions, and illumination 

conditions  

LFPW 

 

1432 

 

Unknown 29 2011 Uncontrolled images were collected from 

social media, such as Flickr, Google, and 

Facebook. 

Helen 

 

2000 

 

330 68 2012 Uncontrolled images were collected from 

social media, such as Flickr, Google, and 

Facebook. 

AFLW 21997 

 

Unknown 21 2011 Uncontrolled images were collected from 

social media, such as Flickr, Google, and 

Facebook. 

AFW 

 

205 

 

468 68 2012 Uncontrolled images were collected from 

social media, such as Flickr, Google, and 

Facebook. 

IBUG 

 

135 

 

135 68 2013 Uncontrolled images were collected from 

social media, such as Flickr, Google, and 

Facebook. 

300W 

(private) 

 

600 

 

Unknown 68 2013 

 

Uncontrolled images contained 300 indoor 

and outdoor ‘in-the-wild’ images with a variety 

of expression, occlusion, and illumination 

conditions. 

COFW 

 

507 

 

Unknown 68 2013 Uncontrolled images with large variations in 

pose, expression, and occlusion  

Menpo-

2D 

8979 

 

Unknown Frontal:68 

Profile:39 

2015 Uncontrolled images with large variations in 

pose, expression, and occlusion 

WFLW 10000 Unknown 98 2017 Uncontrolled images with large variations in 

pose, expression, and occlusion 

Table 3.2 Overview of the public 2-D face datasets 

 

In the next sections, the face datasets we utilise are briefly described, including 

Multi-PLE (Gross et al., 2008), LFPW (Peter et al., 2011), Helen (Le et al., 2012), 

AFW (Zhu et al., 2012), and Menpo-2D (Liu et al., 2015).  
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3.1 CMU multi-pose, illumination, and expression (Multi-PLE) face 

dataset 

CMU multi-pose, illumination, and expression (Multi-PLE) face dataset: Over 

750,000 face images contain 337 subjects in the Multi-PLE dataset. (Gross et al., 

2008) All images are collected under 15 different poses and 19 different illustration 

conditions in the four different sessions. The face images can be divided into frontal 

faces containing 68 annotated landmarks and profile faces containing 39 annotated 

landmarks since profile faces do not perform all landmarks.  

 

Figure 3.1 Example of the Multi-PLE (frontal) datasets 

 

3.2 300W dataset 

The 300W is a face dataset that was originally used for Facial Landmark Tracking in-

the-Wild Challenge & Workshop to be held in conjunction with International 

Conference on Computer Vision (ICCV) 2015. It consists of three sub-sets, including 

LFPW, Helen and AFW datasets (Ren et al., 2014) (Xiao et al., 2016) (Zhu et al., 

2016) (Kowalski et al., 2016). 

 

Labelled face part in the wild (LFPW) dataset: Peter et al. (2011) downloaded 1432 

face images from the web. The ‘in-the-wild’ face images contain different variety of 

appearances such as exaggerated facial expressions, age, make-up, and imaging 

environment condition. Moreover, there are also face-cropped images from movie 

senses and manipulated photos.  

 

Figure 3.2 Example of the LFPW dataset 
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Helen dataset: Le et al. (2012) collected a large number of candidate photos, which 

search on Flickr. The keyword used ‘portrait’ and was augmented with different titles, 

such as ‘outdoor’, ‘boy’, ‘family’, ‘studio’, and ‘wedding’ etc. What’s more, they use 

different languages to repeat the queries in order to avoid cultural bias. The photos 

were filtered by hand to remove false positives that represent more than one face in 

the single images, profile views, and low-quality images. The dataset consists of 

2330 high-resolution images with various appearance variations, including pose, 

illumination, and occlusion. 

 

Figure 3.3 Example of Helen’s dataset 

 

Annotated faces in the wild (AFW) dataset: Zhu. et al. (2012) collected another ‘in-

the-wild’ face dataset consisting of 205 images, including one or more faces in a 

single image, and a total has 468 faces.  

 

Figure 3.4 Example of the AFW dataset 

 

3.3 Menpo 2D dataset 

Menpo 2D dataset: Deng et al. (2019) collect semi-frontal and profile face image 

datasets under uncontrolled conditions, respectively. Then, the semi-frontal subset 

consists of 5658 images from AFLW (Koestinfger et al., 2011) and FDDB (Jain and 

Learned-Miller, 2010). Menpo becomes a challenging dataset because four factors in 

the dataset, including pose, illumination, occlusion, and expression, significantly 

influence the local facial appearance and further affect the local information for facial 

landmark detection models. Here are the frontal face examples of the Menpo dataset, 

as shown in Figure 3.5. 
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• Occlusion can frequently miss some facial attributes or happens on the facial 

contour, such as food on the mouth, and self-occlusion within some facial 

regions, such as almost half of the facial contour is missing in a single face 

image. Heavy occlusion can take challenges in estimating the position of the 

face since the facial attributes are missing or changed. 

 

• The exaggerated expression can locally change some facial attributes; for 

example, when a person is happy, the mouth shape will be affected by the 

expression. Therefore, it is challenging for facial landmark detection within the 

face under exaggerated expressions. 

 

• Different Illumination conditions have a significant influence on facial 

appearances because the changing patterns of intensity can even be ultimately 

missing some texture information at the facial attributes. 

 

Figure 3.5 Example of the Menpo-2D (frontal) datasets 

 

3.4 Landmark configuration 

Since datasets with a uniform and prominent annotation configuration are convenient 

for assessing the experiment results, the standard landmark configuration is 

presented to annotate landmark locations in the appropriate datasets. The manually 

annotated landmarks represent the position of landmarks, which can call ground 

truth. 

 

Sagonas et al. (2013) provide a reliable landmark annotation schema in the first 

300W face ‘in-the-wild’ challenge called ‘Multi-PLE 68pts’. This schema gives an 

opportunity of comparing the different landmark detection algorithms while employing 

the many datasets within the Multi-PLE 68 landmarks configuration. The Multi-PLE 
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annotated landmark configuration is demonstrated in Figure 3.6, which is utilised as 

the standard landmark configuration in our selected data.  

 

There are two different ways to build the landmark of the Multi-PLE configuration. 

One way is to use Amazon Mechanical Turk (MTurk) system, which can manually 

identify the landmarks’ location on single images. During this work, each annotator 

used the ‘turkmarker’ tool to locate the position of each landmark, and then all 

landmarks were determined, followed by the Multi-PLE 68 landmarks configuration. 

Finally, all results should be correctly recorded. However, there is hardly complete 

agreement between the annotators. Thus, three annotators generally are employed 

to carry out this work and take the mean positions of ground truth landmarks. The 

other way is to use an automatic landmark detector that presents a more consistent 

and prominent than three human annotators (Belhumeur et al., 2011). Here, our 

selected datasets use the automatic face detector (RetinaFace) to annotate the 

landmarks of Multi-PLE configurations, which achieves state-of-the-art performance 

on the WiderFace dataset. 

 

Figure 3.6 The illustration of the Multi-PLE 68 annotated landmarks configuration, 

adapted with Sagonas et al. (2013) 
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4. Implementation of facial landmark detection 
algorithms 

 

Since deep learning-based facial detection has demonstrated very promising results 

in recent years, three widely used ones have been implemented in this research 

project in order to identify the appropriate detection methods which can cope the 

challenging conditions, such as changes in head pose, facial expression, occlusion 

and illumination. The methods include deep alignment network (DAN), deep 

convolutional neural network (DCNN) cascade and stacked dense U-net (SDU). 

While DAN uses the global information of facial images to predict the corresponding 

landmarks (Kowalski et al., 2016), DCNN is designed to predict landmarks in a 

coarse-to-fine manner (Zhou et al., 2013). Both DAN and DCNN are based on the 

fully connected layer of the convolutional network to regress the landmark positions. 

SDU uses the fully convolutional neural network to predict a set of heatmaps 

corresponding to the landmarks that need to be extracted. The heatmaps reflect the 

probability of landmark position at each pixel (Guo et al., 2018).  

 

A generic processing structure of three methods is illustrated in Figure 4.1, which 

consists of three stages, namely data pre-processing, model training and model 

testing. Data pre-processing is the first stage of a facial landmark detection algorithm 

that extracts and transforms the facial images and corresponding landmarks in the 

training dataset to a standard form as well as eliminates the irrelevant background 

(Chen et al., 2016). Model training is the core of the detection, which determines the 

model parameters through a set of operations, such as convolution, max pooling, 

activation function, etc., based on the designed network structure and features 

(Sarker 2021). Finally, model testing evaluates the performance of the training 

network using different datasets, which could simulate the challenging conditions in 

the real world. The remaining chapter will describe each implemented method's 

processing stage in detail.  
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Figure 4.1 The general process of the facial landmarking system 
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4.1 Deep Alignment Network (DAN) Implementation detail 

Kowalski et al. (2016) proposed DAN for facial landmark detection, which is based 

on convolutional neural networks and can predict the positions of 68 landmarks 

together on human faces in a cascaded manner.  

 

4.1.1 Data pre-processing 

The aim of the data pre-processing is to remove the background, extract the facial 

image and transform both facial images and corresponding landmarks into a 

standard form for the training dataset.  

 

The first step is bounding box estimation using the provided landmarks in the training 

dataset. With the bounding box, a region of the face is located and extracted to a 

new image with the background removed. The upper-left and lower-right corners can 

be determined using the extreme values by a set of 𝐱 landmarks, 𝐱 = {𝐱𝑖, 𝑖 ∈ [1, 68]}, 

where 𝐱𝑖  is the coordinate of the 𝑖𝑡ℎ  landmark. The width and height of a face 

bounding box are calculated as follows by 

 

𝑊𝑖𝑑𝑡ℎ𝑏𝑜𝑥 = 𝐱𝑚𝑎𝑥 − 𝐱𝑚𝑖𝑛 (4.1) 

𝐻𝑒𝑖𝑔ℎ𝑡𝑏𝑜𝑥 = 𝐲𝑚𝑎𝑥 − 𝐲𝑚𝑖𝑛    (4.2) 

where (𝐱𝑚𝑖𝑛, 𝐲𝑚𝑖𝑛 ) is the coordinate at the upper-left corner, (𝐱𝑚𝑎𝑥, 𝐲𝑚𝑎𝑥 ) is the 

coordinate at the lower-right corner, 𝑊𝑖𝑑𝑡ℎ𝑏𝑜𝑥  and 𝐻𝑒𝑖𝑔ℎ𝑡𝑏𝑜𝑥  are the weight and 

height of a face bounding box separately. The coordinates of landmarks are then 

normalised to the range of (0,1) by using (4.3). 

