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A complete benchmark for
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Thuy Nuong Tran4, Bogdan J. Matuszewski5,
Kerr Fitzgerald5, Cheng Bian6, Junwen Pan7, Shijle Liu6,
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Introduction: Colorectal cancer (CRC) is one of the main causes of deaths

worldwide. Early detection and diagnosis of its precursor lesion, the polyp, is key

to reduce its mortality and to improve procedure efficiency. During the last two

decades, several computational methods have been proposed to assist clinicians

in detection, segmentation and classification tasks but the lack of a common

public validation frameworkmakes it difficult to determine which of them is ready

to be deployed in the exploration room.

Methods: This study presents a complete validation framework and we compare

several methodologies for each of the polyp characterization tasks.

Results: Results show that the majority of the approaches are able to provide

good performance for the detection and segmentation task, but that there is

room for improvement regarding polyp classification.

Discussion: While studied show promising results in the assistance of polyp

detection and segmentation tasks, further research should be done in

classification task to obtain reliable results to assist the clinicians during the

procedure. The presented framework provides a standarized method for

evaluating and comparing different approaches, which could facilitate the

identification of clinically prepared assisting methods.
KEYWORDS

computer-aided diagnosis, medical imaging, polyp classification, polyp detection,
polyp segmentation
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1 Introduction

Colorectal cancer (CRC) is the third most common cancer in

both genders and the second leading cause of death in the world.

Globally, 1.9 million new cases of CRC are diagnosed annually, with

an incidence rate slightly higher in men (1). Almost all CRCs

originate from polyps, which are abnormal tissue growths that

appear along the colon.

Colonoscopy is the gold standard tool for CRC detection, since

it allows in-situ polyp identification and extraction. Once the polyp

is detected, common protocols indicate that it should be removed to

perform a posterior histological analysis to determine the degree of

malignancy of the lesion and, therefore, prescribe a treatment to the

patient. Resecting all polyps in the colon increases the total

exploration time and, due to the resection process itself, the risk

of colon perforation is also increased.

From a histological point of view, polyps can be classified as

adenomatous and non-adenomatous, depending on whether or not

they present a risk of degeneration. Under this classification, non-

adenomatous lesions include hyperplastic and sessile polyps whilst

the adenomatous class include remaining polyp types which could

transform to malignant tumor. Taking all this into account,

resecting non-adenomatous polyps could represent a waste of

resources and exposing the patient to an unnecessary surgical

procedure. Also, final diagnosis has an unavoidable time gap

because the analysis of the biopsied tissue has to be done afterwards.

In recent years, several classification standards have been

designed to improve histological prediction in the exploration

room. Most of them rely on image magnification and lens

pigmentation, aiming at improving the quality of visualization of

patterns over the polyp tissue. Unfortunately, the use of some of

these systems, particularly those using virtual chromoendoscopy,

can result in a dependence of a specific manufacturer, limiting their

widespread use.

Strategies like resect and discard or leave in situ can only be

used by expert endoscopists with a good adenoma detection rate

(ADR) as colonoscopy heavily relies on non-quantifiable visual

assessment of polyps. According to (2, 3), the overall adenoma

miss rate is still around 26%. This can be critical to the patient if

he/she does not undergo for a new exploration in the following

years, as survival rate greatly depends on the stage the lesion is

detected on (4).

Considering all this, there is a need and an opportunity of

computer-aided support systems that can help clinicians in two

tasks: detecting the lesions during the colonoscopy exploration and,

once they are detected, to assess their malignancy degree in order to

guide clinicians in the decision regarding whether the lesion should

be removed or not. Regarding the latter, having such a system

would facilitate the transition to the resect and discard protocol,

which proposes to remove only the potentially malignant polyps

while leaving in situ the rest. This standard reduces both the

exploration time and the perforation risk.

We foresee this computer-aided support system as a complete

pipeline where the lesion is first detected and then segmented to

allow the system to focus on the analysis of the texture pattern of the
Frontiers in Oncology 02
lesion to determine its final histology. Taking this into account, we

can divide computational methods for polyp image into three tasks:

detection, segmentation and classification.

Regarding detection, a given computational method should be

able to correctly determine polyp presence/absence in a set of short

colonoscopy sequences all showing a polyp in some of the image

frames: in case a polyp is present, the system should be able to

display the detection output above the polyp.

With respect to polyp segmentation, the objective is that the

output of the method matches the ground truth mask. Considering

that segmentation is meant to be used as part of a classification

pipeline, we validate this task in both standard definition and high

definition still images, where more texture within the polyp can

be observed.

Finally, we explore the potential of intelligent systems to deal

with polyp classification in high definition images, where differences

in texture patterns within the polyp can be key to differentiate

between benign and malign lesions.

During the last two decades, several efforts have been made to

develop and validate computer-aided support systems for

colonoscopy, being the majority of them focused on the polyp

detection task. Unfortunately, they are commonly tested on private

datasets which raises questions about the validity of the results

presented in the different contributions. Moreover, when presenting

the results the vast majority of them ignore aspects crucial to a

potential deployment in the exploration room such as processing

time or reaction time.

We present in this paper a complete validation framework

to assess the performance of polyp detection, segmentation and

classification methods. This includes both the definition of datasets

and evaluation metrics as well as proposing different validation

experiments that go beyond the analysis of individual performance

of a given method. As a proof of concept of the proposed validation

framework, we present for the first time a complete comparison

analysis in the scope of a recent MICCAI challenge.

The main contributions of this paper are:
• Definition of a common framework for validation of

multiple tasks (detection, segmentation and classification)

related to colonoscopy images.

• Introduction of CVC-HDClassif dataset: a completely

labelled public dataset for polyp classification.

• Presentation of the results of a comparative study of several

methodologies presented in recent MICCAI challenges.
The rest of this paper is structured as follows: In section 2 we

describe the related work for polyp localization, segmentation and

classification. In section 3 we present the complete validation

framework, including the introduction of novel CVC-HDClassif

dataset. In section 4 we present the methodologies that will be part

of the comparison study. In section 5 we show results of this

comparison study. Finally, in section 6 we present some of the

main findings after analyzing the performance of the different

methods. We close this paper with the main conclusions and

future work.
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2 State of the art

In this section, we review recent computational methods that

tackle the different stages of polyp characterization, specifically

focusing on detection, segmentation and classification tasks. It has

to be noted that methods presented in this section encompass works

that deal only with traditional colonoscopy images, excluding from

this review those works that use Wireless Capsule Endoscopy

(WCE) images.
2.1 Polyp detection and localization

Polyp detection and localization methods can be broadly

categorized into real-time and non-real-time approaches; real-

time methods typically leverage YOLO networks or their

derivatives. For instance, Zhang et al. (5) integrated a module to

re-score confidence using Efficient Convolution Operators (ECO)

to track detected polyps, thereby reducing false positive rate without

compromising the real-time performance. Similarly, Yang et al. (6)

introduced YOLO-OB, a model addressing the challenges related to

polyp size variability. Their approach integrates a bidirectional

multiscale feature fusion structure which, combined with an

anchor-free box regression strategy, demonstrated significant

improvements in detection of small polyps.

