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Abstract. Recent works show that vision transformers can demonstrate
great capacity in solving Human Activity Recognition tasks based on
skeletal trajectories. However, transformers typically lack inductive bias
and are thus over-parameterized making them computationally complex.
We propose to introduce inductive bias to pure transformer based ap-
proaches with the help of a 3D convolutional layer called Tubelet Em-
bedder, which extracts spatio-temporal embeddings with the help of 3D
convolution operation over the skeletal keypoints of a body part over
sequential video frames. We conduct the experiments on the HR-Crime
dataset and observe that this approach gives similar performance as the
baseline approach while drastically reducing the computational complex-
ity of the model. Thus, we demonstrate that Tubelet embeddings can
replace the patch embeddings in pure transformers for Human Activity
Recognition taks.

Keywords: Human Activity Recognition · Tubelet Embeddings · Trans-
formers.

1 Introduction

In the past decade, there have been great advancements in the technological
field in our world. Humans now live in a digital ecosystem. We are surrounded
by motion sensors and cameras almost everywhere we go. In public places, gov-
ernments and businesses have setup closed-circuit television cameras (CCTV)
to monitor various activities like traffic, crowds and even to detect anomalous
activities [6]. Even though humans have advanced a lot technologically, and com-
plex surveillance systems are in place, we still observe a lot of criminal activities
happening around us in plain sight. However, it’s also a humongous task to
manually inspect each video [1, 2] and there is a need to automate these tasks.

In the deep learning world, the task of identifying human activities from
data like videos, skeletal trajectories, depth maps, etc. comes under the field of
Human Activity Recognition (HAR). Most of the previous HAR works had fo-
cused on visual features extracted from videos like Spatio-Temporal Interesting
Points (STIP) [7, 10], and recently, experiments with other kinds of data like
those mentioned before have picked up. Deep learning methods also primarily
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focused on video data, however, they are computation intensive. Also, video fea-
tures contain other kinds of information like background noises, lights, clothing
etc. which could influence the results. Other features mentioned above have an
advantage that they could be more descriptive compared to videos, like human
skeletons which are compact, strongly structured and semantically rich.

Video Vision Transformer (ViViT) [3] introduced by the Google Research
team used Tubelet embeddings which corresponds to 3D convolution capturing
temporal and spatial information at once from videos. This introduced convo-
lution to transformers. Typically, transformers are pretrained on large datasets
since they lack inductive bias. However, convolutional networks have inductive
bias and we investigate whether tubelet embeddings could help overcome the
lack of inductive bias for transformers in HAR tasks. We propose an architec-
ture which incorporates the tubelet embedding. For each body part, we pass the
keypoints through a 3D convolution layer whose outputs are passed through a
transformer encoder. This tubelet embedder is explored as an alternative for the
patch embedding layer used in general transformers.

In [5], Boekhoudt et.al. analyzed several transformer architectures and ex-
plored different representations for human body movement. It was built on the
works of Zheng et.al. [14]. While the architecture proposed in [14] lifted a 2D
pose to a 3D pose by analyzing a sequence of skeletal trajectories, [5] modified
the same architecture and used it to classify the skeletal trajectories by replacing
the regression head with a classification head. Boekhoudt’s work demonstrates
that model architectures designed for pose estimation could also be modified for
HAR tasks. We would be using this architecture as our baseline model.

We study how tubelet embeddings can be incorporated to transformer ar-
chitectures for HAR tasks to investigate whether they could help encode in-
formation such as movement of different body parts. We also investigate if we
can overcome the lack of inductive bias in transformers with the help of tubelet
embeddings and thus reduce the computational complexity.

The contributions of this work are:

1. We incorporate a Tubelet Embedder to different transformer architectures
and demonstrate that they can help match the performance of the baseline
architecture with significantly lesser computational costs.

2. While obtaining similar results as to the baseline architectures, we improve
the interpretability of the results by analyzing them visually using attention
heatmaps and T-SNE plots.

The rest of the paper is divided as follows. In Section II, our proposed frame-
work is presented and in Section III, we discuss the experimental setup. Section
IV presents and discuss the obtained results. Section V will finally conclude the
research work.
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2 BPTubeFormer: Our proposed Body Part Tubelet
Transformer

The proposed model has been illustrated in Figure. 1. We call this architecture,
Body Part Tubelet Transformer (BPTubeFormer). We replace the patch embed-
ding layer in the baseline model [5] with a Tubelet Embedder layer. The Tubelet
Embedder is essentially a 3D convolution layer which takes as input, keypoints
rearranged in the shape of a matrix and does 3D convolution over them using a
3D kernel.

