Mekhalfia, Mohammed Lamine, Procházka, Pavel, Smid, Radislav, Bonello, Philip, Russhard, Peter, Maturkanič, Dušan, Mohamed, Mohamed Elsayed elsayed ORCID: 0000-0002-0601-2307 and Tchawou Tchuisseu, Eder Batista (2024) Electromagnetic Excitation for Blade Vibration Analysis in Static Conditions: Theoretical Insights and Experimental Evaluation. IEEE Transactions on Instrumentation and Measurement, 73 (601100). ISSN 0018-9456
Preview |
PDF (AAM)
- Accepted Version
2MB |
Official URL: https://doi.org/10.1109/TIM.2024.3488153
Abstract
Blade vibration testing is crucial for understanding the dynamic behavior of rotating machinery. This article presents a theoretical analysis and experimental validation of electromagnetic excitation for blade vibration testing in static conditions. The study focuses on investigating the effect of electromagnets on static blades to establish a theoretical foundation. The Timoshenko beam theory is utilized to analyze the vibration parameters, including amplitude and frequency while considering associated uncertainties. The theoretical analysis is complemented by numerical modeling using the finite-element method and experimental measurements employing laser Doppler vibrometer (LDV). The results demonstrate the effectiveness of electromagnetic excitation in generating controlled vibrations in static blades. These findings provide valuable insights and serve as a basis for subsequent investigations into the behavior of blades during rotation. The mathematical model’s frequency estimation error was approximately 4% compared to numerical results, and the numerical amplitude results differed by 6.4% from the experimental measurements. These contributions enhance the understanding and design of blade vibration monitoring systems in rotating machinery and provide valuable information on the blade’s dynamic parameters for the calibration of blade tip timing (BTT) systems.
Repository Staff Only: item control page