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Abstract

Accurate and robust six degrees of freedom (6-DoF) pose estimation of rigid objects

is one of the fundamental tasks in computer vision, with wide-ranging applications

that span industrial automation, augmented reality, and medical intervention. How-

ever, most existing methods typically rely on knowledge of objects’ 3D models and

depth measurements, and often require time-consuming iterative refinement to im-

prove accuracy, which can be seen as limiting factors for broader applications.

This PhD thesis is primarily motivated by the desire to overcome these limita-

tions. It presents a comprehensive study of the 6-DoF pose estimation problem.

Drawing inspiration from the latest deep learning pose estimation methods, a novel

6-DoF pose estimation framework named Auto-Pose is proposed, which incorpo-

rates latent space representations of deep neural networks with supervised learn-

ing algorithms. The proposed framework consists of three novel autoencoder-based

methods: DALSR-Pose, CVML-Pose, and CVAM-Pose. These proposed methods

are specifically designed to address the limitations of the existing methods enabling

the estimation of rigid objects’ 6-DoF poses from a single colour image in real time,

without access to any explicit 3D models of the objects or depth data or performing

a post-refinement.

The fundamental idea is to implicitly learn intermediate representations of objects

in the latent space from only colour images, and the 6-DoF poses are estimated from

the latent representations using multiple regression-based algorithms such as mul-

tilayer perception (MLP), k-nearest neighbours (KNN), and random forest (RF).
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The proposed methods can operate in real time and are applicable in complex sce-

narios, including textured/texture-less objects represented in low-resolution images

with heavy occlusion and clutter.

Extensive experiments and evaluation results across multiple publicly available bench-

mark datasets demonstrate the superiority of the proposed framework in pose esti-

mation accuracy over existing methods that similarly use latent space representa-

tions, with accuracy improved by 30%. It also achieves comparable results to other

state-of-the-art methods that use 3D models.

The thesis makes significant contributions to the field of 6-DoF pose estimation

facilitating development of model-free estimation algorithms. The novelty of the

work rests in the proposed autoencoder-based methods that achieve competitive

performance compared to the state-of-the-art using only data from a monoscopic

camera, without the need for the object’s 3D model, depth measurement, or further

iterative refinement often essential for the existing methods.
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R rotation

T translation

Tx translational offset on the x axis
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z latent space variable

n dimensionality of the latent space
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Chapter 1

Introduction

In human vision, the ability to perceive and characterise objects appears to be

inherent. Children learn about the world by observing, touching, and grasping the

objects around them, even without understanding what these objects are. As they

mature, their reliance shifts to knowledge accumulated from extensive experience; for

instance, they can estimate an object’s pose from just a glance. This observation

raises a fundamental question: Can machines be endowed with a similar visual

perception ability, enabling them to recognise an object’s pose from a single image?

Figure 1.1: Definition of a rigid object’s 6-DoF pose. The 6-DoF pose, denoted
as P, of a rigid object is characterised by a rigid transformation with six degrees
of freedom, from the object’s coordinate system to the camera’s coordinate system.
This transformation comprises a 3D rotation R, and a 3D translation T. The 3D
model and image are taken from the YCB-Video dataset [5, 6], and the image of the
model is generated using the Pyrender software [9].
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Scene understanding and automatic manipulation of objects present in such scenes

are of fundamental importance to autonomous systems. A substantial amount of

work in computer vision has been dedicated to developing reliable vision perception

in machines. This includes recognition [10, 11, 12, 13], detection [14, 15, 16, 17, 18],

segmentation [19, 20, 21, 22], and pose estimation [23, 24, 25, 26]. This thesis specif-

ically focuses on the fast and accurate estimation of the 6-DoF pose of rigid objects,

which includes both 3D rotation and 3D translation (as depicted in Figure 1.1).

This capability is vital for a range of real-world applications, such as explorative

navigation, augmented reality, and automated medical intervention. In industrial

applications, precise pose estimation enables machines to grab and manipulate ob-

jects effectively. A notable example is the Amazon Picking Challenge (APC) [27, 28],

which aims to encourage the development of intelligent machines capable of picking

items from warehouse shelves, to automate packaging processes. The proposed work

can be seen as a stepping stone towards the construction of systems where machines

can be endowed with something resembling intelligence by replicating these percep-

tual capabilities of humans, which will enable the construction of fully autonomous

systems operating safely and efficiently. This is symbolised through an AI-generated

image, shown in Figure 1.2, paraphrasing the famous Michelangelo’s The Creation

of Adam, with the touching hands signifying God imparting knowledge to Adam.

The primary objective of this thesis is to develop methods for estimating the 6-DoF

pose of a rigid object from a single colour image. The proposed pose estimation al-

gorithms aim to be efficient and capable of real-time operation, while not requiring

access to an explicit 3D model of the target object. To clarify, an object model typi-

cally includes several elements that define its structure and appearance in 3D space,

such as vertices, textures, and surface normals. The term “real-time” throughout

the thesis refers to the theoretical suitability of a method to complete computations

within a specific time period. This means that a method is considered real-time

if it is possible to predict the number of computations required to process a given

class of input data (e.g. images of a given size). In this sense, iterative methods,
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Figure 1.2: The “Creation of Artificial Intelligence”. The main idea of the
thesis is to enable machines to estimate a rigid object’s 6-DoF pose from only im-
ages/videos. This figure is generated based on the stable diffusion model [29] using
the DreamStudio© platform, with the prompt “mimic the creation of Adam with a
robot arm on the right”, accessed 19 May 2023.

such as iterative closest point (ICP) used by some pose estimation methods, are not

considered real-time because it is not possible to determine the number of iterations

required for the algorithm to converge to an acceptable solution. Using this defini-

tion, meeting specific time limits, e.g. 50 ms per image (for 20 frames per second

video stream), can theoretically be achieved by adjusting computational resources

(such as the graphics card) rather than the method itself. This presents a multitude

of challenges from various perspectives, as detailed in Section 1.1. These challenges

include, but are not limited to, problems arising from occluded objects, cluttered

scenes, varying object appearances, and diverse lighting conditions.

1.1 Challenges

Estimating the 6-DoF pose of a rigid object from images presents numerous chal-

lenges, which can be categorised from the perspectives of the object, sensor, and

environment.
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Figure 1.3: Examples of object-orientated challenges. The example cases
highlight two significant challenges in pose estimation: the lack of distinctive fea-
tures in texture-less objects which inhibits feature extraction and matching, and
the inherent pose ambiguity associated with symmetric objects. The 3D models are
taken from the Linemod [1, 2] and YCB-Video [5, 6] datasets, and the images of the
models are generated using the Pyrender software [9].

Figure 1.4: Examples of clutter and motion blur. The example scene images
depict scenarios with cluttered backgrounds and motion blur that add visual com-
plexity. Simultaneously, the objects of interest demonstrate challenging cases such
as occlusion, which complicates the pose estimation task. The images are taken
from the Linemod dataset [1, 2].

• Object-orientated challenges, as illustrated in Figure 1.3, are inherently tied

to the properties of the object itself, such as its shape and surface texture. For

example, objects with rich textures facilitate the extraction of discriminative

feature descriptors [30, 31, 32], while texture-less objects are problematic in
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feature detection and matching. In these scenarios, pose estimation methods

specifically designed for texture-less objects must rely on alternative represen-

tations, such as surface normals [1, 33]. Additionally, an object’s shape can

influence pose estimation algorithms, especially for symmetric objects, where

multiple poses may appear visually similar, resulting in a many-to-one map-

ping problem between the input data and potential poses.

• Sensor-orientated challenges relate to the quality of images captured by sen-

sors. The quality of these images is influenced by factors such as sensor noise

and image resolution. For instance, low-resolution images may not guarantee

reliable feature extraction. Sensors can also suffer from noise, manifesting as

random variations in brightness or colour, and can be influenced by the mate-

rial properties of the objects being imaged, as discussed in [34]. Furthermore,

images may exhibit motion blur, as shown in Figure 1.4, a phenomenon that

occurs when the sensor moves during image acquisition, adding complexity to

pose prediction.

Figure 1.5: Examples of object occlusion and truncation. The rendered im-
ages show a complete view of the occluded and truncated objects, where both cases
increase the difficulty of recognising an object’s pose. The occluded and truncated
images and 3D models are taken from the Linemod-Occluded dataset [3, 4], and the
rendered images are generated using the Pyrender software [9].
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• Environment-orientated challenges, as depicted in Figure 1.4 and 1.5, are pri-

marily related to the surroundings of the objects. These challenges include

occlusion, truncation [35], and cluttered background. Occlusion occurs when

parts of the object of interest are obscured, typically by other objects. Trun-

cation happens when parts of the object are cut off by the edges of the image

frame, leaving the object partially outside the visual field. Both occlusion and

truncation significantly reduce the available visual information, complicating

accurate object identification and pose estimation. Different from them, clut-

ter refers to images with backgrounds containing a large number of objects or

features that are irreverent to the object of interest. These irrelevant features

increase the complexity of identifying which features belong to the target ob-

ject, leading to inaccurate prediction in object detection, segmentation, and

consequently, pose estimation.

1.2 Problem Formulation

In this thesis, the problem formulation for estimating a rigid object’s 6-DoF pose is

conceptualised in Figure 1.6. The primary task involves developing fast and accurate

methods to determine the 6-DoF pose of an object from a single colour image, given

input data such as training images, ground truth (gt) bounding boxes, and gt 6-

DoF poses of the object. In particular, the research reported here imposes several

constraints on the proposed methods (detailed in Chapter 4), which highlight their

novelties and advantages. For example, both the training and test data are restricted

to colour images only1, without any supplementary information from depth sensors.

The 3D models of objects are utilised solely for pose evaluation and image synthesis,

indicating that the proposed pose estimation methods do not rely on 3D models for

inference. These methods are designed to function even in the absence of 3D models.

The object’s 6-DoF pose is fully defined by a matrix P = [R|T], which consists of

1The methods should also work with grayscale images because they are capable of handling
texture-less objects.
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3D rotation R and 3D translation T = (Tx, Ty, Tz)
T ∈ R3, as depicted in Figure 1.1.

The 3D translation T is a process of moving an object from one place to another in

3D space, typically represented by three numerical values. The 3D rotation R, often

more complex due to its diverse representations such as rotation matrix, axis-angle,

or unit quaternion, will be detailed in Section 3.3.

Figure 1.6: Formulation of rigid object 6-DoF pose estimation problem.
The proposed method should be trained with only colour images of the target object
with annotated 6-DoF poses. During inference, the method takes colour images as
well and predicts 6-DoF poses of the detected object. Notably, neither object 3D
models, depth information, nor post-refinement should be used in testing. Images
are taken from the Linemod PBR dataset [1, 2, 7, 8].

The formulated pose estimation problem is multifaceted and challenging. For in-

stance, the data used for training and inference inherently face several challenges as

detailed in Section 1.1, including object occlusion, truncation, lack of texture, clut-

tered background, and motion blur. The constraints on the proposed methods also

force the methods to abstract information solely from colour images, rather than

relying on other sources like object 3D models or depth sensors, thereby adding sig-

nificant complexity to the task. Furthermore, to meet the requirements for real-time

processing, the adoption of time-consuming iterative post-refinement techniques is

not necessary, which demands that the proposed methods are both accurate and

fast.
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Another technique adopted in the proposed pose estimation methods is 2D object

detection, which is also important as it provides several fundamental components for

evaluation (see Chapter 5). To clarify, object detection is not proposed in this thesis,

and should be distinguished from the pose estimation problem. Object detection

mainly aims to localise objects in the 2D image space, whereas pose estimation

operates in the 3D camera coordinate space, which is more complicated, as explained

in Figure 1.1. Consequently, pose estimation requires more information than object

detection, such as camera intrinsic parameters.

1.3 Importance of 6-DoF Pose Estimation

Pose estimation is a cornerstone across a broad spectrum of real-world applications,

including robotics [36, 37, 38, 39, 40, 41], autonomous driving [42, 43, 44, 45], and

augmented reality [46, 47, 48, 49, 50]. This technique requires considering both

rotational and translational movements of an object in 3D space. For example,

precise pose perception is crucial for machines to interact with and manipulate their

surroundings effectively, achieving operational goals and ensuring safety, particularly

in complex environments. In augmented reality (AR) and virtual reality (VR), pose

estimation plays a key role in creating immersive experiences, facilitating seamless

interaction between virtual objects and real/simulated environments. In the context

of scene understanding, reliable pose estimation algorithms are also fundamental to

safety protocols in autonomous driving, enabling self-driving vehicles to precisely

determine the poses of obstacles and other entities.

Delving into specific applications like industrial automation, fast and accurate pose

estimation algorithms enable machines to skilfully handle tasks ranging from basic

object manipulation [27, 28, 51], to complex activities such as performing surgi-

cal procedures [52, 53]. These applications often require a combination of sensors

and algorithms. For instance, in automatic navigation [54, 55], various image sen-

sors, including colour and depth cameras, collaborate with algorithms designed to
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predict the object’s 6-DoF pose in real time, thereby facilitating navigation and

interaction with the environment. In AR applications, the pose of a user’s camera

or head-mounted display (HMD) needs to be constantly estimated and updated, for

accurately rendering virtual objects based on the spatial information about the real

world.

In medical applications, real-time pose estimation is vital for precision and safety in

diagnostics and interventions [3, 56]. A notable example is robot-assisted surgery,

such as machines used in the da Vinci® Surgical System [57], enabling fine manipu-

lation and control of surgical instruments within the patient, and minimising the risk

of accidental damage to surrounding structures. Here, the real-time capability is key,

as surgeons can operate through a console that translates their hand movements into

precise movements of instruments inside the patient in real time. In this scenario,

the pose estimation algorithm helps to accurately map the surgeon’s movements with

the surgical instruments, ensuring that the instruments operate optimally to per-

form the required tasks such as tissue removal, dissection, and stitching. Moreover,

real-time pose estimation reduces the risk of possible surgeon tremors or unintended

movements, providing a stable and controlled surgical environment.

The importance of 6-DoF pose estimation cannot be overemphasised in these diverse

applications. Real-time, seamless interpretation of pose plays a crucial role in bridg-

ing 2D and 3D spaces, which is the key to ensuring accurate and fast navigation,

interaction, and integration in different environments. The pose estimation methods

proposed in this thesis (see Chapter 4) not only address the key challenges often

encountered in conventional approaches, such as the dependence on 3D models and

post-refinement, and lack of robustness in complex environments, but also introduce

a novel fusion of deep learning-based latent space representation with traditional

machine learning-based regression algorithms. A real-time video demonstration2 of

the proposed CVML-Pose method (see Section 4.3) also exhibits the robustness in

handling a variety of complex scenarios, which signifies a step forward in the field.

2video available: https://ieeexplore.ieee.org/document/10040668.
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1.4 Novelty

In this thesis, a unified pose estimation framework named Auto-Pose is proposed.

It encompasses three novel convolutional autoencoder-based methods, designed to

address the problem of estimating the 6-DoF pose of rigid objects from a single

colour image, without the need for accessing object’s 3D model, depth information,

or performing a post-refinement. The core concept shared across these methods

is the integration of the autoencoder’s latent space representation with regression-

based algorithms. This involves training autoencoder models to learn intermedi-

ate representations of objects in the latent space, and subsequently using various

regression-based algorithms to interpolate the learnt representations to continuous

pose representations, including multilayer perception (MLP) [58], k-nearest neigh-

bours (KNN) [59], and random forest (RF) [60, 61].

Each method within the framework is distinguished by the type of autoencoder

model it employs, including denoising autoencoder (DAE) [62], variational autoen-

coder (VAE) [63], and conditional variational autoencoder (CVAE) [64], resulting

in various latent space representations. The novel contributions of each method are

outlined as follows:

DALSR-Pose: Denoising Autoencoder Using Latent Space Regression for

Object 6-DoF Pose Estimation

DALSR-Pose differs from existing 6-DoF pose estimation methods, such as those

described in [65, 66], which typically discretise pose into a finite set of instances

using a lookup table (LUT) based on the DAE’s latent space. Instead, DALSR-Pose

introduces a novel continuous pose regression approach, combining the DAE’s latent

space representation and regression-based algorithms to interpolate the continuous

pose of an object. The main idea is to implicitly learn an intermediate representation

of the object. Subsequently, multiple regression algorithms, including MLP and

KNN, are trained to separately regress continuous pose representations based on
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the learnt representation. Finally, the complete object 6-DoF pose can be computed

based on the pinhole camera model.

This work has been evaluated on the Linemod [1, 2] and the BOP version [7] of

the Linemod-Occluded [3, 4] benchmark datasets. It outperforms methods based on

latent representation [65, 66], e.g. 20.8% and 14.8% better on Linemod-Occluded

using the VSD metric [7] as reported in Table 5.3, and achieves comparable results

to state-of-the-art methods that use 3D models [67, 68], e.g. within 0.1% difference

compared to [68] on Linemod-Occluded using the MSSD metric [7]. Although the

proposed DALSR-Pose method does not yet match the accuracy of the leading

methods based on 2D-3D model correspondence [35, 69, 70, 71, 72, 73, 74] and model-

point refinement [75], it marks an advancement in facilitating continuous latent space

regression for object 6-DoF pose estimation, contributing to the development of the

proposed CVML-Pose approach.

CVML-Pose: Convolutional Variational Autoencoder-Based Multi-Level

Network for Object 6-DoF Pose Estimation

CVML-Pose builds upon the DALSR-Pose method, introducing a novel convolu-

tional variational autoencoder-based multilevel network for object 6-DoF pose esti-

mation. The main originality and novelty is the proposal of a fast and accurate pose

estimation algorithm that implicitly learns the pose of an object from only colour

images encoded in the regularised latent space of a VAE. Similar to DALSR-Pose,

after encoding in the latent space, multiple supervised learning methods, such as

MLP and KNN, are trained to regress the continuous pose representation from the

frozen latent space. Through an analysis of the latent variables using clustering

algorithms, the method is possible to infer other characteristics beyond pose, such

as object class and shape topology.

The robustness and effectiveness of the CVML-Pose method have been compre-

hensively validated through extensive ablation tests and experiments conducted

on several benchmark datasets, including Linemod, the BOP version of Linemod-
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Occluded, and the BOP version of YCB-Video [5, 6]. For example, it has been shown

to significantly outperform state-of-the-art methods based on latent space represen-

tation [65, 66] (46.0% and 36.8% better) and 2D-3D model correspondence [67, 68]

(43.6% and 16.4% better) on Linemod-Occluded using the MSPD metric [7], as re-

ported in Table 5.3. Although it does perform as well as the most state-of-the-art

methods that do not use latent space, e.g. showing 26.0% and 27.0% worse perfor-

mance than [71] and [76] on the YCB-Video dataset using the VSD metric, it can

achieve results somewhat comparable to the leading methods reliant on 3D mod-

els [35, 69, 70, 73]. For example, it performs within a 4.0% difference compared

to [35] on Linemod-Occluded using the MSPD metric.

CVAM-Pose: Conditional Variational Autoencoder for Multi-Object 6-

DoF Pose Estimation

CVAM-Pose is a multi-object3 pose estimation method, developed upon the CVML-

Pose method. It draws inspiration from the CVAE model, which leverages label

conditions to generate specific data samples. The key concept is to use a CVAE

that incorporates the one-hot encoding technique within the autoencoder architec-

ture, which facilitates learning constrained representations of the multi-object 6-DoF

poses in the latent space. In particular, the one-hot encoded conditional labels are

embedded into every convolutional layer or block of the model, which learns more

high-level feature representations. These learnt multi-object representations are

concatenated with the conditional labels, and subsequently interpolated to the con-

tinuous poses of multiple objects using regression-based algorithms including MLP

and RF.

Empirical evaluation of the CVAM-Pose method, conducted on the BOP version of

the Linemod-Occluded dataset, indicates its superior performance over the state-of-

the-art latent representation methods in both single-object and multi-object predic-

tion scenarios [65, 66] (45.5% and 36.3% better using the MSPD metric as reported

in Table 5.3). Notably, the CVAM-Pose method improves the scalability and compu-

3“multi-object” means more than one object.
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tational efficiency in multi-object predictions within a single-encoder-single-decoder

architecture, and achieves almost the same level of pose accuracy compared to the

proposed CVML-Pose method.

1.5 Thesis Organisation

The structure of this thesis is organised to provide a comprehensive exploration of

rigid object 6-DoF pose estimation, presented as follows:

This chapter, Chapter 1, introduces the problem of 6-DoF pose estimation of rigid

objects, highlighting its challenges, and defining the specific problem formulated in

this thesis. It also describes the wide-ranging applications and the novel contribu-

tions of the proposed methods.

Chapter 2 reviews both classical machine learning-based methods and state-of-the-

art deep learning-based 6-DoF pose estimation methods. The focus primarily is on

deep learning-based methods, which are categorised according to their approaches

to solving the problem. The chapter also engages in a discussion regarding the

use of object 3D models and concludes with a summary of the advantages and

disadvantages of the reviewed methods.

Chapter 3 details the tools and techniques employed in the thesis, following a struc-

tured sequence of data, method, and evaluation. It begins with an introduction to

the pose estimation datasets used on the project and the relevant data processing

methods. Subsequent sections delve into the pose representations and autoencoder

models used in the proposed methods, along with a comprehensive explanation of

the evaluation metrics.

Chapter 4 addresses the problem of estimating a rigid object’s 6-DoF pose from a

single colour image, without access to the object’s 3D model, depth information, and

iterative post-refinement. It describes three novel pose estimation methods based on

the latent space of different autoencoder models: DALSR-Pose, CVML-Pose, and
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CVAM-Pose. These methods involve learning implicit representations of objects in

the autoencoder’s latent space, followed by regression of the learnt representations

to the continuous pose representation. The chapter highlights the importance of

continuous regression in the DALSR-Pose method, as well as emphasises the regu-

larised latent space in the CVML-Pose method for comprehensive object character-

isation, including the object’s pose, category, and shape topology. It also discusses

the proposed label embedding technique in the CVAM-Pose method, demonstrating

its effectiveness in encoding constraint representations for multiple objects within a

single latent space, without losing accuracy compared to the single-object methods.

Comprehensive ablation studies are presented to determine favourable parameters

of the proposed methods, with concluding remarks provided for each method.

Chapter 5 presents the evaluation pipeline, results, and discussions for the three

proposed methods. It starts with an overview of the evaluation procedure, followed

by a comparative analysis of the pose accuracy of the proposed methods against

state-of-the-art methods. This comparison includes methods employing latent space

representation, as well as those that utilise 3D models. The effectiveness of the

proposed methods is assessed across multiple benchmark datasets, using a variety

of evaluation metrics. The chapter also analyses and discusses the strengths and

weaknesses of each category based on the categorisation of these state-of-the-art

methods introduced in Chapter 2. Furthermore, the chapter explores additional

tests designed to examine the impact of object detectors, data quality, and occlusion

on pose estimation accuracy.

Chapter 6 investigates the impact of refinement techniques on 6-DoF pose estima-

tion. The chapter begins by introducing typical refinement techniques, including

an online learning-based refinement using object 3D models, and an iterative post-

refinement using both 3D models and depth measurements. Following this, the

chapter presents detailed experiments and results using the proposed CVML-Pose

method as the baseline model. A comparative analysis of the pose accuracy and the

inference time is included, as well as conclusions at the end of the chapter.
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The final chapter, Chapter 7, concludes the thesis, summarises the novel contribu-

tions, lists the limitations of the proposed methods, and presents possible further

work.
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Chapter 2

Literature Review

2.1 Introduction

Estimating an object’s 6-DoF pose is a fundamental problem in computer vision.

The pose refers to the rigid transformation with six degrees of freedom that defines

the rotation and translation of an object in 3D space with respect to the cam-

era coordinate system. Initially, traditional methods mainly focused on extracting

and matching discriminative feature descriptors, from which the pose was recovered

through established 2D-3D correspondences. The advent of depth sensors, such as

the Microsoft Kinect [77] and Intel RealSense [78], shifted the focus towards template

matching, a process of comparing different scene representations. The introduction

of convolutional neural networks (CNNs) [58, 79] marked a significant evolution in

6-DoF pose estimation. Deep learning-based approaches, leveraging the capabilities

of CNNs, have achieved remarkable results. Consequently, the focus is now turned

towards building appropriate loss functions, better rotation representations, and

finding good intermediate data representations.

This chapter reviews existing 6-DoF pose estimation methods, dividing them into

classical machine learning-based methods (Section 2.2) and deep learning-based

methods (Section 2.3). The main focus is on deep learning-based methods, further
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categorised into direct methods (Section 2.3.1), indirect methods (Section 2.3.2),

and latent representation methods (Section 2.3.3). Additionally, this chapter in-

cludes a discussion on the use of object 3D model (Section 2.4) and concludes with

a summary of these methods (Section 2.5). For more comprehensive reviews on

6-DoF pose estimation, please refer to [23, 24, 25, 80, 81, 82, 83].

2.2 Classical Machine Learning-based Methods

Before deep learning became mainstream, numerous traditional machine learning

techniques were employed for object 6-DoF pose estimation. Early methods typi-

cally relied on edge features obtained from edge detectors, such as the Canny de-

tector [84]. One notable example is the work by Lowe [85], which proposes a scale-

independent segmentation algorithm for detecting and matching edge segments, re-

ferred to as edgelets. The pose of the object can be recovered by matching between

sets of edgelets with specific viewpoints of the object’s 3D model. Extending this

concept, Lamdan and Wolfson [86] introduce a multi-object pose estimation using

geometric hashing. Further, Lowe et al. [87] advance this method to work with ob-

jects having arbitrarily curved surfaces, and varying internal parameters represent-

ing articulation, variable dimensions, or surface deformations. Another significant

contribution is from Damen et al. [88], combining tractable edgelet constellations

with a lookup table (LUT) represented by a transformation-invariant descriptor.

Based on [88], Hodan et al. [89] propose an improved work by incorporating a bet-

ter edge detector [90], faster Hough-based tracing, and more accurate constellation

representations.

These edge-based methods [85, 86, 87, 88, 89, 91] typically rely on the performance

of edge detection, which can work well with both textured and texture-less objects

(see example objects in Figure 1.3). However, they are sensitive to the cluttered

background (see examples in Figure 1.4), which can significantly impact the results

of pose estimation.
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Figure 2.1: Example procedure of estimating an object’s 6-DoF pose by
extracting and matching discriminative features. A set of 2D local feature
points of the test instance are extracted and matched against those extracted from
the training set, which results in 2D-3D correspondences, and the final pose can be
retrieved by RANSAC [92] and PnP [93]. The 3D model and images are taken from
the YCB-Video dataset [5, 6]. The template images are generated using Pyrender [9].

With the success of local feature descriptors such as Scale-Invariant Feature Trans-

form (SIFT) [30], Speeded Up Robust Features (SURF) [31], Maximally Stable

Extremal Regions (MSER) [94] and Binary Robust Independent Elementary Fea-

tures (BRIEF) [32], many pose estimation algorithms began focusing on extracting

such discriminative features from textured objects. A typical procedure, illustrated

in Figure 2.1, involves extracting 2D feature points from training images. These

features are then matched against those in test images, with the matched features

mapped to predefined 2D-3D correspondences obtained from the object’s 3D mod-

els. The 6-DoF pose is subsequently computed using a Perspective-n-Point (PnP)

algorithm [93]. For instance, Lourakis and Zabulis [95] propose a feature-based pose

estimation method where the SIFT descriptors detected in the observed image are

matched with those contained in the 3D model, and the object’s 6-DoF pose is esti-

mated using the PnP algorithm with Random Sample Consensus (RANSAC) [92].

Another method, as proposed in [96], builds a global model description using the

point pair feature, with the final pose estimated through an efficient voting loop if

the reference point lies on the surface of the object. In addition to SIFT-like local

feature descriptors, the authors in [97, 98] employ various machine learning algo-

rithms, such as nearest neighbour search (NNS) [99] or randomised trees [100], to

classify prominent feature points based on the object’s 3D model.
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Despite their high precision, approaches using explicit feature descriptors [95, 97,

98, 101, 102] require accurate 3D models to establish 2D-3D correspondences, and

are therefore not model-free. Moreover, these feature-based methods face difficul-

ties with such objects due to the lack of discriminative features for extraction and

matching. This is an important limitation as texture-less objects are almost every-

where in practical applications. These methods are also prone to issues related to

occlusion, which leads to a reduction in available features, thereby compromising

reliable pose estimation.

Figure 2.2: Example texture-less object with colour gradient information
and surface normal features. Left: location of the silhouette colour gradient
vectors. Middle: location of the surface normals obtained from the 3D model of the
object. Right: the combined features to estimate and refine the 6-DoF pose of the
object. The 3D model is taken from the Linemod dataset [1, 2]

To work with texture-less objects, template-based methods [1, 33, 103, 104, 105,

106] utilise colour gradient information from silhouettes and interior surface normal

features (Figure 2.2). For instance, Hinterstoisser et al. [1] generate template images

with ground truth (gt) object poses and retrieve the most similar template based

on the silhouette. The final pose is then refined using surface normal orientations

obtained from 3D models. Similarly, Li et al. [107] propose an efficient method

capable of handling texture-less objects based on stably observed point pair features,

requiring both depth measurement and knowledge of the object’s 3D model. In

another approach, Tsai and Tsai [108] develop a method that utilises both texture

and shape information.

Although template-based methods are useful for handling texture-less objects, they
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often suffer from clutters and occlusions [109, 110]. Moreover, they heavily rely

on the access of object 3D models for template generation, or depth information

for determining surface normal orientations, which may not always be feasible in

real-life applications.

2.3 Deep Learning-based Methods

The development of computer vision algorithms has significantly influenced the field

of object 6-DoF pose estimation. The classical methods mentioned earlier (Sec-

tion 2.2) mainly rely on different kinds of image representations, such as edge-based

features, local/global feature descriptors, and image templates. With the rapid de-

velopment of deep learning techniques, numerous state-of-the-art pose estimation

methods [5, 35, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 111] based on CNNs have been

proposed. These deep learning-based methods differ from classical approaches in

that they typically rely on features or parameters learnt from CNNs and use them

for different purposes.

