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We provide additional supplementary materials including:

1. Further quantitative and qualitative analyses of our method on the BOP version of the
Linemod-Occluded dataset [1, 2, 6, 7].

2. More information on network implementations.

1 Additional Results on Linemod-Occluded

1.1 Quantitative Results

Pose Regression vs. LUT We conduct further ablation tests comparing the pose re-
gression strategy used in our method to the lookup table (LUT) technique described in [13,
14]. The LUT technique assigns the rotation and projective distance from the most similar
instance to the test instance, and utilises the centre of the bounding box as the 2D projective
centre. This approach may lead to inaccuracies, particularly with heavily occluded objects
or imprecise bounding boxes. In our analysis, the results for 3D rotation are reported using
the ARMSPD metric [6], while results for projective centre and distance are evaluated us-
ing the mean absolute error (MAE) metric. The choice of MAE over ARMSPD is due to its
parameter-free nature, which simplifies the interpretation of translational errors, as opposed
to ARMSPD that depends on predefined thresholds as outlined in [6].

Rotation ARMSPD ↑
LUT 0.666
Ours 0.714

Centre MAEpixel ↓
LUT 4.064
Ours 2.913

Distance MAEmm ↓
LUT 60.981
Ours 43.278

Table 1: Comparison between LUT and our regression method for the estimation of 3D
rotation, 2D projective centre, and 2D projective distance.
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Figure 1: Box plots of the MAEpixel metric as a function of the objects’ visibility rates. The
number of data instances for each rate is shown above each pair of boxes.

As shown in Table 1, our continuous pose regression strategy demonstrates better results
than using the LUT technique in estimating 3D rotation, 2D projective centre, and 2D pro-
jective distance, e.g. our method achieves smaller errors in distance measurement (improved
by approximately 2% when computed in relation to the average object’s distance in the test
set). This can be attributed to the avoidance of the pose discretisation problem inherent in
the LUT technique, particularly when the training data do not cover the entire SO(3). The
performance of centre prediction is further illustrated in Fig. 1, which presents box plots
quantifying the distribution of errors (MAEpixel). It is evident that the median error in our
method is consistently lower than that produced by the LUT technique across various visi-
bility rates. The LUT method can also generate noticeable outlier errors in centre prediction,
as high as 27 pixels.

Results on Individual Objects We also present additional results on individual ob-
jects from the Linemod-Occluded dataset [1, 2] in Table 2. The average recall of a sin-
gle object, ARobject, is calculated from the average recall across the three metrics, ARVSD,
ARMSSD, and ARMSPD [6]. The average value, denoted as Avg., shows the main results for
the entire dataset as already reported in the paper.

Object ape can cat driller duck eggbox glue holepuncher Avg.
ARVSD 0.332 0.409 0.300 0.375 0.443 0.168 0.324 0.425 0.346

ARMSSD 0.360 0.471 0.286 0.490 0.397 0.084 0.356 0.455 0.362
ARMSPD 0.830 0.681 0.826 0.571 0.794 0.488 0.760 0.764 0.714
ARobject 0.507 0.520 0.471 0.479 0.545 0.247 0.480 0.548 0.475

Table 2: Results on the individual objects of the Linemod-Occluded dataset.

Among the three evaluation metrics, the MSPD metric demonstrates considerably higher
accuracy than the others (25% higher on average). As explained in [6], this might be that
the MSPD metric does not account for alignment along the optical axis, which is significant
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when evaluating on perspective images.
In terms of individual objects, the eggbox object exhibits lower accuracy than others

(approximately 20% in ARobject), which might be associated with object symmetries, i.e. the
pose ambiguity problem. To improve pose accuracy, especially for symmetrical objects, our
method could be extended to estimate the distribution of potential poses through random
sampling in the latent space, thereby better accommodating variances induced by object
symmetries.

1.2 Qualitative Results

Fig. 2 visualises pose estimation results on two randomly selected images from the Linemod-
Occluded dataset, with poses estimated using CVAM-Pose. The target objects, including ape,
cat, driller, duck, eggbox, glue, holepuncher, and iron, are rendered based on the estimated
poses and reprojected onto the original test images. Correct estimations are represented by
aligned reprojection masks, e.g. the cat object in the first image, while misaligned masks
indicate incorrect estimations, e.g. the eggbox object in the first image.

2 Implementation Details

Network Architecture The proposed label-embedded CVAE network employs an
adapted ResNet-18 [4] as the encoder, and a sequence of convolutional layers as the decoder.
The ReLU activation function [11] is replaced with SiLU [3] to avoid the zero-gradient prob-
lem. The label-embedded MLP network consists of a series of fully connected layers with
neurons [256,128,64,32,16,out]. Each hidden layer uses the SiLU activation and concate-
nates the one-hot encoded categorical labels with the output of the previous layer. The final
output, out, varies depending on the regression task, such as 6 neurons for regressing the
continuous 6D rotation representation [17].

Data Preprocessing The data preparation involves a crop-and-resize strategy pro-
posed in [16]. This strategy crops images of the target objects into a square shape from
the scene image using the ground truth bounding box, with the square’s size defined by the
longer side of the box. The cropped images of objects are resized to 128× 128× 3 using
bicubic interpolation, which matches the input size of the proposed CVAE network. Images,
where less than 10% of the object’s area is visible, are excluded, based on the visibility
criteria defined in [6, 15]. Approximately 40k images per object are obtained, with 90%
designated for training and the remaining 10% for validation. For test data preparation, the
crop-and-resize strategy is also applied, using the detection bounding boxes provided by a
pre-trained Mask-RCNN detector [5, 8].

Training Parameters All experiments are implemented in PyTorch [12]. The label-
embedded CVAE and MLP networks are trained using the AdamW optimiser [9] with pa-
rameters set as follows: β1 = 0.9, β2 = 0.999, ε = 1e−8, and λ = 0.01. The initial learning
rate is set to 1e−4 for CVAE and 3e−3 for MLPs, with scheduled reductions by a factor of
0.2 when the validation loss does not improve over a “patience” period (50 epochs for CVAE,
500 for MLPs). Training terminates when the lowest learning rate of 1e−6 is reached, and
no improvement in validation loss occurs for N epochs (N = 50 for CVAE and N = 1000
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Figure 2: Example visualisation of the estimated poses using CVAM-Pose. The rendering
process uses the Pyrender software [10]. The images of objects are taken from the BOP
version of the Linemod-Occluded dataset [1, 2, 6, 7].
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for MLPs). The CVAE network is trained with a batch size of 128, while MLPs process all
inputs per batch. For reproducibility, all random seeds are fixed at 0.
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