Non-real-time methods often exploit temporal dependencies or

use heavy ensembles to improve detection accuracy. Qadir et al. (7)

used Faster R-CNN and aimed at improving precision and specificity

by introducing a false positive reduction module that exploits

temporal dependencies between consecutive frames, effectively

reducing false positives without compromising sensitivity.

Kang et al. (8) used an ensemble of detectors with different

feature extractors, later post-processing the outputs to refine

bounding boxes and instance masks by learning how to weight

each prediction. Zheng et al. (9) approached detection as a tracking

problem using optical flow, supplemented by a fine-tuned box

regressor to handle tracking failures on the fly. Ma et al. (10)

utilized bootstrapping for test-time adaptation in video sequences,

applying temporal consistency techniques to refine predictions.

Lastly, Jia et al. (11) extended Faster R-CNN with a polyp

proposal stage, also providing segmentation masks for the

localized polyps.
2.2 Polyp segmentation

Research during recent years in medical image segmentation

has been dominated predominantly by U-net (12) like models,

which consists of an encoder-decoder network with skip

connections that enables to capture effectively both global and

local context. Available literature presents more sophisticated

models like Unet++ (13), which consisted of using multiple U-

Nets with varying depths and densely connected decoders at the

same resolution by using skip pathways to address the optimal

depth problem. Another example of encoder-decoder network is
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DUCK-Net (14), which presents a model capable of effectively

learning from small amounts of medical images and generalizes

well. This model uses an encoder-decoder structure with a residual

downsampling mechanism and a well-tailored convolutional block

to capture and process image information at multiple resolutions in

the encoder segment.

Attention mechanisms have further enhanced the performance of

segmentation models by allowing networks to focus on relevant

parts of the image. For instance, Pranet (15) proposed a parallel

reverse attention in order to address first diversity of size, color and

texture from the polyps and, second, the irregular boundary problem

generated by the surrounding mucosa. Their methodology aggregated

high-level features in order to generate a guidance area and used

reverse attention to generate boundary cues.

In recent years, transformer-based architectures have motivated

a shift in medical image segmentation due to their capacity of

capturing long-range dependencies. Dong et al. (16) introduced the

use of Pyramid Transformers as the encoder, including three

different modules to handle specific polyp properties: 1) a

cascaded fusion module (CFM) to collect semantic information

from high-level features; 2) the camouflage identification module

(CIM) which focused on low-level features and 3) the similarity

aggregation module (SAM) that fused cross-level features.

In Polyp2Seg (17) the authors adopted a transformer

architecture as its encoder to extract multi-hierarchical features.

The authors of this work added a novel Feature Aggregation

Module (FAM) to progressively merge the multi-level features

from the encoder to better localize polyps by adding semantic

information. Next, a Multi-Context Attention Module (MCAM)

removed noise and other artifacts, while incorporating a multiscale

attention mechanism to improve polyp detections.

Finally, B. J. Matuszewski et al. proposed two transformer-based

architectures; the first one being a full-size segmentation model

named Fully Convolutional Branch Transformer (FCN-

Transformer) (18) and the second one being a new CNN-TN

hybrid model named FCB-SwinV2 Transformer (19).
2.3 Polyp classification

In recent years, polyp classification methods have progressed

from traditional approaches towards the use of convolutional neural

networks and, lately, to transformer-based architectures. Examples

of such traditional methods can be found in the study by Sanchez-

Montes et al. (20), where the authors present a method to classify

polyps into dysplastic and non-dysplastic lesions by extracting a set

of hand-crafted features based on contrast, tubularity and

branching level of the region. Lesions were then classified by

using a set of SVM and a voting system.

Byrne et al. (21) method, which worked under real-time

constraints. differentiated between adenomatous and non-

adenomatous polyps using Narrow Band Images (NBI). Their

method used a recurrent system to re-score predictions confidence

by taking into account previous predictions, assuming that the images

come from the same sequence.
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Following this, the advent of CNNs supposed a clear revolution

in the field of polyp classification, as shown by the work of Lui et al.

(22) where the authors present a method that aims to distinguish

treatable lesions from non-reversible ones by using a convolutional

network. Their method worked well with NBI and WL images, but

they noticed that the features extracted from NBI images provide

better predictions. In the work of Patel et al. (23), the authors

provided a benchmark on multiple datasets (4 different polyp

datasets concatenated) that contained two different histological

classes. They concluded that sequence-base performance is less

consistent than frame-based due to the significant appearance

changes along the sequence.

The shift towards transformer models is exemplified by several

works. For instance, Krenzer et al. (24) presented a tranformmer

network whereas texture information is analyzed following NICE

paradigm using a few-shot learning algorithm based on the Deep

Metric Learning approach, enabling an accurate classification even

in those cases where data is scarce.

In Swin-Expand (25) the authors proposed a fine-grained polyp

segmentation method that incorporates a simple and lightweight

decoder and a modified FPN to enrich features into the existing

Swin-Transformer architecture. Finally, in PolypDSS (26) the

authors presented a computer-aided decision support system that

integrates locally shared features and ensemble learning majority

voting strategies to assist clinicians in both polyp segmentation and

classification tasks.
3 Validation framework

In this section we present the complete validation framework

that we propose for the assessment of the performance of polyp

characterization methods. Taking this into account, we introduce

the several datasets that will be used in the different validation

experiments, we explain the annotations they contain and how they

have been generated, as well as we present the metrics that will be

used to represent method’s performance.
3.1 Datasets

In biomedical domains it is usually difficult to find datasets with

large amount of annotated, high quality and varied samples,

contrary to what happens with general purpose datasets like

ImageNet (27), OpenImages (28) or MSCOCO (29). This is due

to limited access to the primary data, high costs related to

acquisition and the excessive time often needed for annotation.

Biomedical datasets require to be annotated by experts in the

field to assure the high quality of the annotations. With respect to

colonoscopy image analysis, most of the studies use a combination

of public and private datasets, making it difficult to establish a fair

comparison between methods.

Nevertheless, there already exist a wide variety of

colonoscopy image and video datasets, as it can be seen in

Table 1. As it can be seen, the majority of them have been

designed to assess the performance of polyp detection methods
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although only a few of them (CVC-ClinicVideoDB, ASU-Mayo

Clinic Colonoscopy Video, Colonoscopic Dataset, PIBAdb and

PolypGen) include fully annotated video data. With respect to

polyp classification, it is interesting to mention that no available

dataset goes beyond two different classes in the data cohort,

dividing existing data into benign and malign polyps without

paying particular attention to clinically relevant categories such

as serrated sessile adenomas.