This section categorises deep learning-based methods into three distinct groups ac-

cording to how neural networks are used: direct methods (Section 2.3.1), indirect

methods (Section 2.3.2), and latent representation methods (Section 2.3.3). The

direct methods train CNNs to regress 3D rotation and translation from images di-

rectly. The indirect methods focus on learning 2D-3D correspondence mapping

using CNNs, with the 6-DoF pose subsequently estimated using different variants

of the PnP algorithms. The latent representation methods aim to learn implicit la-

tent space representations of objects using specific network architectures, typically

autoencoders. The pose of a test instance is then retrieved by finding the nearest

neighbours, computing observation likelihoods, or directly regressing from the learnt

representations.
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2.3.1 Direct Methods

The development of deep learning-based direct methods (referred to as direct meth-

ods), which regress 6-DoF poses directly from CNNs (illustrated in Figure 2.3),

has significantly influenced object pose estimation. One of the most representative

methods is PoseCNN [5], which trains an end-to-end network that decouples the

pose estimation task into three subtasks: semantic labelling, 3D translation esti-

mation, and 3D rotation regression. This method first predicts semantic labels for

each pixel. It then estimates the 2D projective centre on the image and the 2D

projective distance from the camera for each object. The 2D projection centre is

localised through Hough voting [112], and the 3D translation is retrieved using the

pinhole camera model with known camera intrinsic parameters. The 3D rotation

for each object is parameterised to a unit quaternion representation and estimated

from each region of interest (ROI), using a model point-based loss function (Eq. 2.1).

This model-based training refers to training with 3D model points, where the loss

function is calculated in 3D space. Therefore, it requires 3D models of the objects,

with 3D points being part of the models.

PoseLoss =
1

2m

∑
x∈M

||R(q̃)x−R(q)x||2

ShapeMatch-Loss =
1

2m

∑
x1∈M

min
x2∈M

||R(q̃)x1 −R(q)x2||2
(2.1)

where m is the number of model points, M depicts the 3D model vertices, R(q̃)

and R(q) are the rotation matrices transformed from the estimated unit quaternion

representation q̃ and the gt unit quaternion representation q. Details of the unit

quaternion representation are described in Section 3.3.4.

Similarly to PoseCNN,Wu et al. [113] train a dilated residual network (DRN) [114] to

generate segmentation masks with corresponding object class labels. This is followed

by a pose interpreter network comprising a modified ResNet-18 network [115] and a

multilayer perceptron (MLP) [58], trained to output the 3D rotation (parameterised
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as a unit quaternion) and 3D translation. The pose interpreter network is also

trained with a model point-based loss function to minimise the distance between

the object’s 3D model points transformed by the gt pose and the predicted pose.

EfficientPose [116] modifies the EfficientDet detection pipeline [117] and introduces

two subnetworks to predict the rotation and translation respectively, where the

rotation is parameterised as an axis-angle representation, and the translation is

estimated following the similar procedure to PoseCNN. DeepIM [111] implements

an iterative refinement where the network predicts a relative pose transformation

between the input image and the rendered image of its predicted pose. CosyPose [75]

extends DeepIM with a recently proposed continuous rotation representation [118]

(detailed in Section 3.3.5) and a more advanced network architecture, and won the

BOP Challenge 2020 [7]. GDR-Net [71] trains a geometry-guided network to learn

model correspondences, and employs the continuous rotation representation for pose

regression, which won the BOP Challenge 2022 [26].

Figure 2.3: Example procedure of estimating an object’s 6-DoF pose by
directly regressing 3D rotation and translation from CNNs. The deep
learning-based direct methods typically train an end-to-end network to perform
semantic labelling or object detection, then estimate the pose from the detected
region or segmented mask, with specifically designed loss functions using object 3D
model points. The 3D model and images are taken from the Linemod dataset [1, 2].

Instead of regression, SSD6D [119] converts the pose estimation task to a classifi-

cation task, modifying the popular single-shot detector (SSD) paradigm [120]. It

divides the 3D space into a set of classifiable viewpoints by rendering all possible

views and in-plane rotations, discretising the 3D rotation group (denoted as SO(3))

into a finite number of instances. This approach necessitates post-refinement tech-

niques, as the initial prediction is only a rough approximation of the pose. A similar

discretisation of the pose is also implemented in several latent representation meth-

Chapter 2 Jianyu Zhao 41



Deep Models for Rigid Objects Real-Time Pose Estimation

ods [36, 65, 66, 121], which will be discussed later in Section 2.3.3.

Training a pose regression network is challenging, as illustrated in [111]. Using

separate loss functions for rotation and translation, such as angular distance be-

tween rotations and L2 distance between translations, often suffers from difficulty

in balancing the two losses [122]. Consequently, most direct methods prefer using

model point-based loss functions like PoseLoss and ShapeMatch-Loss (see Eq. 2.1)

proposed by PoseCNN [5], which calculate the distance between 3D model points

at the gt rotation and the estimated rotation. These loss functions can be further

refined by considering the translation vector T , as implemented in [116]. Here, the

PoseLoss and ShapeMatch-Loss are extended to Lasym and Lsym, respectively.

Lasym =
1

m

∑
x∈M

||(R(r̃, x) + t̃)− (R(r, x) + t)||2

Lsym =
1

m

∑
x1∈M

min
x2∈M

||(R(r̃, x1) + t̃)− (R(r, x2) + t)||2
(2.2)

where R(r̃, x) and R(r, x) are the model points transformed from the estimated

axis-angle representation r̃ and the gt axis-angle representation r, using the Ro-

drigues’ rotation formula [123, 124, 125]. Details of the axis-angle representation

are described in Section 3.3.3.

Model point-based training is preferable for improving the accuracy of pose estima-

tion, as shown in many state-of-the-art methods [5, 75, 111, 113, 116]. However, as

outlined in Section 1.2, the proposed methods should achieve state-of-the-art perfor-

mance without explicitly using 3D models or prior 3D information about the object.

Thus, neither model point-based loss functions nor model-based refinement fulfils

the requirements set for the methods developed in this thesis. It will be demon-

strated later in Chapter 6 that the proposed CVML-Pose method does not require

the model point-based training but can still achieve competitive pose estimation

results. Furthermore, it is difficult to build an accurate 3D model for every possible

object of interest in real-life applications, methods relying on object’s 3D model

would fail to work when the model is not available.
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2.3.2 Indirect Methods

The deep learning-based indirect 6-DoF pose estimation methods (referred to as

indirect methods) typically train CNNs to regress predefined 2D-3D representations

of the target object (illustrated in Figure 2.4). These representations include pixel-

wise dense correspondence or a number of predetermined sparse keypoints. The

pose estimation problem is then formulated as a PnP problem, which estimates the

pose given a set of 3D keypoints of the object, their corresponding 2D projections

in the image, and the camera intrinsic parameters.

Figure 2.4: Example procedure of estimating an object’s 6-DoF pose by
regressing 2D-3D correspondence. The deep learning-based indirect methods
typically train CNNs to predict 2D projections of 3D keypoints or pixel-wise dense
keypoints, the 6-DoF poses are subsequently recovered using the PnP algorithm
based on the established 2D-3D correspondence. The 3D model and images are
taken from the Linemod dataset [1, 2].

For instance, BB8 [126] trains a segmentation network to localise objects of inter-

est in 2D images, followed by a modified VGG network [127] predicting the 2D

projections of the corners of 3D bounding boxes, and the final pose is estimated us-

ing an efficient PnP algorithm [93]. YOLO-6D [128] modifies the YOLO detection

model [129] to predict the 2D locations of an object’s 3D bounding box vertices.

The pose is then recovered using the same PnP algorithm as BB8. YOLOv5-6D [74]
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extends YOLO-6D with a more advanced YOLOv5 detector [130] and expands it

to X-ray imaging tasks. However, methods using the eight corners of an object’s

3D bounding box as keypoints often suffer from occlusion due to failure in key-

point detection. Inspired by human pose estimation [131], some methods instead

train CNNs to predict heatmaps of the keypoints to address occlusion. For exam-

ple, Oberweger et al. [132] predict heatmaps for the 2D projections of the corners

of the object’s 3D bounding box from multiple image patches independently. The

heatmaps are then aggregated, and the PnP algorithm is established to recover

the 6-DoF pose. Pavlakos et al. [133] localise a set of class-specific keypoints from

the output heatmap responses, where these keypoints are manually defined on the

3D model surface. The final 6-DoF pose is computed based on the 2D-3D corre-

spondences using the PnP algorithm. The PVNet method [35] also suggests that

establishing a set of voting-based 2D-3D keypoints on the 3D model surface is more

effective than selecting the eight corners of the 3D bounding box. The method

selects 8 keypoints on the object surface using the farthest point sampling (FPS)

algorithm. A segmentation network modified from the ResNet-18 [115] is trained

to output the semantic labels and the pixel-wise unit vectors pointing to the key-

points. These keypoints are then localised by voting hypothesis, and the final pose

of the object is estimated using a RANSAC-based PnP algorithm which prunes the

matched pairs. Although not using CAD models directly, recent methods such as

OnePose [47] use Structure from Motion (SfM) to build sparse models of objects and

match 2D keypoints in the inference image with 3D keypoints in the sparse models.

Except for manually selecting a number of sparse keypoints from 3D models, 3D ob-

ject coordinates can also be utilised for establishing 2D-3D correspondence. Early

work by Brachmann et al. [3] predicts the 3D coordinates using traditional ma-

chine learning algorithms such as random forest from RGB-D images. With a more

advanced auto-context Hough forests [134], a RANSAC-based pose sampling, and

marginalisation of the 3D coordinate distribution over depth, the extended ver-

sion [50] can also predict the 6-DoF pose from a single RGB image. Subsequent
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approaches mainly focus on predicting the 3D object coordinates from RGB images

using CNNs. For example, EPOS [69] predicts the correspondence between densely

sampled pixels and the object’s 3D fragments, before the pixels are linked to the

predicted 3D locations and a variant of the PnP-RANSAC algorithm [93, 135] is

used to estimate the final pose. Similar to EPOS, SurfEmb [73] links image pixels

to object surfaces through a shared embedding space, allowing for dense and con-

tinuous correspondence distributions. Pixel2pose [68] adopts an image-conditional

Generative Adversarial Network (GAN) [136] to estimate the 3D coordinates, and

then the pixel-wise predictions are used to form 2D-3D correspondence and finally

compute the pose via a RANSAC-based PnP algorithm. DPOD [67] regresses the

object mask and 2D-3D correspondence UV map through an encoder-decoder net-

work, computing the object’s pose based on PnP and RANSAC. RNNPose [72]

trains a recurrent neural network (RNN) [137] to iteratively refine the object pose

based on the estimated dense correspondences between the input data and the refer-

ence data (data generated from 3D models). Unlike them, CDPN [70] disentangles

3D rotation and translation, which proposes a coordinate-based method to estimate

only rotation using PnP from the predicted 2D-3D correspondence. The transla-

tion is then estimated directly from the local image patches using a Scale-Invariant

Translation Estimation (SITE) strategy. Instead of directly predicting the trans-

lation vectors, the method predicts the scale-invariant offset and recovers the final

translation based on the pinhole camera model, which improves the pose estimation

accuracy on the Linemod dataset by 14.8% using the Average Distance of Model

Points (ADD(I)) metric as reported in [70].

Despite indirect methods generally performing well with the help of prior 2D-3D

correspondence information from the object’s 3D model, they require additional

computation for setting up either 2D-3D keypoints or pixel-wise dense correspon-

dence. In summary, they need an accurate 3D model to acquire such information.
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2.3.3 Latent Representation Methods

Another group of pose estimation methods have been proposed based on the latent

space of autoencoders, categorised as latent representation methods (Figure 2.5).

A notable example is the method proposed by Sundermeyer et al. [65], known as

Augmented Autoencoder (AAE), trains a denoising autoencoder (DAE) [62] with

strong data augmentation. It learns implicit pose representations from rendered 3D

model views, and builds a codebook from the latent space representation, where the

training process utilises the pixel-wise L2 loss (Eq. 2.3).

l2 =
∑
i

||xi − x̂i||2 (2.3)

where xi represents the gt data, x̂i represents the reconstructed data.

At the inference stage, the pose is estimated using a lookup table (LUT) from the

codebook built with all trained representations zi ∈ R128, i = 1...m, m represents

the number of training images. The cosine similarity (Eq. 2.4) is calculated between

zi and the representation produced by the test image ztest ∈ R128. Subsequently,

the rotation with the highest similarity is assigned to the test instance, determined

using the k-nearest neighbours (KNN) algorithm [59].

cosi =
zi · ztest

||zi|| · ||ztest||
(2.4)

where zi represents the trained representation, ztest is the representation produced

by the test image.

The extended Multi-Path method [66] jointly estimates the implicit latent space rep-

resentations of multiple objects using the same DAE network but in a single-encoder-

multi-decoder architecture. This demonstrates that the learnt representations can

be shared through different objects. Similar to AAE, PoseRBPF [121] maps the

autoencoder’s latent space to a codebook but samples object poses through a Rao-

Blackwellised particle filter [138]. The 6-DoF pose is then estimated by computing
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observation likelihoods for each particle. The extended work [36] takes RGB-D im-

ages as input together with a physical robot arm for grasping which boosts the

performance. Although not using the autoencoder architecture, similar ideas exist

in earlier work from [139, 140], which train CNNs to learn discriminative descriptors

of target objects and map the descriptors to 6-DoF poses using the NNS algorithm.

Figure 2.5: Example procedure of estimating an object’s 6-DoF pose using
autoencoder’s latent space representation. The deep learning-based latent
representation methods typically train an autoencoder network that encodes im-
ages of objects with strong data augmentation in the latent space, and reconstructs
objects with a clean background from the latent representation. The final 6-DoF
pose is interpolated from the latent representation. The images are taken from the
YCB-Video dataset [5, 6].

Latent representation methods are capable of handling occluded objects due to their

robust data augmentation strategies and inherent autoencoder architecture. How-

ever, methods using the LUT assign the most likely pose to the instance, leading to

notable errors due to the discretisation of SO(3). Additionally, they primarily focus

on the 6-DoF pose, ignoring other attributes of the object which can be crucial for

specific tasks. In contrast, the proposed methods (see Chapter 4) aim to construct

an informative latent space that maps not only to object 6-DoF poses but also to

other characteristics, e.g. object category and shape topology. In terms of object
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characterisation, most existing 6-DoF pose estimation approaches are restricted to

object 6-DoF pose only, and have to be retrained or redesigned to incorporate other

attributes of objects. In this case, the latent space of the proposed CVML-Pose

method (see Section 4.3) has the potential to be extended to multiple tasks without

retraining the main network, reducing computational costs. The object characteri-

sation tasks, including object class and genus, will be explained in Section 4.3.3.

Both the AAE and Multi-Path methods are compared with the proposed methods

across multiple benchmark datasets in Section 5.3. Although the proposed methods

are not the first to use latent representation for 6-DoF pose estimation, it will be

demonstrated later that the proposed methods outperform AAE, Multi-Path, and

AAE-ICP (AAE with 3D model and depth refinement) by a certain margin when

tested on the more challenging BOP version [7] of the Linemod-Occluded [3, 4]

and the YCB-Video [5] datasets. The proposed CVAM method (see Section 4.4)

also shows superiority over the Multi-Path method by enabling a more efficient

single-encoder-single-decoder architecture with the conditional variational autoen-

coder (CVAE) network [64] for multi-object pose estimation. It is also noted that the

PoseRBPF method and its extended version cannot be directly compared with the

proposed methods because the authors neither report results on the Linemod [1, 2]

dataset evaluated in this thesis, nor participate in the BOP Challenge [7, 26, 141].

2.4 Use of Object 3D Model

Considering the practical scenario in the current state-of-the-art, object 3D models

are unavoidably used in image synthesis and pose evaluation. To address the lack

of real data, several methods [5, 35, 65, 67, 69, 119] generate substantial amounts

of synthetic training data, by rendering textured object 3D models from various

viewpoints and placing them onto different real background images. To bridge the

domain gap between synthetic training data and real test data, the BOP Challenge

2020 [7] (an annual challenge in the field of object 6-DoF pose estimation) addi-

48 Chapter 2 Jianyu Zhao



Deep Models for Rigid Objects Real-Time Pose Estimation

tionally provides a large volume of photorealistic synthetic data using the physically

based rendering (PBR) technique [142, 143], which dramatically improve the perfor-

mance of many approaches (as will be described in Section 3.2.4). In the proposed

pose estimation methods (Chapter 4), although the photorealistic training data are

generated from object 3D models, the proposed methods themselves do not access

any information from 3D models. Moreover, training with photorealistic data allows

for a fair and straightforward comparison with the state-of-the-art methods partici-

pating in the BOP Challenge, as most participants train their methods using these

data.

Regarding pose evaluation (to be explained in Section 3.5), most commonly used

pose evaluation metrics such as Average Distance of Model Points (ADD and ADI) [1]

and Visible Surface Discrepancy (VSD) [7] are model-dependent, which utilise object

3D model points to calculate model distance or fitness of model surface alignment.

To facilitate comparison with the state-of-the-art methods [35, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 75, 76, 119], the proposed methods have to use these model-dependent

metrics. However, when 3D models are not available, model-independent metrics

such as rotational error (RE) and translational error (TE), could be acceptable

alternatives.

Therefore, although the use of 3D models is inevitable in image synthesis and pose

evaluation for the aforementioned reasons, the proposed methods can still work when

the relevant 3D models are unavailable. In addition, there are always alternative

ways to facilitate a completely model-free pose estimation method, such as using

model-independent pose evaluation metrics and collecting real annotated data.

2.5 Summary

Most state-of-the-art methods for 6-DoF pose estimation typically require an ob-

ject’s 3D model or establish 2D-3D correspondence based on the model. Approaches

that rely on 2D-3D correspondence estimate either pixel-wise dense correspondence [67,
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68, 69, 70], or a number of sparse keypoints [35, 126, 128, 133]. These methods sub-

sequently estimate the pose through various PnP algorithms [93, 144, 145]. Other

approaches either construct functions utilising 3D model points [5, 113, 116], or it-

eratively match the image rendered from a 3D model at its estimated pose with the

observed input image [75, 111]. However, the need for 3D models can be seen as one

of the limiting factors for broader real-life applications. It is impractical to construct

a 3D model for every object of interest or build the prior 2D-3D correspondence in

real time. Different from most existing methods, this thesis introduces three novel

methods (Chapter 4) based on the autoencoder’s latent space representation, which

does not require object 3D models during inference. These methods are trained and

tested with colour images only, achieving comparable results to the state-of-the-art

without any use of depth measurements and time-consuming post-refinement such

as iterative closest point (ICP) [146, 147].

Methods using latent space representation are proposed in [36, 65, 66, 121], cate-

gorised as latent representation methods in Section 2.3.3. These methods typically

use an LUT based on the learnt latent space representation, which assigns the most

likely pose to the test instance. Although these methods also do not require 3D

models during inference, the discretisation of the pose representation can lead to

notable errors. In contrast, the proposed methods regress the learnt latent space

representation to continuous pose representation instead of using LUT, which is re-

ported to outperform existing latent representation methods by a certain margin in

Chapter 5.

What’s more, in terms of object characterisation, most methods are restricted to

object 6-DoF pose only, in which case they are not able to generalise to other at-

tributes of the object. The networks/algorithms have to be retrained or redesigned

if other attributes of objects are required, where such attributes, such as object class

and shape topology, are also important for specific tasks such as object grasping.

Taking into account, for example, a mechanical arm tasked with grasping a mug, it

would be beneficial to differentiate between mugs with and without a handle. In the
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proposed CVML-Pose method (see Section 4.3), the learnt latent space representa-

tion is also shown to have the potential to be extended to multiple tasks without

retraining the main network, thereby reducing computational costs.
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Chapter 3

Tools and Methods

3.1 Introduction

This chapter covers the tools and techniques utilised in the proposed 6-DoF pose

estimation methods, structured around the themes of data, method, and evalua-

tion. Section 3.2 introduces the adopted datasets and outlines the associated data

processing procedures. Section 3.3 delves into pose representations that have been

utilised. Furthermore, Section 3.4 illustrates the adopted autoencoder models and

latent space representation. Lastly, Section 3.5 explains the metrics used for the

evaluation of pose estimation. For details of the proposed methods, please refer to

Chapter 4.

3.2 Datasets

This section presents several publicly available datasets used in the thesis, including

the Linemod dataset (Section 3.2.1), the Linemod-Occluded dataset (Section 3.2.2),

the YCB-Video dataset (Section 3.2.3), and the physically based rendering (PBR)

dataset (Section 3.2.4). In addition to these, the MNIST dataset, although not

directly related to pose estimation but used for addressing a toy problem, i.e. 2D

rotation estimation using a variational autoencoder (detailed in Section 4.3.1), is
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also mentioned in Section 3.2.5. An overview of the data processing procedures

applied to these datasets can be found in Section 3.2.6.

3.2.1 Linemod

The Linemod dataset [2] (licence: CC BY 4.01) was introduced for objects detection

and pose estimation by Hinterstoisser et al. [1]. This dataset contains 15 texture-

less household objects (as shown in Figure 3.1) characterised by distinct shapes

and colours. Each object in the dataset is represented by a series of images, each

featuring a single annotated instance of the object set against a background with

considerable clutter, but exhibiting little occlusion.

Figure 3.1: Object 3D models provided in the Linemod dataset [1, 2]. The
fifteen objects, in order, are ape, benchvise, bowl, cam, can, cat, cup, driller, duck,
eggbox, glue, holepuncher, iron, lamp, and phone. Objects with the ∗ symbol refer
to those also contained in the Linemod-Occluded dataset [3, 4]. The 3D rendering
is implemented using the Pyrender software [9].

In the original version of the Linemod dataset, the authors provide 15 coloured 3D

models for training, e.g. render synthetic training images, and over 1000 real images

for each object from different viewpoints, complete with corresponding ground truth

(gt) 6-DoF poses for test. Specifically, the test images are captured from uniformly

distributed views, ranging from 0◦ to 360◦ around the object, 0◦ to 90◦ tilt rotation,

65 cm to 115 cm scaling, and ±45◦ in-plane rotation. However, in [3], the authors

omit 2 objects due to incorrect 3D models (as illustrated in Figure 3.2), resulting in

1Licence link: https://creativecommons.org/licenses/by/4.0/.
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a total of 13 objects. Furthermore, to reduce the dependency on synthetic training

data, the original Linemod real images are split into training and test sets. The

training images are sampled with at least 15◦ angular distance to roughly cover the

upper hemisphere, while the remaining real images are allocated to the test set.

This data split has been widely adopted by numerous state-of-the-art methods [3,

35, 50, 65, 67, 70, 119, 126, 128]. Although the exact composition of the training set

varies, e.g. the AAE method [65] uses only rendered images for training, the test

data remain consistent across the methods to enable a fair comparison.

Figure 3.2: Incorrect 3D models in the Linemod dataset [1, 2]. The 3rd and
7th objects (bowl and cup) are dismissed in most approaches due to their wrong 3D
models. The 3D rendering is implemented using the Pyrender software [9].

3.2.2 Linemod-Occluded

Similar to the Linemod dataset, the Linemod-Occluded dataset [4] (licence: CC BY-

SA 4.02) was built alongside a pose estimation algorithm proposed by Brachmann

et al. [3]. It provides additional gt annotations for a total of 8 objects (marked with

a star in Figure 3.1) in the benchvise test sequence from Linemod. Characterised

by various levels of occlusion, the Linemod-Occluded dataset presents a range of

challenging test scenarios, which has been extensively used for evaluation in many

state-of-the-art approaches [5, 35, 68, 69, 70], and it has also been chosen as one of

the main datasets in the BOP Challenge [7, 26, 141].

In the thesis, both Linemod and Linemod-Occluded datasets are chosen for evalu-

ation. Linemod is a widely used benchmark dataset for many state-of-the-art pose

estimation approaches, while Linemod-Occluded introduces strong occlusions that

increase the difficulty in pose estimation. To facilitate comparison with methods

2Licence link: https://creativecommons.org/licenses/by-sa/4.0/.
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Figure 3.3: Comparison between Linemod [1, 2] and Linemod-Occluded [3,
4]. The Linemod dataset contains 15 test sequences, and each of the sequences is
associated with only one object of interest. The Linemod-Occluded dataset contains
only one test sequence, but each of the sequences is associated with up to eight
objects of interest with different levels of occlusion.

participating in the BOP Challenge, the BOP version [7] of the Linemod-Occluded

dataset, a subset manually selected by the challenge organisers, is used for evaluation

of the proposed methods. Besides, since the objects in Linemod-Occluded are a sub-

set of the objects in Linemod, the same network (weights) trained for each Linemod

object can also be applied to the corresponding objects in Linemod-Occluded, en-

hancing computational efficiency. Moreover, Linemod and Linemod-Occluded data

are considered heterogeneous due to the distinct shape and appearance of the ob-

jects. The images of the objects, both with and without occlusion and clutter,

exhibit very different characteristics, varied illumination and shadow patterns.

3.2.3 YCB-Video

Like Linemod and Linemod-Occluded, the YCB-Video dataset [6] (licence: MIT3)

also came with a 6-DoF pose estimation approach proposed by Xiang et al. [5].

The dataset comprises 92 video sequences, with 80 designated for training and the

remaining 12 for test, which encompasses a total of 133,827 images featuring 21

objects (see Figure 3.4) selected from the YCB dataset [148, 149, 150]. To facilitate

deep learning-based approaches, the authors additionally generate 80K synthetic

training images by rendering the objects’ 3D models. The dataset features both

3Licence link: https://opensource.org/license/mit/.
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textured and texture-less objects, often occluded with varying levels in cluttered

scenes.

Figure 3.4: Object 3D models provided in the YCB-Video dataset [5, 6].
The images of the 3D models are rendered using the Pyrender software [9].

Figure 3.5: Comparison between real objects in the YCB-Video [5, 6] and
Linemod [1, 2] datasets. Most objects in the YCB-Video dataset are easily
accessed in life, e.g. the mustard and spam objects, though there may be subtle
differences in appearance between 3D models and real objects. Most Linemod ob-
jects, e.g. the cat and eggbox, need to be 3D printed from the 3D models, and their
appearance can be affected by the colour of printing materials and the capability
of the printer. The images of the 3D models are rendered using the Pyrender soft-
ware [9].

The test images in the YCB-Video dataset present a variety of challenging cases,

where each of the test sequences is associated with 3 to 9 objects of interest with

different levels of occlusion and clutter. This dataset has been used by many state-of-

the-art approaches [5, 35, 69, 75], and chosen as one of the main datasets in the BOP

Challenge [7, 26, 141]. Similar to the Linemod-Occluded dataset, the BOP version

of the YCB-Video dataset is used for evaluation, to facilitate comparison with the

state-of-the-art. The BOP version subset contains only a folder of 75 images that

are manually selected for each of the 12 test scenes, to remove redundancies and to

avoid images with inaccurate gt poses. Another reason for evaluating the YCB-Video
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dataset is that most objects are common in life and easily accessible, facilitating real-

time demonstration. The Linemod real objects are difficult to acquire, although

they can be built using additive manufacturing techniques based on the provided

3D models, as well as further polishing and painting (see Figure 3.5).

3.2.4 The BOP Challenge Dataset

The Benchmark for 6D4 Object Pose Estimation (BOP) Challenge [7, 26, 141] is

a well-organised annual challenge that aims to continuously report the state-of-

the-art in estimating rigid object’s 6-DoF pose from RGB/RGB-D images. The

challenge provides 12 publicly available datasets5, including Linemod [1], Linemod-

Occluded [3], T-LESS [151], MVTec ITODD [152], HomebrewedDB [153], NVIDIA

Household Objects for Pose Estimation [154], YCB-Video [5], Rutgers APC [155],

IC-BIN [156], IC-MI [157], TUD Light [141], and Toyota Light [141]. Each is pro-

vided in the unified BOP format6 and including the object’s 3D model with training

and test images annotated with gt poses (example procedure of obtaining gt poses

can be found in [151]). The objects’ coordinate system is defined in the datasets as

a right-handed system, with the coordinate origin coinciding with the centre of the

3D bounding box of the object 3D model. For objects not included in the dataset,

the coordinate origin can similarly be set at the centre of the 3D bounding box,

and axes can be defined arbitrarily, e.g. the axis along the largest dimension of the

bounding box can be designated as the primary axis (x-axis). The training images

are either captured by RGB-D/Gray-D sensors or obtained by rendering the object

model, while the test images are captured in various scenes, each characterised by

graded complexity, often involving significant clutter and occlusion.

In the BOP Challenge 2019 (BOP19), classical point pair methods [96, 158] still

outperformed deep learning-based methods [65, 67, 68, 70], and Hodan et al. [7]

46D here means 6 degrees of freedom not 6-dimensional.
5The datasets and the licence of each can be accessed through: https://bop.felk.cvut.cz/

datasets/.
6Description of the format: https://github.com/thodan/bop_toolkit/blob/master/docs/

bop_datasets_format.md.
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pointed out the two main challenges for deep learning-based approaches:

• an insufficient number of real training images with annotations.

• a large domain gap between real test images and commonly used synthetic

training images (objects rendered on random backgrounds).

Method name PBR images non-PBR images real images ARscore

CDPN [70]
✓ 0.569

✓ 0.374

CDPNv2 [70]
✓ 0.624
✓ ✓ 0.624

EPOS [69]
✓ 0.547

✓ 0.443

CosyPose [75]
✓ 0.633
✓ ✓ ✓ 0.633

Pix2Pose [68]
✓ 0.281

✓ 0.077

Table 3.1: Approaches that benefit from the Linemod PBR images [1, 2,
7, 8]. Each approach has two entries with different training data and tests on the
same BOP version of the Linemod-Occluded data [3, 4]. The performance score
ARscore is calculated from the pose error metrics proposed in the BOP Challenge
2020 [7] (see Section 3.5). Non-PBR images refer to synthetic images with non-PBR
techniques. For example, CDPN [70] gets ARscore = 0.374 with non-PBR images,
while it achieves ARscore = 0.569 using only PBR images.

