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Abstract

A study of the Lockman Hole at 1.5GHz with the e-MERLIN radio telescope is per-

formed, along with an experiment in using machine learning techniques to identify and

remove interference in astronomical radio observations, and an investigation of a faint

sub-kpc scale binary black hole candidate. It is found that manually flagged observa-

tions used as the basis for a training set does not produce a trained network that performs

better than the current state of the art statistical tool, at least when using a GAN architec-

ture. Though, it remains possible that refinements to the GAN model, the pre-processing

method, and the training set could produce better results. Machine learning techniques

remain as one of the most promising methods of dealing with interference in an increas-

ingly difficult RFI environment populated by massive satellite networks that will impede

the operation of next generation radio observatories, such as the SKA. In the investigation

of the sub-kpc scale binary AGN candidate, two radio sources are detected that overlap

with two previously identified stellar cores, both with a separation of ∼ 1". Specifically,

the local epoch separation between the two radio sources is measured as 0.95±0.29 kpc.

However, follow up radio observations with greater resolving power did not produce a

second detection. The source is very faint, so it is likely these observations were not

sensitive enough to provide a second detection; further observation is recommended to

reduce the noise level. Finally, a source catalogue of 78 sources in the Lockman Hole is

produced from a wide field image with a mean sensitivity of 12µJy/beam. Radio mea-

surements from other studies at 140MHz and 3GHz are included for ∼ 50% of sources,

along with estimates of redshift for 35 sources. Five sources from this new catalogue

are studied in detail and the differential source counts are calculated and compared with

similar work. The source counts are consistent with an observed faint radio population

with a suppressed SFG component at . 1mJy, which is expected at VLBI scales. The

overall trend agrees with source counts calculated using a catalogue of VLA sources. The

e-MERLIN image is an important step towards producing a deeper radio image of the

Lockman Hole that can be used to classify sources within the field, and investigate the

nature of the faint radio population.
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Look again at that dot. That’s here. That’s home. That’s us. On it everyone you love,
everyone you know, everyone you ever heard of, every human being who ever was, lived
out their lives. The aggregate of our joy and suffering, thousands of confident religions,
ideologies, and economic doctrines, every hunter and forager, every hero and coward,
every creator and destroyer of civilization, every king and peasant, every young couple
in love, every mother and father, hopeful child, inventor and explorer, every teacher of
morals, every corrupt politician, every “superstar," every “supreme leader," every saint
and sinner in the history of our species lived there – on a mote of dust suspended in a
sunbeam.

The Earth is a very small stage in a vast cosmic arena. Think of the rivers of blood
spilled by all those generals and emperors so that, in glory and triumph, they could be-
come the momentary masters of a fraction of a dot. Think of the endless cruelties visited
by the inhabitants of one corner of this pixel on the scarcely distinguishable inhabitants
of some other corner, how frequent their misunderstandings, how eager they are to kill
one another, how fervent their hatreds.

Our posturings, our imagined self-importance, the delusion that we have some privileged
position in the Universe, are challenged by this point of pale light. Our planet is a lonely
speck in the great enveloping cosmic dark. In our obscurity, in all this vastness, there is
no hint that help will come from elsewhere to save us from ourselves.

The Earth is the only world known so far to harbor life. There is nowhere else, at least in
the near future, to which our species could migrate. Visit, yes. Settle, not yet. Like it or
not, for the moment the Earth is where we make our stand.

It has been said that astronomy is a humbling and character-building experience. There
is perhaps no better demonstration of the folly of human conceits than this distant image
of our tiny world. To me, it underscores our responsibility to deal more kindly with one
another, and to preserve and cherish the pale blue dot, the only home we’ve ever known.

– Carl Sagan,
describing the Voyager 1 image of Earth (overleaf)
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Chapter 1

Introduction

In less than a century, the cutting edge of radio astronomy technology has gone from a

metal and wire frame on wheels, to some of the largest, most complex equipment ever cre-

ated for astronomical purposes (see Figure 1.1), giving astronomers a completely unique

view of the universe. For the most part, this frenetic development has been driven by a

desire for increased sensitivity and better imaging capability to keep up with other areas

of astronomy, and to continue to explore the behaviour of astronomical sources at lower

and lower radio flux densities with increasing accuracy. Furthermore, and arguably more

importantly, radio astronomy reveals entirely unique phenomena including, but not lim-

ited to: the Cosmic Microwave Background (CMB), which is strongest at approximately

160 GHz; the famous 21 cm line, corresponding to a quantum state change in hydrogen

atoms that produces energy of a precise frequency at approximately 1.4 GHz; supernova

remnants, that are visible for long after their optical signature has faded away; and finally

black holes, which are often surrounded by dust and gas that attenuates and obscures large

portions of the radiation exiting from the central region, but is transparent to radio waves.

The contribution of radio astronomers and observatories to the wider field of astronomy

and astrophysics would take an entire text of its own to document, and is often not well

understood by astronomers at large. Nevertheless, they provide a critical backbone in

our understanding of our planet and the universe, from measuring tectonic plate shift, to

studying the properties of spacetime.

The second driver of this massive progression is a desire for greater resolving power,

to get an up-close, detailed view of the smallest and most compact objects, such as bound

black hole systems. For traditional astronomy in the optical range the solution is relatively

simple: build a bigger telescope. However, when observing radio waves this is rarely a
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1. INTRODUCTION

Figure 1.1: Left: Karl Jansky and his ‘Merry-go-Round’; one of the first radio instruments built
for astronomical purposes. Image credit: NRAO1. Top right: The VLA in New Mexico, United
States. Image credit: NRAO2. Bottom right: The Five-Hundred Aperture Spherical radio Tele-
scope (FAST) in Guizhou Province, China. Image credit: NAOC3.

practical solution. To illustrate this, first recall that the resolving power of a telescope is

generally described by the Rayleigh Criterion:

θ =
1.22λ

D
(1.1)

which represents the minimum angular spacing, θ, on the sky beyond which two point-

like objects can be considered separate, when observing at wavelength λ, with a telescope

aperture diameter of D. The Hubble Space Telescope (HST), for example, observes at

wavelengths around 1 micrometre, and has a 2.4 m primary mirror. Therefore, the HST

has a diffraction-limited resolving power of approximately θ = 0.1′′ in this configuration.

Is it possible to achieve a similar resolving power at radio wavelengths? Again using

Equation 1.1, we can calculate the required telescope diameter for 1.4 GHz, which turns

out to be D = 504 km, which would require about 82% of the entire land area of the

United Kingdom! Suffice to say, building such a monolithic instrument is not practical, at

least for now. While large single-dish radio telescopes, such as the Lovell telescope and

the Effelsberg telescope, still exist and are still in use today, most high-resolution stud-

1NRAO is the National Radio Astronomy Observatory. Image available at: https://pub-
lic.nrao.edu/gallery/karl-jansky-and-his-merrygoround. Accessed 16th March 2024.

2Image available at: https://public.nrao.edu/gallery/moonrise-over-the-very-large-array. Accessed 16th

March 2024.
3NAOC is the National Astronomical Observatories, Chinese Academy of Sciences. Image available at:

https://english.nao.cas.cn/research/researchdivisions/radioastronomy. Accessed 16th March 2024.
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1. INTRODUCTION

Figure 1.2: The Event Horizon Telescope (EHT) image of the black hole at the center of M87.
The bright ring is the photon ring: incoming photons that have been curved towards us by the
black hole’s gravity. Image Credit: Event Horizon Telescope Collaboration et al. (2019)

ies require networks of smaller radio telescopes that link together to form interferometer

arrays, like the Very Large Array (VLA, Perley et al. 2011). These telescope networks

use the technique of aperture synthesis (see chapter 2) to create a representation of the

radio sky with extremely high resolution that far surpasses instruments like the HST and

its successor, the James Webb Space Telescope (JWST, Gardner et al. 2006). The tech-

nology has now developed so far that it has produced monumental scientific leaps, such

as directly imaging the event horizon of the black hole at the centre of the galaxy Messier

87 (see Figure 1.2, Event Horizon Telescope Collaboration et al. 2019). This landmark

observation was performed by the EHT, which is a massive interferometer network that

creates a radio telescope spanning the entire planet (Doeleman et al., 2009). The tech-

nique of radio interferometry continues to grow and develop, with pioneering institutions

and observatories around the world preparing for the era of the Square-Kilometer Array

(SKA), which will be the most powerful radio telescope in the world once completed

(Ekers, 2012).

1.1 Radio Interference

During the course of a radio observation, which may take place over many hours, inter-

fering signals are often detected from many different non-astronomical sources. These

signals are usually quite strong compared to the desired sky signal, and create problems

11



1. INTRODUCTION

during calibration of the observational data, and if left unaddressed the final image as

well.

In the early days of radio astronomy, radio signals generated by humans that might

interfere with an observation of the sky were comparatively rare, and given sufficient

distance from civilisation one could conduct an astronomical radio observation without

much interference. This began to change over the course of the late 20th century, and radio

emissions became more widespread in and about populated regions. Still, it was common

practice for radio astronomers to manually remove these interfering signals from their

observations, scarce as they were. Now in the 21st century, radio signals have become

so pervasive that manual intervention is (in general) no longer practical, and automated

methods of interference removal are preferable and commonplace. The widespread adop-

tion of radio emitting mobile phones (and the radio frequency networks that supply them),

the massive increase in the Earth satellite population, the explosion of wireless internet,

and the lasting existence of broadcast radio are all examples of the modern day radio

environment that radio observatories must find a way to operate within.

The eternal challenge, however, of automatically removing interference in radio ob-

servations is to use or create a tool that operates with precision. The complexity of this

task stems from the very blurry line that exists between interference and ‘not interfer-

ence’ in the absence of full knowledge of the origin of the two signals. Therefore, how

one decides to draw the line between these two is equivalent to finding the exact point

at which the color white transitions to the color black on an infinitely continuous scale

of gray, and is also the ultimate determining factor in the performance of the tool. Of

course, it is possible to at least approximate this hypothetical boundary through the sci-

entific method; using a combination of both a priori and a posteriori knowledge of the

incoming radio signals, and the equipment used to detect them, to construct a method of

filtering out unwanted signals. Achieving the ever sought after objective of close to 100%

automatic removal of interfering signals requires intelligent methods and algorithms, even

more so if one wishes the solution to work across all radio observatories. This particular

desire for consistency across observatories comes from a need for scientific reproducibil-

ity: if two scientists use the same tools, their respective results become far more useful in

comparison.

Currently, most observatories implement their own ad hoc measures, both in soft-

ware and hardware, to reduce the impact of interference. After receiving data from the

observatory, many radio astronomers will also want to fine-tune their observation by re-

12



1. INTRODUCTION

examining the flagged data, and in this case there are a limited number of statistical tools

available. The state of the art in automatic interference removal, and the most common

generalised tool, is known as aoflagger (Offringa et al., 2012b), which implements a

form of adaptive thresholding. Among all tools though, including aoflagger, there is still

room for improvement in precision, as the designers of automated tools usually prefer to

overestimate the presence of interference rather than risk allowing it through to the final

image. This leads to an increased number of false positives that ultimately costs in effec-

tive observing time. Continuous refinement of these techniques to reduce the rate of false

positives is necessary to prevent this needless loss of effective observing time.

While modern radio observatories are far more capable than their predecessors, that

capability has come with a catch. The progress made in making observatories more sen-

sitive to fainter radio emission has also made them more vulnerable to non-astronomical

interference. Therefore, as our observing instruments develop, so too must our methods

of handling interference in order to keep pace with an ever changing radio environment.

This effort is the subject of chapter 3 of this thesis. Appropriately dealing with radio in-

terference is a critical step in conducting deeper, more sensitive observations of the radio

sky, which in turn allows an exploration of faint and high-redshift source populations.

1.2 Faint Radio Sources

The progressive research and reinterpretation of the nature of radio sources is an excellent

case study of the process of scientific discovery. Early radio telescopes being developed

in the 1950s did not have the observing capability we expect from our instruments today;

poor sensitivity, resolving power, and bandwidth (at least by modern standards) were nor-

mal. This means that experiments to discern the nature of radio sources were constrained

by the number of sources they could detect above the sensitivity of the telescope being

used. While this limitation always has been and always will be present to some degree,

modern telescopes are, nevertheless, orders of magnitude better in key performance met-

rics. However, this change did not happen instantly; it is only because of the tireless

efforts of astronomers and engineers over just seven decades to improve the technology

they use to observe. Though necessary, this translated into a constant reinterpretation of

the radio sky as new phenomena are observed, such as fast radio bursts (Lorimer et al.,

2007; Petroff et al., 2019), and even entirely new objects are discovered, such as pulsars

(Hewish et al., 1968). This effect is at least partly responsible for the semantic spaghetti

13



1. INTRODUCTION

Figure 1.3: The evolution of the star formation rate density with redshift; the famous ‘Lilly-
Madau plot’ (from Lilly et al. 1995 and Madau et al. 1996). The data points are from a variety of
sources using data from across the electromagnetic spectrum. Note the peak in star formation rate
density around z ∼ 2 (∼3 Gyr after the big bang), indicating that the majority of observable stellar
mass was formed at redshifts z & 1. Image Credit: Hopkins & Beacom (2006)

of Active Galactic Nuclei (AGN) that is only just being disentangled (see section 4.1).

One interesting aspect of the faint radio sky, defined in this work as the radio sky below

.1 mJy, is the relative distribution of the three main components presented in chapter 4:

jetted and non-jetted AGN, and Star-forming Galaxies (SFGs). Jetted AGN dominate at

flux densities &400 µJy, while non-jetted AGN and SFGs share significant portions of the

sky at .100 µJy and decline in number at higher flux densities. The exact distribution of

non-jetted active galaxies and star-forming galaxies, and how that changes with redshift,

is an informative metric as it can be used to trace the cosmic star-formation rate which

shows a distinct and curious peak at z ∼ 2, and then declines in recent cosmic history (see

Figure 1.3, see also Madau & Dickinson 2014).

Radio telescopes offer a unique view on this area of research. First and foremost,

radio telescopes are not forced to use extinction corrections as they are insensitive to

dust attenuation, which significantly reduces systematic uncertainties in any study. In

addition, through combination with measurements at infrared wavelengths, AGN with jets

that make up the majority of radio emission can be reliably classified using the FIR-Radio

correlation (van der Kruit, 1973; Condon, 1992). This makes it relatively trivial, provided

infrared measurements are available, to identify the group of non-jetted AGN and SFGs

14



1. INTRODUCTION

in a sample. From this point, there are several methods of decomposing the AGN and

SF components. If possible, it is always recommended to incorporate X-ray sources,

since these are a clear indicator of the presence of an AGN. There are some (less-reliable)

methods that can be carried out entirely at radio frequencies, which has the benefit of

eliminating the limitations involved with multi-wavelength studies. One commonly used

method is to measure the radio spectral slope Γ (as defined by S (ν) ∝ νΓ)4, which can be

a reliable indicator of AGN in particular in sources with Γ > 0 (Padovani, 2016). Another

method is to track the radio morphology at varying angular scales; a method only available

to radio interferometers through varied baseline lengths and their weightings.

The work presented in chapter 6 seeks to provide evidence of the nature of the faint

radio population in the Lockman Hole, as observed by the enhanced Multi Element Re-

motely Linked Interferometer Network (e-MERLIN) radio telescope. It is intended to be

a complimentary study to the work of Muxlow et al. (2020), which investigates a differ-

ent field, the Great Observatories Origins Deep Survey - North (GOODS-N) field, using

e-MERLIN and VLA observations. By combining the conclusions of these two studies

in two separate fields, any aspects of cosmic variance should be accounted for, and each

can augment the others scientific value. Before a radio study like this can conducted,

however, there is work to be done on preparing and calibrating the observational data;

introducing this process is the subject of chapter 2. To maximise the sensitivity of the

final radio survey, I investigate alternative methods of identifying and removing radio in-

terference from the Lockman Hole observations. This work is presented in chapter 3.

In chapter 4 I introduce the topic of the faint radio sky, its constituents, and the current

research being conducted. A study of an extremely faint sub-kpc scale binary AGN can-

didate is presented in chapter 5. I present the study of the Lockman Hole with e-MERLIN

in chapter 6, and then finish with some conclusions in chapter 7 where I also discuss some

recommendations for future work.

4Different authors will use different conventions for the sign of Γ. In this work I follow the recommen-
dation of Burke et al. (2019) to use the positive convention.
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Chapter 2

Techniques of Radio Astronomy

Studies involving radio telescopes often require some knowledge of how the observations

are conducted, how the data is processed, and the assumptions that are made in each of

these stages to properly assess the end conclusions. This chapter seeks to provide an in-

troduction to the governing theory of radio interferometry, such that the results presented

later in this work can be better understood. An overview of existing observatories, and

the e-MERLIN radio telescope that is used for the majority of observations presented in

this work, is given in section 2.1 and section 2.2 respectively. Then, the technique of

interferometry that all of these observatories rely on is introduced in section 2.3, by first

starting at the basic example of an interferometer of two stations. This allows an explana-

tion of the detection and correlation process that remains the same for even larger arrays.

Once this foundation is laid, an explanation is given of the process of calibration, and the

importance of ensuring a high-quality calibration that is not corrupted by unwanted radio

signals. Then, the unique process of imaging at radio frequencies is described in sec-

tion 2.6, which is very different from more traditional imaging based on Charge-Coupled

Devices (CCDs) used in optical imaging. The final sections will discuss some of the com-

plexities introduced by imaging a ‘wide-field’, and the techniques used to overcome those

challenges. Much of the following chapter was written using the combined works of Wil-

son et al. (2013), Thompson et al. (2017), and Burke et al. (2019) which are foundational

texts in much of radio astronomy and interferometry.
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2. TECHNIQUES OF RADIO ASTRONOMY

2.1 Radio Interferometry

One of the many differences that distinguishes radio astronomy from other areas of as-

tronomy is how observations of the sky are actually performed. Broadly speaking, there

are two distinct methods: using either one large radio antenna, or using many smaller

but connected radio antennas that detect the same incoming radio waves. The former of-

fers a simpler and cleaner post-observation workflow but is limited in resolving power,

the latter is more flexible and scalable, but has its own set of drawbacks. In this work

I will exclusively focus on connected networks of smaller radio antennas, known as ra-

dio interferometers. These networks are further divided loosely into two groups based

on the spacing between their constituent antennas (known as baselines), as this has ma-

jor implications for not just the scientific output, but also the difficulty, complexity, and

technology required for operation. Short baselines, for example, can rely on simple wire

connections over short distances for transmitting the received signal. For higher resolu-

tion studies longer baselines are needed, and running a wire directly from the Australian

outback to South Africa is not a practical solution. Longer baseline arrays therefore, use

the Very-Long-Baseline Interferometry (VLBI) technique, which is an extension of the

core interferometer technology but over continents instead of kilometres. Some of the

most well known radio interferometer networks include:

• Very Large Array - VLA

In operation for nearly 50 years, the VLA is a leading instrument for ∼arcsecond

resolution studies in the 1-50 GHz range. It is based in Socorro, New Mexico and

is operated by the US National Radio Astronomy Observatory (NRAO)

See: Perley et al. (2011).

• Atacama Large Millimeter Array - ALMA

Situated on the Chajnantor Plateau in Chile, ALMA covers the higher frequency

portion of the radio spectrum extending from 30-950 GHz, with a resolving power

similar to that of the VLA. It is funded and operated by a collaboration of organisa-

tions from around the world.

See: Wootten & Thompson (2009)

• Square Kilometer Array - SKA

The SKA, when constructed, will be one of the most advanced radio interferome-

ters on the planet. It will consist of 133 antennas located in South Africa (known as
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2. TECHNIQUES OF RADIO ASTRONOMY

SKA-mid), and just over 130000 smaller dipole antennas located in western Aus-

tralia (known as SKA-low). These two parts will collectively cover a wide fre-

quency range between 0.05-25 GHz. It is an ambitious project that drives much in-

novation and research into new and existing techniques, to ensure that astronomers

can maximise its potential.

See: Braun et al. (2019)

• Low-Frequency Array - LOFAR

Covering the lower end of the frequency spectrum at 10-240 MHz, LOFAR instead

uses dipole antennas to observe astronomical phenomena in a sparsely-explored

window of the spectrum.

See: van Haarlem et al. (2013)

• Multi Element Remotely Linked Interferometer Network - e-MERLIN

Leading the UK radio astronomy effort is e-MERLIN, incorporating the nearly 70

year old 76 m Lovell telescope. Formerly known as MERLIN, the upgraded ver-

sion, e-MERLIN, uses seven stations across the UK to produce ∼milliarcsecond

resolution images in the 1-25 GHz range.

See: Garrington et al. (2004). See also section 2.2 for more detail.

• European VLBI Network - EVN

Bringing together stations primarily from around Europe (but also on other conti-

nents), the EVN produces some of the highest resolution images currently possible,

primarily in the 1-25 GHz range.

See: Venturi et al. (2020)

The small sample of observatories listed above are roughly in order corresponding to the

length of baselines within the array of stations they bring together, and each produces a

different view of the universe. Astronomers seeking to use one of these facilities must

carefully examine their science objective to determine which facility is most suited to

them, as sources that appear bright and clear to one, might be invisible to another, even

at the same frequency. This is because the length of the baselines in the array does not

just determine the achievable resolving power, but also the angular scale the array is

sensitive to. For example, arrays with an extremely high resolving power are not suitable

for studying diffuse supernova remnants with a large angular size; the array simply will

not detect the low surface brightness emission.
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Figure 2.1: A picture of the Lovell telescope at Jodrell Bank Observatory. Image Credit: BBC1.

2.2 The e-MERLIN Telescope

During World War II, the use of radar for both offensive and defensive purposes was

pioneered by the British Royal Air Force. Most notably, the ‘Chain Home’ system of

radar antennas spread across England was a critical factor in the Battle of Britain, giving

time for people to escape to air-raid shelters, and for British fighters to scramble. At this

time, Sir Bernard Lovell was developing the H2S radar system for nighttime air raids

when he noticed that certain radar signals were ignored by operators, though they did

not know their cause (Argo, 2012). After the war, Lovell returned to the University of

Manchester where he continued his radio astronomy research, and later founded what

came to be known as Jodrell Bank Observatory. Here, he constructed a massive 250 ft

telescope; the largest in the world at the time and capable of observing any point in the

sky. This telescope was later renamed in his honour giving us the Lovell Telescope, seen

in Figure 2.1, which remains operational to this day.

During the 1970s and 80s, Lovell and his team also pioneered the technique of ra-

dio interferometry, and constructed the MERLIN array of antennas (Thomasson, 1986)

based at Jodrell Bank Observatory. Since then, the MERLIN array, now upgraded to the

e-MERLIN array (Garrington et al., 2004), has been a leading instrument in radio as-

tronomy. The network connects together seven antennas spread across the United King-

1Available at: https://www.bbc.co.uk/news/uk-england-manchester-61630241. Accessed: 15th March
2024
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L-Band (1.5 GHz) C-band (5 GHz) K-band (22 GHz)
Resolution 0.2′′ 0.05′′ 0.02′′

Primary beam width 30′ 7′ 2′

Sensitivity (from ∼12 hrs) 24 µJy/beam 16 µJy/beam 120 µJy/beam
Antenna Mk2 Baseline Length (3D Geocentric) Dish Size

Lovell (Lo) 0.4 km 76 m
Mark II (Mk2) 0.0 km 24 m
Pickmere (Pi) 11.2 km 25 m
Darnhall (Da) 17.5 km 25 m
Knockin (Kn) 67.8 km 25 m
Defford (De) 126.6 km 25 m

Cambridge (Cm) 197.8 km 32 m

Table 2.1: Operating characteristics for the e-MERLIN interferometer array. The top table
presents performance values for each of the available observing bands. The bottom table presents
position and size values for each of the antennas in the array.

dom, including the Lovell telescope itself, via fiber-optic cable. The long baselines of

e-MERLIN allow for high resolution observations at ∼milliarcsecond scales. More de-

tails of e-MERLIN can be found in Table 2.1.

2.3 The Two-Element Interferometer

At a fundamental level, a radio interferometer effectively replicates Young’s Double Slit

experiment (Young, 1804), where two slits in a flat sheet of material are illuminated by

an incident plane wave. Behind the sheet, an interference pattern (made up of a series

of ‘fringes’) is produced on another surface from the interaction of light waves travelling

through the two slits. The shape of the interference pattern contains information about

the incident light and is also dependent on the setup of the experiment. Mapping the

analogy to a radio interferometer, the slits can be thought of as radio antennas and the

sheet with the interference pattern projected onto it is the ‘image plane’ (see section 2.6).

The uv plane (see section 2.4) represents the illumination of the slits, which exhibits a

Fourier transform relationship with the interference pattern. The shape of the resulting

interference pattern is determined by the properties of the light entering the antennas

(frequency, amplitude, phase), which all conspire to produce an interference pattern that

is a direct representation of the sky. The comparison is most obvious in Figure 2.6.

Radio interferometers with many antennas can, in one way or another, be effectively

represented as a series of two-element interferometers, that is, a pair of antennas that

produce a correlated radio signal. It is, therefore, a useful and commonly used starting
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point for understanding how an interferometer works. To make effective use of the data

produced by an interferometer it is critical to have a deep understanding of the mathe-

matical significance of the received signal. What are its limitations? What effects can be

corrected for? What effects can be safely ignored, and under what circumstances? All of

these questions can be answered through a rigorous mathematical definition.

Currently, there are a few mathematical formalisms that solidify the interferometer

response. In the latter half of the 20th century, much of the mathematics surrounding

radio interferometers was relatively arcane, and contained many (at the time, necessary)

assumptions that limited the scope of the observations. Works such as Bracewell (1956)

and Morris et al. (1964) represented significant attempts to formalise the effects an incom-

ing signal experiences between emission and correlation. However, the approach taken

in these works involved extremely high level mathematics, which made it more difficult

for the wider community to fully incorporate it. An alternative approach was put for-

ward by Hamaker et al. (1996) which involved using 4x4 matrix algebra to condense the

long-form mathematics into something more intuitive. At the same time, it allowed signal

propagation effects to be neatly described by singular algebraic terms, representing a par-

ticular effect or transformation that occurs in the path to correlation. A similar approach,

the one that is derived in this section, involves using 2x2 Jones matrices (Jones, 1941).

This Jones formalism was alluded to by Hamaker et al. (1996), but fully encapsulated by

Smirnov (2011) who demonstrated its advantages over previous formalisms, both in terms

of tractability and extensibility.

Before considering the mathematics of the incoming radio signal, I will first provide

a brief description of the journey of a radio wave from its source. Unlike many other

electromagnetic waves, radio waves are largely undisrupted when travelling through the

Interstellar Medium (ISM), so radio waves that arrive at the Earth’s atmosphere are largely

untouched since the time they were emitted. Similarly, the Earth’s atmosphere is mostly

transparent to radio waves. Since the distance over which the incoming wave is observ-

able (i.e. less than the diameter of the Earth for Earth-based antennas) is much smaller

than the distance it has travelled, a plane-wave approximation is appropriate2. Therefore,

a monochromatic electromagnetic signal propagating through space at an instantaneous

2While this is certainly true for observations of extragalactic objects, some intragalactic and intrasolar
observations require more complex models of the incoming wave (e.g. Sekido & Fukushima 2006).
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point in time can be described by a column vector of two complex cartesian components:

α =

αx

αy

 (2.1)

The complex components αx and αy exist in a cartesian plane perpendicular to the direc-

tion of propagation. They are fully expressed by the classic complex representation of a

wave:

α = Aeiθ = A(cos θ + i sin θ) (2.2)

In this representation, the real part contains amplitude information, whereas the complex

part (or the real part of the exponent, θ) contains phase information.

Almost all radio antenna feeds possess two dipoles sensitive to each component of α,

in order to preserve polarisation information. The signal α, therefore, induces a propor-

tional voltage v that can also be described by a column vector of two complex components

representing the two dipoles:

v =

vx

vy

 (2.3)

An assumption of the Jones formalism is that all signal propagation effects can be de-

scribed by one or more linear transformations of the original signal α. In linear algebra,

this means that we can describe the conversion from a signal α to a voltage v by matrix

multiplication with a 2x2 Jones matrix:

v = Jα (2.4)

In an example setup using two linear dipoles, there are two electronic gain factors associ-

ated with each dipole, so Equation 2.4 expands to:

v =

vx

vy

 =
gx 0

0 gy


αx

αy

 (2.5)

In the case of a two-element interferometer, shown in Figure 2.2, there are two anten-

nas A and B that produce two voltage signals vA and vB, where:

vA =

vAx

vAy

 and vB =

vBx

vBy

 (2.6)

23



2. TECHNIQUES OF RADIO ASTRONOMY

Figure 2.2: A diagram illustrating the simple case of an interferometer of only two antennas: the
two-element interferometer. Two antennas A and B are separated by a distance in metres, b. The
antennas both point in the direction of the unit vector s0, which makes an angle θ with the local
zenith.