Given a skeletal trajectory extracted from a video, we divide it into different
segments based on the user defined segment length and assign the action label
of the video to all the segments. We reshape the keypoints to a matrix and
feed them into a Tubelet Embedder to obtain different embeddings as output.
These would replace the patch embeddings used in the original transformers.
These Tubelet Embeddings are passed to a Transformer encoder to capture the
temporal and spatial relationship between the different keypoints within a body
part. Here we use five different Transformer Encoders, one for each body part.
Thus, each encoder can exclusively learn about a body part. The output features
are concatenated to obtain the Tubelet Encoding of that particular body part.

We concatenate a class embedding token to these five tubelet encodings along
with their position embeddings. These are passed through a Body Part Trans-
former and the class token is passed through a classifier head to obtain the
activity classification. With the help of this architecture, we learn and interpret
the movements belonging to a body part.

Fig. 1: Overview of the proposed BPTubeFormer.
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Input representation: The input we have is a sequence of 1D keypoints
while for dealing with 3D convolution, we need inputs in the shape of a square
matrix. We take the body part with most number of keypoints as the standard
and pad the keypoint data of all other body points to meet the shape of that
body part representation. For example, consider a dataset which has a body
part containing 9 body points. This means we have 18 values to represent that
body part. We can rearrange them in the shape of 3× 3× 2. This is already in
a convenient shape. For a smaller body part which has only 2 keypoints, we can
reshape the 4 values to a 1 × 2 × 2 matrix but we also need to pad 2 rows and
1 column, as seen in Figure ??, to match the matrix shape of the largest body
part. This is necessary because different shapes would mean different number
of embeddings as the result for 3D convolution and it would be impossible to
concatenate them to the same dimension.

Fig. 2: Input representation: reshaping and padding of keypoints.

3 Experimental setup

The HR-Crime dataset [4] is a subset of UCF-Crime dataset [13] which is a
surveillance video dataset consisting of 789 human-related anomaly videos and
782 human-related normal videos. It consists of anomaly videos from 13 cate-
gories: Abuse, Arrest, Arson, Assault, Burglary, Explosion, Fighting, Road Acci-
dents, Robbery, Shooting, Shoplifting, Stealing and Vandalism [?]. The skeletons
thus extracted had 17 keypoints.

Baseline: As the baseline model, we use the ST-Tran architecture proposed
by Boekhoudt et.al. [5] which obtained the state of the art performance on the
HRC dataset as can be seen in Table 1.

Experiments, exploring Tubelet Embeddings:

1. Experiment 1: BPTubeFormer with different kernel sizes for the tubelet em-
bedder.
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2. Experiment 2: BPTubeFormer with replication padding for the inputs.
3. Experiment 3: BPTubeFormer with different strides for the tubelet embed-

der.
4. Experiment 4: BPTubeFormer with different segment lengths for the tubelet

embedder.

Implementation details: The experiments in this research work are carried
out using the PyTorch machine learning framework which is based on the Torch
library. The models are trained with a learning rate of 0.001. We also use an
early stopping criteria which would stop training if there is no improvement in
the validation loss for 3 epochs. The batch size was set to be 1000, however, few
of the models took more memory and hence the batch size had to be reduced to
500 or 100. The weights were updated using the Adam optimizer and the loss
was calculated using the cross entropy loss function.

Validation: We evaluate the models in two ways, qualitatively and quantita-
tively. Quantitative evaluation would help us determine which model/architecture
performs the best while qualitative evaluation would help us understand how the
transformer learns and interprets the problem.

Quantitative evaluation: To evaluate the models quantitatively, we use
various metrics. We report the metrics with their mean and standard deviation,
since we do 3 fold cross validation. We use the Balanced Accuracy of the model
which is a weighted metric, to evaluate the models quantitatively since the HRC
dataset exhibits class imbalance.

In the end, we summarize the results using a confusion matrix for the best
performing model. To analyze the complexity of the models, we also compare the
number of multiply–accumulate (MAC) operations as well as the total number
of trainable parameters in the model. The MAC operation computes the product
of two numbers and adds that product to an accumulator (a ← a + (b × c)). It
is the most common operation used in machine learning models due to its usage
in matrix operations. These are calculated using the THOP3 library.