Method name PBR images non-PBR images real images ARscore

CDPN [70]
✓ ✓ 0.457

✓ 0.422

CDPNv2 [70]
✓ 0.390
✓ ✓ 0.532

EPOS [69]
✓ 0.499

✓ ✓ 0.696

CosyPose [75]
✓ 0.574
✓ ✓ ✓ 0.821

Table 3.2: Approaches that benefit from the PBR, non-PBR, and real
images of the YCB-Video dataset [5, 6, 7, 8]. Each approach has two entries
with different training data and tests on the same BOP version of the YCB-Video
test data. As an example, CosyPose [75] gets ARscore = 0.821 with all three types
of data, while it only achieves ARscore = 0.574 using PBR images.

In the BOP Challenge 2020 (BOP20) [7], participants were given access to addi-

tional 350,000 physically based rendering (PBR) images [142, 143] as part of their

training data. This was intended to mitigate the substantial domain gap between
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synthetic training images and real-world test images [159, 160, 161]. Subsequently,

deep learning-based methods [68, 75] have caught up with the point pair methods

from BOP20. Approaches that benefit from the Linemod PBR images and their

corresponding results reported in the BOP20 are summarised in Table 3.1. For in-

stance, CDPN [70], Pix2Pose [68], and EPOS [69] show obvious improvements of

19.5%, 20.4%, and 10.4% in ARscore, respectively, when using only PBR images, com-

pared to when they use only non-PBR images (their own synthesised images with

non-PBR techniques). CosyPose [75] and CDPNv2 [70] achieve competitive results

with PBR images only, demonstrating the effectiveness of the PBR technique.

However, for the YCB-Video dataset, not only the PBR images but also other

types of images can be used for training as well. As shown in Table 3.2, based on

the reported results of the state-of-the-art methods [69, 70, 75] that participated

in the BOP20, the real images are beneficial for training, providing as much or

even better generalisation ability as the PBR images. For example, using only

real images, CDPN achieves competitive results (3.5% lower in ARscore) compared

to those obtained when using both PBR and real images. Its extended version,

CDPNv2, also significantly improves the results (14.2% better in ARscore) using real

images. Training with a combination of non-PBR synthetic and real images boosts

the performance of EPOS (19.7% better in ARscore) and CosyPose (24.7% better in

ARscore). Although there is no definitive evidence that non-PBR synthetic images

are beneficial on their own, the two methods achieve much better results when

using a combination of data types. This suggests that the proposed methods can be

trained with different types of images when dealing with the YCB-Video dataset.

In the proposed methods (see Chapter 4), Linemod and Linemod-Occluded are cho-

sen as the main datasets for benchmarking in evaluation and ablation tests. The

corresponding Linemod PBR images are used for training instead of real images

because, as demonstrated in Table 3.1, they provide a good enough generalisation

for many state-of-the-art approaches to perform well on real test images. In ad-

dition, in the related task of object detection, the authors in [142] train a Faster
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Figure 3.6: Examples of the copy-and-paste, PBR, and real images. The
copy-and-paste images are generated using the YCB-Video dataset [5, 6], the PBR
images are taken from the Linemod PBR dataset [1, 2, 7, 8], and the real images
are taken from the Linemod dataset [1, 2].

R-CNN detector [162] using the Linemod PBR images. This approach demonstrates

promising results, particularly when compared to the common practice of training

with copy-and-paste images, which are generated by rendering 3D models onto ran-

dom scene images. The YCB-Video dataset is selected as supplementary data, which

can also be used to investigate whether the proposed methods are scalable across

different datasets. The corresponding PBR images, non-PBR synthetic images, and

real images of the YCB-Video dataset are all considered for training.

3.2.5 Digits dataset

MNIST (Modified National Institute of Standards and Technology) dataset [163,

164] is a widely recognised benchmark in image classification (licence: CC BY-SA

3.07). It consists of 60,000 training images and 10,000 test images of handwritten

digits, each accompanied by a label indicating the digit (ranging from 0 to 9). The

MATLAB8 digits dataset [165] includes 10,000 synthetic greyscale images of digits.

Each image is 28-by-28 pixels and has two associated labels denoting the digit it

7Licence link: https://creativecommons.org/licenses/by-sa/3.0/.
8UCLan academic licence.
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represents (0–9) and the angle of rotation ([−45◦, 45◦]) applied to the image.

Although the digits are not typically used in object 6-DoF pose estimation, because

they naturally exist in 2D rather than 3D, the 2D rotation is a special case in

SO(3). If the proposed method can successfully predict the 2D in-plane rotation,

there is potential for extending it to 3D rotation estimation. This forms a toy

problem in the proposed CVML-Pose method, exploring whether the latent space

in a variational autoencoder is capable of encoding 2D rotations (will be introduced

later Section 4.3.1).

3.2.6 Data Preprocessing for 6-DoF pose estimation

Figure 3.7: Example procedure of replacing background with a real scene
in the synthetic YCB-Video training data [5, 6]. The real scene images
come from random captured photos by a cell phone, to replace the original uniform
background.

As illustrated in previous sections, the Linemod test set, the BOP version of the

Linemod-Occluded dataset, and the BOP version of the YCB-Video dataset, are

selected for training and evaluation of the proposed methods (Chapter 4). For

Linemod and Linemod-Occluded, the corresponding PBR images are employed for

training as the PBR technique has been shown to enable better network performance

than training with real and/or non-PBR synthetic images, as evidenced by the

results reported in Table 3.1. For the YCB-Video dataset, a combination of PBR,
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non-PBR synthetic, and real images is selected, as this combination can yield better

performance compared to using only PBR images. In particular, the non-PBR

synthetic images of the YCB-Video dataset only have a uniform background, which

can be less generalisable to the real test data. Following the copy-and-paste pipeline

illustrated in [142], the rendered images of objects are pasted on top of the real scene

images from the NYU Depth Dataset V2 [166, 167], and the example procedure is

shown in Figure 3.7.

Figure 3.8: Data preprocessing step one: crop-and-resize. All the gt informa-
tion including object 6-DoF pose, bounding box, and object visibility are provided
by the Linemod PBR dataset [1, 2, 7, 8].

To prepare the training data, i.e. images to be fed into the autoencoder models (see

Chapter 4), a crop-and-resize strategy is applied. For instance, as demonstrated

with the Linemod PBR images shown in Figure 3.8, each image contains several

Linemod objects. The crop-and-resize strategy first crops each target object into a

square shape from the scene using the provided gt bounding box, with the square’s

size defined as the longer side of the bounding box. The cropped images of objects

are then resized to 128×128×3 using bicubic interpolation to match the autoencoder

network’s input size. Following the crop-and-resize strategy, approximately 50,000

images of objects can be achieved for each Linemod object.

Among these images, a fair amount is considered “bad data”, due to nearly invisible
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Figure 3.9: Data preprocessing step two: data generation for the gt recon-
struction images. Each gt reconstruction image x̂i is identical to the input image
xi in terms of the 6-DoF pose but slightly different in background and appearance,
where x̂i shows a complete object without any background or occlusions, xi shows
various backgrounds and may be occluded or truncated. The images are taken from
the Linemod dataset [1, 2]. The gt reconstruction images are rendered using the
Pyrender software [9].

in the scene from occlusion or truncation (see examples in Figure 3.10 and A.1. Since

the BOP Challenge only evaluates images of objects with visibility of at least 10%

area in the scene, the same criterion is applied, i.e. images of objects that are heavily

obscured (less than 10% area of the object is visible) are omitted, and eventually

around 40,000 images per object are obtained as the final input x. To prevent

overfitting, 90% of these images are randomly allocated to the training set, and the

remaining 10% to the validation set for each object. An overview of the training

data distribution for Linemod and YCB-Video objects is provided in Figure 3.11.

Another set of data, called the ground truth (gt) reconstruction data, is required

for training the autoencoder model (will be explained later in Section 3.4). Unlike

typical self-supervised learning where the input data can be treated as the gt recon-

struction data, it is not feasible here due to the inherent noise in the input data, such

as background, occlusion, and truncation. Therefore, to build the gt reconstruction

dataset, an easy-to-use non-PBR rendering software, Pyrender [9], is used to syn-

Chapter 3 Jianyu Zhao 63



Deep Models for Rigid Objects Real-Time Pose Estimation

Figure 3.10: Example bad case for the training data. The object visibility
information is provided by the Linemod PBR dataset, which is defined as the pro-
portion of the number of visible pixels of the object. The images are taken from the
Linemod PBR dataset [1, 2, 7, 8].

thesise images of objects with a clean background based on the gt 6-DoF poses and

camera intrinsic parameters from the original datasets. Figure 3.9 illustrates the

preparation of gt reconstruction images. Please notice that the gt reconstruction

images x̂ are different from the input images x of the object of interest. x̂ shows

a complete object without any background or occlusions, which could be possibly

present in the original input image x.

To build the test set, the same crop-and-resize strategy is applied to the test data

of these datasets. A slight difference is that the test set images can be cropped

either from the gt or the detection bounding box, while the training images are all

cropped from the gt bounding box. For both training and test sets, the bounding box

provides not only the location of the object in 2D images, but also helps to estimate

the 3D translation T, which will be further explained in Chapter 4. Regarding

object detectors, while they are not proposed in the thesis, different state-of-the-art

pretrained detectors are critically assessed, to evaluate their impact on the accuracy

of pose estimation. The complete evaluation procedure, as well as comparative

analysis and evaluation of these detectors, are presented in Chapter 5.
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(a) Linemod

(b) YCB-Video

Figure 3.11: Distribution of the processed training data. The training data
for the Linemod objects only contain PBR images, while the data for the YCB-
Video objects consist of PBR, own synthetic, and real images.
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3.3 Pose Representations

An object’s 6-DoF pose consists of two components: 3D rotation R ∈ SO(3) and 3D

translation T ∈ R3. The 3D translation can be interpreted as 3D displacement in

the camera coordinate system, which is typically denoted as T = (Tx, Ty, Tz)
T . Here,

Tz is the 2D projective distance from the camera to the object’s projective centre,

while Tx and Ty are the offsets along the x and y axis in 3D space, respectively.

The 3D rotation, representing rotational motion in 3D space, is more complicated

than 3D translation due to various rotation representations such as rotation matrix,

axis-angle, and unit quaternion.

In many deep learning-based pose estimation methods (explained in Section 2.3),

directly regressing a 3 × 3 rotation matrix is often not the first choice. The main

reason is that the output from CNNs may not be a valid rotation i.e. not orthogonal,

necessitating the Gram-Schmidt orthogonalisation process during network training.

Alternatively, more compact rotation representations, such as axis-angle and unit

quaternion, are typically preferred, as exemplified in [168]. However, as demon-

strated by Zhou et al. [118], all rotation representations are discontinuous in four

or fewer dimensions, i.e. these commonly used representations are not ideal for 3D

rotation regression because of the discontinuity issue. To address this, they propose

a continuous representation in six dimensions, which has been shown to outperform

lower-dimensional representations.

In this section, several different rotation representations including rotation matrix

(Section 3.3.1), Euler angles (Section 3.3.2), axis-angle (Section 3.3.3), unit quater-

nion (Section 3.3.4), and continuous rotation representation (Section 3.3.5), are

reviewed in terms of their advantages and disadvantages in rotation regression. It

should be noted that using different pose representations will only affect methods

that directly regress 6-DoF poses from CNNs. The indirect methods (Section 2.3.2),

which use 2D-3D correspondence information, can naturally get around the pose rep-

resentation issue because of the PnP algorithm. Some latent representation methods
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(Section 2.3.3) can also ignore this problem by finding the nearest neighbours or com-

puting observation likelihoods instead of implementing regression-based algorithms.

3.3.1 Rotation Matrix

A rotation matrixR ∈ Rn×n is used to perform a rotation in n-dimensional Euclidean

space. It is characterised by two properties: it is orthogonal, and its determinant is

equal to 1 [125]. Generally, the space of rotation matrices in n-dimensional space

can be defined as:

SO(n) = {R ∈ Rn×n : RRT = RTR = I, detR = 1} (3.1)

Specifically, the group of all 3× 3 matrices that meet the two properties is denoted

as SO(3), where SO is the abbreviation of special orthogonal.

Regressing a 3× 3 rotation matrix from CNNs is not trivial, due to the redundancy

in the matrix’s nine parameters, compared to other more compact representations

like axis-angle and unit quaternion, which have fewer parameters to be optimised.

In addition, an orthogonalisation process is essential for the rotation matrix, which

can be seen as a constraint to network training through backpropagation. However,

the rotation matrix representation provides a fundamental tool for the design of the

loss function in the pose regression network. For example, in the work of Mahendran

et al. [169], although the authors estimate the 6-DoF pose using CNNs with axis-

angle and unit quaternion representations for simplicity, they construct a geodesic

loss function (Eq. 3.2) based on the rotation matrix representation, which can be

further adapted depending on the representations used in the network.

d(R1, R2) =
∥ log(R1R

T
2 ))∥F√

2
(3.2)

where R1 and R2 are two rotation matrices, log is the matrix logarithm, ∥ · ∥F is the

Frobenius norm.
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3.3.2 Euler Angles

Euler angles are one of representations used to describe a 3D rotation. They can

represent any rotation of SO(3) using three ordered rotation angles (α, β, γ) about

three axes [170].

The Euler angles representation requires three primary rotations combined to com-

pute the 3D rotation matrices. These rotations are defined around three axes x, y, z

as follows:

Rx(α) =


1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)

 , Ry(β) =


cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)

 ,

Rz(γ) =


cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1


(3.3)

These rotations can be combined in different sequences, e.g. z − y − z, z − y − x,

x − y − z, etc. A subset of these sequences constitutes Cardan angles by strictly

combining rotations about three orthogonal axes, for example, the x − y − z or

z − y − x sequences. An example Cardan angles representation R can be obtained

as follows:

R = Rz(γ)Ry(β)Rx(α) (3.4)

These angles around distinct axes are often interpreted as yaw (Rz(γ)), pitch (Ry(β)),

and roll (Rx(α)). Yaw is the rotation around the z axis, similar to turning left or

right; pitch is the rotation around the y axis, akin to nodding up and down; and

roll describes the rotation around the object’s x axis, like tilting side to side. The

Cardan angles representation is intuitive for understanding an object’s orientation,

as it mimics the way humans describe rotations in everyday use.

As matrix multiplication is not commutative, the order in which the rotation of the
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three consecutive elements is applied is critical. For example, a rotation R following

the z−y−x sequence will differ from rotations in other sequences, as demonstrated

in Figure 3.12.

Figure 3.12: Effects of the rotational orders in Euler angles representation.
The three angles (roll, yaw, pitch) are assigned at the same value but different
sequences (x− y− z, y− z−x, and z− y−x), resulting in three different rotations.
The 3D model of the Linemod cat object [1, 2] is rotated and rendered at the
rotations which formed three different views. The 3D rendering is implemented
using the Pyrender software [9].

Figure 3.13: Gimbal lock visualisation. The Euler angles are assigned at different
values in the z − y − x sequence. The gimbal lock occurs when the pitch angle is
locked at 90◦, losing one degree of freedom. The 3D model comes from the Linemod
dataset [1, 2], and the 3D rendering is implemented using the Pyrender software [9].

One problem of the Euler angles representation is gimbal lock, a phenomenon where

two of the three gimbals align, leading to a loss of one degree of freedom. This

limitation is demonstrated in Figure 3.13, using the yaw (Rz(γ)), pitch (Ry(β)),

roll (Rx(α)) sequence from Eq. 3.4. where, under the same pitch angle of 120◦,

different combinations of roll and yaw angles result in different rotations. However,

when gimbal lock occurs, specifically at a pitch of 90◦, the arbitrary combination

of roll and yaw, such that their sum is constant, (e.g. α = 20◦, γ = 50◦ and
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α = 50◦, γ = 20◦) will produce the same 3D rotation. Gimbal lock can have severe

consequences in real-life applications, such as in aircraft flight control. For instance,

if the roll and yaw gimbals become parallel, it will cause the loss of one degree

of freedom, possibly compromising the capability to perform certain manoeuvres.

Alternative representations such as unit quaternion and axis-angle, can avoid the

gimbal lock problem, and provide a more efficient way for 3D rotation representation

and regression.

3.3.3 Axis-angle

According to Euler’s rotation theorem, any rotation of a rigid object in the 3D space

is equivalent to a rotation about a fixed axis, which is commonly referred to as the

axis-angle representation [171]. As the name suggests, this representation charac-

terises a rotation in SO(3) as a combination of a unit vector e (the axis of rotation)

and the angle of rotation θ about the axis. It is popular in many regression-based

6-DoF pose estimation approaches [116, 169, 172] for its representation simplicity.

An axis-angle representation is defined as:

R(e, θ) =



ex

ey

ez

 , θ

 (3.5)

However, the axis-angle representation has several disadvantages. For example, the

implementation of rotation in the axis-angle representation requires application of

the Rodrigues’ rotation formula [123, 124, 125], and a superposition of two rotations,

in that representation, is somewhat complicated. When θ = 0, e can be arbitrary.

Moreover, a many-to-one problem exists (see Eq. 3.6), though this is not unique to

the axis-angle representation.

R(e, θ) = R(−e,−θ)

R(e, θ) = R(e, 2kπ + θ), ∀k ∈ Z
(3.6)
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3.3.4 Unit Quaternion

In the 6-DoF pose estimation, unit quaternion [173] is another popular representa-

tion for describing object rotation in the 3D space, which has been used in numerous

state-of-the-art approaches [5, 111, 113, 174]. It is particularly useful for represent-

ing rotation because it avoids complexities and ambiguities associated with other

representations like Euler angles. Also, different from the axis-angle representa-

tion, the unit quaternion representation gives a global reparameterisation of SO(3).

One of the advantages of this representation is the simplicity with which it imple-

ments superposition of rotations (computed as multiplication of corresponding unit

quaternion) when using quaternion algebra. A unit quaternion Q is defined as:

Q = q0 + q1i+ q2j + q3k qi ∈ R, i = 0, 1, 2, 3

∥Q∥ =
√

q20 + q21 + q22 + q23 = 1

(3.7)

where q0 is the scalar component of Q, (q1, q2, q3) is the vector component, and

following formulas apply:

i2 = j2 = k2 = ijk = −1,

ij = k = −ji,

jk = i = −kj

ki = j = −ik.

(3.8)

Assuming that the rotation is given in an axis-angle representation as R(e, θ), the

corresponding unit quaternion Q can be calculated as follows:

q0 = cos

(
θ

2

)
q1 = ex sin

(
θ

2

)
q2 = ey sin

(
θ

2

)
q3 = ez sin

(
θ

2

)
(3.9)
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Despite its flexibility, the unit quaternion representation suffers from the problem

of antipodal symmetry [175, 176], also known as “double cover”, where Q and −Q

represent the same rotation, which means that it may end up with completely oppo-

site values of unit quaternion representation for two identical rotations. To ensure

uniqueness, some approaches, like that of Wu et al. [113], constrain the real compo-

nent q0 to be non-negative in the proposed network, restricting the rotation angle in

the range of (0, π). However, this does not completely resolve the issue, as similar

rotations may still be far apart in this representation [176].

Furthermore, empirical results from Zhou et al. [118] suggest that all 3D rotation

representations are discontinuous in real Euclidean spaces of four or fewer dimen-

sions, and continuous representations are generally preferred. This implies that

Euler angles, unit quaternion, and axis-angle representations may not be well suited

for 3D rotation regression tasks. As an alternative, at least 5D or higher dimensions

are recommended, which will be discussed in the next section.

3.3.5 Continuous Rotation Representation

As previously discussed in Section 3.3.1, regressing the rotation matrix represen-

tation in neural networks requires enforcing the special orthogonal property, which

typically involves the Gram-Schmidt process [177]. This process can be challenging

for backpropagation. Other representations such as unit quaternion, axis-angle, and

Euler angles often suffer from the discontinuity problem, making them less suit-

able for network training. To address these challenges, several works have explored

smoother rotation representations with higher dimensionality [118, 178, 179, 180].

The most representative one is proposed by Zhou et al. [118], which parameterises

3D rotation in six dimensions. This approach involves using the first two columns

of the rotation matrix, forming a six-dimensional (6D) vector, as a continuous rep-

resentation. This transformed vector allows effective reconstruction of the rotation

matrix during network training with a process similar to Gram-Schmidt orthogonal-

isation. Given a rotation matrix R ∈ R3×3 and a 6D representation R6D ∈ R6, the
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transformation between them can be expressed in Eq. 3.10:

R =



| | |

a1 a2 a3

| | |


 −→ R6D =


| |

a1 a2

| |

 ,

R6D =



| |

â1 â2

| |


 −→ R =


| | |

b1 b2 b3

| | |



bi =


N(â1) i = 1

N(â2 − (b1 · â2)b1) i = 2

b1 × b2 i = 3



(3.10)

where a1, a2, a3 are the three columns of the rotation matrix R, N represents nor-

malisation, × denotes cross product between two vectors. The two vectors â1 and

â2 should not be parallel to uniquely recover rotation. The detailed derivations can

be found in [118].

The continuous 6D rotation representation avoids issues of pose ambiguity and dis-

continuity, which is beneficial in training CNNs for regression of the 6-DoF pose. For

example, PoseCNN [5] uses a unit quaternion representation but receives a certain

number of errors at 180◦ when using the rotational error (RE) metric. Although

the authors explain that these errors are attributed mainly to pose ambiguity in

symmetric objects, the authors in [118] suggest that the discontinuity issue in unit

quaternion might also contribute to such errors. They report similar errors of rota-

tion when using unit quaternion (up to 179.93◦ when using the RE metric), whereas

the continuous 6D rotation representation does not produce errors greater than 2◦.

In summary, continuous rotation representations provide an unambiguous and com-

pact way to represent the rotational component in 6-DoF pose estimation. Since

they have been already adopted in multiple state-of-the-art approaches and produce

promising results, including CosyPose [75] (winner of the BOP20) and GDR-Net [71]
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(winner of the BOP Challenge 2022 [26]), it can be concluded as a preferred choice

for pose regression tasks.

3.4 Autoencoders and Latent Space Representa-

tion

Autoencoders are a type of unsupervised deep neural network that learn to copy

input data to output data, facilitated through a low-dimensional latent space rep-

resentation. Typically, an autoencoder (depicted in Figure 3.14) consists of three

main components: the encoder, the decoder, and the latent space. The encoder

learns to encode the input data and maps it to a latent space representation, while

the decoder maps the representation back to the original input data.

Figure 3.14: Architecture of an autoencoder model. An autoencoder model
is trained to output x′

θ(z) that resembles the training data x from the latent code
zϕ(x).

There exist various autoencoder models, including undercomplete autoencoder [181,

182, 183], sparse autoencoder [184, 185], contractive autoencoder [186], denoising

autoencoder [62], variational autoencoder [63, 187], etc. Specifically, an undercom-

plete autoencoder, the most basic of these models, is trained to transform high-

dimensional input data into low-dimensional latent space representation, and then

to reconstruct the output data from this representation. Similar to other dimension-

ality reduction methods such as Principal Component Analysis (PCA) [188], it learns

a compressed representation of the input that captures the most important features
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while discarding redundant information. The training process involves minimising

a reconstruction loss function, such as mean squared error or binary cross-entropy,

between the input and the reconstructed output. However, in this case, the most

salient features of the training data are less important than the reconstruction qual-

ity. The undercomplete autoencoder can be prone to overfitting, particularly when

the network is allowed with too much capacity, as they learn an identity mapping

function [79, 189].

To avoid the overfitting problem, more advanced models like contractive autoen-

coder, sparse autoencoder, and denoising autoencoder have been developed to learn

more robust representations. The following sections delve into these variants. Sec-

tion 3.4.1 introduces the denoising autoencoder, which is utilised in 6-DoF pose

estimation methods using latent representation [65, 66], and is adopted in the pro-

posed DALSR-Pose method (see Section 4.2). The variational autoencoder is the

main focus, which is explained afterwards in Section 3.4.2. Although it is less sim-

ilar to other autoencoder models mentioned above, it is the baseline model that

is modified and used in the proposed CVML-Pose method (see Section 4.3). Fur-

thermore, a variant of this, the conditional variational autoencoder, is covered in

Section 3.4.3, which is the baseline model of the proposed CVAM-Pose method for

multi-object pose estimation (see Section 4.4). Moreover, the concept of latent space

representation is explored in Section 3.4.4.

3.4.1 Denoising Autoencoder

Inspired by the fact that humans can recognise partially occluded or corrupted im-

ages, Vincent et al. [62] propose the denoising autoencoder (DAE), an unsupervised

autoencoder model capable of extracting robust latent space representations from

partially corrupted inputs. Different from an undercomplete autoencoder that can

learn an identity mapping between original input data and reconstructed output

data, a DAE first alters the input data by adding noise as illustrated in Figure 3.15.

The network is then trained to reconstruct the clean data from these corrupted in-
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puts. By minimising the loss function between the reconstructed output and the

original data (uncorrupted), the network learns to identify underlying patterns and

features in the input data, as well as enabling effective noise removal.

Figure 3.15: Architecture of a denoising autoencoder model. A denoising
autoencoder model is trained to output x,

θ(z) that resembles the original data x
from the latent code zϕ(x̂), where zϕ(x̂) comes from the corrupted input data x̂
instead of x.

In the original DAE paper [62], noise is added by setting a fixed proportion of

input values to 0, which shares a similar idea to the dropout technique proposed

by Srivastava et al. [190]. By incorporating more complex salt-and-pepper noise,

the DAE can be trained to successfully remove noise and reconstruct clean digits,

subsequently learning a robust representation of the data in its latent space. This is

demonstrated with a DAE model trained on the MNIST digits [163, 164], as shown

in Figure 3.16.

Figure 3.16: Reconstruction on corrupted data using a denoising autoen-
coder. The test digits from the MNIST dataset [163, 164] are corrupted with the
salt-and-pepper noise, and the trained model can learn robust features and restore
them to the original image.

In the context of object 6-DoF pose estimation, Sundermeyer et al. [65] train a

DAE to encode the target object and reconstruct it with a clean background, using
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strong data augmentation techniques on images of objects. This training approach

forces the network to focus on the object’s 3D rotation in the latent space, rather

than other redundant information like background and illumination. The proposed

DALSR-Pose method (Section 4.2) also trains a DAE model to implicitly learn an

object’s pose in the latent space. Although employing the same type of autoencoder

network, the DALSR-Pose method demonstrates improved pose accuracy compared

to existing latent representation methods, with the help of a more effective pose

regression approach.

3.4.2 Variational Autoencoder

The variational autoencoder (VAE) is proposed in the context of generative models,

which is different from other autoencoder models. The primary objective is to

generate a new, typically highly dimensional, data point x (not available in the

training data) with the generation process controlled by a low dimensional latent

code z, which is randomly drawn from a distribution p(z). This distribution is

preferably selected in such a way that the corresponding sampling process is simple

to implement.

Figure 3.17: Architecture of a variational autoencoder model. A variational
autoencoder model is trained to approximate the posterior qϕ(z|x) from the unknown
distribution p(x), and generate new data x′

θ(z) from pθ(x|z) with a prior Gaussian
distribution.

VAE approximates the unknown distribution p(x) by pθ(x) =
∫
pθ(x|z)p(z)dz, where

parameters θ are selected so xi from the available training set D (xi ∈ D = {xi}mi=1)

are likely to be drawn from pθ(x), i.e. following a maximum likelihood principle.

However, computing pθ(x) =
∫
pθ(x, z)dz is typically intractable. As detailed in [63,
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187], a computationally viable approach replaces the highest likelihood optimisation

objective with the evidence lower bound (ELBO), and substitutes the intractable

posterior inference model pθ(z|x) with a tractable variational approximation qϕ(z|x),

where parameters ϕ control the approximation process.

The architecture of a typical VAE, as shown in Figure 3.17, starts with an encoder

network Eϕ(x) that estimates the optimal parameters µϕ(x) and log(σ2
ϕ(x)) of the

assumed posterior model qϕ(z|x) = N (z;µϕ(x), σ
2
ϕ(x)) ≃ pθ(z|x) with the prior

p(z) = N (z; 0, I). Since sampling from N (z;µϕ(x), σ
2
ϕ(x)) is not differentiable, a

reparameterization trick z = µϕ(x) + diag(σϕ(x)) · ϵ, where ϵ ∼ N (0, I) ensures the

sampling stage is differentiable. The decoder network Dθ(z) estimates the parame-

ters θ of the observation model, assumed to be Gaussian with a diagonal covariance

matrix α · I, pθ(x|z) = N (x;x′
θ(z), α · I).

Assuming data points in D are independent and identically distributed, the ELBO

is given as:

ELBO(ϕ, θ,D) =
∑
xi∈D

(
Eqϕ(z|xi) log pθ(xi|z)−

DKL(qϕ(z|xi)||pθ(z))

)
≤ log pθ(D) (3.11)

and the parameters of the encoder and decoder in the VAE network in Figure 3.17

are computed using:

θ̂, ϕ̂ = argmax
θ,ϕ

ELBO(ϕ, θ,D) (3.12)

With the assumed distribution pθ(x|z), qϕ(z|x), and pθ(z), the Kullback–Leibler

(KL) divergence DKL(qϕ(z|xi)||pθ(z)) has a close form and the ELBO in Eq. 3.12

can be estimated using:

ELBO ≃ −c ·
m∑
i=1

(
||xi − x′

i||2 − α ·
n∑

j=1

(
1 + log (σ2

ij)− µ2
ij − σ2

ij

))
(3.13)

where c is a positive constant, xi is the input data, x′
i is the output reconstruction,
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x′
i = x′

θ(z(xi)), µij refers to the j element of the vector µi, σ2
ij refers to the j

element of the vector σ2
i , µi = µϕ(xi), σ

2
i = σ2

ϕ(xi), m represents the number of data

points in the training set, and n refers to the dimensionality of the latent space.

Note that the scalar α weighs the KL divergence, which controls the regularisation

(smoothness) of the latent space input data representation. The term ||xi − x′
i||2

reflects the reconstruction fidelity between the input training image (data point)

xi and the corresponding output reconstructed image x′
i. A step-by-step derivation

of the ELBO loss is provided in Appendix C.1. For details of VAE, please refer

to [63, 187, 191, 192].