In this subsection we focus on the datasets that we included in

the validation framework; as well as presenting the details of each of

them, we explain the acquisition and annotation procedures. All the

datasets used in this paper will be fully disclosed and made publicly

available upon paper publication in the following address https://

pages.cvc.uab.es/ai4polypnet/datasets.
3.1.1 Polyp detection
CVC-VideoClinicDB dataset, originally published in (36), is

composed by 36 video sequences, each of them containing at least

one polyp and acquired from a different patient. The video

sequences show different colon explorations with white light

endoscope and they were obtained using Olympus EndoBase

software at Hospital Clinic of Barcelona, Spain. Endobase

provides a video output with 384×288 resolution, sequences being

recorded at 25 fps.

The 36 sequences were divided into training (15 sequences,

9830 images), validation (3 sequences, 2124 images) and test (18

sequences, 18733 images) subsets. Table 2 shows the number of

positive (PF) and negative (NF) frames per video.

With respect to the annotations, clinicians provided for each

image as ground truth a binary mask in which each of the polyps

present in the image is approximated as an ellipse. GTCreator (51)

was used as annotation platform as it allowed clinicians to easily

transfer annotations within consecutive frames, speeding up the

ground truth generation process. We show in Figure 1A an example

of a frame extracted from one of the sequences of CVC-

VideoClinicDB alongside its ground truth.
3.1.2 Polyp segmentation
Regarding polyp segmentation, two different sets are provided:

standard definition (SD) and high definition (HD). SD dataset

contains a total of 912 images distributed in training and test set

with 300 (CVC-ColonDB, originally published in (31), extracted at

Beaumont Hospital and St. Vincent’s Hospital in Dublin, Ireland)

and 612 images (CVC-ClinicDB, originally published in (30),

extracted at Hospital Clinic of Barcelona, Spain) respectively. The

images from the training set have a resolution of 574×500 whilst the

test set images have a resolution of 384×288.

Images from both sets were individually extracted by clinicians

during the observation of several colonoscopy sequences (13 for the

case of CVC-ColonDB and 31 for CVC-ClinicDB). Special attention

was kept to ensure similar views from a given polyp were not

included in the final dataset. With respect to the ground truth, it

consisted of binary masks covering exactly all pixels belonging to

the polyp in a given image. Annotations were created using

Adobe Photoshop.
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TABLE 1 Comparison of public datasets for polyp detection, segmentation and classification.

Dataset Format Image
type

Resolution
(w x h)

Ground
Truth

Images Sequences Patients Task

CVC-ClinicDB (30) Image WL 384 × 288 Binary masks 612 31 23 Detection
Segmentation

CVC-ColonDB (31) Image WL 574 × 500 Binary masks 300 13 13 Detection
Segmentation

CVC-EndoSceneStill (32) Image WL 574 × 500
384 × 288

Binary masks 912 N/A N/A Detection
Segmentation

CVC-PolypHD (33) Image WL 1920 × 1080 Binary masks 56 N/A N/A Detection
Segmentation

ETIS-Larib (34) Image WL 1225 × 966 Binary masks 196 34 N/A Detection
Segmentation

Kvasir-SEG (35) Image N/A
Multiple

resolutions
Binary masks

Bounding boxes
1000 N/A N/A

Detection
Segmentation

CVC-ClinicVideoDB (36) Video WL 768 × 576 Binary masks 28563 38 N/A Detection
Segmentation

ASU-Mayo Clinic
Colonoscopy Video (37)

Video WL/NBI 688 × 550 Binary masks N/A 38 N/A Detection

Colonoscopic Dataset (38) Video WL/NBI 768 × 576 Polyp
classification

N/A 76 N/A Classification

PICCOLO (39) Image WL/NBI
854 × 480

1920 × 1080
Bounding boxes

Polyp
classification

3433 N/A 40
Detection

Segmentation
Classification

LDPolypVideo (40) Video N/A 768 x 576 (videos)
560 ×

480 (images)

Bounding boxes 40187 160 200 Detection
Segmentation

KUMC dataset (41) Image WL/NBI
Multiple

resolutions

Bounding boxes
Polyp

classification
37899 80 N/A

Detection
Segmentation
Classification

CP-CHILD-A,
CP-CHILD-B (42)

Image N/A 256 x 256 Positive vs
negative frames

A:8000
B:1500

N/A N/A Detection

SUN (43) Image N/A 1240 x 1080 Bounding boxes 49136 N/A 100 Detection

Colorectal Polyp Image Cohort
(PIBAdb) (44)

Video/
Image

WL/NBI 768 × 576 Bounding boxes
Polyp

classification

boxes N/A 1176 Detection
Classification

POLAR (45) Image NBI N/A Bounding boxes
Polyp

classification

2637 N/A 1339 Detection
Classification

NBIPolyp-UCdb (46) Image NBI 576 × 720 Binary masks 86 11 N/A Detection
Segmentation

WLPolyp-UCdb (47) Image N/A 576 × 720 Not disclosed 1680 42 N/A Detection

PolypGen (48) Video/
Image

N/A N/A Binary masks 1537 N/A N/A Detection

BKAI-IGH NeoPolyp-Small (49) Image WLI/FICE N/A Binary masks 1200 N/A N/A Segmentation

Gastro-Vision (50) Image WLI/NBI
Multiple

resolutions

Anatomical
landmarks

Pathological
abnormalities

Polyps findings

8,000 N/A N/A Classification
F
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With respect to HD data, we use CVC-PolypHD dataset, which

contains a total of 164 images, all extracted using an external frame

grabber connected to Olympus Exera processing tower. We provide

as annotation a pixel-wise binary mask covering the polyp in the

image, made by clinicians at Hospital Clinic using GTCreator

software. We show in Figure 1B an example of image data and

corresponding ground truth. Images from this dataset were

acquired with the authorization of the Clinical Research Ethics

Committee (CREC) of the Hospital Clıńic de Barcelona (HCB) with

reference HCB/2014/1148.
3.1.3 Polyp classification
CVC-HDClassif dataset is composed by a total of 1126 still high

definition images, each of them containing a single polyp. There are

a total of 471 unique polyps, with a variable number of shots per

polyp (between 1 and 23). Special attention was paid to ensure that

images from the same polyp showed a completely different view of

the lesion.

These images were obtained using an external frame-grabber

that captures the output signal from a white light endoscope and
Frontiers in Oncology 06
produces uncompressed images with HD resolutions: (1920×1080)

or (1350×1080) depending on the used endoscope. Images from this

dataset were acquired with the authorization of the Clinical

Research Ethics Committee (CREC) of the Hospital Clıńic de

Barcelona (HCB) with reference HCB/2014/1148.

