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Abstract

Estimating rigid objects’ poses is one of the fundamental problems in computer vi-
sion, with a range of applications across automation and augmented reality. Most exist-
ing approaches adopt one network per object class strategy, depend heavily on objects’
3D models, depth data, and employ a time-consuming iterative refinement, which could
be impractical for some applications. This paper presents a novel approach, CVAM-
Pose, for multi-object monocular pose estimation that addresses these limitations. The
CVAM-Pose method employs a label-embedded conditional variational autoencoder net-
work, to implicitly abstract regularised representations of multiple objects in a single
low-dimensional latent space. This autoencoding process uses only images captured by
a projective camera and is robust to objects’ occlusion and scene clutter. The classes
of objects are one-hot encoded and embedded throughout the network. The proposed
label-embedded pose regression strategy interprets the learnt latent space representa-
tions utilising continuous pose representations. Ablation tests and systematic evaluations
demonstrate the scalability and efficiency of the CVAM-Pose method for multi-object
scenarios. The proposed CVAM-Pose outperforms competing latent space approaches.
For example, it is respectively 25% and 20% better than AAE and Multi-Path meth-
ods, when evaluated using the ARVSD metric on the Linemod-Occluded dataset. It also
achieves results somewhat comparable to methods reliant on 3D models reported in BOP
challenges. Code available: https://github.com/JZhao12/CVAM-Pose

1 Introduction
The rapid and precise estimation of rigid objects’ poses with six degrees of freedom (6-
DoF) is crucial for a wide range of real-world applications, including explorative navigation,
augmented reality, and automated medical intervention. The introduction of deep learning
techniques [10, 43] marked a significant evolution in computer vision, yielding remarkable
outcomes in 6-DoF pose estimation. Notably, most deep learning-based methods [6, 7, 22,
23, 24, 25, 30, 31, 33, 39, 40, 41, 44] tend to train individual networks for each object to
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obtain higher pose accuracy. However, these approaches are resource-consuming compared
to training a unified multi-object network, as memory usage increases with the number of
objects (networks). Additionally, most methods typically require 3D models [4, 20, 22, 40,
41] or establish 2D-3D correspondences based on the models [15, 23, 24, 25, 26, 30, 31,
36, 42], where the need for 3D models can be seen as one of the limiting factors for broader
applications.

Figure 1: During training, the label-embedded CVAE network abstracts information from
both images of objects and the corresponding categorical labels in the latent space, which
are then interpolated to multi-object 6-DoF poses using MLPs. The images of objects are
taken from the Linemod PBR dataset [12, 14, 16, 17].

In this paper, a novel multi-object pose estimation method called CVAM-Pose is pro-
posed (Fig. 1), which contains two main stages. The first stage involves training a label-
embedded conditional variational autoencoder (CVAE) network that incorporates the one-hot
encoding technique to facilitate the learning of regularised and constrained representations
of multi-object poses in the latent space. Different from the original CVAE network pro-
posed in [29], the adapted layer-wise one-hot encoding technique encodes categorical labels
as complete feature maps across every layer within the network, enhancing the learning of
high-level representations. The second stage applies label-embedded pose regression that
avoids the discretisation of poses. This involves concatenating the learnt multi-object repre-
sentations with one-hot encoded label vectors, and training multilayer perceptrons (MLPs) to
regress these concatenated features into continuous pose representations. The contributions
of the CVAM-Pose method are summarised as follows:

1. The method enhances the scalability and efficiency for multi-object pose estimation
using a single CVAE network. To the best of our knowledge, it is the first time a con-
ditional generative model is employed to efficiently characterise multi-object poses.
The adapted label-embedding technique also improves the capability of learning high-
level representations.

2. The method does not require object 3D models, depth data, and post-refinement during
inference, which can facilitate real-time processing. It achieves results comparable
to the state-of-the-art approaches on the Linemod-Occluded benchmark dataset and
outperforms those based on latent space representation.
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3. The method effectively addresses various challenging scenarios, including texture-less
objects, occlusion, truncation [25], and clutter.