Figure 3.18: Generate new digits from the Gaussian prior using a vari-
ational autoencoder. During training, the model is trained to learn both the
features and distribution of the MNIST digits dataset [163, 164]. During inference,
the encoder network can be discarded and the decoder network can be treated as a
generator to create new data from the prior p(z) = N (z; 0, I).

Compared to typical deep learning-based direct methods for pose estimation [5, 113,

116], VAE offers several advantages. For example, the autoencoder architecture

can be trained to output a reconstruction image with a clean background, which

means the latent space will focus on representing the object itself instead of the

irrelevant features. Even with occluded objects, the decoder is trained to output

the complete objects, enabling the model to handle occlusion effectively. As will

be demonstrated in Section 5.3.2, the proposed CVML-Pose method using VAE,

achieves comparable results to the state-of-the-art on the benchmark datasets, even
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without using object 3D models. Furthermore, compared to AAE [65], a latent

representation method using a DAE, the KL divergence with the reparameterization

trick in VAE helps to regularise the latent space to combat overfitting. From the

visualisation results shown in Figure 3.18, the trained VAE can reconstruct new

digits from the probability distribution of its latent space. Therefore, it is postulated

that the representation learned by a VAE can be adopted for the estimation of object

attributes including pose, category, and topology.

3.4.3 Conditional Variational Autoencoder

A well-trained VAE is capable of generating new data from the prior distribution

p(z) = N (z; 0, I), but a key limitation is its inability to control the specifics of the

data generation process. As illustrated in Figure 3.18, a VAE trained on the MNIST

dataset can produce high-quality digit images, but it cannot be instructed to gen-

erate a specific one. To solve this problem, Sohn et al. [64] propose a conditional

variational autoencoder (CVAE), which extends the VAE framework to incorporate

conditional parameters, thus enabling the generation of data with specific charac-

teristics.

Figure 3.19: Architecture of a conditional variational autoencoder model.
A conditional variational autoencoder model is trained to approximate the posterior
qϕ(z|x, y) from the conditional distribution p(x|y), and generate new data x′

θ(z) from
pθ(x|z, y) with a prior Gaussian distribution.

CVAE operates on a principle similar to VAE but employs an additional condition

y to approximate the conditional distribution p(x|y). This approximation is rep-

resented as pθ(x|y) =
∫
pθ(x|z, y)p(z|y)dz, with parameters θ aimed at maximising

the likelihood. Like VAE, directly computing pθ(x|y) =
∫
pθ(x, z|y)dz is often in-
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tractable. As a result, the optimisation objective of highest likelihood is replaced

by ELBO (see Eq. 3.12), and the complex posterior inference model p(z|x, y) is

approximated by a tractable variational approach qϕ(z|x, y), parameterised by ϕ.

In the standard CVAE architecture (see Figure 3.19), the encoder network Eϕ(x, y)

calculates the optimal parameters µϕ(x, y) and log(σ2
ϕ(x, y)) for the approximate

posterior model qϕ(z|x, y) = N (z;µϕ(x, y), σ
2
ϕ(x, y)) ≈ p(z|x, y), considering the

prior p(z) = N (z; 0, I). A reparameterization trick z = µϕ(x, y) + diag(σϕ(x, y)) ·

ϵ, where ϵ ∼ N (0, I), is used to ensure differentiability during sampling from

N (z;µϕ(x, y), σ
2
ϕ(x, y)). The decoder network Dθ(z, y) then predicts the parame-

ters θ for the observation model, which is assumed to be Gaussian with a diagonal

covariance matrix α · I, pθ(x|z, y) = N (x;x′
θ(z, y), α · I).

In the proposed CVAM-Pose method (Section 4.4), the CVAE model is trained

with the same ELBO loss as derived in Eq. 3.13. The network architecture is

slightly modified to capture more high-level features, i.e. the additional condition y

is embedded throughout the model. Compared to VAE, CVAE not only inherits the

benefits of the autoencoder architecture and the regularised latent space, but also

provides enhanced scalability and efficiency for the prediction of multi-object poses.

As will be demonstrated in Section 5.3.3, the CVAM-Pose method outperforms the

state-of-the-art latent representation methods of both multi-object version [66] and

single-object version [65] on the challenging BOP version of the Linemod-Occluded

benchmark dataset.

3.4.4 Latent Space Representation

The latent space of an autoencoder model is a lower-dimensional representation of

the input data that captures its essential features. The learnt representation can be

used for a variety of subtasks such as classification, regression, data visualisation,

and data generation.

For example, when training a DAE on MNIST digits, the input data x̂ are derived
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Figure 3.20: Visualisation of the latent space in variational autoencoder.
The variational autoencoder is trained with MNIST handwritten digits [163, 164]
and then applies a KNN classification on the latent space representation µ ∈ R20.
Upper left: feature weight based on NCA. Upper middle: 2D visualisation clusters
based on t-SNE. Upper right: confusion matrix on MNIST test data. Lower Middle:
3D visualisation clusters based on t-SNE.

from corrupting the original data x before being passed to the encoder Eϕ(x). This

process results in intermediate representations zϕ(x̂), which are used for the decoder

network Dθ(z) attempts to reconstruct x. Since the DAE can effectively remove

noise from the corrupted input, it facilitates the capture of robust intermediate rep-

resentations suitable for supervised classification [62]. During inference, the latent

representation of the test instances can be used in various classification algorithms

such as k-nearest neighbours (KNN) [59], support vector machine (SVM) [193], and

decision tree (DT) [194]. Similarly, the VAE is also capable of learning robust rep-

resentations from the input data. For instance, as shown in Figure 3.20, a VAE

trained on the MNIST dataset can have its trained latent space visualised using the

t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm [195]. The latent
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mean vector µ ∈ R20 can be further analysed with the Neighbourhood Component

Analysis (NCA) feature selection algorithm [196]. In image classification tasks, the

KNN algorithm can be used to find the closest data point and assign its label to the

test instance. For data generation, as shown in Figure 3.18, the trained decoder in

VAE can produce new data from the Gaussian distribution p(z) = N (z; 0, I). Re-

garding regression, a VAE can be trained to estimate the 2D rotation of digits, which

will be explored later in Section 4.3.1 as a toy problem for 6-DoF pose estimation.

3.5 Pose Evaluation Metrics

Different from other computer vision tasks such as classification, the evaluation of

object 6-DoF pose estimation presents unique challenges. The complexity of the pose

itself necessitates specifically designed metrics. In this thesis, the pose evaluation

metrics are categorised based on their dependency on the object’s 3D model.

Most pose evaluation metrics such as average distance of model points (ADD(I)) [1],

visible surface discrepancy (VSD) [7, 141, 197], maximum symmetry-aware distance

(MSSD and MSPD) [7] are model dependent. They use a subset of model points

from the original object’s 3D model. For example, the widely adopted ADD metric

measures the distance between sets of the 3D model points at the estimated pose

and gt pose. This metric has inspired many model point-based loss functions as

described in Section 2.3.1, and is employed for evaluation in many state-of-the-art

methods [5, 35, 65, 67, 68, 70, 116, 126, 128]. Another category comprises model-

independent metrics such as rotational error (RE) and translational error (TE),

which have been used in various works [50, 66, 96, 111, 126, 139, 71, 198, 199]. The

RE metric calculates the absolute error in the axis-angle rotation representation,

while the TE metric calculates the Euclidean distance between the 3D translation

vectors of objects.

The subsequent sections will revisit commonly used pose evaluation metrics. These

include rotational error and translational error (Section 3.5.1), average distance of
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model points (Section 3.5.2), visible surface discrepancy (Section 3.5.3), and maxi-

mum symmetry-aware distance (Section 3.5.4).

3.5.1 Rotational Error and Translational Error

The model-independent metrics, RE and TE, are often jointly used for evaluating

6-DoF pose estimation. The RE metric calculates the absolute error in the axis-

angle rotation representations, while the TE metric calculates the L2 norm between

translation vectors. Given an estimated pose P̂ = (R̂, T̂) and the gt pose P̄ =

(R̄, T̄), the pose error can be measured by:

RE = arccos

(
Tr(R̂R̄−1)− 1

2

)
TE = ∥T̂− T̄∥2

(3.14)

where arccos is the inverse of the cosine function, Tr is the matrix trace function.

The estimated pose is considered accurate if both the rotational and translational

errors fall below specified thresholds. In the work by Drost et al. [96], the thresholds

are set to 12◦ for RE and 10% of the 3D model diameter for translation. Choi and

Christensen [198] adopt stricter criteria of 10◦ and 1 cm, respectively. Many other

state of the art approaches [50, 66, 111, 126, 139] prefer more balanced criteria

proposed by Shotton et al. [200], often referred to as the 5◦ 5 cm metric.

However, as highlighted in [197], for specific applications such as robotic grasping,

the primary indicator of pose accuracy is the fitness of object surface alignment. In

these scenarios, model-independent pose evaluation metrics like RE and TE may

not be the preferred choice. Instead, model-dependent metrics that consider the

alignment of object surfaces are more relevant for accurately assessing performance

in tasks where precise pose estimation is crucial.
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3.5.2 Average Distance of Model Points

The average distance of model points (ADD(I)) metric, proposed by Hinterstoisser

et al. [1], is a widely used pose evaluation metric with two variants: ADD and

ADI. The choice between these variants depends on whether the views of objects

are distinguishable. The ADD metric calculates the mean of the point pair dis-

tances between the transformed 3D model points at the gt pose and those at the

estimated pose, if all views are distinguishable (asymmetric objects). On the other

hand, the ADI metric calculates the distances to the closest point when the object

has indistinguishable views (symmetric objects). The estimated pose is considered

correct when the average distance is less than a specific criterion of the 3D model’s

diameter (usually 10%). Given the estimated pose P̂ and the gt pose P̄, the point

pair distance can be measured by:

ADD =
1

m

∑
x∈M

||P̂x− P̄x||2

ADI =
1

m

∑
x1∈M

min
x2∈M

||P̂x1 − P̄x2||2
(3.15)

where m is the number of model points and M depicts the 3D model vertices.

The ADD(I) metric has significantly influenced many state-of-the-art 6-DoF pose

estimation approaches, particularly in the development of model point-based loss

functions. As noted in Section 2.3.1, Xiang et al. [5] imitate the ADD and ADI met-

rics and propose the two corresponding loss functions, PoseLoss and ShapeMatch-

Loss, respectively, to deal with both asymmetric and symmetric objects. The pose

estimation network is trained to iteratively reduce the distance between 3D model

points at the gt pose and the corresponding points at the estimated pose, which is

identical to the ADD(I) metric.

For the evaluation of Linemod test data (see Table 5.2), following the state-of-the-art

approaches [35, 65, 116, 126, 128], the criterion of the ADD(I) metric is established

as 10% of the model diameter. The average recall ARADD(I) given in percentage
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points is calculated and reported based on the mean precision of the metric for all

Linemod objects. This metric is also used to compare the pose estimation results

based on the detection bounding box and the gt bounding box (see Table 5.7).

3.5.3 Visible Surface Discrepancy

The ADD(I), RE, and TE metrics are commonly used in many state-of-the-art

methods for evaluation. However, these metrics can suffer from the pose ambiguity

problem [174, 197, 201]. To address this, Hodan et al. [7] develop three ambiguity-

invariant pose evaluation metrics: VSD, MSSD, and MSPD (MSSD and MSPD will

be explained in the subsequent section). They are employed to calculate the final

performance score ARscore for the methods that participated in the BOP Challenge,

defined as ARscore = (ARVSD +ARMSSD +ARMSPD)/3. One of the main metrics is

the VSD, and its error function is shown in Eq. 3.16, given an estimated pose P̂ and

the gt pose P̄.

eVSD = avgp∈V̂ ∪V̄


0 if p ∈ V̂ ∪ V̄ ∧ |D̂(p)− D̄(p)| < τ

1 otherwise

(3.16)

where D̂ and D̄ are the corresponding distance maps for the object 3D model M

rendered in the estimated pose P̂ and the gt pose P̄. V̂ and V̄ are the corresponding

visibility masks that can be obtained by comparing the distance maps to the distance

map DI of the test image I, i.e. a set of pixels p where the model M is visible in

the image I. τ refers to tolerance to misalignment. The estimated 6-DoF pose is

considered correct when the error is less than a specific criterion θ.

In the BOP Challenge 2018 [141] (also known as the SIXD Challenge), a fixed cri-

terion of pose correctness was established, with the correctness threshold θ = 0.3

and the misalignment tolerance τ = 20mm. This criterion has been adopted by

several state-of-the-art methods [65, 66, 68, 75, 158]. To fully evaluate the perfor-

mance of the methods that participated in the BOP20, Hodan et al. [7] employed
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multiple combinations of different values for θ and τ . Specifically, the tolerance for

misalignment τ ranges from 5% to 50% of the 3D model’s diameter with a step of

5%, and the correctness threshold θ ranges from 0.05 to 0.5 with a step of 0.05. The

pose accuracy score ARVSD is calculated from the average recall rate based on these

combinations.

For evaluation of the BOP version of the Linemod-Occluded and YCB-Video datasets

(see Table 5.3 and 5.4), the same evaluation criterion proposed in the BOP20 is ap-

plied, calculating ARVSD based on the average recall of the VSD metric.

3.5.4 Maximum Symmetry-Aware Distance

In addition to VSD, the maximum symmetry-aware distance, including the maxi-

mum symmetry-aware surface distance (MSSD) and the maximum symmetry-aware

projection distance (MSPD) are also proposed in the BOP20. MSSD is related to

robot manipulation as robotic grasping is highly dependent on the maximum sur-

face deviation in 3D. MSPD is suitable for augmented reality applications because it

only evaluates the perceivable discrepancy in the projective space. To compare with

the state-of-the-art methods, the same BOP20 evaluation criteria are applied, and

the results based on the error functions, eMSSD and eMSPD, are reported on the BOP

version of the Linemod-Occluded and YCB-Video datasets (see Table 5.3 and 5.4),

using the average recall rates ARMSSD and ARMSPD with different error thresholds θ,

i.e. the pose is considered correct if the error function is smaller than the threshold,

where θMSSD ranges from 5% to 50% of the 3D model diameter with a step of 5%,

and θMSPD ranges from 5r to 50r with a step of 5r, r = w/640, w is the width of

image pixels.

Given the estimated pose P̂ and the gt pose P̄, the error functions eMSSD and eMSPD

can be calculated by:

eMSSD = minS∈SM
maxx∈M ||P̂x− P̄Sx||2

eMSPD = minS∈SM
maxx∈M ||proj(P̂x)− proj(P̄Sx)||2

(3.17)
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where SM is a set of global symmetry transformations of the target object, M

denotes a set of model vertices, and the function proj() results in 2D projection in

pixels. The global object symmetries can be obtained from the Hausdorff distance,

the detailed derivations for which can be found in [7].

3.6 Summary

The tools and techniques outlined in this chapter, including datasets, pose repre-

sentations, autoencoder models, and evaluation metrics, are closely connected to

those discussed in the subsequent chapters. In Chapter 4, which focuses on the

methodology, three proposed pose estimation methods, DALSR-Pose, CVML-Pose,

and CVAM-Pose, are developed using the three autoencoder models, DAE, VAE,

and CVAE, respectively.

Subsequent to the methodology description, in Chapter 5, these methods are eval-

uated across three benchmark pose datasets: Linemod, Linemod-Occluded, and

YCB-Video. These three datasets are selected as the most representative for their

comprehensive coverage of challenging scenarios in pose estimation tasks. They are

also frequently used for evaluation of pose estimation algorithms. Other datasets,

such as the remaining nine datasets from the BOP challenge, are not used mainly

due to the prohibitive computational cost of running all simulations on additional

datasets. This evaluation features a comprehensive comparison with the state-of-the-

art methods, employing various evaluation metrics such as ADD(I), VSD, MSSD,

and MSPD, to calculate the final performance scores on each dataset.

Additionally, different pose representations, including axis-angle, unit quaternion,

and the continuous 6D representation, are employed in both the ablation exper-

iments within the methodology chapter and the comparative experiments in the

refinement chapter (Chapter 6). These pose representations play a crucial role in

understanding and improving the proposed methods.

For detailed information about the methodology and the novelties of the proposed
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methods, please refer to the subsequent chapter.
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Chapter 4

Methodology

4.1 Introduction

Most vision-based 6-DoF pose estimation approaches typically rely on knowledge

of object’s 3D model, depth measurements, and often require time-consuming it-

erative refinement to improve accuracy. However, these can be seen as limiting

factors for broader real-life applications. In this chapter, a unified autoencoder

framework called Auto-Pose is proposed, which consists of three novel convolutional

autoencoder-based methods for object 6-DoF pose estimation:

■ DenoisingAutoencoder Using Latent SpaceRegression for Object 6-DoF Pose

Estimation (DALSR-Pose)

■ Convolutional Variational Autoencoder-Based Multi-Level Network for Ob-

ject 6-DoF Pose Estimation (CVML-Pose)

■ Conditional Variational Autoencoder for Multi-Object 6-DoF Pose Estima-

tion (CVAM-Pose)

The key contribution of the proposed Auto-Pose framework is to implicitly learn

object’s 6-DoF pose from only colour images encoded in the latent space of the au-

toencoder without knowing the object’s 3D model, depth information, or performing
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Figure 4.1: Auto-Pose framework. The Auto-Pose framework trains autoencoder
networks to implicitly learn different styles of latent space representation from only
colour images, and subsequently interpolates the learnt representation to object’s
6-DoF pose using regression-based algorithms.

a post-refinement. The first DALSR-Pose method (Section 4.2), trains a denois-

ing autoencoder (DAE) to encode the intermediate representations of an object in

its latent space, and subsequently, the learnt representations are used to calculate

6-DoF pose through regression-based algorithms. The second CVML-Pose method

(Section 4.3) published in [202], is developed based on DALSR-Pose, which utilises a

completely different autoencoder architecture called variational autoencoder (VAE),

to implicitly learn not only object’s 6-DoF pose but also other attributes including,

e.g. object category and shape topology, from the regularised latent space rep-

resentation. The third CVAM-Pose method (Section 4.4), is an extension of the

CVML-Pose method for multi-object pose estimation. This method combines the

one-hot encoding technique with a conditional variational autoencoder (CVAE), en-

abling shared latent space across different objects, which demonstrates promising

efficiency and scalability compared to competing approaches. To summarise, the

novelties of the Auto-Pose framework are listed as follows:

• The framework does not require 3D models during inference, especially the

CVML-Pose method, which significantly outperforms existing latent represen-

tation methods, and achieves comparable results with other state-of-the-art

methods on the widely used Linemod [1, 2], Linemod-Occluded [3, 4], and

YCB-Video [5, 6] benchmark datasets, without the use of depth measurement

or post-refinement.

• The framework employs different autoencoder architectures, including a deter-

ministic model (DAE), a generative model (VAE), and a conditional generative
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model (CVAE), to efficiently characterise the 3D rotation and translation in

the latent space. To the best of my knowledge, the Auto-Pose framework

is the first to unify the latent space representation and the regression-based

algorithms together to estimate the object’s 6-DoF pose, as well as the first

to use the regularised generative models’ latent space, which outperforms the

traditional latent representation methods across multiple datasets.

• The framework can cope with low-resolution images (typically 320-by-240 pix-

els, as used in the video demonstration) captured with inexpensive webcams,

and can be operated fast enough1 for real-time applications, due to not using

iterative processing.

• The framework is also scalable to work well with both texture and texture-less

objects, under challenging scenarios (detailed in Section 1.1), e.g. occlusion,

truncation, and clutter.

The remainder of this chapter describes the details of the three proposed methods,

DALSR-Pose, CVML-Pose, and CVAM-Pose, including their corresponding abla-

tion experiments for parameter selection. An ablation test examines the system’s

performance by removing/fixing specific components to understand their contribu-

tion to the overall operation of the system. The reason for implementing ablation

tests in the thesis is to select favourable design parameters for the proposed meth-

ods. The general procedure of our ablation tests begins by freezing some design

parameters, then testing the effects of remaining parameters by selecting a range of

values, sampling from that range, running simulations for different values within the

selected range, and reporting the results. An example of such tests can be found in

Section 4.3.4. The evaluation procedure, final results, and comparative analysis of

these methods will be presented in Chapter 5.

1video available: https://ieeexplore.ieee.org/document/10040668.
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4.2 DALSR-Pose: Denoising Autoencoder Using

Latent Space Regression for Object 6-DoF Pose

Estimation

Figure 4.2: DALSR-Pose pipeline. The DALSR-Pose pipeline consists of two
stages, the first stage is to use a DAE to capture an object’s robust representation
in the latent space. The second stage uses multiple regression-based algorithms to
separately interpret the learnt representation to 3D rotation, 2D projective centre,
and 2D projective distance, which forms the complete object 6-DoF pose.

Inspired by the Augmented Autoencoder (AAE) method [65], which learns implicit

representations from rendered 3D model views using a denoising autoencoder (DAE),

a novel DALSR-Pose method (Figure 4.2) is proposed. This method combines the

DAE’s latent space representation with a continuous regression strategy for esti-

mating an object’s 6-DoF pose. Differently from AAE, which discretises the 3D

rotation into a finite number of instances using a lookup table (LUT), DALSR-Pose

introduces a key novelty: performing regression directly on the latent space rep-

resentation to compute a continuous object 6-DoF pose. To smoothly regress 3D

rotation, a multilayer perception (MLP) is trained to estimate a continuous rotation

representation that avoids discretisation of SO(3). For more accurate 3D transla-

tion estimation, another MLP is trained to regress the 2D projection of the object’s

centre. This approach differs from AAE, which simply uses the detection bounding

box’s centre as the 2D projection centre, and can be affected by heavy occlusion.
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The DALSR-Pose method has been evaluated on the Linemod and the BOP ver-

sion [7] of the Linemod-Occluded benchmark datasets. The method outperforms

methods based on latent representation representation [65, 66] by enabling contin-

uous latent space regression, and achieves results comparable to methods that use

object’s 3D model [67, 68]. Although DALSR-Pose still lacks accuracy compared to

the leading state-of-the-art methods [35, 69, 70, 71, 72, 73, 74, 75], it facilitates the

development of the later proposed CVML-Pose method.

The remainder of this section delves into the following details of DALSR-Pose, cov-

ering learning robust representation using denoising autoencoder (Section 4.2.1),

pose regression in the latent space (Section 4.2.2), ablation tests of the method

(Section 4.2.3), and initial findings (Section 4.2.4). Comprehensive evaluation pro-

cedure and results are presented in Chapter 5.

4.2.1 Learning Robust Representation using Denoising Au-

toencoder

To learn robust representation, a DAE network (see Section 3.4.1) is trained to

encode images of the target object in its latent space and output the clean recon-

struction. Different from the traditional process of adding noise, the input data

xi are assumed to inherently contain irrelevant information with respect to object

6-DoF pose, such as occlusion, truncation, and clutter. Consequently, the output

data x′
i should present a complete and clean view of the object in the same pose.

Algorithm 1 presents the pseudo code for training the DAE network.

As depicted in Figure 4.3, a symmetrical autoencoder network is constructed to learn

an intermediate representation of the object. This is similar to the one proposed in

AAE (see Section 2.3.3 for details of the AAE method). The encoder network Eϕ(xi)

takes the input data and generates a vector representation zi ∈ R128 in the latent

space, where the size of the latent space is the same as implemented in the AAE

method, at 128. Subsequently, the decoder networkDθ(zi) processes the latent space
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Algorithm 1 Training the DAE Network

Require: Input data x, gt reconstruction data x̂
Require: Encoder network Eϕ

Require: Decoder network Dθ

Require: Mini-batch size m
Require: AdamW optimiser parameters
1: while not converged do
2: Sample a mini-batch {xi, x̂i}mi=1

3: for each xi in the mini-batch do
4: zi ← Eϕ(xi)
5: x′

i ← Dθ(zi)
6: end for
7: Compute the pixel-wise L2 loss:
8:

L2 =
m∑
i=1

||x′
i − x̂i||2

9: Backpropagate the loss
10: Update the encoder and decoder parameters ϕ, θ using AdamW optimiser
11: Evaluate the loss on the validation set
12: if validation loss does not improve for 50 epochs then
13: Stop training to prevent overfitting
14: end if
15: end while

representation zi and outputs the reconstructed image x′
i. The training loss for the

DAE network is a pixel-wise L2 loss (same to Eq. 2.3), which is measured between

the output image x′ and the ground truth (gt) reconstruction image x̂. The loss

function is iteratively minimised using the AdamW optimiser [203] with randomly

selected mini-batches of 128 images. Additionally, as explained in Section 3.2.6, a set

of validation data is used to prevent overfitting in training. The same loss function

is applied to validation, indicating when the training should be terminated.

After training the denoising autoencoder, the learnt representation of the object

can then be used for the estimation of the 6-DoF pose. In AAE, a method similarly

using latent space representation, the authors employ an LUT to estimate the pose.

However, the way they discretise the pose into a finite number of instances presents

challenges, particularly when the training data cannot cover the entire 3D rotation

group (denoted as SO(3)). On the contrary, the proposed pose regression strategy

(detailed later in Section 4.2.2) enables smooth interpolation of the 3D rotation R.
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Figure 4.3: The autoencoder architecture of DALSR-Pose. ϕ represents all
the parameters of the encoder network (the blue part) and θ represents all the pa-
rameters of the decoder network (the green part). The input image is first forwarded
to the encoder which produces the latent variables. The decoder then outputs the
reconstruction image from the variables. Both training and validation loss are the
pixel-wise L2 loss.

For the estimation of 3D translation T =

(
Tx Ty Tz

)T

∈ R3, authors in the AAE

method use the detection bounding box centre as the 2D projective centre, which

can be heavily affected by occlusion. Instead, the proposed DALSR-Pose method

combines the latent space representation with the information from the detection

bounding box, to accurately regress the real projective centre. The details of the

pose regression procedure are described in Section 4.2.2.

4.2.2 Continuous Pose Regression in the Latent Space

Since the training data may not comprehensively cover the entire SO(3), a latent

space regression approach is proposed instead of finding the most similar instance.

This approach disentangles the estimation of 3D rotation R and 3D translation T,

employing supervised and unsupervised models. These models are used to approxi-

mate the mappings between pose representations (see Section 3.3 for details of the

representations) and the latent space representation, ensuring favourable configura-

tions of the method, which will be detailed later in the ablation tests.
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For estimating 3D rotation R ∈ SO(3), commonly used rotation representations

such as unit quaternion, axis-angle, and the continuous 6D representation [118] are

explored. Also, to see which interpolation method is effective, several regression

models are compared including multilayer perception (MLP) [58], random forests

(RF) [60, 61], and nearest neighbour search (NNS) [99]. To estimate 3D translation

T =

(
Tx Ty Tz

)T

∈ R3, the 2D projection of object centre Pc = (xc, yc)
T ∈ R2

and the projective distance Tz ∈ R are predicted separately. This allows for the

recovery of the first two elements of the 3D translation T, i.e. Tx and Ty, using the

pinhole camera equation (Eq. 4.2). The complete pose regression procedure is shown

in Figure 4.4, for example, the continuous 6D rotation representation R6D ∈ R6 is

used as an intermediate representation for R, and the regression models are trained

to predict R6D ∈ R6 from the learnt latent representation zi ∈ R128. For estimating

2D projective distance T xi
z of an object xi, the learnt representation zi ∈ R128 is

concatenated with the bounding box’s width wi and height hi, whereas the regression

of 2D projective centre P xi
c requires not only the bounding box dimensions, but also

the top-left point Pbbox of the bounding box.

Figure 4.4: Regress object’s 6-DoF pose from the learnt latent space rep-
resentation. The pose estimation procedure is disentangled into rotation, depth,
and centre regression. The rotation regression uses the learnt representations only,
while the depth and centre regression both require additional information from the
object bounding box, and the final translation is calculated based on the pinhole
camera model (Eq. 4.2).
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4.2.3 Ablation Tests

The design of the proposed DALSR-Pose method involves a number of ablation tests,

including rotation regression and translation regression on the Linemod dataset,

to obtain favourable configurations for pose regression, which is the main focus

of this section. Based on the selected design parameters, the proposed DALSR-

Pose method is then evaluated on both the Linemod and the BOP version of the

Linemod-Occluded datasets, with its performance compared against current state-

of-the-art methods. The detailed results of these evaluations, including comparisons

and discussions, will be presented in Chapter 5.

In the ablation tests, all objects from the Linemod dataset are used. The perfor-

mance of the ablation tests on rotation is measured using the average recall of the

ADD(I) metric (see Section 3.5.2 for details of the metric). However, for ablation

tests on translation estimation, the performance is assessed using the mean absolute

error (MAE) metric [204] instead of the ADD(I) metric. This is because the ADD(I)

metric depends on the designed threshold as explained in the previous section, while

the MAE is a parameter-free metric, which makes it easier to interpret the transla-

tional error. All the results in these ablation tests are based on the gt bounding box

of the Linemod test data to reduce the dependence of the results on the bounding

box.

Rotation Regression

In the ablation tests for rotation estimation of the DALSR-Pose method, compre-

hensive experiments are conducted to determine the most effective combination of

regression models and rotation representations. The experiments involve evaluating

MLP, RF, and NNS, each regressing three different rotation representations: axis-

angle, unit quaternion, and the continuous 6D representation. The performance of

the corresponding experiments is reported in Table 4.1. To acquire an appropri-

ate configuration for rotation, the performance score ARADD(I) is calculated based
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on the estimated rotation but the gt translation, to reduce the effects of incorrect

translation estimation. This can help avoid a situation where the translation vec-

tor is wrongly predicted with a large error, no matter how accurate the rotation

estimation is, the ARADD(I) would still be low.

Model Rotation representation ARADD(I)

MLP
continuous representation 91.32

unit quaternion representation 90.11
axis-angle representation 85.82

RF
continuous representation 86.73

unit quaternion representation 80.49
axis-angle representation 57.69

NNS any rotation representations 87.61

Table 4.1: Ablation test on 3D rotation estimation. The NNS algorithm does
not require any rotation representations as the label because of the property of
unsupervised learning.