Qualitative evaluation: For qualitative evaluation, we use the best per-
forming model to predict the activity of a given trajectory. We can then gen-
erate heatmaps using the attentions scores of the Body Part Transformer and
the Tubelet Transformer to explore which parts of the input the different heads
attend to. In the body part transformer, we would consider the attention scores
between different body parts, and in the tubelet transformer, we would consider
the attention scores between different tubelet embeddings for each body part.
The proper classifications and misclassifications would also be analysed.

We also plot the t-distributed Stochastic Neighbor Embedding (T-SNE)
plots [8] and Silhouette plots [12] of the class token embeddings generated by
the BPTubeFormer models for the test sets from both the datasets. T-SNE es-
sentially helps us to understand high dimensional data and project it to lower
dimensional space. T-SNE plots are generated using the Tensorboard4 toolkit.

3 THOP : https://github.com/Lyken17/pytorch-OpCounter
4 Tensorboard : https://www.tensorflow.org/tensorboard
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Silhouette plots demonstrate how well objects are classified as clusters of data
using the Scikit-learn library [11].

4 Results and discussion

Quantitative Evaluation: The quantitative results of our experiments have
been summarized in Table. 1. For Experiment 1, we experiment with different

Model Model Kernel Stride
Segment
Length

Balanced Accuracy

Baseline ST-Tran [5] - - 60 0.4926 ± 0.0043
M1.2 [9] - - - 0.3820 ± 0.0050

BPT-V1 (1, 3, 3) (1, 3, 3) 24 0.4797 ± 0.0065
BPT-V2 (2, 3, 3) (2, 3, 3) 24 0.4982 ± 0.0004

Exp. 1 BPT-V3 (4, 3, 3) (4, 3, 3) 24 0.4873 ± 0.0048
BPT-V4 (5, 3, 3) (5, 3, 3) 24 0.4768 ± 0.0017

Exp. 2 BPT-8-V1 (2, 2, 2) (2, 1, 1) 24 0.4890 ± 0.0025
BPT-8-V2 (2, 2, 2) (1, 1, 1) 24 0.4917 ± 0.0022

Exp. 3 BPT-V4 (2, 3, 3) (2, 3, 3) 60 0.4899 ± 0.0023

Table 1: The performance of the proposed BPTubeFormer (BPT) model for the
different implemented experiments on the HR-Crime [4] dataset. The first two
rows present the performance of the baseline experiments [5] and [9].

kernel-stride values. We follow the ViViT [3] approach by keeping the same values
for both the kernel and the stride. The experiments are done with a segment
length of 24 and we change the kernel-stride size from (1, 3, 3) until (8, 3, 3).
The highest balanced accuracy was obtained with a kernel-stride size of (2, 3,
3) which was 0.4982 ± 0.0004. It was observed that the performance dropped
constantly as we increased the kernel-stride size. The least balanced accuracy
was obtained with the largest kernel-stride size of (8, 3, 3). A kernel-stride size
of (1, 3, 3) which considers only one frame at a time also gave a lower balanced
accuracy. Thus it can inferred that shorter tubelets (more than one frame) give
rise to better performance. Shorter tubelets would also mean more number of
tubelet embeddings generated. For example, in the case of this experiment, a
kernel-stride value of (2, 3, 3) would give 12 tubelet embeddings while a kernel-
stride value of (8, 3, 3) would give only 3 tubelet embeddings.

For Experiment 2, we kept the kernel and stride values as different values.
For example, kernel-stride values of (2, 2, 2)-(2, 1, 1) and (2, 2, 2)-(1, 1, 1).
This would mean that some convolutions would overlap. It was observed that
these kernel-stride values slightly lowered the balanced accuracy values by 1%.
Thus, we infer that keeping the same value for kernel and stride (as proposed in
ViViT [3]) extracts more information with the help of disjoint convolutions.

With Experiment 3, while padding the square matrices, we used the replicate
padding mode which pads the cells with the values on the boundary of the
input. By default, we had been using the constant padding mode which pads
with 0. We observe that using the replicate mode, the performance lowered by
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nearly 2% compared to the constant padding mode. This might be suggesting
that, with the replicate padding mode, we might be adding noise to the input
and constant padding with 0 keeps the actual information. In Experiment 4, we
experiment with a longer segment length of 60. In the other experiments, we had
been using a segment length of 24. We observe that with a segment length of
60, the performance dropped by nearly 1%. This suggests that longer segment
lengths cannot guarantee better performance.