 

�̅�𝑖 = (
(𝐱𝑖 − 𝐱𝑚𝑖𝑛)

𝑊𝑒𝑖𝑔ℎ𝑡𝑏𝑜𝑥
,
(𝐲𝑖 − 𝐲𝑚𝑖𝑛)

𝐻𝑒𝑖𝑔ℎ𝑡𝑏𝑜𝑥
) (4.3) 

where (𝐱𝑖, 𝐲𝑖 ) is the coordinate of the 𝑖𝑡ℎ  landmark, and �̅�𝑖  are the corresponding 

normalised landmarks. 

 

The normalised landmarks �̅� are augmented with a random combination of rotation, 

scaling, or horizontal flip and followed by a multiplication of pre-defined facial image 

sizes as: 

𝐱𝑖
′ = s(c𝐑2𝐷(𝜃) ∙ �̅�𝑖) (4.4) 



4.Implementation of facial landmark detection algorithms 47 

A Comparative Study of Automatic Facial Landmark Detection 

where 𝐱′ are the transformed landmarks of an image, 𝑖 is the landmark’s index, c is 

the scaling factor that the range is (0.8, 1.2), 𝐑2𝐷(𝜃) = [
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

]  is a 2x2 

rotation matrix, that the range of 𝜃 is (-20
°
,+20

°
), a horizontal flip represented by 

[
-1 0
0 1

] transformation matrix is also randomly applied, and s is the factor of the input 

image size that is set as 112. The augmentation is to increase the number of images 

in the training dataset since the networks heavily rely on big data to reduce 

overfitting. Overfitting refers to perfectly model the training data when a network 

learns a function with very high variance. (Shorten, C and Khoshoftaar, T.M., 2016) 

 

Having the original and transformed landmarks, a similarity transformation between 

them is estimated as  

 

𝐱𝑖
′ = 𝐌 ∙ 𝐱𝑖 (4.5) 

where 𝐱′ are the transformed landmarks, the coordinate represented by [
𝐱𝑖
′

𝐲𝑖
′] , 𝐌 =

 [
𝑎11 𝑏12 𝑐13
𝑎21 𝑏22 𝑐23

] is a 2×3 transformation matrix, that 𝑎 and 𝑏 represent the factors of 

rotation and scaling, 𝑐  represents the translation factor, and 𝐱  is the original 

landmarks, with the coordinate is [
𝐱𝑖
𝐲𝑖
1
].  

 

Once the transformation matrix 𝐌 is obtained, the extracted facial image is then 

transformed in order to align its region of the face in the image with the transformed 

landmarks as Figure 4.2 shows the examples of original images with the landmark, 

the extracted facial image and the transformed facial images with the corresponding 

landmarks. 
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The original images with 

landmark  

The extracted facial 

image 

The transformed facial 

images with the 

transformed landmarks 

 
  

 

  

 
  

Figure 4.2 Examples of intermediate and final results of data pre-processing 

 

In DAN, all transformed facial images are standardised before feeding into the 

network, and the following equation shows the function: 

 

𝐈 =  
𝐈′ − 𝐈avg

′

𝐈std
′  (4.6) 

where 𝐈  is the offset value of a transformed facial image, 𝐈avg
′  and 𝐈std

′  are the 

average pixel value and the standard deviation of the image, respectively. 

 

4.1.2 DAN Model Training  

Model Structure 

Having the standardised form of facial images and the corresponding landmarks in 

the training dataset, a DAN model can be constructed through the model training, 

which consists of two stages, each of which has a feed-forward neural network 

(Simonyan and Zisserman, 2014), as shown in Figure 4.3. The offset value of all 

landmark positions ∆𝐱1 is predicted by the first network, while the mean shape 𝐱0 is 
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computed, which is the average of all transformed landmarks of the training dataset. 

Then, the predicted landmarks 𝐱1 of the first DAN stage define as the following: 

 

𝐱1 = 𝐱0 + ∆𝐱1 (4.7) 

In the following, connection layers apply the predicted landmarks to generate the 

input to the network of the second stage, including the input image 𝐌2(�̅�) which uses 

the transform matrix 𝐌2 to align the input image with the predicted landmark, the 

landmark heatmap 𝐄2, and the feature image 𝐋2. In addition, a transform matrix 𝐌2 

also used to produce the mean shape 𝐌2(𝐱1) of the second stage and its inverse 

𝐌2
−1. 

 

Through the second network, the final offset value of the predicted landmarks ∆𝐱2 

are predicted, the predicted landmarks should transform back to match the original 

image by using an inverse similarity transform. The landmark output is defined as the 

following (Kowalski et al., 2016): 

 

𝐱2 = 𝐌2
−1(𝐌2(𝐱1) + ∆𝐱2) (4.8) 

 

Figure 4.3 DAN model structure 
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Feed-forward neural network 

In Figure 4.4, a structure of a feed-forward neural network contains ten layers, 

including four sets of convolutional layers, followed by max-pooling and two fully 

connected layers. Each convolutional layer (grey box) utilises the advantage of batch 

normalisation (Ioffe and Szegedy, 2015) and Rectified Linear Units (ReLU) 

(Krizhevsky et al., 2012) as the activation functions. 

 

Figure 4.4 Structure of a feed-forward neural network of a DAN stage 

 

The batch normalisation layer standardises the input images of each mini-batch to 

the 2-D convolutional layer, which can accelerate the training processing of the 

neural network. The batch normalisation layer (Ioffe and Szegedy, 2015) applies a 

transformation that maintains the distribution of output mean values close to 0 and 

the output standard deviation close to 1. The batch normalisation transform is 

present in the following equation: 
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𝐘𝑖 =  𝜆

(

 
𝐈𝑖 −

1
𝑚
∑ 𝐈𝑖  
𝑚
𝑖=1

√1
𝑚
∑ (𝐈𝑖  −

1
𝑚
∑ 𝐈𝑖 
𝑚
𝑖=1 )

2
𝑚
𝑖=1 + 𝜖)

 + 𝛽 (4.9) 

where 𝐘𝑖  is the output value, 𝜆 and 𝛽 are the parameters of scale and shift to be 

learned during training processing, 𝑚 is the number of input images of a mini-batch, 

and 𝜖 is a small constant added to the mini-batch variance for numerical stability. 

 

The 2-D convolutional layer sample the feature map from the output image of the 

batch normalisation layer, as seen in Figure 4.4 above. Each 2-D convolutional layer 

follows an activation function (ReLU), which can bring non-linearity into the neural 

network (Krizhevsky et al., 2012). The convolutional operation can be equal to (Ma 

and Lu, 2017): 

 

𝑔(𝐗𝑖,𝑗,𝑘
𝑡 ) =  ∑ ∑𝐘𝑖+𝑚,𝑗+𝑛,𝑙

𝑡−1

𝑤2

𝑛=0

𝑤1

𝑚=0

∗ 𝐖𝑚,𝑛,𝑘
𝑡 + 𝐛𝑘 (4.10) 

 

𝑔(𝐗) =  {
𝐗, 𝑖𝑓 𝐗 > 0

    0, 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒
 (4.11) 

where 𝐘𝑡−1 is the input feature map, 𝐗 is the output feature map, 𝑔 is an activation 

function, 𝐖 is the kernel, 𝑖 and 𝑗 represent the height and width of the feature map, 𝑙 

is the input channel of the feature map, 𝐛 is the bias, 𝑚 is the row number of the 

kernel, 𝑛 is the column number of the kernel, 𝑘 is the number of kernels or the output 

channel of the feature map. 

 

The pooling layer utilises the max-pooling operation, called down-sampling. The 

max-pooling operation uses kernels to take the maximum value within the feature 

map of the kernel size, in which the kernel size is 2×2, and the stride is 1 pixel 

(Simonyan and Zisserman, 2014). The max-pooling operation can take the most 

important information and send it to the following convolutional layers. The height 

and width of the feature map also reduce to improve memory efficiency since the 

original image size would not be memory efficient for the end step. The operation of 

the output feature map (Zhou et al., 2013) is shown below: 

𝐈𝑖,𝑗,𝑘
𝑡  =  max

𝑖∗𝑠≤𝑚≤𝑖∗𝑠+𝑓,𝑖∗𝑠≤𝑛≤𝑖∗𝑠+𝑓
(𝐗𝑚,𝑛,𝑘

𝑡 ) (4.12) 
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where 𝐈 is the output feature map, 𝐗 is the input feature map, 𝑖, 𝑗 are the height and 

width of the output feature map, 𝑚, 𝑛 are the height and width of the input feature 

map, 𝑘 is the channel of the feature map, 𝑠 is the stride size, and the max-pooling 

layer’s kernel has same height and width that equal to 𝑓. 

 

Then, the fully connected layer’s structure illustrates in Figure 4.5, which are two 

levels of dense layers to regress the prediction of the offset value, while there is a 

dropout layer between two dense layers. In the flatten layer, the output feature maps 

of the final max-pooling layer flatten to one dimension feature vector as each node 

represents a scalar value in a vector. The operation of the dense layer defines as the 

following (Ma and Lu, 2017): 

 

𝑔(𝐗𝑖×1
𝑛+1) = 𝐖𝑖×𝑗 ∗ 𝐗1×𝑗

𝑛 + 𝑏𝑖×1 (4.13) 

where 𝐗 is one dimension feature vector, 𝐖,𝑏 are the parameters of the weight and 

bias that the model learned, 𝑛 is the number of the level, 𝑗 is the number of the input 

vector, and 𝑖 is the number of the output vector.  

 

In the following of the first dense layer, the drop layer randomly ignores a set of 

nodes, as shown in Figure 4.5. The operation of the dropout layer is to randomly set 

a part of input nodes to 0 with a frequency of rate during training, which generally 

helps to prevent overfitting (Nitish et al., 2014). Since the other input nodes not to set 

0 are scaled up by 1/(1-rate), the dropout layer’s output can keep the same as the 

sum over all inputs. Having the drop layer’s output vector, the second dense layer 

regresses the offset value of the predicted landmarks’ positions.  

