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Abstract 
Motivated by the aim of improving polyp classification performance on the 
CVC-HDClassif dataset, joint classification-segmentation multi-task learning 
using a SwinV2 Transformer UNet based architecture has been explored.

Introduction 
The gold standard of polyp screening and removal procedures is widely 
considered to be colonoscopy, which allows clinicians to navigate through 
the colon and visually inspect for abnormalities in real time. However, 
colonoscopy does have limitations as not all polyps are consistently identified 
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(A.M. Leufkens et al., 2012). Therefore research has focused on developing 
computer aided systems to support clinicians in improving the detection rate 
and characterization of polyps, with deep learning systems achieving current 
state-of-the-art performance across a variety of polyp imaging tasks.

Whilst polyp segmentation models are showing signs of reaching maturity 
(K. Fitzgerald et al., 2024) (RG. Dumitru, D. Peteleaza & C. Craciun, 2023), 
polyp classification has been identified as a critical area for further research. 
One reason for this is the lack of openly available datasets which contain 
polyp classification labels. The novel CVC-HDClassif dataset (Y. Tudela et 
al., 2023) contains 788 training, 113 validation, and 225 testing images, with 
corresponding ground truth segmentation maps and polyp histology labels 
(adenomatous vs non adenomatous).

System Design and Methodology 
Previous models for medical imaging multi-task learning employ UNet 
(O. Ronneberger et al., 2015) style architectures with the addition of a 
classification head at a selected stage of the network (B. Oliveira et al., 
2023) (C. Li, J. Liu & J. Tang, 2024). Such multitask learning models lead to 
improved classification performance, which is hypothesized to occur due 
to the mixing of detailed spatial information needed for segmentation and 
global contextual information needed for classification. Motivated by the 
improved classification performance of these models and the excellent 
performance of SwinV2 systems when used as encoders in segmentation 
systems, a SwinV2 UNet system (Z. Liu et al., 2022) with a classification 
head added the to the final encoder layer was developed for joint polyp 
classification and segmentation. A description of the SwinV2 UNet style 
architecture can be found in (K. Fitzgerald et al., 2024). The classification 
head flattens the tensor from the final encoder stage and then passes this 
sequentially through two Fully Connected (FC) layers using a dropout rate 
of 50%. A final FC layer and activation function is used to generate a final 
classification prediction. The architecture of the SwinV2 UNet segmentation-
classification model is shown in Figure 1.
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The SwinV2 UNet model was implemented using PyTorch and the encoder 
was initialized using ImageNet-22K (J. Deng et al., 2009) weights available 
from the PyTorch Image Models Library (R. Wightman, 2019). Since the CVC-
HDClassif test split has not been released by the dataset authors, only the 
training and validation splits were utilized in this study. Due to the relatively 
small number of images available for training and validation, standard on-
the-fly data augmentations (e.g. color variations and geometrical transforms) 
were applied to the training set using the Albumentations library (A. Buslaev 
et al., 2018). Static data augmentations were applied to the validation set to 
stabilize accuracy scores. The AdamW algorithm (I. Loshchilov & F. Hutter, 
2019) was used for model optimization alongside a cosine learning rate 
schedular. To train the SwinV2 UNet model on the CVCHDClassif dataset, a 
combined segmentationclassification loss function (EQ1) was used.

FIGURE 1

SwinV2 UNet system with a classification head added to the final block of the encoder. The decoder block 

makes use of ‘Spatial and Channel Squeeze and Excitation’ (SCSE) modules.



220

Medical Image Understanding and Analysis

frontiersin.org

EQ1

Where g
class

 represents a classification weighting factor, L
class

 is the Binary 
Cross Entropy (BCE) classification loss (E. Bekele & W. Lawson, 2019), 
g

seg
 represents a segmentation weighting factor, and L

seg
 represents the 

segmentation loss which is a combination of the pixel based Binary Cross 
Entropy (BCE) loss and dice loss (S. Jadon, 2020). The mean training and 
validation classification losses and accuracies were recorded to examine 
model performance. Ablation studies showed that setting the classification 
weight to a very small value (g

class 
= 1E-6) for the first 15 training epochs 

allowed the model to achieve strong segmentation performance, before then 
changing the classification weight to the value of 1 (g

class 
= 1. The performance 

of the SwinV2 UNet multitask learning model was also compared to 
a standard SwinV2 classification model and the fully convolutional 
EfficienetV2M model (M. Tan & Q. Le, 2021). These models used the same 
training methodology (excluding the task of segmentation) and required 
fewer training epochs before signs of overfitting occurred.

Preliminary Results and Discussion 
The SwinV2-UNet model shows excellent segmentation performance on the 
validation set, achieving 90.88 mDice and 85.13 mIoU scores. The training and 
validation classification losses and accuracies are shown for each model in Figure 2.

For the classification task, the SwinV2-UNet model reached a maximum 
accuracy of 84.82%, which represents a substantial improvement over the 
maximum accuracy of 78.86% achieved by the SwinV2 classification model. 
The SwinV2 classification model is likely overfitting to the training data 
due to the limited dataset size and network complexity. This highlights the 
potential for multi-task learning approaches to enhance generalizability 
performance on classification tasks by leveraging spatial information supplied 
by segmentation data. The EfficientNetV2 model achieved the highest 
maximum validation accuracy of 85.42%. The EfficientNetV2 model is likely 
to offer benefits over Transformer based architectures for small dataset sizes 
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FIGURE 2

Training and validation performance of the models. The increase in classification accuracy at epoch 15 for the 

SwinV2 UNet model is due to the classification weight change.

due to the inherent inductive biases contained within fully convolutional 
architectures (A. Dosovitskiy et al., 2021). Further model refinements and 
larger multitask polyp segmentation-classification datasets will be beneficial 
to fully investigate and leverage the advantages of multi-task learning 
frameworks.
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