2 Related Work

Deep Learning-based Approaches With the rapid development of deep learning tech-
niques, numerous state-of-the-art pose estimation methods employing convolutional neural
networks (CNNs) have been proposed. These methods can be categorised into three distinct
groups based on their approach to utilising CNNs: direct, indirect, and latent representation
methods.

The direct methods train CNNs to regress 3D rotation and translation from images di-
rectly. which either construct loss functions using 3D model points [4, 40, 41], or itera-
tively match the image rendered from a 3D model at its estimated pose with the observed
input image [20, 22]. Typically, these methods reparameterise rotation into representations
more suitable for network training, such as unit quaternion [5], axis-angle [37], or con-
tinuous representation [45]. The indirect methods focus on learning 2D-3D model corre-
spondences via CNNs, with the 6-DoF poses subsequently estimated using PnP [9, 21] and
RANSAC [8]. The model correspondences can be in the form of pixel-wise dense map-
ping [11, 15, 23, 24, 30, 31, 42], or a selection of sparse keypoints [25, 26, 36]. The latent
representation methods learn implicit latent space representations using specific network ar-
chitectures, typically autoencoders. The pose of a test instance is often retrieved using a
lookup table (LUT) technique, which includes finding nearest neighbours [32, 33] and com-
puting observation likelihoods [6, 7].

Both direct and indirect methods explicitly require accurate 3D models for training CNNs
or establishing 2D-3D correspondences. The latent representation methods, despite using
only images from single perspective camera, often suffer from the pose discretisation prob-
lem due to the nature of LUT.

Conditional Variational Autoencoder The variational autoencoder (VAE) [18, 19]
was introduced in the context of generative models, which is different from typical autoen-
coder models [13, 27, 28, 38]. The primary objective of the VAE is to generate new, typically
highly dimensional data points, with the generation process controlled by a low-dimensional
latent code randomly drawn from a prior distribution, such as Gaussian. However, a no-
table limitation is its inability to specify the characteristics of the generated data. To address
this issue, Sohn et al. [29] introduced the conditional variational autoencoder (CVAE), which
extends the VAE framework to incorporate conditional parameters, thereby enabling the gen-
eration of data with desired attributes.

In the context of object 6-DoF pose estimation, Zhao et al. [44] proposed a VAE-based
method called CVML-Pose, which was restricted to single-object predictions. Similar meth-
ods, such as [35], have also been developed, but using RGB-D images as input. We extend
the CVML-Pose method by training a CVAE model with a layer-wise one-hot encoding tech-
nique. This adaptation facilitates the learning of multi-object representations in a single la-
tent space, significantly improving scalability and efficiency in the prediction of multi-object
poses.
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3 Methodology

3.1 Implicit Learning of Multi-Object Representations

To effectively learn multi-object representations, a label-embedded CVAE network is trained
to encode images of objects xi and their corresponding one-hot encoded categories yi as label
conditions in a regularised latent space, subsequently outputting clean reconstructions x′i.

As depicted in Fig. 2, an asymmetric architecture is proposed, consisting of an encoder
network Eφ and a decoder network Dθ , with learnable parameters φ and θ respectively. The
encoder Eφ (xi,yi) processes both xi and yi, where yi are embedded as complete feature maps
in every convolution block (block-wise), until the latent variables are obtained in the latent
space, including µφ (xi,yi) ∈ Rn and log(σ2

φ
(xi,yi)) ∈ Rn, where (µφ ,σ

2
φ
) represent mean

and variance vectors of the multivariate normal distribution. Due to the non-differentiability
of sampling from N (zi; µφ (xi,yi),diag(σφ (xi,yi))), a reparameterisation trick [18] is em-
ployed. The latent sampling zi ∈ Rn is reparameterised as µφ (xi,yi)+ diag(σφ (xi,yi)) · ε ,
where ε ∼ N (0, I). After sampling, the decoder network Dθ (zi,yi) reconstructs the com-
plete and clean view x′i from both zi and yi, where yi is also embedded in every convolution
layer (layer-wise) in the decoder.