 

Figure 4.5 The diagram of fully connected layer regression 

 



4.Implementation of facial landmark detection algorithms 53 

A Comparative Study of Automatic Facial Landmark Detection 

Table 4.1 outlines the input and output feature map size of each layer, kernel size, 

and convolution stride. The feature maps describe as height ×  width ×  channel. 

However, the second feed-forward neural network has three input images, the input 

feature map size of the first convolution layer is 112×112×3. 

Layer Input feature 

map size 

Output 

feature map 

size 

Num of 

kernel 

Kernel 

size 

Stride Padding 

Conv.1_1 112 × 112 × 1 112 × 112 × 64 64 3 × 3 1 1 

Conv.1_2 112 × 112 × 64 112 × 112 × 64 64 3 × 3 1 1 

Max 

Pooling_1 

112 × 112 × 64 56 × 56 × 64 1 2 × 2 2 1 

Conv.2_1 56 × 56 × 64 56 × 56 × 128 128 3 × 3 1 1 

Conv.2_2 56 × 56 × 128 56 × 56 × 128 128 3 × 3 1 1 

Max 

Pooling_2 

56 × 56 × 128 28 × 28 × 128 1 2 × 2 2 1 

Conv.3_1 28 × 28 × 128 28 × 28 × 256 256 3 × 3 1 1 

Conv.3_2 28 × 28 × 256 28 × 28 × 256 256 3 × 3 1 1 

Max 

Pooling_3 

28 × 28 × 256 14 × 14 × 256 1 2 × 2 2 1 

Conv.4_1 14 × 14 × 256 14 × 14 × 512 512 3 × 3 1 1 

Conv.4_2 14 × 14 × 512 14 × 14 × 512 512 3 × 3 1 1 

Max 

Pooling_4 

14 × 14 × 512 7 × 7 × 512 1 2 × 2 2 1 

𝟏𝒔𝒕 dense 1 × 25088 1 × 256  -   

𝟐𝒏𝒅 dense 1 × 256 1 × 1 × 136  -   

Table 4.1 Structure of the feed-forward network   

 

Connection layers 

The connection layers can produce the five outputs for the second stage, as 

illustrated in Figure 4.6. The connection layers include five layers, consisting of 

transform estimation, image transform, landmark transform, heatmap generation and 

feature generation. Given the predicted landmarks 𝐱1 and the mean shape 𝐱0, the 

transform estimation is responsible for calculating the similarity transformations 

matrix 𝐌2 and the inverse 𝐌2
−1, using (4.5). Based on the similarity transformation 

matrix 𝐌2, image transform is applied to warp the input image of the first network 𝐈 , 

while landmark transform is used to transform the predicted landmarks 𝐱1 that can 
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be close to the mean shape 𝐱0 . The heatmap generation uses the mean shape 

𝐌2(𝐱1) to calculate landmark heatmap 𝐄2, using the following equation (Kowalski et 

al., 2016): 

 

𝐄2(𝑥, 𝑦) =  
1

1 + min
𝑥𝑖∈ 𝐌2(𝐱1) 

‖(𝑥, 𝑦) − 𝑥𝑖‖
 (4.14) 

where 𝐄  is the heatmap image, 𝑥𝑖  is the 𝑖𝑡ℎ  landmark of 𝐌2(𝐱1) , and 𝑥, 𝑦  is the 

coordinate of each pixel on the heatmap. The landmark heatmap is an image with 

the highest pixel intensity at the landmarks’ positions, and it can infer the landmark 

estimation based on the entire image. Then, the feature generation is generated a 

feature image 𝐅2 from the first dense layer of the first network. The feature image can 

transfer any information learned by the first stage to the second stage. 

 

Figure 4.6 The diagram of the connection layers 

 

The examples of three kinds of images are illustrated in Figure 4.7, including the 

warped image 𝐌2(𝐈), the landmark heatmap 𝐄2, and the feature image 𝐅2. These 

three kinds of images are concatenated as the input into the feed-forward neural 

network of the second stage, while these images need to reshape to the size of 

112×112, which can keep the same input size of networks in the two stages. 

Furthermore, the inverse similarity transformation matrix 𝐌2
−1 and the mean shape 
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𝐌2(𝐱1) are utilised in (4.8), which can transform the output of the second stage back 

to match the original image. 

Warped image Landmark heatmap Feature image 

   

   

   

Figure 4.7 Example of input images into the second stage 

 

4.1.3 DAN Loss Evaluation  

The loss evaluation of DAN uses the loss function to evaluate the training model 

parameters. The optima model parameters will be saved when the error converges, 

and the max iteration reaches. In the model training of DAN, the loss function is 

employed to calculate the error between the 68 predicted landmarks and the 68 

annotated landmarks or called ground truth. The loss function minimises the 

landmark location error normalised by the distance between the eye centres 

(Kowalski et al., 2016):  

 

min
𝐗

‖ 𝐌2
−1(𝐌2(𝐱1) + ∆𝐱2) − 𝐱

𝑔𝑡‖

𝑑𝑝𝑢𝑝𝑖𝑙𝑠
 (4.15) 

where 𝐱𝑔𝑡 are the landmark ground truth, 𝐌2
−1 is the inverse matrix, 𝐌2(𝐱1) is the 

mean shape from the first stage, ∆𝐱2  is the output offset value of 68 landmark 

coordinates, and 𝑑𝑝𝑢𝑝𝑖𝑙𝑠 is the normalised factor, which is the distance between the 

eye centre. 
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4.1.4 DAN Model testing 

The section provides the process of the model testing of DAN by jointly using the 

face detector and facial landmark detector, as shown in Figure 4.1. In the original 

author’s implementation, the model testing of DAN uses the data pre-processing 

stage to transform the original image with the corresponding landmarks as input into 

the facial landmark detector (Kowalski et al., 2016). However, the data pre-

processing needs an image with the landmark ground truth, which is not allowed in 

the test stage. Therefore, the face detector is used instead of the data pre-

processing stage. The face detector estimates the face bounding box. Then, the face 

bounding box can transform the input image into the facial landmark detector for 

landmark estimation. 

 

Figure 4.8 uses the face detector to estimate the face bounding box step by step. 

The original images must resize to a fixable image size through the pre-trained 

model, and the input image size must be set as 224 × 224 using bilinear interpolation. 

To maintain the same information as the original image, the height and width of an 

image need to keep the same ratio, and the rest of the resized image is padded by 0. 

Hence, the face bounding box estimate by the face detector, which is the pre-trained 

model, was applied to predict the face bounding box.  

 

Figure 4.8 The face detector workflow 

 

The face detectors use the pre-trained models of Multi-Task Cascaded Convolutional 

Networks (MTCNN) (Zhang et al., 2016) and Sample and Computation 

Redistribution for efficient Face Detection. (SCRFD) (Guo et al., 2021) to present a 

comparison result. The results show the accuracy of each face detector and the 

number of false positives and missing using the Multi-PLE dataset, 300W challenge 

dataset, and Menpo dataset. A face was detected correctly if the predicted face 

bounding box returned by a face detector and then the ground truth of the bounding 

box overlapped by at least 50%. According to the bounding box estimation in the 

data pre-processing, the height and width of the facial region can be determined by 



4.Implementation of facial landmark detection algorithms 57 

A Comparative Study of Automatic Facial Landmark Detection 

using (4.1) and (4.2). In Figure 4.9, each dataset lists an image with its correct face 

bounding box and the poor result of each face detector. In the correct detection, the 

red box is the ground truth of the bounding box, the green box is the prediction of 

SCRFD, and the blue box is the prediction of MTCNN. In the poor results of each 

face detector, the red box is the ground truth of the bounding box, and the green box 

is the prediction box.  

Dataset Correct Detection Poor Detection of 

MTCNN 

 Poor Detection of 

SCRFD 

Multi-

PLE 

   

300W 

 

 
 

Menpo 

 

 

 

Figure 4.9 Example results of Face detector. 

 

Figure 4.10 shows the accuracy of face detectors, and N represents the number of 

images in the dataset. The accuracy of each face detector in a dataset is computed 

as the number of correct predictions divided by the total image numbers of a dataset. 
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It could obtain that the face detector of the SCRFD outperformed the face detector of 

the MTCNN in all datasets. 

 

Figure 4.10 Face detectors’ accuracy  

 

Since each image in datasets only consists of one face’s landmark configuration, the 

additional boxes in a single image, not the face with the ground truth, are determined 

as false positives. The comparison result of false positives shows in Figure 4.11(a). It 

still exits some images that a face detector cannot return a bounding box denoted as 

missing images. Figure 4.12(b) shows the result of missed images. In conclusion, 

the face detector of the SCRFD outperformed the face detector of the MTCNN with 

higher accuracy, fewer false positives, and fewer missed images. 

 

(a) (b) 

Figure 4.11 Face detector results (a) false positives, (b) missing images 
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With the face bounding box estimated by the SCRFD, the similarity transform uses to 

sample the box region of the original image as the input of the facial landmark 

detector. The transformation matrix is defined as (Jaderberg et al., 2015): 

 

[
𝑠𝑐𝑎𝑙𝑒 0 𝑡𝑥
0 𝑠𝑐𝑎𝑙𝑒 𝑡𝑦

] (4.16) 

𝑠𝑐𝑎𝑙𝑒 =  
𝑆

𝑚𝑎𝑥(𝑤, ℎ)
 

(4.17) 

𝑡𝑥 = 
𝑆

2
− 𝑤𝑐𝑒𝑛𝑡𝑟𝑒

′  (4.18) 

𝑡𝑦 = 
𝑆

2
− ℎ𝑐𝑒𝑛𝑡𝑟𝑒

′  (4.19) 

where 𝑠𝑐𝑎𝑙𝑒 is the scaling ratio between the original image and transformed image, 

𝑤, ℎ are the width and height of the original image, 𝑆 represents the width of the 

transformed image as the same as the height, which is 112 , 𝑡𝑥  and 𝑡𝑦  are the 

translation scalar at the x-axis and the y-axis, and (𝑤𝑐𝑒𝑛𝑡𝑟𝑒 
′ , ℎ𝑐𝑒𝑛𝑡𝑟𝑒

′ ) is the centre 

coordinate of the face bounding box in the transformed image. Hence, the original 

images transform to the transformed images using (4.6), as shown in Figure 4.12.  