These voltage signals are sent to the correlator, a device (that exists in either software

or hardware) which performs a cross-correlation operation between the four components

over some time interval. The output of this operation is described by:

V = 2

〈vAxv∗Bx〉 〈vAxv∗By〉

〈vAyv∗Bx〉 〈vAyv∗By〉

 = 2
〈vAx

vAy

 (v∗Bx v∗By

)〉
= 2〈vAvH

B 〉 (2.7)

where H represents a Hermitian transpose operation. Just as in Equation 2.4, the quantity

V, known as the visibility, can be represented as a linear transformation of the original

signals from the two antennas αA and αB:

V = 2〈JA(αAα
H
B )JH

B 〉 (2.8)

Note that each antenna has a different Jones transformation matrix because the transfor-

mation from electromagnetic signal to voltage could be different for each antenna. Fol-

lowing the notation of Smirnov (2011), the central quantity and the factor 2 in the above

equation is redefined as the brightness matrix B = 2(αAα
H
B ), and the Jones matrices are

assumed to be constant over the averaging interval, leading to:

V = JABJH
B (2.9)
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which now simply describes the output of an ideal interferometer as an incoming electro-

magnetic signal B detected by two separated antennas A and B with transformations to

voltage described by JA and JB respectively.

One of the defining problems of any radio interferometer is that the incoming astro-

nomical signal is detected by antenna B some finite time after it is detected by antenna

A. This time delay between successive detections due to the placement of the antennas is

known as the geometric delay, and causes a phase shift in the signal at B with respect to

the signal at A that must be corrected for to prevent destructive addition of signals from

the direction of observation. To calculate this phase shift and how it can be applied to the

brightness matrix B, consider the two-element interferometer in Figure 2.2. The antennas

A and B are separated by a distance b that produces a path length difference:

∆p = b sin θ (2.10)

which corresponds to a time delay of:

τ =
∆p
c
=

b sin θ
c

(2.11)

which produces a phase delay relative to the signal at A of:

φ = 2πντ = 2π
c
λ

b sin θ
c
= 2πbλ sin θ (2.12)

where the delay, b, is changed to be expressed in wavelengths instead of metres. Note

that the phase shift φ is dependent on both time τ and frequency ν, as θ will change as the

source traverses the sky. In three dimensions, the phase difference φ can be expressed as

the dot product of the pointing vector s0 and the antenna separation in wavelengths bλ:

φ = 2πbλ · s0 (2.13)

To apply this quantity to B, we arrange it into the scalar matrix K:

K =

e−iφ 0

0 e−iφ

 (2.14)

and since K is able to commute with other Jones matrices, it can then be applied to B
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through another matrix multiplication:

V = JAKBJH
B (2.15)

which describes the interferometer response with the geometric delay accounted for.

However there are several limitations to the description of the visibility matrix in Equa-

tion 2.15. Firstly, the K correction is defined in a coordinate frame centred on antenna

A which, while valid, is inconvenient in an interferometer of more than two antennas.

It would be more convenient to have the ability to define K for all antennas from some

arbitrary reference point (which may also be an antenna). Furthermore, there is actually a

mismatch in coordinate frames between K and B, since K is defined in a cartesian frame

with z axis pointing towards the zenith, and B is defined in a cartesian frame with z axis

pointing towards the source direction. Secondly, we have assumed that the incoming sig-

nal α originates from a single perfectly point-like source in exactly the direction indicated

by the pointing vector s0. In reality, the quantity α varies across the sky as it consists of

many sources in all shapes and sizes. Lastly, it is entirely unclear how one could go from

the quantity V to a useful image of the radio sky. To achieve this, and to account for the

limitations described above, there is further work that needs to be done in defining both

the geometric delay and the incoming signal in a shared frame of reference.

2.4 Aperture Synthesis

The conceptual foundation on which radio interferometers are built is the uvw coordi-

nate system, or uv coordinate system. The uv coordinate system, illustrated in figure

Figure 2.3, is a cartesian coordinate system which defines a plane perpendicular to the

direction of the source. The coordinates are most often defined in units of wavelengths,

such that a point in the uv system at one frequency will have different coordinates at an-

other frequency. The axis oriented towards the source, the w axis, is very often chosen to

be parallel with the pointing vector s0, which also means that uv coordinates have a time

dependence as the source moves across the sky. As per convention, the u and v axes are

oriented east and north respectively. Antenna positions are defined in the uv plane, such

that an antenna p operating at a certain time and frequency exists in the uv plane at a point

up = (up, vp,wp).

Now, to represent an arbitrary point on the sky we can define an offset σ that is or-
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Figure 2.3: Representations of the uv coordinate system with w axis oriented towards the source
indicated by the star. The left image views the system side-on, with the u axis projected into the
page. The right image views the system from above, with the w axis pointing out of the page. The
antennas p and q are defined in the uv plane, along with their separation.

thogonal to s0, which means we can define a new unit vector s = s0 · σ that points to a

location on the sky tangent plane. The vectors s and s0 have three components, l, m, and

n that are formally defined as direction cosines, and since s has a magnitude of unity, by

definition, we can write n in terms of the other two components as n =
√

1 − l2 − m2. The

components l and m exist on a plane that effectively projects onto the sky in the ‘far-field’,

following the assumption about plane waves we made earlier. This also means that the

l,m plane exists parallel to the uv plane.

Now we have defined the antenna position up in the uv plane, we can write an equation

for the phase difference due to the geometric delay at antenna p relative to u = 0 in a signal

coming from direction s0 as:

φp = 2πup · s0 = 2π(upl0 + vpm0 + wp

√
1 − l2

0 − m2
0) = 2πwp (2.16)

as s0 = (l0,m0, n0) = (0, 0, 1). Turning back to the two-element interferometer from

section 2.3, since we have now defined φp relative to u = 0 instead of the exact location

of antenna A, we require two delay corrections for both antennas A and B:

KA =

e−iφA 0

0 e−iφA

 and KB =

e−iφB 0

0 e−iφB

 (2.17)
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which is applied like so:

V = JAKABKH
B JH

B (2.18)

This equation can be further generalised to the visibility from any two antennas p and q:

Vpq = JpKpBKH
q JH

q (2.19)

Therefore, to summarise, Equation 2.19, represents a radio signal B, coming from direc-

tion s0, that is detected by two antennas separated by a distance up − uq. The geometric

delay relative to u = 0 is corrected for by the phase delay matrices Kp and Kq, and the

complex gains of the antenna instruments are corrected for by the gain matrices Jp and

Jq.

Though, this is still a signal coming from a single, perfect point source at the so called

‘phase centre’ s0. To relax this assumption, we must recognise that B will vary over the

‘on sky’ coordinates l and m. This also means however that both K and J will vary over

the sky aswell.

It is simpler to understand the variation of K by imagining the small deviations of σ

from the pointing vector s0 in Figure 2.2. When the signal direction deviates from s0 the

geometry of the setup changes, and therefore K must also change to compensate, leading

to an additional direction dependent delay correction K(σ). The total delay correction

to the system therefore has two components: one component to correct for the geometry

of the relative antenna positioning, and another to correct for deviations from the phase

centre: σ. If we assume that the primary geometric delay φ = 2πu · s0 = 2πw is handled

directly in instrumentation (as it often is), then we are simply left with the residual delay

due to varying signal direction K(σ). Redefining Equation 2.16 we have:

φp = 2πup · σ = 2π(up · s − up · s0) = 2π(upl + vpm + wp(
√

1 − l2 − m2 − 1)) (2.20)

The direction dependence of J is far more tricky, and represents one of the more recent

challenges in radio interferometric imaging. Following the notation of Smirnov (2011),

the J term is decomposed into a direction dependent term, Ep(l,m), and a direction inde-

pendent term, Gp, for each antenna such that:

Jp(l,m) = GpEp(l,m) (2.21)
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Historically, the direction dependent effects indicated by E have largely been ignored,

or quietly (and sometimes unknowingly) approximated by other correction factors. This

is largely caused by two factors: the computational complexity of dealing with it, and

a lack of need to perform measurements at significant distances from the phase centre.

It is only in the previous couple of decades or so that instruments capable of observing

significant portions of the sky have emerged (instruments such as the LOw Frequency

ARray (LOFAR)), and wide-field observations have become more common, making the

E correction more important. Furthermore, the explosion in processing power within

the 21st century has allowed it to become a practical option. For a detailed treatment

of direction dependent effects and ways of dealing with them, see the works of Schwab

(1984); Bhatnagar et al. (2008); Carozzi & Woan (2009); Smirnov (2011); Smirnov &

Tasse (2015) and the references therein. In this work I will proceed in the traditional

manner, and assume that the contribution of E is negligible over the field of view and

ignore it (apart from the w term correction described in section 2.8, and the primary beam

correction in section 2.9).

To finalise the transition from visibilities to an image, we make the assumption that

visibilities from each point on the sky add up linearly, which means that we simply inte-

grate B over all points l,m:

Vpq = Gp


"
lm

KpBKH
q

dl dm
√

1 − l2 − m2

 GH
q (2.22)

The scalar delay matrices may commute, so expanding the term KpKH
q we have:

KpKH
q = e−iφpeiφq

= e−i(φp−φq)

= e−i2π(uq·σ−uq·σ)

= e−i2π(upql+vpqm+wpq(n−1))

(2.23)

and therefore:

Vpq = Gp


"
lm

Be−i2π(upql+vpqm+wpq(n−1)) dl dm
√

1 − l2 − m2

 GH
q (2.24)

The above equation is the first glimpse of how one might construct an image from the
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visibilities V, since it is actually a 3D Fourier Transform between the visibilities V(u, v,w)

and the sky map B(l,m, n). However, a three-dimensional Fourier transform is incredibly

expensive to compute, and the calculation is most often reduced to a two-dimensional

transform by assuming coplanarity of the antennas. In other words, it is assumed that the

term wpq is essentially zero, yielding the much simpler calculation of a two-dimensional

Fourier transform:

Vpq = Gp


"
lm

Be−i2π(upql+vpqm) dl dm
√

1 − l2 − m2

 GH
q (2.25)

with the explicit Fourier relationship:

V(u, v) = F [B(l,m)], B(l,m) = F [V(u, v)] (2.26)

This relationship is also known as the van Cittert-Zernike theorem (van Cittert, 1934;

Zernike, 1938; Thompson et al., 2017), and is the cornerstone of producing a sky image

with a radio interferometer. Naturally, directly calculating the Fourier transform would

also be prohibitively time-consuming because of the O(N2) computational complexity, so

Equation 2.25 is most often performed using a Fast Fourier Transform (FFT) such as the

Cooley-Tukey FFT (Cooley & Tukey, 1965). This requires a prior step known as ‘grid-

ding’ to map the continuous visibilities onto a discrete two-dimensional image, which can

then be transformed (see Thompson et al. (2017) for a full explanation of gridding). From

the properties of the Fourier transform, and the knowledge that the resulting image of the

sky must be real-valued, we can infer that each visibility actually contributes two points

in the uv plane. This therefore means that the visibility V is Hermitian symmetric:

Vpq(u, v) = VH
pq(−u,−v) (2.27)

This relation stems from the quantities upq, vpq and wpq in Equation 2.23. There is an

inherent ambiguity in the baseline separation vector upq since it is exactly equivalent to

−uqp, and the choice between the two is entirely arbitrary. As a result, the choice of sign

in the exponent of the delay term in Equation 2.25 is also entirely arbitrary, but convention

assumes the negative. In any case, no further useful information is added to the uv plane

because of Equation 2.27.

The following sections will detail the practicalities of calculating the direction inde-
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pendent correction factor G over time and frequency, as it often encompasses more than

just one physical effect.

2.5 Calibration

Like most problems in radio interferometry, there is no general, universal solution to

visibility calibration. This largely stems from a mixing of complexity and variable needs;

there exists some perfect correction that exactly produces the ‘true’ visibilities for all

spatial frequency coordinates u, v,w, frequency ν, and time t, but calculating a perfect

correction is entirely unnecessary if you are only interested in the inner 10′ of the field-

of-view, for example. In addition, the depth and complexity of the technique introduces

significant room for ‘unknown unknowns’ which cannot, by definition, be compensated

for. As a result, a ‘good’ radio interferometer calibration is more specifically a correction

that is accurate enough for a specified set of research goals. That being said, there is a

common set of calibrations and corrections that the vast majority of research goals require.

This section will briefly cover these.

2.5.1 Flagging

The topic of radio interference and flagging is more deeply explored in chapter 3, but it is

introduced here to highlight its significance in the overall calibration process.

Calibrating the complex visibilities is mostly a mix of extrapolation and interpolation.

There is a good understanding over which parameters certain quantities vary, and to what

magnitude. Therefore, we can use this knowledge to make good, yet simple corrections to

the data. The immediate problem is the presence of outliers; interpolating or extrapolating

in the presence of outliers does not give good results.

As a radio interferometer is observing it will likely pick up radio emission that is

entirely unrelated to the astronomical source being studied. Modern society uses radio

waves for a wide range of applications, and to some extent our society could not exist

as it is without using radio waves. Terrestrial radio signals are more likely to be very

strong compared to the trickle of emission that reaches us from astronomical sources, so

radio interferometers — which are designed to observe astronomical sources — can be

blinded by these strong radio signals. Signals not relevant to the astronomical sources

being studied are broadly labelled as Radio Frequency Interference (RFI).
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The impact of RFI is very unforgiving, for without pre-correlation intervention, it

overpowers the signal from the astronomical source for its duration, and the observing

time is effectively lost. After correlation, the only thing left to do is to identify RFI sig-

nals in the visibilities, and mark them as such. This process is called flagging. Flagged

visibilities are not included when extrapolating or interpolating calibration solutions as

they would be a significant outlier and would skew the calculated solutions, so it is vital

that as much RFI is flagged, and is done so with the best possible degree of accuracy. This

ensures minimal data loss, and maximises the quality of the overall calibration to follow.

Poor calibrations due to poorly flagged visibilities ultimately manifest as reduced image

fidelity; the overall quality of the final image of the sky. Images with poor fidelity can

contain artefacts that could be misinterpreted as real sources, especially by automated al-

gorithms. Furthermore, the flux scaling of sources may be incorrect, leading to erroneous

measurements and, therefore, erroneous conclusions.

2.5.2 Phase Calibration

As the incoming radio signal propagates through the atmosphere, the content and optical

depth of the troposphere in between the receiver and the source is constantly changing

over the duration of the observation (see Figure 2.4). At 1.5 GHz this primarily impacts

the visibility phase, which must be known to a high level of accuracy to prevent any

destructive interaction between Fourier components in the final image. Observations of

the Lockman Hole and the candidate binary black hole documented in this thesis used the

phase-referencing technique to correct for this effect.

Creating an optimal phase-referencing strategy is highly dependent on the character-

istics of a particular interferometer. It requires the consideration of many factors such

as atmospheric conditions, baseline length, antenna slewing speed, and so on (Thomp-

son et al., 2017). However, the primary consideration is to select any unresolved source

that is strong enough to produce clear phase measurements well above the system noise.

Additionally this source should be located close enough to the target to ensure that the

area of sky observed can be assumed to be the same within a single target-reference cy-

cle. This allows phase solutions derived from the reference source to be extrapolated to

the target signal. An unresolved source allows the calibration to ignore instrumental ef-

fects (such as variable baseline length) and purely track the atmospheric fluctuations, as a

single unresolved source at the phase centre is easily modelled.
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Figure 2.4: An illustration of how atmospheric pressure changes produce a time variable optical
depth, which drives short timescale phase fluctuations in the received radio signal. This effect is
corrected for by observing a phase calibrator source via ‘phase referencing’.

2.5.3 Amplitude Calibration

The signal that emerges from the correlator has lost physical meaning for a number of

reasons. One reason is that, despite radio waves being disrupted much less by the atmo-

sphere, there is still some attenuation that reduces the strength of the incoming signal.

Another is that pointing errors in the antennas cause uncertainty in the output power. If

an antenna is, in reality, pointing slightly off source, but the system reads as on source

there is an error introduced to the output signal due to the directional gain of the an-

tenna itself. Finally, and most importantly, the conversion of an incoming radio signal to

an output voltage signal (as in Equation 2.4) is not an equal conversion; amplifiers and

other electrical components introduce electronic gain. The net effect of these particular

processes create a proportionality relationship between the incoming signal and the visi-

bility amplitude, one that can be corrected by observing a well known and well modelled

flux calibrator source, and deriving calibration solutions from the difference between the

known flux from the calibrator and the measured visibility amplitude. The chosen source

should ideally be a bright point source with minimal variability to minimise time depen-

dent errors in the model.

2.5.4 Bandpass Calibration

One of the developments of modern interferometer arrays is a massively increased observ-

ing bandwidth. Fractional bandwidths (νwidth/νobs) between 50-100% are not uncommon,
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enabling shorter observations with a higher sensitivity. In instrumentation, this is achieved

by dividing up the bandwidth into spectral windows, which are then further subdivided

into frequency channels. Because of instrumental effects, each antenna, and the interfer-

ometer as a whole will have a frequency dependent response that must be calibrated for.

Figure 2.5 shows an example bandwidth response for an e-MERLIN antenna. Since the

bandpass response has minimal temporal variance, a short integration on a ‘bandpass cal-

ibrator’ is enough to generate calibration solutions for the whole observation. Thus, the

bandpass calibrator is often also the flux calibrator referred to in subsection 2.5.3, though

in principle any bright source with a featureless spectrum can be used.

Figure 2.5: An example bandpass response calibration taken from a single observation of the
Lockman Hole used in this thesis. The data indicates the time-constant corrections applied to the
1024 channels spread across eight spectral windows at L-band (21 cm) for e-MERLIN.

2.5.5 Self-calibration

Inevitably, residual errors will exist in the visibility phases and amplitudes. When using

phase-referencing, the periodic phase measurement will only give an approximation of

the phase during integration on the target, and is biased in its correction towards large-

scale phase fluctuations. Small-scale phase errors will persist on scales of a minute or

less. This residual error can be corrected through self-calibration.

Recall that a baseline produces the incoming signal B scaled by some pair of gain
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factors that is unique to each antenna:

Vpq = GpBGH
q (2.28)

At the point where self-calibration is an available option, the visibilities will normally

have already gone through some other calibration such that an approximate model of the

sky BM(σ) can be made. Alternatively, the patch of sky being observed may have already

been observed previously. This sky model has corresponding visibilities Vpq,M on the

baseline pq, calculated from the Fourier transform relationship. By leveraging the sky

model, one can generate further complex gain corrections that minimise the gap between

the model visibilities and the observed visibilities, ∆Vpq. This is done through a least

squares approach:

∆Vpq = |Vpq − Vpq,M |
2 = |Vpq − GpBMGH

q |
2 (2.29)

With perfect knowledge of every complex gain factor G, and a perfect sky model such that

Vpq,M = Vpq, the difference ∆Vpq will be zero in all cases. By iteratively updating Vpq,M

with iteratively improved complex gains and an improved sky model, residual errors in

the visibilities can be significantly reduced. The process of generating BM is described in

section 2.6 and section 2.7.

2.6 Constructing an Image

An observation by a radio interferometer is simply a process of sampling many visibilities

over an extended period. Each collected visibility samples a certain uvw coordinate at a

specific time t, and frequency ν. Furthermore, because of the rotation of the Earth, the

interferometer naturally samples different points in the uv plane as time passes; this is

the fundamental mechanism of aperture synthesis. In the l,m plane, known as the image

plane, when the visibility is Fourier transformed, a single visibility sample corresponds

to a single Fourier component. Adding further visibility samples at different points in the

uv plane adds further Fourier components to the image, and progressively improves its

quality. This is best understood by visualising the changes in the image that occur as more

visibilities are added. Figure 2.6 shows the result of transforming a single visibility (with

a further mirrored visibility from the Hermitian relation in Equation 2.27) on a shorter

baseline, and a longer baseline some time later. The illustration shows how sampling

different points in the uv plane produces different outcomes in the image plane. Longer
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Figure 2.6: Images showing the different scales sampled by a shorter baseline (top) and a longer
baseline (bottom). Each image shows a single visibility taken at a different time, and includes the
mirrored visibility indicated by Equation 2.27. Since only a single visibility is used to construct
the output image (right), it contains only a single Fourier component.

baselines produce components with shorter spacings in the image plane, and therefore

sample smaller scale structures. As an interferometer continues to observe a source, the

antennas appear to move their position in the uv plane because of the rotation of the Earth,

so simply by the passage of time an interferometer can sample many different parts of the

uv plane. This is further illustrated in Figure 2.7, which shows the effect of continued

integration on a source. As more visibilities are added to the uv plane the image of the

target becomes progressively better. Figure 2.7 also shows the significant improvement

in image quality from observing at multiple frequencies simultaneously (recall that the

spatial frequency coordinates u, v,w are frequency dependent). Each additional frequency

observed acts as a multiplier on the total Fourier components added to the final image
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Figure 2.7: Two images showing the dramatic increase in image quality from an increased band-
width and increased exposure time. The top image shows a six-hour observation observing a
single frequency. The bottom image shows a twelve-hour observation of 1024 separate frequency
channels. Since each time and frequency step fills the uv plane at a new location, further structural
information is added to the final image (right) as unique Fourier components are progressively
added to the image.
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at each timestep. Further consider that the image shown in Figure 2.7 uses only two

antennas forming a single baseline, but modern interferometer arrays contain many more

antennas. The VLA for example contains 27 antennas, giving well over 300 baselines.

The number of baselines is a further multiplier for the number of Fourier components

added to the final image at each timestep! Because of the wide bandwidths observed by

potentially hundreds of baselines over many hours, measuring millions of visibilities in

a single observation is readily achievable. The combination of wide bandwidths, and an

ever increasing number of radio antennas in a given array, is the heart of why modern

radio observations can produce such high quality images of the radio sky.

The Fourier transform of the filled uv plane produces an image of the sky with one

remaining error: the point-source response. This raw sky map, known as the dirty image,

is effectively the true sky map convolved with the Point Spread Function (PSF) of the as-

sociated interferometer, which causes image artefacts due to the sidelobes of the PSF. In a

filled-aperture telescope the point-source response generally consists of a single relatively

simple component. In contrast, the PSF of an interferometer, which does not use a filled

aperture, can have many different components of variable complexity. In certain cases, it

can even produce the illusion of sources that do not actually exist. Mitigating the effect

of the PSF requires a uv plane with as few gaps as possible, i.e. an interferometer with as

close to complete aperture coverage as possible. When imaging, the effect of the PSF is

removed by the deconvolution algorithm CLEAN and its successors.
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2.7 The CLEANing Process

The CLEAN algorithm (Högbom, 1974) provided a significant jump in radio image de-

convolution. The central idea is to consider all emission in the dirty image as the result

of a superposition of many point sources, arranged according to the sky brightness dis-

tribution B(σ). Areas of the image with little or no emission consequently have little or

no sidelobe artefacts (from local emission specifically), and naturally areas with strong

emission have strong sidelobe artefacts. The uncorrupted synthesised beam with the PSF

sidelobes removed, known as the clean beam, is easily obtained by fitting the central peak

of the PSF. It is possible, therefore, to remove the effect of the dirty beam (the PSF)

on the image by finding and marking as many of these point sources as possible, since

they collectively form the entire image. This is done through an iterative, top-down ap-

Figure 2.8: A radio image before (left) and after (right) processing by the CLEAN deconvolution
algorithm. The structure that is removed from the left image is the result of the interferometer
PSF. Image credit: Högbom (1974)

proach: the strongest point in the image is multiplied by a Kronecker delta function and

then convolved with the dirty beam. The result is subtracted from the dirty image and

the process is repeated until some criteria, usually defined by the user, is met. After the

criteria are met, all of the delta functions found during the iterations are multiplied by the

clean beam, and added back to the residuals of the dirty image. This produces an image

with the ‘real’ emission preserved, and the sidelobe artefacts removed. Great care must

be taken to ensure that delta functions are placed at positions of real emission, otherwise

CLEAN can introduce sources of emission that do not actually exist. A common problem

with images generated from sparsely filled uv planes is making sure that CLEAN does not
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see the sidelobes originating from another strong, nearby, source as genuine independent

sources. Using the example of Figure 2.8, it is possible that CLEAN may identify one of

the sidelobe artefacts as a point of real emission, and mistakenly introduce a fake source

to the cleaned image. It is also possible that sidelobes from multiple discrete sources may

overlap and add together, creating the illusion of a brighter source. Advanced cleaning

algorithms contain as many safeguards as possible to prevent this from happening, but it

remains an inherent problem of the technique.

There are some caveats that apply to an image produced by CLEAN, most notably

that it is a best-case representation of the sky. Fundamentally, it is not a direct image

because we have replaced the point source response of the interferometer with a model

of the clean beam. Secondly, though the Högbom CLEAN works for extended sources,

its effectiveness begins to diminish relative to its performance as the complexity of the

source increases (Cornwell, 2008). Numerous other variations of the CLEAN algorithm

have been designed and implemented though most, if not all, share the same fundamental

iterative approach of identifying real emission, and using that information to separate out

the contribution of the PSF sidelobes.

2.8 Wide-field Imaging

In section 2.4 we assumed that the wpq term in Equation 2.24 simplifies to wpq = 0. How-

ever there are several scenarios where this is no longer a valid simplification. In general,

the error introduced to the final image by assuming wpq = 0 scales with distance from the

phase centre, or the direction s0. The magnitude of the error is clearly proportional to how

much the true value of wpq exceeds wpq = 0. Therefore, there are two ways of avoiding

the error introduced by the simplification. Most often radio astronomers simply accept

that there is a limit on the field-of-view of their observation; as the magnitude of the wpq

error scales with distance from the phase centre |σ(l,m)| they limit their measurements

to within some calculated uncertainty range. Many observations are targeted directly at

the source of interest so in these cases the astronomer does not need large fields-of-view.

Another more limiting approach is to constrain the length of the baselines in the antenna

array, since this will limit the fundamental value of wpq regardless of pointing. Other de-

signs constrain the placement of the antennas along a straight line, normally East-West,

and align the w axis with the rotation axis of the Earth (see section 3.1.2 of Thompson

et al. (2017) for a detailed explanation of this technique). This is the approach taken by
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the Westerbork Synthesis Radio Telescope (WSRT, Baars & Hooghoudt 1974; Hogbom

& Brouw 1974).

For many applications including the work conducted in this thesis, wide fields-of-view

are desired, so the error introduced by simplifying wpq must be accounted for. The most

common approach is to utilise the so-called ‘w-stacking’ technique, which calculates mul-

tiple images using a subset of values for wpq. By taking the inverse Fourier relationship

of Equation 2.24, this time for the full antenna array, and assuming perfect gain we can

write3:

B(l,m, n) = n
$

V(u, v,w)ei2π(ul+vm+w(n−1))dudvdw (2.30)

To simplify the three-dimensional integral we instead sum multiple two-dimensional

integrals together (in this case images), and apply a further w-correction to each image

over a discrete range of values for w:

B(l,m) = n
wmax∑
wmin

ei2πw(n−1)
"

V(u, v,w)ei2π(ul+vm)dudv (2.31)

This is the method implemented by the WSCLEAN imager (Offringa et al., 2014)

for wide-field imaging, which is used throughout this thesis. Less formally, this process

can be written as the construction of an image of the sky from a series of fast Fourier

transforms of the discretized visibilities:

B(l,m) =
wmax∑
wmin

ei2πw(n−1) × FFT[VΠ(u, v,w)] (2.32)

where the values of w over which the summation (and the FFTs) is calculated is set by the

user, though WSCLEAN itself calculates an optimal set of w values by default.

2.9 Primary Beam Correction

Another direction dependent effect that is universal amongst interferometers (or all beam-

forming radio antennas for that matter) is the direction dependent power response of an

antenna known as the primary beam. The primary beam describes the reduction in power

sensitivity of the antenna to signals coming from directions other than the pointing direc-

tion. Analytically deriving the frequency dependent primary beam response, Pp(l,m), of a

3Although the 3D Fourier transform technically produces a sky sphere, the sky signal of interest is
recovered from an infinitely thin spherical shell with a radius equal to 1 in the l,m, n domain.

41



2. TECHNIQUES OF RADIO ASTRONOMY

given antenna is extremely difficult, and requires the consideration of many factors includ-

ing, but not limited to, antenna design, shadowing from the receiver support structure, and

dish size. Thus, P is often calculated numerically from observations of known sources, or

by mapping the antenna surface via holography (e.g. Hunter et al. 2011). In practice, the

primary beam is often generated and applied to the final image in the l,m plane, with the

Full Width at Half Maximum (FWHM) acting as the limit of uncertainty for the image.

The primary beam response calculated for the Lockman Hole field presented in chapter 6

is shown in Figure 2.9.

Figure 2.9: An approximation of the e-MERLIN primary beam correction applied to the Lockman
Hole field.
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Chapter 3

Identifying RFI with Machine Learning

This chapter will introduce the concepts behind the field of machine learning, and explain

the specific model architecture used in this experiment. This will lead directly into the

discussion of section 3.3 and onwards, which outlines how machine learning was used for

identifying radio interference in astronomical observations.

3.1 Introduction to Machine Learning

To the majority of non-experts the field of machine learning can seem unreasonably

opaque, with words that seem to have different meanings depending on the author, the

time of day, and perhaps even the current lunar phase. This is made worse by the plethora

of machine learning models that all seem to have their own set of acronyms 1, nouns, and

verbs to describe its function. This chapter will attempt build an understanding of the

wider field of machine learning from the ground up, with a focus on the methods used in

this piece of research and without using esoteric language. It will then outline the research

conducted using the methods described, and analyse their success.