CVC-HDClassif dataset presents 3 stratified splits; train,

validation and test with 788/113/225 images and 329/49/93

unique polyps respectively. Table 3 describes the dataset, which

presents an imbalance between the two classes (Adenoma: 69.7%;

Non-adenoma: 30.3%). Images from the same polyp were always

kept in the same split.

With respect to the localization distribution, 44% of the images

are from polyps located on rectum and sigma. Out of all the polyps

acquired, 43% of the total polyps are considered diminutive (less

than 5mm) and 19% are small (between 6 and 10 mm): these are the

ones that are more difficult to detect and classify by

expert clinicians.

Each image contains only one instance for which we provide the

histological class, where we can differentiate between non-

adenomatous (NAD) and adenomatous (AD) polyps and a pixel-

wise segmentation with the polyp region.

The annotations for this dataset were completely generated with

the help of GT-Creator annotation tool (51). For each image that

contains one or more polyps, we provide three different

annotations: a binary mask that contains the regions with polyps,

a set of bounding boxes containing the minimum bounding box for

each of the binary mask regions and a set of class IDs that match

each of the bounding boxes. Segmentation masks were done by

multiple expert clinicians. Bounding boxes are automatically

computed from the binary mask.

The class id corresponds to the actual histological class of the

lesion obtained after pathology analysis of the lesion. We distinguish

two different classes, corresponding to nonadenomatous (NAD) and

adenomatous polyps (AD). In Figure 1C we provide a sample from

the polyp classification dataset along with its corresponding ground

truth binary mask.
3.2 Metrics

We propose to measure polyp detection performance by using

Mean Average Precision (mAP), which is the gold standard metric

to evaluate methods performance. Average Precision (AP) can be

defined as the area under the precision-recall curve; considering

this, mAP is defined as the average of the AP over all classes and

gives the overall performance of the method. Besides providing

overall mAP score, we also provide results for two specific points in

the curve, mAP50 and mAP75 which aim to represent, respectively,

acceptable and good detections. Apart from mAP, we also provide

common metrics such as Precision, Recall, Specificity, Accuracy, F1

and F2-scores.

Besides, we also provide Reaction Time (RT) for each of the

methodologies compared, aiming to measure how fast a given polyp
TABLE 2 Content of the CVC-VideoClinicDB dataset. In the first column,
videos 1 to 15 refer to the training split, whilst 16 to 18 refer to
the validation.

Training and
validation dataset

Test dataset

Video PF NF Video PF NF

1 386 112 1 365 1351

2 597 176 2 302 0

3 819 153 3 638 52

4 350 40 4 921 99

5 412 78 5 1354 1256

6 522 335 6 454 0

7 338 103 7 1116 283

8 405 44 8 773 187

9 532 19 9 632 136

10 762 78 10 191 0

11 370 130 11 1185 0

12 261 124 12 270 240

13 620 4 13 327 0

14 2015 45 14 778 349

15 360 215 15 1103 71

16 366 5 16 767 817

17 651 146 17 1165 765

18 259 122 18 251 538
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detection method reacts to polyp presence in the endoluminal

scene. We define RT as the difference (in number of frames)

between the first appearance of a polyp in a video sequence and

the first correct detection provided by a given method. In this

context, we label a detection as correct if it has at least a 0.5 of

Intersection over Union (IoU) with respect to the ground truth.

Regarding polyp segmentation, we use common Intersection over

Union and DICE scores. With respect to polyp classification, we base

the analysis of the performance by means of the calculation of the

confusion matrix, which includes the use of common performance

metrics such as Precision, Recall, Specificity, Accuracy, F1 and F2

scores as well as Matthew’s Correlation Coefficient (MCC). Also, due to

the clinical nature of the task we are also taking into account valuable

metrics for the clinicians, such as Negative Predictive Value (NPV),

which focuses on how a given method is able to correctly categorize the

positive class (non-malignant lesion in this context), which is one of the

indicators used to determine the feasibility of the use of CAD systems

in the application of protocols such as resect and discard.
TABLE 3 Clinical metadata associated to the different polyps in CVC-
HDClassif dataset.

Train Val Test All

Classes

Adenoma 526 77 147 750

Non-adenoma 262 36 78 376

Localization

Rectum/
Sigma

339 65 132 536

Other 449 48 93 590

Size

<=5 mm 327 48 87 462

6 − 10 153 29 39 221

>=10 mm 308 36 99 443
A

B

C

FIGURE 1

(A) A sample image and corresponding annotation mask from the CVC-VideoClinicDB (36). (B) Sample image and the corresponding annotation
mask from the CVC-PolypHD. (C) Sample images from CVC-HDClassif labeled as adenoma (left) and non-adenoma (right).
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4 Methodologies

We present in this section the key details of the methodologies

used by each of the teams that took part on the GIANA 2021

challenge. Table 4 shows a summary of the different methodologies.
4.1 AI-JMU

This team used YoloV5 (52) as their base architecture for polyp

detection, since real-time is a well-known architecture due to its
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proficiency in real-time object detection. The authors modified the

original work by adding real-time robust and efficient post-

processing (REPP) (53) in order to reduce the false positive rate

and increase the consistency over consecutive frames.

The proposed training pipeline consists of two steps: They start

with pretrained weights on MS-COCO Dataset and fine-tuned to

the challenge data. The training is performed by doing progressive

fine-tuning: starting with the last two layers and the REPP block and

progressively adding layers until the whole net is being trained.

After this, they keep training the whole network until the model

stops improving in the validation set results.
TABLE 4 Summary of information from the teams that took part in any sub-challenge from GIANA 2021.

Team Base architecture Changes over architecture Implementation details Hardware

AI-JMU YOLO V5
Added REPP to reduce

false positives Gradual finetuning
Standard practices

1x RTX 3080
(45 FPS)

AURORA DETR-ResNet50 Base architecture Intensive DA Not provided

BYDLab
Faster R-CNN

(FPN-ResNext-101)
Multi-scale training

OHEM
Intensive DA

Not provided No
real time

CVC
Faster R-CNN

(Swin-Transformer Tiny)
Base architecture

AutoAugment
Test-Time Augments

1x RTX-2070
(30 PS)

a) Detection challenge

Team Base architecture Changes over architecture Implementation details Hardware

AURORA MiT-B5 Losses: focal; Dice
Keep the largest region over

certain threshold
Not provided

CVC SegFormer-B0 Losses: CE; Dice TrivialAugment policy
1x RTX-2070

(50 FPS)

HK-UST Unet Base architecture Standard DA Not provided

UoN DeepLab V3 GRU layer replaces ASPP Standard DA Not provided

UPF
Double Encoder-Decoder (FPN-

ResNext-101)