Figure 2: The proposed label-embedded conditional variational autoencoder network. The
images of objects are taken from the Linemod PBR dataset [12, 14, 16, 17].

For network training, the evidence lower bound (ELBO) loss [44] is used, assuming
a Gaussian prior distribution p(z) = N (z;0, I). This loss comprises two components: i) a
pixel-wise squared L2 norm between the output image x′i and the ground truth reconstruction
image x̂i; ii) a Kullback-Leibler (KL) divergence loss with a scalar α , which controls the
regularisation of the latent space.

ELBO ≃−
m

∑
i=1

(
||x̂i − x′i||

2 −α ·
n

∑
j=1

(
1+ log(σ2

i j)−µ
2
i j −σ

2
i j

))
(1)
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where µi j refers to the j-th element of the vector µi, σ2
i j refers to the j-th element of the

vector σ2
i , µi = µφ (xi,yi), σ2

i = σ2
φ
(xi,yi), m represents the number of training data, and n is

the dimensionality of the latent space.
After training, the label-embedded CVAE network has learnt robust representations of

objects, possibly including poses. This can be evidenced by the clean and complete recon-
structions produced from the trained network based on the test data. As illustrated in Fig. 3,
these reconstructions not only preserve complete views of objects but also diminish irrever-
ent information such as occlusion and cluttered background.

Figure 3: The output images from decoder show objects’ representations with occlusion and
clutter removed. The test input images also shown are taken from the Linemod-Occluded
dataset [2, 3].

3.2 Continuous Regression for Multi-Object Pose Estimation
The subsequent stage employs a continuous pose regression strategy [44], with an adapta-
tion to handle the multi-object scenario. As detailed in Fig. 4, this strategy utilises one-hot
encoded object labels yi to train MLPs, enabling smooth interpolation of poses.

For estimating 3D rotation, the rotation MLP is trained to regress from (µi,yi) to the
continuous 6D rotation representation r ∈ R6 [45], and the output rotation R ∈ SO(3) is de-
rived from r through a process similar to Gram-Schmidt orthogonalisation. This continuous
representation has proven more effective than others such as unit quaternion and axis-angle,
and has been successfully implemented in [20, 39].

Figure 4: The proposed label-embedded pose regression approach interpolates multi-object
representations to continuous pose representations using multiple MLP heads.

The estimation of 3D translation T=
(
Tx Ty Tz

)T ∈R3 is disentangled into estimating
the 2D projective centre coordinates Pc = (cx,cy)

T ∈ R2 and the projective distance Tz ∈ R.
Specifically, the latent vector µi is concatenated with spatial information obtained from the
object’s bounding box, including its width wi, height hi, and top-left corner coordinates
Pbbox = (bxi ,byi)

T , as well the label yi. The dedicated MLP is then trained to regress these
concatenated features to (cx,cy)

T . The regression procedure is also applied to Tz by training

Citation
Citation
{Brachmann} 2020

Citation
Citation
{Brachmann, Krull, Michel, Gumhold, Shotton, and Rother} 2014

Citation
Citation
{Zhao, Sanderson, and Matuszewski} 2023

Citation
Citation
{Zhou, Barnes, Lu, Yang, and Li} 2019

Citation
Citation
{Labb{é}, Carpentier, Aubry, and Sivic} 2020

Citation
Citation
{Wang, Manhardt, Tombari, and Ji} 2021



6 JIANYU, WEI, BOGDAN: CVAM-POSE

the distance MLP, but only utilises µi, wi, hi, and yi. Once Tz and (cx,cy)
T are determined,

Tx and Ty are calculated using the pinhole camera model (Eq. 2).[
Tx
Ty

]
=

[
(cx − px)

Tz
fx

(cy − py)
Tz
fy

]
(2)

where fx and fy denote the focal lengths, (px, py)
T is the principal point, and all these pa-

rameters can be obtained from camera calibration.

4 Experiments
The CVAM-Pose method is benchmarked in two aspects. The first involves conducting a
series of ablation tests to determine favourable configurations of the method. The second
way is to follow the evaluation methodologies proposed in the BOP challenges [16, 34].