First, consider the cliché question: what exactly is machine learning? Broadly, the

term describes a methodology where some kind of pattern exists - normally represented

in a computer dataset - and one seeks to create a model of this pattern. The model they

seek to create of this pattern is contained within a machine learning model, that is then

used to identify and/or predict a similar pattern in some unknown dataset. Before the

model can be used for prediction, it must ‘learn’ the pattern from the original dataset. The

vast majority of machine learning models ‘learn’ through an iterative approach, that can

1Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Gated Recurrent Units
(GRUs), Long Short-Term Memory (LSTM) Networks; just a handful of offences
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be most simply described as a series of educated guesses. At each iteration a ‘loss’ is

calculated to represent how good or bad the current iteration was at guessing the pattern;

a good guess has a low loss. Each iteration has access to the performance of every itera-

tion that came before it, and one can use this knowledge to steadily converge towards an

optimal model of the desired pattern. The strength of this methodology is that it is inde-

pendent of any analytical constraint and entirely based on empirical evidence; any pattern

that exists in reality can be modelled given a sufficient level of starting knowledge. This

strength must be tempered by caution however, as no new information is actually created

and the model is only as good as the data it ‘learns’ from. There are many scenarios that

must be considered, for example, what if the data provided to the model was incorrect

or misleading in some way? What if multiple patterns exist in the same dataset? What

if the model learns a pattern in the dataset, but it is not the pattern you want to extract?

What if, between the time of training and prediction, the pattern has changed? Answering

questions like this and accounting for the numerous possibilities is one of the fundamen-

tal problems of machine learning. The model itself stores the pattern in a collection of

operations that work together to map the input data to the desired output. A simplified

version of this process is described in section 3.2. The most advanced machine learning

models that exist today (such as GPT-4, see OpenAI et al. 2023) still use this fundamental

concept, albeit to a significantly larger and more complex degree.

Given that machine learning models are fundamentally empirical models, it’s no sur-

prise that they have been extensively used for observational astronomy, and any task that

seeks to extract information from large blocks of data such as what will be produced

by the SKA and the Rubin Observatory (Ivezić et al., 2019). Applications of machine

learning in the wider field of astronomy include, but are not limited to:

• Radio transient detection (e.g. Bethapudi & Desai 2018)

• Solar Flare prediction (e.g. Qahwaji & Colak 2007)

• Identification of near-Earth objects (e.g. Lieu et al. 2019)

• Galaxy classification (e.g. Aniyan & Thorat 2017)

• Exoplanet identification (e.g. Shallue & Vanderburg 2018)

• Search for Extraterrestrial Intelligence (SETI) (e.g. Ma et al. 2023)
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3.2 Fundamental Concepts

The question of “How can a machine learn?" is best understood by considering a simple

classification problem. Classification is something humans do instinctively, we see the

picture of a dog in Figure 3.1 and immediately know that we are looking at a dog. But we

only know this because we have seen dogs for our entire lives; if an alien were to visit us

from another planet it’s likely they would have no clue what this mysterious creature is.

We are also able to store past experiences in our brains and remember that something of

this shape, size, colour, smell (and so on) is a dog. In addition, humans have evolved to

develop the biological mechanisms necessary to detect and measure all of those properties

in the first place, and then cognitively condense all that information into a single concept:

a dog.

From this point of view, learning can be understood more specifically as the ability to

absorb, store, and later recall information. Computers already have the ability to store and

recall information, and modern technology allows them store quite a significant amount of

information. Therefore, the problem of learning or, to invoke the relevant name, machine

learning is narrowed to a problem of information absorption. To go back to Figure 3.1,

the question becomes “How can the information in this image be condensed such that it

represents the concept of a dog?". This is a problem of classification.

An intuitive approach to classifying the image would be to use the information in

the image to calculate a single number representing the ‘dogness’ of the image. A high

‘dogness’ score means the image likely contains a dog, a low score indicates the opposite.

The simplest way to calculate such a score can be done by one of the simplest machine

learning methods: a linear classifier.

A linear classifier implements this scoring system via a single, simple multiplica-

tion between two matrices x, which represents the image Figure 3.1, and W, which is a

weighting factor representing the translation from image data to a ‘dogness’ score. This

operation can be written like so:

f (x,W) =W · x (3.1)

where the output f is a single number representing the ‘dogness’ of x. The weight ma-

trix W applies a weighting to each pixel in the image in an attempt to yield the most

accurate ‘dogness’ score for the input image. For example, pictures of dogs tend to have
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Figure 3.1: A picture of a golden retriever from the Stanford Dogs benchmark dataset (Khosla
et al., 2011).

them located right in the middle of the image (they are wonderful after all) so a better

W would likely downweight the contribution of edge pixels to the ‘dogness’ score, since

dogs will rarely be in the edge of the image. Conversely, if we were instead trying to

detect something like the Loch Ness Monster in an image, that would presumably be

cryptically located towards the edge of most images, and the best weight matrix would

upweight those pixels for the classification instead.

However, manually crafting an optimal weight matrix is laborious and not a good use

of time. It is instead selected through an automatic, iterative, trial-and-error-like process

that sits at the heart of machine learning. To implement this method, we first construct

a way of quantifying exactly how bad the weight matrix W has performed. Note, that

during training of the linear classifier we have access to the ground truth of our data, so

we know that Figure 3.1 contains a dog and we can use that information to improve W.

Assessing the performance of W is done through a ‘loss function’. There are an infinite

number of loss functions, but generally speaking the machine learning community uses a

select few that have been proven to perform well and are simple and reliable. An example

of one of these loss functions is known as the L1 loss.

To flesh out the example a bit more, imagine that the linear classifier in Equation 3.1

produces a ‘dogness’ score where zero indicates not a dog, and positive one indicates a

dog. We have passed in to the classifier the image in Figure 3.1 which we’re going to label

as x1. The output f (x1,W) is labelled as y1. We know that there is a dog in the image, so

we also know that y1 should at least be as close to the number 1 as possible. We can assess

the performance of our selection of W by scoring it based on how far away the output y1
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is from the ground truth t1. The L1 loss function implements this using Manhattan or

Taxicab distance:

LL1(y) = |t − y| (3.2)

where t is the ground truth of the image x. Imagine that our classifier produced a poor

score of -3.5 for the image in Figure 3.1. Then the L1 loss would be:

LL1 = |t1 − y1| = |t1 − f (x1,W)| = |1 − (−3.5)| = 4.5

which is a direct quantisation of how badly the particular W performed. Now imagine that

the selection of W was good, and the score was instead y1 = 1.04. Now the loss would

be:

LL1 = |1 − 1.04| = 0.04

The output of the loss function can therefore be used to inform how much the weight

matrix needs to change to improve the next attempt; a larger loss means a worse prediction

and greater change needs to be made. How that change is made to W is a process known as

optimisation, which today is mostly implemented through variants of stochastic gradient

descent (Robbins & Monro, 1951). A detailed explanation of that method is well beyond

the scope of this document, but see Kingma & Ba (2014) for a detailed explanation of

the popular Adam optimiser. Broadly speaking, the process of optimisation involves the

calculation of, either numerically or analytically, the value of dL
dW multiplied by some scale

factor (also known as the learning rate), and using that to update the values within W.

Finally, to make the linear classifier a tool of prediction, we iterate over many images

x = x1...xN , and for each image go through a continuous loop of scoring, loss calculation,

and weight matrix optimisation. Through these iterations, the weight matrix W will begin

to ‘learn’ and store the characteristics of what a dog looks like, and be able to use that

information to give a ‘dogness’ score to an an image it hasn’t seen before through a simple

multiplication of the image data. The method described above now fulfils the concept of

learning described at the beginning of this section: the linear classifier has the ability to

absorb, store, and later recall information.

However, the method of training and the linear classifier described above have several

limitations, a few of which I will describe. Firstly, the linear classifier would be restricted

to classifications of dogs; it would be unable to classify anything other than dogs (it would

likely struggle to even classify different breeds of dogs, since they vary in appearance and
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size). This limits its scope of application and fundamentally makes the model less useful.

Secondly, the method of using a simple multiplication by a single weight matrix W

means the information stored in W is whatever set of values produces the smallest total

loss over all inputs xn. Aggregating over such a large amount of data in such a simplistic

way dampens the accuracy of the classifier because there is a great deal of unnecessary

or unwanted information in each image. For example, many of the images in the Stan-

ford Dogs dataset contain backgrounds of grass or sand, but this background is entirely

irrelevant to the desired classification: whether a dog is on grass or sand, it is still a dog.

Overfitting to this redundant information only reduces the ability of the model to gener-

alise with no added benefit.

Lastly, we have dedicated all our input images to training the network, so we don’t

have a way of fairly testing how it is performing at each stage of training. Normally,

training datasets are split into three groups: training, validation, and test data. Training

data is the largest partition, and is used to actually train the model as described above.

Validation data is used to further inform the direction the training should go, specifically to

tune the model’s hyperparameters. It effectively allows an ad hoc measure of performance

as the model is being trained that is indicative of model quality instead of how well it is

learning from the data (which is indicated instead by the loss). Test data is typically used

as the final performance test, since the model will never actually encounter it at all. The

overall objective of the training process is to produce a model with the best performance

when operating on the test data.

For tasks such as image classification, significant performance gains can be realised by

increasing the depth and complexity of the function f . Indeed, much of machine learning

research is based loosely around this goal. By introducing many more parameters to f

and combining them in a variety of configurations, accuracies upwards of 90% can be

achieved for the task of classifying all dog breeds in the Stanford Dogs dataset (Do et al.,

2022).

3.2.1 The Convolutional Neural Network

One of the key advancements in machine learning was the discovery and quick prolif-

eration of the Convolutional Neural Network (CNN). Inspired by processes occurring in

the visual cortex, the ‘Neocognitron’ proposed by Fukushima (1980) was the first to use

a series of convolutions arranged as a neural network to detect patterns in images inde-
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pendent of their position in the image. The key feature of the Neocognitron which has

allowed an explosion in the use of CNNs is the idea of layered representations. Because

the convolutions are structured in a hierarchy, each convolution layer acts on the output of

the previous layer. Therefore, lower layers that are closer to the raw input detect simpler

features. Higher layers that operate on the output of the lower layers will detect higher

order ‘features of features’. Examples of what the lower layers in a CNN might become

sensitive to are features like straight lines or corners, whereas higher order features such

as a dogs nose or ear (as might be the case for the Stanford dogs) would likely be a feature

picked up by the higher layers. This methodology of layering operations for progressively

higher order representations gives rise to the idea of ‘deep learning’ (LeCun et al., 2015),

as more complex features require ‘deeper’ neural networks, or in other words, networks

with more layered operations. It has far reaching applications not just relating to CNNs

but other types of machine learning as well, since it provides a framework for storing and

retrieving complex information.

To better understand the CNN we must first understand what exactly it is doing to

extract representations from the image. Figure 3.2 shows the 2D convolution operation

performed by a 3x3 kernel (or filter) on a 5x5 image. The operation iterates over each

Figure 3.2: An illustration of the fundamental operation that takes place in a CNN. The kernel
is placed over each pixel X in the image, and the output pixel becomes the weighted sum of the
overlapping pixels.

pixel in the image and multiplies its weights by the overlapping image pixels. The results

are summed together and that value becomes the pixel value in the output convolution

image. To run through a concrete example, take the first iteration shown on the left of
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Figure 3.2. The focus of this iteration is on the pixel X11, so the kernel is placed over this

pixel and the multiplication and summation is performed over all the overlapping pixels

including and surrounding it. In full, the output pixel in the convolution image, C11, would

be:

C11 = W5X11 +W6X12 +W8X21 +W9X22

Normally input images have pixels inserted around them so the convolution can occur

even at the edges (known as padding), but these surrounding pixels are often set to zero,

hence the omission from the above summation. The second iteration on the right of Fig-

ure 3.2 now focuses on the next pixel over, X12. Using the same procedure, the output

pixel C12 is:

C12 = W4X11 +W5X12 +W6X13 +W7X21 +W8X22 +W9X23

This procedure is continued over every pixel in the input image until a full output image

has been constructed; a so called ‘activation map’.

A convolution layer is commonly followed by a downsampling operation known as

max pooling. This operation reduces the resolution of the image by taking a contiguous

group of pixels in the input image, which would be the activation map from the associated

convolution layer, and producing one output pixel using the maximum value of the group

of input pixels. Since it is operating on an activation map, and it is selectively preserving

pixels with a larger value, features detected by the previous convolution layer are further

emphasised in every convolution deeper in the network. An example of the entire process

is given in Figure 3.3.

Through training, the weights of the convolution kernels can be automatically tuned to

minimise the network loss function, instead of being manually created. Therefore, while

it is more common to see simpler features at shallow layers, ultimately the network is

left to decide which features are important at what point and which are not, based on loss

evaluations during training. This ability to learn and store complex features is the essence

of what makes CNNs so powerful. Architectures using CNNs can be very sophisticated,

which allows them to learn increasingly complex features. A prime example of this is the

UNet (Ronneberger et al., 2015), which was developed to address the problem of ‘image

segmentation’: classifying pixels in an image on an individual basis rather than classifying

the image as a whole. An example application of the UNet might be to separate which
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Figure 3.3: Two examples of the convolution operation followed by a max pool operation. The
convolution kernels are manually crafted to detect vertical features (top), and horizontal features
(bottom).

pixels in Figure 3.1 belong to the dog, and which do not. Another example of a modern

and powerful application of CNNs is the Generative Adversarial Network (GAN).

3.2.2 Generative Adversarial Networks

The GAN architecture is different from most other, more traditional, architectures because

it borrows and utilises one key concept from the broad field of game theory: the ‘Nash

equilibrium’. This term describes a specific state within a zero-sum game where each

player can choose a strategy to win the game. Among all the strategies the player can

choose, there exists one strategy that provides the best chance of winning against the

strategies of all other players. The same can be said for all players, and so there exists

a state where each player has selected their associated optimal strategy, and the game

has reached a type of equilibrium. In practice, the equilibrium will likely be reached

after many iterations of the game, where each player improves and perfects their strategy

after each iteration until a change to their strategy would provide no additional chance of

success, or even lessen their chance of success. The concept can be applied to a huge range

of problems not just limited to mathematics, and can be useful to model any type of system

where parties engaging in an interaction are pursuing mutually exclusive outcomes.
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Goodfellow et al. (2014) introduced this concept to machine learning by modifying the

conventional training process and replacing the loss function with another neural network

that fulfils the same criteria. Their objective was to use this technique to generate realistic

images of a certain object. For example, one could train a GAN to learn the characteristics

of golden retrievers, and then generate entirely synthetic images of them. It does this by

creating a type of game between the two neural networks, and tailoring two competing

objectives such that one of the players becomes extremely proficient at generating realistic

images.

Discriminator

The network that replaces the conventional loss function is known as the discriminator.

The discriminative side of the model is responsible for classifying input images as either

real or fake, with real meaning that it is a genuine image from the training set, and fake

meaning that it is a synthetic image created by the opposing side of the GAN. Each of the

two players in the GAN still have their own analytic loss functions that use the output of

the other network, so that they can learn from each other. The objective of a discriminator,

D, is to output probabilities as close as possible to the following:

D(x)→ 1 and D(G(z))→ 0 (3.3)

where x is an image from the training set, and G(z) is a synthetic image created by the

opposing network (described in section 3.2.2). This details a discriminator loss function,

LD of the form:

LD = (1 − D(x)) + D(G(z)) (3.4)

since the objective of the discriminator is to minimise both components of the summation.

In practice, the loss function is commonly evaluated using logarithms, but the premise is

the same. CNNs are a good choice to fulfil this role since they are capable of learning the

features of what makes an image ‘real’ and what makes an image ‘fake’.

Generator

The other side of the GAN is known as the generator, G, which is responsible for gen-

erating a synthetic image G(z) from an input z. In direct opposition to Equation 3.3, the
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generator seeks a scenario where:

D(x)→ 1 and D(G(z))→ 1 (3.5)

and it is able to trick the discriminator into classifying the synthetic images as real. How-

ever, because of the tension between that goal and the competing goal of the discriminator,

the actual ideal situation for the overall system is closer to:

D(x)→ 0.5 and D(G(z))→ 0.5 (3.6)

which effectively means that the discriminator has the best chance of success by simply

guessing, which also indicates that the output G(z) is almost indistinguishable from x.

Equation 3.5 describes a loss function for the generator of the form:

LG = 1 − D(G(z)) (3.7)

which again retains the underlying premise of the practical implementation.

Training

The exact training process for a GAN depends on the specific type of GAN being used (see

section 3.2.2). However, the training process tends to follow a similar path regardless of

type, so I will provide a brief explanation of the training process for the conventional Deep

Convolutional Generative Adversarial Network (DCGAN) first presented by Goodfellow

et al. (2014). Training loops often take place over many epochs, usually defined as one

full loop over the entire training set. Each epoch consists of many steps where each step

takes a finite number of samples (called a batch) from the training set and passes them to

the network.

It is common practice to start the training step with the discriminator. The discrimi-

nator processes the batch of samples from the training set and produces an output score

for each one. Then, the generator is tasked with creating an equal sized batch of fake

samples derived from a type of random seed vector referred to as a ‘latent vector’. This

batch is also evaluated by the discriminator. These two outputs from the discriminator are

then used to evaluate the discriminator loss function (e.g. Equation 3.4) and perform the

optimisation process. Now the training step moves on to the generator, but since it has
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already created a batch of samples in the previous step its job is mostly completed. All

that is left is for the discriminator to produce a further batch of scores, since it has just

been updated with an optimisation step, from the fake batch of samples which, along with

the real batch of samples from the training set, can be used to evaluate the generator loss

(e.g. Equation 3.7) and perform optimisation.

The above process is repeated over many steps until the full training set has been

sampled and processed. Then the whole loop is repeated over many epochs. How many

samples are used in a batch and how many epochs are performed are both examples of

hyperparameters, which can have a significant impact on the overall performance of the

trained network and the time taken for training. These parameters are selected through a

further method referred to as tuning, which essentially implements some method (e.g. grid

search) of dynamically selecting a hyperparameters value by analysing the performance

of the network on the validation data.

Variations of GANs

The distinctive feature of the original DCGAN described above is the form of the input

z. It is a so-called ‘latent vector’, which is a vector of random numbers sampled from

a ‘latent space’ which is a random distribution of numbers. The latent vector provides

seed information to the GAN which, once trained, allows it to generate new images, not

contained in the training set, but ones that are still incredibly realistic. One downside

though is that without a good understanding of the GANs interpretation of the latent

vector, it isn’t possible to specify the type of output you want. As an example, imagine

that a GAN has been trained to generate realistic images of all kinds of dogs using a

random vector as a seed. But if you wanted a synthetic image of specifically a golden

retriever there would be no way, without doing a comprehensive study of the latent space

and its relation with the GAN, to predetermine that a golden retriever would be in the

synthetic output image.

This problem is addressed by a version of GANs known as Conditional Generative

Adversarial Networks (CGANs, Mirza & Osindero 2014), which take in an input of a class

label in addition to a random vector. By including a class label in the training process,

which in practice just provides a different input vector distribution per class label, the

output of the GAN can have conditions placed on it, hence the name.

The desire to place conditions on the output of the GAN can be extended even further

54



3. IDENTIFYING RFI WITH MACHINE LEARNING

Figure 3.4: A diagram of the pix2pix model and the procedure for training. The training set is
shown at the bottom of the image, from which an image and mask is taken. The generator produces
a fake mask G(x) from the image, and the discriminator calculates a probability D(G(x)). Each
side of the model optimises itself towards the quantities given in the circular arrows.

through the pix2pix model (see Figure 3.4, Isola et al. 2016), which modifies the CGAN

model to produce a pixel-by-pixel classification of an input image. To achieve this, the

training set must contain pairs of images where one image, x, may contain any number

of arbitrary objects belonging to any set of classes, such as a picture of a dog and a

cat. This image is accompanied by its ground truth y; the pixel level classification of

objects in the image. During training the network learns to reproduce this classification

on new, unclassified images of the same objects. This modification effectively transforms

the GAN use case from an image generation tool to an image translation tool, where the

desired translation can be specified in the training set. How the pix2pix model is used in

this work for creating interference masks is detailed in section 3.5.

Regardless of type, all GANs share similar characteristics because of the unconven-

tional training process. With optimal training on a high quality training set, GANs are

known to quickly produce accurate and realistic images that certainly surpassed many

models that came before it. Additionally, the GAN architecture and training process are

quite generalisable; it only requires a generator that will create some output, and a dis-

criminator that will criticise that output. This means that GAN based models can applied

to a huge variety of applications depending on the needs of a particular problem. Fur-
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thermore, it means that the generator and discriminator themselves can be made more or

less complex, or even changed into something completely different, again depending on

the needs of a given problem. The GAN framework is certainly an important tool in the

machine learning toolbox.

However, GANs are not without their downsides. The most notable issue with GANs

is how unstable they can be during training. The entire process is reliant on the tension

between the generator and the discriminator, but this tension can sometimes lead to diver-

gent behaviour, instead of the overall network converging on an optimal solution. There

can be a few causes of this, but most commonly it is because the generator often has a fun-

damentally more difficult task. It can take longer for the generator to start producing even

somewhat accurate results, and all the while the discriminator is making larger strides in

its ability to perform. Eventually, the gap between the discriminator and the generator

may become too large, the generator cannot ever get close to an accurate result, and the

process diverges from equilibrium. Using the analogy of a chess game, this is effectively

where the skill gap between two players is so large, one player is unable to learn from the

other because the game is over too quickly, so they simply get up and walk away!

This issue has a further secondary effect. In the case of the pix2pix model the com-

plexity of the whole network, combined with the tension in the training process, means

that small changes to the underlying architectures can have a very large, sometimes detri-

mental impact on whether the GAN can converge on an optimal state. This means that

users of the pix2pix model cannot easily diverge from the original configuration which

has been rigorously tested.

3.3 Radio Frequency Interference

As discussed in chapter 1, radio observatories hold incredibly sensitive equipment for de-

tecting astronomical radio emission. This equipment must be more sensitive than most

other astronomical observatories, since many astronomical objects tend to emit less over-

all energy at radio wavelengths. To further illustrate this, consider the radio source Cas-

siopeia A. It is one of the strongest sources in the radio sky, and has a flux density of

approximately 2000 Jy = 2000 × 10−26 Wm-2Hz-1 at 1.4 GHz (Findlay et al., 1965). In a

typical 12-hour radio observation, a colossal 500 m radio telescope (the size of FAST, Li

& Pan 2016) sensitive to radio waves at 1.4 GHz would collect a total of approximately

4.3 × 10−16J of energy. This is just enough energy to power an average handheld calcu-
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lator for about 4.3 ps = 4 × 10−12 s. Though, many radio observatories today have a large

observing bandwidth around 1− 2 GHz if observing at 1.4 GHz. Assuming a flat Spectral

Energy Distribution (SED) over a 2 GHz receiving bandwidth, enough power is actually

collected for about 8.6 ms of calculator time.

At the same time, at least for now, radio observatories operate almost exclusively on

the Earth. This is problematic because of how pervasive radio emissions are on a planet

swarming with technologically advanced humans. Radio transmissions are fundamental

to a wide range of practices and technologies, including but not limited to:

• Broadcast radio

• Television

• Long range communication

• Radar

• Remote operation

• Satellite communication

One of the fundamental challenges of radio astronomy is how to reduce or completely

remove the impact of these radio signals on the incredibly sensitive equipment, while

simultaneously preserving the comparatively weak astronomical radio emission. Radio

signals that are not related to astronomical sources are broadly labelled as Radio Fre-

quency Interference (RFI) by radio astronomers.

Single-dish radio observations are impacted more by RFI than interferometric obser-

vations, since they have no other reference point for a detected signal in the way that

interferometer baselines do. Since interferometers are correlating two signals from two

separated points in space, an RFI signal originating from a single point near to one an-

tenna is less likely to be detected by both antennas in a baseline, and therefore is less

likely to be correlated. This effect only increases with baseline length, so long-baseline

VLBI observations suffer from RFI much less than single-dish observations. Despite this,

RFI signals are so prolific that even the largest VLBI arrays will encounter interference to

some extent. This is a growing concern given the massive increase in air and space-borne

radio emitters (see section 3.6).

Even if RFI is not correlated, the extra power entering the receiver can contribute,

sometimes quite significantly, to warming up the receiver. This raises the noise level of

the baseline output, which degrades image quality even though the RFI itself was not
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actually correlated! Furthermore, RFI can have a deleterious impact on spectroscopic

radio observations, since RFI coincident in frequency with the desired spectral lines can

irrecoverably overwrite the measured data for the duration the RFI is present. This pre-

vents the astronomer from carrying out their research, and costs the observatory in lost

observing time.

The following sections will first outline the current state of radio astronomy in terms

of dealing with RFI. It will explore the techniques currently in use, and then introduce the

experiment conducted on flagging RFI using a GAN.

3.3.1 Regulation

Modern society is very much dependent on the efficient use of radio waves for wireless

communication. As a result, a great deal of regulation surrounds the process of emitting

radio waves, to ensure that all parties involved can fulfil their objectives without interfer-

ing with one another. Internationally, these regulations are set forth by the United Nations

specialist agency known as the International Telecommunications Union (ITU), which

is broadly accepted to be the arbiter for radio related issues. Every four years, the ITU

produces the Radio Regulations (ITU-R, 2019) informed by the World Radio Commu-

nication Conference and the radiocommunications sector of the ITU (known as ITU-R).

This document is incorporated into the constitution of the ITU which, in turn, is ratified by

UN member states. While the UN places the importance of national sovereignty over UN

regulation, it is generally beneficial for member states to agree to these rules, to facilitate

economic and social development. As a result, these regulations are broadly respected

and implemented.

As part of their regulatory framework, the ITU allocates frequencies for specific pur-

poses to prevent any competition or conflict over frequency usage. Radio astronomy is

formally recognised by the ITU as a passive service, and so is afforded the same rights as

other recognised services. The relevant ITU material is condensed into the ITU-R Hand-

book on Radio Astronomy2, and a review of the regulations from the perspective of radio

astronomy is given by Baan (2019).

Perhaps the most important allocation for radio astronomy allows undisturbed obser-

vation of the local Hydrogen 21 cm line, which occurs in L-band at around 1400 MHz (see

Figure 3.5). Naturally, the proportion of frequencies allocated to radio astronomy is quite

2Available at: http://handle.itu.int/11.1002/pub/809847c8-en
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Figure 3.5: An excerpt from ITU Radio Regulations (ITU-R, 2019), outlining the international
allocation of 1400-1427 MHz specifically to the Radio Astronomy service, to allow unobstructed
access to the Hydrogen 21 cm line.

small and not always exclusive, and the range of frequencies in a particular allocation

tend to be narrow in comparison to modern observational bandwidths. Furthermore, the

frequency allocations to radio astronomy are intended to protect local (z ∼ 0) receiving,

and do not account for Doppler shifted emission.

This creates a problem for radio astronomers. State of the art radio observatories reg-

ularly conduct experiments covering fractional bandwidths ≥ 0.5 (the ratio of observing

bandwidth to central frequency ∆ν/ν). This means that observations at L-band with a

wideband receiver can also pick up transmissions outside the 21 cm ITU allocation. Of

course, the spectrum allocation cannot reasonably be expected to conform to the desires

of every radio astronomer, so robust solutions that allow a coexistence with neighbouring

allocations must be developed. This is doubly true, since there are numerous situations

where the ITU regulations do not explicitly protect the radio astronomy service. Firstly,

some allocations are shared with other active services, so transmissions can still be picked

up from those even indirectly (such as being reflected off an aircraft). Secondly, so called

‘out of band’ emissions: emissions received in one allocation from another separate allo-

cation, are allowed up to a limit. Finally, accidental emissions are protected under ITU

regulations, so interference in protected bands may originate from an accidental source.

These are just a few examples of the difficulties of operating a passive service, and illus-

trate why effective methods of interference management will always be critical to radio

astronomy even in a favourable regulatory environment.
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3.3.2 Methods of Mitigation

Methods of mitigating the presence or impact of RFI can be roughly categorised based

on when they are implemented relative to the time of observation. There are, generally

speaking, three such categories: preventative measures, flagging during observation, and

post-correlation flagging. The methods within each of these categories form a layered

defence against corruption from RFI; the earlier the RFI is caught and removed, the better

it is for the astronomer.

Preventative Measures

Protecting an observatory against RFI is a process that starts right at the time of construc-

tion. Given a choice, astronomers will position their antennas far away from emitting

sources, which normally involves groups of humans. As optical astronomers position

their telescopes in part based on light pollution, radio astronomers position their antennas

in part based on RFI.

Often this isn’t enough to completely eliminate the problem. A radio antenna can,

and often is, surrounded by a so-called ‘radome’ but this does nothing more than protect

the sensitive equipment underneath from extreme weather. In rare cases, an enforced

Radio Quiet Zone (RQZ) can be put in place in areas surrounding antennas to reduce

the likelihood of RFI detection. Examples of RQZs include the United States National

Radio Quiet Zone surrounding the Green Bank Observatory (Prestage et al., 2009) in

West Virginia, the FAST RQZ (Li & Pan, 2016; Zhang et al., 2019) in China’s Guizhou

Province, and the Australian Radio Quiet Zone WA (ARQZWA) surrounding several radio

telescopes in Western Australia (DeBoer et al., 2009), including the future site of SKA-

Low. As RQZs require political will to instantiate and sustain, they are not an option open

to all astronomers and even observatories with a functioning RQZ still require other ways

of addressing RFI.

A more direct approach is to integrate band-stop filters (or ‘notch’ filters) into the

antenna setup, which attenuate signals over a range of frequencies. If a nearby interfer-

ence source is known to produce strong emissions within a specific frequency range, then

these filters can be permanently installed at the receiver to attenuate those frequencies,

and eliminate the interference. Obviously, this still prevents observation of the filtered

frequencies, but it is preferable if the interfering signal is strong enough to saturate the re-

ceiver, which can prevent useful data being gathered across the entire range of frequencies
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under observation.