 

Figure 4.12 The image transform 

 

The Red, Green, and Bule (RGB) colour-resized images transform the greyscale-

resized images. Then, the facial landmark detector uses the saved model 

parameters and transformed images to infer the predicted landmarks’ positions. 

Furthermore, the 68 predicted landmarks can transform to match the original image 

using the inverse similarity transformation matrix. The transformed landmarks can be 

used to compare the performance with other facial landmark detection algorithms. As 

shown in Figure 4.13, the left is the predicted landmarks on the transformed image, 

and the right is the original image with the transformed landmarks. 
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Predicted landmarks b) Transformed landmarks 

 

 

Figure 4.13 The prediction landmarks’ result of DAN 

 

4.2. Coarse-to-fine Deep Convolutional Neural Network (DCNN) 

Cascade Implementation detail 

The coarse-to-fine Deep Convolutional Neural Network (DCNN) cascade (Zhou et al., 

2013) proposed a four-level convolutional network cascade to handle the challenge 

of 68 landmarks’ positions in a coarse-to-fine manner. The coarse-to-fine DCNN 

cascade has three stages, which are the same as DAN. Since the data pre-

processing of DCNN is exactly the same as DAN, the following section will focus on 

DCNN model training and testing. 

 

4.2.1. DCNN Model Training  

Model Structure 

Having the normalised form of facial images and the corresponding landmarks in the 

training dataset, the model builds a two-level network, which refines a set of 

landmarks on the local patches provided by the previous level. As shown in Figure 

4.14, the framework gives a brief demonstration, including the coarse and the refine 

level.  

 

In the coarse level, 68 landmarks are separated into inner points and contour points: 

the inner points denote the 51 landmarks of eyes, brows, mouth, and nose as inner, 

and the contour points denote the other 17 landmarks. (Zhou et al., 2013). The 

coarse level’s network utilises two induvial deep convolutional neural networks 

(DCNN) to predict the inner points and contour points’ position separately. Once the 

inner points at the coarse level have been predicted, the region of four facial 

attributes, including eyes, brows, mouth, and nose, are extracted to the local patches. 

These local patches of each attribute are applied as the inputs of the four induvial 

networks in the refine level. These networks have the same network architecture, 

called ‘Deep convolutional neural network (DCNN)’, which was inspired by the work 
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of Sun et al. (2013). The final 68 predicted landmarks combine with the inner points 

prediction at the refine level and the contour points prediction at the coarse level. 

 

Figure 4.14 The outline of the coarse-to-fine Deep convolution network cascaded. 

 

Deep Convolution Neural Network (DCNN) 

A deep convolutional neural network (DCNN) denotes a basic network of the model, 

and the architecture (Zhou et al., 2013) is illustrated in Figure 4.15. The network 

applies the three convolutional layers, each following a max-pooling layer and a fully 

connected layer taken in the end. An unshared convolutional layer only uses in the 

network of the refine level, and each face attribute uses an induvial DCNN to predict 

the landmark position in each face attribute. The structure is adopted by Zhou et al. 

(2013). 

 

Figure 4.15 Typical network structure of DCNN, redrawn from Zhou et al. (2013) 
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Each convolution layer employs a set of square convolution kernels to the 

multichannel input feature maps. Then the convolution operation with an activation 

function is computed by (Zhou et al., 2013): 

 

𝐗𝑖,𝑗,𝑘
𝑡 = |tanh(∑ ∑ ∑𝐈𝑖−𝑥,𝑗−𝑦,𝑧

𝑡−1 ∙ 𝐖𝑥,𝑦,𝑧,𝑘
𝑡 + 𝐛𝑘

𝑐𝑡−1

𝑧=0

𝑤𝑡−1

𝑦=0

ℎ𝑡−1

𝑥=0

)| (4.24) 

where 𝐈𝑡−1 is denoted as the output feature maps of the previous convolution layer, 

𝑡 is the 𝑡𝑡ℎ convolutional layer, ℎ and 𝑤 are the height and width of the input feature 

maps, 𝑐 is the number of the channel of the feature map, 𝐖 is weight, 𝐛 is bias, and 

𝐗 is the output feature maps. For 𝑖 = ℎ − 𝑠 + 1 and 𝑗 = 𝑤 − 𝑠 + 1, 𝑖 and 𝑗 represent 

the size of each region of feature maps. Thus, each region is converged by the 

kernel with 𝑠 × 𝑠 . After the convolution operator, the hyper-tangent and absolute 

value functions are employed to the 𝑡𝑡ℎoutput feature map, which brings non-linearity 

to the model. 

 

After the convolution layer, the Max-pooling layer and the fully connected layer are 

employed, which is the same as DAN. Finally, the 68 predicted landmarks are 

produced by one fully connected layer. After describing DCNN architecture, the 

networks’ sizes of the coarse level and refine level are illustrated below. 

 

At the coarse level, Table 4.2 summarises the network size with 𝑪𝟏 and 𝑪𝟐 (Zhou et 

al., 2013). Table 4.2 shows the input images’ resolution, kernel size and the number 

of channels. 𝑪𝟏 and 𝑪𝟐 constructed to predict the contour points and the inner points 

separately.  

Network 𝑪𝟏 𝑪𝟐 

Input 120 × 120 × 1 120 × 120 × 1 

Conv.1 5 × 5 × 20 5 × 5 × 20 

Max Pooling_1 2 × 2 2 × 2 

Conv.2 5 × 5 × 40 5 × 5 × 40 

Max Pooling_2 2 × 2 2 × 2 

Conv.3 3 × 3 × 60 3 × 3 × 60 

𝟏𝒔𝒕 dense 1 × 34 1 × 102 

Output 2 × 17 2 × 51 

Table 4.2 The coarse level’s network size 
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As seen in Table 4.3, the refine level constructs four networks with the same input 

resolution, kernel size and the number of channels (Zhou et al., 2013). The first 

network 𝑹𝟏 predicts a left brow that has 5 landmarks, while the network reuses to 

predict the images of the right brow that also have 5 landmarks. The second network 

𝑹𝟐 predicts a nose that has 9 landmarks. The third network 𝑹𝟑 predicts an eye that 

has 6 landmarks, and the network reuses to predict the images of the right eye that 

also have 6 landmarks. The last one 𝑹𝟒 predicts a mouth that has 20 landmarks. 

Network 𝑹𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟒 

Input 40 × 40 × 1 40 × 40 × 1 40 × 40 × 1 40 × 40 × 1 

Conv.1 5 × 5 × 20 5 × 5 × 20 5 × 5 × 20 5 × 5 × 20 

Max Pooling_1 2 × 2 2 × 2 2 × 2 2 × 2 

Conv.2 3 × 3 × 40 3 × 3 × 40 3 × 3 × 40 3 × 3 × 40 

Max Pooling_2 2 × 2 2 × 2 2 × 2 2 × 2 

Conv.3 3 × 3 × 60 3 × 3 × 60 3 × 3 × 60 3 × 3 × 60 

𝟏𝒔𝒕 dense 1 × 10 1 × 18 1 × 12 1 × 40 

Output 2 × 5 2 × 9 2 × 6 2 × 20 

Table 4.3 The refine level’s network size. 

 

Facial attributes extraction 

Since the networks in the refine level train each face attribute separately, the facial 

attributes must be extracted and resized from the whole image to the local patch. As 

seen in Figure 4.16, the coordinates of the 51 predicted inner points provided by 

coarse level are applied to extract each facial component. In addition, each 

component needs to be extracted as a square to keep the facial appearance. The 

length of the square selects the longer length between the width and height of the 

components. Finally, the bilinear interpolation methods can use to resize the facial 

components as the input of the refine level. 

 

Figure 4.16 Illustration of facial attributes extraction 
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4.2.2 DCNN Loss evaluation 

The loss evaluation of DCNN uses the mean square error (MSE) loss function 

(Sammut and Webb, 2010) to evaluate the training model parameters. The optima 

model parameters will be saved, and the saved way is the same as DAN. The 

number of landmark outputs is different in the refined-level networks, so the distance 

between the eye centre cannot be used to normalise the distance between the 

predicted landmarks’ positions and the corresponding landmark annotations. 

Therefore, the MSE loss is applied to adjust the parameter of each network. 

 

𝐿(𝐘, �̂�) =  
1

𝑁
∑(𝐘𝑖 − �̂�𝑖)

2
𝑁

𝑖=0

 (4.25) 

where �̂� is the predicted landmark, 𝐘 is the corresponding ground truth, N is the 

number of landmarks, 𝑖 is the index of the landmarks.  

 

4.2.3 DCNN Model testing 

In this section, the test stage of DCNN jointly uses the SDCRFD face detector and 

facial landmark detector to output the 68 predicted landmarks. The face detector 

uses the same pre-trained model and image processing step as DAN, while the 

facial landmark detector applies DCNN to predict the position of landmarks. 

 

In Figure 4.17, the landmark prediction of the facial landmark detector illustrates. The 

facial landmark detector uses two different trained networks of the coarse level to 

predict 17 contour points and 51 inner points, as seen in Figure 4.18(a). The 

predicted landmarks over each face attribute used four different trained networks’ 

parameters of the refine level, as illustrated in Figure 4.18(b). Finally, the 

transformed landmarks are shown in the original images in Figure 4.18(c). 

  

 

(a) (b) (c) 

Figure 4.17 The example of landmark prediction (a) Coarse level, (b) Refine level, 

and (c) transformed landmarks 
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4.3 Stacked Dense U-nets (SDU) Implementation detail 

Stacked Dense U-nets (Guo et al., 2018) is a facial landmark detection algorithm that 

applies fully convolutional neural networks for heatmap prediction. The network is 

designed to present a set of landmark heatmaps, which show the probability of 

landmarks’ position at each pixel. 