4.1 Experimental Setup
Data All the experiments are conducted using the Linemod-Occluded dataset [2, 3], as
it presents a wide range of challenging scenarios, such as texture-less objects with significant
occlusion and background clutter. To facilitate a fair comparison with methods participating
in the BOP challenges, the same training and test data are employed. The physically based
rendering (PBR) images [12, 14, 16, 17] are used for training, and the BOP version test set
is chosen for evaluation.

Evaluation pipeline All the results, including those from the ablation tests and the
main evaluation, are reported using the metrics specified in the BOP challenges: VSD,
MSSD, and MSPD [16]. The overall performance score, AR, is calculated based on the
average recall of these three metrics, defined as AR = (ARVSD +ARMSSD +ARMSPD)/3.

4.2 Ablation Study
To obtain effective configurations of the CVAM-Pose method, extensive ablation tests are
conducted using the BOP version of the Linemod-Occluded dataset [2, 3, 16, 17]. These
tests include evaluations of the adapted label embedding technique, the regularisation of the
label-embedded CVAE network, and the dimensionality of the latent space.

Label Embedding Technique The effectiveness of the adapted layer-wise one-hot
encoding technique is assessed in both the CVAE network and the MLPs. The original
CVAE network [29], where the label conditions only exist in the initial layer in both the
encoder and decoder, is trained under the same conditions as our proposed label-embedded
network. The tests on MLPs involve determining whether the representations learnt from the
label-embedded CVAE network can be effectively regressed without the labels.

The results presented in Table 1 demonstrate that the adapted label-embedding technique
enhances the ability to learn and regress pose representations. The proposed label-embedded
CVAE network yields the most promising results compared to the original CVAE and MLPs,
showing improvements of 10% and 13% respectively in AR. This improvement is attributed
to its capability to abstract high-level features related to object pose within the latent space.
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Network original CVAE MLPs without labels Ours
ARVSD 0.256 0.251 0.346

ARMSSD 0.255 0.243 0.362
ARMSPD 0.630 0.554 0.714

AR 0.380 0.349 0.475
Table 1: Ablation results on the adapted label embedding technique.

In contrast, the original CVAE network primarily incorporates low-level features, which is
less effective for learning distinct multi-object representations because, with the increasing
depth of the network, the conditioned features introduced at the initial layers may not be
evident in the latent space. Similarly, the MLPs benefit from the label-embedding technique
that helps regress distinct poses for each object. However, it is observed that even in the
absence of label conditions, the learnt representations still retain certain categorical informa-
tion, leading to reasonable results.

Latent Space Regularisation When training the CVAM-Pose, the weighting factor α

of the KL regularisation term plays a crucial role in determining the smoothness of the latent
space. To find a good balance that allows for both informative latent space and robust gener-
alisation, the proposed CVAE network is trained with different values of α ∈ [0,0.1,0.5,1].
The pose estimation results corresponding to these values are reported in Table 2.

Regularisation α = 0 ααα = 0.1 α = 0.5 α = 1
ARVSD 0.316 0.346 0.319 0.336

ARMSSD 0.340 0.362 0.352 0.353
ARMSPD 0.712 0.714 0.686 0.685

AR 0.456 0.475 0.452 0.458
Table 2: Ablation results on the regularisation of the latent space.

Based on the reported results, an α value of 0.1 is identified as most effective, providing
sufficient regularisation of the latent space without overly constraining it. Specifically, when
α = 0, the CVAE network lacks control over the assumed prior Gaussian distribution in the
latent space, leading to unrestricted µ , and σ2 approaching 0, which results in suboptimal
performance in comparison to α = 0.1. Conversely, when α is set to 0 or 1, the latent space is
greatly affected by the KL divergence, which seems to overly smooth the distribution. This
excessive smoothing may cause a loss of critical pose-related information, as the network
focuses on minimising KL divergence over retaining distinctive features of the input data.