Finally, most preventative measures require long-term monitoring of the local RFI en-

vironment to be most effective. Detailed knowledge of emissions entering the receiver al-

lows the observatory to adapt quickly to changes in the RFI environment, and provides an

evidence base from which the observatory can make decisions about how best to combat

interference. Therefore most observatories, regardless of the levels of protection already

in place, will include regular monitoring of local emissions as part of regularly scheduled

operations3.

Pre-correlation Flagging

There are many different methods of flagging in real-time, but they all broadly imple-

ment one of two solutions: separating out the RFI signal, or preventing the detection of

RFI altogether. The former is more complex, as it requires the decomposition of the as-

tronomical signal from the interfering signal with minimal error, the latter is easier (and

often cheaper) to implement, but comes with an associated data loss. Which methods are

implemented comes down to a cost-benefit analysis made by the observatory, informed

primarily by the characteristics that define the telescope itself (antenna count and design,

antenna separation, frequency range, operational windows, location, etc). For example,

if the observatory manages one or two closely spaced antennas, then it becomes far more

practical to implement a complex system of real-time detection and subtraction of in-

terference. If instead the observatory consists of many antennas with large separations

(perhaps hundreds of kilometres) then this system is less viable, and simply accepting a

certain level of data loss may be more practical.

An example of a real-time method of separating out the RFI signal is a technique

known as ‘spatial filtering’ (Boonstra & van der Tol, 2005), which leverages the ability of

interferometers to create direction-dependent antenna gains (known as ‘beam forming’).

If a strong signal is known to originate from a certain direction, or a strong signal is

detected during an observation, the response pattern of a particular antenna can be mutated

such that the nulls in the response pattern coincide with the direction of the interference.

This allows the antenna to continue observing the astronomical source, while being blind

to the interfering source. This particular technique can be practically difficult, and is only

useful in arrays with short baselines (Fridman & Baan, 2001) and wide primary beams,

3The VLA, for example, conducts regular surveys for RFI: see https://science.nrao.edu/facili-
ties/vla/docs/manuals/obsguide/rfi
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such as LOFAR or SKA-Low.

An example of a real-time method of removing corrupted signals is to simply ‘blank’

the incoming signal for the duration of the interfering signal (Mitchell et al., 2010). This is

effectively a form of real-time flagging, with the advantage that it can be done before any

averaging of the data takes place, and is highly flexible in how the blanking threshold(s)

can be selected.

Systems based on software correlators lend themselves well to pre-correlation flagging

methods as, with sufficient computing power, the methods can be implemented entirely

in software as part of the correlation process; hardware components are not necessary.

Though, given the extremely large data volumes of pre-correlation signals, even the sim-

plest method of RFI mitigation may add significant overhead to the correlation pipeline.

Post-correlation Flagging

Post-correlation flagging is what is generally referred to when astronomers discuss flag-

ging, since it is a standard step in all post-observation data pipelines. Since the obser-

vation has already been conducted and the data correlated (for interferometer arrays), it

is very difficult to disentangle the RFI signal from the astronomical. Therefore, almost

all post-correlation flagging methods involve some level of data loss, and the challenge

of good flagging algorithms is to maximise RFI removal while minimising the loss of

astronomical signal.

If the volume of RFI encountered is small, then post-correlation flagging may be done

manually either by direct visual inspection, simple thresholding (such as clipping), or im-

plementing flags based on information gathered during observation. These approaches

were standard in the early days of radio astronomy and are still used for extremely re-

mote observatories, or VLBI observatories. Though this quickly becomes impractical as

the volume of RFI increases along with increased bandwidths and additional antennas;

naturally, automated solutions become preferable.

The distinguishing feature of RFI is that it is, in most cases, orders of magnitude more

powerful than astronomical signals. There are several reasons for this, one is that artificial

emissions originate from sources closer to the receiver. As a result, many post-correlation

RFI detection methods rely on this, and implement algorithms based on thresholding.

This threshold is often calculated per time-frequency bin; how it is calculated is the fun-

damental challenge. Current techniques perform thresholding on a time-frequency image
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of the output of the antenna (or antennas), an example of which is shown in Figure 3.6.

One of the most popular software solutions is called AOFlagger (Offringa et al.,

2012b), which utilises a form of adaptive thresholding, combined with extension of the

resulting mask. As a general purpose post-correlation flagging tool, the current iteration

of AOFlagger represents the state of the art in interference removal. It was first introduced

by Offringa et al. (2010b) as a prospective flagging tool for the LOFAR pipeline. The core

of the technique implements the SumThreshold algorithm (Offringa et al., 2010a), which

iterates over each pixel in an input time-frequency image constructed using data from a

single antenna or baseline. By examining the surrounding pixels in time or frequency,

the SumThreshold method deduces the likelihood of the current pixel being contaminated

using a variable threshold. Following this, AOFlagger implements a scale-invariant rank

operator, which extends (or ‘dilates’) the flag mask constructed by the SumThreshold

method to include remaining false negatives in the flags.

One of the problems with statistical methods of flagging is that they often require

many parameters to be specified by the user to achieve an optimal set of flags that min-

imise RFI corruption and data loss for a specific observation, by a specific observatory.

This makes deploying these solutions tricky, and often large amounts of ‘good’ data can be

wasted because of an improper setup. An alternative approach that is becoming more and

more popular in research (though explicitly not in practice), is to train a neural network to

perform the flagging. This has the advantage of reducing the amount of user-specific cus-

tomisation to almost nothing, while (ideally) maintaining a high level of precision. The

downside is the requirement for large amounts of accurate information on RFI to form an

effective training set, which can be a laborious task to produce.

3.3.3 Types of RFI

Though the sources of RFI are mostly unique to a particular telescope (with a few excep-

tions such as mobile phone signals and satellite transmissions), the reason that many post-

correlation RFI removal tools all choose to operate in the time-frequency space is that, for

the most part, RFI presents itself in somewhat regular morphologies in this plane. This re-

duces the complexity of the problem, and allows some assumptions to be made about the

likely morphology of the RFI being detected. This section will describe and present these

regularly encountered types of RFI at the commonly used frequencies for radio astronomy

between ∼ 0.1-100 GHz.

63



3. IDENTIFYING RFI WITH MACHINE LEARNING

Figure 3.6: An example of narrow band RFI found in the Lockman Hole data used in this experi-
ment. It lasts &4 minutes and occupies a narrow frequency range of ∼1 MHz.

Narrow band RFI refers to a signal that is narrow in frequency. Most often, narrow

band RFI presents as a strong signal occupying a small number of channels and will persist

for somewhere between several minutes up to several hours. It may turn on and off at

irregular intervals throughout the observation and may also fluctuate in strength, causing

it to sink below the sensitivity limit of the receiver. The principal method of removing

narrow band interference is to constrain the data removal to the corrupted channel, but in

certain cases the signal is strong enough to cause a leakage effect that corrupts adjacent

channels, which may also have to be removed. Figure 3.6 shows an example of a narrow

band interference signal within the Lockman Hole data that is presented in chapter 6.

If left unflagged, narrow band RFI can raise the noise level in the final image by

introducing artefacts exceeding the true visibility noise. In the worst case, these artefacts

can be picked up during CLEANing (see section 2.7) and introduced to the sky model,

which degrades the effectiveness of self-calibration, and causes radio sources to appear

where there are none.

Figure 3.7: An example of a weak, wide band interference signal found in the Lockman Hole data
used in this experiment. It only lasts for ∼8 s, but occupies a wide frequency range &300 MHz.

Wide band RFI, like that shown in Figure 3.7, occupies a wide range of frequencies

that may span the entire bandwidth of the receiver. It does not normally last as long as

narrow band RFI. Given that it occurs over a wider range of frequencies, wide band RFI

can be more detrimental to the quality of an observation since it effectively overwrites
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more visibilities, but it is also far more conspicuous. The primary impact of unflagged

wide band interference is on the calibration of the bandpass. Normally, it is assumed the

frequency response of the receiver does not vary significantly over the course of a single

observation, so the calibration is calculated per-source using all available visibilities. If

a strong wide-band interference signal is present at this stage, the calculated bandpass

solutions will incorporate the RFI, and then use that ‘incorrect correction’ to correct the

rest of the visibilities, which skews the frequency information in the corrected visibilities

and in the final image.

3.4 Machine Learning for RFI Mitigation

Currently, there is no universal method or technique to remove RFI from radio astro-

nomical data. As described in subsection 3.3.2, observatories will implement their own

measures to mitigate or remove RFI, but the sheer volume of data involved means the

process must be automatic and there is always some amount of interference that persists

in the data that is delivered to the principal investigator. This situation does not seem like

it is going anywhere, so it is vital that effective solutions are developed both at the obser-

vatory, and for the end user. Since its explosion in both popular culture and research in

the 2010s, machine learning has been explored as an alternative solution to the problem

of RFI.

Taking a step back, the first fundamental goal of any RFI mitigation solution is to ac-

curately identify an occurrence of a strong signal that ‘sticks out’ of the underlying signal

in some way. RFI mitigation methods then go one step further and decide if and how to

actually flag or remove the signal, but the initial goal of identification is common to a

much wider range of applications. Technologies such as speech-to-text and speech recog-

nition must identify a strong signal (the user’s voice) amongst what may be a significant

noise signal (background conversations, passing cars, etc). Speech recognition methods,

therefore, may also be of interest to radio astronomers (e.g. Hannun et al. 2014). Another

application is the search for extraterrestrial intelligence (SETI), which also attempts to

find what is assumed to be a stronger signal amongst noise. In fact, a key issue in SETI

applications is the differentiation of candidate extraterrestrial signals with RFI, which also

disrupts their operation (Enriquez et al., 2017).

Many related fields have found success in applying machine learning methods, so

naturally radio astronomers have been examining the effectiveness of using these methods
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to flag RFI. Agarwal et al. (2020) find success in training CNNs for the identification

of Fast Radio Bursts (FRBs), which is functionally almost identical to identifying RFI

signals. Czech et al. (2018) also use CNNs but with an additional Long Short-Term

Memory (LSTM) network for identifying RFI signals in one-dimensional signal data.

Long et al. (2019) utilise a modified U-Net which is also used as part of the GAN model

used in this work.

Generative Adversarial Networks (see subsection 3.2.2) are an interesting option for

automatically generating accurate flag masks. As of the time of writing, only Li et al.

(2021) have implemented the GAN method for flagging interference in radio observa-

tions. They train a GAN using exclusively simulated data from the HI Data Emulator

package (HIDE, Akeret et al. 2017) with the objective of identifying RFI in data from

FAST. The work presented in this thesis uses a similar GAN model to the one proposed

by Li et al. (2021), but instead trains and tests it against manually flagged real VLBI data

(from e-MERLIN) instead of simulated single-dish data, or data with automatically gen-

erated flags. The reasoning behind this is that by training on simulated data, the network

is not exposed to the ‘real world factor’ of data from an actual telescope. Real radio as-

tronomy data contains many imperfections that are not easily simulated unless specific

attention is paid to it, such as bandpass attenuation, antenna dropouts, and complex RFI

morphologies. If a machine learning solution is to be viable, it must have some way of

dealing with these. Furthermore, training the network on data that is automatically flagged

simply encourages the network to reproduce the output of the automated method, negat-

ing the need to use machine learning in the first place, while simultaneously replicating

any errors or inefficiencies in the automated method. By training on manually flagged

real data, these issues are sidestepped.

3.4.1 IFlag

As mentioned in earlier sections, most flagging is not done manually due to the sheer

amount of data produced by a modern radio interferometer. To make this concrete, con-

sider the case of the European VLBI Network (EVN) interferometer array (Venturi et al.,

2020). It is an international VLBI facility that can operate with as many as 30 stations.

Imagine a hypothetical EVN observation that produces a total of 45 correlated baselines

from only 10 separate stations; there would be a minimum of three sources observed

(the target, the phase calibrator, and the flux calibrator) over the course of a single 12 hr
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observation. Most observatories measure polarisation at both antennas in a baseline, so

each baseline produces a minimum of 4 time-frequency images per source. So far, this

means that our hypothetical observation would produce 45 × 4 × 3 = 540 separate time-

frequency images. However, this assumes one continuous scan for each source, which

isn’t possible due to the need to periodically observe the phase calibrator in between

target scans. Assuming that the full twelve hour observation, including all sources, is

instead broken up into scans of a maximum of 10 minutes each, we would instead have

45 × 4 × ( 12×60
10 ) = 12960 separate time-frequency images! A typical VLBI observation

may average the data over 4 s, and may have somewhere in the region of 500 frequency

channels, which means that each of these images would be 500x150 pixels in size. So,

manually flagging this hypothetical observation would mean that nearly 13000 images of

size 500x150 would have to be examined and flagged individually.

Figure 3.8: An example of the IFlag user interface. Buttons along the top allow, from left to right,
opening a radio measurement set, moving between images, toggling the mask overlay (shown in
blue), switching between polarisations, toggling the box drawing tool, toggling the pen drawing
tool, and masking/unmasking with a drawn box. Input fields along the right side of the interface
allow the user to show a specific image, or flag multiple parts of the measurement set matching
the input criteria.

This is, obviously, a laborious task, and is similarly challenging for many modern ob-

servatories. Unfortunately, the current software environment in radio astronomy does not

offer any reasonable solutions. Existing tools are command line interfaces that are not

efficient for bulk manual operations or interfaces that allow viewing the time-frequency

data but do not facilitate quick manual flagging through the interface. Flagging function-

ality exists in the commonly used Astronomical Image Processing System (AIPS) library
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(Greisen, 2003) in the form of routines such as uvflg and rflag, but again these are not

designed for precise, manual flagging of large amounts of data.

Therefore, to make this challenge more accessible and less time-consuming, a graph-

ical user interface was developed specifically for the purpose of enabling quick manual

flagging of large amounts of radio astronomy data4. This enabled the efficient produc-

tion of a training set containing manually flagged radio data. This interface is referred to

as iflag throughout this thesis. iflag is developed in pure python, and builds on top of

the casa software stack (CASA Team et al., 2022) to interface with radio astronomy data

contained in the Measurement Set (MS) format. It uses python bindings to the Qt GUI

framework to construct the interface. Each observed field is presented as one contiguous

image to the user since many RFI signals occur on timescales longer than a single scan,

but there are many different options to view different slices of the data. Figure 3.8 presents

the iflag interface.

The GUI allows quick manual flagging by giving the user the ability to draw over parts

of the image deemed to be RFI, by using either the ‘pen’ mode or the ‘boxing’ mode, that

allows drawing or boxing respectively. The use cases for such an application include:

fine-tuning an already flagged observation, annotating radio astronomy data for use in

machine learning, or even to manually flag small observations. At present, it is the only

application I know of to provide this functionality. It was utilised in this work to create

the training set used to train the GAN.

3.5 Flagging RFI with a GAN

This section presents the work conducted on using the GAN model described in subsec-

tion 3.2.2 to automatically create interference masks. Full details of the generator and

discriminator networks used in this experiment can be found in Table 3.1 and Table 3.2.

The networks were constructed using the pytorch toolkit (Paszke et al., 2019)5. The net-

works were designed by attempting to mimic the ‘RFI-NET’ presented by Li et al. (2021),

but also to fit into the constraint of available processing power. Unfortunately, this lim-

itation means that the GAN setup used in this experiment is essentially a scaled down

version of the RFI-NET. Such is the nature of machine learning architecture design, the

final configuration presented here was ultimately settled on through repeated trial and er-

4The source code is available on request
5The source code is available at https://github.com/JakeEBrooks/BrooksRFIGAN

68



3. IDENTIFYING RFI WITH MACHINE LEARNING

ror experiments, and the hyperparameters were selected through a sparse grid search. The

key differences between this design and the design of Li et al. (2021) are:

• Input Shape: The U-Net presented here takes an input array of size batchsize ×

128 × 1024 × 1. In Table 3.1 and Table 3.2 the batch size dimension is omitted

as this is generally selected for reasons related to computation time and not model

performance. The U-Net model presented by Li et al. (2021) takes an input shape of

8×256×128×16. In theory, the input shape should not have a significant impact on

the performance of the network, and is generally something selected for useability

or computing reasons.

• Number of Convolution Filters: Traditional U-Net models double the number of

filters at each layer of the U-Net, to match the reduction in image size through

max pooling. This is the approach adopted by Li et al. (2021). The number of

convolution filters is one of the biggest drivers of computation time, so to reduce

this the convolution filters in the model presented here were increased additively

rather than multiplicatively. This undoubtedly has an impact on the performance of

the model.

• Discriminator Layers: Li et al. (2021) present a discriminator with four convolu-

tion layers. The model presented here uses only three to mirror the decreased num-

ber of filters in the generator and for computational reasons. Furthermore, GAN

designs tend to intentionally provide the discriminator with less capability than the

generator, since the generator has a fundamentally more difficult task.

6Note that the Li et al. (2021) model has an extra channel in the array passed to the discriminator
than what is passed to the generator. It is unclear what purpose this extra channel serves. Furthermore,
there is a contradiction in the number of convolution operations performed in the generator between Figure
2 and Table 1. Table 1 suggests three convolution operations per layer, whereas Figure 2 suggests two
convolutions on the encoding side, and three convolutions on the decoding side; an uncommon approach.
It seems most likely that Table 1 is a more accurate description, in which case the model presented here
performs one less convolution in each layer in keeping with the traditional U-Net. It is unknown what effect
this has on model performance.
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Layer Type Kernel Size Output Shape Filter No.
Input - 128 x 1024 x 1 -

Convolution + BN + ReLU 3 x 3 128 x 1024 x 64 64
Convolution + BN + ReLU 3 x 3 128 x 1024 x 64 64

Max Pool 2 x 2, Stride 2 64 x 512 x 64 -
Dropout - 64 x 512 x 64 -

Convolution + BN + ReLU 3 x 3 64 x 512 x 128 128
Convolution + BN + ReLU 3 x 3 64 x 512 x 128 128

Max Pool 2 x 2, Stride 2 32 x 256 x 128 -
Dropout - 32 x 256 x 128 -

Convolution + BN + ReLU 3 x 3 32 x 256 x 192 192
Convolution + BN + ReLU 3 x 3 32 x 256 x 192 192

Max Pool 2 x 2, Stride 2 16 x 128 x 192 -
Dropout - 16 x 128 x 192 -

Convolution + BN + ReLU 3 x 3 16 x 128 x 256 256
Convolution + BN + ReLU 3 x 3 16 x 128 x 256 256

Max Pool 2 x 2, Stride 2 8 x 64 x 256 -
Dropout - 8 x 64 x 256 -

Convolution + BN + ReLU 3 x 3 8 x 64 x 320 320
Convolution + BN + ReLU 3 x 3 8 x 64 x 320 320

Deconvolution + BN + ReLU 3 x 3, Stride 2 16 x 128 x 256 256
Concatenation - 16 x 128 x 512 -

Dropout - 16 x 128 x 512 -
Convolution + BN + ReLU 3 x 3 16 x 128 x 256 256
Convolution + BN + ReLU 3 x 3 16 x 128 x 256 256

Deconvolution + BN + ReLU 3 x 3, Stride 2 32 x 256 x 192 192
Concatenation - 32 x 256 x 384 -

Dropout - 32 x 256 x 384 -
Convolution + BN + ReLU 3 x 3 32 x 256 x 192 192
Convolution + BN + ReLU 3 x 3 32 x 256 x 192 192

Deconvolution + BN + ReLU 3 x 3, Stride 2 64 x 512 x 128 128
Concatenation - 64 x 512 x 256 -

Dropout - 64 x 512 x 256 -
Convolution + BN + ReLU 3 x 3 64 x 512 x 128 128
Convolution + BN + ReLU 3 x 3 64 x 512 x 128 128

Deconvolution + BN + ReLU 3 x 3, Stride 2 128 x 1024 x 64 64
Concatenation - 128 x 1024 x 128 -

Dropout - 128 x 1024 x 128 -
Convolution + BN + ReLU 3 x 3 128 x 1024 x 64 64
Convolution + BN + ReLU 3 x 3 128 x 1024 x 64 64

Output Convolution 1 x 1 128 x 1024 x 1 1

Table 3.1: Full details of the generator network constructed in pytorch.
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Layer Type Kernel Size Output Shape Filter No.
Input - 128 x 1024 x 1 -

Convolution + BN + ReLU 3 x 3, Stride 2 64 x 512 x 64 64
Convolution + BN + ReLU 3 x 3, Stride 2 32 x 256 x 128 128
Convolution + BN + ReLU 3 x 3, Stride 2 16 x 128 x 192 192

Flatten - 393216 -
Linear - 192 -

Linear + Sigmoid - 1 -

Table 3.2: Full details of the discriminator network constructed in pytorch.
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3.5.1 Training Data

The signal received during a radio observation can be broken down into a series of com-

ponents that represent different sources. The correlated signal between two antennas for

a single polarisation, V(ν, t), can broadly be described as:

V(ν, t) = A(ν, t) + R(ν, t) + σ(ν, t) + ε(ν, t) (3.8)

where A(ν, t) is the astronomical signal detected at the antenna. In most observations, this

is a slowly varying weak signal compared to the strength of the majority of RFI. R(ν, t)

is the RFI component, which is typically the strongest overall signal received. The ob-

jective of any RFI flagging technique is to remove this component, or eliminate its effect.

The noise component, σ(ν, t), is a weak signal ideally described by a gaussian probability

distribution. The final component, ε(ν, t), is the ‘real world’ factor, which could include

a dependence on any of the other three components. It represents the characteristics of a

particular receiver, or collection of receivers, and their properties during an observation

(their temperature, for example). It may also describe events such as antenna dropouts and

component failure. Therefore, the ε component is, at best, specific to a particular corre-

lator output, and not easily characterised by simulations without paying specific attention

towards reconstructing it. If a machine learning model is trained on simulated visibilities

that do not include the information contained within ε(ν, t), then once the network begins

to operate on ‘real’ visibilities it will encounter these ‘real world’ problems and may be-

have unpredictably. By using manually flagged ‘real’ visibilities as a training set a model

can be trained that is, in theory, capable of predictably identifying R(ν, t) amongst the net

effect of σ(ν, t) and, most importantly, ε(ν, t).

Three separate L-band observations of the Lockman Hole (Lockman et al., 1986) were

conducted by e-MERLIN. The observations used the phase-referencing technique, so an-

other nearby point-like source was observed intermittently during the course of the obser-

vations. The same source, the phase calibrator, was used in all three observations and is

the sole source making up the training and test sets. The specific phase calibrator used is

a BL Lac type AGN located at α = 10h58m37.73s and δ = +56°2811.18. The two observa-

tions making up the training set occurred on 16th June 2017, and 1st January 2018. Total

observing time for the phase calibrators in each of these observations was approximately

three hours, making a training set that uses just six hours of observing time. The observa-

tion used as a test set occurred on 2nd January 2018. All three observations were manually
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flagged using the iflag interface (see subsection 3.4.1) to approximate knowledge of RFI

within each observation.

3.5.2 Pre-processing

Operating on raw time-frequency images does not achieve desirable results. This is a

common problem across all flagging techniques, not just those based on machine learning.

In the case of a GAN, the generator can be overloaded by redundant yet prominent features

such as dead pixels at the start of a scan and bandpass attenuation at the edges of each

spectral window. Moreover, the absence of these flagged features are a clear indicator to

the discriminator of a fake image, which causes the generator to put wasted effort into

reproducing them. Therefore, these features should be removed or suppressed before

the image is passed to the generator, so that the network can focus on identifying the

correct features associated with RFI. Many different pre-processing methods could be

used to enhance the ability of the network to identify RFI, and there is a large scope for

experimentation, the only limitation is that the training images must be representative of

the distribution of images to be assessed by the trained network. Consequently, ideal pre-

processing operations will give consistent results even when the input is unknown. In this

work, three modifications are made to the training data and appear to sacrifice little in

terms of similarity to the input but dramatically boost the efficacy of the network. These

steps are outlined below in the order they are applied. Note, all of the following steps are

performed sequentially on an image representing a single baseline, a single polarisation,

and the full spectral range, yielding a single image of size 128x1024.

Most observations will have a trivial set of flags at the start (and sometimes the end) of

a scan, usually as the antennas in a baseline are not yet simultaneously observing the same

pointing. This is dealt with by so-called ‘quack’ flagging, which simply flags the first

and/or last n seconds in a scan where n is configurable. Observatories also normally have

a standard set of flags that they apply to specific frequency channels at the edges of each

sub-band (or spectral window) which are normally highly attenuated (see Figure 2.5). For

the purposes of RFI identification it is easier to force the network to ignore the attenuation

by fully removing it from the training set. When making predictions using the trained

model, both of these features are removed and then added back to the flag mask after

inference.

Once these features have been removed, it is useful to limit any extreme values. To
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Figure 3.9: (a): An example of an image just before it is passed to the generator and just after it has
been pre-processed. (b): The mask produced by manually flagging image (a), and the ground truth
that would be used during training. (c): The mask produced by the trained generator operating on
image (a).

counter the effect of these extreme values the absolute visibilities |V(ν, t)| are clipped (or,

more specifically, winsorized) to the top 1% of values. Truncating extreme values in this

way significantly reduces the mean of the distribution, and causes RFI to appear more

prominent without disturbing the low-level, astronomical signal. However this method is

maximally effective when the strength of RFI in an image is significantly greater than the

strength of the astronomical signal, which is true in the vast majority of cases. There are

rare cases where there is very little, or only very faint RFI in an image. In these cases,

winsorizing the image can cause the dynamic range to be further reduced which may

impact the efficacy of the network. Though, since these are rare cases, and there is only a

small amount of RFI in these images anyway, this issue is not addressed any further.

After winsorizing, a two-dimensional time-frequency surface is fitted to the visibilities

with the objective of removing the slowly varying astronomical signal, and leaving the

RFI untouched. The process of computing this surface is very similar to that described
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in section 2.2 of Offringa et al. (2010a), and is essentially a gaussian blur operation. The

result of these pre-processing stages is shown in Figure 3.9.

3.5.3 Results

Accurately assessing the performance of the GAN is extremely difficult due to the in-

herent problem in classifying real cases of interference: there is no definitive distinction

between RFI and ‘not RFI’. Semantically this isn’t the case, but representing the semantic

distinction in data is not realistic. Despite this inherent limitation, it is still useful to use

the standard set of binary classification metrics, such as:

• True Positive Rate: Also known as the recall, the True Positive Rate (TPR) is

defined as T PR = T P/P; the number of correctly identified (true) positives as a

fraction of the number of actual positive cases.

• True Negative Rate: Also known as the specificity, the True Negative Rate (TNR)

is defined as T NR = T N/N; the number of true negatives as a fraction of the number

of actual negative cases.

• Positive Predictive Value: Also known as the precision, the Positive Predictive

Value (PPV) is defined as PPV = T P/PP; the number of true positives (correct

positive predictions) as a fraction of the number of predicted positives (all positive

predictions).

• F1-Score: The F1-score is a commonly used performance metric in the field of

machine learning, and is defined as the harmonic mean of the PPV and the TNR:

F1 =
2

PPV−1 + T NR−1 =
2T P

2T P + FP + FN
(3.9)

where FP is the number of false positives; the number of incorrectly identified

positive cases, and FN is the number of false negatives; the number of incorrectly

identified negative cases.

These values are used to assess the performance of the trained GAN using manually

flagged observations as test data, as described in subsection 3.5.1. These test data are

observations taken at a similar time, of the same target, and flagged using the exact same

method as the two training data sets, to ensure a fair comparison. Using these flag masks
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as the ground truth, the trained GAN achieves a TPR of 36.4%, and a TNR of 94.5% when

operating on the test dataset. The GAN achieves an F1-score of 40.0% when operating

on the test observation; significantly lower than what one would expect from an effective

flagging method.

Test Simulations

It is difficult to draw solid conclusions from the results of operating on the test dataset as

they are calculated using manually produced flag masks. As can be seen in Figure 3.9,

even these are not perfect. This is especially true when producing such a large amount of

flag masks since, for reasons of practicality, the process of manually flagging radio data

is a tradeoff between speed and precision. A more robust test can be conducted by using

a simulated dataset for testing, where full and complete knowledge of RFI is possible. To

this end, the GAN is also tested using simulated RFI images against aoflagger (Offringa

et al., 2012a); the current state of the art in fast, automatic flagging.

Figure 3.10: A comparison of a real time-frequency image (a) from the test dataset and a simulated
image (b) generated via the method described in section 3.5.3.
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To create the simulated time-frequency images, the following method is used. An

image containing only RFI is generated by first iterating over twice the chosen observation

length. At each timestep, there is a pRFI = 0.01 chance of an RFI signal beginning at that

timestep, and a further pWB = 0.05 chance of the RFI being wide-band interference, as

opposed to narrow-band interference. A duration is randomly generated based on the RFI

type: if it is wide-band it is likely to last only a few timesteps, if it is narrow-band it is

likely to last for much longer. The strength of each RFI event is randomly drawn from a

normal distribution with mean µRFI and σRFI = 3. Finally, a correction factor is applied

across the RFI image such that all RFI signals appear to randomly fluctuate between full

and 1
10 power, to approximate the fluctuations seen in a real image. Finally, gaussian noise

with µnoise = 0, σnoise = 0.1 is added to this image to approximate the signal background

after pre-processing surface subtraction. The simulated RFI image is rudimentary, but it

does provide the basis for a fair experiment using each method. A comparison of the real

and simulated images is shown in Figure 3.10.