The results of both regression models and rotation representations, as shown in Ta-

ble 4.1, indicate that MLP consistently outperformed RF across all rotation repre-

sentations, and the continuous 6D representation demonstrates superior performance

compared to the axis-angle and unit quaternion representations in both MLP and

RF models. Despite the NNS algorithm achieving a moderate performance, the

discretisation of rotation lacks accuracy especially when the training data cannot

cover the entire SO(3). Consequently, the NNS algorithm is not preferred for the

estimation of 3D rotation in the final implementation of the method.

Translation Regression

In the process of estimating the translation vector T for the DALSR-Pose method,

a comprehensive approach is adopted, similar to the one described in the PoseCNN

method (detailed in Section 2.3.1). This involves separately estimating the 2D pro-

jection of the object centre Pc = (xc, yc)
T ∈ R2 and the projective distance Tz ∈ R.

In both cases, the latent space representation zi ∈ R128 is concatenated with the

spatial information of the bounding box, including its width w, height h, and/or

top-left corner Pbbox = (xb, yb)
T .
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Three regression-based models, including MLP, RF and KNN regressor, are trained

to regress the concatenated representations to the target Pc and Tz. The strategy

proposed in the AAE method is also compared, which directly uses the centre of

the bounding box as the 2D projective centre. The performance of each model is

calculated using the MAE metric (Eq. 4.1) across all objects in the Linemod dataset.

For the 2D projective centre Pc, the error is measured in pixel differences (MAEpixel),

and for the projective distance Tz, the error is calculated in millimetres (MAEmm).

MAE =
1

m

m∑
i=1

|yi − y′i| (4.1)

where m is the number of data points, yi and y′i refer to the gt value and the

prediction.

Regression model MAEpixel

MLP 1.61
RF 6.81
KNN 6.11

AAE [65] 4.03

(a) Projective centre

Regression model MAEmm

MLP 36.23
RF 31.56
KNN 25.91

(b) Projective distance

Table 4.2: Ablation tests on different regression models for the estimation
of projective centre and projective distance. The AAE method does not use
any regression models, the method calculates the centre of the bounding box as the
projective centre.

The results, as shown in Table 4.2 and visualised in Figure 4.5, indicate that MLP

is particularly effective in precisely localising the 2D projective centre Pc, with rel-

atively small errors (≈ 2 pixel), while the other models like KNN and RF can only

achieve moderately accurate results. It is also noted that the AAE method performs

better than KNN and RF, but still lacks accuracy compared to MLP. This suggests

that the AAE’s approach is acceptable under conditions of minimal occlusion. It

would also be interesting to see whether the AAE’s performance will significantly

degrade when dealing with heavily occluded objects or inaccurate bounding boxes.

In terms of the results on 2D projective distance Tz, the KNN regressor achieves

more accurate results than the two other regressors, this could be attributed to its
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Figure 4.5: Distribution of error in the estimation of projective centre and
projective distance. The left boxplot visualises the results presented in Table 4.2a,
and the right one visualises the results presented in Table 4.2b.

inherent simplicity, which is less prone to overfitting, particularly with a well-chosen

number of neighbours (k). In contrast, MLP and RF require fine-tuning of several

parameters to avoid overfitting, such as the number of trees, maximum depth of the

tree, and minimum number of samples at a leaf node. Notably, all these regression

models have a certain margin of error in interpolating Tz. This might be linked

to the nature of the training data, which comprise images of objects cropped from

scenes, potentially leading to a loss of certain spatial information about the scene.

Consequently, it would be difficult for the latent space to accurately perceive such

information, like the projective distance Tz from the camera to the object.

4.2.4 Remarks

The ablation tests conducted for the DALSR-Pose method suggest that continuous

regression of the latent space can achieve a better estimation of object’s 6-DoF pose

than the discretisation approach of SO(3). Therefore, the selected configuration

of DALSR-Pose is to implicitly learn robust representations from colour images

using a denoising autoencoder, and then combine the latent space representation

and regression-based algorithms for the estimation of 3D rotation and translation.

To estimate 3D rotation, an MLP regressor is trained to regress the continuous

6D representation. The 3D translation involves localising the projective centre and
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predicting 2D object projective distance, using another MLP regressor and a KNN

regressor, respectively. The final DALSR-Pose method is trained on 13 Linemod

objects using the physically based rendering (PBR) images [7, 142], and evaluated

on both the Linemod (see Table 5.2) and the BOP version of the Linemod-Occluded

(see Table 5.3) datasets. The evaluation setup and the results can be found in

Chapter 5.

To the best of my knowledge, the proposed DALSR-Pose method is the first to

unify the latent space representation with continuous regression-based algorithms

for 6-DoF pose estimation. As it will be demonstrated in the subsequent chap-

ter, the DALSR-Pose method outperforms existing methods based on latent space

representation [65, 66], and achieves comparable pose accuracy results to the state-

of-the-art on the more challenging occlusion dataset. The method also opens the

prospect for exploration of various autoencoder models which may learn different

representations in the latent space, such as the variational autoencoder used in the

CVML-Pose approach (Section 4.3), and conditional variational autoencoder used

in the CVAM-Pose approach (Section 4.4).

4.3 CVML-Pose: Convolutional Variational Au-

toencoder Based Multi-Level Network for Ob-

ject 6-DoF Pose Estimation

The CVML-Pose pipeline, as depicted in Figure 4.6, consists of two main modules:

(i) CVML-AE, denoting the convolutional variational autoencoder (VAE) network

tasked with abstracting regularised latent space representations from colour im-

ages, and (ii) MLP and KNN, used to interpolate the latent variables into object

6-DoF pose including, respectively, 3D rotation R ∈ SO(3) and 3D translation

T = (Tx, Ty, Tz)
T ∈ R3. The first stage of the CVML-Pose method involves train-

ing the CVML-AE module to reconstruct images through a low-dimensional latent
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representation. This requires the module to implicitly learn to represent images

with a relatively small number of high-level features, which can then be used for

downstream tasks. In the second step, the estimations of R and T are disentan-

gled using MLP and KNN. For the estimation of R, a standard MLP is used to

regress the latent variables to the continuous rotation representation [118]. To esti-

mate T, the latent variables are regressed to the 2D projection of the object centre

and the projective distance, using another MLP and a KNN regressor, respectively.

To investigate whether the latent space represents other characteristics of objects,

the method is trained on multiple objects simultaneously, with their respective test

images processed through the trained network to generate corresponding latent vari-

ables. Analysis of these variables via clustering algorithms like t-SNE [195], indicates

that it is possible to use the proposed architecture to infer other characteristics, such

as object class and shape topology.

Figure 4.6: CVML-Pose pipeline. During training, the convolutional variational
autoencoder captures object’s latent representation in its latent space that is further
interpreted to object 6-DoF pose, category, and topology using MLPs, KNN, and
t-SNE.

The CVML-Pose method, published in [202], has been comprehensively evaluated

on the Linemod, Linemod-Occluded (BOP version), and YCB-Video (BOP version)

benchmark datasets. It is shown to significantly outperform methods based on the

latent representation [65, 66] and those using 2D-3D model correspondence [67, 68].

The method also achieves comparable results to the leading methods [69, 70], but

without the use of a 3D model or depth measurements. The latent space of CVML-
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Pose, as demonstrated through clustering algorithms, effectively represents object

category and topology. This opens up a prospect of integrated estimation of pose and

other attributes (possibly also including surface finish or shape variations), which,

with real-time processing due to the absence of iterative refinement, can facilitate

real-world applications.

The remainder of this section will describe the following details of the method, in-

cluding representing 2D rotation in the latent space (Section 4.3.1), 6-DoF pose

estimation from latent space representation (Section 4.3.2), other characteristics

in the latent space and visualisation (Section 4.3.3), ablation tests (Section 4.3.4),

network parameters and training details (Section 4.3.5), and initial findings (Sec-

tion 4.3.6). A thorough evaluation, discussion, and conclusion of the method will

be presented in the subsequent chapter, focusing on the evaluation process and the

results of the method.

4.3.1 Implicit Learning in 2D Rotation

Before exploring 6-DoF Pose Estimation using a VAE, a special case involving 2D ro-

tation estimation is initially investigated with the VAE. This serves as a toy problem

in understanding the capability of the VAE to encode specific rotational informa-

tion within its latent space. This hypothesis is underpinned by the ability of the

VAE’s decoder to generate images that closely resemble the input [192], suggesting

a potential for encoding representative information like rotation.

To test the hypothesis, a VAE network, similar but simpler to the one proposed

in Figure 4.9, is trained to encode the rotated digits from the MATLAB Digits

dataset [165], in the form of latent variables µ, σ2 ∈ R20, and output the recon-

structed digits from the latent sample z = µ+ diag(σ) · ϵ, where ϵ ∼ N (0, I). After

training, the NNS algorithm is used to find the most similar mean vector µ ∈ R20,

and assign the corresponding 2D rotation R2d ∈ R to each test instance. The vi-

sualised results, as illustrated in Figure 4.7, validate that the VAE is capable of
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Figure 4.7: Visualised results of 2D rotation estimation. The 2D rotation
predictions are visualised in a scatter plot, which shows the predicted rotation angles
against the true angles.

representing 2D rotation in its latent space, which can be postulated that the more

complicated 3D rotation could also be encoded in the space.

Figure 4.8: t-SNE visualisation of different digits with different 2D ro-
tations encoded in the latent space. Each point represents a digit with the
corresponding rotation angle. The rotated digits are generated from the MNIST
dataset [163, 164].

Further analysis using the t-Distributed Stochastic Neighbor Embedding (t-SNE)

algorithm [195], as demonstrated in Figure 4.8, shows the VAE’s ability to encode

different digits with different 2D rotations. This is evidenced by distinct clusters

for different digits in the latent space, each having a linear relationship between the
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rotation angles. For example, clusters for the digit “8” and “4”, not only exhibit

distinct rotation patterns within each group, but also clearly separate these two

categories of digits. Such clustering indicates that the information about both the

object’s category and its rotation has been learnt in the latent space. Therefore,

the results from the handwritten digits suggest that the VAE has the potential to

concurrently regress the 2D rotation angle and classify the category of the digits.

This also indicates that it is possible to extend this approach to include not only

rotation estimation but also the prediction of other characteristics such as class and

topology.

4.3.2 Regularised Latent Space Representation for 6-DoF

Pose Estimation

Figure 4.9: The vanilla variational autoencoder (CVML-base) architecture.
ϕ represents all the parameters of the encoder network (the blue part) and θ rep-
resents all the parameters of the decoder network (the green part). The encoder
can be replaced with more advanced networks like ResNet-18 and ResNet-34 back-
bones [115]. The input image is first forwarded to the encoder which produces the
latent variables. The decoder then outputs the reconstruction image from the latent
sampling. The training loss is modified from Eq. 3.13, and the validation loss Lvalid

is the pixel-wise L2 loss.

To implicitly learn an object’s 6-DoF pose, the first part of the CVML-Pose is
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implemented using a VAE network, which is trained to learn the characteristics of

the object in its latent space. As depicted in Figure 4.9, the input data xi is processed

by the encoder Eϕ(xi) to produce two latent variables (µϕ(xi), σ
2
ϕ(xi)) ∈ Rn, where

n is the dimensionality of the latent space. An additional Kullback–Leibler (KL)

divergence with weight α is used to regularise the latent space. At the sampling

stage, the random sample process is implemented by the reparameterization trick

zi = µϕ(xi) + diag(σϕ(xi)) · ϵ, where ϵ ∼ N (0, I). After sampling, the decoder

network Dθ(zi) reconstructs the output image x′
i from zi, and a pixel-wise L2 loss

is calculated between the output image x′
i and the ground truth (gt) reconstruction

image x̂i. This is also correlated with Eq. 3.13 derived in Section 3.4.2, that the

term ||xi− x′
i||2 in ELBO is replaced by ||x̂i− x′

i||2, and the constant c is removed.

Algorithm 2 presents the pseudo code for training the VAE network.

In the provided code implementation2, the training loss Ltrain = −ELBO is iter-

atively minimised using the AdamW optimiser [203] with randomly selected mini-

batches of 128 elements, i.e. m in Eq. 3.13 is replaced with 128. To prevent over-

fitting, the same pixel-wise L2 loss, excluding the KL divergence term, is used as

the validation loss Lvalid, which indicates whether the latent space has accumulated

enough information from the training data.

Figure 4.10: Example reconstruction images from the trained VAE based
on the test images. The test images are taken from the Linemod [1, 2], Linemod-
Occluded [3, 4], and YCB-Video [5, 6] datasets.

After training the VAE network, the latent space accumulates rich information about

the object, possibly including SO(3). This can be evidenced by the clean reconstruc-

2code available: https://github.com/JZhao12/CVML-Pose.
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Algorithm 2 Training the VAE Network

Require: Input data x, gt reconstruction data x̂
Require: Encoder network Eϕ

Require: Decoder network Dθ

Require: Mini-batch size m
Require: Latent space size n
Require: Auxiliary random variable ϵ ∼ N (0, I)
Require: Regularisation weight α
Require: AdamW optimiser parameters
1: while not converged do
2: Sample a mini-batch {xi, x̂i}mi=1

3: for each xi in the mini-batch do
4: µϕ(xi), σ

2
ϕ(xi)← Eϕ(xi)

5: zi = µϕ(xi) + diag(σϕ(xi)) · ϵ
6: x′

i ← Dθ(zi)
7: end for
8: Compute the ELBO loss:
9:

ELBO =
m∑
i=1

(
||x̂i − x′

i||2 − α ·
n∑

j=1

(
1 + log (σ2

ij)− µ2
ij − σ2

ij

))
10: Backpropagate the loss
11: Update the encoder and decoder parameters ϕ, θ using AdamW optimiser
12: Evaluate on the validation set using the L2 loss:
13:

L2 =
m∑
i=1

||x̂i − x′
i||2

14: if validation loss does not improve for 50 epochs then
15: Stop training to prevent overfitting
16: end if
17: end while
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tion images generated from the test data using the trained VAE. These reconstruc-

tion images not only preserve a complete view of the object with a clean background,

but also minimise irreverent information such as occlusion and clutter, as shown in

Figure 4.10. The test latent variables (µtest, σ
2
test) ∈ Rn are also robust again scal-

ing, which does not affect the object orientation of the reconstruction images (see

examples in Figure 4.11).

Figure 4.11: Example reconstruction images based on different scaled la-
tent variables. The trained encoder network processes the test image and generates
the test latent variables (µtest, σ

2
test) ∈ Rn, and the trained decoder network outputs

the reconstruction images based on the scaled latent variables with different fac-
tors ∈ [0.1, 0.5, 1.0, 2.0, 5.0, 10.0]. The test image is taken from the Linemod [1, 2]
dataset.

The second part of the CVML-Pose method involves interpolating such informa-

tion to 3D rotation and translation. Figure 4.12 depicts the complete procedure

to estimate object 6-DoF pose using MLPs and KNN. To estimate the 3D rotation

R ∈ SO(3), a standard MLP (named the Rotation MLP) is used to regress the latent

variable µtrain ∈ R128 produced by the trained encoder, to a continuous 6D rotation

representation R6D ∈ R6 proposed by Zhou et al. [118]. This continuous repre-

sentation has been demonstrated to be more effective than other commonly used

representations such as unit quaternion and axis-angle, and has been successfully

used by CosyPose [75] (winner of the BOP Challenge 2020 [7]) and GDR-Net [71]

(winner of the BOP Challenge 2022 [26]). During training of the Rotation MLP, the
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estimated rotation R̂ can be recovered from the estimated 6D representation R6D

(see Eq. 3.10 in Section 3.3.5), and an L1 loss (mean absolute error) is measured

between the estimated rotation R̂ and the gt rotation R̄.

Figure 4.12: From latent space representation to object’s 6-DoF pose. The
trained latent variables µtrain ∈ R128 are generated from the trained encoder network.
The MLPs and KNN are utilised to regress the complete 6-DoF pose, and the
training loss for MLPs is calculated between the estimated pose P̂i and the gt pose
P̄i, where the gt pose is provided by the Linemod PBR dataset [1, 2, 7].

For estimating 3D translation T =

(
Tx Ty Tz

)T

∈ R3, the CVML-Pose method

adopts a similar approach to the one proposed by Xiang et al. [5]. This involves

regressing the 2D projection of the object’s centre Pc = (xc, yc)
T ∈ R2, and the 2D

projective distance Tz ∈ R, separately. The values of Tx and Ty are then determined

using the pinhole camera model equations (Eq. 4.2 and 4.3).

Specifically, for the estimation of Pc, the latent variable µtrain ∈ R128 is concatenated

with prior information obtained from the gt bounding box, including its width w,

height h, and top left corner Pbbox = (xb, yb)
T . The concatenated set of variables

is then fed into another standard MLP, named Centre MLP, which is trained to

regress these variables to the 2D projective centre Pc. In parallel, for the estimation

of Tz, the same latent variable µtrain ∈ R128 is concatenated with a different set of

information, which only includes the gt bounding box’s width w and height h. A

KNN regressor is then trained to regress these variables to the projective distance

Tz. The prediction of Tz is based on the local interpolation from the k ∈ [1, 20]
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nearest neighbours within the training data. For each value of k, the corresponding

validation error is calculated based on the complete 3D translation, instead of only

on Tz. The favourable value of k is determined where the validation error is the

smallest. Once Tz and the coordinates (xc, yc)
T are known, the first two elements

of T, i.e. Tx and Ty, can be easily calculated based on the equations of the pinhole

camera model shown in Eq. 4.3.

xc

yc

 =

fx Tx

Tz
+ cx

fy
Ty

Tz
+ cy

 (4.2)

Tx

Ty

 =

(xc − cx)
Tz

fx

(yc − cy)
Tz

fy

 (4.3)

where fx and fy denote the focal lengths, (cx, cy)
T is the principal point.

To obtain favourable parameters of the method, extensive ablation tests are im-

plemented. Advanced activation functions like SiLU [205] and ELU [206] are used

to avoid zero gradients, instead of the commonly used ReLU [207]. Different net-

work architectures are also investigated, for instance, the encoder part is replaced

by more advanced convolutional neural networks (CNNs) such as ResNet-18 and

ResNet-34 [115]. To distinguish different variants of the networks, the vanilla sym-

metric encoder-decoder network proposed in Figure 4.9 is termed CVML-base, and

the ResNet-based autoencoder networks are named CVML-18 and CVML-34, re-

spectively. These variants collectively form the CVML-AE module. To improve the

generalisation ability of the method, the CVML-AE module is trained with selected

online data augmentation techniques, detailed in Table 4.8. Further details about

these ablation tests are explained in Section 4.3.4.

4.3.3 Other Characteristics in Latent Space

In the object characterisation experiments, the focus is on investigating whether the

latent space of a VAE could represent and subsequently estimate other characteris-
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tics of objects. In the experiments reported here, both shape topology and object

class are investigated. Shape topology, as described by a genus, essentially counts

the number of “holes” in an object [208]. For instance, a sphere has genus 0, and

a torus has genus 1. For practical applications, such as in robotic manipulation,

differentiating objects based on characteristics like the presence of a handle on a

mug (which would alter its genus) could be important.

Figure 4.13: Visualisation of the latent space using t-SNE for topology
recognition (left) and object classification (right). Images of objects are
taken from the Linemod test data [1, 2].

To test the hypothesis proposed in Section 3.4.2 that VAE can learn other attributes,

the CVML-base network is trained with images of four Linemod objects, each pos-

sessing different genera: the ape and duck (genus 0), the iron (genus 1), and the

can (genus 2). The aim is to see if the network could encode these objects distinc-

tively in its latent space, reflecting their differing topologies. Following the training

procedure described in Section 4.3.2, the test images of these objects are processed

through the trained CVML-base network to generate their latent variables. These

variables are then visualised using the t-SNE algorithm [195]. Although t-SNE is

not suitable for classification tasks, since new data can change the spatial distance

of existing points, it serves as a useful tool for visual exploration of the latent space.

The t-SNE visualisation in Figure 4.13 shows distinct clusters corresponding to
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different object characteristics. Notably, the latent variables for the ape and duck

are closely grouped, indicating they share the same topology (both having genus 0).

Based on the visualisation, it can be concluded that the trained latent space can

possibly represent the objects’ classes and topologies. It can be therefore speculated

that the latent space in the CVML-AE module is capable of encoding a variety

of objects’ characteristics, which can be used in automatic object manipulation

applications. However, more research is needed in that area.

4.3.4 Ablation Tests

To obtain effective configurations of the proposed CVML-Pose method, a large num-

ber of ablation tests are implemented. These tests evaluate various aspects, includ-

ing network architecture, the dimensionality of the latent space, the weight factor of

the KL regularisation term, activation functions for autoencoders and MLPs, and

data augmentation techniques. Based on the selected design parameters, the pro-

posed CVML-Pose method is evaluated on the Linemod, the BOP version of the

Linemod-Occluded, and the BOP version of the YCB-Video benchmark datasets,

and compared against the state-of-the-art, which will be illustrated in detail in

Chapter 5.

Unlike the DALSR-Pose method, where all objects from the Linemod dataset are

used in ablation tests, the CVML-Pose method focuses on four specific objects from

the dataset for efficiency. These objects include the ape, driller, eggbox, and phone.

The pose estimation results are evaluated using the commonly used ADD(I) metric,

and the overall performance score is calculated using the average recall of the metric

ARADD(I). The results of these tests are comprehensively detailed in various tables

(Table 4.3, 4.4, 4.5, 4.6, 4.7, and 4.9). It is also important to note that all results are

calculated based on the gt bounding box of the test data to reduce the dependence

of the results on the bounding box. For more details on the evaluation metrics

and the complete evaluation procedure, please refer to Section 3.5 and Chapter 5,

respectively.
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Network Architecture

In the development of the CVML-Pose method, a well-structured VAE is crucial in

encoding the 6-DoF pose of the object in the latent space. Comprehensive experi-

ments are conducted on the autoencoder’s design, and the results are presented in

Table 4.3 and 4.4, investigating the structure of the encoder and decoder, and the

overall autoencoder, respectively.

Network architecture ARADD(I)

CVML-base 48.81
CVML-18 55.26
CVML-34 52.29

(a) Encoder

Upsampling approach ARADD(I)

nearest neighbour 48.81
transposed convolution 48.04

bilinear 48.11

(b) Decoder

Table 4.3: Ablation tests on the architecture of encoder and decoder. The
encoder network has three variants, and the decoder network can be incorporated
with three different upsampling techniques.

The initial architecture, named CVML-base network (illustrated in Figure 4.9),

follows a symmetric encoder-decoder design similar to the one proposed in the AAE

method [65]. To test the benefit of alternative encoders, variants using ResNet-18

and ResNet-34 backbones [115], named CVML-18 and CVML-34 respectively, are

explored to see how well each encoder network can abstract object pose information

in the latent space. The results, as shown in Table 4.3a, indicate that with increasing

depth of the encoder, the latent space acquires more 3D information about objects.

However, the performance difference between CVML-18 and CVML-34 is small,

suggesting a potential limitation in the decoder’s capacity. It is possible that the

decoder is not capable of taking full advantage of the rich latent information provided

by the ResNet-34 encoder, in which case a deeper decoder network might help. It

is also possible that available relevant pose information (based on the available

training data) is well enough encapsulated (summed up) by the ResNet-18 encoder.

Therefore, more complicated encoders, like ResNet-34, are unlikely to improve the

results as there is nothing much to add (with respect to pose) to what the ResNet-18

captured.
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Regarding the decoder, although it is not utilised in the final pose estimation stage,

it plays an important role in interpreting the latent code during the VAE train-

ing. Several alternative decoders are assessed to determine if they can enhance the

encoder’s ability to abstract as much information as possible. This involves using

alternative upsampling approaches like transposed convolution and bilinear upsam-

pling. The results, as noted in Table 4.3b, suggest that the performance of the

CVML-base network with nearest neighbour upsampling does not differ much from

alternatives using transposed convolution and bilinear upsampling. This aligns with

the expectation that the decoder network plays a relatively minor role in pose es-

timation. Moreover, the discussion in [209] highlights a significant issue with the

transposed convolution, known as “checkerboard artefacts”, which can potentially

result in uneven overlaps on images. To avoid this problem, the authors recommend

a resize-convolution approach, which involves applying nearest neighbour upsam-

pling or bilinear upsampling to the feature map before convolution. In line with

this approach, the CVML-base network is designed with the nearest neighbour up-

sampling, which not only avoids such artefacts, but also computes faster than the

bilinear process.

Network architecture ARADD(I)

CVML-base 48.81
CVML-base with additional intermediate layer 49.49

Network from AAE [65] 43.94

Table 4.4: Ablation test on different autoencoder architectures. The CVML-
base with additional intermediate layer, integrates an MLP inside the latent space
instead of a single layer. The network from AAE has only one layer shallower than
the CVML-base network in both the encoder and decoder.

In addition, modifications to the overall autoencoder architecture are explored, such

as adding an intermediate layer in the latent space, to see whether it facilitates a

smoother representation, potentially improving the model’s capability of capturing

more information about the object. Also, to see how well the CVML-base network

compares with other autoencoders proposed in existing pose estimation approaches,

the DAE network from the AAE method [65] is converted to a VAE and trained
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with the same data. Table 4.4 shows the performance score based on different

autoencoder architectures. Notably, despite the CVML-base network having only 1

layer deeper than AAE in both its encoder and decoder, this marginal increase in

depth boosts the pose estimation performance significantly. In the meantime, the

introduction of an additional intermediate layer in the latent space appears to help

build a slightly better pose representation of the object.

Consequently, the CVML-18 network is chosen as the final VAE network for the

CVML-Pose method. The network incorporates nearest neighbour upsampling in

its decoder, and an additional intermediate layer in the latent space, which is then

used to compare against the state-of-the-art methods in subsequent evaluations.

Dimensionality of the Latent Space

In the configuration of the VAE, the dimensionality n of the latent space is a critical

factor affecting the quality of the latent space representation. It determines the

capacity of the latent space to capture and encode the essential information about

objects.

In AAE, the authors implement ablation tests to find a proper n for the DAE

network. In that case, the accuracy of pose estimation started to saturate at n = 64,

and the best result is achieved with n = 128. However, their tests are limited to

a range of n ∈ [4, 8, 16, 32, 64, 128] and are conducted on a single object from the

T-LESS dataset [151]. This raises questions about the pose estimation performance

with n > 128, and on a broader range of objects, since a single object may not be

sufficient to represent the entire dataset.

To determine an effective size of the latent space, extensive experiments are con-

ducted on multiple objects from the Linemod dataset using the CVML-base network.

Various dimensionalities are tested, including n ∈ [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024].

As indicated in Table 4.5, the best pose estimation accuracy can be achieved with

n = 128. The results also demonstrate a general trend where the latent space can
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Dimensionality of the latent space ARADD(I)

n = 1 13.34
n = 2 19.39
n = 4 32.65
n = 8 35.34
n = 16 30.73
n = 32 39.27
n = 64 45.25
n = 128 48.81
n = 256 48.46
n = 512 48.59
n = 1024 45.99

Table 4.5: Ablation test on the dimensionality of the latent space. The
CVML-base network is trained to encode the selected Linemod objects into a set
of latent variables µ, σ2 ∈ Rn, n ∈ [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024], and the
corresponding Rotation MLP and Centre MLP are trained to regress such variables
to object 6-DoF pose.

generally acquire more 3D information about the objects with increasing capacity

but finally saturate at n = 128. It is also worth noting that the accuracy dramati-

cally goes down at n = 1024, suggesting that the latent space with extremely high

dimensionality does not necessarily contribute to effective pose encoding, and may

instead lead to diminished performance. Therefore, in the CVML-Pose method, the

latent space is configured with a dimensionality of n = 128 for training all VAE

networks.

Regularisation of the Latent Space

When training VAE, the KL regularisation term in the modified training loss Ltrain

(see Eq. 3.13), i.e. α ·
∑n

j=1

(
1 + log (σ2

ij)− µij
2 − σ2

ij

)
, directly affects the construc-

tion of the latent space µij, σ
2
ij ∈ Rn. To find a good balance of α that is capable

of having both an informative latent representation of the input data and a good

generalisation ability, the CVML-base network is trained with different values of

α ∈ [0, 0.1, 0.5, 1, 1.5, 2]. Table 4.6 demonstrates the pose estimation results of using

different values of the regularisation term α.

Based on the reported results, the value for the regularisation weight α found in the
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Regularisation weight ARADD(I)

α = 0 48.12
α = 0, no reparameterization trick 46.67

α = 0.1 48.81
α = 0.5 44.20
α = 1 41.50
α = 1.5 42.00
α = 2 39.38

Table 4.6: Ablation test on different weighting α of the KL regularisation
term. There are two cases when α = 0 to train the autoencoder network, the first
case removes the constraint of the KL regularisation, and the second case removes
the reparameterization trick which changes the type of the autoencoder.

experiments is 0.1, providing a sufficiently regularised latent space without overly

constraining it. Notably, when α = 0, the CVML-base network becomes unstable

and difficult to train, requiring either a very small learning rate or the omission of the

reparameterization trick. However, removing the reparameterization trick means the

network is no longer a VAE, and it performs worse than the case with α = 0.1 when

generalising to the test images. On the other hand, with α = 1, the latent space is

greatly affected by the KL divergence, which seems to smooth the distribution too

much. This excessive smoothing can result in the loss of information about the pose,

as the network focuses on minimising the KL divergence over retaining distinctive

features of the input data. Thus, α = 0.1 is selected as a proper regularisation

weight for training VAE.

Network Activation Function

Another fact that may affect the quality of the latent space is the activation function

of the network. To avoid the well-known vanishing gradient problem [210], various

alternative activation functions like Exponential Linear Unit (ELU) [206], Sigmoid

Linear Unit (SiLU) [205], and Gaussian Error Linear Unit (GELU) [211] are consid-

ered instead of the commonly used Rectified Linear Unit (ReLU). The CVML-base

network is trained using these activation functions, including in the MLPs, to eval-

uate their effectiveness in generating better representations of the pose.
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Activation function ARADD(I)

ReLU 47.08
ELU 48.81
SiLU 49.93
GELU 49.79

Table 4.7: Ablation test on activation functions. The vanilla CVML-base
architecture uses the SiLU activation function as shown in Figure 4.9.