 

4.3.1 Data pre-processing 

Since the data pre-processing has been detailed in Section 4.1.1, the pre-processing 

stage of the SDU follows the data pre-processing steps to transform the training set’s 

image as the network input. Due to the novel loss function (Guo et al., 2018), the 

input of the SDU needs two kinds of transformed images from a single image in train 

sets. As seen in Figure 4.18, the face-cropped image is the first kind of transformed 

image, which extracts the facial region and resizes it to 128×128×3. The other kind 

of transformed image uses data augmentation by random rotation, scaling, or flip, 

and the size also is 128×128×3. 

 

Figure 4.18 A example image and results after data pre-processing 

 

4.3.2 Model training of the SDU 

Model Structure 

Having the two kinds of images as the input of the network, Stacked Dense U-nets 

(SDU) is comprised of the initial phase, the network backbone, the inside transformer, 

and the loss evaluation, as illustrated in Figure 4.19. The figure is inspired based on 

the interpretation in this research. 
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The initial phase is used to decrease the scale of the feature maps from 128x128 to 

256x256 while increasing the channel number from 3 to 256. Moreover, the initial 

phase uses two kinds of residual blocks, including Hierarchical, Parallel and Multi-

scale (HPM) (Adrian et al., 2017) and Channel Aggregation Block (CAB) (Guo et al., 

2018). In the following, a max-pooling operator is utilised to reduce the scale of the 

feature maps. 

 

Two dense U-nets are stacked as the network backbone, each of which follows an 

inside transformer. A dense U-net proposed a Scale Aggregation Topology (SAT) and 

a CAB for network design (Guo et al., 2017). SAT is built upon a topology which is 

symmetric in scale, based on the topology of the U-net (Ronneberger et al., 2015) 

and Hourglass (Alejandro et al., 2016). For the same insight in the network topology, 

a CAB is built upon a residual block for the SAT, which is symmetric in the channel. 

 

Inside transformer employs the deformable convolution (Dai et al., 2017) to generate 

the landmark heatmap by learning additional offsets, which can replace the global 

explicit parametric transformation, such as the connection layer in DAN. Afterwards, 

the input of the second dense U-net stack the output feature maps from the initial 

phase, the landmark heatmaps and the feature maps of the inside transformer, which 

three different inputs add element-wise. The 68 heatmaps are the output of the first 

dense U-net using the deformable convolution, and then they increase the number of 

channels from 68 to 256. The second input is the feature maps before the output of 

the landmark heatmap. They both resample by the 1x1 convolution. 

 

Finally, the 68 predicted landmark heatmaps and the ground truth are shown to 

minimise the novel loss function. 
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Figure 4.19 SDU model structure  

 

Dense U-net 

Having the feature map from the initial phase, SAT illustrates the bottom-up and top-

down processing to capture the local and global features at four level scales, as 

shown in Figure 4.20. In the bottom-up processing, the down-sampling steps reduce 

the scale of feature maps from high to low, which repeatedly uses the max-pooling 

operator. There are three aggregation nodes, and the feature maps from different 

scales can be merges their spatial information using lateral connections. During each 

down-sampling step, the network branches off the feature maps, which are 

combined into the corresponding up-sampling aggregation nodes. Moreover, the 

aggregation node also adds down-sampling input for the aggregation nodes. At each 

scale, a dense U-net uses lateral connections to preserve the spatial information of 

the feature map (Yellow box). The up-sampling step expands the scale of feature 

maps by using a deconvolution operator. The deconvolution operator can identify as 

the reverse of convolution in mathematics (Zeiler et al., 2010). In addition, the 
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architecture is to use depth-wise separable convolutions (Andrew et al., 2017), which 

can improve the models’ capacity. 

 

Figure 4.20 Scale aggregation topology  

 

As seen in Figure 4.21, an output shape of a 3x3 depth-wise separable convolution 

is the same as a regular 3x3 convolution except for a different operation. The top 

architecture is a regular 3x3 convolution layer with a batch normalisation layer and 

ReLU action function, and the channel of input shape is 128. The kernel of the 

regular convolution has four dimensions: the number of kernels, the number of 

channels, and the kernel size. The regular convolution applies this kernel to multiply 

values over 3×3 spatial pixels over all the channels by 64 times. Then, the channel of 

the output shape is 64. The bottom architecture is a depth-wise convolution layer 

and a point-wise convolution layer, each following a batch normalisation layer and 

ReLU activation function. The depth-wise convolution convolves with a 3x3 kernel (2-

D) for each channel. After that, the point-wise convolution uses 64 of 1x1 kernels to 

stack the output of each channel together. Finally, the channel of the output shape is 

64, which is the same as a regular convolution.  
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Figure 4.21 Comparison of a regular 3×3 convolution (Top) and a 3×3 depth-wise 

separable convolution (Bottom) 

Residual Block 

The Hierarchical, Parallel, and Multi-scale (HPM) residual-based architecture is 

explored in Figure 4.22(a). This residual block is composed of 4 convolutional layers, 

and the input feature map branches off two paths. Firstly, the 1x1 convolution 

operator is applied to a lateral connection to retain the original information from the 

input shape, while it also increases the number of channels from 128 to 256 to match 

the output channels’ number. Secondly, three 3x3 convolutional operators extract 

spatial information from different channels, and it needs to match the input feature 

map’s channels. The first 3x3 convolutional layer keeps the same channel number 

which is 128. The second 3x3 convolutional layer reduces the channels from 128 to 

64. The third 3x3 convolutional layer also keeps the same channel number which is 

64. Then, three different number channels are concatenated together to match the 

channel number of the original input shape. Finally, the two paths’ feature map can 

add element-wise, based on the same number of channels, width and height. 

 

Meanwhile, an architecture of Channel Aggregation Block (CAB) is introduced in 

Figure 4.22(b). This residual block is a symmetric structure in the channel and has 

four different sizes of the channel in this block. The 3×3 convolution operator is used 

to decrease the number of channels. Before each 3x3 convolutional layer, it 

separates two connections path. The first one is ‘self-concatenation’ used to retain 

the information of the channel with the current size and concatenate itself again to 

match the channel number of the previous layer. The other one uses a 3x3 depth-

wise separated convolutional layer to extract the information of the channel with the 

current size. When increasing the channel number, the two different connections 

should add element-wise to the main path based on the same number of channels, 

width and height. 
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(a) (b) 

Figure 4.22 Different residual-based architecture. (a) HPM, (b) CAB 

 

Inside Transformer 

The feature maps are applied to deformable convolution (Dai et al., 2017) to learn 

addition offsets. Compared to the standard convolution, the deformable convolution 

adds 2-D offsets during the sampling location from the offset field, as illustrated in 

Figure 4.23 (Dai et al., 2017). The offsets are learned from the input feature maps by 

applying an additional convolutional layer. Then, the output feature maps can be 

deformed in a local, dense, and adaptive manner.  



4.Implementation of facial landmark detection algorithms 71 

A Comparative Study of Automatic Facial Landmark Detection 

 

Figure 4.23 The deformable convolution 

 

The deformable convolution can implicitly remove the discrepancy of rigid 

transformation on the input face image, such as scale, rotation, and translation. The 

examples in Figure 4.24 (Dai et al., 2017) illustrate the sampling location in the 3x3 

standard and deformable convolutions. Figure 4.24(a) shows the regular sampling 

location in the standard convolution, where are the green points. Figure 4.24(b) 

shows the deformed irregular sampling location (blue points) and augmented offsets 

(blue arrows) in deformable convolution. Moreover, Figure 4.24(c) and (d) are the 

special cases of (b), demonstrating that the deformable convolution can be utilised 

for different spatial transformations, such as scale and rotation. 

 

(a) (b) (c) (d) 

Figure 4.24 Examples of the sampling location in 3 × 3 standard and deformable 

convolutions. 

 

4.3.3 SDU Loss evaluation 

Loss evaluation of the SDU is to use the loss function to evaluate the training model 

parameters. The optima model parameters will be saved, and how to save is the 
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same as DAN. The network encourages the coherent loss to output the coherent 

landmarks when there are rotation, scale, and flip transformations (Guo et. 2018).  

 

The loss function consists of two parts. The first part is the 68 landmark heatmaps 

difference between the two predictions: the face-cropped image with the 

corresponding transformed image. The other is the discrepancy of 68 landmark 

heatmaps between the predictions and annotations. Thus, the end-to-end model 

minimises the coherent loss using the following equation: 

𝐥𝐨𝐬𝐬𝑡𝑜𝑡𝑎𝑙 =
1

𝐧
∑(𝛾 ‖𝐇𝐧(𝐌𝐈) −𝐌𝐇𝐧(𝐈)‖2

2
⏟              

𝐥𝐨𝐬𝐬𝑝−𝑝

+ ‖𝐇𝐧(𝐈) − 𝐆𝐧(𝐈)‖2
2

⏟          
𝐥𝐨𝐬𝐬𝑝−𝑔1

+ ‖𝐇𝐧(𝐌𝐈) −𝐌𝐆𝐧(𝐈)‖2
2

⏟              
𝐥𝐨𝐬𝐬𝑝−𝑔2

)

𝐧

𝐧=1

 (4.26) 

 

where 𝐈 is the input image, 𝐧 is the number of landmarks, 𝐆𝐧 is the ground truth of 

the 𝐧𝑡ℎ  landmark, 𝐇𝐧 is the predicted landmark heatmap of the 𝐧𝑡ℎ  landmark, 𝐌 is 

the matrix of similarity transformation, and 𝛾 is the tunable parameter to balance two 

losses: 𝐥𝐨𝐬𝐬𝑝−𝑝  is the difference between the two predicted landmark heatmaps 

before and after transformation, 𝐥𝐨𝐬𝐬𝑝−𝑔1  or 𝐥𝐨𝐬𝐬𝑝−𝑔2  is the difference between the 

prediction and ground truth.  

 

4.3.4 Model testing of the SDU 

In this section, the test stage of SDU jointly uses the SCRFD face detector and facial 

landmark detector. The face detector uses the same pre-trained model and image 

processing as DAN, while the facial landmark detector uses the SDU model to infer 

the landmark locations.  

 

After that, the facial landmark detector also uses the trained model parameters and 

infers the 68 predicted landmark heatmaps. As seen in Figure 4.24, each heatmap 

represents a single landmark, and the landmark position is the pixel location with the 

highest intensity. Then, the 68 landmark coordinates need to transform back to 

match the original image using the inverse similarity transformation matrix and (4.5). 
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Figure 4.25 Example landmark prediction of the stacked dense U-net 

 

For a more detailed comparison between different methods, Chapter 5 will discuss 

each method’s performance using the evaluation metrics. 
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5. Experiment 
 

After introducing the datasets and algorithms, this chapter provides a detailed 

comparison of automatic facial landmark detection.  