To fully explore the capability of the GAN over a wide distribution of dynamic ranges

(controlled by µRFI), a N = 500 Monte Carlo experiment is performed to map the expected

TPRs, TNRs, and F1-scores in the range 1 ≤ µRFI ≤ 100. At each iteration, 50 cutouts of

size 128x1024, like those in Figure 3.10, are generated and flagged by both the GAN and

aoflagger. The results of this test are presented in Figure 3.11. Before the sharp decline

at µRFI ∼ 10, the GAN achieves a mean F1-score of 64.3%. It is difficult to determine

exactly what causes the drop in performance around µRFI = 10, though some possible

explanations are discussed in subsection 3.5.4.

3.5.4 Discussion

The process of flagging RFI has become extremely complex as astronomers are now al-

most entirely reliant on automated tools. These tools attempt to find a dividing line be-

tween RFI and ‘not RFI’, which can never be known with one hundred percent certainty,

and attempts to move this dividing line must be done with great care as minor changes

can produce dramatically different end results for key measurements such as source flux,

and background noise. To avoid any RFI leaking through the flagging process, automated

methods usually side with caution, so there will always be some number of false-positives,

that, in general, will scale with the volume of RFI encountered in a single observation.

This becomes problematic as RFI is more frequently encountered over time due to an in-
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Figure 3.11: The results of the Monte Carlo experiment. A total of N = 500 tests were conducted,
each operating on 50 simulated images. Each test involved flagging the batch of images with both
the trained GAN and aoflagger. Image (a) presents the F1-scores, image (b) presents the TPRs
and image (c) presents the TNRs.

creasing use of electronic communication, and we therefore see an increase in the amount

of ‘not RFI’ being classified as RFI and being essentially wasted. For an individual exper-

iment, this is not a primary concern. But for the entire output of an observatory this loss

of data can be significant. For example, consider an observatory that observes on 300 of

365 days in a year. Each day a 12 hour observation is made, and 10% of each observation

is corrupted by RFI. The flagging method has a modest false-positive rate of 2%, mean-

ing that 11.8% of each observation is removed in practice, with 1.8% being ‘not RFI’.

This means that, over the course of a single year, the observatory will have produced 64.8

hours of visibilities that are never used in an experiment. From this perspective, reducing

the false-positive rate during flagging is an important area of research.

Another issue is that current techniques often require parameter optimisation, some-

times for a single observation. Having a wide selection of parameters is what allows these

techniques to generalise across observatories and observations. However, the cost of not

performing this optimisation step shows as a further increase in the false-positive rate,

or an increase in the number of false negatives which can severely degrade the fidelity

of the final sky map. The GAN mitigates this issue by effectively baking in the param-

eter optimisation to the process of constructing the training set, so rather than ensuring

many different parameters, perhaps across many different methods, are optimal for a par-

ticular observation or set of observations one only needs to ensure two conditions: that
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the training data is representative of future inputs, and that the training data is accurately

describing RFI. If these two conditions are maintained, the GAN technique (in theory)

performs optimally. However, there are currently few software tools that are designed to

allow the production of a large amount of annotated visibilities quickly and efficiently, so

accumulating a large and accurate training set from many different sources to allow for a

generalised tool, without using simulations, is still an outstanding problem.

The measurements presented at the start of subsection 3.5.3 immediately suggest two

things. Firstly, the GAN is capable of identifying the majority of instances of RFI. This

is further shown by the results of operating on simulated data (see Figure 3.11) that show

a TPR of >50% at µRFI < 10. Additionally, maintaining the low false positive rate seen

below µRFI ∼ 10 is important for preserving as much valuable observing time as possible.

Secondly, the results suggest a discrepancy exists between what the GAN classifies as

RFI, and what the training data classifies as RFI. It must be remembered that the train-

ing data itself only offers an approximation of the RFI detected. Given the ability of this

particular machine learning method to infer details from the training set rather than rig-

orously copying it, and that the flags contained in the training set are an approximation

of perfect knowledge of RFI, it should not be expected that a well-trained GAN achieves

a high TPR when operating on the test set. On the other hand, by simple inspection of

the flag masks it creates it is obvious the GAN does not flag all instances of RFI. One

example of this is that it repeats a similar error found in a number of thresholding meth-

ods where pixels nearby or directly adjacent to RFI that have a significantly lower power

are not flagged while still technically being corrupted. Most methods will mitigate this

problem by ‘extending’ the initial flag mask (Offringa et al., 2012a), and it is possible the

GAN could also benefit from this.

The exact cause of the change in behaviour around µRFI ≈ 10 is unknown, but it

is possible that the GAN has learned to flag pixels surrounding very strong instances

of RFI (which is a common practice in manual flagging), leading to an increased false-

positive rate when operating on the simulated instances of RFI which do not simulate

this effect. Alternatively, the change in behaviour could be a combination of two other

factors. Firstly, the clipping method described in subsection 3.5.2 is based on percentiles

rather than a hard cutoff. The number and strength of the pixels at the higher end of the

visibility distribution will vary from image to image, therefore the threshold where the

clip is applied will also change. Secondly, the e-MERLIN correlator produces visibilities

with strengths capped at a certain limit, so strong instances of RFI will cluster around
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an upper limit, which is then further winsorized as previously described. I hypothesize

that this manifests in the training data as a maximum SNR ∼ 10 in each image, which

means that the GAN is effectively untrained on RFI instances exceeding this limit. In any

case, it is unlikely that the network would regularly encounter RFI with µRFI > 10 after

normal pre-processing in a realistic scenario, and robust safeguards could be constructed

to handle this eventuality.

More broadly, this experiment describes a technique with significant potential, but

one that requires further refinement before it can be classified as reliable. A more diverse

and expansive training set would likely have yielded better results, though realising this

is limited by the practical difficulties of manually flagging large collections of visibilities.

It is possible, by leveraging the ability of this particular architecture to infer properties

of RFI, to train the network on visibilities flagged by some other automated method.

However, care must be taken that the GAN does not learn to simply replicate the output

of that other method. The decision to use manually flagged data in this experiment was

driven by a desire to avoid this, and at the same time replicate the precision of human

intervention, which is notoriously difficult with statistical tools. In any case, it seems

clear from this and other work that human intervention in the training data should and

will play a critical role in producing the most effective machine learning models of RFI

(Agarwal et al., 2020; Vafaei Sadr et al., 2020; Pinchuk & Margot, 2022).

Potential systematic improvements include a more complex pre-processing stage, and

modifications of the architecture itself. The overall objective of pre-processing is to em-

phasise RFI signals and de-emphasise all other signals, to make corrupted visibilities

easier to identify. Therefore, any deterministic technique that satisfies this objective is vi-

able. The architectures themselves may be improved by utilising a posteriori knowledge

of RFI morphology, which is often quite consistent in a particular RFI environment. The

U-Net architecture was designed with the specific intention of tracking cells in biomedical

imaging, where the cells can be somewhat arbitrary in shape and size. RFI morphology is

very different from this; it often extends narrowly along either the time or frequency di-

mension, and appears as two-dimensional box or circular shapes less often. Furthermore,

the U-Net in this experiment was tasked with a binary classification problem, that is to

identify RFI and ‘not RFI’. It’s possible that broadening to a multi-class problem might

give better performance, where the U-Net is instead given the task of identifying and

flagging different types of RFI such as narrow-band and wide-band RFI. One could even

include slightly more abstract classes such as ‘unsure’ or ‘bordering RFI’ which could be
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Figure 3.12: The number of objects in low earth orbit over time. These objects are divided
between objects < 100 kg (left), and > 100 kg (right). Notice the spike in objects >100 kg due to
the Starlink satellite program. Image credit: McDowell (2020).

useful information in a post-processing pipeline.

3.6 Dark and Quiet Skies

Looking forward, the greatest emerging threat to radio astronomy is the development of

massive satellite networks. In approximately the last decade, there has been a signifi-

cant increase in the volume of satellites in orbit around the Earth, and these satellites are

capable of emitting very strong radio waves for communication. For maximum global

coverage at all times, it has become a common objective for these satellites to be organ-

ised into ‘constellations’: hundreds of satellites distributed across the sky. Examples of

these constellations in use today are the Starlink network, the Oneweb network, and the

Iridium network.

The Starlink network in particular has been the greatest cause for concern so far and

has prompted much of the action being taken by radio astronomers to manage satellite

interference. While satellites have always been a concern, the Starlink launch program

produced a massive increase in the volume of radio emitting satellites, such that ∼50%

of all objects >100 kg in low Earth orbit are reported to be Starlink satellites (see Fig-

ure 3.12, McDowell 2020). As of March 2024 at least 5000 Starlink satellites have been

deployed, but as many as 12000 are currently being proposed. These Starlink satellites

have a typical visual magnitude of ≤6, so wide-field optical surveys such as those that

will be produced by the upcoming Vera C. Rubin observatory must find ways of handling

the image artefacts introduced by Starlink and other satellites (Tyson et al., 2020).

Since many satellite networks operate outside the jurisdiction of any one state, it is dif-

ficult to regulate the transmission of signals from them as the ITU-R Radio Regulations
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intend. Furthermore, because the cost of running these networks is high, the businesses

that operate them have an incentive to stretch the limit of their obligations to ensure maxi-

mum monetary value. Negotiations between astronomers and the handful of private enter-

prises that operate these networks are ongoing, to try and come to a mutually acceptable

arrangement.

In any case, the impact on radio astronomy will be significant, as a shared sky filled

with radio transmitting satellites breaks the assumption that many RFI signals will not be

correlated at both antennas in a baseline. It also breaks the assumption among many radio

astronomers that RFI tends to originate from or near the horizon exclusively. Already

there are some early warning signs of problems to come in radio astronomy, such as the

data presented by Di Vruno et al. (2023) and Grigg et al. (2023). At the more extreme

end of concern, there is the ever-present worry of an exponential increase in space debris

caused by the increased volume of objects in low earth orbit; the so-called ‘Kessler Syn-

drome’ (Kessler, 1991). Furthermore, astronomers have proposed the construction of a

lunar radio observatory as the radio environment of the surface of the moon allows radio

observations at frequencies <30 MHz, something not possible on the Earth due to the RFI

environment and the reflection of these low frequency waves off the ionosphere (Jester &

Falcke, 2009). However, recent experiences with these satellite constellations has already

prompted concern over the protection of potential lunar sites from interference (Le Conte

et al., 2023).

These oncoming challenges only increases the need for more sophisticated methods

of dealing with RFI, since even the most remote observatories on Earth will experience

significant increases in the volume of RFI encountered. This will translate into greater

amounts of data lost to flagging, and a reduction in effective observation time, which

ultimately raises the noise level in any final data product. Finding and experimenting with

new methods of precise RFI removal is, therefore, a critical area of research.
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Chapter 4

The Faint Radio Sky

As discussed in section 1.2, the understanding of the nature of the faintest radio sources

has, naturally, evolved alongside the capabilities of our radio observatories. But only in

the last few decades has this capability allowed observations at S 1.4 GHz . 100µJy, and

only in the last decade or so has this been extended to . 10µJy. Until these observations

were possible, understanding the nature of the faint radio population was a challenge of

theoretical knowledge, tested by effective simulations. Some attempts to model and sim-

ulate the radio sky include Dunlop & Peacock (1990); Hopkins et al. (2000); Jarvis &

Rawlings (2004); Wilman et al. (2008) and Wilman et al. (2010); Mancuso et al. (2015),

and Bonaldi et al. (2019). For the most part, these models have been successful at pre-

dicting the radio source counts above ∼ 100µJy (see Figure 4.1), but there is not much

consensus below this point as current instruments can be limited by confusion in the

µJy region. Furthermore, adding more context to the counts by classifying the objects

normally requires multi-wavelength information, which isn’t always available for radio

sources.

Nevertheless, understanding these faint radio sources is crucial to many areas of as-

tronomy such as mapping the cosmic star formation rate (Madau & Dickinson, 2014).

Radio surveys naturally sample higher redshift objects, so deep high resolution radio sur-

veys also allow probing active and star forming galaxies at extremely high redshifts, which

in turn provides evidence for current cosmological theory. This chapter will introduce the

current theory of the faint radio sky and its two main constituents. It will also introduce

the questions this experiment aims to explore, and their importance in the wider field of

radio astronomy. This will be followed by a brief review of research into the radio sky at

brightnesses below ∼1 mJy.
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Figure 4.1: The 1.4 GHz source counts down to ∼ µJy from both observational data and predictive
models. Image Credit: Padovani (2016).

4.1 Active Galactic Nuclei

Of all the wondrous objects in the universe, black holes are certainly among the most im-

pressive. To this day, they remain a constant source of enquiry and subsequent confusion,

and are the ultimate testing ground of any theory of the universe. Until recently, black

holes were still technically only theoretical (though universally accepted) since there ex-

isted no direct observational evidence for them. The EHT observation of the event horizon

of the black hole in the center of M87, shown in Figure 1.2 (see also Event Horizon Tele-

scope Collaboration et al. 2019), was the first direct indication of a singularity, and all

but cemented general relativity as a pillar of theoretical astrophysics. That observation

further provided evidence for Supermassive Black Holes (SMBHs) as the gravitational

core of the vast majority of, if not all, galaxies.

SMBHs are also theorised to be the mechanism that drives the observational phenom-

ena known as AGN, since it is the only known mechanism that could account for the

tremendous power necessary to produce the observed emission in all bands of the electro-

magnetic spectrum, including a significant portion of emission at radio frequencies. The

radio emission from AGN comes from either powerful relativistic jets (see Figure 4.2)
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Figure 4.2: A progressively zoomed image of the radio galaxy M87, showing the structure of the
jets at different scales. The instruments used for imaging are, from left to right: VLA 90 cm, VLA
20 cm, VLBA 20 cm, VLBA 7 mm, Global VLBI 3 mm. Image credit: Blandford et al. (2019)

that can extend well beyond the galactic scale up to ∼Mpc (Blandford et al., 2019), or

from thermal radio emission originating from the black hole accretion disk. AGN and

their associated phenomena form one of the two main components of the radio sky (the

other being star-forming galaxies, see section 4.4). This, in addition to the advantages of

observing radio waves that are undisturbed by dust, means that much of radio astronomy

focuses on the observation of active galaxies.

The reasons to study AGN are numerous, though I will give some motivations here.

Firstly, it is now understood that the evolution of the central SMBH and its host galaxy

are inextricably linked (Kormendy & Ho, 2013; Heckman & Best, 2014), which means

that a good understanding of the mechanics of galaxy formation and evolution must come

packaged with a similarly good understanding of AGN. Secondly, the underlying physics

of the production of relativistic jets is still an area of heavy research, and while our under-

standing has very recently increased due to the expansion in observing capability, there

still remains many questions that need clarifying such as the exact mechanism (or mech-

anisms) that generates the collimated jet, or the factors governing the occurrence of duty

cycles that, in turn, play a major role in AGN feedback (Fabian, 2012). Pursuing a satis-

factory governing theory of relativistic jets may reveal new physics, and all the implica-

tions associated with that. Similarly, it is well known that the singularity itself stretches

the limit of even the most advanced astrophysical theory, and any attempt to resolve this

long standing problem would be aided by a high-quality repository of knowledge sur-

rounding active black holes and their environments.
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4.1.1 The Unified Model of AGN

In the many decades since Maarten Schmidt (Schmidt, 1963) linked together the radio

and optical components of 3C273 — discovering the first ‘quasi-stellar’ object or quasar

— there have been numerous identifications of galaxies with a powerful radio component;

what we now call AGN. These discoveries have often been accompanied by more ques-

tions than answers, and as such the literature surrounding AGN is filled with a variety of

labels and examples of different, and sometimes extreme, cases of active black hole sys-

tems. The confusing taxonomy of AGN is an unfortunate byproduct of our knowledge of

AGN often significantly preceding our understanding as, in an attempt to achieve the lat-

ter, various classification schemes have been formed to highlight similarities between the

many known cases of AGN. Rather than exhaustively detail all these different categories

and their observational characteristics, I instead refer the reader to the work of Padovani

et al. (2017), which seeks to simplify the ‘zoo’ of AGN. This section will instead focus

on a jargon-free, simpler introduction to the now widely accepted model of unification for

AGN, as shown in Figure 4.3.

It is generally assumed that at the center of every galaxy lies a SMBH, defined by

Netzer (2015) as a black hole with mass roughly exceeding 105 M�. At some point during

the life of that SMBH, mass accretion on to the black hole can be triggered by dynamical

events, leading to the formation of an accretion disk . 1pc wide. The system is highly en-

ergetic, causing a significant increase in luminosity across the electromagnetic spectrum

that can outshine the entire host galaxy. When an SMBH is in this state, it is ‘active’ and

is therefore referred to as an Active Galactic Nucleus, or AGN. There are thought to be

several key components of an AGN, which the following sections will describe.

The Singularity

Black holes, as predicted and described by general relativity, are produced when the es-

cape velocity of some gravitational body exceeds the speed of light. Within the radius

known as the Schwarzchild radius, photons cannot even escape the hole’s influence, and

so the object appears ‘black’. The existence of black holes remains a constant focal point

of all theories of the universe, since they are one of, if not the most extreme example

of physics in nature. Most black holes are formed at the end of the lifecycle of a very

massive (&60-80 M�) star, but that mechanism alone is insufficient to explain the pres-

ence of the populations of SMBHs observable today. Therefore, there are a number of
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Figure 4.3: An approximate schematic of the anatomy of a typical AGN viewed side-on (not to
scale). The black hole lies at the center, surrounded by an accretion disk that flows out into the
dusty torus. In a region close to the black hole itself lies the broad-line region, and further out
in a cone extending from the core of the nucleus lies the narrow-line region. Relativistic jets are
ejected out of the poles extending out well-beyond the central structure.
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explanations for the presence of SMBHs (Inayoshi et al., 2020), such as a now (likely)

extinct population of massive (&100 M�) stars known as Pop III stars: the first generation

of stars to form after the big bang (Madau & Rees, 2001). Through a combination of

mass accretion and major mergers, it is possible that these early massive stars seeded the

SMBHs of today. Very recent JWST observations may show signs of Pop III stars in the

halo of a very high redshift galaxy hosting an SMBH at z = 10.6 (Maiolino et al., 2023;

Maiolino et al., 2024).

The Accretion Disk

Inevitably mass will be drawn in towards the black hole from a number of sources (Rees,

1984), which collects in the form of a disk surrounding it. The loss of angular momen-

tum that drives the accretion is caused by a combination of disk viscosity, turbulence,

and electromagnetic interaction with the black hole itself (Urry & Padovani, 1995). The

accretion disk is also extremely hot, and therefore emits strongly in the X-ray and UV

bands. The accretion of matter on to the black hole is one of the main sources of black

hole growth, and the characteristics of the accretion disk is one of the primary factors

in determining the characteristics of (or the existence of) a jet (Blandford et al., 2019).

Accretion disks are a common occurrence not just for black holes, so for a comprehensive

review see Pringle (1981) and Abramowicz & Fragile (2013).

The Torus

Some AGN will have a circularly symmetric donut-like cloud of colder dust and gas

surrounding them, known as a ‘torus’ or sometimes a ‘dusty torus’. An exploration of tori

and their formation is given by Rees (1984), but in general they occur when conditions

change with increasing distance from the black hole such that internal forces in the disk

begin to compete with gravity, and the mass of the disk balloons out slightly to form a

thicker structure. How exactly the torus then connects to the host galaxy itself is still a

subject of ongoing research (Netzer, 2015)

The presence of a dusty torus is one of the key factors of the unified model, as the torus

obscures the inner region of the AGN when it is viewed side-on. It is now believed that

at least some classes of AGN are a product of viewing angle, specifically when viewing

directly through tori which obscure the Broad-line Region (BLR), or when viewing at

small angles to the jet axis which exposes the BLR. The presence of a torus is another
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reason why radio astronomy is a powerful tool for exploring AGN, as radio observations

are not as susceptible to the dust in the torus as other modes of observation, providing a

less biased view of the inner regions of AGN.

The Jets

With modern VLBI systems we now know that relativistic jets exist among many AGN,

but the mechanism that produces them is still not well understood. The accelerated mat-

ter clearly originates from the accretion disk, but it is unknown at what point the matter

is ‘confined’ to such a small area and ejected in a strongly collimated flow. It has been

demonstrated that strongly magnetized outflows self-collimate under certain conditions

(Heyvaerts & Norman, 1989) but this mechanism alone cannot explain the observed de-

gree of collimation. A promising explanation involves magnetic interaction with the ac-

cretion disk itself to generate the initial jet which then self-regulates at large distances

(Globus & Levinson, 2016). In any case, testing these theories through observation is

difficult because of the extremely small spatial scales, so simulations of jets remain the

best tool for testing theoretical models (e.g. Komissarov et al. 2007; Tchekhovskoy et al.

2011; McKinney et al. 2012)

Figure 4.4: Dual radio lobes in the radio galaxy 3C353. The galaxy is viewed from the side, and
the jets originate from a small point at the center of the image which is the AGN itself. Image
credit: NRAO

The strongest jets will propagate to well-beyond the host galaxy itself where they may

dissipate into the lobe-like structure seen in many radio galaxies, as in Figure 4.4. As

mentioned previously, the role of jets in the evolution of host galaxy — the AGN feedback
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mechanism — appears to be a critical factor in the development of the host galaxy (Fabian,

2012; Kormendy & Ho, 2013), and perhaps even its surroundings (Heckman et al., 1990;

McNamara & Nulsen, 2012).

The Broad and Narrow-line Regions

The broad spectral-lines found in some AGN spectra are thought to originate from a region

inside the boundary of the torus close to the black hole, specifically from clouds of hot,

fast-moving gas emitting at optical and ultraviolet wavelengths (Urry & Padovani, 1995).

This emission is obscured when the AGN is viewed through the torus but observable when

viewed at inclinations that allow peering inside the inner region. Further out, slower,

colder clouds of gas exist within the ‘ionisation cones’ of the AGN. These clouds are

photoionised by radiation from the nucleus itself and produce narrow emission lines that

are generally observable at all inclination angles. The seemingly random presence or

lack of broad emission lines drove much of the confusion surrounding different classes of

AGN, and is one of the main problems solved by the unified model.

4.2 AGN at Radio Frequencies

Because of their ability to observe extremely small spatial-scales, radio observatories

(VLBI observatories in particular) are an attractive method of investigating AGN and

their environments. Conveniently, the primary mechanism that dictates the dominant

non-thermal component of continuum radio emission below ∼30 GHz in AGN is the same

mechanism that produces radio emission in star-forming galaxies: synchrotron radiation.

4.2.1 Synchrotron Radiation

The emission mechanism of synchrotron radiation, also known as magnetic bremsstrahlung

radiation, is well understood, and neatly explains much of the emission seen from extra-

galactic radio sources. In many of these sources, ultra-relativistic particles travel parallel

to a magnetic field, and are therefore accelerated into a helical motion about the field

lines. In this state, they will emit radiation over a wide range of frequencies.

To explore this in more detail, consider particles moving at relativistic speeds (i.e.

β = v/c ≈ 1) in the presence of a magnetic field B as shown in Figure 4.5. Particles in

this state will make one full rotation every T = 2π/ωB, where the gyration frequency ωB
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Figure 4.5: A diagram of ultra-relativistic electrons orbiting about a magnetic field line indicated
by B. Blue cones indicate the beaming effect introduced by their speed. At a point on each
orbit round the field line, the cone will be pointing in the direction of the observer, causing the
observer to see pulses of light at regular intervals. The time between these pulses is governed by
the properties of the particles.

is defined by the following from Rybicki & Lightman (1979):

ωB =
qB
γmc

(4.1)

for a particle of charge q, gyrating about a magnetic field of strength B, with mass m.

Here, γ is the Lorentz factor γ = 1/
√

1 − β2, and c is the speed of light. Because these

particles are traveling at highly relativistic speeds, a beaming effect is introduced, such

that the particles radiate light in the forward direction with emission profiles indicated by

the blue cones in Figure 4.5. Therefore, an observer would see pulses of light with a finite

duration in regular intervals derived from the gyration frequencyωB. Fourier transforming

this signal yields the synchrotron spectrum of a single particle.

In astronomy, the source of synchrotron radiation is mostly from relativistic electrons,

though not all electrons will have the exact same properties within an overall system (such

as an AGN jet). It is common for studies of synchrotron emission to assume a power law

distribution of electron energies over a small range such that:

N(E)dE ∝ E−αdE (4.2)

Considering the integrated light from such a distribution of electrons gyrating about a

magnetic field gives a wide ranging spectrum with characteristics tightly bound to the
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Figure 4.6: The radio spectrum of M82. At ∼100 GHz the thermal dust emission (dotted line)
decreases and the synchrotron spectrum (dash-dotted line) takes over with a smaller contribution
from a free-free component (dashed line). Below this limit, the spectrum can be approximated by
the spectral index Γ. Image credit: Condon (1992)

properties of underlying system. At frequencies above ∼100 GHz, thermal dust emis-

sion is usually strong enough to outshine synchrotron radiation, but that component de-

creases at low frequencies. As it decreases, nonthermal processes — assumed to be mostly

sourced from the synchrotron mechanism — become relatively stronger, until taking over

at frequencies in the ∼GHz range and below. A prime example of this is the radio spec-

trum of M82, shown in Figure 4.6

4.3 Radio-loud and Radio-quiet AGN

Soon after the discovery of the first quasars, objects with a similar optical appearance

were found to have no associated radio emission. We now know that there is in fact an

associated radio source with these objects, but it is approximately one-thousand time less

powerful and was below the detection limit at the time. This led to a distinction between

‘radio-loud’ AGN and ‘radio-quiet’ AGN. The separation is traditionally made in terms
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of radio power and a radio-to-optical flux density ratio, R. Radio-quiets are typically

thought to have radio powers L1.4 GHz . 1023WHz−1 and radio-to-optical ratios R . 10.

Less than 10% of all known AGN are radio-loud, with the vast majority being radio-quiet.

A comprehensive review of the two populations is given by Padovani (2016) and Padovani

(2017), both of which I summarise here.

The differences between the radio-loud and radio-quiet AGN is not just restricted to

radio brightness; the dominant source of emission across the spectrum is different. Radio-

loud AGN attribute the majority of their bolometric luminosity to strong jets emitting non-

thermally, while radio-quiets derive most of their energy output from thermal (free-free)

emission associated with the accretion disk. Naturally, this means that radio-loud AGN

tend to emit over much larger spatial scales than the quiets, since the jets can extend far

beyond the host galaxy. There also appears to be a difference in the host galaxy between

the two: radio-quiet AGN tend to be located in late-type galaxies, while radio-louds tend

to be present in early-type galaxies. The origin of radio emission in particular in the radio-

quiets is still being researched, but recent studies support the hypothesis that the majority

of radio emission is attributable to star-formation (Padovani et al., 2011; Bonzini et al.,

2013; Panessa et al., 2019). This correlates with the observation that many radio-quiet

AGN are hosted in late-type galaxies which display more star-formation.

The recently developed ability of radio observatories to probe the ∼ µJy radio pop-

ulation has shown instances of radio-loud AGN that violate the radio flux density limits

described earlier (Bonzini et al., 2013). In fact, the available evidence indicates that a

more accurate distinction can be made by the presence or lack of a strong, relativistic jet,

as this has major implications for the source brightness across the spectrum. A more accu-

rate and helpful terminology therefore, would be to follow that of (Padovani, 2017) which

instead describes a population of ‘jetted’ and ‘non-jetted’ AGN. One of the strongest ways

of distinguishing between these two classes is by examination of the famous FIR-Radio

correlation (van der Kruit, 1973; Condon, 1992). The FIR-Radio correlation is a trend

indicative of star formation, and as jetted AGN are not dominated by star formation they

do not follow it, while non-jetted AGN do. Now that the period of confusion around

AGN classes appears to be passing, other questions now need answering such as: Why

are there so few AGN with strong jets? What is the distribution of jetted and non-jetted

AGN at fainter radio fluxes, and what can that tell us about their evolution? The latter

experiment is only possible with modern radio telescopes, and is partly what this thesis

aims to explore.
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4.4 Star Forming Galaxies

All galaxies undergo some level of star formation, but there are a subset of galaxies with

significantly greater levels of star formation, usually as a consequence of a merger or tidal

interaction. Galaxies with a greater rate of star formation will naturally exhibit an above

average rate of core collapse supernovae. Stars with mass M & 8M� will eventually pro-

duce a supernova as part of its lifecycle (Smartt, 2009), and the supernova phenomenon is

well-documented at almost all points on the spectrum by now, including at radio frequen-

cies.

Figure 4.7: An image of the Tycho supernova remnant observed by the VLA at 1.4 GHz. At the
centre, a point of emission indicates the remnant core of the star. Image Credit: Reynoso et al.
(1997).

The classic view of a supernova is a singular powerful explosion that produces a spike

in emission across the electromagnetic spectrum, falling away over a timescale < 1yr

(Woosley & Weaver, 1986). Naturally, this brief spike in energy output applies to ra-

dio emission as well, but radio telescopes are able to view a secondary effect related to

the material ejected from the supernova remnant, for many thousands of years after the

supernova occurred. The supernova will eject material from the star into the interstellar
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medium and the interstellar magnetic field. There, shock fronts will form, and the parti-

cles will emit synchrotron radiation in the same way as described in subsection 4.2.1, by

interacting with the local interstellar magnetic field. An example of a supernova remnant

seen at radio frequencies is given in Figure 4.7. The flux density of the synchrotron emis-

sion decays over time as the particles diffuse through the galaxy, but the decay is slow

enough such that a local z ∼ 0 remnant is resolved and observable for much longer than

the initial flash.