Losses: Dice
Sharpness-Aware

Minimization
Merged SD and HD

Not provided
Not real time

b) Segmentation challenge

Team Base architecture Changes over architecture Implementation details Hardware

AURORA MiT
Coarse and fine heads for classification and fine-

grained, respectively
Intensive DA

Test-Time augmentations
Not provided

BYDLab Faster R-CNN
Multi-scale training

OHEM
Keep top-1 as prediction

Not provided No
real time

CVML EfficientNet-V2 Base architecture
Crop the endoscope mask 5-

fold ensemble
1x RTX 3090

(25 FPS)

Team AB EfficientNet B7 Knowledge distillation

Three steps:
1. Train teacher

2. Distill the model
3. Fine-tune student with segmentation

as proxy task

1x RTX-3090

UPF
Double Encoder-Decoder (FPN-

ResNext-101)

Same as segmentation
Losses: 3-class CE loss;

BCE (adenoma);
BCE (polyp)

AutoAugment
Test-Time Augments

Not provided
Not real time

c) Classification challenge
If not specified, assume the authors follow the standard implementation. DA stands for data augmentation; CE loss refers to cross-entropy loss.
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4.2 AURORA

With respect to the detection task, they used DETR (54)

architecture with ResNet-50 as backbone. The model was

pretrained on COCO and fine-tuned on the challenge data. They

used the following transformation for augmenting the images

during training: Random Brightness, ColorJitter, GaussianBlur,

RandomFlip, RandomResizedCrop and Random Sharpness.

For the segmentation task, they used Mix Transformer (MiT)

architecture (55), concretely the B5 model. The model was trained

using focal loss and dice loss. They also post-processed the output in

order to only keep the most confident region of each image.

For classification task they took the MiT encoder as the

backbone. Then the methodology passed the encoded features

through a neck module to merge the multi-level features. Finally,

they used two parallel heads in order to predict coarse-grained and

fine-grained predictions. The coarse one predicted the final class,

whilst the fine-grained kept the spatial information to perform

dense predictions. Images are resized to 512×512 and data

augmentation was applied during training and testing time.
4.3 BYDLab

For polyp detection they used Faster R-CNN (56) architecture

with FPN-ResNext-101 as backbone. The use of FPN in this

architecture allows to effectively combine low-resolution features

with high-resolution features in order to obtain stronger semantical

features. The model was pretrained on COCO and fine-tuned on

the challenge data. Regarding the data, they trained using multiscale

images and applied the standard image augmentation protocol

(random crop, rotations) and additionally, brightness, contrast

and saturation augmentations. Finally, to mitigate the false

positive, they added to their training Online Hard Negative

Example Mining (OHEM) (57) to keep the positive negative ratio

for each batch around 1:3. While for the detection task the authors

kept all the predictions over a certain score threshold (0.5), they

used only the class associated to the most confident prediction as

the output for the image classification task.
4.4 CVC

For the detection task they used Faster R-CNN with Swin-

Transformer as backbone. They fine-tuned a model that was

previously trained on COCO object detection task. Their

methodology used Autoaugment (58) to learn to resize and crop

policies as well as standard data augmentation transforms (flips,

ColorJitter, and blur). They also used Multiscale Test augmentation

for generating the predictions.

For segmentation tasks they relied on Segformer (55), which

was trained minimizing the cross entropy plus dice loss. They used

TrivialAugment (59) policy for the data augmentation and resizing

the images to a 512×512 resolution. The predicted masks were

resized back to their original size.
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4.5 CVML

To solve the classification challenge the CVML team used an

ImageNet pre-trained EfficientNetV2 architecture (60) fine-tuned

on the GIANA data using 480×480 image resolution. The adopted

solution did not use ground truth segmentation data in the design of

the classifier. The EfficientNetV2 architecture was selected after a

performance comparison between other popular image

classification architectures (including the Vision Transformer and

EfficientNetV1 architectures). They decided to go with

EfficientNetv2 architecture instead of Vision Transformers as

preliminary studies on the latter shown that they did not achieve

good results on small datasets, as transformer architectures are

more data-hungry than convolutional neural networks.

Data is pre-processed by removing image background

(endoscope generated mask). For data augmentation during

training, standard transformations (flips, transposes, and

rotations) and image warping (via the use of thin plate splines to

varying random degrees) is used. The network design parameters

were selected based on 5-fold cross validation experiments using the

training data.
4.6 HK-UST

For the segmentation task, they fused both SD and HD datasets,

and trained a UNet-based model following standard practices. They

go with U-Net since it is a well-established model for segmentation

that is an encoder-decoder model where the encoder learns to

capture correctly the context and the decoder learns to combine and

reconstruct the lower resolution with the skip connections from the

encoder. Those skip connection enable to recover the details that

would be lost along the encoder path and enables a fine-grained

delineation of segmentation masks.
4.7 Team AB

Their classification method takes advantage of the provided

segmentation annotations to guide the model towards learning

additional spatial information that is relevant to classify correctly

the polyps. For this they rely on EfficientNet-B7 (61) as their

architecture and define a 3-steps pipeline for training their model.

First they pre-train the model for the classification task; then they

perform knowledge distillation using the previous model as teacher

and finally a fine-tune step is performed over the distilled model

where the segmentation and the classification are optimized together.
4.8 UoN

For segmentation challenge they relied on DeepLab-V3 (62) but

modifying the ASPP block. Concretely, they changed the adaptive image

pooling by a Gated Recurrent Unit (GRU) (63) in order to capture the

contextual information within the feature maps in order to enhance the
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segmentation capabilities of DeepLab architecture. This simple change is

motivated by the fact that GRU is capable of modelling long-range

dependencies within an image by the feature map as a sequence, whilst

adaptive average pooling has no learnable parameters and cannot

capture those long-range dependencies effectively.
4.9 UPF

For the segmentation task they modified Double Encoder-

Decoder Networks (64) but they differentiate from this work in

three key aspects: first they use ResNext101 as encoder instead of

the one in the original work to increase the learning capabilities, and

they used a FPN (65) as decoder with the purpose of increasing the

receptive field; second, they performed optimizations by Adam with

Sharp- Aware Minimization (SAM) (66) and finally, they merged

both SD and HD datasets into one with common resolution of

512×512. They trained the model by early-stopping when Dice

score stops improving on each separate validation set.