 

The workflow of the performance evaluation is shown in Figure 5.1. The model 

testing stage uses the original image of the testing set and model parameters to 

present the predicted landmarks, which are shown as the red points on the example 

image. The model parameters estimate in the model training, and the images for 

model training are not included in the model testing. The example image’s ground 

truth is blue points, which are utilised to compare with the predicted landmarks. 

Therefore, the testing set can perform the comparative results of three methods 

using different metrics.  

 

Figure 5.1 The diagram of the performance evaluation 

 

Hence, the training detail of each algorithm will introduce in Section 5.1. Then, the 

evaluation metrics used for the facial landmark detector will present in Section 5.2. 

Finally, Section 5.3 will analyse the comparative result of each facial landmark 

algorithm.  
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5.1 Training details of three algorithms 

The ten-fold cross-validation, as proposed by Kohavi (2001), was utilised for training, 

and testing the dataset in each algorithm. As shown in Figure 5.2. the method 

randomly divides a dataset into ten subsets, each containing an equal number of 

images. As an illustration, the first nine folds of the ten folds constitute the training 

and validation sets utilised for model training, with a 7:3 split. The remaining fold is 

used as the test set for model evaluation. Subsequently, it is recommended to 

perform ten repeats of the cross-validation procedure to ensure that each fold is 

utilised once as the test set. The result is that the ten outcomes are summed up and 

then averaged to produce an overall result. 

 

Figure 5.2 Ten-fold cross-validation workflow 

 

Therefore, we trained ten models of each algorithm, each of which used a single 

dataset. Each optima model parameter will save when the error converges, and the 

max iteration reaches. To evaluate three different algorithms, we perform 

experiments on the three datasets consisting of the Multi-PLE dataset, 300W dataset, 

and Menpo dataset, as we introduced in Chapter 3.  

 

The networks of DCNN were trained using MATLAB with stochastic gradient descent, 

with an initial learning rate of 0.0001 and a batch size of 64 (Zhou et al., 2013). The 
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networks of coarse level trained 100 epochs, and the networks of refine level trained 

50 epochs. The cost time of the whole DCNN model training stage was 4 hours. And 

DAN and SDU are implemented using Python. DAN’s networks were trained using 

TensorFlow 1.14.0 framework with Adam optimiser, an initial learning rate of 0.0001, 

and a batch size of 16 (Kowalski et al., 2016). The first-level network trained 15 

epochs, and the second-level network trained 45  epochs. DAN’s model training 

stage costs 6 hours. SDU was trained using MXNet framework with Adam optimiser, 

with an initial learning rate of 0.0002 and a batch size of 16 (Guo et al., 2018). The 

learning rate drops by 0.2 after 12 epochs and 18 epochs. The network trained 24 

epochs, which cost 4 hours. All models trained on a GeForce GTX 2080ti. 

 

5.2 Evaluation Metric for facial landmark detectors 

Evaluation Metric can measure the performance of the facial landmark detection 

algorithm by comparing the difference between the landmark prediction and ground 

truths. Hence, we refer to three different evaluation metrics to measure the accuracy 

of landmarks, including Root Mean Squared Error (RSME), Normalised Mean Error 

(NME), and Cumulative Error Distribution (CED) (Sagonas et al., 2013). 

 

The most straightforward metric is a root mean squared error (RMSE) to assess the 

performance of facial landmark localisation or facial landmark detection based on 

each transformed landmark position and the location of the corresponding landmark 

annotation. The metric computes the average Euclidean distance between the 

coordinates on each landmark basis. The higher average distance value can provide 

a lower landmark prediction accuracy because a landmark’s position is far from the 

corresponding landmark annotations’ location. The metric is shown as follows: 

 

𝑅𝑀𝑆𝐸 = 
1

𝑁
∑√(𝐱𝑖

𝑝 − 𝐱𝑖
𝑡)
2
+ (𝐲𝑖

𝑝 − 𝐲𝑖
𝑡)
2

𝑁

𝑖=1

 (5.1) 

where 𝑁 is the number of the total landmarks, 𝑖 is the 𝑖𝑡ℎ number of the landmark, 

(𝐱𝑝, 𝐲𝑝) the coordinate of the transformed landmark, and (𝐱𝑡, 𝐲𝑡) is the coordinate of 

the corresponding ground truth. 
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However, the metric cannot handle the errors caused by the individual face shape 

discrepancy. A better and more reliable way for the facial landmark detection 

assessment can be employed in terms of the normalised point-to-point root mean 

square error (NME ) (Deng et al., 2019). The typical normalisation factor is the 

distance between two defined ground truth landmarks. The factor allows the 

performance evaluation independent of the discrepancy in individuals’ face shape or 

the zoom factor of a camera. The metric is given as: 

𝑁𝑀𝐸 =  
1

𝑁
∑

√(𝐱
𝑖
𝑝
−𝐱𝑖

𝑡)
2
+(𝐲

𝑖
𝑝
−𝐲𝑖

𝑡)
2

𝑑𝑛𝑜𝑟𝑚
× 100𝑁

𝑖=1     (5.2) 

𝑑𝑛𝑜𝑟𝑚 = √(𝐱𝑙𝑒
𝑡 − 𝐱𝑟𝑒

𝑡 )2 + (𝐲𝑙𝑒
𝑡 − 𝐲𝑟𝑒

𝑡 )2 
  (5.3) 

where (𝐱𝑙𝑒
𝑡 , 𝐲𝑙𝑒

𝑡 )  is the minimum coordinate of the ground truth, (𝐱𝑟𝑒
𝑡 , 𝒚𝑟𝑒

𝑡 )  is the 

maximum coordinate of the ground truth. Bounding box diagonal normalisation can 

express as the bounding box diagonal distance, which is the distance between the 

diagonal of the bounding box. Bounding box diagonal distance determine as the 

normalisation factor because other factors cannot give reliable evaluation metrics 

(Deng et al., 2019). For instance, the inter-ocular or inter-pupil distance becomes 

very small since some of the 2-D images in datasets are profile views.  

 

The unit of NME refer to it as a percentage or a fraction of a specific length. The 

normalized mean error (NME) in facial landmark detection is reported as a 

percentage or fraction of the bounding box diagonal distance. It represents the 

average distance between the predicted facial landmarks and the ground truth 

landmarks, normalized by the distance between the diagonal of the bounding box. 

 

The cumulative error distribution (CED) is employed to summarise the performance 

of the different models in the same dataset. The plot can illustrate the proportion of 

images comparing NME with less than a threshold β. For example, as illustrated in 

Figure 5.3, detection circles around the left eye’s outer corner have been assessed 

where the radius equals the threshold β. The detection circles define the range with 

the threshold β, such as 10% (blue), 20% (red), and 30% (green). If the value of 

NME is below or equal to the current threshold, the position of the transformed 

landmark should exist in the detection circle. 
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Figure 5.3 Example of the assessed detection circle  

 

Furthermore, we calculate the Area Under the Curve (AUC), and the threshold is set 

as 0.1. We also calculate the failure rate of a dataset using each algorithm. Failure 

images can identify as any images with a threshold higher than 0.1. For the detailed 

evaluation, we separate 68 landmarks based on facial attributes. ‘Contour’ means 

the average NME of 17 landmarks at the facial contour. ‘Brow’ means the average 

NME of 10 landmarks at two brows. ‘nose’ means the average NME of 9 landmarks 

at the nose. ‘Eye’ means the average NME of 12 landmarks at two eyes. ‘Mouth’ 

means the average NME of 20 landmarks at the Mouth. 

 

In addition, the 2-D controlled datasets and 2-D ‘in-the-wild’ datasets can be divided 

into different conditions, consisting of different expressions, illumination, heavy 

occlusion, and frontal face, as mentioned in Chapter 3. In order to compare the 

performance of three algorithms under these conditions, we sample 15 example 

images under each condition on three datasets to provide mean error and Standard 

Deviation (Std). The mean error is the average NME of all transformed landmarks. 

Then, the standard deviation is the square root of the average squared deviations 

between each landmark’s NME and the mean error. Furthermore, the average of the 

NME is applied to analyse the difference between the transformed landmarks at 

different facial attributes. The following section could detail the performance of each 

algorithm by using these evaluation metrics. 
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5.3 Comparison result of three facial landmark algorithms 

5.3.1 Test on 300W dataset 

The cumulative error distributions of each method on the 300W dataset are provided 

in Figure 5.4, in which apply the x-axis assigned as the NME value of the current 

threshold, and the y-axis denotes the probability of correctly identified images. 

Compared with each algorithm’s curve, SDU has the best performance, that above 

99% of images can correctly identify at 0.04. DAN is the runner-up on the 300W 

dataset because the curve begins to increase after SDU. DCNN performed the worst 

since the curve started rising above 0.045, and only above 60% of the images can 

identify at 0.1. 

 

Figure 5.4 300W dataset cumulative error distributions 

 

Furthermore, the metrics’ performance of each algorithm on the 300W dataset is 

summarised in Table 5.1, that RMSE and NME use an average of all landmarks. 

SDU presents the least value of NME and the highest value of AUC compared to all 

evaluation metrics, which explains that SDU has the best performance among the 

three algorithms on the 300W dataset. DCNN shows the lowest performance based 

on these values of evaluation metrics. 

 

 



5.Experiment 80 

A Comparative Study of Automatic Facial Landmark Detection 

Algorithms RMSE NME AUC (0.1) Failure rate 

DCNN 96.700 0.098 0.193 0.401 

DAN  72.094 0.018 0.818 0.000 

SDU 66.802 0.017 0.828 0.000 

Table 5.1 The metrics’ performance of the 300W dataset 

 

In Figure 5.5, a comparison based on the facial attributes provides using box plots, 

which can visualise the NME distribution of each attribute on the 300W dataset. In 

each box, the green line is the median of the NME to split the original dataset into 

two subsets. Half the values are greater than or equal to the median, and the other 

half are less than the median. Then, a box’s upper black edge line is the upper 

quartile, the median of the upper data subset. 25% of NME are above the upper 

quartile, and the range is called ‘the upper whisker’. A box’s lower black edge line is 

the lower quartile, the median of the lower data subset. 25% of the NME is less than 

the upper quartile. The middle box represents the middle 50% of the NME for the 

face attribute, called the ‘interquartile range’. The upper black line is the maximum 

value, and the lower black line is the minimum value. Compared to the medians of 

the face contour’s box, the median line of DAN is lower than SDU, and DAN’s 

interquartile range is smaller than SDU. DAN show better performance on the face 

contour. 