In galaxies teeming with star formation and the subsequent supernovae, there is a sig-

nificantly increased density of relativistic electrons propagating through the interstellar

medium, which means that these star forming galaxies are observable with radio tele-

scopes even at high z, and make up one of the two primary components of the faint radio

population. Tracking the strength and number of these star-forming galaxies as the uni-

verse evolves is a direct indication of the cosmic star formation rate.

4.5 A Dual Population

As a result of the mechanisms described in section 4.2 and section 4.4, the radio sky below

the ∼mJy limit is dominated by SFGs and AGN. Distinguishing between these two at z ∼

0, is not so much of an observational challenge since it is trivial to determine the source

of the radio emission by simply locating it within a galactic disk; if it resides in the center

of a galaxy it is an AGN, if it resides in the disk it is likely a supernova remnant (or at

least, not associated with an AGN).

However, at higher z where many objects are unresolved to most instruments this is

no longer possible. Most studies of the faint radio sky therefore utilise multi-wavelength

imaging and spectroscopy to classify objects, in particular at infrared wavelengths to

search for signs of star formation, and X-rays to search for signs of black hole activity.

Introducing multi-wavelength information is not easy, and complications can arise with

the mixing of resolving power, systematic uncertainties, source matching, SED fitting,

selection effects, and so on. A few notable selection effects include:

• As discussed in subsection 4.1.1, radio powers from AGN can be affected by the

orientation of the BH with respect to the observer. This also true for other observing

bands as the torus can obscure the central region when viewed side-on

• VLBI arrays are predisposed towards detecting compact radio emission (AGN) due
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to their lower surface brightness sensitivity

• SFGs are harder to detect at higher z as the more diffuse emission falls below the

sensitivity limit of radio telescopes more easily than compact AGN

Many studies of the faint radio population have been conducted over the last two

decades or so such that its properties are well observed above ∼100µJy. Beneath this

limit information is more scarce. The source counts are in agreement from a broad range

of surveys (Smolcic et al., 2015), but the relative distribution of AGN to SFGs is explored,

but not certain. Figure 4.8 provides an estimate of the relative number of each class within

the Extended Chandra Deep Field South (E-CDFS) study conducted by Padovani et al.

(2015).

The picture at the µJy limit is just beginning to come together, as new surveys with

upgraded instruments are being conducted. Vernstrom et al. (2016a) conduct a deep sur-

vey of the Lockman Hole with the VLA, reaching a detection limit of 5µJy/beam. From

558 sources they find that 10% are jetted AGN, 28% are non-jetted and 58% are SFGs.

Muxlow et al. (2020) have conducted a deep survey of the GOODS-N field down to ∼1µJy,

but have not yet determined classifications of sources. They intend to investigate the AGN

and SFG populations through an analysis of morphology at different spatial scales. They

combine data from both the VLA and e-MERLIN to achieve both high sensitivity and

excellent resolving power. This also means that by weighting the baselines differently,

they can explore progressively higher resolution images of sources, to see if the radio

emission remains compact or becomes more diffuse, indicating AGN or star-formation

respectively. If successful, this would sidestep the difficulties introduced by relying on

multi-wavelength data for classifications.

Reaching such deep sensitivities is not easy with the instruments of today, as they

require large amounts of observing and processing time. Even if a survey can reach those

deep flux bins there may be issues of source confusion. This is made even worse by the

RFI environments of many modern observatories which introduce numerous sensitivity

and calibration problems which must be overcome. Conducting deep radio surveys is one

of the key motivations for the RFI mitigation and identification measures discussed at

length in chapter 3, which will become even more important as future facilities such as

the SKA, which are significantly larger and more advanced, will be able to explore much

deeper.
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Figure 4.8: The relative distribution of the different classes of radio sources in the E-CDFS field.
Jetted AGN dominate the sky at &200µJy, whereas below this limit SFGs and non-jetted AGN take
over. Specifically, SFGs seem to dominate over AGN at these faint flux densities, an observation
which is reinforced by the deep study conducted by Vernstrom et al. (2016a). Image Credit:
Padovani (2016).
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Chapter 5

Investigating a Binary AGN Candidate

The following chapter presents an updated version of a paper published in Monthly No-

tices of the Royal Astronomical Society: Letters in May 2022, about the potential discov-

ery of a bound pair of AGN with ∼kpc scale separation. The paper title is ‘Revealing dual

radio sources in a sub-kpc-scale binary active galactic nucleus candidate’. The authors are

myself (J. E. Brooks) and M. K. Argo from the Jeremiah Horrocks Institute, Preston, UK;

Hojin Cho and Jong-Hak Woo from the Department of Physics & Astronomy at Seoul

National University, Republic of Korea; Taehyun Jung from the Korea Astronomy and

Space Science Institute and the Department of Astronomy and Space Science at the Uni-

versity of Science and Technology, Korea; and N. Wrigley from the Jodrell Bank Centre

for Astrophysics at The University of Manchester, UK. Then, section 5.2 presents the re-

sults of a follow up study of the object by the EVN. All of the following material in this

chapter was written by myself and is solely my own work. Furthermore, all of the data

processing and analysis related to the e-MERLIN and EVN radio data presented in this

chapter was performed by myself and is solely my own work. The valuable contributions

from the co-authors listed above were in the form of suggestions and verbal discussions.
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5.1 Revealing dual radio sources in a sub-kpc-scale bi-

nary active galactic nucleus candidate

5.1.1 Abstract

We present new VLA and e-MERLIN imaging of a sub-kpc-scale binary active galac-

tic nuclei (AGN) candidate. Two unresolved radio sources of similar luminosity around

1022 WHz-1 are identified in ∼35 hrs of e-MERLIN 6 cm imaging. These radio sources

have an angular separation and position angle of 0.19±0.06′′ and PA 22±10°, correspond-

ing to a projected separation of 0.95±0.29 kpc at the epoch of the source. Our results

suggest the presence of a kpc-scale active black hole pair hosted by two galaxies in the

late stage of a merger at z = 0.35. This work follows (Woo et al., 2014) which presented

two optical sources with a similar separation and position angle, and a velocity separa-

tion of 200 km s-1. Our target adds to the currently limited sample of close-separation

binary AGN that will aid in understanding the frequency of mergers and the stochastic

gravitational wave background.

5.1.2 Introduction

The exact role of the central supermassive black hole (SMBH) in the evolution of a galaxy

is still unclear, but it is clear that mergers between galaxies can have a major impact on the

life cycle of a galaxy (Kormendy & Ho, 2013). During a merger of two massive gas-rich

galaxies, accretion onto one or both of the central SMBHs can be triggered producing a

bound pair of active galactic nuclei (AGN). This merger proceeds in a series of stages be-

fore coalescence (Begelman et al., 1980; Colpi, 2014; Komossa & Zensus, 2016). Firstly,

the two galaxies begin their interaction via momentum losses to dynamical friction. This

continues until the binary separation is approximately 1 pc, then the pair begins to secure

itself and the binary ‘hardens’. It is here where our understanding becomes slightly more

murky, as the processes that take over dynamical friction to drive the merger may not oper-

ate on timescales that agree with observation. Early models even suggested that the binary

can stall for longer than a Hubble time; commonly referred to as the ‘final-parsec’ prob-

lem (Khan et al., 2011, 2013; Vasiliev et al., 2015; Holley-Bockelmann & Khan, 2015).

Our understanding picks back up again as the binary approaches coalescence and efficient

gravitational wave emission takes over to drive the merger to its conclusion. Here, a mas-
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sive burst of gravitational energy is emitted that will be clearly detected by observatories

like the Laser Interferometer Space Antenna (LISA, Danzmann et al. 2017).

Studying these mergers is therefore critical to the future of the burgeoning field of

gravitational wave astronomy, which can in turn deliver important insights to the entire

field of astrophysics. In addition to being a strong source of emission for even our early

gravitational observatories, mergers are thought to contribute to a stochastic background

signal known as the gravitational wave background (GWB, Goulding et al. 2019). As

Pulsar Timing Arrays continue to operate at lower and lower frequencies, so the interest

in this field grows (Manchester et al., 2013; Verbiest et al., 2016), and decomposing the

relative contributions of various mechanisms to the GWB becomes an active area of re-

search. Quantifying the contribution of binary AGN to the GWB necessarily requires a

large sample of mergers at varying stages to approximate the rate of gravitational wave

events. Furthermore, this sample could also be used in studying the galaxy merger pro-

cess beyond z ∼ 0 where major mergers seem to have at least partly driven changes in

galaxy morphology (Conselice, 2014). Therefore, compiling a sample of close separation

binaries provides an important tool for testing future theories and models of galaxy evolu-

tion and cosmology. Currently, this sample is quite limited (see e.g. Rubinur et al. 2018;

De Rosa et al. 2019, for a review), and the sample of ∼kpc scale binaries is especially

small (e.g. Komossa et al. 2003; Rodriguez et al. 2006; Fu et al. 2015; Kharb et al. 2017;

Goulding et al. 2019).

The origin of the radio emission in radio faint AGN, like those presented in this article,

is an ongoing topic of research (see Padovani (2016) for a review). It has been shown that

there is a loose correlation of jet power with radio power, such that radio-loud AGN

contain strong jets and radio-weak AGN contain weak or non-existent jets, and the origin

of emission is likely dominated by some other mechanism operating in the host galaxy or

the local environment of the central engine (Bonzini et al. 2015; Panessa et al. 2019). This

other mechanism is usually star formation, therefore radio faint populations are mostly

composed of AGN and star formation dominated sources (Padovani et al., 2015). As is

often the case, this is not a global rule. An example of one such exception is the strongly

lensed system studied by Hartley et al. (2019), which shows dominant jet emission in a

sub-mJy source on scales below a parsec. Identifying the dominant origin of emission in

radio faint AGN often requires multi-wavelength observations and a combination of long

and short baseline interferometers in the radio.

This article presents new evidence for the binary AGN nature of the object SDSS
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J132323.33-015941.9 using radio imaging from both the Karl G. Jansky Very Large Array

(VLA) and the Multi-Element Radio Linked Interferometer Network (e-MERLIN). We

will build off the findings of Woo et al. (2014) who first identified the object as a candidate

sub-kpc-scale binary AGN through Hubble Space Telescope (HST) imaging and Very

Large Telescope Integral Field Unit (VLT IFU) spectra. They find two stellar cores in

the HST imaging with an angular separation of 0.20±0.01 arcsec and a position angle

(PA) of 12.9±4.0°. These stellar cores overlap with two velocity components found in

the IFU spectra that share very similar spatial separation and PA measurements, along

with a velocity separation of ∼200 km s-1; typical of a late stage galaxy merger (Liu et al.,

2010). Furthermore, the [OIII]/Hβ flux ratio of both components is much larger than 3,

indicating that the ionization source of each component is an AGN. Further details of the

optical properties of the target can be found in Woo et al. (2014).

The object, hereafter referred to as J132323, is located at α = 13h23m23.33s and δ =

-01°59′41.9′′, with a redshift z = 0.350280±0.000014 as measured in DR13 of the Sloan

Digital Sky Survey (Albareti et al., 2017). Assuming H0 = 70 km s-1Mpc-1, ΩΛ = 0.7, and

Ωm = 0.3, one arcsecond corresponds to 4.94 kpc at the local epoch of J132323. In this

paper, we first present new radio observations of J132323 in section two and our initial

analyses in section three. The implications of our findings are discussed in section four

and we present our conclusions in section five.

5.1.3 Observations

VLA Observations

The target was observed by the VLA under project code 15A-072 (PI: J. Woo) in both

C-band and L-band in July and August 2015 respectively, in A configuration for 10 and

18 minutes (total on-source time) respectively. The observations were conducted with all

available antennas and covered 2.048 GHz around 5.5 GHz for C-band and 1.024 GHz

around 1.5 GHz for L-band. Both observations split up their respective bandwidths into

16 spectral windows of 64 channels. The data products were retrieved from the archive

in early 2021 and passed through the VLA pipeline packaged with casa1. No extra flags

were applied after the pipeline run.

The VLA observations were successful in detecting a single unresolved source of ra-

1see the webpage
https://science.nrao.edu/facilities/vla/data-processing/pipeline
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dio emission in both bands (see Figure 5.1). These sources show peaks of 0.236±0.01 mJy/beam

at C-band and 1.39±0.03 mJy/beam at L-band. The VLA synthesised beam is 1.3 arc-

sec and 0.33 arcsec at L and C-band respectively; both are around 7 times larger than

e-MERLIN beam sizes. Therefore, we expect that the VLA will measure greater peak

emission values than equivalent measurements from e-MERLIN.

e-MERLIN Observations

Radio imaging of the target was conducted by e-MERLIN over seventeen C and L-band

observations between November 2016 and September 2020 (see Table 5.1). This totals

to ∼35 hours on-source time at C-band (5 GHz/6 cm) and ∼8 hours on-source time at

L-band (1.5 GHz/21 cm), with flags applied. All observations utilised all available an-

tennas excluding the Lovell telescope, giving a maximum baseline of 217 km (Knockin -

Cambridge) and a minimum baseline of 11 km (Mk II - Pickmere). The L-band spectral

range covered 512 MHz centred at 1.51 GHz, broken up into 8 spectral windows of 64

MHz each. Each spectral window was averaged to 128 channels of 0.5 MHz. The C-band

spectral range covered 512 MHz centered at 5.07 GHz, broken up into four spectral win-

dows of 128 MHz each. Each spectral window was also averaged to 128 channels, giving

a slightly larger channel width of 1 MHz.

Observations conducted in 2016 were generally of a high quality, though the first

C-band observation on the 25th November is significantly shorter (only 7 hrs including

overheads) making calibration and imaging more difficult. One of the two follow-up ob-

servations conducted in 2017 (8th March) suffered critical data loss for unknown reasons

and was omitted from study. In the first two L-band observations conducted in 2020, quite

a few medium length baselines were lost due to hardware issues. The C-band observa-

tions conducted on 21st and 22nd August suffered critical data loss due to a combination

of very poor weather conditions and hardware problems. These two datasets were also

omitted from study.

After being passed through the e-MERLIN casa Pipeline2, any problematic data such

as spurious signals or data from faulty antennas was manually identified and flagged to

reinforce the quality of each observation. Image fidelity and point-source response is a

particular issue with this target when observing with e-MERLIN, as the maximum ele-

vation of target is only ∼35° above the horizon producing an extremely elongated point

2see the GitHub repository:
https://github.com/e-merlin/eMERLIN_CASA_pipeline
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Epoch Band On-source time RMS Noise Source/s Peak
(dd/mm/yy) (hours) (µJy/beam) (µJy/beam)
2016 Nov 25 C 1.6 48 -
2016 Nov 26 C 3.4 42 -
2016 Nov 27 C 3.6 42 -
2016 Dec 13 C 3.9 40 -
2016 Dec 14 C 3.9 29 -
2017 Apr 6 C 4.8 25 -

2020 Aug 18 C 3.5 23 -
2020 Aug 20 C 2.5 23 -
2020 Aug 23 C 3.2 28 -
2020 Aug 29 C 4.5 24 -
2016 Dec 21 L 2.9 32 404
2020 Sept 8 L 1.3 56 359
2020 Sept 10 L 1.0 66 373
2020 Sept 11 L 2.9 34 338

All C 34.9 8.7 56/87 (NE/SW)
All L 8.1 22 357

Table 5.1: A table of all observations of the target conducted by e-MERLIN in the 2016-2020
period. Observations conducted in 2016-2017 are under the project code CY4205 (PI: J. Woo),
while observations conducted in 2020 are under CY10204 (PI: M. Argo). The statistics of the total
combined visibility data is presented at the bottom. The RMS values quoted for the individual C-
band epochs are measured from the dirty images as no source is detected in these, therefore no
cleaning is appropriate. The on-source time presented is the total integration time on the source
with flags applied.
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spread function (PSF). To correct the elongated image artefacts produced by this PSF,

we restored the images in Figure 2 using a circular restoring beam with a full width half

maximum (FWHM) appropriate to the observing frequency. After flagging, the data was

self-calibrated until the RMS noise in the outer regions of the image field reached a min-

imum.

The image produced by each observation was inspected for sources, manually masked,

and then cleaned using the standard Högbom algorithm implemented in casa (Högbom,

1974) to a 3σ limit — three times the predicted RMS noise. The individual L-band ob-

servations show a single, clear, unresolved source (see Figure 5.2). Note that for some

of the L-band images the source appears to be marginally resolved, though the difference

between the total flux from the source and the peak flux density is minimal. Further-

more, the large-scale noise structures produced by sparser coverage on medium length

baselines could distort the central region such that the target falsely appears marginally

resolved. Each C-band image for a single epoch does not immediately show any signs

of a dual source, however after combining and imaging the visibility data of all C-band

observations two distinct radio sources appear above the noise (see Figure 5.2).

5.1.4 Methods & Results

Positional measurements of the sources apparent in the combined e-MERLIN C-band im-

age were performed by first fitting a pair of two-dimensional elliptical Gaussian models.

It is important to note here that the fitting was performed on the map which was restored

with the circular restoring beam and not the highly elongated clean beam produced by the

Högbom algorithm. In the map restored with the clean beam the two sources blur into

one another and make fitting realistic models very difficult, we therefore decided a more

accurate model of the sources could be obtained by fitting to the map created by the ide-

alised circular restoring beam. The angular separation of the centroids of the two models

is 0.19′′, with a position angle of 22°. We take the fitted sigma value within the Gaussian

model as our uncertainty of the centroid position, giving a separation of 0.19±0.06′′ and a

PA of 22±10°. This corresponds to a projected separation of 0.95±0.29 kpc at the epoch of

the source. These measurements are similar to the positional measurements of the stellar

cores obtained by Woo et al. (2014), suggesting that the unresolved radio emission from

sources A and B originates from the centre of the stellar cores. The radio sources are

faint when compared to a typical AGN, with 5 GHz luminosities around ∼ 1022 WHz-1
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Figure 5.1: Contours of both the 21 cm and 6 cm VLA images. Contours for the 21 cm data are
given on a logarithmic scale; -3σ, 3σ, 9σ, 27σ, ... where σ is the 21 cm RMS noise. Contours for
the 6 cm data are given on a linear scale; -5σ, 5σ, 9σ, 13σ, ... where σ is the 6 cm RMS noise.
The clean beams used to restore each of the images are given superimposed and to-scale in the
bottom left. The image shows the initial detection of an unresolved radio source within J132323.
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Figure 5.2: Contour images of the combined L-band and C-band e-MERLIN imaging. Contours
for 6 cm map are given at -3σ, 3σ, 5σ, 7σ, ... where σ is the RMS noise in the map. Contours
for the 21 cm map are instead given at -5σ, 5σ, 7σ, 9σ, ... where σ is the RMS noise in the map.
The σ values are 22.6µJy/beam and 8.7µJy/beam for the 21 cm and 6 cm map respectively. A
to-scale version of the circular restoring beam used to create each map is given in the bottom-left;
the FWHM sizes are 0.2′′ and 0.05′′ for the 21 cm and 6 cm map respectively. The actual clean
beam FWHM dimensions are 0.37′′ and 0.13′′ for the major and minor axes at L-band. The same
dimensions at C-band are 0.16′′ and 0.03′′. The target is detected quite strongly in the 21 cm
imaging. A weak detection of two unresolved radio sources is made in the 6 cm imaging with
angular separation 0.19±0.06′′ and PA 22±10°. Both images have been cleaned to three times the
theoretical noise limit.

measured with both the VLA and e-MERLIN. This increases slightly to around ∼ 1023

WHz-1 at 21 cm. More specifically, we measure PL = 3.1±0.1×1023 WHz-1 for the VLA

and slightly less from e-MERLIN with PL = 8.6± 0.5× 1022 WHz-1, both at a distance of

1.38 Gpc at the present epoch.

The temporal sampling of the target is very irregular so detecting any variability that

might give clues as to the spatial scale over which the emission originates is not feasible.

We measure a 10% decline in total 21 cm emission in the 4-year gap between observa-

tions, though it is currently impossible to determine if this is due to instrumental errors, if

it is an absolute change, or if we are simply sampling an instant of a periodic fluctuation.

It remains a possibility that if the target was detectable in the C-band imaging at single

epochs some variability might be accounted for given the frequency of observation. Put

simply, these e-MERLIN observations cannot, on their own, reveal any information about

source variability. Further radio observations are therefore necessary to investigate this

aspect of J132323.

Given that e-MERLIN cannot resolve two sources of 21 cm emission in addition to

the 6 cm sources, a spectral index value of an assumed power law is limited in its inter-
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pretation. Despite this we calculate an index of α = -0.76±0.14 (where S ν ∝ να) by taking

the peak flux density of the single L-band source and summing the peak flux densities of

sources A and B. Note that this approach underestimates the total 6 cm flux that is com-

parable to the total 21 cm flux, so the quoted index is a slight overestimate. In addition,

this method cannot account for any temporal variance of the source so the index will be

an average over the observation epochs. Assuming that sources A and B are similar in

nature, the value of α suggests the presence of two approximately steep-spectrum radio

sources — commonly associated with extended synchrotron emission. Furthermore, the

VLA imaging presents a single radio source with a spectral index of α = -1.38±0.06,

suggesting a steeper radio spectrum characteristic of stronger non-thermal emission. We

stress though, that these indices are based on unsuitable measurements as we know there

is two sources of radio emission within J132323, thus any reliable measurement or com-

parison of spectral index (or indeed any other attribute) must measure source A and B

separately. A spectral index image of the e-MERLIN 21 cm and 6 cm data does not show

any features of interest. A brightness temperature limit for each radio source is simpler,

though again limited, in its interpretation. We calculate TNE > 1246 K and TS W > 1713

K using the 0.05′′ circular restoring beam, which only serves to rule out the presence of a

region of cold thermal emission in both sources.

5.1.5 Discussion

One of the conclusions of Woo et al. (2014) was that high resolution radio observations

were necessary to look for attached radio components of the dual narrow line region

(NLR), thus indicating a pair of AGN. The discovery of these two unresolved sources of

radio emission within J132323 is major evidence in favour of a binary AGN model. Fig-

ure 5.3 shows the dual radio source overlaid on the F550M Hubble image. Note that the

F550M data has an absolute positional error of ∼0.1′′, determined through foreground star

matching to the GAIA catalogue (Gaia Collaboration et al., 2021). The relative positions

remain accurate. Given the overlap of source A and B with the optical cores (accurate to

within this absolute error), in addition to their similarity in separation and PA, it is very

likely that a binary AGN is hosted by two galaxies in the late stages of a merger. Moving

forward, the issues that warrant further investigation are: long-term variability in the radio

emission, as the temporal sampling of all radio observations so far is quite poor; resolving

the possibility of a jet-cloud interaction in one or both of source A and B rather than an
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AGN; and further observations with an alternative radio observatory for deeper imaging

and to overcome the severe impact of the e-MERLIN synthesised beam orientation. We

discuss these issues in order.

Variability is a common indicator of an AGN (e.g. Mooley et al. 2016), though it is not

possible to conduct a useful investigation of variability here due to the irregular spacing of

epochs and their poor signal-to-noise ratio. No individual C-band epoch can be used for

this reason. It is possible to detect A and B in the combined 2016/17 data and then again

in the combined 2020 data, though the image fidelity for each epoch is significantly worse

as a result of approximately halving the integration time. The C-band peak flux measure-

ments for source A and B in the 2016/17 epoch are 73±14µJy/beam and 101±14µJy/beam,

respectively. Similar measurements for the 2020 epoch are 64±10µJy/beam and 80±10µJy/beam.

These peak flux measurements are consistent within the uncertainties, so drawing any con-

clusions is difficult. Unfortunately, the L-band epochs also have their own set of problems

that limit their usefulness in looking for source variability. Of the four L-band observa-

tions, one was conducted in late 2016, while three are conducted four years later over the

space of four days. Ideally, more observations would be regularly spaced to sample any

changes in accretion flow.

If, at higher resolution, only one of the two radio sources shows a core-jet morphology,

the orientation of the jet could give clues as to the origin of the other source. For example,

if a jet is detected in source B and it is oriented randomly and away from source A, then

it is more likely that the binary AGN only displays one jet structure strong enough to be

detected, and that there is in fact a BH pair. If, however, the jet of source B is oriented

towards source A, then a case might be made, depending on the structure of the emission

in source A, for a jet-cloud interaction producing the dual radio structure. A binary AGN

may still present in this way, it is just unlikely given the range of possible directions of

the jet. This scenario would certainly require further investigation, most likely seeking

deeper optical observations to look for clearer signs of a dual NLR. We note that a similar

conclusion was reached in Woo et al. (2014).

Another unlikely scenario is that J132323 is actually a compact symmetric object

(CSO): a very young radio source usually presenting with dual radio lobes separated by

< 1 kpc (Conway, 2002). These dual radio lobes often accompany a third compact ra-

dio source between them representing the central AGN. We do not expect our dual radio

source to be a CSO for a few reasons, primary amongst these is the larger separation and

weaker luminosity of our sources. In a young radio source, the luminosity of each lobe
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Figure 5.3: A plot of the C-band (6 cm) contours (in colour) overlaid on the F550M image (in
grayscale) from the HST. A very small shift of ∼ pixel (corresponding to ∼0.05 arcsec) has been
applied to the F550M image to bring radio source B into alignment with the brightest pixel in
the south-west F550M component. Yellow markers indicating the centroids of the HST cores are
based on the values in Woo et al. (2014). As the absolute positional information in the HST data
is not reliable (see subsection 5.1.5), we have placed the south-west marker directly over radio
source B to illustrate the similarity in separation and position angle.
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has a loose positive scaling with projected distance — as the jet propagates through the

surrounding medium. So one would expect that a projected separation of 1 kpc (as in

the case of J132323) would be on the brighter side for a CSO. However, in a comparison

with An & Baan (2012), J132323 appears to have a 1.4 GHz luminosity multiple orders

of magnitude below even the average case of a 1 kpc CSO. In addition to this, our dual

radio source is accompanied by dual stellar cores presumably associated with two dis-

tinct NLRs, whereas a CSO is by definition a single active black hole system with two

unbeamed jets. Therefore, a dual NLR system is not expected in a CSO.

Changing the weighting scheme of the e-MERLIN data does not provide any extra in-

formation. We have tested Briggs weighting with robust parameters R ≥ 0, after which the

dual radio source detection becomes lost in the noise. More information can be inferred

from the relative flux density differences between the VLA and e-MERLIN data. The

6 cm flux density remains similar between the two, suggesting that the majority of this

emission is compact in nature. In contrast, the 21 cm emission sees a ∼1 mJy increase in

the VLA data, presumably because the larger VLA beam is detecting extended emission

distributed throughout the disks and tails of the galaxies.

5.1.6 Conclusions

We present new e-MERLIN C (6 cm) and L-band (21 cm) imaging of a close-separation

binary AGN candidate at z ∼ 0.35, identified by Woo et al. (2014) using HST imaging

and VLT IFU spectra. We detect a single unresolved L-band source with a peak flux

density of 357±22µJy/beam. We also detect two unresolved C-band sources of similar

flux density with an angular separation and position angle of 0.19±0.06′′ and 22±10°

which is very similar to previous measurements of optical data representing dual cores

of stellar emission. We conclude, therefore, that the target very likely harbours an active

BH pair, hosted by two galaxies in the late stages of a merger. This pair is separated

by 0.95±0.29 kpc at the epoch of the source. To further investigate the nature of these

sources, we are pursuing deeper, higher resolution observations to look for a core-jet

morphology in one or both of the radio sources, to better constrain the separation and

position angle, and to determine a tighter constraint on the brightness temperature of

the two sources. Further work may also include deeper observations in the optical and

infrared band, to investigate the dynamics of the merger and the properties of the stellar

populations within each galaxy.
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5.2 Follow up EVN Observations

During the investigation of the binary black hole system, a further observation proposal

(PI: J. E. Brooks) was written and accepted by the EVN Programme Committee, to

more deeply investigate the object for signs of AGN activity. Two C-band observations

were conducted on the 12th and 13th March 2022, under the project codes EB086A and

EB086B. Each observation lasted approximately eight hours. The target is difficult to ob-

serve at such a low declination as for many of the EVN stations it appears at low altitudes

for most of the day. Observing close to the horizon is usually a problem for radio tele-

scopes because of the significantly increased volume of terrestrial radio emission entering

the receiver. Using two observations spread over two days, therefore, allows the target

sensitivity to be reached, without observing close to the horizon for long periods.

Several antennas were lost or excluded from observation for various reasons: Russian

stations were excluded from the EVN as a result of the Russian invasion of Ukraine in

February 20223, some antennas reported no data for unknown reasons, and a few antennas

could not observe due to receiver issues. Consequently, only eleven stations reported any

data at all for the first observation, and only ten for the second. Both observations used the

same frequency setup: a 256 MHz bandwidth covering the range 4.8-5 GHz. The data was

automatically processed through the EVN pipeline, which averaged the data to 8 channels

of 32 MHz. Both observations observed the same flux and phase calibrators: 3C273 for

the flux calibrator, and the same phase calibrator used by e-MERLIN to observe the binary

AGN. This source was also the subject of the GAN training set, and is described at the

end of subsection 3.5.1.