From the experimental results shown in Table 4.7, GELU and SiLU activation func-

tions make nearly no difference in interpreting object 6-DoF poses, and they are bet-

ter than ELU and ReLU. This aligns with previous research proposed by Hendrycks

and Gimpel [211], which demonstrates that the GELU activation can achieve the

lowest reconstruction error in a self-supervised deep autoencoder trained on the

MNIST dataset, compared to ELU and ReLU. In terms of pose estimation perfor-

mance, the best pose estimation performance is achieved by the SiLU activation

and, therefore chosen as the final activation function for both VAE and MLP. The

GELU activation function is also a strong candidate for training autoencoder models

due to its similar performance level.

Data Augmentation

In the process of training VAE, online data augmentation plays a significant role

in improving the robustness against varying object appearances. The ablation tests

focus on evaluating the effectiveness of various augmentation techniques, as out-

lined in Table 4.8. The random change of brightness, contrast, and saturation is

used to improve robustness to variation in environmental settings. The Gaussian

blur is introduced to minimise the distortion problem of the test camera. The ran-

dom scale and translation are adopted to improve robustness to variation in the

estimated bounding box. The random erasing technique [212] is utilised to simu-

late more occlusion to objects’ observations. To identify the impact of these online

augmentation techniques on pose estimation performance, the CVML-base network

is trained with images that are randomly transformed by these techniques with a

probability of 30%.

Chapter 4 Jianyu Zhao 119



Deep Models for Rigid Objects Real-Time Pose Estimation

Name of the augmentation arguments Value

ColorJitter
brightness [0.4, 2.3]
contrast [0.4, 2.3]
saturation [0.8, 1.2]

GaussianBlur
kernel size (5, 5)
sigma [0.1, 1.2]

RandomAffine
translate (−0.1, 0.1)
scale (0.9, 1.1)

RandomErasing
scale (0.1, 0.2)
ratio (0.3, 3.0)
value random

Table 4.8: Online augmentation pipeline. All the augmentations are imple-
mented with a 30% possibility during training of the autoencoder network.

Table 4.9 shows the pose estimation results with different data augmentations.

Based on the results, it can be concluded that training with ColorJitter, Gaussian-

Blur, and RandomAffine slightly increases the accuracy of pose estimation. These

techniques contribute to the network’s ability to adapt to variations in lighting

conditions, camera distortions, and incorrect detection, respectively. However, the

network performs worse with RandomErasing augmentation. One possible reason is

that the PBR images used in the Linemod dataset already incorporate a significant

level of occlusion. Introducing additional occlusion through RandomErasing may

lead to situations where an object is entirely occluded, leaving the network with

insufficient visual information to predict the pose. This might cause the network

to learn from instances without any information, leading to destructive training

updates. Given these findings, all the online augmentation techniques except for

RandomErasing, are used in training the VAE, which helps to improve the robust-

ness of the method.

Online augmentation methods ARADD(I)

No data augmentation 48.81
With ColorJitter 49.85

With GaussianBlur 48.87
With RandomAffine (scale) 50.38

With RandomAffine (translate) 52.07
With RandomErasing 48.57

Table 4.9: Ablation test on data augmentation methods. The RandomErasing
technique is omitted in training the final CVML-18 network due to the worse results.
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4.3.5 Network Parameters and Training Details

The proposed CVML-Pose method, which contains the CVML-AE module, MLPs,

and KNN, is mainly implemented using PyTorch [213] and scikit-learn [204]. To

train the CVML-AE module and MLPs, the AdamW optimiser [203] is used with

betas = (0.9, 0.999), eps = 1e − 8, and weight decay = 1e − 2. The learning rate

is scheduled to be reduced when the validation error does not improve for a certain

number of epochs i.e. the “patience” in Table 4.11, with a drop factor d = 0.2

on a plateau. The training process is set to terminate under certain conditions, for

example when the model reaches its lowest learning rate and the validation loss stops

dropping for a specified number of epochs, denoted as N , and N = 50 for the CVML-

AE module, N = 500 for the MLPs. The batch size for the CVML-AE module is set

to 128, while MLPs take all the inputs as a batch. The network parameters of the

proposed CVML-AE module and MLPs are also reported in Table 4.10. The KNN

regressor, implemented using scikit-learn, uses the “distance” weighting function,

in which case closer neighbours of a query point will have a greater influence than

neighbours which are further away. The training details of the CVML-AE module,

the MLPs, and the KNN regressor are also shown in Table 4.11.

Networks Number of parameters
CVML-base network 2.7774211× 107

CVML-18 network 7.9082243× 107

CVML-34 network 1.12682499× 108

Rotation MLP 1.0966× 104

Centre MLP 1.1338× 104

Table 4.10: Network parameters of the CVML-AE module and MLPs.

Model name training loss validation loss learning rate patience
CVML-AE Ltrain Lvalid [10−4, 10−6] 50

MLPs L1 L1 [10−2, 10−7] 500
KNN Euclidean L1 - -

Table 4.11: Training details of the CVML-AE module, MLPs, and KNN.
The term ‘patience’ here means how many epochs the learning rate would drop if
the validation loss does not improve.

In terms of the training time, using the data described in Section 3.2.6, e.g. Linemod
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PBR images, and the network configurations described in Section 4.3.4, two CVML-

base networks can be trained in parallel in approximately 8 hours on a single NVIDIA

Geforce RTX 3090. CVML-18 takes about 12 hours, and CVML-34 takes around 20

hours on the same device. All MLPs are trained in parallel on the same device, which

takes roughly 12 hours. The KNN regressor can be trained in less than 2 minutes

on the Intel® Core™ i9-7900X CPU. More details on the implementation of the

CVML-Pose method can be found at: https://github.com/JZhao12/CVML-Pose.

4.3.6 Remarks

Based on the comprehensive ablation tests detailed in Section 4.3.4, it can be con-

cluded that the modified VAE’s latent space can generalise more effectively than

the DAE network for object 6-DoF pose estimation. The favourable configuration

involves using the CVML-18 network as the autoencoder model, with nearest neigh-

bour upsampling in the decoder network, and an additional intermediate layer in

the latent space. Key hyperparameters of the network include the latent space di-

mensionality n = 128, the regularisation α = 0.1, and the SiLU activation function.

The network is also trained with several data augmentation techniques including

ColorJitter, GaussianBlur, and RandomAffine, to enhance its robustness and gen-

eralisation capability.

The CVML-Pose method is trained to implicitly learn regularised latent space rep-

resentations from colour images, subsequently employing MLPs and KNN to in-

terpolate the complete 6-DoF pose from the learnt representations. For Linemod

objects, the method is trained with corresponding PBR images, and evaluated on

both the Linemod (see Table 5.2) and the BOP version of the Linemod-Occluded

(see Table 5.3) test images. For YCB-Video objects, the method is trained with

a combination of PBR, non-PBR synthetic, and real images, and evaluated on the

BOP version of the YCB-Video (see Table 5.4). The evaluation details, results,

discussions, as well as conclusions can be found in Chapter 5.
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To the best of my knowledge, the CVML-Pose method is the first to unify a gen-

erative model’s latent space and the regression-based algorithms to estimate con-

tinuous pose representations, specifically, using the VAE’s latent space. As it will

be demonstrated in the next chapter, the CVML-Pose method significantly outper-

forms methods based on the autoencoder’s latent space [65, 66] and 2D-3D model

correspondence [67, 68], and achieves competitive pose accuracy to the most state-

of-the-art methods [69, 70] across multiple benchmark datasets. Moreover, the use

of regularised latent representation shows promising results, which also facilitates

the subsequently proposed multi-object pose estimation method (Section 4.4) using

a conditional variational autoencoder.

4.4 CVAM-Pose: Conditional Variational Autoen-

coder for Multi-Object 6-DoF Pose Estima-

tion

The CVAM-Pose pipeline (Figure 4.14) contains two main stages of estimating the

complete 6-DoF poses for multiple objects, without using 3D information, depth

measurements, or iterative post-refinement. The first stage is to learn multi-object

representations by training a label-embedded conditional variational autoencoder

(CVAE), to implicitly learn to represent multiple objects in a single latent space

through the encode-decode process. Unlike the original CVAE, the proposed label-

embedded CVAE is trained with the layer-wise one-hot encoding technique, where

the encoded categorical labels are represented as complete feature maps which exist

in every convolutional layer. The second stage involves applying regression-based

algorithms, such as MLP and RF, which are trained with the one-hot encoded

label vectors as well, to regress the learnt multi-object latent representations to

objects’ 6-DoF poses. The proposed CVAM-Pose method extends the CVML-Pose

method with multi-object prediction, improving both scalability and computational

efficiency, but maintains almost the same performance level as the CVML-Pose
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method.

This work has been evaluated on the BOP version of the Linemod-Occluded bench-

mark dataset, which outperforms not only latent representation methods with both

single-object and multi-object prediction [65, 66], but also methods using 3D model

information [67, 68], and achieves comparable results to the state-of-the-art [69, 70].

The remainder of this section describes the following details of the method including

learning multi-object representations using conditional variational autoencoder (Sec-

tion 4.4.1), multi-object pose regression (Section 4.4.2), ablation tests of the method

(Section 4.4.3), and initial findings (Section 4.4.4). The evaluation procedure and

results will be explained in Section 5.2 and 5.3.3.

Figure 4.14: CVAM-Pose pipeline. During training, the CVAE network captures
both input images of objects and their corresponding label conditions in its latent
space, which can be further interpreted to multi-object 6-DoF poses.

4.4.1 Learning Multi-Object Representation using Condi-

tional Variational Autoencoder

To effectively learn regularised multi-object representation, a CVAE network (see

Section 3.4.3 for details of the network) is trained to encode images of different

objects in a single latent space and output the corresponding clean reconstruction.

A critical feature of this approach is the embedded categorical labels throughout the

whole network, enabling a well-organised space where different objects do not affect

each other. Algorithm 3 presents the pseudo code for training the CVAE network.
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Figure 4.15: The modified conditional variational autoencoder architec-
ture. ϕ represents all the parameters of the encoder network (the blue part) and
θ represents all the parameters of the decoder network (the green part). The input
images of objects are combined with their one-hot encoded label yi first, and then
forwarded to the encoder where the label exists in every convolution layer, which
produces the conditioned latent variables. The decoder outputs the corresponding
reconstruction images from the latent sampling, where the same label yi is also ap-
plied in each layer.

As depicted in Figure 4.15, the encoder network Eϕ(xi, yi) processes both input im-

age xi and its embedding label yi. Specifically, the conditional variable is embedded

at every convolution layer (layer-wise), until the final latent variables (µϕ(xi, yi),

σ2
ϕ(xi, yi)) ∈ Rn are obtained in the latent space. After sampling through reparam-

eterization trick zi = µϕ(xi, yi) + diag(σϕ(xi, yi)) · ϵ, where ϵ ∼ N (0, I), the decoder

network Dθ(zi) outputs the reconstruction image x′
i from the sampled variables zi,

where the label embedding also exists in every convolution layer in the decoder. The

training loss stays the same as the one used in the proposed CVML-Pose method,

i.e. a pixel-wise L2 loss, computed between the output image x′
i and the gt recon-

struction image x̂i, and a weighted KL divergence, regularising the latent space.

Based on the implemented ablation tests in the CVML-Pose method (see Sec-

tion 4.3.4), it can be drawn on the experiences to obtain the approximate good

configurations for the CVAM-Pose method. For example, to abstract more infor-
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Algorithm 3 Training the label-embedded CVAE Network

Require: Input data x, gt reconstruction data x̂, one-hot encoded categories y
Require: Encoder network Eϕ

Require: Decoder network Dθ

Require: Mini-batch size m
Require: Latent space size n
Require: Auxiliary random variable ϵ ∼ N (0, I)
Require: Regularisation weight α
Require: AdamW optimiser parameters
1: while not converged do
2: Sample a mini-batch {xi, yi, x̂i}mi=1

3: for each (xi, yi) in the mini-batch do
4: µϕ(xi, yi), σ

2
ϕ(xi, yi)← Eϕ(xi, yi)

5: zi = µϕ(xi, yi) + diag(σϕ(xi, yi)) · ϵ
6: x′

i ← Dθ(zi, yi)
7: end for
8: Compute the ELBO loss:
9:

ELBO =
m∑
i=1

(
||x̂i − x′

i||2 − α ·
n∑

j=1

(
1 + log (σ2

ij)− µ2
ij − σ2

ij

))
10: Backpropagate the loss
11: Update the encoder and decoder parameters ϕ, θ using AdamW optimiser
12: Evaluate on the validation set using the L2 loss:
13:

L2 =
m∑
i=1

||x̂i − x′
i||2

14: if validation loss does not improve for 50 epochs then
15: Stop training to prevent overfitting
16: end if
17: end while
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mation in the latent space, the encoder part in Figure 4.15 can be replaced by a

ResNet-18 backbone network. In this case, the conditional label yi is embedded in

every residual block instead of every convolution layer, simplifying the embedding

process. The hyperparameters of the autoencoder network can be also fine-tuned,

for instance, since the network needs to increase its capability of learning multi-

object representations, the dimensionality n of the latent space can be expanded

from 128 to higher values, e.g. 256 or 512. Also, to see whether the use of the layer-

wise one-hot encoding technique would help to abstract more high-level features of

the object, the original CVAE network is compared with the network shown in Fig-

ure 4.15, where in the original CVAE, the conditional labels only exist at the first

convolutional layer in both encoder and decoder. Therefore, to obtain the desirable

structure of the CVAE network, the ResNet-based CVAE, the one proposed in Fig-

ure 4.15, and the original CVAE are compared against, their results are reported in

Section 4.4.3.

4.4.2 Multi-Object Pose Regression

After training the CVAE network, the autoencoder’s latent space accumulates ro-

bust multi-object representation. The subsequent stage of the CVAM-Pose method

involves a pose regression strategy, which is similar to the one used in the DALSR-

Pose and CVML-Pose methods, with an adaptation to handle the multi-object sce-

nario. This pose regression strategy, as detailed in Figure 4.16, incorporates the

additional one-hot encoded object labels, to facilitate precise pose estimation for

multiple objects.

For estimating the 3D rotation R ∈ SO(3), an MLP regressor is trained to regress

the learnt multi-object latent representations to the continuous 6D rotation repre-

sentation R6D ∈ R6 [118]. The 3D translationT =

(
Tx Ty Tz

)T

∈ R3 is predicted

separately, through the estimation of 2D projective centre Pc = (xc, yc)
T ∈ R2 and

2D projective distance Tz ∈ R. The complete translation vector can be finally

calculated based on the projective camera model (Eq. 4.2 and 4.3).
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Figure 4.16: Regress multi-object 6-DoF poses from the learnt multi-object
latent representations. The pose regression procedure is similar to DALSR-Pose
and CVAM-Pose, the only difference is all the representations of objects are regressed
together instead of per object per regressor. The one-hot encoded object label yi is
concatenated with the learnt representations as well, which helps the regressor to
learn multi-object poses.

In the practical implementations of the pose regression, the implemented KNN re-

gressor does not work well with the multi-object estimation of 2D projective distance

Tz, since the effectiveness of the algorithm can be limited by a large number of data

points, i.e. the algorithm requires calculating the distance between the query in-

stance and every other instance, which can be computationally complex for large

datasets, as well as the requirement of large system memory. Therefore, the KNN

regressor is replaced by a random forest (RF) regressor, which is typically more suit-

able for handling large datasets because of the building of multiple decision trees

to efficiently process a large number of data. The validation data are also used to

obtain favourable hyperparameters of the RF regressor, for example, the number

of trees in the forest and maximum depth of the tree, where the validation error

is calculated based on the complete 3D translation instead of just Tz, and the fi-

nal hyperparameters of the RF can be determined when the validation error is the

smallest.

4.4.3 Ablation Tests on Label Embedding

As mentioned in Section 4.4.1, an ablation experiment is implemented to investigate

the effectiveness of the proposed layer-wise one-hot encoding technique in the CVAE

128 Chapter 4 Jianyu Zhao



Deep Models for Rigid Objects Real-Time Pose Estimation

network. An additional experiment is also conducted to see whether the technique

can help with multi-object pose regression. The ablation results are evaluated on

the BOP version of the Linemod-Occluded benchmark dataset, using the BOP Chal-

lenge metrics, including VSD, MSSD, and MSPD (see Section 3.5.3 and 3.5.4 for

details of the metrics). Unlike previous tests implemented in the DALSR-Pose and

CVML-Pose methods that use the gt bounding box, results reported here are calcu-

lated based on the bounding box from the pretrained Mask-RCNN detector [214].

The complete evaluation procedure and the results of the CVAM-Pose method are

illustrated in detail in Chapter 5.

Metric original CVAE CVAE in Figure 4.16 ResNet-based CVAE
ARVSD 0.256 0.275 0.309
ARMSSD 0.255 0.288 0.318
ARMSPD 0.630 0.644 0.709
ARscore 0.380 0.402 0.445

Table 4.12: Comparison between different CVAE networks. Each column
represents the three metrics of a method on all Linemod-Occluded objects, and the
final performance is calculated by ARscore = (ARVSD +ARMSSD +ARMSPD)/3.

In the original implementation of the CVAE network [64], the label condition only

incorporates low-level features, i.e. the feature map of images before being sent into

the first convolutional layer in the encoder. This can be less effective for learning dis-

tinct multi-object representations because, with the increasing depth of the network,

the label-conditioned features learned at the very beginning may not be evident in

the latent space. To investigate this, the original CVAE network is trained to com-

pare with the proposed layer-wise one-hot encoded CVAE network. Additionally, a

variant of the CVAE network using the ResNet-18 backbone, where the conditional

labels are incorporated at every residual block (the convolution layers inside the

block are not embedded with the labels), is also examined. The results, presented

in Table 4.12, indicate that the layer-wise one-hot encoding technique significantly

improves the network’s capacity to capture high-level features related to object pose.

Furthermore, employing a more advanced encoder network, like ResNet-18, is also

useful for abstracting useful information in the latent space.
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Metric with labels without labels
ARVSD 0.275 0.251
ARMSSD 0.288 0.243
ARMSPD 0.644 0.554
ARscore 0.402 0.349

Table 4.13: Effects of using one-hot encoded labels in pose re-
gression. Each column represents the three metrics of a method on
all Linemod-Occluded objects, and the final performance is calculated by
ARscore = (ARVSD +ARMSSD +ARMSPD)/3.

Another aspect of the tests involves determining whether the learnt representations

can be effectively regressed to multi-object 6-DoF poses without the need for one-hot

encoded label conditions. For this purpose, the same regression models, including

MLPs and RF, are trained with different input data configurations. The results are

presented in Table 4.13, showing that with the label conditions, the pose regressors

can result in better pose estimation accuracy. However, it is also observed that even

without explicit label conditions, the learnt representations intrinsically contain label

information. These findings suggest that the CVAE network is capable of encoding

relevant multi-object poses in the latent space, as well as the importance of the

proposed layer-wise one-hot encoding technique.

4.4.4 Remarks

Based on the results of the ablation tests reported in Section 4.4.3, it can be con-

cluded that the proposed CVAE network with layer-wise one-hot encoding network

is possible to learn multi-object 6-DoF poses. The favourable configuration of the

method is to use the ResNet-based CVAE network as the autoencoder model, and

trained with selected hyperparameters including the dimensionality n = 256, regu-

larisation factor α = 0.1, SiLU activation, and data augmentation (see Section 4.3.4).

Like the previous proposed methods, the ResNet-based CVAE network is trained

to implicitly learn regularised latent space representations from colour images of

multiple objects, subsequently employing MLPs and RF to interpolate the objects’

poses from the learnt representations. For Linemod-Occluded objects, the final
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CVAM-Pose method is trained on 8 objects with the corresponding PBR images,

and evaluated on the BOP version of the Linemod-Occluded dataset (see Table 5.3).

The evaluation details can be found in Chapter 5. For the results reported in the

thesis, CVAM-Pose was trained with 8 different objects. Experiments with larger

numbers of objects were also conducted but not reported. It was observed that

increasing the number of objects in the CVAM-Pose method beyond 15 would lead

to a decrease in pose estimation accuracy.

To the best of my knowledge, the CVAM-Pose is the first to combine a condi-

tional variational autoencoder with continuous regression algorithms to estimate

multi-object 6-DoF poses. The proposed layer-wise one-hot encoding technique also

increases the capability of learning more high-level features/representations. As it

will be demonstrated later in Section 5.3.3, the CVAM-Pose method shows promis-

ing results on the challenging occlusion benchmark dataset, and archives almost

the same pose accuracy as the proposed CVML-Pose method, but significantly im-

proves the scalability and computational efficiency with multi-object predictions in

a single-encoder-single-decoder architecture.

4.5 Summary

This chapter mainly focuses on the methodology part of the thesis, starting with

an overview of the Auto-Pose framework, as well as the novelties of the three

autoencoder-based methods, DALSR-Pose, CVML-Pose, and CVAM-Pose. The pro-

posed methods aim to achieve state-of-the-art pose estimation performance without

using an object’s 3D model, depth sensor, or iterative refinement process. Each of

these methods employs a workflow of initially learning the latent space representa-

tions from the selected autoencoder model (explained in Chapter 3), followed by the

interpolation of the objects’ poses using regression-based algorithms. The primary

difference between the methods is the type of latent space, where the DALSR-Pose

method trains the DAE model for a robust latent representation, the CVML-Pose
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method forms a regularised latent space using the VAE model, and the CVAM-Pose

method obtains not only regularised but also constrained multi-object representa-

tions from the CVAE model. A series of ablation experiments, e.g. the dimension-

ality of the latent space and rotation representations, have been also conducted to

obtain favourable configurations of the methods.

Given that the evaluation procedures for the three proposed methods are similar,

owing to their shared idea of using the autoencoder’s latent space, the methods are

assessed together in the later evaluation chapter (Chapter 5). The comprehensive

comparison with the state-of-the-art methods will also demonstrate their advantages

on the more challenging datasets with occlusion and clutter. For more details on

the evaluation pipeline, results, and discussion of the methods, please see the next

chapter.
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Evaluation and Results

5.1 Introduction

This chapter details the comprehensive evaluation process, results, discussions, and

conclusions for the three autoencoder-based 6-DoF pose estimation methods pre-

sented earlier. As illustrated in the previous chapter, the proposed methods are

benchmarked in two ways. The first involves performing a series of ablation tests

to determine favourable configurations of the methods, which have been concisely

illustrated and summarised in Section 4.2.3, 4.3.4, and 4.4.3. The second way is to

follow the evaluation methodologies proposed in the state-of-the-art approaches and

the BOP Challenge [7, 26, 141], which is the main focus of this chapter.

The contents of this chapter are organised as follows: description of the complete

evaluation pipeline (Section 5.2), comprehensive results and detailed discussions

(Section 5.3), and concluding remarks (Section 5.4).

5.2 Evaluation Pipeline

This section introduces the complete evaluation procedure for the three methods,

all of which are based on the autoencoder architecture. Given the similarities in

their inference processes, the inference procedure of the CVML-Pose method (illus-
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trated in Figure 5.1) is chosen as a representative example. The evaluation of these

methods is illustrated from two key perspectives, including the evaluation setup

of the methods (Section 5.2.1), and the evaluation of the adopted object detectors

(Section 5.2.2).

5.2.1 Evaluation Setup

To facilitate an intuitive comparison with the state-of-the-art methods, the evalu-

ation setup for the proposed methods on the Linemod dataset [1, 2] and the BOP

version datasets [3, 4, 5, 6, 7] are different, based on the selected data and metrics.

The original Linemod dataset, as elaborated in Section 3.2.1, is split into training

(15%) and test sets (85%) by Brachmann et al. [3], and the bowl and driller objects (2

out of 15) are omitted due to improper 3D models. Following the evaluation strategy

adopted in many state-of-the-art methods [3, 35, 50, 65, 67, 70, 119, 126, 128], the

proposed DALSR-Pose and CVML-Pose methods are evaluated on the test set of

the remaining 13 Linemod objects. The performance score ARADD(I) is calculated

based on the average recall rate of the ADD(I) metric (details in Section 3.5.2). The

two methods are compared against current leading methods [35, 65, 67, 68, 70, 72,

74, 119], with results presented in Table 5.2.

For evaluation of the Linemod-Occluded [3, 4] and the YCB-Video [5, 6] datasets,

the standard protocol of the BOP Challenge is used. As explained in Section 3.2.2

and 3.2.3, the challenge organisers manually select a subset of the original test data

for evaluation, known as the BOP version, by removing low-quality images with inac-

curate ground truth (gt) poses. This data selection also speeds up the evaluation pro-

cess. Participants of the BOP Challenge must use the three evaluation metrics (VSD,

MSSD, and MSPD) proposed by Hodan et al. [7] (details in Section 3.5.3 and 3.5.4),

which standardise comparisons. For the BOP version of the Linemod-Occluded

test data, the three proposed methods are compared against the state-of-the-art

methods participated in the challenge [35, 65, 66, 67, 68, 69, 70, 71, 73, 75, 119],
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and their comprehensive results are reported in Table 5.3. The final performance

score for each method is calculated based on the average of the three metrics:

ARscore = (ARVSD +ARMSSD +ARMSPD)/3. The same protocol is applied to the

evaluation of the BOP version of the YCB-Video test data, and the CVML-Pose

method is compared against these leading methods [65, 66, 67, 68, 69, 70, 71, 73,

75, 76].

For the latest and comprehensive results, please refer to the BOP Challenge leader-

board1. Details on the adopted evaluation metrics can be found in Section 3.5. It

is also noted that, while the proposed methods do not require object 3D models for

inference, as outlined in previous chapters, the evaluation metrics used, including

ADD(I), VSD, MSSD, and MSPD, do necessitate object’s model points for accurate

assessment.

5.2.2 Evaluation of Object Detection

For evaluation, an object detector needs to be built to enable the proposed methods

to operate on the test scene images. For instance, a Mask-RCNN detector [214], pre-

trained by the CosyPose method [75], can be utilised to detect objects of interest in

test images. As depicted in Figure 5.1, with the crop-and-resize strategy described

in Section 3.2.6, the test images of the target object can be obtained based on the

detection bounding box from the Mask-RCNN detector. Subsequently, the cropped

and resized images are fed into the trained encoder network, generating a set of test

latent variables. Finally, these variables are forwarded to the trained pose regressors

to predict the complete 6-DoF pose of the test objects. The number of detected test

instances (using the pretrained Mask-RCNN detector) and the gt test instances, for

both the Linemod test data and the BOP version of the Linemod-Occluded test

data, is shown in Table 5.1.

For real-time demonstration, a video is also provided online2, showcasing real-time

1Accessible at: https://bop.felk.cvut.cz/leaderboards/.
2video available: https://ieeexplore.ieee.org/document/10040668.
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Linemod BOP Linemod-Occluded
Objects gt Mask-RCNN gt Mask-RCNN

ape 1050 1021 182 137
benchvise 1031 1031 - -

cam 1020 954 - -
can 1016 1015 199 177
cat 1002 1000 189 130

driller 1009 1006 200 185
duck 1065 1064 182 175
eggbox 1065 974 180 103
glue 1036 1033 142 126

holepuncher 1051 1050 200 198
iron 979 979 - -
lamp 1042 1042 - -
phone 1041 1021 - -

Table 5.1: Number of test instance in the Linemod [1, 2] and the BOP
version [7] of the Linemod-Occluded [3, 4] datasets. The gt objects are
cropped from the gt bounding box, while the Mask-RCNN objects are cropped
based on the Mask-RCNN detector. The Linemod-Occluded dataset has only 8
objects as described in Section 3.2.2.

pose estimation under complex scenarios using the proposed CVML-Pose method.

The video exhibits the method’s effectiveness in handling different levels of ob-

ject occlusions and cluttered scenes, with low-resolution images captured using an

inexpensive webcam, and without specific requirements for illumination or any con-

straints on the object’s motion. The webcam intrinsic parameters are estimated

using the checkerboard-based procedure from MATLAB3 [215], with an average re-

projection error of 0.47 pixels. The parameters are used to remove radial distortion

and calculate the translation vector of the pose. Example screenshots of the video

are displayed in Figure 5.2. An Inertial Measurement Unit (IMU) sensor is used as

a reference to calculate errors, which is shown in Appendix B.

To evaluate the contribution of the object detector to the 6-DoF pose estimation

task, a comparison is made between the pose estimation results based on the gt

bounding box and those based on the Mask-RCNN detector, as shown in Table 5.7.

Additionally, to investigate how training data could affect detection models and, in

turn, influence pose estimation accuracy, two models are used for evaluation, includ-

3UCLan academic licence.
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(a) First scenario: free motion. The target object is unrestrictedly moved with dif-
ferent levels of 3D rotation and translation. It is detected by a pretrained Mask-RCNN
detector, and the green bounding box shows the result of the detection.

(b) Second scenario: heavy occlusion. The target object is fixed in the area of the
blue bounding box, and the pose is still estimated for each frame independently. The
white paper is used to gradually introduce occlusions to the object, and when the object
gets partially or even heavily occluded, the pose can be still estimated correctly, which
shows robustness against occlusions.

Figure 5.2: Real-time demonstration of the proposed CVML-Pose method
in different scenarios. The Linemod cat object [1, 2] is selected as the target
object, and its 3D model is rendered in real time at the pose that is estimated from
the proposed CVML-Pose algorithm. If the rendering starts to move to another
pose, that means the method cannot cope with such scenarios. It is noted that the
CVML-Pose does not require an object 3D model for inference, the model is used
just for visualisation of the pose estimation results.
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ing the pretrained Mask-RCNN detector, and another detector called YOLOX [216]

pretrained by [71]. The performance of these models in both object detection and

pose estimation is reported in Table 5.8.