 

Figure 5.5 Comparison of landmark error due to different facial attributes on the 

300W dataset 
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Furthermore, a more detailed comparison based on each landmark illustrates in 

Figure 5.6. Each bar represents an average NME of a landmark on the 300W 

dataset. Compared with DAN and SDU, SDU shows higher error from the 1st to the 

22nd landmark, which are the landmark indexes of face contour and brows. Then, 

each landmark’s NME of DCNN is the biggest. 

 

Figure 5.6 Comparison of each landmarks error on the 300W dataset 
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The reason is that DAN utilises a mean face shape, which can constraint the 

landmark would not have highly biased. Another reason is that the heatmap 

predictions of SDU are too sensitive to the colour information, which ignores the face 

contour need to satisfy the anthropological constraint. 

 

In the following, three algorithms first tested 15 images with different expressions on 

the 300W dataset. DAN has the most outstanding performance in the image with 

different expressions on the 300W dataset, while SDU has the highest mean value 

among the three algorithms, as shown in Table 5.2. 

Algorithms Mean Std 

DCNN 0.02908 0.00014 

DAN 0.02449 0.00009 

SDU 0.05303 0.00010 

Table 5.2 The statistical results on the 300W dataset with different expressions 

 

For more detail, the predicted landmarks at different facial attributes calculate the 

mean value of the NME to compare the three algorithms, as shown in Figure 5.7. 

SDU has the highest average NME at different facial attributes, while DAN shows the 

best performance. 

 

Figure 5.7 Comparison of landmark error due to the different facial attributes on the 

300W dataset with different expressions 
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To explain the reason for the poor performance of SDU, the poor landmark 

localisation results of SDU are shown in Figure 5.8. There always be some 

landmarks that deviate significantly from the face contour and mouth. Because the 

landmark heatmaps of SDU predict the probability of landmarks’ presence at each 

input image pixel, the face with an exaggerated expression will miss face contour 

sometimes. 

  

Figure 5.8 Example of SDU poor landmark localisation 

 

Secondly, three algorithms tested 15 images with different illumination conditions. 

DCNN presents the lowest performance, and the mean value of the NME is 0.03336. 

SDU performs best in that the mean value of the NME is 0.01772, as illustrated in 

Table 5.3. 

Algorithms Mean Std 

DCNN 0.03336 0.00006 

DAN 0.02168 0.00006 

SDU 0.01772 0.00008 

Table 5.3 The statistical results on the 300W dataset with different illuminations 

 

The NME at different facial attributes of the 15 images under different illuminations 

on the 300W dataset is shown in Figure 5.9, and DCNN can be observed, which 

provides the lowest performance. 
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Figure 5.9 Comparison of the NME due to different facial attributes on the 300W 

dataset with different illuminations 

 

In order to find out the limits of DCNN, example images with the predicted landmark 

localisation results are demonstrated shown in Figure 5.10. In DCNN, the facial 

attributes are employed to provide the final predicted landmarks. If the predicted 

landmark of the coarse level cannot be correctly identified, it will influence the 

extracted region of each facial attribute. 

  

Figure 5.10 Example of DCNN poor landmark localisation 

 

Thirdly, the tested images are under occlusion conditions, and SDU still has the least 

mean NME is 0.02193 among the three algorithms in Table 5.4.  

Table 5.4 The statistical results on the 300W dataset with heavy occlusion 

Algorithms Mean Std 

DCNN 0.05413 0.00009 

DAN 0.03751 0.00006 

SDU 0.02193 0.00009 
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The NME values at different facial attributes of the 15 images with occlusion 

conditions on the 300W dataset are shown in Figure 5.11. However, SDU has the 

best performance at different facial attributes of the three algorithms, while DCNN 

has the highest value of the NME. 

 

Figure 5.11 Comparison of landmark error due to different facial attributes on the 

300W dataset with heavy occlusion 

 

An example image with heavy occlusions uses three algorithms to test the landmark 

localisation results, as the image with the landmark localisation results of DCNN, 

DAN and SDU are demonstrated in Figures 5.12(a), (b), and (c). The predicted 

landmarks of DCNN and DAN have a high bias which means these two algorithms 

do not have a great ability to handle the face with heavy occlusion. 

   

(a) (b) (c) 

Figure 5.12 The landmark localisation results on the 300W dataset with heavy 

occlusion. (a) DCNN, (b) DAN, (c) SDU 
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Finally, 15 frontal-face images from the 300W dataset were sampled and tested the 

predicted landmarks of three algorithms. SDU has the least mean error in Table 5.5.  

Algorithms Mean Std 

DCNN 0.17179 0.00008 

DAN 0.15883 0.00007 

SDU 0.15104 0.00006 

Table 5.5 The statistical results on the 300W dataset with frontal face 

 

The NME values at different facial attributes for the 15 frontal-face images on the 

300W dataset are shown in Figure 5.13. SDU is the best-performing algorithm in all 

face attribute categories. 

 

Figure 5.13 Comparison of landmark error due to different facial attributes on the 

300W dataset with frontal face 

 

5.3.2 Test on Menpo Dataset 

The same experiments were repeated on the Menpo dataset. As illustrated in Figure 

5.14, each algorithm provides the cumulative error distributions. The curves can 

observe that SDU illustrates the best performance that above 97% of images can 

identify at 0.04, while DAN reaches 95%. The curves’ gap between DAN and SDU 

becomes significant because SDU can learn more rich feature information from the 

Menpo dataset, which is the most challenging dataset among the three tested 

datasets. The results of the metrics on the Menpo dataset are outlined in Table 5.6. 
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SDU still outperform overall algorithms, while DCNN shows the worst performance. 

DCNN’s landmark output of the coarse level has a poor prediction, which will cause 

a higher biased on the predicted landmark of the refine level.  

 

Figure 5.14 Menpo dataset cumulative error distributions 

 

Algorithms RMSE NME AUC (0.1) Failure rate 

DCNN 29.466 0.116 0.197 0.560 

DAN 11.429 0.023 0.769 0.003 

SDU 7.254 0.020 0.807 0.002 

Table 5.6 The metrics’ performance of the Menpo dataset  

The comparison performance on the Menpo dataset based on different facial 

attributes is shown in Figure 5.15. The median of each SDU’s face attribute box is 

the lowest, which explains that the SDU is the best performer. The median and range 

of interquartile of each DAN’s face attribute box are smaller than SDU.  
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Figure 5.15 Comparison of landmark error due to different facial attributes of the 

Menpo dataset 

 

The NME values for each landmark on the Menpo dataset are illustrated in Figure 

5.16. SDU shows higher error from the 1st landmark to the 10th landmark, which are 

the landmark indexes of the left side face contour, while each landmark’s NME of 

DCNN is still the biggest. The reason is the same that we tested in the 300W dataset. 
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Figure 5.16 Comparison of each landmarks error on the Menpo dataset 

 

Similar to the experiment on the 300W dataset, the performance of the three 

algorithms under the different conditions was evaluated as each condition uses 15 

example images on the Menpo dataset. 
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Firstly, three algorithms test 15 images with different expressions on the Menpo 

dataset. As shown in Table 5.7, SDU has the best performance among the three 

algorithms.  

Algorithms Mean Std 

DCNN 0.03751 0.00011 

DAN 0.02254 0.00003 

SDU 0.01820 0.00009 

Table 5.7 The statistical result on the Menpo dataset with different expressions 

 

The NME values at different facial attributes of the 15 images with different 

expressions on the Menpo dataset are shown in Figure 5.17. DCNN has a 

significantly poor performance of the landmarks at the mouth again, and SDU is still 

worse than DAN at the face contour. 

 

Figure 5.17 Comparison of landmarks error due to different facial attributes on the 

Menpo dataset with different expressions 

 

Secondly, three algorithms test 15 images under different illumination conditions. As 

shown in Table 5.8, DAN is the best-performing algorithm in the images of the 

Menpo dataset under different illumination conditions. 



5.Experiment 91 

A Comparative Study of Automatic Facial Landmark Detection 

Table 5.8 The statistical results on the Menpo dataset with different illuminations 

 

Then, as shown in Figure 5.18, DCNN has the highest NME on almost all facial 

attributes, and SDU has a poorer performance than DAN, where the landmarks are 

located at the contour, brow, and eye. 

 

Figure 5.18 Comparison of landmarks error due to different facial attributes on the 

Menpo dataset with different illuminations 

 

SDU still has poor landmark heatmaps when the images are under different 

illumination conditions, as shown in Figure 5.19. SDU has a highly biased predicted 

landmark when some facial attributes of the image are missing in an extremely dark 

environment. That can explain why landmark heatmap prediction heavily relies on 

the image's colour information. 

Algorithms Mean Std 

DCNN 0.04191 0.00014 

DAN 0.02691 0.00007 

SDU 0.02785 0.00021 
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Figure 5.19 Examples of SDU poor landmark localisation results 

 

In the following, three algorithms tested 15 images with heavy occlusion conditions. 

In Table 5.9, SDU has the best performance among the three algorithms, and the 

mean value of the NME is 0.03833.  

Algorithms Mean Std 

DCNN 0.07422 0.00049 

DAN 0.04411 0.00006 

SDU 0.03833 0.00047 

Table 5.9 The statistical results on the Menpo dataset with heavy occlusion 

 

The NME values at different facial attributes of the 15 images with heavy occlusion 

on the Menpo dataset are shown in Figure 5.20. SDU performs less than DAN, 

where the landmarks are at the face contour and brow. 

 

Figure 5.20 Comparison of landmarks error due to different facial attributes on the 

Menpo dataset with heavy occlusion 
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The example images with the 68 predicted landmark localisation are shown in Figure 

5.21. Not only can SDU not recognise the situation where half of the face occluded 

by itself, but also DCNN and DAN perform poorly in self-occlusion. Hence, SDU 

performs poorly in predicting the image with the missing face attribute. 