We use a confusion matrix to analyze the classification performance of BP-
TubeFormer which gave the best performance. This can be seen in Figure 3. It
can be seen that all models perform better than random guessing ( 1

13 ≈ 0.0769).
We observe that out of the 13 classes, 10 classes exhibit an accuracy above 50%
(Robbery has nearly 50% accuracy). The least performance was seen for the class
Arson, 22%. The best performance was seen for the class Shoplifting, similar to
the finding in [5]. However, the accuracy for the class Vandalism saw great im-
provement, rising to 50% from 0.04% in the baseline model . Accuracies of some
other classes also improved, namely, Shooting, Fighting and Explosion. Accuracy
for the class Arson got reduced by 3 times.

Fig. 3: Confusion matrix for the BPTubeFormer-2 model.

Qualitative Evaluation: In the figure below we present an example of
attention of our BPTubeFormer. (a, b, c, d) Attention heatmap: Attention
matrix of the last layer for heads 1 to 8. (a) represents the attention weight
between the different body part tubelet encodings. Here index 0 corresponds to
the class token. (b), (c) and (d) shows the attention weights between the different
tubelet embeddings within the Tubelet transformer for the body parts Torso,
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Wrists and Elbows respectively. (e) Skeleton body parts and attention:
The importance of each body part for the class token is illustrated. Each blob
represents a body part - blue for torso, green for elbows, red for wrists, purple
for knees, and yellow for ankles. The bigger the blob, the higher the attention
score.

We take a segment from the Abuse class in which a woman is hitting a child
on a running bus. Some important frames from this video can be seen in figure 4e.
From Figure 4a, it can be observed that the first, fourth and fifth heads focus
most on the second column (Torso). The seventh head focuses on the fourth
column (Wrists). The second, third and eighth heads focus on the third column
(Elbows). The last two columns (Knees, Ankle) are focused on none of the heads.
This makes sense since it can be observed in Figure 4e that in all the frames,
the lower body part remains constant and only the upper body part is under
action. The wrists and torso blobs are the biggest and the knee and ankle blobs
are the smallest, as expected.

Figures 4b, 4d and 4c show the attention weights between different tubelet
embeddings within the Tubelet transformer for the body parts torso, elbows and
wrists. The segment length is 24 and the kernel size is (2,3,3). Hence, the number
of tubelet embeddings is 12, with each of them representing two frames. This
is why the attention matrix is in the shape 12×12. It can be seen that for the
tubelet embeddings of the Wrists, Head 1 focuses on the frames 3 and 4. Heads 5
and 7 collectively focuses on frames 3 to 6. Head 3 completely focuses on frames
15 and 16. Head 4 focuses on frames 5 to 8.

For the Torso, Heads 1 and 9 focus on frames 19 and 20. Also, Head 4 focuses
on frames 11, 12, 21, 22. For the Elbows, Head 1 focuses on frames 3 and 4, Head
5 and 7 on frames 23 and 24, Head 6 on frames 13-16. It can be seen that wrists
being the most active body part in this activity, it is attending to the frames 3
to 6 where it shows the most movement, as can be seen in Figure 4e.

Thus, while comparing the attention maps of the Tubelet transformer, we
observe that different heads attended to the tubelet embeddings corresponding to
the frames which represented important movements in the activity. For example,
the movement of wrists while Abusing. This proves that tubelet embeddings can
detect movements of various body parts and helps in better interpretability of
the models.

Silhouette plots. Figure ?? shows the silhouette plot for the BPTubeFormer
model. We observe an average silhouette score of 0.0413 with generally low val-
ues for the silhouette coefficients for all the classes. Most embeddings in the
Abuse, Road Accidents, Stealing and Vandalism classes are cohesive indicated
by the long right tail and the height of each silhouettes in Figure ??. Separation
value (indicated by the left tail of the silhouettes) is high for the classes Assault,
Burglary, Explosion, Fighting, Robbery, Shooting and Shoplifting. This indi-
cates that they have embeddings which are largely separated and overlaps with
other clusters. There are also some classes which have most of their embeddings
separated. These are Assault, Burglary and Robbery.
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Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