5.3 Results and Discussions

This section presents the results and detailed discussions for the proposed methods,

starting with the DALSR-Pose method (Section 5.3.1), followed by the CVML-Pose

method (Section 5.3.2) and the CVAM-Pose method (Section 5.3.3). Subsequent

sections include a comparative analysis of different types of deep learning-based

methods (Section 5.3.4), performance against occlusion (Section 5.3.5), as well as

the impact of using different object detectors (Section 5.3.6).

The main results of the proposed methods are reported in Table 5.2, 5.3, and 5.4,

where they are compared against a range of state-of-the-art methods, including

AAE [65], AAE-ICP (AAE with ICP refinement [146]), Multi-Path [66] (an extended

version of AAE for multi-object pose estimation), SSD6D [119], CosyPose [75], GDR-

Net [71], DPOD [67], Pix2Pose [68], CDPN [70], CDPNv2 (an improved version

of CDPN), EPOS [69], PVNet [35], SurfEmb [73], RNNPose [72], ZebraPose [76],

and YOLOv5-6D [74]. Many of these competitive methods have been published at

top conferences like ICCV4, ECCV5, and CVPR6, or awarded in the BOP Chal-

lenge [7, 26, 141]. For example, AAE was awarded the Best Paper at ECCV 2018,

as well as the best open source and the fastest method at the BOP Challenge 2019

(BOP19). SSD6D was presented at ICCV 2017, DPOD at ICCV 2019, and Multi-

Path at CVPR 2020. PVNet, EPOS, SurfEmb, ZebraPose, and RNNPose were

presented at CVPR 2019, CVPR 2020, CVPR 2022, CVPR 2022, and CVPR 2022,

respectively, with PVNet also being featured in an oral presentation. ZebraPose

also reports the results in the latest BOP Challenge 2023 [217]. CosyPose, pub-

4The International Conference on Computer Vision
5The European Conference on Computer Vision
6The IEEE / CVF Computer Vision and Pattern Recognition Conference
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lished at ECCV 2020, won the BOP Challenge 2020 (BOP20). GDR-Net, published

at CVPR 2021, won the BOP Challenge 2022 (BOP22). Pix2Pose was featured

at ICCV 2019 and distinguished as the best method on the YCB-Video and RU-

APC [155] datasets at the BOP19. CDPN, published at ICCV 2019, was the top

RGB method at the BOP19, and its extended version, CDPNv2, was the winner

on the HomebrewedDB dataset [153] at the BOP20. The methods listed in the

tables are categorised based on the criteria outlined in Section 2.3, where the three

proposed methods are categorised as the latent representation method.

Additional results of CVML-Pose on individual Linemod-Occluded objects are also

presented in Table 5.5. The performance score for individual objects, ARobject, is

calculated from the average recalls across the three metrics: ARVSD, ARMSSD, and

ARMSPD. The average value, denoted as Avg, is identical to the reported main

results in Table 5.3. The results for occlusion are shown in Section 5.3.5, which

assess how the visibility of objects in the scene images influences the accuracy of

pose estimation.
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5.3.1 DALSR-Pose

Table 5.2 and 5.3 report the results of the proposed DALSR-Pose method on the

Linemod dataset and the BOP version of the Linemod-Occluded dataset.

On the Linemod dataset (Table 5.2), DALSR-Pose outperforms AAE, a method

that similarly uses latent space representation, by an overall margin of 6.4% using

the ADD(I) metric (ARADD(I)), where the method also demonstrates higher pose

accuracy across most objects. Compared to SSD6D, a method that does not ex-

plicitly access 3D models, DALSR-Pose is superior to SSD6D by a large margin

of 29.9% in ARADD(I). However, when compared to the indirect methods such as

DPOD, Pix2Pose, CDPN, and PVNet (detailed in Section 2.3.2), DALSR-Pose does

not perform as well. This is a common observation among the latent representation

methods; for example, even with depth images and model point-based refinement,

the AAE-ICP method still lacks pose accuracy, performing 18.3% and 14.7% worse

in ARADD(I) compared to CDPN and PVNet.

When tested on the more challenging BOP version of the Linemod-Occluded dataset

(Table 5.3), DALSR-Pose is better than AAE, Multi-Path, and SSD6D, by consid-

erable margins of 28.2%, 21.1%, and 28.9% on average using the three BOP metrics

(ARscore), respectively. It even outperforms AAE-ICP by a large margin of 19.1%

in ARscore, despite not using depth information and iterative post-refinement. Com-

pared to the indirect methods, DALSR-Pose can even catch up with methods that

explicitly use 3D models to build 2D-3D dense correspondence, such as DPOD and

Pix2Pose, showing improvements of 25.9% and 6.5% in ARscore, respectively. How-

ever, it still falls short of the accuracy achieved by leading methods like CosyPose,

GDR-Net, and SurfEmb.

Compared to AAE, the proposed continuous pose regression proves to be more effec-

tive. Rather than using a lookup table (LUT) technique, training an MLP regressor

with the continuous 6D representation [118] allows for smoother 3D rotation esti-

mation. The smooth interpolation of the 3D translation is done by localising the
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object’s 2D projective centre using another MLP regressor, and predicting the pro-

jective distance using a KNN regressor, which also outperforms AAE that directly

uses the bounding box centre as the projective centre.

5.3.2 CVML-Pose

Table 5.2, 5.3 and 5.4, separately report the results of the proposed CVML-Pose

method on the Linemod dataset, the BOP version of the Linemod-Occluded dataset,

and the BOP version of the YCB-Video dataset, and compare with the state-of-the-

art methods. Additional results on individual objects from Linemod-Occluded are

presented in Table 5.5.

On the Linemod dataset, CVML-Pose demonstrates higher pose accuracy compared

to the DALSR-Pose, AAE, and SSD6D methods, with respective margins of 4.1%,

10.5%, and 34.0% on average using the ADD(I) metric (ARADD(I)). Notably, these

methods, like CVML-Pose, do not explicitly use the object’s 3D model during train-

ing. CVML-Pose even marginally outperforms AAE-ICP on certain objects, such

as the ape (0.7%) and driller (1.2%). It is worth noting that the performance of

AAE-ICP can be limited, particularly in scenarios where depth measurement is not

available under certain lighting conditions, e.g. excessively bright light or extremely

low light. Furthermore, the ICP refinement employed in AAE-ICP cannot guaran-

tee real-time processing due to its iterative process. Similar to DALSR-Pose, the

CVML-Pose method falls short in comparison to the indirect methods, but achieves

slightly better results than DPOD on several objects, including cam (2.5%), cat

(3.3%), and eggbox (12.2%).

When tested on the two challenging BOP datasets, the proposed CVML-Pose method

demonstrates significant advantages over the state-of-the-art methods. For example,

on the Linemod-Occluded dataset, CVML-Pose outperforms all the latent represen-

tation methods, including AAE, AAE-ICP, and Multi-Path, by margins of 31.8%,

22.7%, and 24.7% on average using the three BOP metrics (ARscore). It also achieves
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significantly better results than one of the deep learning-based direct methods, i.e.

SSD6D (32.5% higher in ARscore). Compared to the indirect methods, CVML-Pose

surpasses DPOD and Pix2Pose by certain margins of 29.5% and 10.1% in ARscore.

In individual metrics, CVML-Pose can achieve comparable results to EPOS (5.8%

gap in ARVSD) and PVNet (4.0% gap in ARMSPD).

On the YCB-Video dataset, CVML-Pose performs even better. For instance, the

method still dominates in the category of latent representation methods. Compared

to the indirect methods, CVML-Pose outperforms most of them, including DPOD,

Pix2Pose, CDPN, and CDPNv2, by various margins of 32.1%, 8.6%, 8.6%, and 1.1%

in ARscore, respectively. In individual metrics, CVML-Pose achieves competitive

results compared to SurfEmb, with only a 4.8% gap in ARVSD and a 2.8% gap in

ARMSSD. It also achieves comparable results to EPOS (an 8.5% gap in ARMSSD).

In particular, it is dramatically better than CDPN and CDPNv2, for which it was

worse than either of them on the Linemod-Occluded dataset. This also happens on

the AAE method, where it is significantly worse than the DPOD, Pix2Pose, CDPN,

and CDPNv2 methods on the Linemod-Occluded data, e.g. by margins of 2.3%,

21.7%, 42.3%, and 47.8% in ARscore, but achieves comparable results to them on the

YCB-Video data, e.g. 1.1% difference compared to CDPN.

The results across all datasets indicate that the regularised latent space and con-

tinuous pose regression approach of CVML-Pose is more effective than latent rep-

resentation methods like AAE. Rather than using a denoising autoencoder (DAE),

a modified variational autoencoder (VAE) can capture robust and regularised rep-

resentations of objects. Additionally, the continuous pose regression, as opposed to

LUT-based approaches, is more suitable as it avoids the significant errors caused by

pose discretisation during inference. The continuous regression on the 2D projection

of the object centre and the projective distance also reduces the effects caused by

incorrect detection bounding boxes in heavily occluded scenarios.

In terms of individual objects, as shown in Table 5.5, the eggbox object exhibits
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Object ape can cat driller duck eggbox glue holepuncher Avg
ARVSD 0.329 0.407 0.291 0.322 0.455 0.124 0.275 0.448 0.331
ARMSSD 0.325 0.449 0.298 0.410 0.412 0.066 0.329 0.486 0.347
ARMSPD 0.828 0.728 0.812 0.599 0.811 0.406 0.733 0.797 0.714
ARobject 0.503 0.528 0.467 0.444 0.559 0.199 0.446 0.577 0.464

Table 5.5: Results of CVML-Pose on individual objects of the Linemod-
Occluded dataset.

much lower accuracy (26.5% worse in ARobject) compared to Avg, which might be

associated with object symmetries, i.e. the pose ambiguity problem. To improve

pose accuracy, especially for symmetrical objects, the proposed CVML-Pose method

could be extended to estimate the distribution of potential poses through random

sampling in the latent space, thereby better accommodating variances induced by

object symmetries. Another observation is that among the three evaluation metrics,

MSPD demonstrates considerably higher accuracy than the other two, e.g. 38.3%

higher than VSD on average. As explained in [7], this might be because the MSPD

metric does not account for alignment along the optical axis, which is significant

when evaluating perspective images.

5.3.3 CVAM-Pose

Table 5.3 reports the results of the proposed CVAM-Pose method on the BOP ver-

sion of the Linemod-Occluded benchmark dataset, which demonstrates that state-

of-the-art performance for multi-object pose estimation can be achieved using a

conditional generative model. In the category of latent representation methods,

CVAM-Pose exhibits higher pose accuracy than AAE, AAE-ICP, and Multi-Path,

outperforming them by substantial margins of 29.9%, 20.8%, and 22.8% on aver-

age using the three BOP metrics (ARscore). It also surpasses SSD6D, DPOD, and

Pix2Pose by margins of 30.6%, 27.6% and 8.2% in ARscore, respectively, and achieves

comparable results to EPOS and PVNet, with only a 4.1% and 4.5% gap in ARMSPD.

Compared to Multi-Path, a multi-object method using latent space representation,

the proposed learning of constrained representations achieves higher pose estimation
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accuracy (22.8% better in ARscore). Unlike Multi-Path, which consists of multiple

decoder networks and requires a significant amount of GPU memory for building

multiple reconstructions, especially when dealing with numerous objects, the pro-

posed layer-wise one-hot encoded CVAE network in CVAM-Pose efficiently learns

constrained representations through a single-encoder-single-decoder network, which

is more computationally efficient. Additionally, CVAM-Pose avoids the “per ob-

ject per network” training strategy common in single-object prediction methods like

AAE and AAE-ICP, enhancing the scalability of the method. This strategy is also

applied to most of the methods (except CosyPose, EPOS, and SurfEmb) reported in

Table 5.3, which demonstrate the advantages of scalability and efficiency of the pro-

posed CVAM-Pose method. Moreover, similar to the DALSR-Pose and CVML-Pose

methods, CVAM-Pose benefits from the use of continuous regression in the latent

space over the typical LUT technique, which boosts the pose accuracy.

Comparing CVAM-Pose with its prototype method, CVML-Pose, a slight decrease in

pose accuracy (1.9% worse in ARscore) is observed. While this reduction is relatively

small, it suggests a need for further refinements to the method. Another finding

is that, the Multi-Path method shows better performance (7.1% higher in ARscore)

than its prototype method (AAE) on the Linemod-Occluded dataset, but performs

significantly worse (15.7% lower in ARscore) on the YCB-Video dataset, as reported

in Table 5.3 and 5.4. This difference may be attributed to the varying number of

objects trained in the Multi-Path method. For example, the Multi-Path method

can be scalable with 8 Linemod-Occluded objects, but might be sensitive to the

increasing number of objects, i.e. 21 objects in the YCB-Video dataset. It indicates

a potential scalability issue that merits future investigation for CVAM-Pose.

In future research, to achieve state-of-the-art pose accuracy, a certain number of

systematic ablation tests will be implemented, including exploring different network

architecture, dimensionality, and the capacity for handling a varying number of

objects. Moreover, just like the CVML-Pose method, further investigations will

delve into object characterisation and real-time processing capabilities.
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5.3.4 Comparative Analysis of Deep Learning-based Meth-

ods

This section comprehensively analyses different categories of deep learning-based

methods (see Section 2.3 for details of the methods) reported in Table 5.2, 5.3

and 5.4.

By analysing the results on the Linemod dataset (Table 5.2), latent representa-

tion methods typically exhibit lower performance than the deep learning-based in-

direct methods. For example, despite using additional depth information and model

point-based refinement, AAE-ICP still falls short in accuracy (ARADD(I)) on several

Linemod objects including ape (12.9%), driller (21.7%), and iron (7.2%) compared

to DPOD. It is also not as good as other indirect methods such as Pix2Pose, CDPN,

PVNet, and YOLOv5-6D. This shortfall may be attributed to the fact that indirect

methods, although not directly using 3D model points during training, benefit from

the 2D-3D correspondence mapping that provides sufficient 3D information, and

facilitates promising pose estimation results. Another notable disadvantage of these

typical latent representation methods like AAE, AAE-ICP, and Multi-Path is the

discretisation of the pose, resulting in coarse pose estimation that often requires a

post-refinement process. The issue of discretisation also affects the SSD6D method,

leading to a notable reduction in pose accuracy.

Conversely, on the BOP version of the Linemod-Occluded dataset (Table 5.3), the

latent representation methods demonstrate significantly better results, particularly

in comparison to DPOD and Pix2Pose. The typical cases are the proposed DALSR-

Pose and CVML-Pose methods, which rank better on the more challenging occlusion

data, while they show only moderate ranks on the Linemod data (mild occlusion). A

possible reason for this is that, approaches like DPOD and Pix2Pose, which predict

pixel-wise dense correspondence, perform well in scenarios with relatively complete

object visibility, i.e. objects in the Linemod dataset, as they can always obtain

enough 2D-3D dense predictions. However, when objects are heavily occluded, i.e.
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objects in the Linemod-Occluded dataset, their performance starts to decline due

to an insufficient number of points available for assessing correspondence. On the

contrary, the proposed methods benefit from the autoencoder architectures that can

robustly handle object occlusion and truncation by reconstructing complete objects

from occluded views. The continuous regression strategy in the latent space does not

discretise the pose, which further enhances robustness compared to the LUT-based

approaches such as AAE and Multi-Path.

By analysing the results on the BOP version of the YCB-Video dataset (Table 5.4),

the latent representation methods, for example, AAE, can even achieve significantly

better results than DPOD, and catch up with Pix2Pose and CDPN. This can be

postulated that the provided YCB-Video training data are more suitable for latent

representation methods than the Linemod training data. As illustrated in Sec-

tion 3.2.4, the YCB-Video training set consists of PBR, non-PBR synthetic, and

real images, which provides a larger volume of data than Linemod (see Figure 3.11

for distribution of the datasets). As the latent representation methods do not count

on the object’s 3D model or established model correspondence, training with more

data may result in a more informative latent space. On the opposite, methods rely-

ing on 2D-3D correspondence might not benefit as much from a larger data volume,

as their focus is more on model correspondence.

It is worth noting that on all three benchmark datasets, the overall performance

scores of the proposed three methods still don’t perform as well as the leading

methods including CosyPose, GDR-Net, CDPN, CDPNv2, RNNPose, YOLOv5-

6D, EPOS, SurfEmb, ZebraPose, and PVNet. These leading methods improve their

accuracy through various techniques, for example, CosyPose directly utilises the

object’s 3D model with iterative refinement in training that increases the pose es-

timation accuracy. CDPN proposes a Scale-Invariant Feature Transform (SITE)

algorithm [70] on local image patches, which significantly improves the results of

the 3D translation estimation. The extended version CDPNv2 uses a better net-

work architecture with domain randomisation technique [65] to improve robustness
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to occlusion. EPOS addresses the many-to-one mapping problem associated with

symmetric objects by estimating multiple potential predefined pixel-wise correspon-

dences, rather than limiting to single correspondence. PVNet uses a voting-based

Perspective-n-Point (PnP) algorithm with Random Sample Consensus (RANSAC),

where the voting hypotheses warrant robust 2D keypoint localisation and naturally

deal with occlusions. Although these methods are generally better than the pro-

posed methods in pose accuracy, they all require 3D models for either setting up

the 2D-3D correspondence or training with the model point-based loss function,

while the unique contribution of the proposed methods lies in addressing the 6-DoF

pose estimation problem without using object’s 3D model, depth measurement, and

post-refinement, offering a novel solution in scenarios where such data is unavailable.

5.3.5 Performance Against Occlusion

The experiments on occlusion are conducted using the proposed CVAM-Pose method

on the BOP version of Linemod-Occluded. Performance against occlusion is illus-

trated in Figure 5.3, which shows box plots quantifying the distribution of the MSPD

metric (ARMSPD) across different visibility rates from 10% to 100%. It is evident that

as visibility increases (occlusion decreases), the median of pose estimation accuracy

improves and eventually achieves a value of 0.78. Even under heavy (20%-30% visi-

bility) and mild (50%-60% visibility) occlusions, the median of our pose estimation

accuracy achieves a value of 0.53 and 0.72, respectively, indicating its robustness

against challenging occlusion scenarios.

To compare the pose regression strategy with the LUT-based approaches described

in [65, 66], further experiments are conducted on the BOP version of Linemod-

Occluded and the results are averaged on all objects. The LUT technique assigns

the rotation and projective distance from the most similar instance to the test in-

stance, and utilises the centre of the bounding box as the 2D projective centre.

This approach may lead to inaccuracies, particularly with heavily occluded objects

or imprecise bounding boxes. In our analysis, the results for 3D rotation are re-
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Figure 5.3: Box plots of the MSPD metric as a function of the objects’
visibility rate. The number of data instances for each visibility rate is shown above
each box. Please note that for better visualisation, the MSPD metric is calculated
using thresholds ranging from 1 to 50 with a step of 1, instead of using the thresholds
(from 5 to 50 with a step of 5) defined in the BOP Challenge.

ported using the MSPD metric, while results for projective centre and distance are

evaluated using the mean absolute error (MAE) metric. The choice of MAE over

MSPD is due to its parameter-free nature, which simplifies the interpretation of

translational errors, as opposed to MSPD that depends on predefined thresholds as

outlined in [7].

As shown in Table 5.6, the proposed continuous pose regression strategy demon-

strates better results than using the LUT technique in estimating 3D rotation, 2D

projective centre, and 2D projective distance, e.g. our method achieves smaller er-

rors in distance measurement (improved by approximately 2% when computed in

relation to the gt average object’s distance in the test set). This can be attributed

to the avoidance of the pose discretisation problem inherent in the LUT technique,

particularly when the training data do not cover the entire SO(3). The performance

of centre prediction is further illustrated in Figure 5.4, which presents box plots

quantifying the distribution of errors (MAEpixel). It is evident that the median error
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in our method is consistently lower than that produced by the LUT technique across

various visibility rates. The LUT method can also generate noticeable outlier errors

in centre prediction, as high as 27 pixels.

Rotation ARMSPD ↑
LUT 0.666
Ours 0.709

Centre MAEpixel ↓
LUT 4.064
Ours 2.913

Distance MAEmm ↓
LUT 60.981
Ours 43.278

Table 5.6: Comparison between LUT and our proposed pose regression
strategy. The experiments are implemented on the estimation of 3D rotation, 2D
projective centre, and 2D projective distance.

Figure 5.4: Box plots of the MAE metric as a function of the objects’
visibility rates. The number of data instances for each rate is shown above each
pair of boxes.

Figure 5.5 visualises pose estimation results on two randomly selected images from

the Linemod-Occluded dataset, with poses estimated using CVAM-Pose. The target

objects, including ape, cat, driller, duck, eggbox, glue, holepuncher, and iron, are

rendered based on the estimated poses and reprojected onto the original test images.

Correct estimations are represented by aligned reprojection masks, e.g. the cat

object in the first image, while misaligned masks indicate incorrect estimations, e.g.

the eggbox object in the first image.
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Figure 5.5: Example visualisation of the estimated poses using CVAM-
Pose. The rendering process uses the Pyrender software [9].
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5.3.6 Object Detection

Table 5.7 compares the performance of the CVML-Pose method using the gt bound-

ing box with its performance using the detected bounding box from the pretrained

Mask-RCNN detector. It can be noted that the method exhibits significant im-

provements with the gt bounding box on both the Linemod dataset (11.2% better

in ARADD(I)) and the BOP version of the Linemod-Occluded dataset (7.0% better

in ARADD(I)).

Linemod BOP Linemod-Occluded
Objects gt Mask-RCNN gt Mask-RCNN

ape 33.71 25.07 13.74 8.76
benchvise 69.06 48.50 - -

cam 45.88 26.73 - -
can 58.76 48.57 31.66 18.08
cat 41.72 35.70 14.81 13.08

driller 62.14 46.02 36.00 22.16
duck 34.74 24.81 22.53 14.29
eggbox 95.02 85.73 36.67 29.13
glue 57.63 55.28 41.55 36.51

holepuncher 34.44 23.71 27.00 25.76
iron 56.08 52.20 - -
lamp 69.58 56.91 - -
phone 46.69 31.15 - -

ARADD(I) 54.27 43.11 28.00 20.97

Table 5.7: Comparison between pose estimation results of using the gt
and the Mask-RCNN bounding box. The CVML-Pose method is chosen as
the baseline model. The number of test instances in each dataset can be found in
Table 5.1.

To investigate whether a more effective detection model can yield similar improve-

ments in pose estimation, the YOLOX detector [216], pretrained by [71] and awarded

as the best 2D detection method at the BOP Challenge 2022 [26], is also em-

ployed. Following the same process of using the Mask-RCNN detector, the pre-

trained YOLOX detector is used to identify and crop objects of interest from the

test images, subsequently providing detection bounding boxes for the estimation of

3D translation T. The results of 2D object detection and pose estimation using the

YOLOX detector on the BOP version of the Linemod-Occluded and YCB-Video
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datasets are presented in Table 5.8. It is clear to see that the YOLOX detector

consistently outperforms the Mask-RCNN detector in both object detection and

pose estimation tasks across both datasets. For example, on the Linemod-Occluded

dataset, YOLOX surpasses Mask-RCNN by 12.9% and 4.7% when evaluated using

AP and ARscore, respectively. On the YCB-Video dataset, YOLOX performs 10.7%

and 4.1% better than Mask-RCNN when training and testing with different types of

data. This gap also increases to 19.2% and 8.9% when using PBR data. This high-

lights the importance of accurate object detection in pose estimation performance,

and further work should look to improve this aspect of the pipeline.

Test data Linemod-Occluded YCB-Video
Detector Mask-RCNN YOLOX Mask-RCNN YOLOX

Training data for detectors PBR PBR+real PBR PBR+real PBR PBR+synt+real PBR PBR+real
AP for object detection 0.566 0.566 0.695 0.695 0.594 0.745 0.786 0.852

ARscore for pose estimation 0.464 0.464 0.511 0.511 0.473 0.543 0.562 0.584

Table 5.8: Effects of using different object detectors and training data.
Both object detection and pose estimation methods are evaluated on the BOP
version [7] of Linemod-Occluded [3, 4] and YCB-Video [5, 6] data. For object
detection, the results are evaluated with the metrics of the COCO object detec-
tion challenge [218], and the final performance score AP calculates the average
over 10 different Intersection over Union (IoU) values (IoU = 0.5, 0.55, 0.6, ..., 0.95).
For pose estimation, the results are evaluated with the three main metrics of the
BOP Challenge, which are VSD, MSSD, and MSPD, and the final performance
is calculated by ARscore = (ARVSD +ARMSSD +ARMSPD)/3. For more comprehen-
sive comparison and results, please refer to [26] and the challenge leaderboard:
https://bop.felk.cvut.cz/leaderboards/.

Also, as previously discussed in Section 3.2.4, Table 3.1 and 3.2 exemplify the im-

portance of training data in pose estimation. Although the PBR synthetic images

provide good enough generalisation for many methods to perform better on the BOP

version of the Linemod-Occluded test data, the standard synthetic images (without

the PBR technique) and real images of the YCB-Video dataset are also beneficial for

training, as they can provide good enough generalisation ability as well as the PBR

images. This is also reflected in the object detection task as shown in Table 5.8.

For instance, on the Linemod-Occluded dataset, regardless of the object detector

used, the results of using PBR synthetic images make no difference from the results

of using a combination of PBR and real images, in both object detection and pose
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estimation tasks. In particular, the baseline pose estimation model (CVML-Pose)

does not benefit from the detection models trained on the PBR and real data. Con-

versely, when testing on the YCB-Video dataset, the combination of multiple types

of data significantly improves the results on both object detection (15.1% and 6.6%

higher in AP) and pose estimation (7% and 2.2% higher in ARscore), which matches

the results demonstrated in Table 3.2. This implies that the choice of training data

should be tailored to the specific dataset. For the Linemod-Occluded dataset, PBR

images alone may be sufficient for computational efficiency. For the YCB-Video

dataset, a diverse mix of image types, including PBR, non-PBR synthetic, and real,

are recommended for methods to achieve higher pose accuracy.

5.4 Summary

Extensive experiments with the proposed pose estimation methods have shown

promising results on challenging, publicly available datasets. On the Linemod test

data, the DALSR-Pose and CVML-Pose methods rank moderately compared to the

state-of-the-art methods, but outperform the AAE method by margins of 6.4% and

10.5% in ARADD(I), respectively.

In more complex scenarios, such as those involving object occlusion and cluttered

backgrounds on the BOP test data, the proposed methods demonstrate significant

advantages. Specifically, on the BOP version of the Linemod-Occluded dataset, all

three proposed methods surpass AAE by considerable margins of 28.2%, 31.8%, and

29.9% in ARscore. Even compared to AAE-ICP, which uses time-consuming ICP re-

finement, their pose accuracies are notably higher by margins of 19.1%, 22.7%, and

20.8%. Although the proposed methods do not match the accuracy of the leading

methods like CosyPose, CDPN, CDPNv2, EPOS, and PVNet, which either use 3D

models in training or acquire prior information from the models, they still achieve

more promising results than DPOD and Pix2Pose that rely on model correspon-

dence information, e.g. 25.9%, 29.5%, and 27.6% better than DPOD in ARscore.
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On the BOP version of the YCB-Video dataset, the proposed CVML-Pose method

outperforms a variety of state-of-the-art methods, including AAE (9.7%), AAE-

ICP (3.8%), Multi-Path (25.8%), DPOD (32.1%), Pix2Pose (8.6%), CDPN (8.6%),

and CDPNv2 (1.1%), in ARscore, although still having lower accuracy than Cosy-

Pose (27.8%), GDR-Net (28.2%), EPOS (15.3%), SurfEmb (10.4%), and ZebraPose

(28.5%), which do not use latent space representations.

The datasets used in the thesis consist of colour images, and therefore the devel-

oped methods operate on colour information. However, for the results reported on

the Linemod and Linemod-Occluded datasets, which consist of texture-less objects,

colour information is not critical; instead, the shape is the key feature. Therefore, it

is expected that the proposed methods should perform well if the input images are

grayscale. For the YCB-Video dataset, texture is an important feature, but it is still

anticipated that the grayscale texture may be sufficient. Though, in all cases, the

methods would require retraining on grayscale images since the input tensor would

have a different dimensionality compared to colour images.

The results also highlight the importance of object detection quality in pose esti-

mation accuracy. For example, using the gt bounding box on the Linemod and

the BOP version of the Linemod-Occluded datasets significantly improves the pose

estimation accuracy of the CVML-Pose method by a margin of 11.2% and 7.0% in

ARADD(I), compared to when it is using the bounding box from the Mask-RCNN

detector. Similarly, on the BOP version of the Linemod-Occluded and YCB-Video

datasets, using a better YOLOX detection model results in better performance on

both tasks, i.e. the YOLOX detector outperforms the Mask-RCNN detector by cer-

tain margins of 12.9% and 19.2% in AP in object detection task, 4.7% and 8.9% in

ARscore in pose estimation task.

Furthermore, the selection of training data plays a crucial role in both object detec-

tion and pose estimation model performance. On the BOP version of the Linemod-

Occluded dataset, using only PBR images is sufficient for achieving generalisable
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results in both object detection and pose estimation tasks, compared to when the

models are trained with PBR and real images. However, on the BOP version of the

YCB-Video dataset, a combination of PBR, non-PBR synthetic, and real images

significantly improves results over using only PBR images in both tasks, by margins

of 15.1% and 6.6% in AP for object detection, and 7% and 2.2% in ARscore for pose

estimation. This is also identical to the remarks made in Section 3.2.4.
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Chapter 6

Impacts of Pose Refinements

6.1 Introduction

In state-of-the-art 6-DoF pose estimation methods, pose accuracy is often improved

through various refinement techniques, which typically involve training and inference

with object 3D models and depth measurements. One common refinement approach

requires model point-based loss functions, such as the Shape-Match loss proposed

by [5] (refer to Eq. 2.1). During training, the loss functions keep minimising the

distance between corresponding 3D model points transformed at the estimated and

ground truth (gt) poses. Another similar refinement technique [75, 111] involves

training networks to iteratively match the image rendered from a 3D model at its

estimated pose with the observed input image. These techniques are collectively

named learning-based refinement as they employ CNNs to iteratively update the

pose or its representation based on the 3D model points.