For the classification task they took their segmentation

approach and trained it with extra losses to minimize: a) 3-class

Cross-Entropy (background, adenomatous, non-adenomatous), b)

Binary CE computed by accumulating both positive class

(background, rest) and c) Binary CE for the probability of being

adenomatous (defined by the probability of being adenomatous

over the sum of probabilities of both classes).
5 Results

In this section we present the summary of the results achieved

for the different teams on each challenge as well as we depict some

conclusions we can extract from the results.
5.1 Polyp detection

Table 5 presents global polyp detection results. We can observe

that all teams achieve similar scores on the global metric results

(mAP) even using different base architectures. Methods based on

Visual Transformers (AURORA and CVC) appear to perform

slightly better and in a more stable way in terms of performance

ranking when we consider different thresholds about the minimum

IoU value allowed for a correct detection.
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Figure 2 presents the mean Intersection over Union (IoU) for

each team across the different test sequences. First, we can observe

that the majority of the teams consistently achieve an IoU score

above 0.40 for all video sequences.

Nevertheless, there is a performance drop in sequences 5, 8,

and 16.

We further analyzed these sequences to find some of the

possible reasons why this happens. Sequence 5 contains a lot of

frames with fecal content that obstruct polyp’s view and therefore

makes it more difficult to detect.

The polyp in sequence 8 is very close to a fold, which makes it

difficult to isolate the lesion from the surrounding region. Finally,

sequence 16 contains a lot of frames where the scene is overexposed,

making it difficult to properly differentiate any endoluminal structure.

Figure 3 displays selected frames highlighting these challenging

conditions. It is clear from these sequences that poor visibility is the

primary obstacle to reliable polyp detection.

To better understand the differences between the detection

strategies of the teams, Figure 4 presents additional data on how

each team’s approach performs. A noteworthy observation is that

AI-JMU achieves a higher rate of strong detections, which are those

surpassing the 0.5 IoU threshold, suggesting a more precise

detection capability, though it does not necessarily achieve the

greatest overall number of correct detections.

Figure 5 shows different detection results, two per team. In the

first one (up) all teams detect the polyp but get different IoU scores

when compared with Ground Truth and in the second one only

some of teams do detect the polyp.

Beyond individual assessments, we merged different pairs of

methods to investigate potential performance enhancements. We

adopted ‘AND’ and ‘OR’ strategies for combining detections. If both

teams provide a detection for a frame, both ‘AND’ and ‘OR’

approaches return a single bounding box by averaging the

coordinates of the vertices of the original bounding boxes. However,

if only one of the teams provides a detection, ‘OR’ strategy outputs the

detected bounding box, while ‘AND’ returns none.

The ‘AND’ strategy results in a more conservative outcome,

where only unanimous detections are considered, greatly reducing

false positives but increasing the likelihood of missed detections.

The ‘OR’ strategy, conversely, results in a higher detection rate but

at the cost of increased false positives. In both approaches, if both

teams detected a polyp in a given frame, we used the mean of both

team’s bounding boxes as the final bounding box.

Additionally, the calibration graph in the right column of

Figure 4 visualizes each method’s performance, mapping

confidence against detection precision (mean IoU). Ideally,

methods should aspire to reside above the diagonal line (AI-JMU

in this comparison study), indicating a harmonious balance

between detection confidence and accuracy.

Methods lying below the diagonal line are likely to be

overoptimistic about their predictions.

Finally, Tables 6, 7 present Reaction Time results. First we can

observe that the majority of teams have a very low mean Reaction

Time, in all cases smaller than a second, which can be interpreted as

an almost instantaneous detection.
TABLE 5 Results obtained on CVC-VideoClinicDB test set.

Team mAP mAP50 mAP75 F1 mIoU

CVC 0.360 0.654 0.351 0.809 0.592

AURORA 0.353 0.642 0.348 0.877 0.628

BYDLab 0.329 0.640 0.304 0.902 0.561

AI-JMU 0.351 0.663 0.326 0.833 0.708
Best results for each metric are highlighted in bold.
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If we look at the results obtained for each video, we can also

observe that the majority of the teams consistently detect the polyp

as soon as it becomes visible however, certain videos, notably

numbers 5, 7, 8, and 18, prove to be more challenging. Within

this context, the BYDLab team emerges as the top performer, while

CVC exhibits the smallest number of instantaneous detections.
5.2 Polyp segmentation

Table 8 shows results from all the participating teams on SD and

HD challenge. We can observe that the best methods offer the best

performance in both SD and HD.

To better understand differences between methodologies, we

present box plots in Figure 6. By looking at them, we could infer

that polyp segmentation in HD images is easier than in SD images,

as all the teams get substantially better metrics on this test set.

In order to evaluate the performance of the methods, we

computed the mean IoU between the predicted masks and the

ground truth masks. We selected those frames with lower values to

analyze the results. Figure 7 shows three examples from the

analyzed images. In the case of the first row, we can see that all

the teams scored an IoU of zero between their predictions and the

ground truth. The second row shows a sample where the polyp is

easy to detect and all the teams’ predictions intersect with the

ground truth mask. Note that some teams over-segment, such as
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AURORA and HK-UST, while other teams under-segment, as it is

the case of CVC. The last row shows a sample where some of the

predicted masks only cover the polyp partially.

The analysis of this particular example shows one of the

problems that polyp detection and segmentation share: the

similar appearance between polyps and another endoluminal

structures, folds in this case, which results in false detections and

incorrect segmentations.
5.3 Polyp classification

Table 9 shows a summary of all the metrics derived from the

analysis of the performance of the different methods.

We observe that Team AB and CVML are the ones that

obtained a better overall performance. Team AB method is the

one that obtains the best overall result but if we analyze the results

from clinical usability perspective (where it is also important to

classify correctly the non-adenomatous) CVMLmethod should also

be taken in consideration.

The last row in the table gathers themetrics of the best combinations

of teams. Team combinations have been performed using logical ‘OR’

between predictions: if one of the teams classifies a sample as positive, the

combined prediction for that sample is set to positive.

Considering this, there are three different combinations that

achieve the same performance, namely: a) CVML + LSJLab + Team
FIGURE 3

Examples of frames where polyp detection methods fail. Left: fecal substance covering polyp surface. Middle: austral fold hiding polyp. Right:
overexposed region on the image. Images are extracted from CVC-VideoClinicDB dataset (36).
FIGURE 2

Mean IoU per video and team.
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AB, b) CVML + Team AB + AURORA and c) CVML + LSJLab +

Team AB + AURORA.

We represent in Figure 8 box plots showing the confidence that

each of the teams provided in their predictions broken down by the

actual outcome of the classification. All the teams achieved best

mean confidence for adenoma classification (True Positives). We

can also observe a higher standard deviation regarding confidence
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in both false positives and false negatives. Finally, we can observe

how all the teams present higher confidence in correct

classifications (TP and TN) than in incorrect ones (FP and FN).