(a) Heatmaps for attention between body parts

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

(b) Heatmaps for attention between Tubelet embeddings of Torso

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

(c) Heatmaps for attention between Tubelet embeddings of Wrists

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

(d) Heatmaps for attention between Tubelet embeddings of Elbows

Frame 1 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7 Frame 9 Frame 11

(e) Visualization for the attention scores for each body part

Fig. 4: Visualization of self-attention in BPTubeFormer on a sequence of 24
frames from a video in the Abuse category of the HR-Crime dataset [4]. (a,
b, c, d) Attention heatmap: Attention matrix of the last layer for heads 1 to
8. (a) represents the attention weight between the different body parts. Index
0 corresponds to the class token. (b), (c) and (d) shows the attention weights
between the different tubelet embeddings within the Tubelet transformer for the
body parts Torso, wrists and elbows respectively. (e) Skeleton body parts
and attention: The importance of each body part for the class token is illus-
trated. The size of the blob represents the relevance of the body part - blue for
torso, green for elbows, red for wrists, purple for knees, and yellow for ankles.
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T-SNE plots. We visualize the T-SNE plot for Experiment 1 in Figure 5.
The plot for the HRC dataset can be seen in Figure 5a. We can observe that
the embeddings are tightly packed and some embeddings are loosely scattered
around the edges. Tensorboard displays embeddings with non-unique colours
and hence, some colours are shared by two different classes. For example, red is
shared by Assault and Vandalism. We can see that the embeddings for Robbery
and Shoplifting are close to each other with some embeddings of Shooting placed
in between them. Overall, most of the embeddings are well clustered.

(a) T-SNE. (b) Silheoutte score.

Fig. 5: (a)T-SNE plots for the BPTubeFormer models on the HRC dataset. (b)
Silhouette plot for the classifications of the BPTubeFormer model on the HRC
dataset. The y axis labels indicate the activity class labels. The red line indicates
the average silhouette score for all the classes.

Computational Complexity of the models: The comparison of the mod-
els based on the complexity is given in Table 2. We observe that while the baseline
ST-Tran [5] model uses 613.5×109 MACS operations, our BPTubeFormer model
uses just 30.5× 109 MACS operations which is nearly 20 times less. In terms of
the number of parameters, the ST-Tran model uses 9.5 Million parameters and
our BPTubeFormer model uses almost half of it, 4.9 Million parameters. The
ST-Tran architecure has a Spatial Transformer which deals with 17 (keypoints)
32-dimensional embeddings and a Temporal Transformer Encoder which deals
with 60 (frames) 544-dimensional embeddings. In the case of the BPTubeFormer
architecture, it has a Tubelet Transformer which deals with 12 (tubelet embed-
dings) 32-dimensional embeddings and a Body Part transformer which deals
with 6 (body parts) 384-dimensional embeddings.

The high number of MACS operations for ST-Tran model is because it takes
in a segment length of 60, thereby significantly increasing the number of em-
beddings. The less computational complexity of the architectures which use
Tubelet Embeddings is due to the fact that Tubelet embedders introduce 3D
convolutional learning and 3D convolutions can extract spatial and temporal
dependencies at the same time, with low computational cost. This avoids the



Body-part Tubelet Transformer for Human-Related Crime Classification 11

Model MACS (×109) # Params (Millions)

ST-Tran [4] 613.5 9.5
BPT-V2 30.5 4.9
Table 2: Comparison of the computational complexity of different models in
terms of MACS and the number of trainable parameters. MACS is expressed in
the order of 109 and the number of parameters in millions.

need to have separate Spatial and Temporal encoders with transformers. Con-
volutional learning also has the advantage that it introduces inductive bias to
the architecture which transformers typically lack. This asserts the fact Tubelet
Embedders are a promising method to improve the performance of Transformers
used in HAR tasks. The above result prove that the proposed models which use
Tubelet embeddings can match the performance of the architectures proposed
by Boekhoudt et.al. with much lesser computational costs.

Limitations It was observed that Tubelet embeddings helped transformers
to nearly match the performance of patch embeddings on both the datasets.
A simple TTubeFormer model which replaced the patch embedding layer in T-
Tran model [5] with a Tubelet Embedder layer matched the performance of the
baseline model on HRC [?] dataset,

5 Conclusions

In this work, we present a case study of our proposed BPTubeFormer, a tubelet-
based transformer model for human-related crime recognition tasks. We observe
that they matched the existing baseline performance but with significantly lesser
computational costs. We demonstrated that Tubelet Embedders could encode
the movement of different body parts with better interpretability which is rel-
evant for HAR tasks. With the help of Tubelet Embedders, we were able to
introduce inductive bias to pure transformer based approaches. Thus we con-
clude that incorporating tubelet embeddings to transformers could benefit HAR
tasks and the performance could be further improved with more complex model
architectures.
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