No further processing is applied to the data received from the EVN pipeline apart from

generating self calibration solutions from the phase calibrator and applying them to the

target field. The final image reaches a modest (compared to e-MERLIN) sensitivity ofσ =

23µJy/beam. In theory, this should be sensitive enough to observe the less bright northern

source at a significance of 2-3σ, but unfortunately no radio emission was observed from

the object at all, even from the brighter southern source. The final image is presented in

Figure 5.4.

I hypothesize the lack of a detection is largely due to the problems encountered during

the EVN observation, combined with uncertainties in both the e-MERLIN and EVN ob-

servations. It cannot be assumed that a perfect calibration was reached given the number

3See the EVN statement: https://www.jive.eu/statement-evn-ukraine
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of observational problems that occurred across a significant number of antennas; there

may be chunks of the observations that lack proper phase information, for example. So

even though the required sensitivity was technically (and just barely) reached, a good

calibration may not be possible. Moreover, there are other factors to consider such as

the spatial sampling of the much longer EVN baselines, which may have filtered out just

enough extended emission (which may have been present) from the source for it to dip

below the noise. The e-MERLIN radio study could not rule out source variability, which

also may have caused the source to dip below the noise.

Taking the evidence at face value, the lack of a detection at EVN spatial scales does

suggest that the origin of the radio emission is not from an AGN, since the spectral index

must be steeper than the e-MERLIN measurement presented in subsection 5.1.4, and the

brightness temperature must be similar or less. Furthermore, a convincing argument can

be made that since the radio emission in J132323 is extended, it is weakly observed at

e-MERLIN scales and completely resolved out at EVN scales. However, the optical evi-

dence presented by Woo et al. (2014) and the subsequent detection of two radio sources

directly coincident with the two stellar cores is still strong evidence in favour of a binary

AGN. Therefore, further radio observations with the EVN are needed to clarify the sit-

uation. At the very least, further EVN observations would be useful to place a deeper

sensitivity constraint on the object (or objects), and perhaps reveal variability. Observa-

tions at X-ray wavelengths cannot resolve the closely bound sources, but may be useful

to investigate the existence of X-ray emission at all.
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Figure 5.4: The EVN image of the location of the binary source detected by e-MERLIN. Yellow
circles indicate the source locations measured in the e-MERLIN image, with a radius equal to
the 6 cm e-MERLIN restoring beam size of 0.05′′. The RMS noise across the image is σ =
23µJy/beam.
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Chapter 6

Studying the Lockman Hole

This chapter will present data of the Lockman Hole produced by e-MERLIN, the process

of calibration and imaging, the source catalogue, and some initial analysis of the field.

The objective of this experiment is to serve as a complimentary study to the one con-

ducted by Muxlow et al. (2020), which combined e-MERLIN and VLA data to create a

high resolution image of the similarly well-studied GOODS-N field. By comparing these

two images, any effects related to cosmic variance can be accounted for. Furthermore,

producing these images and cataloguing the sources within is a necessary precursor to

a detailed classification of sources in the field. The catalogue can be used to properly

address the problem of source counts introduced at the start of chapter 4, and a detailed

classification can be used to explore the evolution of the population through cosmic his-

tory. The choice to observe the Lockman Hole is due to the properties of this particular

patch of sky. The Earth itself sits in a sea of gas and dust belonging to the Milky Way

ISM, and the gas contains varying amounts of neutral hydrogen (or HI) which can absorb

photons with energies > 13.6 eV. This absorption obscures light passing through it on its

way to the Earth, making observations at UV and X-ray wavelengths more difficult. In

1986, Lockman et al. published a study of HI column densities across the northern sky,

and found a shallow patch around α = 10h48m00s, δ = +57d00m00s, which came to be

known as the ‘Lockman Hole’. As a result of the low column density of HI, it has become

one of the most heavily studied patches of sky, and observational data is available from

a wide array of sources across the electromagnetic spectrum. This data can be utilised

towards more reliable classifications of sources within the field.
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Observation Date tobs σLH Flagged %
(dd/mm/yyyy) (hours) (µJy/beam)

02/01/2017 6 67 44
22/03/2017 14 53 54
24/03/2017 3 105 45
01/04/2017 8 101 57
16/04/2017 14 60 57
27/04/2017 26 36 50
16/06/2017 12 38 42
01/07/2017 3 67 39
09/08/2017 10 74 54
01/01/2018 7 70 53
18/03/2019 4 96 32
22/05/2019 11 65 57
30/05/2019 9 53 50
15/11/2021 5 45 47
10/09/2022 11 38 40
04/11/2022 6 41 44
08/01/2023 6 66 48
15/01/2023 6 76 48

Table 6.1: Details of each observation included in the final image of the Lockman Hole. Quoted
observing times, given by tobs are an estimate of the effective on-target observing time, with phase
reference cycles removed. Image sensitivities, given by σLH are an approximate value obtained by
measuring the RMS fluctuation in a cutout of size 256x256 located at the centre of the e-MERLIN
primary beam. The flagged percentage is a percentage of the total time observing the target.

6.1 The e-MERLIN Observations

A total of 18 separate L-band (21 cm) observations of the Lockman Hole were included

in the final image. This data is drawn from 24 L-band observations conducted by e-

MERLIN, where the missing 6 were excluded due to irrecoverably bad or missing data.

Some details of each remaining observation can be found in Table 6.1. All observations

were conducted using the same frequency configuration: e-MERLIN L-band averaged to

1024 channels arranged into eight spectral windows covering 512 MHz between 1.25 GHz

- 1.75 GHz. The width of the averaged channels in this setup is 0.5 MHz. All observations

utilised all e-MERLIN antennas excluding the Lovell telescope.

All observations used the phase-referencing technique, so a phase calibrator was pe-

riodically observed to maintain knowledge of phase disruptions throughout the observa-

tions of the target; the Lockman Hole does not contain any sources that appear bright

enough to e-MERLIN that it can use in self-calibration. This phase-referencing source is

a strong unresolved source located nearby to the Lockman Hole field. The sources ob-

served remained consistent across all the L-band observations, so they are presented in
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Code Right Ascension Declination (dms) Role
(hms) (dms)

1407+2827 14h 07m 00.4s +28d 27m 14.7s Bandpass Calibration
1331+3030 13h 31m 08.3s +30d 30m 32.3s Flux Calibration
0319+4130 03h 19m 48.2s +41d 30m 42.1s Point Calibration
1058+5628 10h 58m 37.7s +56d 28m 11.2s Phase Calibration
1046+5900 10h 46m 00.0s +59d 01m 00.0s Target

Table 6.2: Details of each source observed across all 18 observations.

Table 6.2. The pointing observed in the Lockman Hole was specifically chosen to overlap

with the observations presented in Vernstrom et al. (2016b), which also overlap with the

observations presented in Owen & Morrison (2008).

6.2 Calibration & Imaging

Each observation was first processed using a customised aoflagger (Offringa et al., 2012b)

strategy that was designed to flag conservatively. As the analysis of the performance of

the GAN did not show strong advantages over aoflagger (see section 3.5), this approach

should produce better results. Since the calibration was done manually with regular visual

inspection of the solutions throughout the process, a more conservative flagging strategy

was possible to cut down on unnecessary data loss. The e-MERLIN calibration pipeline

(Moldon, 2021) was not used as it is now several versions behind the latest release of the

Common Astronomy Software Applications (casa) package on which it is built. To avoid

the presence of errors caused by bugs in the software, a small calibration script was created

that mimics the e-MERLIN pipeline in functionality which was then used for calibrating

all the observations. The results of the script were regularly checked against the initial

e-MERLIN pipeline run to ensure a similar output. Specifically, the script performed the

following calibration strategy:

• Calculate and apply delay calibration solutions for the bandpass calibration source

• Calculate and apply phase and amplitude solutions for the bandpass calibration

source

• Calculate an initial bandpass correction for the full observation and apply to all

fields

• Calculate and apply delay calibration solutions for all fields
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• Calculate and apply phase corrections for all fields

• Calculate and apply scaled amplitude solutions for all fields using the model of the

flux calibrator

• Recalculate flux-corrected bandpass solutions

• Recalculate and apply delay, phase, and amplitude solutions for all sources

At each of these stages, the generated solutions were visually inspected and any outliers or

erroneous solutions were flagged using the plotms tool in casa. iflag was not used since

it is not designed to work on the calibration table format in casa. After the strategy was

completed, self-calibration was performed on the phase calibrator source with the intent

of transferring the corrections over to the target. Though, this correction made little, if

any, difference to the sensitivity in the target field.

Self-calibration of the target data using sources in the target field was attempted, but

did not produce useable corrections. When strong point-like sources are available in the

target field it is normally possible to self-calibrate. However, for e-MERLIN there are no

bright enough sources for this to be possible; there simply isn’t enough information in the

field to calculate accurate solutions. Therefore, the data used to generate the sky image in

Figure 6.1 are not self-calibrated.

After calibration, the target data was separated from the original datasets and imaged

using wsclean (see section 2.8, or Offringa et al. 2014). This and all other images in

the Lockman Hole investigation used natural weighting to maximise sensitivity. Some

structure was present in the image produced by wsclean at this stage, and it was traced

to a single observation. The problematic data in this observation was flagged — it is

unknown whether it was caused by residual RFI or an incorrect calibration solution. A

version of the final primary beam corrected image is presented in Figure 6.1.

6.2.1 Noise Structure

One inherent problem of e-MERLIN is that is has relatively few antennas. Since it is

also covering a large range in spatial frequency, it can be difficult to properly sample

the full area of the uv plane covered in a given observation. In the specific case of the

observations presented in this thesis, there are two large gaps in the spatial frequency

coverage, shown in Figure 6.2, which shows up in the sky image as a ‘spotty’ noise
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Figure 6.1: The final image of the Lockman Hole using all observations. The image resolution is
twice the synthesised beam width (undersampled), and has a restoring beam of size 5′′. This is to
allow the detected sources to be seen in a small image like the one above.
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structure, shown in Figure 6.3. This section will provide a brief analysis of this noise

structure, and its potential impact.

It is widely, and often implicitly assumed that the background noise in a radio image

is accurately described by a gaussian probability distribution centered about zero, and a

spread equal to the root mean square (RMS) of the post-CLEAN residuals or a large area

containing no significant emission. Consequently, as a measure of the depth of a particular

image, wide-field surveys will often simply quote the RMS value. The RMS is also

commonly used as a stopping threshold in CLEAN so that no sources are cleaned below

a specified limit. Common choices for this limit are 3σ and 5σ, where σ is the calculated

RMS value. Selection of this limit must be done carefully, since it is the primary factor in

determining how many sources are detected, and where.

To ensure the ‘spotty’ noise structure does not significantly impact the selection of

a CLEAN threshold, and by extension the final source catalogue, a brief analysis of its

properties is presented in Figure 6.4. The experiment is conducted by sampling a patch

at the centre of the full-sky image to eliminate any direction dependent effects. The patch

is progressively made smaller to sample smaller spatial scales, to test the assumption of

gaussian noise in the presence of apparent small scale noise structure. At small scales the

gaussian assumption still holds, with only a small deviation of ∼1µJy from a mean of zero

in the smallest cutout. The deviation from a perfect gaussian distribution does increase as

the image patch is reduced in size, but this is to be expected for smaller sample sizes.

This analysis suggests that selecting a normal threshold of 3σ or 5σ is possible,

though there is another factor to consider. The size of the Lockman Hole image is ex-

tremely large as it covers the full e-MERLIN primary beam at full resolution. This re-

sults in an image of size 65536x65536 pixels; a total of approximately 4.3 billion pixels.

Even assuming perfectly gaussian noise across an empty field of that size, one expects

to find approximately 11.6 million pixels exceeding a 3σ RMS threshold, compared to

just ∼2000 pixels exceeding 5σ. Because of this, coupled with the noise structure shown

in Figure 6.3, a selection of a 5σ CLEAN threshold is most appropriate. This greatly

reduces the number of erroneous CLEAN components introduced from simple random

variations, and potentially from ‘spots’ in the small scale noise structure.
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Figure 6.2: The e-MERLIN spatial frequency coverage when observing the Lockman Hole, ob-
tained by fourier transforming the CLEANed sky image. There are two noticeable gaps in the
coverage at the very centre, and slightly out from the centre.
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Figure 6.3: A sample cutout of the noise structure in the Lockman Hole image. Contours are
given in increments of σ2 , where σ = 12µJy/beam is the RMS in the small field shown. Green
contours indicate positive values, whereas red dashed contours indicate negative values. There is
a clear structure of peaks and troughs on small scales that is not real emission.
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Figure 6.4: The probability distribution of pixel values in progressively smaller cutouts, measured
relative the RMS, σ, in the cutout. The perfect gaussian model is drawn in a red-dashed line
(though only visible in the rightmost panel). The panels along the bottom show the magnitude
of the deviation from a perfect gaussian distribution for the actual pixel values (black) and the
fitted gaussian model (blue). There is clearly a small divergence from a gaussian distribution
with smaller sample sizes, but this is somewhat expected. There also appears to be a small trend
towards positive valued noise pixels, presumably due to confusion from extremely faint undetected
sources.
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6.3 Source Catalogue

Source extraction is performed using the pybdsf tool (Mohan & Rafferty, 2015). The

image given to pybdsf is a primary beam corrected image of size 32768x32768 pixels, or

215 pixels in width and height, for a more efficient FFT calculation. Note that this image

has a slightly lower resolution than the full resolution image used in subsection 6.2.1

and to make the cutouts shown in section 6.4, but the synthesised beam is still Nyquist

sampled. The image is generated using wsclean, enforcing no negative clean components

and using a clean threshold of 5σ. The pixel scale is 70 milliarcseconds, so the total image

area is just over 38 arcminutes in width and height, centred on the coordinate 10h46m00s

+59d01m00s. The RMS at the centre of the field is σ = 12µJy/beam, and the primary

beam correction is applied such that pixel values drift towards zero as in Figure 2.9. The

size of the synthesised beam is 0.19x0.14′′, which covers approximately 3x2 pixels in

the image used for producing the catalogue. A total of 82 sources are extracted from

the field using pybdsf, but 4 are judged to be image artefacts and are removed, leaving

a total of 78 distinct sources. Three of the artefacts belonged to the powerful source

studied in subsection 6.4.2, and the remaining artefact belonged to the source studied

in subsection 6.4.4. Note that the two components of that source are still present in the

catalogue; a third pybdsf entry belonged to that source and was judged to be an artefact.

Details of the sources are presented in Table 6.4, and cutouts of the sources are presented

in Figure 6.5.

Where possible, cross matches are made with the LOFAR 2 m Sky Survey (Shimwell

et al. 2017, hereafter simply ‘the LOFAR survey/catalogue’) and the Vernstrom et al.

(2016b) VLA survey (hereafter simply ‘the VLA survey/catalogue’), both of the Lock-

man Hole. An e-MERLIN source is considered to have a match if it falls within one syn-

thesised beam FWHM of an entry in the associated catalogue. The LOFAR beam width is

taken to be 6′′, which is taken directly from the header information in the Shimwell et al.

(2017) image of the Lockman Hole. For the VLA survey, the synthesised beam width is

set to 8′′, which is quoted by Vernstrom et al. (2016b). Note that they used a combination

of data from C and BnA configurations of the VLA, so 8′′ is an upper limit for the VLA

survey synthesised beam width. Using these criteria, exactly one match is found in the

LOFAR catalogue for 46/78 (59%) sources, and exactly one match is found in the VLA

catalogue for 33/78 (42%) sources. There are 28 sources in the e-MERLIN catalogue that

do not have a corresponding source in either the VLA or LOFAR catalogues. Details of
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the cross matches can be found in Table 6.3.

The overwhelming majority of sources with no match in the VLA catalogue exist at

distances > 10′ from the pointing centre, and therefore fall outside the sensitive region of

the Vernstrom et al. (2016b) image. There are 8 remaining sources inside the 10′ boundary

with no corresponding source within the 8′′ matching area. However, one of these sources

(S29, see subsection 6.4.3) can be matched to the complex source TV16 J104624+590522

in the VLA survey, also shown in Figure 6a of Vernstrom et al. (2016b).

The lack of matches in the LOFAR catalogue is likely due to a combination of factors.

Firstly, the quoted RMS of the LOFAR field is approximately twice as large as the e-

MERLIN field, introducing an inherent bias towards Γ < 0 sources; faint sources with

Γ ≥ 0 are unlikely to be cross matched between the two surveys. Secondly, there are

some sources with no LOFAR match at the edge of the e-MERLIN field, so it is possible

that direction dependent errors in the e-MERLIN field play a part. Finally, it may be that

the 140MHz morphology of a particular e-MERLIN source is different enough that the

source appears to be located further away than a single LOFAR synthesised beam width.

Special attention would be required for these cases to determine if the sources are related

or not.

Redshifts are gathered from the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE)

photometric redshift catalogue (Rowan-Robinson et al., 2008), which contains both spec-

troscopic and photometric redshifts. Where possible, spectroscopic redshifts are priori-

tised over photometric measurements, but spectroscopic redshifts are not available for all

sources. Quantifying the uncertainty on the photometric redshift is complex (see Rowan-

Robinson et al. (2008) for a full analysis), but in general it is assumed that spectroscopic

redshifts, zsp, are accurate, and that photometric redshifts zph obey zph ≈ zsp. Sources

are matched with the redshift catalogue using the same method as above, with a FWHM

of 2′′, which is the approximate size of the Spitzer Infrared Array Camera PSF1. This

method produces matches in the redshift catalogue for 35 out of 78 sources (45%).

1See the handbook: https://doi.org/10.26131/irsa486
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ID α δ LOFAR ID VLA ID SWIRE ID
(hms) (dms)

1 10h48m15.91s 58d51m58.92s - -† -
2 10h48m5.8s 59d13m7.59s - -† -
3 10h47m54.68s 58d57m44.38s - -† -
4 10h47m55.44s 59d12m30.22s - -† -
5 10h47m49.81s 59d14m39.21s 24383 -† -
6 10h47m41.82s 58d48m17.03s 24617 -† -
7 10h47m41.73s 58d48m12.28s 24617 -† -
8 10h47m36.67s 59d6m15.65s - -† -
9 10h47m35.26s 58d47m41.49s - -† -
10 10h47m34.5s 59d12m41.09s 24925 -† -
11 10h47m15.69s 58d57m20.63s - TV16J104716+585719† 573520
12 10h47m11.59s 58d54m59.57s 25647 -† -
13 10h47m9.18s 58d43m34.02s 25750 -† 411447
14 10h47m0.85s 59d19m1.91s 26019 -† -
15 10h47m0.21s 59d1m7.66s 26075 TV16J10470+590106 574709
16 10h46m55.52s 59d3m0.86s 26215 TV16J104654+590259 575556
17 10h46m54.72s 58d57m33.13s - TV16J104655+585747 -
18 10h46m53.56s 59d2m59.93s 26293 TV16J104653+590316 575380
19 10h46m53.57s 59d3m0.21s 26293 TV16J104653+590316 575380
20 10h46m49.64s 59d9m56.22s 26419 TV16J104650+590955† -
21 10h46m44.54s 59d1m16.29s - TV16J104645+590115 573464
22 10h46m41.38s 58d52m13.82s 26669 TV16J104641+585213† 567292
23 10h46m37.75s 59d2m10.69s 26775 TV16J104638+590210 -
24 10h46m37.97s 59d14m29.57s 26747 -† -
25 10h46m37.43s 58d46m25.43s - -† -
26 10h46m36.31s 59d4m43.33s - - -
27 10h46m32.77s 58d59m2.23s 26936 TV16J104631+585907 -
28 10h46m26.89s 59d15m27.15s - -† -
29 10h46m24.87s 59d4m45.94s 27139 - 574122
30 10h46m24.01s 59d5m22.21s - TV16J104624+590522 574436
31 10h46m21.97s 58d56m29.71s 27248 TV16J104622+585629 568388
32 10h46m16.06s 58d55m58.58s 27421 TV16J104616+585558 567575
33 10h46m15.36s 59d2m35.96s 27432 TV16J104615+590235 571806
34 10h46m11.45s 58d49m11.77s - -† -
35 10h46m7.63s 58d56m1.98s 27672 TV16J10468+585601 -
36 10h46m4.79s 58d54m52.08s - TV16J10465+585452 566058
37 10h46m4.54s 59d6m47.25s 27697 TV16J10464+590640 573713
38 10h46m4.41s 58d53m19.46s 27758 TV16J10464+585319 -
39 10h46m4.11s 59d8m27.69s 27698 TV16J10464+590827 574778
40 10h46m4.07s 59d8m27.68s 27698 TV16J10464+590827 574778
41 10h46m3.6s 59d4m23.45s 27780 TV16J10462+590425 572019
42 10h46m3.4s 59d8m55.78s - - -
43 10h46m2.6s 59d16m36.53s - -† -
44 10h45m58.66s 59d3m19.54s 27928 TV16J104559+590319 -
45 10h45m57.56s 58d56m35.66s 27952 TV16J104558+585636 -
46 10h45m52.06s 59d3m59.81s - TV16J104551+590345 570755
47 10h45m51.85s 59d3m11.26s 28129 TV16J104552+590311 570173
48 10h45m51.84s 58d46m1.05s 28155 -† 559748
49 10h45m50.82s 59d8m41.43s 28186 TV16J104549+590830 573830
50 10h45m43.62s 59d14m57.96s - -† -
51 10h45m39.81s 58d57m30.18s 28425 TV16J104540+585730 565697
52 10h45m39.79s 58d57m29.69s 28425 TV16J104540+585730 565697
53 10h45m38.3s 59d7m33.34s 28501 TV16J104537+590732 571963
54 10h45m37.81s 58d55m52.17s - - -
55 10h45m37.19s 59d9m45.37s 28536 TV16J104537+590945 573353
56 10h45m28.32s 59d13m26.52s 28782 -† 575056
57 10h45m27.48s 58d47m36.72s - -† -
58 10h45m19.48s 59d5m2.5s - - -
59 10h45m14.78s 58d43m14.23s - -† -
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ID α δ LOFAR ID VLA ID SWIRE ID
(hms) (dms)

60 10h45m12.52s 59d2m31.18s 29246 TV16J104513+590231 566610
61 10h45m11.07s 59d7m11.69s 29292 TV16J104511+590712 569359
62 10h45m10.58s 59d14m41.26s 29305 -† 574389
63 10h45m6.75s 58d55m17.69s - - -
64 10h45m5.88s 59d18m32.44s - -† -
65 10h44m50.41s 59d19m26.38s 29895 -† 575821
66 10h44m50.21s 58d59m57.6s 29957 TV16J104450+585958 563382
67 10h44m48.74s 59d6m48.57s 29990 TV16J104449+590649† 567344
68 10h44m46.84s 58d56m56.08s - -† -
69 10h44m45.57s 59d14m36.11s - -† -
70 10h44m44.34s 59d14m37.44s - -† -
71 10h44m35.65s 58d53m10.38s 30384 -† -
72 10h44m13.05s 58d48m33.74s - -† -
73 10h43m50.5s 58d50m21.78s 31885 -† -
74 10h43m46.54s 59d18m25.91s - -† -
75 10h43m46.56s 59d18m25.71s - -† -
76 10h43m46.22s 59d1m19.03s 32001 -† 559320
77 10h43m44.74s 59d15m2.61s 31978 -† 567430
78 10h43m38.86s 59d17m58.02s - -† -

Table 6.3: Cross matches for the 78 sources extracted using pybdsf from the Lockman Hole field
cleaned to a 5σ limit. From left to right, columns are: e-MERLIN Source ID; Right Ascension, α;
Declination, δ; Shimwell et al. (2017) LOFAR Source ID; Vernstrom et al. (2016b) VLA Source
ID; Rowan-Robinson et al. (2008) SWIRE Source ID. Entries with a † in the VLA Source ID
column are >10′ from the phase centre.
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ID P140 MHz S 1.5 GHz ∆S 1.5 GHz P1.5 GHz ∆P1.5 GHz P3 GHz zsp zph Synthesised Beam
(µJy/beam) (µJy) (µJy) (µJy/beam) (µJy/beam) (µJy/beam) Area Ratio

1 - 94.0 26.6 65.9 11.6 -† - - 1.43
2 - 87.5 25.9 69.5 12.7 -† - - 1.26
3 - 206.4 49.6 60.6 11.5 -† - - 3.41
4 - 112.0 30.7 67.8 12.2 -† - - 1.65
5 317.4 97.0 29.9 61.6 12.2 -† - - 1.57
6 73850.3 1250.9 145.0 75.1 8.2 -† - - 16.65
7 73850.3 150.2 39.6 69.7 12.7 -† - - 2.16
8 - 110.8 32.1 62.4 12.0 -† - - 1.78
9 - 136.5 39.0 60.8 12.5 -† - - 2.24
10 2676.2 610.1 64.9 133.5 11.8 -† - - 4.57
11 - 104.0 30.9 62.9 12.1 23.0† - 1.24 1.65
12 6557.2 762.2 50.1 248.3 12.7 -† - - 3.07
13 2759.0 139.4 37.2 66.6 12.5 -† - 3.9 2.09
14 101606.6 4687.7 223.2 371.9 15.1 -† - - 10.63
15 637.6 99.7 21.4 96.5 11.6 55.2 2.56 2.89 1.03
16 1125.9 177.4 37.6 84.1 12.6 112.5 - 0.21 2.11
17 - 94.6 29.6 62.7 12.6 11.6 - - 1.51
18 390.0 138.8 40.8 59.6 12.7 42.2 0.12 0.19 2.33
19 390.0 142.8 35.1 76.3 12.8 42.2 0.12 0.19 1.87
20 260.0 374.1 57.9 103.2 12.8 97.1† - - 3.63
21 - 159.8 37.4 81.3 13.3 83.3 0.8 0.85 1.97
22 3230.3 442.7 43.5 179.4 13.1 72.3† - 2.98 2.47
23 323.0 384.1 29.1 263.3 12.6 265.6 - - 1.46
24 7972.5 911.7 75.2 155.1 11.0 -† - - 5.88
25 - 259.5 63.0 58.4 11.7 -† - - 4.44
26 - 226.2 59.6 56.0 12.0 - - - 4.04
27 267.0 202.6 23.2 186.7 12.5 15.0 - - 1.09
28 - 125.5 35.0 65.1 12.5 -† - - 1.93
29 77150.1 5019.8 217.9 406.8 18.0 - - 1.5 9.63
30 - 242.3 40.2 106.7 12.7 4911.2 - 1.59 2.27
31 1244.9 323.0 43.5 132.3 13.2 149.8 0.25 0.23 2.44
32 580.1 115.8 32.1 69.4 12.9 85.6 0.69 0.69 1.67
33 1421.2 259.4 46.1 105.3 13.8 156.3 - 0.44 2.46
34 - 89.4 26.2 66.8 11.8 -† - - 1.34
35 812.4 211.2 35.1 116.9 13.2 197.6 - - 1.81
36 - 218.3 43.5 81.1 12.1 107.2 0.39 0.42 2.69
37 897.3 160.6 44.2 60.6 12.5 18.1 0.51 0.41 2.65
38 2536.1 277.1 33.3 161.0 13.1 75.6 - - 1.72
39 11257.2 880.6 56.0 265.8 13.4 371.4 - 1.14 3.31
40 11257.2 326.1 43.5 139.2 13.6 371.4 - 1.14 2.34
41 864.1 167.6 38.1 81.3 13.0 10.6 - 2.3 2.06
42 - 236.5 57.9 60.1 11.9 - - - 3.93
43 - 124.1 36.3 60.2 12.4 -† - - 2.06
44 664.9 181.5 21.2 187.3 12.0 296.9 - - 0.97
45 1014.9 216.3 54.4 62.9 12.6 47.2 - - 3.44
46 - 103.9 32.3 62.6 12.8 7.7 - 0.53 1.66
47 831.6 128.5 35.4 71.3 13.3 98.9 0.43 0.37 1.8
48 6151.5 323.2 58.2 81.4 12.0 -† - 1.67 3.97
49 254.1 456.4 39.5 208.8 13.0 6.0 - 0.73 2.19
50 - 78.5 24.2 66.3 12.4 -† - - 1.18
51 3025.7 435.6 83.0 74.8 12.3 804.9 0.39 0.41 5.82
52 3025.7 302.8 59.7 88.5 13.8 804.9 0.39 0.41 3.42
53 2966.8 751.8 97.0 84.7 9.9 7.0 - 1.51 8.87
54 - 137.7 40.4 60.0 12.7 - - - 2.29
55 3162.8 284.4 44.3 110.6 12.9 86.4 - 2.03 2.57
56 38863.3 5630.3 135.6 1554.5 19.7 -† - 1.25 4.06
57 - 91.1 24.9 72.3 11.8 -† - - 1.26
58 - 130.1 37.9 61.1 12.8 - - - 2.13
59 - 104.2 30.6 63.8 12.2 -† - - 1.63
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ID P140 MHz S 1.5 GHz ∆S 1.5 GHz P1.5 GHz ∆P1.5 GHz P3 GHz zsp zph Synthesised Beam
(µJy/beam) (µJy) (µJy) (µJy/beam) (µJy/beam) (µJy/beam) Area Ratio

60 5692.1 601.9 32.2 371.7 13.2 323.8 - 0.89 1.62
61 977.4 151.4 37.7 73.1 12.8 49.1 - 1.04 2.07
62 205.3 244.2 58.8 62.0 12.1 -† - 1.17 3.94
63 - 145.7 41.6 61.8 13.0 - - - 2.36
64 - 244.2 56.2 63.3 11.8 -† - - 3.86
65 30733.7 1256.6 157.4 71.0 8.4 -† - 0.97 17.69
66 508.1 267.5 57.1 72.8 12.5 71.3 0.92 0.88 3.67
67 1045.5 531.8 49.7 170.5 12.4 106.0† 0.39 0.37 3.12
68 - 670.7 114.4 53.6 8.5 -† - - 12.52
69 - 113.0 33.3 64.4 12.9 -† - - 1.76
70 - 205.6 60.7 47.3 11.5 -† - - 4.35
71 13914.8 4446.9 145.8 868.3 15.9 -† - - 4.86
72 - 715.2 69.4 140.0 11.5 -† - - 5.11
73 143.0 461.9 95.7 48.6 9.2 -† - - 9.5
74 - 101.0 30.4 61.7 12.4 -† - - 1.64
75 - 44.9 20.1 44.9 11.4 -† - - 1.0
76 219.2 455.4 91.7 57.2 10.3 -† - 0.56 7.96
77 8464.6 1637.2 162.0 70.2 6.7 -† - 1.11 23.34
78 - 131.0 36.6 63.1 12.4 -† - - 2.08

Table 6.4: Details of the 78 sources extracted using pybdsf from the Lockman Hole field cleaned
to a 5σ limit. From left to right, columns are: e-MERLIN Source ID; LOFAR 140 MHz peak flux,
P140 MHz; e-MERLIN 1.5 GHz total flux, S 1.5 GHz; e-MERLIN 1.5 GHz total flux error, ∆S 1.5 GHz;
e-MERLIN 1.5 GHz peak flux, P1.5 GHz; e-MERLIN 1.5 GHz peak flux error, ∆P1.5 GHz; VLA
3 GHz peak flux, S 3 GHz; spectroscopic redshift, zsp; photometric redshift, zph; The ratio of the
area of the gaussian fitted by pybdsf, and the area of the synthesised beam. Peak and total fluxes
for e-MERLIN, and their errors, are extracted from the pybdsf output catalogue. As in Table 6.3,
entries with a † in the VLA peak flux column are >10′ from the phase centre.
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Figure 6.5: Cutouts of all 78 sources extracted from the Lockman Hole image. Labels given in
the top left of each image correspond to the IDs in Table 6.4, where labels given in bold italics
also correspond with sources studied in detail in section 6.4. Each cutout is 48x48 pixels in size,
covering a patch of sky 3.36x3.36′′ in size. The size of the synthesised beam is 0.19x0.14′′, which
is approximately 3x2 pixels in these images.
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6.4 Source Studies

To outline the information contained in the e-MERLIN image of the Lockman Hole, a

few sources are selected from the catalogue to be studied in detail. These sources cover

a range of radio flux densities and morphologies, and are analyzed using data from the

LOFAR and VLA surveys. Redshifts are primarily taken from the SWIRE photometric

redshift catalogue. Spectral indices are defined by S ν ∝ νΓ, and specific measurements

are quoted using a lower and upper format in MHz. For example, Γ1500
140 is a spectral index

calculated using a 140 MHz and a 1.5 GHz measurement. Since most of the sources are

partially or fully resolved by e-MERLIN, total fluxes are generally used over peak fluxes.