   

(a) (b) (c) 

Figure 5.21 The poor landmark localisation results under heavy occlusion on the 

Menpo dataset with heavy occlusion (a) DCNN, (b) DAN, (c) SDU 

 

Finally, the three algorithms tested the 15 frontal-face images on the Menpo dataset. 

The statistics results are shown in Table 5.10. SDU still performs best among the 

three algorithms, and the mean value of the NME is 0.014. DAN is the runner-up, 

and the mean value of the NME is 0.02212.  

Algorithms Mean Std 

DCNN 0.02573 0.0009 

DAN 0.02212 0.0003 

SDU 0.01400 0.0004 

Table 5.10 The statistical results on the Menpo dataset with frontal face 

 

The NME values of the predicted landmarks on each face attribute are demonstrated 

in Figure 5.22. It is similar to the test on the 300W dataset that SDU is the best 

performing in all face attribute categories on the frontal-face images of the Menpo 

dataset. In comparison, DAN considers the runner-up, which presents better 

performance than DCNN in all face attribute categories. 
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Figure 5.22 Comparison of landmarks error due to different facial attributes on the 

Menpo dataset with frontal face 

 

5.3.3 Test on Multi-PLE Dataset 

Again, the same experiments were repeated on the Multi-PLE dataset. The 

cumulative error distributions on the Multi-PLE dataset are reported in Figure 5.23. 

The curves can observe that SDU is not the best performer among all and that 

above 97%  of images can correctly identify at 0.04 . DAN is better than SDU, 

reaching above 99% at 0.04. Because DAN can constrain the landmarks’ position 

based on the initial mean face shape, another reason is that the Multi-PLE dataset 

has a set of heavy self-occlusion images, which is an excellent challenge for SDU. 

Furthermore, DCNN always shows the lowest performance at the threshold of NME 

0.1 because of the coarse-to-refine level structure. The metrics of each method on 

the Multi-PLE dataset performs in Table 5.11. DAN outperform overall algorithms, 

while DCNN still shows the worst performance. 
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Figure 5.23 Multi-PLE dataset cumulative error distributions 

 

Algorithms RMSE NME AUC (0.1) Failure rate 

DCNN 24.708 0.114 0.180 0.341 

DAN 3.695 0.015 0.855 0.000 

SDU 5.171 0.020 0.797 0.000 

Table 5.11 The metrics’ performance of the Multi-PLE dataset  

 

In Figure 5.24, the comparison was performed on the Multi-PLE dataset based on 

different facial attributes. SDU has a bigger median of the face contour box than 

DAN because of the heavy self-occlusion image on the Multi-PLE dataset. 
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Figure 5.24 Comparison of landmarks error due to different facial attributes on the 

Multi-PLE dataset 

 

In Figure 5.25, compared with DAN and SDU, SDU still has a bigger value from the 

1 st landmark to the 28th landmark and the 66 th landmark to the 68 th landmark 

because the self-occlusion images can cause highly biased of the predicted 

landmark located at the face contour, brows, and mouth. 
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Figure 5.25 Comparison of each landmarks error on the Multi-PLE dataset 

 

As the same test step as the previous dataset, the three algorithms tested the 15 

images with different expressions on the Multi-PLE dataset first. SDU has the best 
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performance among the three algorithms, and DCNN shows the poorest 

performance in Table 5.12. 

Algorithms Mean Std 

DCNN 0.02673 0.00015 

DAN 0.01983 0.00009 

SDU 0.01555 0.00011 

Table 5.12 The statistical results on the Multi-PLE dataset with different expressions 

 

The NME values at different facial attributes of the 15 images with different 

expressions on the Multi-PLE dataset are shown in Figure 5.26. DCNN still has a 

significantly poor performance of the landmark at the mouth, while SDU shows the 

highest performance.  

 

Figure 5.26 Comparison of landmarks error due to different facial attributes on the 

Multi-PLE dataset with different expressions 

 

The landmark localisation results on the example images with different expressions 

on the Multi-PLE dataset are demonstrated in Figure 5.27. Examples of SDU have a 

remarkable ability to handle exaggerated expressions since the image does not have 

missing facial attributes or extreme illumination conditions. 
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Figure 5.27 Examples of SDU landmark localisation 

 

Secondly, the three algorithms test the 15 images with different illuminations on the 

Multi-PLE dataset. In Table 5.13, the statistic metric outlines that SDU is still the 

best-performing algorithm since the Multi-PLE dataset is a controlled dataset which 

does not have extreme situations to cause the missing facial attribute in the image. 

Algorithms Mean Std 

DCNN 0.02869 0.00017 

DAN 0.01674 0.00004 

SDU 0.01600 0.00010 

Table 5.13 The statistical results on the Multi-PLE dataset with different illuminations 

 

The NME values at different facial attributes of the 15 images with different 

illuminations on the Multi-PLE dataset are shown in Figure 5.28. SDU performs best 

at different facial attributes except for the landmarks at the contour, which is the 

same reason as the tested images in the 300W dataset and Menpo dataset.  

 

Figure 5.28 Comparison of landmarks error due to different facial attributes on the 

Multi-PLE dataset with different illuminations 
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Thirdly, several images are on the Multi-PLE dataset in which half of the face 

occludes. 15 example images are sampled to evaluate the performance of three 

algorithms. As seen in Table 5.14, DAN performs better than SDU, while DCNN still 

has the highest average of the NME. 

Algorithms Mean Std 

DCNN 0.07219 0.00011 

DAN 0.02039 0.00007 

SDU 0.02466 0.00031 

Table 5.14 The statistical results on the Multi-PLE dataset with heavy occlusions 

 

The NME values at different facial attributes of the 15 images with heavy occlusion 

on the Multi-PLE dataset are shown in Figure 5.29. Compared with DAN, SDU has a 

higher NME value at the contour, nose, and eye. Particularly, the NME of the contour 

is higher than over 0.015. 

 

Figure 5.29 Comparison of landmarks error due to different facial attributes on the 

Multi-PLE dataset with heavy occlusions 

 

The poor landmark localisation results of SDU are demonstrated in Figure 5.30. A 

few of the predicted landmarks are highly biased because of the missing facial 

attribute.  
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Figure 5.30 Examples of SDU poor landmark localisation 

 

Finally, 15 frontal face images were sampled from the Multi-PLE dataset to evaluate 

the performance of three algorithms. In Table 5.15, SDU has the best performance 

again. 

Algorithms Mean Std 

DCNN 0.01983 0.00008 

DAN 0.01273 0.00003 

SDU 0.01190 0.00002 

Table 5.15 The statistical results on the Multi-PLE dataset with frontal face 

The NME values of the predicted landmarks at different facial attributes on the 15 

images of the Multi-PLE dataset are illustrated in Figure 5.31. DCNN has the poorest 

performance at each face attribute. Furthermore, SDU has a higher mean error at 

the nose, and the NME of other facial attributes is lower than DAN. 

 

Figure 5.31 Comparison of landmarks error due to different facial attributes on the 

Multi-PLE dataset with frontal face 
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5.3.4 Summary of the three facial landmark algorithms 

We examined the performance of DCNN, DAN, and SDU in three datasets, including 

300W, Menpo, and Multi-PLE. Furthermore, each method was evaluated using three 

datasets with four circumstances: exaggerated expression, extreme illumination, 

heavy occlusion, and frontal-face conditions. The majority of the results demonstrate 

that SDU outperforms DCNN and DAN due to its network architecture as well as the 

input of landmark heatmap. However, the performance of SDU is still insufficient for 

a few images, particularly those with extreme illumination and heavy occlusion 

conditions, resulting in missing face attributes in the images. Compared with SDU, 

DAN has a better ability to handle this challenge, as it uses the mean shape to 

constraint the global face shape.  
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6. Conclusion and Future Work 
 

This project has provided a comparative analysis of the existing automatic facial 

landmark algorithms in order to identify the most suitable one capable of handling 

various challenges in landmark-based facial analysis tasks. This chapter concludes 

the undertaking and outlines potential future research directions. 

 

Automatic facial landmark detection algorithms can be divided into three categories 

based on facial shape and appearance: holistic methods, constrained local methods, 

and regression-based methods. The holistic methods and constrained local methods 

are both statistical methods that, in general, can demonstrate excellent 

generalisation capabilities with a small number of training data. However, the most 

recent advancements in regression-based methods can be broken down into three 

subcategories: direct, cascaded, and deep learning-based. We have chosen to 

employ deep learning-based methods because there are numerous publicly 

available datasets and powerful feature extractor. 

 

For the purpose of comparing various deep learning-based algorithms, we utilised 

suitable datasets and a prominent and uniform landmark configuration. Three 

datasets, including the 300W dataset, the Menpo dataset, and the Multi-PLE dataset, 

were selected after a review of the varying number of public face datasets. In 

addition, the annotation was modified based on the MULTI-PLE 68 annotated 

landmarks configuration. 

 

Three differing deep learning-based algorithms, including Deep Convolutional Neural 

Network (DCNN) Cascaded, Deep Alignment Network (DAN), and Stacked Dense U-

Nets (SDU), were learned and implemented. In our implementation, these algorithms 

were developed in three steps: data pre-processing, model training, and model 

testing. In addition, face detectors such as Multi-Task Cascaded Convolutional 

Networks (MTCNN) and Sample and Computation Redistribution for efficient Face 

Detection. (SCRFD) were briefly introduced during the model testing phase. 

Following a comparison of the two face detectors, SCRFD was selected for use in 

our model testing.  
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Using ten-fold cross-validation, we trained and evaluated each algorithm using three 

datasets. Following that, we use evaluation metrics to compare the overall 

performance of each method. SDU is appropriate for use in medical auxiliary 

diagnosis because images used for medical diagnosis must capture the frontal face 

under controlled conditions, such as uniform illumination and absence of occlusion. 

In the absence of lacking facial attributes, SDU performs best among the three 

algorithms based on the total evaluation metrics. Since SDU is the most robust facial 

landmark algorithm, a novel facial asymmetry evaluation system (Wei et al., 2023; 

published at The 6th International Conference on Image and Graphics Processing) 

was developed using SDU. 
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