Similar to the analysis done for polyp detection, we analyzed the

results to see if there are some miss-classifications where all the

teams fail. Most of the cases correspond to images that have features

that are normally present on the opposite class.
FIGURE 5

Examples of detection bounding boxes for each team with its IoU scores. Images are extracted from CVC-VideoClinicDB dataset (36).
A

B

C

FIGURE 4

(A) Individual team comparison. (B) Combined Team Comparison using ‘AND’ method. (C) Combined team comparison using ‘OR’ method. Left:
Correct Detections (green), Correct detections with +0.5 IoU (yellow), Missed Detections (blue), Extra Detections (red). Right: Model Calibration Plot.
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We can see in Figure 9 two examples where this happens: in the

image on the left we can see an example of an adenomatous polyp

that is plain and with low granulation, which are features commonly

related from non-adenomatous class; in the image on the right we

can observe a non-adenomatous polyp that has a lot of tubularities

and a relatively high contrast with the surroundings.

We provide in Figure 10 a ROC curve to represent the

performance of the different methods. We can observe that both

AURORA and BYDLab offer the highest AUC score, though there

are no big differences among the teams.
6 Discussion

We have introduced in this paper a complete validation

framework for polyp detection, segmentation and classification in

colonoscopy images. Our aim was not only to detail the full

framework, but also to evaluate whether existing methodologies

are ready for practical use in the exploration room. In this section

we will discuss the results of each of the different polyp

characterization tasks along with diving into the general

limitations present in both the methodologies and in the whole

research field.
6.1 Polyp detection

Polyp detection has matured significantly, as evidenced by the

narrowing performance gaps among existing methods.

Nevertheless, this analysis has been performed over a relatively

big dataset thoroughly reviewed by clinicians and that has already

several years of use in the community. Despite this, the dataset has

limitations, such as a lack of diversity in polyp appearances, which

affects the robustness of the trained models. We will discuss later

how this should be approached.
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The architectures for polyp detection presented in this paper

can be divided into two groups: those using Transformers (e.g.,

CVC and AURORA) and those employing more traditional

approaches like Faster R-CNN (BYDLab) and Yolov5 (AI-JMU).

Experimental results showed similar overall performance across

methodologies. However, a Wilcoxon rank-sum test (as shown in

Table 10) indicated significant differences in performance among

individual videos, particularly between methods using similar

architectures, like CVC and AURORA.

All detection methods in the challenge met the real-time

constraint of processing a frame within 40 ms at a 25 fps frame

rate, making them viable for real-time deployment in the

exploration room, having most of them room to apply post-

processing or even tracking methods to improve their results.
6.2 Polyp segmentation

After analyzing the results presented in the previous section, we

can observe that there is a notable performance gap in polyp

segmentation between standard definition (SD) and high

definition (HD) images. Higher resolution and better texture

information in HD images led to improve the quality of polyp

masks across all the methods. Encoder-decoder networks (e.g., DPN

from UPF) and transformer-based networks (e.g., Aurora) showed

no significant performance differences.

In Table 11 we show the results of Wilcoxon rank-sum test on

the Intersection over Union (IoU) per image indicated similar

distributions for AURORA and UPF in both SD and HD images

(p-values: 0.08 and 0.12 respectively), with some variations in other

methods. This correlates with the results, since those methods

perform well on both well and produce similar predictions in

terms of IoU.
TABLE 7 Global reaction time results: mean and standard deviation
(in frames).

Team Mean RT Std RT

AI-JMU 7.44 13.77

BYDLab 2.06 3.87

CVC 18.67 41.81

AURORA 1.89 3.68
TABLE 8 Dice score and mIoU of each team on SD and HD
segmentation test sets.

Team SD HD

DICE IoU DICE IoU

CVC 0.750 0.659 0.817 0.727

AURORA 0.855 0.785 0.920 0.727

UPF 0.859 0.784 0.929 0.876

HK-UST 0.582 0.502 0.865 0.799

UoN 0.586 0.482 - -
fro
Best results for each metric are highlighted in bold.
TABLE 6 Reaction Times (in frames) by Team and Video ID.

Team 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

AI-JMU 0 0 0 0 40 0 0 39 0 0 0 3 0 0 0 12 7 33

BYDLab 0 0 0 0 0 0 10 8 0 0 0 0 0 0 0 1 6 12

CVC 0 0 0 0 107 0 156 33 0 0 0 2 0 0 0 2 8 28

AURORA 0 0 0 0 0 0 8 8 0 0 0 0 0 0 0 0 6 12
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With respect to the potential deployment of the presented

approaches in a clinical setting, some segmentation methods

require post-processing operations to achieve the final

segmentation mask, which increases overall processing time and

may prevent their real-time application.
6.3 Polyp classification

Polyp classification remains an immature field, with existing

methods failing to meet the minimum performance required by

clinicians. According to ASGE guidelines, a negative predictive

value for non-adenomas smaller than 5 mm in the rectum-sigma

region should exceed 90% (67).

In Table 12 we selected the subset of polyps in test-set that are

located in both rectum and sigma regions, and since the best
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method obtains a NPV of 58.82 (CVML), we concluded that

none of the participants achieved the ASGE requirements to be

effectively used as a CADx system in the exploration room.

Confusion matrices from Table 9 and performance metrics

reveal imbalanced class distributions, making accuracy an

insufficient metric. From this we can see two approaches:

methods like CVML that focus on detecting nonmalignant

lesions, while others, like Team AB, aim for a balanced detection

that performs better in terms of accuracy but at the cost of obtaining

lower NPV.

Analyzing the approaches applied to tackle the polyp

classification challenge, we have identified three different groups

of approaches:
1. Classical image classification (analysis of the image as a

whole): Those type of methods do not rely on segmentation
A B

FIGURE 6

(A) Box plots for SD dataset. (B) Box plots for HD dataset. Box plots for each team’s IoU between their predicted segmentations and the ground
truth. The mean IoU for each team is written in beige.
FIGURE 7

Examples of images from SD dataset (first and second row) and HD dataset (third row) with the corresponding segmentation predictions from each
team. The ground truth masks are represented in green, whilst the predictions are shown in blue. Images are extracted from CVC- ColonDB (31) and
CVC-ClinicDB (30) datasets.
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Fron
data and, because of this, they are usually less expensive on

the training phase.

2. Use of the same architecture for detection and

classification: In this case, these methods learn jointly to

localize and categorize polyps in a given frame. This can

produce a problem when dealing with small datasets, in
tiers in Oncology 15
which we could potentially have not enough different

samples for a method to generalize properly.

3. Classification from the output of the segmentation stage: In

those cases, the class prediction is done by obtaining a

segmentation map for each one of the classes or

complementing the network by using segmentation as
TABLE 9 Confusion matrices and derived metrics from CVC-HDClassif test set.