For distance calculations I assume a flat universe with H0 = 70 km s-1Mpc-1, ΩΛ = 0.7,

and Ωm = 0.3.

6.4.1 S51 + S52

The sources referred to here as S51 and S52 (hereafter simply S51), are collectively iden-

tified in the NRAO VLA Sky Survey (NVSS) as NVSS J104540+585725, which appears

to be an AGN with a resolved jet structure (see Figure 6.6). The brightest component

is located at α = 10h45m39.8s, δ = +58d57m29.7s. The spectroscopic redshift is zsp =

0.39. It is also detected in both the LOFAR and VLA surveys. It is known as TV16

J104539+585730 in the VLA catalogue and is identified as a complex source by Vern-

strom et al. (2016b) (see Figure 6b of that paper). They identify their complex source as

belonging to one object: likely an AGN with extended jets. Figure 6.6 shows the resolved

central component of their complex object.

The total flux of the southern source is 303µJy, and 436µJy for the northern source

which appears to be slightly more extended. It is unknown which of the two sources is the

AGN, and since resolution-matched studies are not available it is difficult to determine this

from L-band morphology alone. The peak flux of the source measured in the VLA survey

is 805µJy/beam, and 3026µJy/beam in the LOFAR survey. There may be a faint third

source located about halfway along the bridge of emission connecting the two sources,

though this possible third source is not detected in the source catalogue and could be a

noise fluctuation (see subsection 6.2.1); it is therefore ignored.

The 3 GHz in-band spectral index Γ3000 = −0.6 quoted in the Vernstrom et al. (2016b)

catalogue suggests optically thin synchrotron emission characteristic of extended emis-

sion in radio galaxies. The spectral index Γ3000
140 = −0.43 that can be calculated by inter-
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Figure 6.6: The two sources collectively referred to as S51. They are separated by an angular
distance of 0.5′′, which corresponds to 2.6 kpc at the epoch of the source. Values in this image are
squared to emphasise the pair of sources.

polating between the LOFAR and VLA peak fluxes suggests a flatter spectrum, though

summing together the two e-MERLIN measurements of the total flux, and using the LO-

FAR peak flux, gives a similar spectral index to Γ3000 of Γ1500
140 = −0.59. It remains possible

that some contributions from the jet are being resolved out by e-MERLIN so the real slope

may be flatter. Assuming the radio bridge accurately tracks the trajectory of the jet, the

AGN must have some degree of precession to produce the observed morphology, which

agrees with the structure of emission seen with the VLA. The angular distance between

the two sources is approximately 0.5′′, which corresponds to 2.6 kpc at the epoch of the

source. In a low inclination galaxy, this would likely place the two sources well within

the galactic disk. The bridge of emission connecting the two sources strongly suggests

a radio galaxy that may have only entered its duty cycle relatively recently. S51 is an

excellent candidate for follow-up, focused observation to investigate the properties of the

jet structure, precession, and origin. At this angular scale, optical observations that could

colocate the galactic component with one of the radio sources are difficult to acquire, so

follow-up observations should account for this.
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6.4.2 S56

One of the brightest sources in the e-MERLIN image is S56, shown in Figure 6.7. It

is partially resolved with a peak flux of P1.5 GHz = 1.57mJy/beam and a total flux of

S 1.5 GHz = 5.63mJy. The source is located at α = 10h45m28.3s, δ = +59d13m26.6s and

is studied in detail by Weedman et al. (2006) as source A8. They quote a spectroscopic

redshift of zsp = 2.31±0.22, and classify the source as an AGN as it passes their luminosity

criteria at both X-rays and in the mid-infrared, suggesting that whatever is powering the

source is still X-ray luminous even after dust obscuration. The presence of a strong,

unresolved radio component in the e-MERLIN image supports the AGN classification.

Unfortunately, S56 is 13′ from the phase centre which places it right at the edge of the

VLA field, so no match is made. However, the source does have a very strong component

in the LOFAR catalogue with a 140 MHz peak flux of 38.9 mJy/beam. This makes S56

the second strongest 140 MHz source within the e-MERLIN Lockman Hole field.

Figure 6.7: The source referred to as S56. It is a strong source that demonstrates the cleaning
artefacts present around strong sources of emission in the e-MERLIN Lockman Hole image.

At such a high redshift, it is unlikely any morphology would be detectable even by

e-MERLIN, so the structure around the source is very likely an improper subtraction
2Note that this spectroscopic redshift significantly differs from the photometric redshift given in Ta-

ble 6.4

134



6. STUDYING THE LOCKMAN HOLE

of the PSF from a strong source during the cleaning process, given the ‘negative bowl’

surrounding it. This conclusion is also reinforced by the presence of a similar pattern

around other strong sources such as S71 and S60. Alternatively, the artefacts surrounding

this source and others may be resolved hotspots in extended components, but given the

pattern similarity between multiple strong sources this is difficult to determine.

The 1.5 GHz radio power and steep-spectrum are characteristic of extended synchrotron

emission in a radio galaxy, which agrees with prior classification of AGN by Weedman

et al. (2006) and Vernstrom et al. (2016b).

6.4.3 S29

The source referred to here as S29 is a resolved source with a total flux of S 1.5 GHz = 5mJy

(see Figure 6.8). The source is located at α = 10h46m24.8s, δ = +59d04m46.4s. As with

S56, this source has an extremely strong unresolved 140 MHz companion with peak flux

S 140 MHz = 68.8mJy. While missing the matching criteria described in section 6.3, this

source can in fact be related to the complex source TV16J104624+590522 from the VLA

catalogue, which is identified as an FRII quasar with a spectroscopic redshift of z =3.63

(Véron-Cetty & Véron, 2010; Vernstrom et al., 2016b). The reason for the criteria being

missed is because e-MERLIN is viewing the radio lobe approximately 3
4
′ south of the

VLA catalogue source, shown in Figure 6a of Vernstrom et al. (2016b). There is also a

clear detection of this source in the Faint Images of the Radio Sky at Twenty centimetres

(FIRST) survey (Becker et al., 1995) at 1.4 GHz. That source is unresolved with a peak

flux P1.4 GHz = 11.2mJy. It is possible to view both the southern radio lobe (S29) and the

northern radio lobe in the 140MHz image. The two components are separated by ∼80′′

(see Figure 6.9).

135



6. STUDYING THE LOCKMAN HOLE

Figure 6.8: The source referred to as S29. It is related to the southern radio lobe of source
TV16J104624+590522 in the VLA survey. The entire source can be seen in Figure 6a of Vern-
strom et al. (2016b), and in Figure 6.9 at 140MHz.
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Figure 6.9: The southern source in this image is the 140 MHz match to source S29. The northern
source is the northern radio lobe of source TV16J104624+590522, shown in Figure 6a of Vern-
strom et al. (2016b). The actual location of TV16J104624+590522 is between the two sources in
this image. The image is a cutout of the LOFAR 2 m Sky Survey (Shimwell et al., 2017).
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6.4.4 S39 + S40

This section studies the sources S39 and S40, which are collectively referred to as just

S39. They are two partially resolved sources with < 0.3′′ separation (see Figure 6.10). The

eastern source is brighter with a total flux of 881µJy, and the western source has a total

flux of 326µJy. The brightest source is located at α = 10h46m04.1s, δ = +59d08m27.7s.

The source has a photometric redshift of zph =1.14, which corresponds to a projected

separation of ∼2.5 kpc. Assuming the redshift measurement is accurate, it’s possible that

e-MERLIN is viewing radio hotspots within the galactic disk.

Figure 6.10: The sources S39 and S40, collectively referred to as S39. They have a small projected
separation of < 2.5 kpc, demonstrating the resolving power of e-MERLIN.

The source has a 140 MHz peak flux of 9.8 mJy/beam and a 3 GHz peak flux of

371µJy/beam, giving spectral indices Γ1500
140 = −0.94 by summing the total fluxes, and

Γ3000
140 = −1.11. These are in broad agreement both with each other, and with the value of

Γ = −1.3 calculated solely from the S-band data presented by Vernstrom et al. (2016b).

These values suggest extended synchrotron emission, and since e-MERLIN is able to ob-

serve two radio components on galactic scales it is possible it is caused by star formation.

Moreover, this particular source has a similarity to the source studied in chapter 5, so

a bound pair of black holes is also possible, though this conclusion would contest with
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the spectral indices calculated earlier. The source does not have an associated entry in

the Chandra Source Catalog (Evans et al., 2020), reducing (though not eliminating) the

likelihood of an AGN. Overall, more evidence is needed to classify this particular ob-

ject. Follow up observations of this source on longer baseline VLBI scales would test the

compactness of these two sources, and potentially reveal further SF components, a bound

system, or clearer jet activity. The source is too distant for meaningful morphological

information to be gained from further optical observation, but similar optical evidence

could be gathered as in Woo et al. (2014) to find support for or against a star formation

origin. This source is an excellent indicator of the ability of e-MERLIN to resolve even

the most closely separated radio sources.

6.4.5 S6 + 7

The objects S6 and S7 are located quite close together, and the morphology of S7 suggests

it may be a jet component with multiple hotspots. It is unknown whether the parent

AGN is S6, S7, or remains undetected (see Figure 6.11). The northern radio source,

S6, is located at α = 10h47m41.8s, δ = +58d48m17.0s. The two sources are separated

by approximately 4.6′′, though unfortunately, neither of these sources has a match in the

Rowan-Robinson et al. (2008) catalogue so calculating a distance is not possible with

the available information. A match can also not be found in the VLA survey since it

falls outside the survey area. The southern source, does not appear to have been properly

fit by pybdsf as the ratio of the fitted gaussian area to the area of the synthesised beam

is too small given its structure. Though this is understandable given its complexity. It

is likely then, that the total flux of S7 has been underestimated. The northern source

clearly has some resolved emission. The total flux from the northern source is S 1.5 GHz =

1.25mJy. Both sources are matched to a single very strong 140 MHz source with peak flux

P140 MHz = 73.9mJy/beam, and are close enough together to be encompassed by a single

synthesised beam in the LOFAR survey. Assuming the 140 MHz flux is divided evenly

between the two e-MERLIN sources, and using the total fluxes calculated by pybdsf,

spectral indices can approximated as Γ1500
140 = −1.72 for the northern source S6, and Γ1500

140 =

−2.61 for the southern source S7 (though this is very likely a bad estimation due to the

incorrect fit). This evidence points to the presence of a radio galaxy, with S7 being a

likely jet component given its structure.
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Figure 6.11: The sources S6 (northern) and S7 (southern). The two sources separated by less than
the LOFAR synthesised beam width, and are therefore encompassed by a single strong P140 MHz =

73.9mJy/beam source in the LOFAR survey.

6.5 Differential Source Counts

For radio interferometers, counting the number of sources detected within a survey must

come with a recognition of the biases introduced by the instrumentation; primary beam

width, baseline length, and surface brightness sensitivity are all factors that can signifi-

cantly impact the number of sources detected. Because of these factors, certain instru-

ments are better suited to producing source catalogues that more accurately represent the

quantity of sources in a certain patch of sky at a certain frequency. LOFAR, for example,

is a powerful 140 MHz sky surveyor because of its wide field of view, and strong surface

brightness sensitivity. In contrast, e-MERLIN is less capable of producing sky catalogues

because it is, first and foremost, a VLBI facility that is less capable of detecting fainter,

low surface brightness phenomena. It is expected that e-MERLIN is biased in its de-

tections towards compact radio emitters like jetted and non-jetted AGN, since SFGs are

more likely to resolve into more and fainter sources, increasing the likelihood that they

slip below the noise limit, whereas AGN will generally remain as at most a few compact

sources at higher resolutions.
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Despite these limitations, it is useful to compare the source counts to other studies,

and radio astronomers have settled on a shared metric for tracking the radio source counts

at fainter flux densities: the Differential Source Counts (DSCs). A good introduction to

the DSC is provided in section 4 of Vernstrom et al. (2016b) which, for completeness, I

summarise here with similar notation. The DSC fundamentally measures the number of

sources per Jansky, per steradian. It is, therefore, most simply written as:

dN
dS a
=

na

Ωa∆S a
(6.1)

where na is the number of sources in bin number a, Ωa is the area over which sources

are detectable, and ∆S a is the width of bin a. The values of na and ∆S a are trivial, but

determining the value of Ωa requires the consideration of more complex factors such as

the shape of the primary beam. Vernstrom et al. (2016b) define the angle over which a

source can be detected as:

Θa =

√
ln Pa

ln 2
θFWHM

2
(6.2)

where the quantity Pa is the signal to detection limit ratio and θFWHM is the FWHM of

the primary beam. As most of the sources in the e-MERLIN field are partially or fully

resolved, Pa is defined as Pa = 〈S 〉a/5σ in this work, where 〈S 〉a is the mean of the total

fluxes within bin a. For e-MERLIN the primary beam width is taken as θFWHM = 30’.

From Θa, an area can be easily computed as Ωa = πΘ
2
a, giving the final equation for the

DSCs:

dN
dS a
= π

(
ln 2

ln Pa

)3/2 4na

θ2FWHM∆S a
(6.3)

Note that Vernstrom et al. (2016b) introduce weightings to the DSCs that are not

applied here, but these weightings only seem to make a significant difference in lower

flux bins < 50µJy. A final correction of S 5/2 is commonly applied to Equation 6.3 to

correct for an inherent increase in the number of sources with increasing distance from

the observer. The result is known as the Euclidean-normalized DSCs, which are plotted in

Figure 6.12 for the e-MERLIN catalogue. The counts are plotted using a range of number

of bins A, to illustrate the spread in making different choices for the bins. In every case,

the upper and lower limits for the bins are 40µJy and 6 mJy.

As expected, e-MERLIN underestimates the source count in all flux bins compared

to other instruments due to the reasons discussed above. There is a flattening of the
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Figure 6.12: The DSCs for the e-MERLIN Lockman Hole catalogue. Measurements are repeated
for number of bins A = 3, 4, and 5, to illustrate the spread from different choices for the bins.
The upper and lower flux density limits are the same in each case. Errors on the source counts are
Poisson errors (i.e. 1/

√
N).

counts between ∼100 - 1000µJy, followed by an increase at the highest flux densities.

The overall trend in this range is largely in alignment with the predictions from many

other studies (see Figure 4.1). At . 100µJy, these results show a decrease in the source

count at higher fluxes compared to other studies, which is again expected since the fainter

region is dominated by non-jetted AGN and SFGs; e-MERLIN preferentially detects only

one of these classes. Therefore, it is possible that the number of SFGs in this flux density

range could be estimated by examining the gap between the e-MERLIN DSCs and the

Vernstrom et al. (2016b) DSCs obtained using the VLA. This gap is most apparent in

Figure 6.13, which shows the DSCs calculated for the full VLA catalogue. These counts

are calculated using the same method as above, with σ = 1µJy, θFWHM = 15′, and using

integrated fluxes scaled to 1.5 GHz using a spectral index Γ = −0.73. The comparison

shows clearly the missing SFG population at . 1000µJy.

6.6 Discussion

The e-MERLIN Lockman Hole image provides a clear census of the 1.5 GHz radio pop-

ulation at brightnesses & 50µJy, at VLBI scales, and over a redshift range 0.1 < z < 3

3This is the approach taken by Vernstrom et al. (2016b) to compare their results to 1.4 GHz source
counts.
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Figure 6.13: The DSCs for the e-MERLIN field with A = 5 bins, with the DSCs from the Vern-
strom et al. (2016b) catalogue plotted as a dashed black line. The method used to calculate these
counts are the same in both cases. Errors on the source counts are Poisson errors (i.e. 1/

√
N).

using estimates from Rowan-Robinson et al. (2008). The primary distinction between this

study and other studies that must be taken into account is the significantly higher reso-

lution which increases information about source morphology at the cost of a decreased

sensitivity to low surface brightness sources, and the population of SFGs expected to

dominate in the lower flux bins. As expected, the e-MERLIN DSCs are smaller than

equivalent measurements of the DSCs using the VLA. It may be possible to estimate the

number of SFGs by examining the gap in the DSCs between these two measurements, but

this should be done carefully. Accurately characterising the degree to which e-MERLIN

samples AGN over SFGs requires the study of an already classified population; preferably

a larger one than is presented in this catalogue. However, the classification of sources in

this catalogue that may allow a study such as this is the subject of future research. Regard-

less of whether this study is conducted, it should be a priority for future work to obtain

more e-MERLIN observations of the same target to further lower the detection limit, ide-

ally to seek parity with the sensitivity of the Vernstrom et al. (2016b) VLA observations

of the same area. The observations presented here were crippled by large amounts of data

lost to RFI, so the final sensitivity was worse than desired. As a result, the e-MERLIN

study of the Lockman Hole is a perfect example of a situation where more effective RFI

mitigation/excision methods are critically important. Succeeding in doing this, and ob-

taining more observations, would enable a richer comparison with the 3 GHz catalogue in
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particular, but also other radio studies more generally. It may also be desirable to expand

the search area to include more sources in the 100 < S 1.5 GHz < 1000µJy flux bins, to more

accurately measure the gap in source counts observed by e-MERLIN.

The biggest step towards classifying sources in the Lockman Hole would come from

combining the e-MERLIN uv data presented here with the Owen & Morrison (2008) uv

data, using the same method of Muxlow et al. (2020) in the GOODS-N field. The re-

sulting dataset would contain the resolving power of e-MERLIN without the downside of

reduced sensitivity to SFGs, allowing a more complete catalogue of sources to be classi-

fied either through the morphological decomposition technique demonstrated by Muxlow

et al. (2020), or some other method. This study would be invaluable in mapping the

faint radio population within the Lockman Hole, and would highlight any discrepancies

due to cosmic variance in both fields. To go further, more and deeper observations at

low frequencies < 1GHz would provide further context to the 1.5-3 GHz population, and

specifically target sources with flatter (Γ ∼ 0) spectral indices that are missed due to the

sensitivity constraints of the current 140 MHz LOFAR observations. In general, forming

a stronger pool of evidence that can be used in cosmological studies requires more and

higher quality radio observations of deep fields such as the Lockman Hole, GOODS-N,

and the Hubble Deep Fields to settle the disagreement in the DSCs and to accurately de-

scribe the number of non-jetted AGN and SFGs as a function of redshift. New facilities

like the SKA are a critical step towards forming this pool of evidence, by probing fur-

ther down to the ∼ µJy limit and perhaps even lower into the nJy range. This range of

extremely faint flux densities representing the higher redshift population is something the

next generation of radio telescopes will explore, and is currently the largest gap in our

knowledge of the faint radio population.
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Conclusions

This work has explored a few topics: experimenting with machine learning to flag inter-

ference in astronomical radio observations, investigating a rare sub-kpc scale binary black

hole candidate, and conducting a deep survey of the Lockman Hole with the e-MERLIN

radio telescope. The first experiment was conducted with the aim of improving the out-

come of the last, as interference is a growing problem within radio astronomy and new,

more advanced techniques are needed.

7.1 The RFI Experiment

The RFI experiment used manually flagged data from the e-MERLIN telescope to train a

GAN to automatically produce flag masks. Using a test set of similarly manually flagged

data, the trained GAN achieved a True Positive Rate of 36.4%, a True Negative Rate

of 94.5%, and finally an F1-score of 40%. The model was also tested using a range of

simulated inputs, where perfect knowledge of RFI is achievable. On simulated images

containing RFI, the GAN achieves a mean F1-score of 64.3% before the performance

sharply decreases at high dynamic ranges. The GANs performance is found not to be

advantageous over currently existing statistical methods for a number of possible reasons

including: lack of precision in the training set, an inefficient network architecture, lack

of variation in the training set, and the common problem (not just to this technique) of

flagging the most faint instances of RFI. It is therefore concluded that, while manually

identified RFI should be included in the training process of any machine learning method

in some form, exclusive use does not appear to give desirable results for this particular

network architecture. Furthermore, while the adversarial model may be a desirable frame-
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work, it is not clear that the U-Net/CNN combination is optimal for the task of identifying

instances of RFI.

Further experiments may improve the pre-processing pipeline to better exaggerate

instances of RFI, or they may explore the possibility of modifying the generator side of

the GAN to be better suited to producing RFI masks, using knowledge about the range

of RFI morphologies to improve performance. It may also be beneficial to broaden the

problem to more than two classes; instead of a binary classification problem between RFI

and ‘not RFI’, including more categories such as ‘unsure’ or ‘bordering RFI’ may reduce

the tension in the adversarial model and produce better results.

Machine learning techniques more generally are uniquely suited to the problem of RFI

flagging, and deserve further testing. Radio observatories necessarily occupy a unique

RFI environment that will change with infrastructure developments surrounding it; ma-

chine learning methods trained on locally sourced visibilities are able to learn about that

particular RFI environment, and use this knowledge to improve performance. This is a

clear advantage of machine learning models over statistical tools. Furthermore, machine

learning techniques do not necessarily require the same amount of parameter optimisation

as statistical methods to achieve the best result during inference. This can greatly sim-

plify the problem of flagging radio visibilities for the astronomer by outsourcing the task

of constructing an effective training set to the radio observatory, where knowledge of the

local RFI environment is much greater. Machine learning techniques are also a promising

alternative to meet the challenge of a significantly increased volume of satellite RFI; a

problem that will affect the operation of the next generation of radio observatories.

7.2 The Binary Black Hole Study

Following on from an optical study by Woo et al. (2014), a radio investigation of a sub-kpc

scale binary black hole candidate was conducted. The investigation successfully identified

two distinct, but faint sources of emission within the object that directly align with two

stellar cores identified from imaging and integral field unit spectra. The overlap between

the two optical sources and the two radio sources is highly indicative of a bound pair of

AGN. The redshift of the source is z = 0.35, and the two radio sources are separated by

0.19±0.06", which translates to 0.95±0.29 kpc at the epoch of the source. Unfortunately,

the PSF of the e-MERLIN observations skews the radio emission directly along the po-

sition angle of the binary source, making separation measurements extremely difficult.
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To investigate this object further, an observing proposal was submitted to the European

VLBI Network (EVN) which has a much greater resolving power than e-MERLIN and

may have revealed jet activity, confirming the dual AGN hypothesis. However, no radio

emission was detected from the source at all by the EVN. Given how faint the object is,

the null detection by the EVN does not preclude the presence of radio emission as the

object may have simply slipped under the noise limit. Several problems occurred during

observation which lowered the sensitivity of the final image, raising this probability. Fur-

ther EVN observations may detect the two sources observed by e-MERLIN and reveal the

origin of the radio emission, though the available evidence suggests that the original radio

detection was the product of two points of extended synchrotron emission: not AGN. At

such small angular scales finding useful ancillary data is difficult, but X-ray observations

in particular may at least confirm the existence of a single AGN.

7.3 The Lockman Hole Study

The final part of this work involved processing 18 e-MERLIN 1.5GHz observations of the

patch of sky known as the Lockman Hole. This area was chosen because of the wealth

of multi-wavelength data available not just at radio frequencies. The data was calibrated

and combined to produce a high resolution wide-field image of the Lockman Hole ∼

30’ in size, with a mean sensitivity of σ = 12µJy/beam. From this image, a catalogue

of 78 sources above a 5σ limit was produced, and ∼ 50% of these sources were cross-

matched with two other studies of the same area at lower (140MHz) and higher (3GHz)

radio frequencies. Redshifts were also identified for 35 sources. Using this information,

5 sources were investigated in detail, to exercise the capabilities of the e-MERLIN image.

Differential Source Counts (DSCs) are calculated using the e-MERLIN catalogue, and

compared to the DSCs obtained from the Vernstrom et al. (2016b) VLA catalogue of

the Lockman Hole. Naturally, because of bias towards detecting compact, high surface

brightness sources (AGN in particular) the counts are underestimated in all but the highest

flux bin. Though, the findings are consistent with an observed faint radio population with

a suppressed SFG component, and are consistent with the overall trend observed by the

VLA in the . 1mJy range.

Further work on the e-MERLIN survey of the Lockman Hole should prioritise com-

bining the data with the VLA survey of the Lockman Hole by Owen & Morrison (2008),

to conduct a similar study to that of Muxlow et al. (2020). This would allow a strong
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comparison to be made between the populations of the GOODS-N field and the Lockman

Hole, and highlight any differences in the source count due to cosmic variance. In addi-

tion to this, further observations by e-MERLIN would continue to bring down the noise

limit, and allow an investigation of the very faint . 10µJy population where most of the

disagreement in source count lies. However reaching this flux density limit would require

significantly more observing time, because of the impact of RFI. Further e-MERLIN ob-

servations would simultaneously allow a deeper investigation of the selected source S51,

and potentially detect radio emission from the host galaxy. The Lockman Hole is also a

strong candidate for observation by the next generation of radio telescopes. These obser-

vations would allow the ∼ µJy range to be explored with a high degree of accuracy, and

should settle the disagreement in source counts. Though, the growing impact of satellite

RFI may impede the next generation of observations as well; further highlighting the need

for better methods of RFI removal.

Overall, the objective should be to further constrain the properties of the faint radio

population within the Lockman Hole over a range of radio frequencies, with the end goal

of using the properties of the SFG/AGN population to explore the history of star formation

and black hole formation in this field, which in turn will inform all theories of cosmology

— past, present, and future.
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Frodo sat silent and motionless. Fear seemed to stretch out a vast hand, like a dark cloud
rising in the East and looming up to engulf him. ‘This ring!’ he stammered. ‘How, how
on earth did it come to me?’ ‘Ah!’ said Gandalf. ‘That is a very long story. The begin-
nings lie back in the Black Years, which only the lore-masters now remember. If I were
to tell you all that tale, we should still be sitting here when Spring had passed into Winter.’

‘But last night I told you of Sauron the Great, the Dark Lord. The rumours that you
have heard are true: he has indeed arisen again and left his hold in Mirkwood and re-
turned to his ancient fastness in the Dark Tower of Mordor. That name even you hobbits
have heard of, like a shadow on the borders of old stories. Always after a defeat and a
respite, the Shadow takes another shape and grows again.’

‘I wish it need not have happened in my time,’ said Frodo.

‘So do I,’ said Gandalf, ‘and so do all who live to see such times. But that is not for
them to decide. All we have to decide is what to do with the time that is given us.’

– J. R. R. Tolkien
The Fellowship of the Ring
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