Except for learning-based refinement, post-refinement techniques are often employed

during inference in many methods. The iterative closest point (ICP) algorithm [146]

is one of the most commonly used techniques, which estimates an optimal rigid

transformation that aligns two sets of point clouds by iteratively minimising the

distance between corresponding points in the two sets. The initial point clouds can
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be retrieved from object 3D models and transformed at the estimated pose, and

the target point clouds are typically generated from the depth data. While ICP is

a benchmark in pose refinement from point clouds and is used in several state-of-

the-art methods [5, 65, 66, 68, 96, 119], it has limitations, such as a tendency to

get stuck in local minima, especially when the initial point cloud is close enough to

the target point cloud, leading to premature convergence. In situations where two

point clouds have very little overlap or are substantially distant from each other,

the algorithm frequently results in numerous misalignments. Some efficient ICP

variants [147, 219, 220] have been proposed to mitigate such issues.

In the three proposed methods (illustrated in Chapter 4), although object 3D models

and depth information are not required to achieve state-of-the-art performance,

two optional refinement processes are introduced here, to examine their impacts on

pose estimation. These include training with 3D model points (Section 6.2) and

inference with ICP refinement (Section 6.3), with detailed discussions and remarks

in Section 6.4. The proposed CVML-Pose method (detailed in Section 4.3) is chosen

as the baseline method, and evaluated on the Linemod dataset [1, 2] using the gt

bounding box. Since the estimation of rotation and translation are disentangled in

the method, Section 6.2 focuses solely on the refinement of 3D rotation. The ICP

refinement of the complete pose is later introduced in Section 6.3 as this refinement

process is applied after the initial estimation of the complete pose by the proposed

method. The evaluation procedure follows the procedure described in Chapter 5,

with the performance score ARADD(I) calculated based on the ADD(I) metric and

averaged across all Linemod objects. Additionally, it is important to stress that the

proposed methods do not require pose refinement. Training with 3D model points

does not improve the pose estimation accuracy of the proposed CVML-Pose method.

While ICP does improve the pose estimation accuracy by 36.3% higher in ARADD(I)

on the Linemod dataset, it is not considered real-time as defined on pages 21 and

22.
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6.2 Training with 3D Model Points

In the CVML-Pose method, the 3D rotation is estimated using a multilayer per-

ceptron (rotation MLP) with the continuous 6D representation [118]. The L1 loss

(mean absolute error) is measured between the estimated rotation R̂ ∈ SO(3) and

the gt rotation R̄ ∈ SO(3). To refine the estimated rotation with object 3D model

points, the point-based loss function proposed by the EfficientPose method [116]

(Eq. 2.2) is modified to the following Eq. 6.1.

lossasym =
1

m

∑
x∈M

||Rot(r̃, x)− Rot(r, x)||2

losssym =
1

m

∑
x1∈M

min
x2∈M

||Rot(r̃, x1)− Rot(r, x2)||2
(6.1)

where Rot(r̃, x) and Rot(r, x) are the model points transformed from the estimated

axis-angle representation r̃ and the gt axis-angle representation r, using the Ro-

drigues’ rotation formula [123, 124, 125]. The axis-angle representation can be either

obtained directly from the regression output or converted from the continuous 6D

rotation representation R6D ∈ R6.

Given that the continuous 6D representation cannot be directly applied as a rigid

transformation on object 3D model points, two approaches are implemented. The

first approach converts the obtained 6D rotation representation R6D ∈ R6 to other

representations, such as axis-angle representation, which is directly applicable to

the 3D model points. Alternatively, following the EfficientPose method, the MLP

can be trained to regress the axis-angle representation directly, using the Rodrigues’

rotation formula for applying the rotation to the model points.

For evaluation, the performance score ARADD(I) is calculated based solely on the

estimated rotation, to reduce the impact of any inaccuracies in translation estima-

tion. The results, as shown in Table 6.1, indicate that the online refinement with

object 3D models improves pose estimation accuracy (2.9% higher in ARADD(I))
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Methods Rotation representation ARADD(I)

CVML-Pose without 3D models axis-angle 94.39
CVML-Pose with 3D models axis-angle 97.33

CVML-Pose without 3D models continuous 6D representation 97.97
CVML-Pose with 3D models continuous 6D representation 97.87

Table 6.1: Results of training with 3D model points based on the CVML-
Pose method. Each row represents the CVML-Pose method with a specific rota-
tion representation, and training with or without object 3D models.

when regressing the discontinuous axis-angle representation. However, the best re-

sults are achieved without using the model point-based refinement. Notably, when

the rotation MLP is trained to regress the continuous 6D representation with 3D

model points, the results are nearly identical (0.1% difference in ARADD(I)) to those

obtained without using the model points, which shows the effectiveness of the con-

tinuous rotation regression implemented in the method.

6.3 Test with ICP refinement

In addition to learning-based refinement, another common practice in pose esti-

mation is to refine with images obtained from depth sensors. In the CVML-Pose

method, this can be achieved through the ICP registration with depth images and

object 3D model points. Unlike the previous section, the ICP algorithm here re-

fines the complete rigid transformation H that includes both 3D rotation R and

3D translation T. Following a similar approach as in the AAE method [65], the

point-to-plane ICP variant [219, 221] is used for pose refinement. Typically, the

source point cloud is derived from the rendered depth image based on the estimated

rigid transformation H =

R T

0 1

, the object’s 3D model, and the camera intrinsic

matrix. The target point cloud, meanwhile, is obtained from the depth image of

the test scene. The adopted ICP algorithm first finds the closest point q in the

target cloud for each point p in the source cloud, and then iteratively minimises

an energy function E(H) to get the best possible transformation H. The energy
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function E(H) is defined as follows:

E(H) =
∑

(p,q)∈C

((p−Hq) · np)
2 (6.2)

where C is the found correspondence set, np is the computed surface normal of each

p.

In CVML-Pose, the 3D translation T =

(
Tx Ty Tz

)T

∈ R3 is disentangled into

the estimation of projective centre Pc = (xc, yc)
T ∈ R2 and projective distance

Tz ∈ R. This regression approach, similar to DALSR-Pose (detailed in Section 4.2.3),

has shown promising results for localising Pc. However, the estimation of Tz exhibits

notable errors in all regression models (as shown in Table 4.2b). Since Tx and Ty are

calculated from Tz, the errors can accumulate on the complete translation vector

T =

(
Tx Ty Tz

)T

∈ R3. If the ICP refinement can improve the accuracy of Tz

with the help of depth measurement, the errors in 3D translation can be significantly

reduced.

Method ARADD(I) MAEmm Time(ms)

CVML-Pose without ICP 54.27 21.94 4.76
CVML-Pose with ICP 90.53 6.58 357.68

Table 6.2: Results of testing with ICP refinement based on the CVML-Pose
method. Each row represents the CVML-Pose method testing with or without ICP
refinement, and the results are calculated from two different metrics. The ARADD(I)

is calculated on the complete 6-DoF pose, while the MAEmm is calculated only on
the distance Tz. The Time(ms) indicates the average inference time per object per
image.

There are two different metrics used for evaluation. The first performance score

ARADD(I) is calculated based on the complete estimated pose, and the second score

MAEmm focuses only on the projective distance Tz. Additionally, a measurement

of the pose estimation speed, denoted as Time(ms), measures the average inference

time for a single object from a single image, which consists of the time taken for the

encoder, MLP, KNN, and ICP processing (if used). As presented in Table 6.2, the

original CVML-Pose method suffers from the inaccurate estimation of Tz, resulting
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in a certain number of misalignments when measuring the model distance using

the ADD(I) metric. With object 3D model points and depth data, the accuracy

of Tz improves by approximately 1% when computed in relation to the gt average

object’s distance in the test set. The pose estimation accuracy also improves sig-

nificantly (36.3% higher in ARADD(I)). However, it is important to note that the

ICP refinement leads to a considerable reduction in inference speed, making it 352.9

milliseconds slower compared to the method without the refinement.

6.4 Summary

The experimental results in Table 6.1 suggest that online refinement with object

3D models is not necessary for the CVML-Pose method, considering accuracy, ef-

ficiency, and cost. In terms of accuracy, training with the continuous 6D rotation

representation already achieves satisfactory precision. For the sake of computational

efficiency, training with 3D models demands more GPU memory and extends train-

ing time. Additionally, it would be difficult to build an accurate 3D model for every

possible object of interest in real-life applications, given the cost associated with 3D

scanning and the need for further refinements. Consequently, it is expected that the

methods proposed in this thesis should achieve state-of-the-art performance without

explicitly accessing object 3D models.

From the experimental results demonstrated in Table 6.2, it can be concluded that

ICP refinement can solve the problem encountered in RGB-based pose estimation

methods, particularly in improving 3D translation accuracy. However, for efficiency,

the ICP refinement would be on the losing side due to its iterative processing. The

average processing time for CVML-Pose is approximately 5 milliseconds per object,

while ICP refinement takes around 350 milliseconds, extending the time by a factor

of 70. The processing time of ICP can be even longer in extreme cases, such as

convergence to local minima or extensive closest point search. Due to the nature of

iterative processing, it would be challenging to facilitate real-time applications as the
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processing time is unpredictable. Taking into account both manpower and financial

costs, the use of 3D models and depth sensors would increase them, especially for

the construction of 3D models, which may require high-performance instruments

at expensive prices. While depth cameras are not extremely expensive, they can

be affected by various noises in the context of random variations of brightness or

colour and material of objects [34]. They can also exhibit motion blur when there’s

movement of the object or the camera, which leads to either overestimating or

underestimating the depth. Therefore, given these considerations, particularly the

impact on speed and cost, the ICP refinement technique is not a favourable option

for the proposed pose estimation methods.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis addresses one of the key challenges in computer vision: finding an ob-

ject’s 6-DoF pose in real time without requiring the object’s 3D model. The proposed

methods demonstrate that state-of-the-art performance can be achieved using only

data from a monoscopic camera, eliminating the need for 3D models, depth measure-

ments, or iterative post-refinement. The main contribution of the reported research

is the proposed use of autoencoder networks and the construction of regularised

latent space representations from 2D images. Subsequently, the learnt latent space

representations are interpolated to continuous pose representations, and processed

with supervised learning methods for fast and accurate pose estimation. Different

configurations of the methods were systematically evaluated using extensive ablation

tests, leading to a favourable selection of parameters.

The proposed methods achieve promising pose estimation results compared to state-

of-the-art methods, without the use of 3D models and depth measurements, which

are extensively used in other approaches. The proposed methods outperform other

existing methods that utilise latent space representation on various challenging tex-

tured, texture-less, cluttered, and occluded datasets. For instance, the proposed
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DALSR-Pose method surpasses AAE, AAE-ICP, and Multi-Path in the ARscore

benchmarking score, with considerable margins of 28.2%, 19.1%, and 21.1%, re-

spectively. This superior performance is largely attributed to the smooth interpre-

tation of the learnt latent space representations through continuous pose regression.

Similarly, the proposed CVML-Pose method demonstrates remarkable results, out-

performing the same three methods by significant margins of 31.8%, 22.7%, and

24.7%, respectively. This can be mainly attributed to the construction of robust

latent space representation through the use of regularised learning. Owing to the

implicit learning process, the autoencoder architecture can handle object occlusions

and cluttered scenes, and does not need prior knowledge of the object’s 3D model or

post-refinement, e.g. using ICP. Additionally, the latent space visualisation shows

potential for the CVML-Pose method to be extended to a multi-purpose object

characterisation. Furthermore, an online video demonstration1 also exhibits that

the proposed CVML-Pose method copes well with low-resolution images captured

with an inexpensive webcam. The absence of iterative post-refinement ensures pre-

dictable processing times, for example, it takes only approximately 5 milliseconds

to estimate the pose of a single object using the CVML-Pose method, facilitating

real-time implementation, which is crucial for practical applications. The CVAM-

Pose method, in particular, demonstrates the scalability of a single latent space to

be expanded to multi-object representations without compromising pose accuracy

(1.9% worse than the proposed CVML-Pose in ARscore). It is expected that the

latent representation could be further leveraged to infer other attributes of the ob-

ject such as material, surface finish, and deformations, which are also important for

specific tasks such as object grasping.

7.2 Novelty

This thesis addresses a classical yet still not fully solved problem in computer vi-

sion, i.e. estimation of the 6-DoF pose of rigid objects. The focus of this work

1video available: https://ieeexplore.ieee.org/document/10040668.
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is on 6-DoF pose estimation in real time from a single colour image, without ac-

cess to 3D object models, depth sensors, or iterative post-refinement techniques.

Building upon existing results, the novel contributions of this thesis address the

limitations of current methods and effectively handle several challenging scenarios

involving object occlusion, truncation, and clutter. The thesis uniquely bridges the

gap between deep learning-based latent space representation methods and classi-

cal machine learning-based regression algorithms, opening up novel prospects for

integrated pose estimation. The novelties of each method are listed as follows:

• DALSR-Pose incorporates deep learning-based latent space representation with

regression algorithms to interpolate an object’s 6-DoF pose. The main contri-

bution is the proposed continuous pose regression from the learnt latent space

representation, using supervised learning algorithms. On the Linemod [1, 2]

and the BOP version [7] of the Linemod-Occluded [3, 4] benchmark datasets,

DALSR-Pose outperforms AAE (a latent representation method) by a margin

of 6.4% using the ARADD(I) metric, and 28.2% using the ARscore benchmark-

ing score. It also achieves moderate performance compared to state-of-the-art

methods that explicitly access object 3D model information. To the best of

my knowledge, DALSR-Pose is the first method to unify latent space repre-

sentation and continuous pose regression for 6-DoF pose estimation.

• The CVML-Pose method innovatively uses a variational autoencoder, i.e. a

generative model, to address the problem of 6-DoF pose estimation. The pri-

mary contribution is in the proposed use of a regularised latent space repre-

sentation. The regularised representation is subsequently interpolated to the

continuous pose representation using regression-based algorithms, and clus-

tered in both category and topology using t-SNE. Comprehensive ablation

tests and systematic evaluation procedures, demonstrate the superiority of

the CVML-Pose method over existing state-of-the-art methods using latent

space representation on the challenging benchmark datasets. For example, on

the BOP version of the Linemod-Occluded dataset, CVML-Pose outperforms
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AAE by a large margin of 31.8% in ARscore. On the BOP version of the YCB-

Video dataset [5, 6], although CVML-Pose cannot perform as well as the most

state-of-the-art methods, e.g. 28.2% and 28.5% worse than [71, 76] in ARscore,

it outperforms not only latent representation methods [65, 66] but also some

methods using 3D models [67, 68, 70] by different margins, e.g. 32.1% better

than [67] in ARscore. The video demonstration2 also shows the ability to seam-

lessly estimate object 6-DoF pose without any iterative post-refinement in real

time, and handle both object occlusions and cluttered scenes on low-resolution

images from a webcam. This work has been published in [202]. To the best

of my knowledge, it is the first method that combines the latent space of a

generative model with continuous pose regression in the field of object 6-DoF

pose estimation.

• The CVAM-Pose method extends the CVML-Pose method from single-object

to multi-object pose estimation. The primary contribution is the use of reg-

ularised and constrained representations in a conditional variational autoen-

coder’s latent space. The method introduces a novel layer-wise one-hot encod-

ing technique to embed conditional labels into every convolutional layer/block

of the autoencoder network, learning high-level representations. The learnt

multi-object representations are then interpolated to the continuous pose rep-

resentations through the regression-based algorithms. Extensive evaluations

on the challenging BOP version of the Linemod-Occluded dataset demonstrate

the scalability and efficiency of CVAM-Pose, which nearly matches the pose

accuracy of CVML-Pose (a narrow margin of 1.9% in ARscore), and achieves

comparable results to the state-of-the-art methods using 3D models. To the

best of my knowledge, CVAM-Pose is the first method that combines condi-

tioned latent space representation with continuous regression for multi-object

pose estimation.

2video available: https://ieeexplore.ieee.org/document/10040668.
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7.3 Limitations

This thesis introduces three novel 6-DoF pose estimation methods, each offering

unique contributions to the field. Despite their promising results in accurately and

efficiently estimating object poses under complex environments, it is crucial to ac-

knowledge certain limitations that may affect the applicability and reliability of the

methods in real-world scenarios. While these limitations do not diminish the novel-

ties of the methods, they are important considerations for future development and

practical implementation. The potential limitations are listed as follows:

• Computational Efficiency and Scalability: The “per object per network”

training strategy of the single-object pose estimation methods (DALSR-Pose

and CVML-Pose) requires substantial computational resources. Although the

proposed CVAM-Pose method has partially addressed this issue, the scalability

of the method still necessitates further analysis.

• Pose Ambiguity Problem: Unlike methods specifically designed for sym-

metrical objects, the proposed autoencoder-based methods effectively handle

object symmetry in the latent space, even though they were not explicitly de-

signed for this purpose. This inherent capability to handle symmetry, despite

not being a primary focus, enhances the robustness of the methods. To further

improve pose accuracy, particularly for symmetrical objects, the methods can

be extended to estimate the distribution of potential poses through random

sampling in the latent space, thereby accommodating variances induced by

object symmetries.

• Non-Rigid Object Handling: The proposed methods are designed under

the assumption that the objects of interest are rigid. However, real-world sce-

narios often involve articulated or deformable objects whose pose estimation is

inherently more complex due to variable shapes. The current proposed meth-

ods do not accommodate these variations, potentially leading to an inaccurate
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estimation of the pose.

• Accuracy of Pose Estimation: While the CVML-Pose method stands out

as the most accurate among the proposed methods, it still exhibits a certain

margin compared to the leading state-of-the-art methods that utilise object

3D models and depth measurements. For example, it is 10.4% worse than [73]

on the YCB-Video dataset using ARscore. This gap highlights potential im-

provements in the development of more precise pose estimation algorithms.

7.4 Future Work

This thesis presents a novel challenge in object 6-DoF pose estimation, i.e. es-

timating the pose from a single colour image, while eliminating the need for 3D

models, depth sensors, or iterative post-refinement techniques. To solve this chal-

lenging problem, three novel methods are proposed, which achieve comparable re-

sults to the state-of-the-art methods that extensively depend on such resources.

These methods not only address the inherent challenges in pose estimation, such

as occlusion and clutter, but also open up new perspectives for further exploration,

for example, object characterisation. As research never ends, the field of object

6-DoF pose estimation continues to evolve with numerous unresolved challenges,

which include the estimation for deformable objects [222, 223, 224] and unseen ob-

jects [225, 226, 227], as well as dealing with multiple objects [228, 229, 230], in a

few-shot [231, 232, 233, 234] or zero-shot [235, 236] manner. Other relevant fields

like object recognition [237, 238], detection [26], and segmentation [239, 240, 241]

also contribute to the development of 6-DoF pose estimation.

In terms of the proposed Auto-Pose framework, three main directions are envis-

aged for an expanded version in the future. First, a more comprehensive object

characterisation including shape, shape deformations, material, pose stability, and

surface finish will be investigated. The sensitivity of the method to various practical

limitations of an image acquisition system, including nonlinear lens distortion and
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motion blur, will also be evaluated. Second, the results reported here are based on

a synthetic training dataset. The results reported in the literature for the state-

of-the-art methods suggested that high-quality synthetic training data is a good

surrogate for real training images. This conjecture will be extensively tested for the

proposed methods. Finally, it has been shown that the inaccuracies in object detec-

tion can significantly impact performance, and that further work on object detection

would be beneficial. To this end, the possibility of an end-to-end pose estimation

algorithm, including object detection, latent space and pose estimation in a single

learning process, will be explored.

In line with these future research directions, a recent research project from the

UCLan Undergraduate Research Internship Programme (UURIP)3, started to build

a data collection system for deformable objects’ 6-DoF pose estimation. The system

consists of several hardware components, including a turntable, a light box covered in

ArUco markers obtained from ARToolKitPlus [242] and an RGB-D sensor (Microsoft

Kinect v1) attached to a tripod. Future development of the system will also involve

more advanced sensors like Intel RealSense [78]. Additionally, a high-resolution 3D

scanner (Artec Eva) and its accompanying software are used for the creation of

object 3D models. This is a challenging problem because of object deformation and

articulation. Although the system is still under development, it attempts to solve

the most advanced model-free 6-DoF pose estimation problem, closely following the

direction of future research.

3The programme started on 01/06/2023 and ended on 28/07/2023.
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Supplementary Figures

Figure A.1: Example bad cases for Linemod objects [1, 2]. Objects with the
∗ symbol refer to those also contained in the Linemod-Occluded dataset [3, 4].
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Appendix B

Test with IMU

We additionally use an Inertial Measurement Unit (IMU) sensor as a reference to

calculate errors in pose estimation. Figure B.1 shows an example of how these errors

are calculated using the IMU sensor1. The target Linemod cat object is attached to

the sensor, and they are moved together. The object’s pose is estimated using the

proposed CVML-Pose method. The coordinates of the object and the sensor are

aligned, and their rotations are represented using the axis-angle representation (see

Section 3.3.3 for details of the representation). For simplicity, the rotations for both

sensors are set to 0 for the first frame, and relative rotations are estimated for the

subsequent frames. The error between CVML-Pose and IMU for images shown in

Figure B.1 is calculated as 2.85◦ using the RE metric (see Section 3.5.1 for details of

the metric). A total of 21 images were captured, with the error distribution shown

in Figure B.2.

1Product name: FDISystems DETA-10
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Figure B.1: Example of using the IMU sensor to calculate errors.

Figure B.2: Distribution of error using the IMU sensor.
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Appendix C

Mathematical Derivation

C.1 Derivation of the Evidence Lower Bound in

Variational Autoencoder

The objective of a variational autoencoder (VAE) is to maximise the likelihood

log pθ(x) of the input data x. Given the latent space z, it learns a joint probability

log pθ(x, z):

log pθ(x) = log

∫
pθ(x, z)dz (C.1)

The true posterior pθ(z|x) is typically intractable, so a tractable variational approx-

imation qϕ(z|x) is introduced:

log pθ(x) = log

∫
pθ(x, z)

qϕ(z|x)
qϕ(z|x)

dz (C.2)

The integral can be expressed as an expectation under the variational approximation:

log pθ(x) = logEqϕ(z|x)

[
pθ(x, z)

qϕ(z|x)

]
(C.3)
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Apply Jensen’s inequality to move the log inside the expectation for a lower bound:

log pθ(x) ≥ Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]
(C.4)

Decompose the logarithm:

Eqϕ(z|x) [log pθ(x, z)− log qϕ(z|x)] (C.5)

Expand the joint probability log pθ(x, z) into the log likelihood log pθ(x|z) and the

log prior log pθ(z):

Eqϕ(z|x)[log pθ(x|z)] + Eqϕ(z|x)[log pθ(z)]− Eqϕ(z|x)[log qϕ(z|x)] (C.6)

which contains the Kullback–Leibler (KL) divergence DKL(qϕ(z|x)∥pθ(z)):

DKL(qϕ(z|x)∥pθ(z)) = Eqϕ(z|x)[log qϕ(z|x)]− Eqϕ(z|x)[log pθ(z)] (C.7)

Eventually the evidence lower bound (ELBO) can be derived:

ELBO = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)∥pθ(z)) (C.8)

where ϕ represents the encoder network with the learning parameter in the encoder,

θ represents the learning parameter in the decoder.

C.2 Transformation Between Rotation Represen-

tations

The transformation functions between different rotation representations are listed

below:
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Rotation Matrix to Euler Angles

Given a rotation matrix R, the Euler angles (α, β, γ) can be calculated as:

β = arctan 2

(√
R2

13 +R2
23, R33

)
α = arctan 2 (R23/ cos(β), R33/ cos(β))

γ = arctan 2 (R12/ cos(β), R11/ cos(β))

Euler Angles to Rotation Matrix

Given Euler angles (α, β, γ), the rotation matrix R can be calculated as:

R = Rz(γ)Ry(β)Rx(α)

Rotation Matrix and Axis-angle

Given a rotation matrix R, the axis e = (ex, ey, ez) and angle θ can be calculated as:

θ = arccos

(
Tr(R)− 1

2

)

e =
1

2 sin(θ)


R32 −R23

R13 −R31

R21 −R12



Axis-Angle to Rotation Matrix

Given an axis e = (ex, ey, ez) and an angle θ, the rotation matrix R can be calculated

using the Rodrigues’ rotation formula:

R = I+ sin(θ)K+ (1− cos(θ))K2
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where I is the identity matrix, K is the skew-symmetric matrix of e:

K =


0 −ez ey

ez 0 −ex

−ey ex 0



Rotation Matrix to Quaternion

Given a rotation matrix R, the quaternion Q = q0+q1i+q2j+q3k can be calculated

as:

q0 =
1

2

√
1 +R11 +R22 +R33

q1 =
1

4q0
(R32 −R23)

q2 =
1

4q0
(R13 −R31)

q3 =
1

4q0
(R21 −R12)

Quaternion to Rotation Matrix

Given a unit quaternion Q = q0 + q1i + q2j + q3k, the rotation matrix R can be

calculated as:

R11 = 1− 2q22 − 2q23 R12 = 2q1q2 − 2q3q0 R13 = 2q1q3 + 2q2q0,

R21 = 2q1q2 + 2q3q0 R22 = 1− 2q21 − 2q23 R23 = 2q2q3 − 2q1q0,

R31 = 2q1q3 − 2q2q0 R32 = 2q2q3 + 2q1q0 R33 = 1− 2q21 − 2q22
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[206] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and ac-

curate deep network learning by exponential linear units (elus). arXiv preprint

arXiv:1511.07289, 2015.

206 Chapter C Jianyu Zhao

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7


Deep Models for Rigid Objects Real-Time Pose Estimation

[207] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

boltzmann machines. In Proceedings of the 27th international conference on

machine learning (ICML-10), pages 807–814, 2010.

[208] Patrick Popescu-Pampu et al. What is the Genus?, volume 2162. Springer,

2016.

[209] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and

checkerboard artifacts. Distill, 2016. doi: 10.23915/distill.00003. URL http:

//distill.pub/2016/deconv-checkerboard.

[210] Jason Brownlee. How to fix the vanishing gradients problem us-

ing the relu., 2020. URL https://machinelearningmastery.com/

how-to-fix-vanishing-gradients-using-the-rectified-linear-activation-function/.

Visited on 15/12/23.

[211] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv

preprint arXiv:1606.08415, 2016.

[212] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random

erasing data augmentation. In Proceedings of the AAAI conference on artificial

intelligence, pages 13001–13008, 2020.

[213] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam

Lerer. Automatic differentiation in pytorch. In NIPS 2017 Workshop on

Autodiff, 2017.

[214] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.

In Proceedings of the IEEE international conference on computer vision, pages

2961–2969, 2017.

[215] The MathWorks Inc. Evaluating the accuracy of single camera cali-

bration., 1994-2024. URL https://uk.mathworks.com/help/vision/ug/

Chapter C Jianyu Zhao 207

http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard
https://machinelearningmastery.com/how-to-fix-vanishing-gradients-using-the-rectified-linear-activation-function/
https://machinelearningmastery.com/how-to-fix-vanishing-gradients-using-the-rectified-linear-activation-function/
https://uk.mathworks.com/help/vision/ug/evaluating-the-accuracy-of-single-camera-calibration.html
https://uk.mathworks.com/help/vision/ug/evaluating-the-accuracy-of-single-camera-calibration.html
https://uk.mathworks.com/help/vision/ug/evaluating-the-accuracy-of-single-camera-calibration.html


Deep Models for Rigid Objects Real-Time Pose Estimation

evaluating-the-accuracy-of-single-camera-calibration.html. Vis-

ited on 25/06/24.

[216] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Ex-

ceeding yolo series in 2021. arXiv preprint arXiv:2107.08430, 2021.

[217] Tomas Hodan, Martin Sundermeyer, Yann Labbe, Van Nguyen Nguyen,

Gu Wang, Eric Brachmann, Bertram Drost, Vincent Lepetit, Carsten Rother,

and Jiri Matas. Bop challenge 2023 on detection segmentation and pose es-

timation of seen and unseen rigid objects. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 5610–5619,

2024.

[218] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,

Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Com-

mon objects in context. In Computer Vision–ECCV 2014: 13th European

Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V

13, pages 740–755. Springer, 2014.

[219] Zhengyou Zhang. Iterative point matching for registration of free-form curves

and surfaces. International journal of computer vision, 13(2):119–152, 1994.

[220] Kok-Lim Low. Linear least-squares optimization for point-to-plane icp surface

registration. Chapel Hill, University of North Carolina, 4(10):1–3, 2004.

[221] Yang Chen and Gérard Medioni. Object modelling by registration of multiple

range images. Image and vision computing, 10(3):145–155, 1992.

[222] Liu Liu, Han Xue, Wenqiang Xu, Haoyuan Fu, and Cewu Lu. Toward real-

world category-level articulation pose estimation. IEEE Transactions on Im-

age Processing, 31:1072–1083, 2022.

[223] Liu Liu, Qi Wu, Zhendong Xue, Sucheng Qian, and Rui Li. Reaper: Articu-

lated object 6d pose estimation with deep reinforcement learning. In 2023

208 Chapter C Jianyu Zhao

https://uk.mathworks.com/help/vision/ug/evaluating-the-accuracy-of-single-camera-calibration.html
https://uk.mathworks.com/help/vision/ug/evaluating-the-accuracy-of-single-camera-calibration.html
https://uk.mathworks.com/help/vision/ug/evaluating-the-accuracy-of-single-camera-calibration.html


Deep Models for Rigid Objects Real-Time Pose Estimation

IEEE International Conference on Image Processing (ICIP), pages 21–25.

IEEE, 2023.

[224] Lixin Yang, Kailin Li, Xinyu Zhan, Jun Lv, Wenqiang Xu, Jiefeng Li, and

Cewu Lu. Artiboost: Boosting articulated 3d hand-object pose estimation via

online exploration and synthesis. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 2750–2760, 2022.

[225] Wanli Peng, Jianhang Yan, Hongtao Wen, and Yi Sun. Self-supervised

category-level 6d object pose estimation with deep implicit shape represen-

tation. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-

ume 36, pages 2082–2090, 2022.
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