Team TP FP TN FN Prec Rec Spec NPV Acc F1 F2 MCC

AURORA 126 15 57 27 89,36 82,35 79,17 67,86 81,33 85,71 83.66 0,59

Team AB 127 12 60 26 91,37 83,01 83,33 69,77 83,11 86,99 84.55 0,64

UPF 119 22 50 34 84,40 77,78 69,44 59,52 75,11 80,95 79.01 0,46

BYDLab 125 14 58 28 89,93 81,70 80,56 67,44 81,33 85,62 83.22 0,60

CVML 134 25 47 19 84,28 87,58 65,28 71,21 80,44 85,90 86.90 0,54

Best combinations 147 31 41 6 82,58 96,08 56,94 87,23 83,56 88,82 93,04 60,84
fron
Best results for each metric are highlighted in bold.
FIGURE 8

Box plots for each team’s confidence in polyp classification. It is worth noting that all confidence scores surpass 0.5, given the binary nature of the
classification task.
FIGURE 9

Images from CVC-HDClassif database that all the methods miss-classify. Left should be classified as adenomatous; Right should be classified as
non-adenomatous.
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auxiliary task. Those methods share some of the weakness

mentioned on the previous approach; if segmentation is not

done properly and with representative data, the

classification would also fail to achieve good performance.
Both winner (TeamAB) and second best teams (CVML) could be

linked to the first group of method as both of them rely on Efficient-

Net as their base architecture. Although, it is clear that there is room

for improvement in this task, particularly for the case of the minority

class (non-adenomatous). This can be clearly seen by the generally

low specificity scores obtained by the majority of approaches.
6.4 Limitations of the study

A significant challenge when developing robust systems,

independently of the task, is to tackle the variability and scarcity of

data. The lack of variability produces models that are prone to overfit

towards those shapes and representation that are more represented,

making models less generalizable. In the case of classification, the

problem is even more critical: available data is poor in both variability

and representativity of the different classes, resulting in datasets have

the small number of samples with non-adenomatous lesions. This is

due to current clinical protocols, where clinicians typically avoid

removing these non-malignant lesions to reduce perforation risk and

unnecessary pathological assessments.

Another limitation that arises from this validation study is that

most of the methods are trained and tested over still images and,

inherently, the approaches lack temporal information which could

be beneficial to improve the models. For instance, we could solve

some of the errors associated by having a polyp shot where the
FIGURE 10

ROC curve for each team.
TABLE 10 p-value test from the mAP per video distributions.

CVC AURORA BYDLab AI-JMU

CVC – 0,601 0,824 0,715

AURORA 0,601 – 0,924 0,911

BYDLab 0,824 0,924 – 0,837

AI-JMU 0,715 0,911 0,837 –
TABLE 11 Results from a p-test comparing IoU values obtained from each of the images in SD and HD datasets for each of the methods.

SD HD

Team UoN CVC AURORA HK-UST UPF UoN CVC AURORA HK-UST UPF

UoN – < 0.05 < 0.05 0.34 < 0.05 – < 0.05 < 0.05 < 0.05 < 0.05

CVC < 0.05 – < 0.05 < 0.05 < 0.05 < 0.05 – < 0.05 < 0.05 < 0.05

AURORA < 0.05 < 0.05 – < 0.05 0.08 < 0.05 < 0.05 – < 0.05 0.12

HK-UST 0.34 < 0.05 < 0.05 – < 0.05 < 0.05 < 0.05 < 0.05 – < 0.05

UPF < 0.05 < 0.05 0.08 < 0.05 – < 0.05 < 0.05 0.12 < 0.05 –
fro
TABLE 12 Confusion matrices and derived metrics from test set on rectum-sigma diminutive polyps.

Team TP FP TN FN Prec Rec Spec NPV Acc F1 F2 MCC

AURORA 13 9 10 18 59.09 41.93 52.63 35.71 46.00 49.05 44.52 -0.05

Team AB 16 9 10 15 64.00 51.61 52.63 40.00 52.00 57.14 53.69 -0.08

UPF 17 12 7 14 58.62 54.83 36.84 33.33 48.00 56.66 55.55 0.04

BYDLab 14 8 11 17 63.63 45.16 57.89 39.28 50.00 52.83 47.94 0.02

CVML 24 9 10 7 72.62 77.41 52.63 58.82 68.00 75.00 76.43 0.30
nt
Best results for each metric are highlighted in bold.
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actual histology cannot be properly determined by the quality of the

image or the presence of other endoluminal scene elements, as it can

be seen in Figure 3.

Those methods usually learn discriminative features from the

texture of the lesion and their surroundings, but if the selected frame

has the lesion occluded or saturated the model will not perform as

intended since the uncertainty will be high. As mentioned in section

5.1 sequences that obtain poor mAP results are due to the sequence

present most of their frames with occluded shots.
7 Conclusions and future work

We have presented in this paper a complete validation

framework for the analysis of polyp characterization methods in

white light colonoscopy. We present a comparative analysis of

different methodologies in the context of GIANA 21 challenge.

After a deep analysis of the performance provided by the different

methods, we can observe that some of the tasks appear to be more

mature than others, particularly polyp detection and segmentation

which have already appeared in other iterations of the challenge.

With respect to polyp detection, we observe a similar

performance by all the participants regardless the base architecture.

All the teams that we have compared in this study are able to detect

all the different polyps in the dataset and, in the vast majority of the

cases, the lesion is detected as soon as it appears in the video.

Even though, we observe that there are statistically significant

differences when videos are analyzed individually and that there are

some specific polyps where all the teams struggle, which makes it

clear that more data is needed to build generalizable methods ready

to be efficiently used in the exploration room.

Regarding polyp segmentation, we observe that there are logical

differences associated to image resolution and degree of texture

information but that the gap between the good level performance

offered by the difference methods is small, showing that the field is

already mature and that the task, for this particular data, is close to

be solved.

This is not what happens with polyp classification, where results

obtained by the different approaches show that there is still work to

be done. Particularly, there is a need to balance the performance

achieved for both adenomatous and non-adenomatous polyps, even

considering that data is not balanced, as it happens in real life.

With respect to the future work to be carried out, regarding the

validation framework we would like to extend the video database for

polyp detection, potentially including HD videos and, with the

addition of lesion histology, aiming at polyp classification using the

same data. Even taking this into account and also related to polyp

classification, efforts should be made to improve the balance

between adenomatous and non-adenomatous lesions.

Besides, more histological classes such as serrated sessile

adenomas should be included in order to reflect the evolution of

clinical needs with respect to in-vivo histology prediction. Finally,

virtual chromoendoscopy data (NBI for instance) could be acquired

and labelled as its use has been proved to help clinicians to more

accurately determine lesion histology in actual procedures.
Frontiers in Oncology 17
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Ethics statement

The studies involving humans were approved by Clinical Research

Ethics Committee (CREC) of the Hospital Clıńic de Barcelona (HCB)
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