Dimensionality of the Latent Space The dimensionality of the latent space, denoted
as n, determines the capacity of the proposed CVAE network to encapsulate information
about objects. Previous research, such as that by Sundermeyer et al. [33], has explored the
effect of latent space dimensionality on pose estimation; however, their ablation tests were
limited to n≤ 128 and focused solely on single-object scenarios. This limitation prompts fur-
ther investigation into the performance impact of n > 128 across a broader range of objects,
as a single object may not be sufficient to reflect the complexities of an entire dataset.

To determine an effective size of the latent space for multi-object pose estimation, com-
prehensive experiments are conducted using all the Linemod-Occluded objects with dimen-
sionalities set at n ∈ [32,64,128,256,512,1024]. Results, as detailed in Table 3, show that
the highest accuracy is observed at n = 256. However, notably, the accuracy decreases at
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Dimensionality n = 32 n = 64 n = 128 nnn = 256 n = 512 n = 1024
ARVSD 0.226 0.301 0.283 0.346 0.306 0.263

ARMSSD 0.224 0.318 0.303 0.362 0.317 0.284
ARMSPD 0.528 0.654 0.681 0.714 0.706 0.695

AR 0.326 0.424 0.422 0.475 0.443 0.414
Table 3: Ablation results on the dimensionality of the latent space.

higher dimensionalities such as 512 and 1024, suggesting that an overly large latent space
may not effectively contribute to pose encoding, and could potentially lead to diminished
performance due to the CVAE network capturing too much variability in the latent space,
overfitting to the specific training set.

4.3 Main Results and Discussion
Main Results The main results of the proposed CVAM-Pose method are reported in
Table 4 and 5, where it is compared against a variety of state-of-the-art methods on the BOP
version of the Linemod-Occluded dataset. These methods are categorised based on the crite-
ria outlined in Sec. 2, with the CVAM-Pose method classified within the latent representation
category. Symbol "*" next to a method indicates that it employs one network per object class
strategy. Additionally, we produce the box plots in Fig. 5, which access how the visibility of
objects (occlusion) in the scene images influences the pose estimation accuracy.

Method Ours CVML-Pose* [44] AAE* [33] AAE-ICP* [33] Multi-Path [32]
ARVSD 0.346 0.312 0.090 0.208 0.150

ARMSSD 0.362 0.338 0.095 0.218 0.153
ARMSPD 0.714 0.706 0.254 0.285 0.346

AR 0.475 0.452 0.146 0.237 0.217
Table 4: Comparison with latent representation methods.

Method Ours DPOD [42] Pix2Pose* [24] EPOS [15] CDPN* [23] PVNet* [25] CosyPose [20] SurfEmb [11] ZebraPose* [31] GDR-Net* [39]
ARVSD 0.346 0.101 0.233 0.389 0.393 0.428 0.480 0.497 0.547 0.549

ARMSSD 0.362 0.126 0.307 0.501 0.537 0.543 0.606 0.640 0.714 0.701
ARMSPD 0.714 0.278 0.550 0.750 0.779 0.754 0.812 0.851 0.860 0.887

AR 0.475 0.169 0.363 0.547 0.569 0.575 0.633 0.663 0.707 0.713

Table 5: Comparison with direct and indirect methods that are reliant on 3D models.

Within the latent representation category, CVAM-Pose significantly outperforms meth-
ods such as AAE, AAE-ICP (AAE incorporates ICP refinement [1]), and Multi-Path (a
multi-object AAE approach). For example, it is respectively 25%, 14%, and 20% better
when evaluated using the ARVSD metric. The overall performance margins across the three
metrics are substantial, with improvements of 33%, 24%, and 26% in AR respectively. In
comparison with methods from other categories, CVAM-Pose also surpasses some indirect
methods like DPOD and Pix2Pose, by margins of 31% and 11%, respectively. Additionally,
it achieves results comparable to EPOS, CDPN, and PVNet in specific metrics, e.g. ARVSD
and ARMSPD.

Discussion The results on the challenging Linemod-Occluded dataset demonstrate
that competitive performance for multi-object pose estimation can be achieved using a con-
ditional generative model. The proposed label-embedded CVAE network with the continu-
ous pose regression approach is more effective and accurate than other latent representation
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Figure 5: Box plots of the MSPD metric as a function of the objects’ visibility rates. The
number of data instances for each rate is shown above each box. Please note that for better
visualisation, the MSPD metric is calculated using thresholds ranging from 1 to 50 with a
step of 1, instead of using the thresholds (from 5 to 50 with a step of 5) defined in the BOP
challenges.

methods. Compared to the single-object methods, such as CVML-Pose, AAE, and AAE-ICP,
the proposed label-embedded CVAE network captures regularised and robust representations
for multiple objects. Unlike CVML-Pose, the adapted label-embedding technique avoids
training multiple VAE networks, thereby enhancing training efficiency without diminishing
the performance. Different from the Multi-Path method, which employs multiple decoder
networks demanding significant GPU resources, our single-encoder-single-decoder architec-
ture achieves higher pose accuracy. Furthermore, the continuous pose regression approach,
as opposed to the LUT technique used in AAE, AAE-ICP, and Multi-Path, effectively avoids
errors associated with pose discretisation during inference. Our continuous regression on the
2D projective centre and distance also mitigates the effects caused by incorrect detection of
occluded objects.

Performance against occlusion is illustrated in Fig. 5, which shows box plots quantifying
the distribution of the MSPD metric (ARMSPD) across different visibility rates from 10%
to 100%. It is evident that as visibility increases, the median of pose estimation accuracy
improves and eventually achieves a value of 0.78. Even under heavy (20%-30% visibil-
ity) or mild (50%-60% visibility) occlusions, our method still achieves reasonable results,
indicating its robustness against challenging occlusion scenarios.

Compared to direct and indirect methods that rely on 3D models, the proposed CVAM-
Pose method achieves higher results than some of them on the challenging occlusion data.
This possibly suggests that approaches based on pixel-wise model correspondences, such as
DPOD and Pix2Pose, suffer performance degradation due to an insufficient number of points
available for assessing correspondences in heavily occluded scenes. In contrast, our pro-
posed method benefits from reconstructing complete objects from partially obscured views,
thereby robustly handling occlusions.

For the results reported in the paper, the proposed CVAM-Pose method is trained with 8
different objects. Experiments with larger numbers of objects were also conducted but not
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reported. It was observed that increasing the number of objects in CVAM-Pose beyond 15
would lead to a decrease in pose estimation accuracy, without adjusting design parameters
such as the size of the latent space.

Although the proposed CVAM-Pose method avoids training one network per object cate-
gory, which enhances scalability and efficiency, it shows a certain gap in pose accuracy com-
pared to leading methods like CosyPose, SurfEmb, and GDR-Net. These methods improve
their accuracy through techniques such as iterative refinement using 3D model points (Cosy-
Pose), estimating continuous model correspondence distributions (SurfEmb), and combining
pose regression with dense correspondences (GDR-Net). However, they all require precise
3D models for setting up 2D-3D correspondences or model point-based training. In contrast,
the advantages of our method lie in addressing the 6-DoF pose estimation problem with-
out relying on 3D models, depth measurements, and post-refinement processes, providing a
novel solution in scenarios where such data are unavailable.

5 Conclusion
This paper addresses one of the key challenges in computer vision: finding multi-object
6-DoF poses from images captured by a perspective camera in real time (with fixed infer-
ence processing time of 0.02s with CVAM-Pose run on RTX3090). The proposed method
demonstrates that competitive performance can be achieved using only a single perspective
image, without reliance on 3D models, depth measurements, or iterative post-refinement. In
particular, the scalability of a single latent space can be expanded to multi-object representa-
tions without compromising pose accuracy. The main contributions of the reported research
include the proposed use of a conditional generative model, the adapted label-embedding
technique, the construction of a regularised and constrained latent space for multiple objects,
and the continuous pose regression algorithms, which facilitate fast and accurate multi-object
pose estimation.
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